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Abstract 

The Kraichnan-Leith-Batchelor (KLB) theory of statistically stationary forced 
homogeneous isotropic 2-D turbulence predicts the existence of two inertial 
ranges: an energy inertial range with an energy spectrum scaling of k-5

/
3

, and 
an enstrophy inertial range with an energy spectrum scaling of k-3 . However, 
unlike the analogous Kolmogorov theory for 3-D turbulence, the scaling of the 
enstrophy range in 2-D turbulence seems to be Reynolds number dependent: 
numerical simulations have shown that as Reynolds number tends to infinity 
the enstrophy range of the energy spectrum converges to the KLB prediction, 
i.e. E rv k-3 • 

We develop an adjoint-equation based optimal control approach for control­
ling the energy spectrum of incompressible fluid flow. The equations are solved 
numerically by a highly accurate method. The computations are carried out 
on parallel computers in order to achieve a reasonable computational time. 

The results show that the time-space structure of the forcing can signifi­
cantly alter the scaling of the energy spectrum over inertial ranges. This effect 
has been neglected in most previous numerical simulations by using a random­
phase forcing. A careful analysis of the resulting forcing suggests that it is 
unlikely to be realized in nature, or by a simple numerical model. Therefore, 
we conjecture that the dual cascade is unlikely to be realizable at moderate 
Reynolds numbers without resorting to forcings that depend on the instanta­
neous flow structure or are not band-limited. 
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Chapter 1 

Introduction 

1.1 Introduction 

Turbulence in fluids is naively refered to a complicated fluid motion which 
arises in high speed flow over large length scales. Since there are no universal 
theory of turbulence, there is no widely accepted definition of turbulent flow. 
In spite of this lack of definition, there are many example of flows which are 
called turbulent. Most of fluid flows in nature such as atmospheric flow, oceanic 
flow and flow of the liquid core of the earth are turbulent. All these flows share 
some features. Firstly, they consist of various scales of motion with entangled 
dynamics. The energy is being constantly transfered among these scales in a 
rather complicated way (see §2.2). Even if the initial state of the flow includes 
a few scales of motion, gradually more and more scales will come into play 
and turn the initially simple flow into a complicated turbulent flow. This is 
illustrated in figure 1.1 by the energy of different scales of motion as time 
increases. Secondly, the dynamics of these flows are quite non-local in the 
sence that a change in a particular point of the flow can affect the flow far 
away from that point. This strong correlation exists in time too. 

On the other hand, the mathematical. equations which describe turbulent 
flows are complicated (see §2.1). There are generally no analytic solutions to 
these equations. Even the property analysis of the possible solutions is very 
difficult in most cases. Being computationally expensive, direct numerical so­
lution of these equations are feasible only for relatively small problems with 
simple geometries (see §3.2). These complexities have embeded our under­
standing of turbulence. However, under some simplifying assumptions, one 
can make some predictions abollt the statisticEl,l properties of tllrb-ulerlt flows. 

In 1941 Kolmogorov proposed a statistical theory for homogeneous, isotropic 
and statistically stationaryl three-dimensional incompressible turbulence [17]. 
He assumed that there is an inertial range of length scales in which the effect 

1 For the definitions of isotropy, homogenuity and statistical stationarity, the reader can refer to §2.4. 
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to 

Large Scales Small Scales 

Figure 1.1: The qualitative behavior ofthe energy spectrum in a turnulent flow. It illustrates 
that smaller and smaller sclaes of motion come into playas time increases. The variables 
to < tt < t2 < t3 denote the time. This figures corresponds to 3-D turbulence. The case of 
2-D turbulence is different in details as described below. 

of the external forcing and the molecular viscosity are negligible. Since in the 
inertial range the energy spectrum, E(k), depends only on the mean energy 
dissipation rate E and the wavenumber k, dimensional analysis shows that the 
energy spectrum must follow the universal form: 

(1.1) 

where C is a universal constant. Moreover, he conjectured that in three dimen­
sions the turbulent energy is transferred from larger scales (lower wavenum­
bers) to smaller scales (higher wavenumbers) where the energy is eventually 
dissipated by viscosity. The k-5

/
3 prediction has been verified to high accuracy 

in numerous experiments and computations (apart from small corrections due 
to the intermittency of the energy dissipation rate). 

The success and simplicity of Kolmogorov's theory has inspired efforts to 
adapt the theory to two-dimensional turbulence. In spite of the fact that there 
are no truly two-dimensional flows in nature, it is believed to be a good approx­
imation for flows in which one lengthscale is much smaller than the other two, 
e.g. large scale flow in the atmosphere and oceans [11]. However, Kolmogorov's 
theory does not apply directly to two-dimensional flow since the dynamics of 
two-dimensional flows are qualitatively different from three-dimensional flows. 
For example, vortex stretching which plays a key role in energy transfer be­
tween scales in 3-D is absent in 2-D. In addition, Fj¢rtoft [9] (and later Merilees 

2 



MSc Thesis- Farazmand M M McMaster-CES 

and 'Narn [26] and Gkioulekas and Tung [15]) showed that in a 2-D incompress­
ible N avier-Stokes flow the energy is (on average) transferred to larger scales, 
while the enstrophy is transferred to smaller scales. This so-called dual cascade 
is quite different from the 3-D case where the energy cascades down to smaller 
scales in the inertial range. Based on Fj0rtoft's work and Kolmogorov's uni­
versality assumption, Kraichnan [18], Leith [20] and Batchelor [2] developed 
an analogous theory (usually referred to as KLB theory) for homogeneous, 
isotropic and statistically stationary two-dimensional forced turbulence. 

According to the KLB theory, in 2-D Navier-Stokes turbulence, there are 
two inertial ranges (of energy and enstrophy2 respectively) where the effects 
of the viscosity and the external forces are negligible. The energy and the 
enstrophy are injected by external forcing in some intermediate scales between 
energy and enstrophy inertial ranges. The injected energy is then transferred 
to ever larger scales through the energy inertial range while the enstrophy is 
transferred to smaller scales through the enstrophy inertial range until it is 
eventually dissipated by molecular viscosity. Kraichnan assumed that in the 
energy inertial range the energy spectrum of the flow, E(k), depends only on 
the energy dissipation rate (E) and the wavenumber k, while, in the enstro­
phy inertial range, E(k) depends only on enstrophy dissipation rate (71) and 
k. Using dimensional analysis, he then predicted the following scaling laws: 
E(k) ex:: k-5

/ 3 in the energy inertial range (just as in three-dimensional turbu­
lence) and E(k) ex:: k-3 (with a possible logarithmic correction [see 19]) in the 
enstrophy inertial range (see figure 2.5 for an illustration). 

Many numerical and laboratory experiments have been performed in at­
tempts to test the KLB theory [see, for instance, 21, 28, 3]. These experi­
ments confirm the general setting of the theory. Each of the cascades have 
been observed independently with the predicted slopes. However, there is a 
controversy. KLB theory predicts that if enough energy and enstrophy are 
injected into the system these dual cascades (i.e. inverse cascade of energy 
and forward cascade of enstrophy) must be realizable simultaneously in a sta­
tistically stationary state. (Indeed, the inverse cascade of energy can be only 
quasi-stationary in an infinite domain since the energy is transferred to ever 
larger scales.) In the numerical and experimental studies, which attempt to 
realize the dual cascades of 2-D turbulence simultaneously, the -5/3 slope 
of the inverse cascade has been well established [see 33, 12], however, slopes 
significantly steeper than -3 have been found for the forward cascade. To 
the best of our knowledge, Boffetta [3] presents the closest result to the KLB 
prediction. At the highest Reynolds number (i.e. a resolution of 163842) their 
enstrophy cascade exhibits a slope of (almost) -3.8. 

Some attempts have been made to explain this departure from the KLB the-

2Enstrophy is squared vorticity. 
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ory. First, it should be noted that while the KLB theory assumes unbounded 
domains the numerical and laboratory experiments are necessarily performed 
on bounded domains. Kraichnan [18] pointed out from the very beginning that 
this may affect the results of the experiments since the energy transferred by 
the inverse cascade accumulates in the largest available scales. This problem is 
avoided by adding a friction-type dissipation to remove energy at the largest 
scales. This type of dissipation, usually called Rayleigh friction (or Ekman 
drag), is natural in atmospheric flow because of the friction between flow and 
the earth's surface [1]. On the other hand, Tran and Dritschel [35] [also see 37] 
disproved one of the underlying assumption of KLB theory: that enstrophy 
dissipation converges to a non-zero value in the zero molecular viscosity limit. 
(This prediction is the analogue of the prediction that energy dissipation rate 
converges to a non-zero finite value as Reynolds number tends to infinity in 
three-dimensional turbulence.) However, Tran et al. [37] showed (by substi­
tuting enstrophy dissipation with a Reynolds dependent quantity) that the -3 
slope of the enstrophy cascade should still hold. 

Another question which is still not well understood is the effect of the 
forcing on the dual cascades in forced~dissipative two-dimensional turbulence. 
Studies have shown that the type of forcing modifies the slope of the enstrophy 
inertial range spectrum. The convention is that a monoscale or a monoscale­
like (band-limited) forcing is used. The forcing is confined to a single wave 
number in the case of monoscale forcing, or to a few adjacent wavenumbers 
in the monoscale-like case. The input energy is transferred to larger scales 
and the input enstrophy to the smaller scales as predicted by KLB. This type 
of forcing, first suggested by [18], has some advantages. First, it is easy to 
control the rate of energy and enstrophy injection and secondly, the energy 
and enstrophy injection ranges do not overlap with the inertial ranges. It is 
also consistent with the inertial range hypothesis, that conjectures that the 
energy input is negligible in the inertial ranges. 

However, in 1994 Constantin et al. [7] proved that, in a finite domain, 
monoscale forcing cannot produce dual cascades with the slopes predicted by 
KLB. Later, Tran and Shepherd [36] and Tran and Bowman [34] generalized 
this result to band-limited forcing and more general types of dissipation. They 
proved that with monoscale (or monoscale-like) forcing, the slope of the energy 
spectrum in the forward cascade cannot be shallower than -5. These results 
show that monoscale and monoscale-like forcing are actually inconsistent with 
KLB theory. Tran and Shepherd [36] showed that in the presence of inverse 
viscosity (which removes energy from large scales) the KLB scaling is theoret­
ically possible. However, as was mentioned before, this result suffers lack of 
numerical and experimental evidence. 

