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Abstract

An effective mode matching method (MMM) is developed for dealing with three-
dimensional (3D) dielectric waveguide structures with arbitrary transverse index profiles
and scattering interfaces along the longitudinal waveguide axis. With the introduction of
a perfectly conducting box coated by a perfectly matched layer (PML) as the lateral
boundary, the method circumvents the inherent difficulties associated with the continuous
radiation modes of open waveguide structures. The semi and full-vectorial finite
difference (FD) methods are employed for mode calculation. The guideline for choice of
the PML parameters in the mode matching analysis is discussed via a two-dimensional
(2D) waveguide structure with a single step discontinuity. We show results for the 3D
waveguide air gap, facet and polarization converter. The effectiveness and efficiency of

the method are validated.
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Chapter 1

Introduction

Waveguide structures with longitudinal discontinuities are involved in many
applications. Analysis of the waveguide discontinuities is of great importance. A
powerful approach is the mode matching method (MMM) with which the fields are
described by a superposition of waveguide modes, and then the boundary conditions that
the tangential fields in the cross-section of the waveguide structure must be continuous
are imposed at the interface between different waveguide sections [1] [2] [3]. The method
is inherently bi-directional and has been successfully applied for analysis of closed
waveguides in which the mode spectrum is discrete. For open waveguide structures with
infinite cross-sections, the mode spectrum includes the guided and radiation modes. The
inclusion of the continuous radiation modes in the field expansion constitutes significant
challenges for the applications of the MMM since usually a large number of sampled
modes are needed to obtain reasonable results. The more difficult problem arises when
we deal with three-dimensional (3D) waveguide structures with arbitrary transverse index
profiles as the modes have to be calculated numerically. On the other hand, the radiation
fields can also be represented approximately by summation of leaky modes [4]. Leaky
modes, together with the guided modes, have been used in the modal expansion for
analysis of many practical open waveguide structures. In principle, the leaky modes are
the guided modes below cutoff, and they have complex propagation constants. It can be
shown that the leaky modes can be used to approximate the portion of the radiation fields

1
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near the core. The imaginary parts of the propagation constants for the leaky modes give
rise to the attenuation coefficients which account for the leakage loss, and the modal field
distributions close to the waveguide axis represent the radiation fields. It can be presented
that the modal fields of the leaky modes diverge at infinity [4][5]. Fig. 1 shows the field
divergence of two sample leaky modes (one sided and two sided) in a typical multilayer
waveguide structure. We can see that the fields of the leaky modes do not obey the
common orthogonality conditions as the integration needs to be performed over the
infinite cross-section of the open waveguide structure. The unbounded modal field
distributions and the mathematical difficulties make it tricky to apply the leaky modes in

the modal expansion when defining modal orthogonality and normalization [4] [6].

Fig. 1: Leaky waves in a multilayer waveguide.
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The perfectly matched layer (PML) has been introduced for the truncation of the
finite difference time domain (FDTD) lattices [7]. In practice, the PML is designed to
surround the structure so that for any frequencies and angles of incidence, no reflection at
the interface between non-PML and PML regions occurs. On the other hand, the PML
backed by a perfectly conducting box can also be applied for analysis of waveguide
problems. In this respect, the box with the inner PML encloses the waveguide structure in
the transverse plane. We first consider the box without the inner PML. In this case, the
mode spectrum is discrete and all the modes are on the axes in the propagation constant
plane. The modes can be divided into two categories:

(1) Core-guided modes

The modes are confined to the core of the waveguide, and are approximately
identical to the guided modes in the corresponding open waveguide if the perfectly
conducting box is far away from the waveguide core.

(2) Box modes

The modes are related to the enclosing box, and the modal spectral spacing is
inversely proportional to the size of the box.

Obviously, the size of the box without the inner PML should be sufficiently large
in order to simulate the original open structure. Consequently, a large number of modes
must be used in the field expansion. With the introduction of the inner PML as an
absorbing boundary, the waves incident to the PML region would not be reflected and the
closed waveguide structure can be seen as an open one [8]. As a result of the PML

sandwiched between the guiding region and the perfectly conducting box enclosing the
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computation domain, the mode spectrum is changed. Note that the size of the box is
assumed to be large enough so that the guided modes of the original open waveguide
structure would not be affected significantly. Now the entire mode spectrum is still
discrete and includes the guided and complex modes, all of which are well defined and
possess the normal mode characteristics such as the modal orthogonality and
normalization. If the parameters of the PML are properly chosen, the complex modes can
be used to represent the radiation fields in the modal expansion. It was demonstrated that
the approach of the field expansion in terms of the guided and complex modes is more
effective than the conventional approach. The approach has only been applied to two-
dimensional (2D) waveguide structures with longitudinal discontinuities such as slab
waveguide structures and 3D waveguide structures in which analytical modal solutions
exist such as circular step index fibers [8] [9] [10]. In practice, the waveguide structures
without analytical solutions are often encountered, such as a variety of specially shaped
3D waveguides. It is important to extend this approach to these 3D structures and
therefore make the MMM a much more effective technique.

The guided and complex modes in a waveguide structure with an arbitrary
transverse index profile surrounded by a perfectly conducting box with the inner PML
can be calculated numerically by various methods. Among them, the finite difference
(FD) method is an attractive technique. It is easy to program, and the matrix is sparse. In
general, the waveguide modal analysis can be classified into three levels according to the
mathematical complexity: scalar, semi-vectorial, and full-vectorial modal analyses [11]

[12] [13]. Scalar modes are the solutions of the scalar wave equation, and the field
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components and their first derivatives are continuous everywhere. For semi-vectorial
modes, the modal fields are assumed to be predominantly linearly polarized so that only
one major transverse field component needs to be considered, and the other transverse
component is simply ignored. In the context of the full-vectorial approach, no field
component is neglected. The full-vectorial wave governing equations are derived from
Maxwell’s equations without any approximation, and therefore the hybrid nature of the
modal fields is fully considered. For many practical waveguide structures, however, the
simplified semi-vectorial formulations can be used to calculate the modal fields with
sufficient accuracy [14] [15].