On the other hand, Lundgren [23] proposed a linear forcing (directly pro-
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portional to the velocity) to study three-dimensional turbulence. Lundgren 
was motivated by the need to find a forcing that has a better physical justifi­
cation and easier to apply in non-spectral simulations than the usual spectral 
forcing applied only to a few small wavenumbers. Later, [30] further studied 
the effects of this type of forcing. Their results show that the predictions of 
the Kolmogorov theory still hold under linear forcing, despite the fact that 
linear forcing is active at all scales. 

In two dimensions, the effects of linear damping which is active in all scales 
(as opposed to Rayleigh friction which is active only at the largest scales) has 
been studied in recent years [4, 39, 38]. It should be noted that both linear 
forcing and linear damping are active over all scales, including the energy and 
enstrophy inertial ranges. This appears to violate the inertial range hypothesis 
because energy is added (removed) directly at (from) all scales. However, the 
above mentioned studies show that the energy flux (and enstrophy flux in 2-D 
case) remains almost constant over a wide range of wavenumbers, even when 
linear forcing or damping is applied. These observations raises the question of 
whether there are types of forcing (possibly active at all scales) which are able 
to produce the dual cascades with the scaling laws predicted by KLB theory. 
Answering this question is one of the goals of the present paper. 

The other goal is to investigate the effect of the space-time structure of 
the band-limited forcing on the energy spectrum. In most previous numerical 
simulations, the forcing is random in phase [see e.g. 31]. In some simulations, 
the forcing is delta-correlated in time [see e.g. 3]. In some others, the time 
correlation is increased by a Markov process [see e.g. 21]. There are also 
simulations in which the forcing depends on the instantaneous velocity field 
[see e.g. 6]. The motivation for using each ofthese forcings is to have a control 
on the energy and enstrophy injection rates. Therefore, there is no unique 
and physically well-justified way to define the forcing. Almost always, the 
effect of the space-time structure of the forcing on the energy spectrum is 
neglected. Here, we show that the details of this space-time structure can 
have determining effects on the slopes of the cascades even when the forcing 
is band-limited. 

The rest of the thesis is organized as follows. In chapter 2 the governing 
equations and the basic concepts of 2-D turbulence are presented. Chapter 
3 starts with our formulation of the control problem and continues with the 
some remarks about the compuational method we use to solve the equations. 
In chapter 4, the results of the application of the control method to the 2-D 
turbulence problem are presented and discussed. In the last chapter we present 
the conclusions and some future directions. 
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Chapter 2 

Theory of Two-dimensional 
Turbulence 

In this chapter we review the basic equations and concepts related to the 
two-dimensional turbulence. First we state the incompressible Navier-Stokes 
equations (NSE) in physical and Fourier spaces. The vorticity equations are 
also derived. Then we derive the energy and enstrophy equations and show 
that these quantities are conserved in the inviscid limit. The equations and 
results of this chapter are repeatedly used in the next chapters. 

2.1 Navier-Stokes Equations 

It is believed that incompressible fluid flow is governed by 

8tu+u· Vu = -\jp+v~u+f, 

\j·u=o, 

u(t = 0, x) = uo(x), 

(2.1a) 

(2.1b) 

(2.1c) 

where u is the velocity field, p is the pressure, f is the external forcing, Uo is 
the initial condition and v is the molecular viscosity. The velocity field, the 
pressure and the forcing are functions of time (i.e. t) and space(i.e. x). Here 
we will consider the flow in a two dimensional box with periodic boundary 
conditions. Therefore u, f : ]R+ x n -+ ]R2 and p : ]R+ x n -+ ]R where 
n = 'JI'2 is the two-dimensional torus. The foricng f can in general be divergent, 
however, here it is assumed to be divergence free. We refer to the above partial 
differential equation as NSEI. 

The Reynolds (Re-) number is defined as Re = U L/v where U is a char­
acteristic velocity and L is a characteristic length scale. One typical choice of 
characteristic velocity and length scale are respectively the quadratic mean of 

IShort form for Navier-Stokes equation. 
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the velocity (JUJ2)1/2 and the size of the periodic box ']I'2. It turns out that the 
flow becomes more and more "turbulent" as the Re-number increases. Since 
there is not a unique and generally accepted way of defining the characteristic 
velocity and length scales, in our numerical simulations we only report the 
value of the viscosity v. 

The continuity equation (2.1b) implies that the solutions of NSE must be 
divergence-free. Therefore, we can combine the first two equations into one by 
projecting the solutions of the momentum equation (2.1a) onto the space of 
divergence-free vector functions 

(2.2) 

where ]p> is the projection operator onto the non-divergent vector functions. 
Note that since the gradient of the pressure is normal to the space of non­
divergent vectors, it vanishes after projection. 

One can rewrite NSE in terms of the components of the vector quantities 
as follows 

(2.3a) 

(2.3b) 

where 8j /', 8~., i, j = 1,2 and Einstein's convention is used for indices, i.e. 
J 

summation over repeated indices. 
Another liseful formulation of NSE is the spectral form of he equations in 

terms of the Fourier transform of the functions . 
.f 

8(Ui(k) + ikm(Oij - kikj /k2) :L Uj(p)um(q) = - Vk2Ui(k) + ii(k) (2.4) 
p+q=k 

where the hat sign refers to Fourier transform except in i = v=r. Oij is the 
Kronecker delta function. Note that oij-kikj /k2 is the projection operator]P> in 
Fourier space and that we have used the incompressibility condition kjuj = O. 

The vorticity is defined as w = \7 x u. Note that since we consider the 
2-D space, the only nonzero component of the vorticity field is the normal 
component to the plane of the flow. For simplicity we denote this component 
by w. In other words, W = w· ft where ft is the unit normal vector. One can 
derive the vorticity equation by taking the curl of equation (2.1a) 

1 
8t w + U· \7w = Re LlW + fw, (2.5) 

where fw = [Jrh-82ir is the non-zero component of \7 xf. Note that \7x \7p = 

o and therefore the pressure does not appear in the vorticity equation. 

7 
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2.1.1 Energy and Enstrophy Equations 

We define the instantaneous kinetic energy of the flow at time t by 

(2.6) 

where (., .) is the inner product in the corresponding space. Enstrophy is the 
energy of the vorticies and is defined by 

(2.7) 

It will be seen shortly that enstrophy determines the rate of energy dissipation. 
U sing the Fourier transform of the fields one can define the 2-D spectrum 

of the energy and enstrophy as 

(2.8) 

and 

Z(t,k) I':. ~IW(t,k)12 = k2E(t,k), (2.9) 

respectively. By averaging over all wave-vectors of the same size one can define 
the one-dimensional spectra as 

and 

E(t, k) I':. ! r lu(t, k)12 dS(k), 
2 J1kl=k 

Z(t, k) I':. ! r Iw(t, k)12 dS(k) = k2 E(t, k), 
2 J1kl=k 

where the integration is carried over the circles of radius k. 

(2.10) 

(2.11) 

Note that the total energy E(t), the 2-D energy spectrum E(t, k) and the 
1D energy spectrum E(t, k) are all denoted by E. However, we do not expect 
this to be a source of confusion since the argument of the function clarifies the 
quantity to which it is referring. Moreover, in the cases where the time depen­
dence of the above functions is trivial we may eliminate t from the arguments. 

By multiplying (2.3a) by Ui and integrating over space we will have 

:tE(t) = -2vZ(t) + in fiui dx. (2.12) 

Note that the non-linear term and the pressure vanish due to incompressibility 
condition, i.e. 8iUi = O. By integration by parts it follows that 

in Ui8 iP dx = - in p8i U i dx = 0, (2.13) 

8 
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and 

(2.14) 

where the boundary terms vanish due to periodic boundary conditions. 
Remark: Note that in the absence of external forcing (i.e. f - 0), the 

energy equation will be !E(t) = -2vZ(t). Therefore, as was pointed out 
earlier, the decay rate of total energy is proportional to the total enstrophy. 

Remark: We emphasize that the non-linearity does not appear in the en­
ergy equation (2.12) because (u. Vu, U)£2(!1)2 = O. Therefore, it is an inertial 
term which does not alter the total energy of the system. We will shortly show 
that this term distributes energy (and enstrophy) among different scales. 

A more interesting equation is the one that describes the balance of energy 
among different modes. One can derive this equation by multiplying (2.4) by 
Ui(t, k). 

! E(t, k) + TE(t, k) = -2vk2 E(t, k) + F(t, k), (2.15) 

where 
F(t, k) = lR{ii(t, k)Ui(t, k)} = lR{f(t, k) . u(t, k)}, (2.16) 

is the energy injected into mode k by the external forcing. lR stands for the 
real part of a complex number. The transfer function TE(t, k) is defined by 

TE(t, k) = lR {ikm(Oij - kikj/k2) 2:::: Uj(t, P )um(t, q)Ui(t, k)} 
p+q=k 

(2.17) 

= lR {JPl(~u) . u(t, k) } , 

and represents the energy transferred into (if positive) or out of (if negative) 
mode k. 

A yet more useful equation can be obtained by averaging over all wave­
vectors of the same amplitude to get 

!E(t, k) + TE(t, k) = -2vk2 E(t, k) + F(t, k), (2.18) 

This equation is in terms of the one-dimensional energy spectrum. It contains 
less details compared to two-dimensional energy equation, however, it is much 
easier to work with. The one-dimensional triad function TE(t, k) is now the 
total energy transfer to (if positive) or from (if negative) mode k. Therefore, 
the sum ofTE over all "wavenumbers less than a particular "wavenumber k sho"ws 
the flux of energy through that wavenumber. This flux is shown by IIE(t, k) 
and by definition satisfies 

(2.19) 

9 
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or equivalently 

(2.20) 

Similar evolution equations can be derived for the enstrophy from the vor­
ticity equation (2.5). For instance the one dimensional enstrophy spectrum 
satisfies 

:t Z(t, k) + Tz(t, k) = -2vk2 Z(t, k) + k2 F(t, k), (2.21) 

where Tz(t, k) = k2TE (t, k) is the one-dimensional enstrophy transfer function 
and denotes the total enstrophy transfer to (or from) mode k. The enstrophy 
flux through a wavenumber k is defined as 

IIz(t, k) = lk Tz(t, 11,) dK,. (2.22) 

Remark: Since the triad interactions are inertial interactions, the transfer 
functions preserve the total energy (and enstrophy). In other words, 

(2.23) 

and, 100 

Tz(t, k) dk = O. (2.24) 

This together with equations (2.18) and (2.21) implies that in the absence of 
external forcing (i.e. F(t, k) _ 0) in an inviscid fluid (i.e. v _ 0) the total 
energy E(t) and the total enstrophy Z(t) are conserved, i.e. 

dE(t) = 0 anddZdt(t) = o. 
dt ' 

(2.25) 

This simultaneous conservation of energy and enstrophy plays an important 
role in the formation of dual cascade of energy and enstrophy in 2-D turbulence. 
Note that the enstrophy conservation is a distinguished feature of 2-D flow and 
is absent in 3-D. This is a fundamental difference in the dynamics of 2-D and 
3-D turbulence. 