In this thesis, we will investigate the effects of the key PML parameters on the
accuracy and efficiency for the MMM in the context of the 2D waveguide structures with
one-dimensional (1D) modes. A typical example is analyzed. Then we apply the method
for analysis of the 3D arbitrary waveguide discontinuities with 2D modes based on the
field expansion of the guided and complex modes. The 2D modes are computed by the
semi or full-vectorial FD method. The thesis is organized as follows. Chapter 2 presents
the main theoretical formulations including 1D and 2D modal governing equations. The
effects of the PML parameters on the solutions are discussed in Chapter 3. Numerical

results for 3D waveguide structures are given in Chapter 4. We conclude in Chapter 5.
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Chapter 2

Formulations

In this Chapter, we will present the dispersion equations for 1D TE and TM
modes in a 2D multilayer waveguide structure for which the transfer matrix method is
used. Then the full-vectorial wave equations for 2D guided and complex modes in a 3D
arbitrary waveguide structure enclosed by a perfectly conducting box coated by an
anisotropic PML are obtained directly from Maxwell’s equations. The transfer and
scattering matrix formulations for single and multiple discontinuities are also given. For
convenience, we make the following assumptions:

(1) The non-PML medium in the waveguide structure is isotropic, linear, and lossless.

(2) The permittivity and permeability of vacuum are denoted as &, and ,, respectively.
The permeability x in the medium is equal to 4.

(3) @ and g are the angular frequency and the propagation constant, respectively.

(4) A is the wavelength, and k, = 277[ .

jot

(5) The time dependency is expressed as e’“".
(6) The wave is propagating along z , and the z dependency is expressed as e ”’* which

refers to the propagation in the positive z direction, or ¢*”* in the negative z direction.
propag p g
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Fig. 2: A multilayer waveguide structure.

2.1 Modal Solutions

2.1.1 1D Multilayer Waveguide Modes

A general multilayer structure is shown in Fig. 2. There is no variation in y

direction. n, (m=1, 2, ..., N) is the refractive index of the m th layer and x, is the

m

position of the interface between the m th layer and the (m +1) th layer. The left and

right artificial boundaries are inside the media with the refractive indices n, and n,,

respectively. Note that the artificial boundaries are employed here just for convenience.
For instance, they are replaced by the perfectly conducting electric walls if the waveguide
structure needs to be closed. For the open structure, they are simply removed. The modes
can be classified as transverse electric modes (TE) which do not have the longitudinal
electric field component, and transverse magnetic modes (TM) which do not have the
longitudinal magnetic field component. For the 2D waveguide structure (1D modes), TE

7
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modes have E,, H_, and H, components; TM modes have H , E , and E,
components. We first consider TE modes. The field distribution (£,) for TE modes in
the m th layer can be written as [16]

E™ (x) = 4, exp(- ik™ (x - x,,)) + B, expl+ ik (x - x,,)) (2-1)

m=12,..,N

where k" = \/k;n. — B . The other components /_ and H are given by

Him) — ﬁ Ef,"') (2_2)
O, -
and
1 aEf,’")
H;m) zj__ ] (2_3)
ou, Ox
(m)

P
Oox

Utilizing boundary conditions (E{" and are continuous at the interface), the

amplitudes of the plane wave components of the two neighboring layers for TE modes

can be related as

(m+1) _— k(m+l) (il
5 ik (m+ % _ ) —iklm ) £
(1 + ;_) kT (X =) (1 _ )8 ik (=)
A 1 k('") k(m) A |
m | _ L % 2 m+
B - 2 k(m+l) ' k(m+l) B : (2-4)
m s Y ik (=) % ~ik ™ (%, =) m+l
(1 k(m) )e (1 + k(m) )e
% 5

Setting Um = Am +Bm and V = kim) (A

m

- B, ), we obtain

m

(m+1) . . (m+1) ~
|:Um } _ cos kx (‘XnH-l - ’\m ) k(,,,+1) s k.\' (xm+1 - 'Xm ) |:Um+|
x

4

m+l

}. (2-5)

7 (m+l) _: (m+1) o . (m+1) o .
lk,\' Sin k.\' (“\m+l - ‘xm ) cos k,\' ('XWH X m)
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Similar formulations can be derived for TM modes. We assume that the field distribution

(H ) for TM modes can be written as (2-1). £, and E, components are

(m) __ IB (m)
B =l (2-6)
wgﬂnm )
and
1 aH(ln)
(m) __ . b4
Ez =-J 7 g (2-7)
ngnm ax
. (I”) 1 H)(,'”’) . .
In this case, H " and —- p are continuous at the interface. We have for TM modes
’ n X
m
nZ (m+1) ) 2 (m+1)
(14— eikf-"”" (Y1) ' e T e—ik.i-’""’(x,,.ﬂ-»\'".)
2 (m) 2 (m)
{A'”:| = l M k.\' s k.\' A”Hl:l (2_8)
) (m+1) 2 (m+1) o
Bm 2 (1 _ ny kl’ )eikS",Hl)(xnxAl_"-nl) (1 e k-\' )e_ik:‘"'+”('tm~l_'\-m) Bm+l
nZ k(m) 2 k(m)

m+l x m+l1 x

(m)
Setting U, =4, +B,, and V,, =—-(4,, — B

m 2
m

), we obtain

m

2

n
(m+1) _ . m+l b (m+1) _
U Cos kx (xm+1 ‘xm ) l (m+1) sin k.\' (‘xm+l xm
m | _ k'\.
k!
AR

m+1)

) } . (29

i+l

4

m . (m+1) (m+1) o o
i—5—sink," (x,,, —x eo8k. (K —%,,)

m+1 “m
m+1

In the PML region, the real thickness d,,, = x,,,, —x,, in the above formulations should

m+1 m

~

be replaced by the complex one d,,,, =%,., —x,, [17]. The complex thickness is given by

m+l

3 ~ ~ “tm+1
dm+l = xm+] - xm = f S.\'dx (2_10)
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where s, called the coordinate-stretching factor, is complex in the PML region. We can

relate the amplitudes of the plane wave components by using a total matrix as follows

[Ao}z[Mn M12j||:AN:| (-11)
B, M, M, || By

|:Uo:| [Tn le}[UN}
= . (2-12)
VO T21 T22 VN

For the guided waves, the fields must vanish at infinity. Setting 4, = B,, =0, we have

Alternatively, we may write

the following dispersion equation

M, =0. (2-13)
Note that the above dispersion equation can also be used for leaky mode calculation. If
the left and right boundaries are replaced by the perfectly conducting electric walls, we
can use the condition that the tangential electric field must vanish at the electric walls,
and obtain

T, =0 (2-14)
for TE modes, and
T,,=0 (2-15)
for TM modes.