Remark: To impede a source of mistake, we emphasis that IIz(t, k) =J 
k2IIE (t, k). The correct identity is a~kz (t, k) = k2a~kE (t, k). 

2.2 Energy and Enstrophy Triads 

As was mentioned before, the non-linear term in NSE plays an important role 
in the flow dynamics at high Re numbers. Here, the role of this non-linearity 
in spreading the energy among different scales is demonstrated. For notational 

10 
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simplicity in this section, T is used instead of TE and S is used instead of Tz . 
Moreover, since the time dependence is clear, the argument t is eliminated 
from the transfer functions. 

The transfer function T(k) has been defined in (2.17). A more detailed 
quantity is the triad of energy defined as 

(2.26) 

Note that T(k, p, q) i- 0 if and only if p + q = k. Also, the energy triads 
T(k, p, q) are related to the transfer functions T(k), by 

T(k) = I: T(k, p, q). (2.27) 
p,q 

The energy triad functions T(k, p, q) represent the instantaneous energy trans­
fer from wave-vectors p and q to the wave-vector k. 

Similarly, one can define the enstrophy triads S(k, p, q). It is easy to show 
then that 

S(k, p, q) = k2T(k, p, q) (2.28) 

The ~ther property of energy and enstrophy triads is that they satisfy the 
following conservation equations 

T(k, p, q) + T(p, q, k) + T(q, k, p) = 0, 

k2T(k, p, q) + p2T(p, q, k) + q2T( q, k, p) = 0, 

(2.29a) 

(2.29b) 

which follow easily from the definition of the triads. Indeed, the above triad 
conservations are responsible for the conservation of energy and enstrophy 
which were discussed earlier. More.over, they provide two equations for three 
unknowns (i.e energy triads) and therefore non-trivial solutions of the equa­
tions exist. In order to calculate these non-trivial solutions, one needs to solve 
NSE first because by definition the triads depend on the velocity fields. How­
ever, we can analyze some properties of these functions without calculating 
the numerical values. It follows from equations (2.29a) and (2.29b) that 

T(k,p, q) q2 _ p2 
(2.30a) 

T(q,k,p) 2 k2' p -

T(p, q,k) q2 _ k2 
(2.30b) 

T(k,p,q) p2 _ q2' 

T(q,k,p) k2 _ p2 
(2.30c) 

T(p,q,k) q2 _ k2· 

As a result, the energy is either transferred from intermediate wave-vector to 
the other two wave-vectors or it is transferred to the intermediate wave-vector 

11 
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k p q 
(a) energyjenstrophy transfer to the inter­
mediate mode 

k p q 

(b) energyjenstrophy transfer from the in­
termediate mode 

Figure 2.1: Possible triad interactions 

from the other two wave-vectors (see figure 2.1). The intermediate wave-vector 
is the one with the intermediate magnitude. As an example, let k=l, p=2 and 
q=3. Then p is the intermediate mode and either 

T(k,p,q) < 0, T(q,k,p) < 0, T(p,q,k) > 0, (2.31) 

or 
T(k,p,q) > 0, T(q,k,p) > 0, T(p,q,k) < 0. (2.32) 

Similar results hold for the enstrophy triads S(k, p, q). 
Now assume that among all non-zero triad interactions, the local triad in­

teractions are dominant and therefore the non-local interactions are negligible. 
By local triads we mean the triad wave-vectors with "close" magnitude. For 
such local interactions 

IT(k, p, q)1 > IT(q, k, p)1 

IS(k, p, q)1 < IS(q, k, p)1 

(2.33a) 

(2.33b) 

if k < p < q. For instance, let k = n - 1, p = nand q n + 1. Note 
that T(k,p,q) = q2_p2 = (n+1)2-n

2 > 1 for all n > 2 while S(k,p,q) = q2_p2 = 
T(q,k,p) pL k 2 n 2-(n-l)2 -, S(q,k,p) p2_k2 

(n+l)2 n 2 fi ·11 
nL(n-=-l)2 < 1 as gure 2.21 ustrates. 

Inequalities (2.31), (2.32) and (2.33a) suggest that only the following two 
cases are possible: 

i. In the case where energy is transferred from the intermediate mode to 
the other two modes, most of the energy is transferred to the smallest 
wave-number (figure 2.3a-top). 

ii. In the case where energy is transferred to the intermediate mode from the 
other two modes, most of the energy is provided by the smallest wave­
number (figure 2.3a-bottom). 

On the other hand, inequality (2.33b) suggests that the case for the enstro­
phy is exactly the opposite: 

i. In the case where enstrophy is transferred from the intermediate mode to 
the other two modes, most of the enstrophy is transferred to the largest 
wave-number (figure 2.3b-top). 

12 
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Figure 2.2: The ratio of the energy and enstrophy transfer rates with k = n - 1, p = nand 
q = n + 1. The energy is mostly transferred to/from the lower mode while the enstrophy is 
mostly transferred to/from the higher mode. 

ii. In the case where enstrophy is transferred to the intermediate mode from 
the other two modes, most of the enstrophy is provided by the largest 
wave-number (figure 2.3b-bottom). 

In 1953, Fj0rtoft [9] showed that most of energy triad interactions are of the 
first type (i.e. i) while most of enstrophy triad interactions are of the second 
type (i.e. ii). Therefore, he concluded that in two-dimensional incompressible 
Navier-Stokes turbulence the energy fluxes upscale on average while the enstro­
phy fluxes downscale. Later, numerical simulations of Marilees and Warn [26] 
confirmed this claim. However, Fj0rtoft's argument is based on the assump­
tion that the local triad interactions are dominant. In the next section, we will 
present a proof of upscale energy and downscale enstrophy fluxes which has 
been proposed by Gkioulekas and Tung [15] recently and does not assume lo­
cal triad interactions. Moreover, this proof has interesting consequences which 
will be helpful in analysis of our numerical results. 

2.3 Proof of the Energy and Enstrophy Cascades 

In this section, it is shown that in 2-D turbulence energy cascades to larger 
scales in the net while enstrophy cascades to smaller scales. The proof is due 
to Gkioulekas and Tung [15]. Here we will briefly sketch the proof and then 
mention the consecutive results which will be used later. For more details, the 
reader can refer to [15]. 

13 
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k p q k p q 

k p q k P q 
(a) T(k, p, q) (b) S(k, p, q) 

Figure 2.3: Possible triad interactions 

The proof assumes 

1. Statistically stationary state 
As a result the energy and enstrophy spectra are stationary, i.e. 

aE az 
at - 0 and at - o. (2.34) 

2. Band-limited forcing 
If F(t, k) is the energy injection into mode k by external forcing as defined 
in section §2.1, then F(t, k) = 0 if k rf. [kl' k2] where [kl' k2] is a narrow 
band of wavenumbers (see figure 2.4). In other words the forcing is band­
limited with the band-width k2 -k1 • It will be shown that this assumption 
can be replaced by the weaker assumption that at each wavenumber, the 
energy injection due to the external forcing must be bounded from above 
by the energy dissipation due to molecular viscosity. 

The statistically stationary assumption together with the energy and en­
strophyequations (2.18) and (2.21) implies that 

aII;~k) = -2vk2 E(k) + F(k), (2.35a) 

(2.35b) 

One can integrate these equations over the interval (0, k) with k < kl to get 

IIE(k) = -lk (2vq2 E(q) - F(q)) dq < 0, (2.36a) 

(2.36b) 

14 
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lIe < 0 ... 

lIz < 0 ---------

McMaster-CES 

lIe > 0 
----------. 

lIz > 0 

Logk 

Figure 2.4: The flux of energy and enstrophy in 2D turbulence. The solid arrows refer to 
the dominant fluxes while the dashed arrows refer to the subordinate fluxes. The energy 
and enstrophy are injected by the external forcing over the wavenumbers [kl, k2J 

Therefore, for k < kl the energy and enstrophy fluxes are negative, i.e. the 
energy and enstrophy both cascade to larger scales. Note that F(t, k) = 0 for 
k < kl and k > k2. 

A similar integration on the interval (k, +(0) with k > k2 leads to 

IIE(k) = 100 

(2vq2 E(q) - F(q)) dq > 0, (2.37a) 

(2.37b) 

Hence, for k > k2 the energy and enstrophy fluxes are positive, i.e. the energy 
and enstrophy both cascade to smaller scales. 

These initial results demonstrate that if energy and enstrophy are injected 
over a band-width of intermediate wavenumbers, they both cascade to larger 
scales on the large scale side of the forcing band. At the same time, they both 
cascade to smaller scales on the small scale side of the injection wavenum­
bers(see figure 2.4). It may seem paradoxical with the notion of inverse energy 
and forward enstrophy cascades, however, it should be understood that the in­
verse and forward cascades refer to average fluxes. As it will be shortly shown 
the most of energy cascades to larger scales while the most of enstrophy cas­
cades to smaller scales. Only in the extreme case of infinite Reynolds number 
(or zero viscosity) all of the inj ected energy (enstrophy) fluxes to the larger 
(smaller) scales. 

Remark: In carrying the above integrations, we have used the fact that 
IIE(O) = IIz(O) = 0 and IIE(+oo) = IIz(+oo) = 0 which follow from the equa-
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tions (2.19) and (2.22) together with the conservation conditions 1000 TE(t, k) dk = 

o and 1000 
Tz(t, k) dk = O. 

The other important inequality which links the energy and enstrophy fluxes 
reads 

(2.38) 

for any wavenumber k tf. [kl' k2]. One can show this, for k < kl' by multiplying 
the energy flux in equation (2.36) by k2 and subtracting the result from the 
enstrophy flux to get 

IIz(k) - k2IIE(k) = lk (k2 - q2) (2vq2 E(q) - F(q)) dq > o. 

Similarly, it follows from equation (2.37) that 

IIz(k) - k2IIE(k) = 100 

(q2 - k2) (2vq2 E(q) - F(q)) dq > 0, 

for k> k2 • 

(2.39) 

(2.40) 

Now we are ready to show that the energy fluxes to larger scales in the net 
while the enstrophy fluxes to smaller scales. For any k tf. [kl' k2] the enstrophy 
flux satisfies 

IIz(k) = r oIIz(q) dq = r q2 oIIE (q) dq 
io oq io oq 

= k2IIE(k) - lk 2qIIE(q) dq, 

therefore, 

(2.41) 

for any k tf. [kl' k2]. This implies that the the net energy flux is negative and 
therefore upscale energy flux is dominant. Note that to draw this conclusion it 
was sufficient to show 10k IIE(q) dq < 0 which is weaker than 10k qIIE(q) dq < o. 