With the presence of the PML, we need to find the complex roots. A method for

solving the above dispersion equations is called the argument principle method (APM)
[18] [19] [20], which can be utilized to search for the zeros of any analytic function in the

complex plane (See Appendix A). The method produces a polynomial, the zeros of which

10
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coincide with the zeros of the original function. However, the method would cause
numerical inaccuracy in some cases. Another method (See Appendix B) is quite simple.
Starting out from the structure without the inner PML, we can easily find the discrete
modes, which are located on the coordinate axes. Then we gradually increase the
attenuation in the PML, and track the modes as they move into the complex plane. In
general, the method works well, but it is time consuming if the attenuation is very large.
2.1.2 2D Waveguide Modes

We consider a waveguide structure where the transverse index profile n(x,y) is

arbitrary and defined in the Cartesian coordinate system. The waveguide structure is
surrounded by an anisotropic PML backed by a perfectly conducting electric box (See
Fig. 3). The box is assumed to be far away from the waveguide core so that the guided
modes in the original open waveguide structure are not affected significantly. We need to
derive the full-vectorial wave equations. The Maxwell’s equations in the non-PML and

PML regions can be written as

PML

PML
N
23
~
>
~<
—

PML

PML

Fig.3: A 2D arbitrary waveguide structure surrounded by a perfectly conducting
electric box with the inner PML.

11



Master’s Thesis - K. Jiang

McMaster - Electrical and Computer Engineering

VxE =

VxH = joen’ [A]E

Where [A] is given by [21]

0

S

%)

0

X

A

¥

Jou, [A]H

(2-16a)

(2-16b)

(2-17)

The coordinate-stretching factor s, is the function of konly [17], where k = x,y. In the

non-PML region, s, =s, =1; in the PML region, s, and s  are complex and can be

written as

5= K, = (2-18a)
' e n
O,

s, =k, = j—2—. (2-18b)
S ®E N

From the Maxwell’s equations (2-16), we can obtain the following vector wave equation

for the electric field

(2-19)
Utilizing
E=E +E.2 (2-20)
V=v+ﬁé (2-21)
0z

12
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VxE=V,xE +V, x(E2)- jB:xE, (2-22)
where Z is the unit vector along z, E, is the transverse electric vector, and E, is the

longitudinal electric component, we have

Vv, x[ L vV, XE,J+2><[[A]}IV, x(—jﬂEzﬁ)]
S.\'S_\'

(2-23)
- fix ([A];l ExE, ): o pyeon’ [A]T E,
where
s,
2o
Al =™ | (2-24)
s,
0 2=
S)_
From V-D =V (50n2 [A]E): 0, we obtain
ok £
E, =t AL E) (2-25)

B nzs_\.s},
Substituting (2-25) into (2-23), we obtain the following full-vectorial wave equation for

the transverse electric fields

Vv, x( ) Vv, xE,]fx{[A]T]V, x[v’ ‘(n7[A]TE’)2ﬂ

2
s.S ns.s,

XUy

(2-26)

- B*5x (A]"léx E, )= o’ 1ye,n*[A]L E, .

The full-vectorial wave equations for £, and £ in the Cartesian coordinate system can

be written as

13
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Li _ITﬁl__g 772LE‘, +L£ Li LE‘ +k02n2iE‘_
s.0x|n° s, 0x s. s, 0p|s, op\s, 8

(2-27)

and
L] RINT:A (P WP | N [ R PP U
s, 0y|n” s, Oy s, s, Ox|s, Ox(s, - s,

+i£ Lz_l_?_ n?‘—l—E\_ __I__Q ii LE‘ :ﬂz_l—Ev
s, 0y|n" s, Ox s, s, O0x|s, oy\s, ~ s,

where k, = @\/p,&, . Solving the above equations (2-27) and (2-28) with proper

(2-28)

boundary conditions, we can obtain the full-vectorial modal solutions. The transverse

magnetic field components /  and H, can be readily obtained from the Maxwell’s

equations by the following expressions in terms of the transverse electric field

components
Hoe Bsp, 1 osoftnof,,
oL, S, Pay, s, oy| n® s, Oy S,
’ ' (2-29)
cLsof11of.1,
Paou, s, 0y n~ s _ox\ s,
and
s
H zi_‘ _#_‘E %Li n’LE‘
oL, S, Pop, s, Ox|n” s ox\ s,
(2-30)

14
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Under the semi-vectorial approximation, we assume that only one dominant transverse
electric component exists for the quasi-TE and quasi-TM modes, respectively. For

convenience, we write the semi-vectorial governing equations as follows

LEFLi(nzLE‘_HJrLQ Li[LE_‘_]
s .Ox|n” s, Ox\ s, s, 0y|s, Oy\s,

1
2

S,

(2-31)
+kon

and
s, s,
H, :A—)Er—;—"é %Li n’ LE\- (2-32)
T ooy, s, Pou, s, ox|\n" s ox\ s,

for the quasi-TE modes where £, =0;

fsleielialiae)
S S s, - s_ox|s_ox\s,A6
y n ¥ b} x x ¥ (2 -33 )

+kin’ LE‘_ = B* LE‘.
. s,
and
H. __FB LY. 5 0 L1 6/ aly (2-34)
: i, s, ~ Pou, s, oyl n” s, dy s,

for the quasi-TM modes where £ =0.

2.2 Mode Matching Solutions

In a waveguide structure surrounded by a perfectly conducting box with an inner
anisotropic PML, the mode spectrum includes guided and complex modes. These

complex modes which depend on the PML parameters, together with guided modes, are

15



Master’s Thesis - K. Jiang

McMaster - Electrical and Computer Engineering

to be utilized in the modal expansion for the closed waveguide structure. We consider a

single waveguide discontinuity where two waveguides (4 and B) of different transverse

configuration are jointed at the position z = 0. N modes in waveguide 4 and M modes in

waveguide B are to be included in the modal expansion. Fig. 4 shows the structure

formed by waveguide A4 and B. The transverse electric and magnetic fields (E, and H .

in waveguide 4 and B in the Cartesian coordinate system can be written as

Forward Waves

Baclward Waves

]

Waveguide A

Fig. 4:

Z=0

Waveguide B

|

)

e 4

A waveguide discontinuity.