On the other hand, 

IIE(k) = _ roo oIIE(q) dq = _ roo q_2 oIIz (q) dq 
ik oq ik oq 

= k-2IIz (k) - 100 

2q-3IIz (q) dq, 

and thus 

(2.42) 

for any k tf. [kl' k2]. This implies that the the net enstrophy flux is positive 
and therefore downscale enstrophy flux is dominant. Again, in order to draw 
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this conclusion it was sufficient to show It IIz(q) dq > 0 which is weaker than 
Ikoo 

q-3IIz (q) dq < O. 
Remark: In [15], it is assumed that the forcing is band limited. However, 

note that it is not a necessary condition for the dual cascade to exist. If 
2vk2 E(t, k) - F(t, k) > 0, all above calculations still hold and therefore the 
dual cascade still exist. Therefore, the energy injection does not necessarily 
need to be zero outside a band of wavenumbers. But it has to be bounded from 
above by the viscus energy dissipation, i.e. 2vk2 E(t, k), at each wavenumber. 
Therefore, we relax the assumption of band-limited forcing to 

G(t, k) = 2vk2 E(t, k) - F(t, k) > 0, Vt, k E JR+. (2.43) 

This condition is used to study the energy and enstrophy transfers in §4.1. 
In summary, in a statistically stationary 2-D turbulence, if the energy and 

enstrophy are injected at a particular wavenumber, they cascade both upscale 
and downscale due to triad interactions. However, energy cascades upscale 
mostly while most of the enstrophy cascades downscale. The downscale flux 
of energy and enstrophy are dissipated eventually at smallest scales by the 

. molecular viscosity. If the flow domain is infinite in both directions, energy 
and enstrophy keep being transferred to larger and larger scales. However, 
when the domain is finite (which is the case in lab experiments and numerical 
simulations), a large scale dissipation mechanism is required to prevent the 
accumulation of energy and enstrophy at largest available scales. This large 
scale dissipation and its effect on the dynamics of the flow is described later 
in more details. 

2.4 Power Law scaling of the Energy Spectrum 

Here the underlying assumptions of the KLB theory are reviewed and the 
power law scaling of 2-D turbulence is derived. For more details the reader 
can refer to [18, 2, 20]. 

Consider a 2D incompressible flow and assume that energy and enstrophy 
are injected into the flow by some external forcing over a narrow band of in­
termediate wavenumbers [kl' k2] (see figure 2.4). As was shown in section §2.3, 
most of the energy then transfers upscale and most of the enstrophy transfers 
downscale. In a finite domain, the energy dissipates at large scale due to the 
friction between the box size vortices and the boundary [see 4] while the eI?-stro­
phy dissipates at small scales due to the molecular viscosity. At large Reynolds 
numbers (small viscosity), one can neglect the energy / enstrophy dissipation 
(i.e. 2vk2E(k)) unless vk2 

rv 0(1). For instance, if v = 10-6 , dissipation is 
considerable only at k > 103 (i.e. at relatively small scales). Let denote the 
wavenumber at which the small scale dissipation becomes important by kv and 
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neglect the molecular energy dissipation over the range (0, kl/)' For now sup­
pose that the physical domain is infinite in both directions and therefore there 
are no large scale energy dissipations. Hence the energy / enstrophy injection 
and energy/enstrophy dissipation are negligible over k E (0, kl/) \ [kb k2]' In 
addition, assume that the upscale enstrophy and downscale energy fluxes are 
negligible. Then one can assume that there are two inertial ranges upscale and 
downscale of the injection range [k1 , k2] since the energy/enstrophy injection· 
and dissipation are negligible and the dynamics of the flow is controlled by the 
the inertial (i.e. triad) interactions. Let denote the range of wavenumbers over 
which the energy cascades upscale by [kL k2] where 0 < kl < k2 ::; k1. Similarly 
denote the enstrophy forward cascade by [kf, k~] where k2 ::; kf < k~ < kl/' 
For a schematic representation of these ranges refer to figure 2.5. 

Also assume that the flow is statistically homogeneous. In this case the 
transfer/injection/dissipation of the energy and enstrophy is almost uniformly 
distributed in physical space. As a result we can study the Fourier transforms 
of the energy and enstrophy neglecting the local phenomena in the flow. 

Moreover, assume that the flow is statistically isotropic, i.e. the statistical 
quantities do not depend on the direct.ion in which they are measured. As a 
result the one-dimensional energy spectrum E(k) contains no less information 
than the two-dimensional spectrum E(k). This simplifies the analysis to a 
great extent. 

In summary, the underlying assumptions of the KLB theory are the follow­
ing: 

1. The flow is statistically steady state. 

2. The flow is statistically homogeneous. 

3. The flow is statistically isotropic. 

4. All of the injected energy fluxes upscale due to inertial interactions over 
a range of wavenumbers denoted by [kL k2]' Moreover, All of the injected 
enstrophy fluxes downscale due to inertial interactions over a range of 
wavenumbers denoted by [kf, k~]. 

5. Over the energy range [kL k2], the energy spectrum E(k) depends only 
on energy injection rate E and wavenumber k. Over the enstrophy iner­
tial range [kf, k~], the energy spectrum depends only on the enstrophy 
injection rate 'r/ and wavenumber. 

We are now a dimensional analysis away from the KLB scaling laws. Lets 
denote the physical dimension of a quantity 7r by [7r]. Then [E] = L 3T- 2 , 

[E] = L 2T-3, [rJ] = T-3 and [k] = L-1 where L is the dimension of length and 
T is the dimension of time. Also note that the inertial range assumption of 
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Figure 2.5: Schematic representation of the KLB theory. Energy and enstrophy are injected 
by the external forcing over the range (kJ, kf). Energy and enstrophy inertial ranges are 
[kr, k~l and [kf, k~l respectively. The smallest wavenumber is kmin = 1 (if the domain is 
unbounded kmin = 0 and the large scale dissipation is not necessary) while the largest 
available wavenumber kmax depends on the numerical resolution. The numerical resolution 
is usually set such that k max ~ 2kv. 

the KLB theory implies that over the inverse cascade, energy E is a function 
of energy injection rate E and wavenumber k while over the forward cascade it 
is a function of enstrophy injection rate rJ and wavenumber k. In other words 

E(k) = f(E, k), k E [k~, k~], 

E(k) = g(rJ, k), k E [kf, k~]. 

(2.44a) 

(2.44b) 

For the physical dimensions to agree the only possible functions f and g are 
CE2/ 3 k-5/ 3 and C'rJ2/3 k-3 respectively where C and C' are dimensionless con­
stants. Therefore, one expects based on this argument that the energy scales 
as 

(2.45) 

This power law is referred to as the KLB scaling law and was first proposed 
by Kraichnan [18] in 1967. This power law scaling and the various parts ofthe 
energy spectrum are illustrated in figure 2.5. 

A few remarks are in order. 
Remark: Later Kraichnan [19] introduced a logarithmic correction in the 

scaling laws which is necessary due to the presence of coherent vortices. How­
ever, as long as this work is concerned this correction can be neglected. There­
fore, we consider the original scalings introduced above. 

19 



MSc Thesis- Farazmand M M McMaster-CES 

Remark Note that KLB theory neglects the inverse enstrophy and for­
ward energy cascades. However, in reality there are small fractions of upscale 
enstrophy flux and downscale energy flux. 

Remark: At this point it is necessary to emphasize that KLB theory does 
not make any comments on the energy / enstrophy injection mechanism, i.e. 
forcing, except that it is band-limited (or monoscale). Because of the sta­
tistically steady state assumption, it is clear that the energy and enstrophy 
injections must be at a reasonable rate such that after a sufficient elapse of 
time they balance with the large and small scale dissipations. It is assumed 
that the space-time structure of the forcing does not have determining effects 
as long as the scaling laws are concerned. Therefore, in numerical simulations 
the forcing is (almost) always white noise in time and random in phase. How­
ever, our results show, in contrast to what is usually assumed, that the detailed 
space-time structure of the forcing has a significant effect on the dynamics of 
the flow and in particular the scaling of the energy spectrum. For details refer 
to §4.2. 

2.5 External Forcing as an Energy and Enstrophy In­
jection Mechanism 

As was mentioned, in 2-D turbulence, energy and enstrophy are distributed 
among scales through the triad interactions. These interactions are inertial 
in the sense that they preserve the total energy and only transfer it from one 
scale to another. The KLB theory provides an statistical description on the 
energy budget of each scale in a statistically stationary state. This theory 
is based on the assumption that if the forcing is limited to a narrow band of 
wavenumbers and the viscosity is small enough (ideally zero) then the dynamics 
in most of the scales is exclusively due to triad interactions. Since the scales 
of energy / enstrophy injection are distinct from inertial scales, it is natural 
to assume that the type of forcing does not affect the scaling over inertial 
ranges. Therefore, in (most) numerical simulations a simple model of a stirring 
force which has a constant magnitude in time with random phase in space is 
employed. In the case that the boundary conditions are periodic, one can 
define such a forcing by its Fourier transform as 

(2.46) 

where k = (kx, ky), k = Ikl, A is a constant equal to the magnitude of the 
forcing and 0 ::; ~ ::; 1 is a random variable in time and wavevector in the sense 
that for each t and k, it is randomly chosen between 0 and 1. The characteristic . 
function X is 1 if k E (k~, kf) and 0 otherwise. The multiple (-ky, kx) / k2 is 
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introduced in order to enforce the divergence free condition V . f = o. 
Such stirring forcings were first suggested for 3-D isotropic turbulence by 

Martin and Dominicis [25] and Yakhot [42]. The phase structure of this forcing 
being random is favorable for producing isotropic turbulence. Moreover, the 
spatial correlation of it can be controlled by the characteristic function x. To 
state this more rigorously, define the correlation function of a vector field u by 

Ru(T,r) = (u(t,x) ·U(t+T,x+r)) (2.47) 

where ( ) denotes time average in time and space. Then the correlation function 
of the forcing in (2.46) reads 

(2.48) 

where IS is the Kronecker delta and (Tb T2) is the range of scales over which the 
forcing is non-zero with Tl ex 11ki and T2 ex 1/k~. The forcings in most nu­
mericalsimulations [see, e.g., 21, 3] which study the isotropic two dimensional 
turbulence share the essential properties of the above forcing with slightly 
different formulations. 

When the flow domain is finite (which is the case in all numerical simu­
lations) some controversies arise. Constantin et al. [7] proved that the band­
limited forcing is inconsistent with the KLB theory in the sense that the slope 
of the energy spectrum on the enstrophy cascade range will be much steeper 
than the KLB prediction, i.e. -3. Later, Tran and Shepherd [36] obtained the 
same result through a different approach. They show that a large-scale sink of 
energy is necessary for the KLB theory to be observed in finite domains. We 
discuss this inconsistency rather qualitatively here and will summarize some 
of the results. For more details the reader can refer to the above-mentioned 
articles. 

Since in 2-D turbulence energy cascades to larger scales, it is natural to 
expect that the energy will pile up at largest scales when the domain size is 
finite. This was predicted by Kraichnan himself from the very beginning [18]. 
As a result some large scale vortices will form after sufficient time. These 
vortices dominate the flow and do not provide enough space for the enstrophy 
to cascade to small scales. Therefore, most of the enstrophy will dissipate at 
scales close to the forcing scale. This results in a steep energy spectrum over 
the enstrophy cascade range. It is shown in [36] that the slope of the energy 
spectrum in this case must be steeper than -5 which contradicts with the 
prediction of the KLB theory, i.e. -3. 

It is shown in [36] that if the energy is removed from large scales in order to 
avoid accumulation of energy, then the KLB scalings may be retrieved. One 
way (and probably the most straight forward way) to create this large scale 
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sink of energy is to add the so-called "inverse viscosity" 2 to the N avier-Stokes 
equation (2.1a). Mathematically speaking, the inverse viscosity of order Pi is 
obtained by applying the inverse Laplacian operator to the velocity field, i.e. 

(2.49) 

with Pi = 0,1,2,· ... The constant Vi determines the intensity of the dissipa­
tion. The index i refers to infrared (large-scale). Note that the inverse viscosity 
dissipates energy at a rate of 2Vik-2Pi E(t, k) where the energy spectrum E(t, k) 
is defined in (2.10). Therefore, the energy dissipation due to inverse viscosity 
is significant at large scales (small k) and negligible for small scales (large k). 
When Pi = 0 the dissipation mechanism is called Ekman friction or linear 
drag. Ekman friction is similar to the friction of the atmospheric flow with the 
earth surface [4]. However, higher orders of inverse viscosity (i.e. Pi ~ 1) do 
not have a physical relevance. 

In the presence of inverse viscosity, NSE becomes 

V·u=o, 

u(t = 0, x) = uo(x). 

(2.50a) 

(2.50b) 

(2.50c) 

Note that the energy injection by forcing and large-scale energy dissipation 
are given by F(t, k) and 2Vik-2Pi E(t, k) respectively where energy injection 
F(t, k) is calculated by (2.16). Similarly, enstrophy injection by forcing and 
small-scale enstrophy dissipation are given by k2 F(t, k) and 2vk4 E(t, k) respec­
tively. In order to reach the statistically stationary state (required for the KLB 
theory) the energy / enstrophy injection must balance with energy / enstrophy 
dissipation. In numerical simulations, one can balance them by adjusting the 
forcing magnitude A in (2.46) and the coefficients of viscosity V and Vi. 

The above short description speaks volume to the profound effect of the en­
ergy / enstrophy injection and dissipation mechanisms on the dynamics of the 
2-D turbulent flow and in particular on its scaling of the energy spectrum. On 
the other hand, however, the forcing and large-scale dissipation used in numer­
ical simulations are chosen to be conveniently implemented in a computational 
setting. It is assumed that detailed properties of the forcing (such as its phase 
structure) do not alter the inertial range dynamics of the flow. However, one of 
the main results that we present in chapter 4 shows the contrary: a particular 
choice of forcing and large-scale dissipation can significantly alter the scaling 
of the energy spectrum of the flow. 

2In some texts inverse viscosity is referred to as h'ypoviscosity. 
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Chapter 3 

Numerical Method 

3.1 Optimal Control Method 

As was mentioned previously, there is not a well justified criterion for the 
forcing function in 2D turbulence. In numerical simulations, it has become a 
tradition to use a particular forcing (such as random-phase white noise) and 
then calculate the resulting energy spectrum. Here we introduce an opposite 
approach in the sense that we consider a target energy spectrum and then 
find a forcing which will result in that particular forcing. The target energy 
spectrum in the present study (almost always) follows the KLB scaling laws, 
i.e. E rv k-5/ 3 over the large scale side of the spectrum and E rv k-3 over 
the small scale side (see figure 2.5). Because of the complex structure of the 
Navier-Stokes equations, finding the corresponding forcing for a particular 
target energy spectrum is by no means a trivial task. However, using the 
techniques from optimal control theory it is possible to find a numerical answer 
for such problems. 

Here, the general ideas are described. They will shortly be formulated 
in a mathematically rigrous way. For any possible energy spectrum, it is 
required to define its difference from the target spectrum (in this case KLB 
spectrum) in an appropriate way. Then the problem boils down to minimizing 
the difference between the energy spectrum which is obtained from solving NSE 
with some particular forcing and the target spectrum. One can start from 
an arbitrary forcing and then calculate the difference between the resulting 
spectrum and the target spectrum. The next choice of the forcing should be 
one that results in a smaller difference between the spectra. The criterion for 
updating the forcing comes from an idea in multivariable calculus. Note that 
a mutivariable function decreases in the opposite direction of its gradient. If 
this gradient direction is somehow known, then the forcing can be updated 
by moving from the previous forcing in the opposite direction of that gradient 
by some appropriate increment. Continuing the same procedure from the 
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Figure 3.1: Schematic representation of a convex (a) and a non-convex (b) optimization 
problems. When the problem is convex, by starting from some initial guess fa and following 
the descend direction one will finally find the global minimum. While in a non-convex 
problem which has more than one local minimizer, depending on the initial guess, one may 
or may not find the global minimum. 

new forcing a closer spectrum to the target will be found. After sufficient 
iterations, the difference between the spectra will be minimized. If we are 
lucky enough this minimum is zero and the calculated spectrum coincides with 
the target spectra. If the problem has a unique local/global minimizer or in 
other words if it is convex, then we can get close to the global minimum after 
sufficient iterations. However, if the problem is not convex then there are no 
guarantee to reach the global minimum. Depending on the starting point (i.e. 
initial guess) we may get trapped in some local minimizer and never reach the 
global minimum. The difference between a convex and a non-convex problem 
is illustrated schematically in figure 3.1 for a single variable function. In a 
multivariable or an infinite dimensional problem the situation is much more 
complicated. 

Before formulating the optimization problem, we recall some fundamental 
definitions and theorems of functional analysis. 

Definition 3.1.1 (Dual Space). Consider a Banach space X. A map:f : X ---+ 

IR is called a functional on X. The set of all continuous linear functionals on 
X is called the dual space of X and is denoted by X* . 

Definition 3.1.2 (Gateaux Derivative). Consider a Banach space X and let 
f, l' EX. The Gateaux differential of a functional :f E X* at f in direction 
l' is defined as 

:f'(J; 1') b. lim :f(J + E1') - :f(J), 
£--> 0 E 

(3.1) 
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if the limit exists. If the limit exists for all l' E X then :J is Gateaux differ­
entiable at f. 

N ate that Gateaux differential is a generalized definition for the directional 
derivative in multi variable calculus. This general definition is necessary when 
the space over which the function/functional is defined is infinite dimensional 
or it does not posses a Hilbert structure. We deal with the former case in our 
study. Also note that for a fixed f E X the Gateaux differential is a functional 
on X and therefore :J' E X*. In some texts the differential of :J at f is shown 
by D:Jf. 

The following theorem allows us to represent some functionals with an inner 
product if the space on which the functional is defined possesses a Hilbert 
structure. 

Theorem 3.1.1 (Riesz Representation Theorem). Consider a Hilbert space 
X with the inner product (', ·)x. Let:J be a continuous linear functional on 
X! i. e. :J E X*. Then there is a unique element u* E X such that 

:J(j) = (j, u*)x, (3.2) 

for all f EX. 

Note the constraints of the theorem: First, the space must be a Hilbert 
space, i.e. an inner product must be defined on the space. Secondly, the func­
tional must be continuous and linear. Hereafter, Riesz representation theorem 
will be abbreviated by RRT. 

Now consider the incompressible Navier-Stokes equations on a two-dimensional 
box (n) with doubly periodic boundary conditions, i.e. n is the two-dimensional 
torus ']I'2. 

£(u) '" OtU + U· V'u + V'p - vilu = f, 

V'. u = 0, 

u(t = 0, x) = uo(x), 

(3.3a) 

(3.3b) 

(3.3c) 

where u( t, .) : n --7 ]R2 is the velocity field, p( t, .) : n --7 ]R is the pressure, v is 
the coefficient of kinematic viscosity and f(t, .) : n --7 ]R2 is the external forcing. 
For any solution of NSE we define the one-dimensional energy spectrum as 

E(t,k) = -2
1 r lu(t,k)1 2 dS(k), 

le(k) 
(3.4) 

where u is the Fourier transform of u and k is the wave vector. C (k) is a circle , , 
with diameter k in 2-D plane, C(k) = {k E ]R2 : Ikl = k}. 

Let Eo(k) be the energy spectrum predicted by KLB theory, i.e., 

C1k-5/ 3 k~ ::; k ::; k~ 
C2k-3 kf ::; k ::; k~ , Eo(k) = { (3.5) 
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where [kl' k2] and [kf, k2] are the energy and enstrophy inertial ranges re­
spectively (figure 2.5). For notational simplicity we denote the union of the 
inertial ranges by I, i.e. I = [kl' k2] U [kf, k2]' The wavenumber kl may 
extend to the smallest wavenumbers, k2 extends up to the beginning of the 
dissipation range and k2 < kf. In the case of monoscale forcing, k2 and kf are 
almost equal to the forcing wavenumber. In the case of band-limited forcing 
the energylenstrophy injection range is (k2' kf) or a subset of it. C1 depends 
only on the energy dissipation rate (E) and C2 depends only on the enstro­
phy dissipation rate ('T/). Since the energy and enstrophy dissipation rates are 
constants (based on KLB theory), C1 and C2 are also constants. Using the 
inertial range hypothesis, dimensional analysis gives C1 ex: E2/ 3 and C2 ex: 'T/2/3. 
The constants of proportionality are non-dimensional and of order of unity 
[7]. The target energy spectrum is a slightly different formulation of the KLB 
spectrum in Eq. (3.5). 