N
A =i ,‘,42 ¥ ',',"z - "
E!(x,y,2) = (a,e"" +a,e”7)E, (x,y)

n=1

N

T A + —jpiz - jBrzN T
H 0k y.2) = Z(ane = a,,e’ﬂ”l Yh!(x,y)

n=l1

16
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EE(x,y,2) = Z(b,,, nt 4 b PGB (x, y) (2-36a)

m=1

M

HE(x,3,2)= Y (Bie P ~bre™ k. (x,y) (2-36b)

m=1

where ¢ denotes the transverse component, S is the propagation constant of the nth
mode, ¢, and hn’,’ are the transverse electric and magnetic vectors of the nth mode,

respectively, and a, and a, are the amplitudes of forward and backward waves of the

nth mode, respectively. They are defined for waveguide 4. The notations for waveguide

B are defined similarly. Utilizing the boundary condition at the interface, we have

M

Z(an +a,)€, (%)= ) (by +5,)€,(x,) (2-37)

n=1 m=1

Z<a,, ay ) hi(x,y) = Z(b,,, ~b)hE(x,y). (2-38)

n=l1 m=1

Take the cross product with E,f and ¢ , respectively, and integrate over the waveguide

cross-section .S, we obtain

N . M
D@y +a)<Ehi >= (b, +b,) <&, hy > (2-39)
n=1 m=1

N
z (an Cl ) < etk > tn Z (bm m ) < elf ’ h{fy (2-40)

n=1 m=1

where the inner product of the field vectors is given by
o Loepe =0 a
<&h >:5£I(exh)-zds. (2-41)
With the use of the following orthogonality relation between the modes

17
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- P Vepr. . 7 < & . 7 .
< etm’ hm - 5 J.(elm X hln) "z dS =< erm’ hmz > Omn >
i
we obtain
N [ -4 7B B 74 _ | N [ a4 7B _=B 74 |
b+ — a+ < € ’htm &+ € ’hm > + za— < € 7htm >—< Con> hm >
m n —-B I B n -B 1B
n=1 L 2 < elm b htm > n=l 2 < elm ’htm >
N [ a4 7B _=B T4 N -4 7B ~B T4 _ |
b = a+ < € ’hun >—< Com>s hm > + Za— < € ’hlm # Cim> hln >
m n —-B 1B n —-B 7B
n=l L 2< elm > hhn > _ n=l L 2< elm s hlm >

McMaster - Electrical and Computer Engineering

(2-42)

(2-43a)

(2-43b)

where we have used the subscript m instead of %, and the coefficients b, and b, are the

amplitudes of forward and backward waves of the mth mode in waveguide B,

respectively. In the matrix form, we have

+ +
BY| by |_ ]
- L junction

- [ Jjunction

p
[+

The transfer matrix for » modes in a uniform waveguide section is given by

[Ttmilbrm section ]

_e“/ﬂnd

—jpod
e iy

18
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+ + + +
A A A, At
> > — > >
A1 A2 An An+1
< — e g <
interface interface interface interface
(@) (2) (n) (n+1)

Fig. 5: Multiple waveguide discontinuities.

where d is the length of the waveguide section, and the values of the non-diagonal
elements are zeros. For multiple discontinuities along the waveguide axis, the transfer or
scattering matrix formulations can be utilized to connect the modal amplitudes of the
different sections [22] [23].
2.3 Multiple Waveguide Discontinuities

We consider multiple waveguide discontinuities shown in Fig. 5. The notations

A A A A AL AL AL, A, represent the values of the forward and backward

n? n?

waves at the left sides of the 1th, 2th, ..., nth, and (n+1)th discontinuities, respectively.

For the first discontinuity, we can write T and S matrix formulations as

19
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47 A _
{ AJ— 2. ][ A} (2-46)

A {T"Z Bl A, (2-47)
A] Az Rl,2 T2,l A2

Note that we have included the contribution of the uniform section (invariant along the

and

propagation direction) to the above T and S matrices. Further we can write

A, o s A
R CER R 249

n+l

/4: _ ]]Jl ]QMJ 14; (2'4;9)
Al— Rl,n T:x.l Au_
A;a—] _ ‘T;l.n+l Rn+Ln A: (2_50)
A; Rn.n+1 T;wl,n A1:+1
Apa | _| T R || 47 2-51)
Al— Rl.n+l ]wn+1.1 A;-H

Given

and

We can obtain

where
T;.n+l = Tn.n+1 (1 - ‘Rn.an.uH )‘l Tl.n
RII+ = ]1” n+ (1 - RH Rll n+ )_] RII 7—;14' n + RH+ n
1,1 i+l 2] i+l 1 A L 1, (2_52)
Rl.n+1 = T:Ll (I - Rn.n+1Ru.I )_ Rn.n+lTLn + Rl.n
Tu+l 1= Tn.l (] - Rn.n+1Rn.l )‘l 7—:1+l.n
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Appendix A: 1D Mode Calculation and Mode Matching

The purpose is to find the zeros of the dispersion equation. If the modes are
complex, the roots must be searched for in the complex plane. It can be numerically
challenging especially when a large number of zeros need to be found. Two common
approaches are presented below.

A.1 Argument Principle Method (APM)

APM is a mathematical technique and can be used to find the zeros of any

analytical function in the complex plane. With APM, we need to numerically compute

the contour integral

. m f (Z) m g
s, = Mj i dz JZ‘ (2-53)

where f(z) is an analytical function, and z,,z,,...,z, are n zeros of f(z) inside the

contour C. The derivative of f(z) can be calculated by

f =5 AL

J(z- Zo)

E—f @t ReT) (2-54)

Zf(zo +Re" V)

m=1

Re

where R is the radius of the circle. A polynomial which has the same roots as the function

f(z) can be formed, and it is given by
p(2)=) c.z" (2-55)
k=0
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where

¢ =1

n
Cn—l + Slcn = 0

2¢. 5 #5856, 4 +8:6, =0

n-1 (2_5 6)

(n=1)¢, +5,6; +85,8; %48, ¢, =0

ne, +5:6, +3,6, ¥+ .. +5,¢, =1.

non

n—1

As the integrals are computed numerically, the final refinement usually needs to be done

by root searching techniques such as the Newton’s method

7~ f'(Zk)
S (z)

Zpa =

: (2-57)

The basic procedure for APM is summarized as follows
(1) Calculate the number of zeros of f(z) in a region D. If D contains too many zeros,

divide D into smaller regions DI, D2, .... The number of zeros in each region usually
should be less than 5 so that the root searching technique for the polynomial is more

efficient.

(2) For each region, calculate s,, s,, ..., and s,, where k is the number of zeros in the
region.

(3) Calculate the coefficients of the polynomial p(z).

(4) Calculate the roots of the polynomial p(z), which are initial values for further
refinement.

(5) Applying the Newton’s method with the initial conditions to the original function

f(2).