The goal is to find a forcing, f, which results in a solution of N avier-Stokes 
equation (3.3) with the KLB energy spectrum Eo(k). Define the following cost 
functional: 

J(f) ~ ~ {T ( w(t, k)IE(t, k) - Eo(k)12 dk dt. 
2 io if (3.6) 

This functional measures the total difference between the target energy spec­
trum Eo and the calculated spectrum E over all wavenumbers in the cascade 
range and over time. The function w(t, k) is a positive weight function which 
normalizes IE(t, k) - Eo(k)12 over the inertial ranges. Since Eo(k) decreases 
as k-3 on the interval [kf, k2], w(t, k) = k6 a(t) is a suitable candidate. The 
time dependence of the weight function a(t) is used to put more emphasis on 
the contribution of E(t, k) near t = T. This allows the energy spectrum of 
the flow to evolve gradually from the initial energy spectrum E(O, k) (which is 
arbitrary due to universality of the KLB theory) toward its equilibrium Eo(k). 
For example, a(t) can be an strictly increasing linear function (i.e. a(t) = tiT) 
or a step function which is 0 on some interval [0, T1) and 1 on [T1' T]. If for 
some solution of equation (3.3), the above cost functional is zero, the energy 
spectrum will scale as predicted by KLB theory on the time interval [0, T]. In 
this case, the energy spectrum will be stationary for times when w(t, k) > O. 
However, note that this does not imply, by itself, the existence of the dual 
cascades with the constant energy and enstrophy fluxes. The dynamics of the 
cascades must be examined independently. We will get back to this later. 

The above description may be formulated as the following optimization 
problem. 

min :J(f) , 
fEU 

(3.7) 

where U is a suitable function space with Hilbert structure. Here we con-
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sider the space of square integrable functions in space and time i.e., U = 

L2([0, T]; L2(n)), with the inner product 

(f, g)u = iT 1 f(t, x) . g(t, x) dx dt, (3.8) 

for f, g E U. Therefore, only the Jorcings are considered as a valid solution 
that satisfy 

iT l lf(t, X)12 dx dt < 00, (3.9) 

which loosly speaking means that the forcing is bounded in amplitude. One can 
consider smoother forcings by making a different choice of the control space. 
The cost functional :1 depends on f through the system of equations (3.3) in 
which the explicit dependence of cost functional on the velocity field has been 
dropped. This type of cost functional is called a reduced cost functional. 

Now, the goal is to find a forcing f opt E U that minimizes the cost functional 
:1. Starting with an initial guess f(O) , an approximation of the minimizer can 
be found using a gradient-based descent method of the form 

f(n+l) = f(n) + T(n) A\7 :J(f(n)) , n = 0,1, ... , (3.10) 

such that limn-->oo f(n) = f opt where n is the iteration count and T E JR.- is a 
constant to be determined at each iteration. At each iteration, the descent 
direction A \7 :1 is calculated based on the gradient of the cost functional \7:1. 
Different forms of the operator A correspond to different variants of the gra­
dient method. For instance, if A is the identity operator, it corresponds to 
the steepest descent method and if it is an appropriate affine operator, it cor­
responds to the conjugate gradient method. Since T < 0, the former (i.e. 
steepest descend) corresponds to moving in the oposite direction of the gra­
dient. Refer to [27] for further details on the steepest descend and conjugate 
gradient methods As will be shown below, the gradient \7:1 may be expressed 
in terms of the solution of a suitably-defined adjoint system. 

The necessary condition characterizing the minimizer f opt of the cost func­
tional is the vanishing of the Gateaux differential :1' : U xU ---+ JR., i.e., 

:1'(f opt; f') = 0, V f' E U, (3.11) 

where the Gateaux differential is defined in (3.1). Substituting from (3.4) and 
(3.6) into (3.1), one can easily show that 

:1'(f; f') = ~ iT r w(t, k)(E(t, k)-Eo(k)) (r (u· ~, + IT· Q) dS(k)) dk dt, 
2 0 if iC(k) 

(3.12) 
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where the bar represents the complex conjugate and li"' is the Fourier transform 
of the solutions of the N avier-Stokes equations linearized around the state u, 
i.e, 

£'u' "" OtU' + u' . Vu + U· Vu' + Vp' - v.6.u' = f', 

V· u' = 0, 

u'(t = O,x) = 0, 

(3.13a) 

(3.13b) 

(3.13c) 

where f' is the direction in which the Gateaux differential is computed in (3.1). 
On the other hand, RRT guarantees existence of a unique corresponding 

element V J E U which satisfies the Riesz identity 

J'(f; f') = (V J, f')u , \If' E U, (3.14) 

where (., ')u is the L2-inner product. Hereafter, the subscript U is eliminated 
from the inner product. Here we consider only the L2-functions, however, the 
approach can be easily generalized to different Hilbert spaces and, in particular, 
Sobolev spaces [29]. Note that V J is the steepest ascent direction for the cost 
functional J. An experesion for the gradient V J cannot be derived imediately 
by equating (3.12) and (3.14) since in (3.12) the direction f' is hidden in u'. 
However, the following duality pairing argument suggests a governing equation 
for the gradient. 

For any u* E U, (u*, f') = (u*, £'u') by (3.13). On the other hand, 

(u*,£'u') = (£*u*, u'), 

where the adjoint operator £* reads 

(3.15) 

£*u* = -Otu* - [Vu* + VU*T] u - Vp* - v.6.u*, (3.16) 

and can be obtained by integration by parts. Note that the boundary terms 
resulting from integration by parts in space cancel out due to the periodic 
boundary conditions. Assuming u*(t = T, x) = 0, the terms J'll' u* . U'lt=T dx 
and J'll' u* . U'lt=o dx, resulting from integration by parts in time, also vanish 
since u'(t = 0, x) = O. 

By Parseval identity, 

(£*u*, u') = (Fu*, li"/) 

= fT rX) (f Fu*. d dS(k)) dk dt, (3.17) io io iC(k) 
where the hat signs represent the Fourier transform. Since (£*u*, U/) is real 

valued (£*u*, u') = ~ ((Fu*, it) + (Fu*, it)). Therefore, 

(£*u*, u') = ~ rT roo (r (Fu* ·it + Fu* . it) dS(k)) dk dt. (3.18) 
2 io io iC(k) 
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A Comparison between (3.12) and (3.18) suggests that if 

-L>(u*)(t, k) = w(t, k)(E(t, k) - Eo(k))u(t, k), (3.19) 

then (£*u*,u') = .1'(f;f'). Since (u*,f') = (£*u*,u'), it follows from Riesz 
identity (3.14) that V.1 = u*. Therefore, the gradient direction coincides with 
the solution of the adjoint system 

(8t u* + [Vu* + VU*T] u + Vp* + v~u*) 1\ (t, k) = -w(t, k)(E(t, k)-Eo(k))u(t, k), 
(3.20a) 

V . u* = 0, (3.20b) 

u*(t = T,x) = o. (3.20c) 

By solving the adjoint system to compute the gradient V.1 and using the 
iterative process (3.10), one can find an approximation of the minimizer, f opt. 

The optimal value for the parameter 7 in (3.10) is the one that minimizes 
the single variable function 9(7) := .1 (f(n) +7 AV.1(f(n))) for fixed f(n) and 
AV.1(f(n)). Here, a standard line minimization method [27] is used to find 
the appropriate value of 7 at each iteration. 

In practise, those forcings with very large amplitudes are not of interest. To 
exclude such forcings, a penalty term is added to the cost functional as follows 

(3.21) 

where .1(f) is the same as in (3.6), 'T/ E 1R.+ is a constant and II . II is the 
norm in U (L2-norm here). The constraint on the norm ofthe control variable 
f is determined by the parameter 'T/. Smaller values of'T/ allow forcings with 
larger norms and vice versa. Since the Gateaux differential of the penalty term 
~'T/ IIfl12 in direction f' is 'T/ (f, f')u, the gradient of the modified cost functional 
is V.17](f) = u* + 'T/ f where u* is the solution of the previous adjoint system 
(3.20). 

To summarize, the optimization process can be expressed in the following 
algorithm. 

Algorithm 3.1.1. 

1. Choose an initial guess f(O)(t, x); n = O. 

2. Solve Navier-Stokes equation (3.3) forward in time with f = f(n). 

3. Solve adjoint equation (3.20) backward in time. 

4. Obtain the cost functional gradient as V.17] = u* + 'T/f 

5. Find parameter 7(n) through line minimization. 

29 



MSc Thesis- Farazmand M M McMaster-CES 

6. Update the control variable through (3.10); n = n + 1. 

7. Go back to 2. 

The loop continues until the optimality condition (3.11) is approximately sat­
isfied, i.e., V J'I](f(n)) ~ O. More precisely, the iterations end as soon as 
IIV J'I](f(n)) II becomes less than a prescribed tolerance. In practice, a upper 
bound is also defined on the number of iterations in the sense that after a 
prescribed number of iterations the optimization stops even if the optimality 
condition is not satisfied. 

In this work, a pseudo-spectral method (see §3.2.1) is used to solve Navier­
Stokes and adjoint equations numerically. Since the adjoint equation is ex­
pressed in terms of the Fourier space representatives and the boundary con­
ditions are doubly periodic, the Fourier spectral method is arguably the most 
efficient way to solve it. Time integration is performed with a Krylov subspace 
method (see §3.2.1). As was mentioned above, the parameter T is evaluated by 
a line search method (see §3.2.3). This method uses successive evaluations of 
the cost functional. Each evaluation of the cost functional requires solving the 
Navier-Stokes equation. Usually between 15 to 25 cost functional evaluations 
are required for each line minimization. Therefore, it turns out that the most 
costly part of the above algorithm is evaluation of the parameter T. 

Before applying this method to the problem of KLB theory, we will com­
ment on the two essential questions associated with any optimization method: 
Convergence and Uniqueness. 

• Convergence Note that the criterion for the convergence of the algorithm 
is the optimality condition V J ~ O. However, it is known that this 
condition holds in saddle points in addition to minima ( and maxima). 
Therefore, convergence of the algorithm is not necessarily indicative of 
reaching to a minimum . 

• Uniqueness The results are non-unique in two ways. On one hand, 
the problem is non-convex. Because of the non-convex nature of the 
governing equations (i.e. NSE) there might be several local minima of the 
cost functional (see figure 3.1). Therefore, the algorithm might converge 
to a local minimum. The trivial solution is to run the algorithm from 
several initial guesses and compare the calculated minima. On the other 
hand, the map between the velocity fields and the energy spectrum is not 
injective. As a result, there there are (infinitely) many velocity fields with 
the same energy spectrum. This is clear from the definition of the energy 
spectrum (3.4) since it only depends on the amplitude of the velocity and 
is blind to the phase structure of the field. 
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3.2 Computational Method 

So far, we have defined a cost functional such that its minimum corresponds to 
a flow with KLB scaling of the energy spectrum. Any gradient-based minimiza­
tion method will in theory reveal this minimum through an iterative process 
(i.e. algorithm 3.1.1). On the other hand, the gradient of the cost functional 
is the solution of the adjoint system (3.20). Since the solutions of the adjoint 
equation are not in general known in a closed form, a numerical solution of 
that equation is required. This requires a solution of the NSE (3.3) since these 
solutions appear as coefficients in adjoint system. Therefore, for each evalua­
tion of the gradient of the cost functional, the NSE and the appropriate adjoint 
equation must be solved. In the following, the computational methods used 
for solving these equations are briefly described and references are presented 
for further details. 

3.2.1 Descritization and Time Integration 

Descritize the physical domain 1l'2 = [0, 27r] X [0, 27r] into an N x N uniform grid 
(N grid points in each driction). The velocity field is evaluated at each grid 
point by u(xm' Yn) where m = 0,1,· .. ,N -1, n = 0,1, ... ,N -1, Xo = Yo = 0 
and XN-l = YN-l = 27r. Consider the following PDE 

OtU = F(u), 

u(O) = Uo, 

(3.22a) 

(3.22b) 

where F(u) is the according descritization of the right hand side of either 
(3.3) or (3.20) with the corresponding initial and boundary value conditions. 
In each case the first and second order derivatives of the velocity field (or the 
adjoint variable) appear. Here, the spatial derivatives are taken by a pseudo 
spectral method as follows. For a vector field u with Ui : 1l'2 ---7 ]R2 where 1l'2 is 
the doubly periodic box, the Fourier transform of the partial derivatives and 
the Laplacian operator satisfy 

(3.23) 

and 
(3.24) 

for i,j = 1,2 and k = (kl' k2). These identities are exact. The approximation 
is in the number of Fourier modes (or number of terms in the Fourier series) 
which are used to approximate the vector field. 

Note that the non-linear term in NSE, i.e. IP(u· Vu) turns into a con­
volution product under Fourier transform which in its discrete form appears 
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Figure 3.2: Calculating the non-linear term in Navier-Stokes equation by a pseudo-spectral 
method. The symbols F and F-1 stand for forward and inverse Fourier transforms respec­
tively. 

in equation (2.4) as a finite sum. In order to get around the computational 
cost and truncation error of calculating this sum, one can use the following 
trick. Instead of calculating the nonlinear term Uj(x) ~~i (x) in Fourier space 

J 

or in physical space, we calculate the derivatives ~~~ in Fourier space using 
J 

the above-mentioned formula while the product is carried in physical space. 
In short, the velocity field must be transformed to Fourier space. Then the 
derivatives are calculated and the result is transformed back to physical space 
by an inverse Fourier transform. Finally, the product between the velocity field 
and its derivatives are calculated in physical space. This process is illustrated 

in figure 3.2. Similar algorithm is used to calculate the term [V'u* + V'U*T] u 

(which is linear with non-constant coefficients) in the adjoint system (3.20). 
Using the pseudo spectral method described above one can calculate the 

right hand side (RHS) of equation (3.22). This leaves us with a system of first 
order ordinary differential equations (ODE) in time. Consider the linearized 
form of (3.22) around state un, 

OtU = F(uo) + A(u - un) + R(u), 

u(O) = un, 

(3.25a) 

(3.25b) 

where A /', DF(uo) is the Jacobian of RHS and therefore a linear operator. 

32 



MSc Thesis- Farazmand M M McMaster-CES 

In the case of equation (3.3), the operator A is the right hand side of NSE 
linearized around state Uo and in the case of the adjoint equation (3.20), A is 
the same as the right hand side of the adjoint equation evaluated at Uo since 
the equation is linear. The remainder term R(u) is the non-linear part of the 
right hand side defined as R(u) = F(u) - F(uo) - A(u - uo). Note that the 
remainder term for linear equations (such as the adjoint equation) is zero. 

The exact solution of (3.25) satisfies the integral equation 

u(t) = Uo + (etA - I)A- I F(uo) + it e(t-T)A R(U(T)) dT. (3.26) 

In general there are no closed solutions to this integral equation, however, 
assuming R = 0, the solution is immediate. Since etA = l:n2:o(tn/n!)An, this 
solution can be written as 

(3.27) 

In order to achieve a highly accurate solution (desirable for turbulence studies), 
one needs to calculate the above series up to a relatively large number of terms. 
It is computationally expensive to calculate the powers of the matrix A directly. 
Diagonalizing A does not save much computational cost either. Therefore, an 
alternative method should be acquired in order to calculate the above power 
series. Here, we use K rylov subspaces method. This method is described briefly 
in the following. The reader is referred to [8] and [32] for more details about 
the convergence rate and stability of the scheme. 

A K-dimensional Krylov subspace is the span of vectors {VI, V2,· .. ,VK} 

which are calculated through an Arnoldi process [8] from matrix A and vector 
F(uo). The Krylov vectors satisfy 

(3.28) 

Define the N x K matrix V such that each of its columns is a Krylov vector. 
Then VTV = IK where IK is the K x K identity matrix. Define the K x K 
matrix H b. V T AV. Then 

(3.29) 

Suppose that the diagonal form of H is given by H = EAE- I where A is the 
diagonal matrix 1. One can calculate this through a QR algorithm [16]. Then 
exponents of A can be written as An = V E A n E-I V T . Since A is diagonal, no 
matrix multiplications are required for calculating its exponents. 

Substituting VEAn-IE-IvT for An-I in (3.27), we get 

(3.30) 

1 It is easy to show that the matrix H is upper Hessenberg. 
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where rv denotes an approximate solution. Computaion of etA and A-I requires 
no matrix multiplications since A is diagonal. 

Remark: Note that the most costly part of these computations is diago­
nalization of H. Since matrix H is much smaller than the original matrix A, 
it is much less expensive to diagonalize H than to diagonalize A. This is the 
main motivation for using Krylov subspaces. For instance, in the simulations 
of chapter 4, A is a 1024 x 1024 matrix while H is a 15 x 15 matrix! 

So far we have assumed that the remainder term R(u) is identically zero. In 
the case that it is non-zero (e.g. in NSE), we should somehow approximate it 
in order to achieve a closed solution. In [8], it has been shown that the linear 
solution obtained from (3.30) can be used instead of u. That is to assume 
R(U(T)) ~ R(UL(T)) where uL is calculated by (3.30). Then expand R(UL(T)) 
as the power series 

R( u L 
( T )) ~ 2:: r jTj (3.31) 

j 

where rj is a vector of length N which is evaluated in other to fit the sum to 
the values of R( uL ( T)) over some set of points in time. Substituting the above 
power series in the exact solution (3.26), we get 

u(t) = Uo + VE(etA - I)A-1E-1V T F(uo) 

+ VE~ (lot e(t-r)ATjdT) E-1V T rj, 

J 

(3.32) 

where the exponential e(t-r)A is again approximated by the Krylov subspaces 
method as described above, i.e. e(t-r)A = V Ee(t-r)A E-1 V T . 

The absolute numerical error is defined as the maximum norm of the dif­
ference between the time derivative of the above approximate solution and the 
RHS evaluated at u(t), i.e. 0 = tl18tu - F(u) 11=. The numerical solution is 
acceptable if the relative error is less than a prescribed tolerance E, i.e. 

(3.33) 

Once this condition is satisfied the numerical method has converged and one 
step of the time integration has been carried out. Next time steps are calcu­
lated similarly. 

3.2.2 Parallelization 

The numerical method used to solve NSE and the adjoint equation was de­
scribed in the previous section. In each iteration of the algorithm 3.1.1, NSE 
is solved forward in time (step 2). The solutions of NSE are used as coeffi­
cients in the adjoint equation which must be solved backward in time (step 
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Figure 3.3: ANSE stands for adjoint Navier-Stokes equation. NSE is solved forward in time 
and its solutions are used in ANSE. Note that since the code is adaptive in time the time 
steps are not uniform. 

3). These two steps are illustrated in figure 3.3. In addition, NSE is solved for 
several times (between 10 to 20 times) in order to perform the line minimiza­
tion in step 5 (Line minimization algorithm is described in §3.2.3). Since for 
turbulence simulations relatively high resolutions are required (N = 1024 in 
our case), solving the above-mentioned equations on a single processor leads 
to an impractical execution time (Note that NSE must be solved for several 
times at each iteration). Therefore, we have parallelized the time integrations 
as follows. 

A Massage Passing Interface (MPI) approach is adopted for parallelization. 
The physical domain is divided into horizontal regions in y-direction as illus­
trated in figure 3.4. For each region, a single processor is specified to carry out 
the computations related to that region. Computations are performed locally 
wherever possible. The only significant non-local computation is due to calcu­
lation of the Fourier transform since it requires the data from all regions. The 
standard MPI FFTW 2.1.5 [10] is used for computing the Fouriertransform. 

Let Tl and Tp be the CPU time required to integrate NSE using one pro­
cessor and p processors respectively. The speedup defined as 

Tl 
Sp = T: ' (3.34) 

p 

is ideally equal to p. This means that by doubling the number of proces­
sors the execution time decreases to half of its initial value. This situation 
rarely happens in practice. The speedup is usually less than p. The reason 
is mostly due to the required communications among processors. It happens 
quite often that a processor needs to read the value of a variable from another 
processor and therefore needs to "communicate" with that processor. If the 
number of processors is too large compared to the size of the problem, these 
communication time dominates the computation time and therefore cancels 
the speedup obtained from increasing the number of processors. Therefore, in 
order to choose the proper number of processors, it is essential to analyze the 
speedup of the parallel code. In the following, we present the results of several 
experiments that have been conducted to analyze the speedup of the code. 
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Figure 3.4: N x N grid points divided among p processors. Rank refers to the label of the 
processor by which it is called. 

Several parameters (e.g., viscosity, domain size, initial condition, etc.) are 
present in the equations. Most of these parameters are the same for following 
experiments in order to make a reliable comparison between the results. For 
a fixed problem size N 2 (equal to the number of grid points), the CPU time 
using various number of processors p is measured and the results are compared. 
We use the parallel code to solve both NSE and the adjoint system, however, 
the scaling analysis are conducted only on NSE. Recall that for each iteration 
of the optimization algorithm, the adjoint equation is solved only once while 
NSE is solved between 10 to 20 times. This means that more than 95% of the 
execution time belongs to solving NSE. Therefore, it is reasonable to choose 
the optimum number of processors based on their performance in solving NSE. 