22
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A.2 Smooth Transition Method

The modes in a 1D waveguide surrounded by perfectly conducting electric walls
are located on the axes in the complex plane, and they can be found easily. When we
gradually increase the value of the specified parameter, the modes would move away
from the axes and can be tracked by numerical techniques (e.g. Newton’s method). The
specified parameter depends on the problems. For instance, if we want to calculate the
leaky modes, the initial value of the parameter represents the closed waveguide and the
final value indicates that the waveguide becomes open. For the complex modes with the
presence of the PML, the specified parameter is the attenuation coefficient in the PML
region. In this respect, the initial value of the parameter represents the absence of the
PML, and all the modes are on the axes.

A.3 Application

A typical double-layer antireflection coated facet [24], shown in Fig. 6, will be
analyzed by the MMM. The whole waveguide structure is enclosed by two perfectly
conducting electric walls with the inner PML. In the case, the power reflection
coefficients are expected to be very small.

In order to calculate the reflectivity in the double-layer antireflection coated facet,
we need to find the eigenmodes for four different waveguides: one symmetric slab
waveguide and three uniform waveguides. These eigenmodes can be computed by the
smooth transition method. For this case, the coordinate stretching factor is set constant in

the PML region. The calculated normalized propagation constants for the symmetric slab
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waveguide are shown in Fig. 7. It can be seen that the original box modes on the axes
move into the complex plane as the attenuation is added in the PML region.
The mode matching formulations involve the overlap integrals which can be

obtained analytically. For instance, the overlap integrals for TE modes can be written as

<e,h, >=— f EH dx—f E2dx (2-58a)
0 a)luo )

<el hE >=— J: e 'B E PO b f"E;'Ej?dx (2-58b)
20u, * -

<el b >= fEB Lol E dx=—" 'B IE Eldx (2-58¢)

Electric Wall

d, PML PML PML PML
d2 n,

d1 n, n, n, Air
gl n, = R, e B, —

dj PML PML PML PML

Electric Wall

Fig. 6: A typical double-layer antireflection coated facet. n, =3.524, n, =3.17,
n, =1.82, n, =1.65, d, =0.11pum, d, =3.6um, dy, =0.5um,
h, = 0.1816 um, and wavelength 4 =1.54 um .
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where x, and x, are the coordinates of two end points, respectively. The electric walls

with the PML are located where the amplitude of the guided mode in the symmetric slab
waveguide is sufficiently small. As we have multiple discontinuities, S matrix cascade is
to be used to connect the fields in different waveguide sections. Fig. 8 shows the
dependence of the power reflection coefficients of the double-layer antireflection coated
facet on the second layer film thickI;ess. The total of 50 modes are used in the mode

expansion. It can be seen that there is one minimum point for the power reflection

coefficients, which occurs at /4, ~ 0.05 um .

0 T T T T W
0O 0000

Imaginary Part

N

(6]

T
OOOOOOOO

Stretching Facter: 1-j0.6

1 1

5 1 1.5 2 2.5 3 35
Real Part

o[ 00000

Fig. 7. Normalized propagation constants for the slab waveguide in a typical double-
layer antireflection coated facet (TE). n, =3.524, n, =3.17.,d, =0.11um,

d,=3.6um, d, =0.5um, and wavelength 4 =1.54 um .
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Facet Reflection Coefficient

0 0.01 002 003 004 005 006 0.07 0.08 0.09
Thickness (h2) of the Second Layer (um)

Fig. 8: Power reflection coefficient versus the second layer film thickness for a typical
double-layer antireflection coated facet (TE). n, =3.524, n, =3.17, n, =1.82,

n,=165, d, =011um, d,=3.6 um, d,=05um, h =0.1816 um, and
wavelength A =1.54 um .

Appendix B: Finite Difference (FD) Method for Mode Calculation

The modes for waveguide structures with arbitrary transverse index profiles have
to be calculated by numerical methods. We will summarize the basic FD formulations
below. An example for 2D mode calculation in a typical 3D waveguide structure is also

given.
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B.1 FD Scheme
Fig. 9 shows the positions of the nodes. The FD scheme for the governing
equations involves the derivatives shown below. The PML regions can be similarly

treated with the inclusion of the coordinate stretching factors.

2 s 5
5[1 Kl ZE‘_)} 2 2n*(i+1, ) E+L))
(i, /)

Bl B T h@) (RGO + G Y) G+ ))

~ 2 _ 2n* (i, j) . 2 . 2n° (i, j)
h@) (h@) +h(i+1)) n’@G, ) +n’@(+1,)) k@) (R@)+hGE-1) n°@G,j))+n’@G-1,))

& 2 . znz(i—laj)
h(@) (h(@)+h(i—=1)) @, j)+n>@{—1,))

E_(i,)) E (i-1.))

(2-59)

E (i,j+1)

{%(E.\-)} el S S— Y
Oy i DGR +h(G+D) h(j)(h(j)+h(j+1))

2 : & 2
- ' E‘_(l,_])+ P :
()G +h(G=1) h(j) (h(j) +h(j—1)

: E,\' (i’j_l)

(2-60)

Q[Li(nz E )} 1 !

ox| n’ Oy (i, ) i h(i—rlf)+h(i)+*h(i'+l')* | ’h(J*._D‘Fh(j)*‘ h(J +’l)
2 2 2 2

W . 27 s
{n (i+1,j+1) n“(i+1,j-1) CE,(i+1,j-1) (2-61)

CE (i+1,j+1)—
n*(i+1, ) L+ n*(i+1, /)

_nz(i—l,j+1)
I?z(i—l,j)

‘Er(i—l,j+1)+n-(,l_—1"]_l) CE (i-1,j-1)
' 7l~(l.—1,j) '
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210 - ! - :
yloc™ " hoy  BE=D o AEED AGED g AU D
2 2 2 2 (2'62)

B, G417+ =B, (=1, j+D)=E, G+1,j-D)+E, (i ~1,/~1)]

E[LZEWE))} S — ; .2’.12(1"]2%1). -E, (i, j +1)
ylat oy ) T HDGD G D) w G iG]
_[ 2 . 2n* (i, j)
h(j)(h(j) +h(j+1)) n’(i,j)+n* (i, j+1)
(2-63)
(DR +h(G-1) n" G ) +n @G j-1)] -
N R— Y 2 R Y
WD) +h(G=1)) n G )+n (G, j-1)
o 2 o 2 .
[8_ (E"')]u.,-) @iy M Toaw vy 07
(2-64)
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h(j+1) " " =
(i-1, j#1) (i, j+1) (i+1, j+1)
h(j) . . .
(i-1,§) (i, §) (i+1, j)
h(j-1) : - .
(i-1,j-1) (i, j-1) (i+1, j-1)
Y r

A d
&

L TTha)  h( h(i+1)
X

Fig. 9: Positions of the nodes for FD scheme. The node is located at the center of the
cell and the medium in each cell is uniform.
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PML 1 PML 2 PML 3
2.6 pym
< = >
n=3.452 ﬁ 0.95 um
Y
n=3.59 l 1.6 um
PML 4 n=3.452 \# 0.4 um PML 5
A ;
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\ \
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R o n=3.59
PML 6 PML 7 PML 8

Fig. 10: A typical 3D leaky waveguide.

B.2 Application

We consider a typical 3D leaky waveguide [25] shown in Fig. 10. There are eight
PML regions, and the coordinate stretching factors in each PML region are shown in
Table 1. We aim to calculate the symmetric quasi-TE modes ( £, modes) by using the
semi-vectorial FD method. Only half of the whole structure needs to be considered due to
the symmetry. As mentioned above, the nodes are all at the centers of the cells, and the
medium is uniform in each cell. Note the nodes are also on the outside boundary and the
symmetric line. The discretized semi-vectorial wave equation for the quasi-TE modes

(£,) atnode (i, j) can be written as
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BE.(i,j-1)+B,E (i1, ))+ B,E (i, /) + B,E, (i +1, /) + BsE (i, j + 1) = B°E (i, /)
(2-67)
where B,, B,, ..., and B, are the coefficients which can be obtained easily from FD

formulations. Table II shows the computed normalized propagation constants of two
symmetric quasi-TE modes by the semi-vectorial FD method. The results agree well with
those by the finite element imaginary distance beam propagation method (FE-ID-BPM)

[25]. The electric field distributions for these modes are shown in Fig. 11.

Table .  Coordinate stretching factors in the PML regions.

PML regions Coordinate stretching factors

PML (1) 5, s,
PML (2) 1 S,
PML (3) g, g,
PML (4) S, 1

PML (5) s, 1

PML (6) s, s,
PML (7) 1 s,
PML (8) s S,
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Table II: Complex propagation constants of the symmetric quasi-TE modes.
Wavelength 4 =1.064m and PML reflection coefficient R = 10°%,

Modes FD FE-ID-BPM (Reference)

E  3.573843 - j1.73384x107"  3.574131- j1.6976x10~’

11

ES  3.543427- j5.46652x107°  3.543530— j5.4823x107

=— M)

Symmetric Line X Symmetric Line X
Y E ) E

Fig. 11: Electric field distributions of two symmetric quasi-TE modes for a leaky
waveguide.
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Chapter 3

PML Effects on Mode Matching Solutions

The PML is introduced as a lateral absorbing medium in the closed waveguide
structure so that the incident waves would not be reflected back to the non-PML medium.
As stated, the box modes become complex. The effective indices and field patterns of
these complex modes depend on the parameters of the PML such as PML thickness and
attenuation in the PML. The complex modes are to be included in the modal expansion,
and the mode matching solutions would be affected by the PML parameters. Such effects
have to be investigated. We consider an open waveguide structure. It is surrounded by a
perfectly conducting electric box where the tangential electric field component vanishes.
The box can be seen as a lateral boundary which would reflects the incoming waves. For
the waveguide with longitudinal discontinuities, the accuracy of the solution of the
original problem depends on the size of the box and also the number of modes required
for convergence. The farther away from the waveguide core the boundary is, the higher
the achievable accuracy is, and consequently more number of modes is required in the
modal expansion. The convergence rate is low. To obtain the reasonable results, we have
to put the boundary sufficiently far away from the guiding region of the waveguide
structure and therefore a large number of box modes are needed. A typical example [26]
is the step discontinuity of the planar dielectric waveguide shown in Fig. 12. It can be
demonstrated that the reflection coefficients in the waveguide structure enclosed by the
perfectly conducting electric walls (without the PML) oscillate with respect to the
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distance from the boundary (electric wall) to the center of the waveguide. The magnitude
of such oscillation is related to the excitation of the box modes. Obviously, the solutions
suffer from convergence difficulties.

When the absorbing PML is introduced, we can treat the waveguide structure as if
it is an open one. With the properly chosen PML parameters, the complex modes can be

used in the modal expansion instead of radiation or leaky modes. The coordinate-

stretching factors s, and s, in (2-18a) and (2-18b) are used to describe the properties of
the PML. The parameter o (o, or o) controls the decay of the propagating waves in

the PML region; the real part x (x, or x,) causes additional attenuation of the

evanescent waves. It indicates that the PML can absorb both propagating and evanescent
waves effectively [27]. Since the box is located where the amplitudes of the fields of the
guided waves are sufficiently small, for instance, lower than a prescribed value, the real

parts x and i, of the coordinate-stretching factors can be set 1.

- — 2D ———»

core cladding
K 5
2 B =
eof PMmL PML | £
° °
@ o}
i A w
AZ core cladding
X
e

Incident Wave

Fig. 12: Step discontinuity of a planar dielectric waveguide surrounded by the perfectly
conducting electric walls with the inner PML. The whole structure is symmetric.
L is the distance from the electric wall to the center.
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Now we consider the imaginary parts of the coordinate-stretching factors. The

parameter o (o, or o) usually takes the following form [7]

w2, m=1,2,3, .. (3-1)

d PML

O=0

where d,,, is the PML thickness and p is the distance from the start point of the PML.

There may be other spatial profiles of o . It is expected that the solutions would not be
affected significantly by the forms of the parameter o . We have chosen the profile to be
parabolic, i.e., m=2, which has been commonly used in FDTD simulation. For
convenience, we can define a PML reflection coefficient from which the maximum value

o, . in (3-1) can be calculated.

max

We assume a plane wave perpendicularly incident into the PML region (see Fig.

13). The electric field for the plane wave is given by

E = E, exp(—jkx) (3-2)

n . : . . .
where k =—, n is the index of refraction in the non-PML and PML regions, and cis
¢

the speed of light in free space. The coordinate-stretching factor s in the PML region is

o : . . : :
1-j —. We can easily obtain the PML reflection coefficient R at the interface
WE N

between the non-PML and PML regions

PML

R= expli—zd& f (—p—)”’ dp} ; (3-3)

céyn d oyt
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Real (non-PML) Region PML Region

Electric Wall

#

Incident Plane Wave

TN d PML

Fig. 13: A plane wave perpendicularly incident into the PML region.

Therefore, we can write the coordinate stretching factor as follows

. o . ﬂ’ 1 m
s(p)=1- . :1—]Zm—[(m+1)1nﬂ(di) . (3-4)
PML

weyn PML

Since the PML is introduced as an absorbing medium to reduce the unwanted
reflection to the guiding region of the waveguide structure in the MMM, the PML
reflection coefficient R representing the attenuation level within the PML plays a key role
in the choice of the PML parameters. It can be seen from (3-3) that the PML reflection

coefficient R reflects the collective effects of all PML parameters such as o, and PML

max

thickness. The smaller the PML reflection coefficient is, the more effective the PML is.
In practice, the value of the PML reflection coefficient must be lower than certain level to
ensure the sufficient accuracy of the mode matching calculation, as demonstrated below.

We have investigated some of these combinations such as o and d,,, and found that

max

they make negligible impact on the accuracy of the mode matching calculation for the

same value of the PML reflection coefficient. As an example, we compute the
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dependence of the amplitude of the reflection coefficient (TE) for incidence from
waveguide 4 on the PML thickness in the planar step discontinuity when the PML
reflection coefficient R is 0.01. The results are shown in Fig. 14. It can be seen that PML
thickness doesn’t have significant effects on the solutions. Although the PML thickness
can be chosen arbitrarily as long as the guided waves in the waveguide are not affected, it

should not be too small, otherwise the values of the parameters o, and o, must be large

enough in order to keep the PML reflection coefficient small, i.e., the PML still effective,

in the mode matching calculation. The sharp variation of the parameters o, and o,

within the PML region is not preferred in the numerical computation.

0.209
= ® MMM (Guided + Complex modes) 1
& 0.208
&
2 0.207
[&] Rozzi
5 0.206 |
©
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0.201

0.2 %
0.5 1 1.5
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Fig. 14: Amplitude of reflection coefficient for incidence from waveguide 4 versus PML
thickness for the planar step discontinuity (TE). n,,,, =2.236, n,, =1.0,

D =0.2387um, d =0.2D, L =3.2387 um , and wavelength A =1.5um.
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Fig. 15: Amplitude of reflection coefficient for incidence from waveguide 4 versus the
PML reflection coefficient R for the planar step discontinuity (TE).

Pore = 2236, Nypgye =1.0, D=0.2387um, d=02D, L=3.2387um, and
wavelength A =1.5um.

As we mentioned above, without the presence of the PML the convergence is
difficult due to the oscillation of the solutions with respect to the position of the electric
wall in the example. While the PML is introduced to reduce the unwanted reflection, the
amplitude of the oscillation is reduced accordingly. We may set a small value for the
amplitude. When the amplitude is smaller than the prescribed value, the corresponding R
is selected, and the mode matching solution is acceptable. We have calculated the

amplitudes of the reflection coefficients (TE) for incidence from waveguide 4 for the
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different values of the PML reflection coefficient R in the planar step discontinuity. The
computed results are shown in Fig. 15, and that by Rozzi is also shown for comparison. It
can be seen that a good agreement is achieved when R <0.01. There are no significant
improvements when R is reduced further. The comparison with Rozzi’s results (the
reflection coefficient and loss) is also shown in Table III.

It is expected that for a PML with strong attenuation, the mode spectrum can be
clearly divided into three groups [8] [28] [29]. The first group includes guided modes
with modal effective indices on the real axis in the complex plane. These guided modes
are not disturbed significantly by the introduction of the PML. The modes in the second
group are called quasi-leaky modes whose field distributions grow exponentially into the
cladding and get dumped in the PML region. The modes in the third group are PML
modes. The field of the PML mode is mainly concentrated in the PML region, and hence
the PML mode is more orthogonal to the incident fundamental guided mode which has
substantial field in the core and to some extent cladding region close to the waveguide
core. Consequently, the contribution of the PML modes in the modal expansion is
smaller.

Table III: Comparison between the MMM and Rozzi’s method for the planar step

discontinuity (TE). PML reflection coefficient is 0.01. 7, is the amplitude of

reflection coefficient for incidence from waveguide A. The loss refers to
incidence from waveguide 4.

‘ ”1\ VAR 3 Loss
MMM 0.2039 -0.0861 0.0719
Rozzi 0.2040 -0.0860 0.0718
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Chapter 4

Application to 3D Waveguide Structures

We have investigated the effects of the PML parameters on the mode matching
solutions. In this Chapter, we will apply the complex MMM for analysis of practical 3D
waveguide structures with longitudinal discontinuities. Semi and full-vectorial FD
methods are used for 2D mode calculation. As discussed, we assume for all the
simulation that the whole waveguide structure is enclosed by a perfectly conducting box
with the inner PML. The new introduced boundary is located where the amplitudes of the
guided waves are sufficiently small. Beyond this point, the position of the boundary
becomes less important and would not affect the solutions significantly when the PML is
strong enough. It indicates that the box with the inner PML may be located closer to the
waveguide core than the box without the PML, and hence the computation effort would
be greatly reduced for mode calculation and the MMM. In the following, we will first
assess the semi-vectorial method via an example, and then apply the semi-vectorial FD
method and mode matching technique for analysis of waveguide air gap and facet.
Finally, the properties of the polarization converter are computed by the full-vectorial

method.

4.1 Assessment of the Semi-Vectorial Method

In the semi-vectorial method for analysis of the 3D waveguide structures, the
polarization coupled terms are simply ignored, and the resultant wave equations are

greatly simplified. In practice, the semi-vectorial wave equations can be used to analyze
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many optical devices in which these coupling terms can be neglected. It was
demonstrated that the semi-vectorial method can yield sufficiently accurate results with
much less computation time. We consider a rectangular dielectric waveguide, and
calculate the propagation constants and the field patterns by solving the modal governing
equations with and without the polarization coupled terms. We also check the

orthogonality relations of the semi-vectorial modes. The waveguide core width is 1.0zm ,
and its thickness is 0.5zsm . The indices of refraction of the core and the cladding are 3.44

and 3.39, respectively. The wavelength A4 is 0.86m. The PML reflection coefficient R

is set 107" . It is a waveguide structure with low index contrast. It is shown that the errors
of the solutions by the full-vectorial and semi-vectorial methods are less than 1.5x10™*
for both normalized propagation constants (real or imaginary parts) and the field patterns
of the major components of the first four computed quasi-TE modes. The errors for the
orthogonality relationship of the normalized semi-vectorial modes are found to be lower
than 10~ for the first four quasi-TE modes. Note that we have employed the following

criterion to evaluate the orthogonality relations of the computed semi-vectorial modes

<e (4-1)

Error = Z ’< é, . h, >' = i l% J.J.(Em, xh,)-%ds
S

n=| n=1
(n#=m) (n=m)

where N is the number of modes to be considered, and ¢ is a prescribed value. From the
computed results, we see that the semi-vectorial method is very effective for mode
calculation, and the semi-vectorial modes can be used in the modal expansion in the

MMM. The common orthogonality relationship can also be utilized since the non-
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orthogonality error between the normalized semi-vectorial modes is negligibly small as
demonstrated above. It has to be mentioned that the semi-vectorial approximation may be
subject to considerable errors if the polarization coupling between two semi-vectorial
modes in a waveguide structure can not be ignored. Under this circumstance, the MMM
based on semi-vectorial modal expansion is no longer valid, and the rigorous full-
vectorial method must be used.

4.2 Application

4.2.1 Waveguide Air Gap

The waveguide air gap is often encountered in integrated optics. It is important to
analyze its reflection, transmission and loss properties. We consider two equal dielectric
rectangular waveguides with air gap shown in Fig. 16 [30]. Waveguide core width is

L, =1.0um, and core thickness is L, =0.5um . The indices of refraction of core and

cladding are 3.44 and 3.39, respectively. The wavelength 4 is 0.86m. The waveguide
core is located at the center of the computation domain. The cross-section for the
waveguide structure is shown in Fig. 17. The entire PML medium is divided into eight
regions. For each region, the coordinate stretching factors are set according to Table L.
We set the PML reflection coefficient R = 0.01. The power reflection, transmission, and
loss coefficients for an incident guided wave (quasi-TE) are calculated. There are three
waveguide sections along the longitudinal direction. The S matrix cascade is used to

connect the fields of the different waveguide sections. We set D _=3.0um and

D, =20um. Fig. 18, Fig. 19 and Fig. 20 show the computed power reflection,
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transmission and loss coefficients by the MMM, respectively. 90 modes are used in the
modal expansion. It is expected that the larger box size does not have significant effects
on the mode matching solutions due to the introduction of the PML with properly chosen
parameters. We also checked the number of modes used for the mode matching
calculation. Fig. 21 shows the effects of the number of modes on the power transmission
coefficients. It is found that good results can be obtained when the number of modes are

larger than 60.

Air Gap

Fig. 16: Waveguide air gap.
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Fig. 17: The cross-section for a rectangular dielectric waveguide enclosed by a perfectly
conducting electric box with the inner PML. The waveguide core is located at
the center of the whole structure.
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Fig. 19: Power transmission coefficient versus the length of the waveguide air gap
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Fig. 20: Power loss coefficient versus the length of the waveguide air gap (quasi-TE).
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Fig. 21: Power transmission coefficients versus the length of the waveguide air gap for
different number of modes (quasi-TE). D =3.0um, D, =2.0um,

L =1.0um, L, =05um, n,, =344, n

— =339, and wavelength
A =0.86um .
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4.2.2 Waveguide Facet

In this section, we calculate the reflection coefficient of a rectangular waveguide

facet [31]. The waveguide width is L, and the thickness is L, = 0.5 L,. The wavelength

is 4 =0.86um . We define a normalized core thickness as follows

2L y nfore - nf(x in
h _ y /1 ladding (4-2)

where n and n

core cladding

are the indices of refraction of waveguide core and cladding,

respectively. Fig. 22 shows the computed power reflection coefficient (quasi-TE) versus

the normalized core thickness. The results agree well with those in the literature.
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Fig. 22: Power reflection coefficient versus normalized core thickness for the waveguide
facet (quasi-TE). n,,, =3.6, n =3.492, L ,=05L,, and wavelength

A=0.86um.
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4.2.3 Polarization Converter

The polarization converter has been used in many applications such as
polarization diversity receivers in coherent optical communications. Since a new passive
polarization converter made of asymmetric periodic loaded rib waveguides was proposed
[32], a variety of methods have been utilized to explain the principle of operation and
evaluate the polarization conversion properties. The coupled mode theory based on scalar

modes first gave a theoretical analysis of the passive polarization converter [33]. A
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physical picture for the operation principle was presented by way of the normal mode
analysis. On the other hand, the full-vectorial beam propagation method (FV-BPM) was
also utilized [34] [35] for computing the characteristics of polarization converters and has
been proved to be very effective.

The scalar and semi-vectorial methods are inadequate for the analysis of
polarization rotation unless vector correction is applied. Although the polarization
dependence is considered in the semi-vectorial method, the polarization coupling is
ignored. For accurate analysis, the full-vectorial method has to be used for investigating
the polarization conversion properties. Here we use the MMM to calculate the
polarization conversion properties of an asymmetric periodic loaded rectangular
waveguide [35]. The full-vectorial FD method is utilized. The reflected waves are
included in the modal expansion. Radiation waves are represented by discrete complex

modes.

WwWaveguide C Waveguide A Waveguide B Waveguide C

Fig. 23: Top view of an asymmetric loaded rectangular waveguide.
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Fig. 24: Cross-section of an asymmetric loaded rectangular waveguide.

The top view and cross-section configurations of the asymmetric loaded
rectangular waveguide are shown in Fig. 23 and Fig. 24. The width and thickness of the
rectangular waveguide are 13mm and 6.5mm, respectively. The width of the load is
6.5mm; the thickness is 3mm. The relative permittivity of the rectangular waveguide and
load is 2.8. The operating wavelength is 20mm. The length of the load is given by

T
d=e B __ 4-3
:BE.\-—/BE)' ( )

where . and f,, are the propagation constants of dominant £* and £’ modes in the

loaded waveguide, respectively. The propagation constants can be obtained by the full-
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vectorial FD method. It is found that the value of d for the waveguide structure is
160mm. The electric field distributions for the waveguide structures are shown in Fig. 25,
Fig. 26, and Fig. 27. An incoming guided wave, called E|| mode, is launched from
section C into the loading region. The dependence of the mode power on the number of

loads is calculated. Fig. 28 shows the computed power conversion properties. We can see

that the conversion can be achieved after three loads.

Fig. 25: Electric field distributions of the fundamental quasi-TE mode for waveguide C
(without loads).

Fig. 26: Electric field distributions of the fundamental quasi-TE mode for waveguide 4
in the asymmetric loaded rectangular waveguide.
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Fig. 27: Electric field distributions of the fundamental quasi-TM mode for waveguide 4
in the asymmetric loaded 