The scaling analysis are conducted for four different number of grid points 
N 2 and viscosity v. These quantities are reported in table 3.1 for each case. 
In all cases NSE is integrated over the time interval t E [0,1]. The physical 
domain is the [0,27r] x [0,27r] torus. For each case the total CPU time2 is 
measured in seconds when p = 1,2,8, 16,32, 64 and 128 processors are used. 
All computations are performed on SHARCNET3 cluster named requin which 
uses Opteron processors at 2.6 GHz with 8.0 GB memory. 

The results are plotted in figure 3.5a. For each experiment the CPU time 
is normalized by Tl (=the CPU time when one processor is used). 

The other important factor in parallel programming is the efficiency of the 

2Here, total CPU time refers to the time needed to finish the computation. 
3Shared Hierarchical Academic Research Computing Network 

36 



MSc Thesis- Farazmand M M 

Table 3.1: Parameters of the scaling analysis. 
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Figure 3.5: The CPU time normalized by the CPU time when one processor is used (a) and 
the efficiency ofthe parallel algorithm (b). 

computations. Efficiency is defined as 

E = Tl 
p pTp 

(3.35) 

and determines that how well-utilized the processors are in computations. In 
other words it shows whether it is worth increasing the number of processors. 
An efficiency higher than 50% is usually acceptable. Figure 3.5b shows the 
efficiency of the parallelization in above-mentioned experiments. 

The above scaling analysis shows that the speedup is almost linear (or even 
super-linear) except for N = 256. This is better shown in figure 3.5b where the 
efficiency is almost 100% or higher. This high efficiency is not surprising con­
sidering the simple geometry of the problem which makes it quite efficient for 
parallelization with least number of processor communications. Moreover, note 
that in addition to reducing the number of floating-point operations (FLOP) 
per processor, increasing the number of processors may allow each CPU to use 
its cache memory. The cache memory is faster than the RAM memory which 
takes over when smaller number of processors are used. However, as expected, 
beyond some point increasing the number of processors does not decrease the 
CPU time. 

In all simulations of chapter 4, N = 1024 and v = 6.0 X 10-5 which coincides 
with Exp#4. In that experiment, the speedup is maximum when p = 64 
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and the corresponding efficiency is almost 100%. Therefore, we will use 64 
processors on requin in all simulations hereafter. 

3.2.3 Line Minimization 

It was mentioned that the computationally most expensive part of our opti­
mization algorithm is the line minimization. In this section, the line minimiza­
tion algorithm is described. For further details and some alternative methods, 
refer to [27]. 

The solutions of the adjoint equation determine the descend direction - V:1. 
However, it is not known how far in that direction the control variable (here 
the forcing) should be move in order to give a substantial reduction in the 
cost functional. More precisely, it is known that there is 3 > 0 such that 
:1(f +TV:1) :=::; :1(f) for any T E (-3,0). However, the "best" value of T is not 
generally known. In general, it is computationally too expensive to identify 
the optimai value of T. In some applications, it is enough to try some negative 
values for T and then choose the one that gives rise to the largest decrease 
in the cost functional. However, in some applications (such as the present 
problem) where the cost functional is highly sensitive, a more sophisticated 
method is required to evaluate an optimal value for T. This can be formulated 
as minimization of the function 9 ( T) /',. :1 (f + TV:1) respect to variable T for 
fixed f and V:1: 

min 9(T). 
TErnt-

(3.36) 

There are various methods to solve the above minimization problem. The 
method used here is the brent method. It requires an interval in which the 
minimum exists to be given. To find this interval the following bracketing 
algorithm is used. 

Algorithm 3.2.1. 
Choose a < 0, p E (0,1) and c E (0,1); 
repeat until 9(a) :=::; :1(f) + ca(f, V:1)u 
... a ~ pa; 
end (repeat) 
Set 3 = -a; 

The above algorithm is listed under mnbrack with full details in [40]. While 
the interval (-3,0) in which the minimizer of 9 exists is known one can apply 
the brent method. The brent method is a fairly complicated algorithm. In 
the following a simplified version of this method is described. The reader is 
referred to [40, 27] for a detailed implimentation and discussion. 

For the first step of the brent method set a ~ 0 and c ~ -3. Choose 
an arbitrary point b between a and c, say the midpoint b ~ (a + c)/2. Find 
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the parabola which passes the points (a, g(a)), (b, g(b)) and (c, g(c)). Assume 
that the minimum of this parabola occurs at bo. Thanks to the fact that 
the minimizer of go is between a and b, either bo E (c, b) or bo E (b, a). If 
bo E (c, b), redefine a, band c as follows 
a f- b, 
b f- bo, 
c f- c, 
otherwise 
c f- b, 
b f- bo, 
a f- a. 
This ensures that the new value of b is closer to the minimizer of go than the 
previous value of b [40]. By continuing this procedure for the updated values 
a, band c, the value of b eventually converges to the minimizer of g (. ). 

It is evident that the brent method requires several evaluations of the func­
tion g which in turn requires evaluation of the functional • .7. Recall for each 
functional evaluation, it is required to solve the N avier-Stokes equation. This 
increases the computational cost of the optimization and justifies the necessity 
of the code parallelization as described in §3.2.2 
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Chapter 4 

Results 

In this chapter, the optimal control method developed in §3.1 is applied to 
2-D turbulence in order to study the effect of forcing on the scaling laws of the 
energy spectrum. The results are presented and discussed in details. Equations 
(3.3) and (3.20) are solved with 1/ = 6.5 X 10-5 using 10242 Fourier modes. The 
aliasing effect of the nonlinear term is removed by the 2/3 rule. To reduce the 
computational time, the initial condition, uo(x), is a fully-developed turbulent 
field forced by a mono-scale forcing (see figure 4.1). The initial guess in step 1 
of the algorithm 3.1.1 is zero, i.e. f(O) - O. The constants of proportionality 
in equation (3.5) are 0 1 = 1.18 and O2 = 64.00. These values are chosen in 
order to retrieve a continuous target energy spectrum, Eo (k), with the total 
energy close to the total energy of the initial condition. The weight function 
in equation (3.6) is w(t, k) = k6 ..jtff' in order to normalize the error over 
different wave-numbers and also to put more emphasis on the contribution 
of the error near t = T, where the termination time is T = 4. Here, the 
penalization parameter 'TJ in (3.21) is equal to zero. 

Based on the types of forcing, the results are divided into two parts as 
follows: 

i. Full-band forcing (§4.1) 

11. Band-limited forcing (§4.2) 

In case (i) the forcing is allowed to be active at any wavenumber. Therefore, 
it does not necessarily respect the inertial range assumption of the KLB theory 
since it may add (or remove) energy and enstrophy into (from) the cascading 
wavenumbers. We show, however, that the inertial interactions (responsible for 
the cascades) still dominate the flow dynamics. This forcing is physically more 
realistic than the (theoretically interesting) monoscale forcing. For instance, 
[41] present a model of the atmospheric flow in which the forcing is due to 
temperature gradients and active over a portion of the enstrophy cascade. 
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In case (ii) the forcing is non-zero only at a few intermediate wavenumbers 
(i.e. k E (k~,kn) and a few small wavenumbers (Le. k E [l,kI)) (see figure 
2.5). Therefore, the scalings of the energy and enstrophy cascades are exclu­
sively due to inertial (triad) interactions. This forcing resembles the classical 
band-limited forcing used in most numerical simulations. However, we do not 
define the forcing a priori, but calculate it through the optimization. Our 
forcing may be non-zero at a few small wavenumbers in order to allow the 
large scale energy dissipation, if necessary. 

In terms of the optimal control setting, in case (i) the only restriction on 
the forcing is to be square integrable. In other words the cost functional (J) 
is minimized over the function space U = L2([0, T]; L 2 (1f)). While in case (ii), 
the control space is 

U = { f E L2([0, T]; L2(1f)) : f(t, k) = 0, Ikl E [k~, k~] U [kf, k~] } . (4.1) 

In addition to the two cases mentioned above, the enstrophy cascade in the 
absence of the energy cascade is studied in §4.3. 

4.1 Full-band Forcing 

The parameters that determine the scaling ranges are kl = 2, k~ = ki = 20 and 
k~ = 200. Figure 4.1 shows that the optimal control method gives the spectral 
slopes predicted by KLB theory. This energy spectrum remains stationary on 
the time interval ~T :::; t < T where T = 4 ~ two eddy turnover times. In 
figure 4.2, the instantaneous vorticity fields produced by a monoscale forcing 
(left) and the optimal forcing (right) are compared. It is obvious that the 
optimal forcing produces more small scale, filamentary structures. 

We now present some properties of this optimal forcing. An interesting 
quantity is the contribution of the forcing to the energy spectrum of the velocity 
field. This quantity is defined by 

F(t, k) = r lR{f(t, k) . u(t, k)} dS(k), 
J1kl=k 

(4.2) 

and indicates whether the forcing injects energy into (if positive) or removes 
energy from (if negative). Figure 4.3 shows that the optimal control injects 
energy into the system mostly at wave-number k = 20 (i.e. the wave-number 
at which the spectral slope changes from -5/3 to -3 , see figure 4.1). This 
is a non-trivial result since the control method allows the forcing to act over 
the whole wavenumber range. The energy injection by forcing decays to zero 
exponentially for k 2: 20. For 1 :::; k :::; 6 the optimal forcing removes energy 
from the system which creates a sink of energy in large scales. Since energy is 
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Figure 4.1: The energy spectrum of the initial condition (- - -) and the energy spectrum 
(resulted from the optimal full-band forcing) at t = ~T (-). The straight lines represent 
the -5/3 and -3 slopes. 

(a) (b) 

Figure 4.2: Vorticity fields resulting from the band-limited forcing (a) and the optimal 
full-band forcing (b) 
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Figure 4.3: The energy is mostly injected at k = 20 by the external forcing. Different lines 
correspond to different time slices. The inset shows the corresponding enstrophy injection. 

transferred to larger scales, a mechanism to dissipate it is necessary in order to 
reach a statistically stationary state in forced 2-D turbulence. Moreover, Tran 
and Shepherd [36] proved that the presence of a large scale sink of energy is 
necessary in order to obtain the dual cascades with -5/3 and -3 slopes when 
the forcing is monoscale or band-limited. In the present case where the forcing 
is full-band the large scale energy dissipation seems to be necessary, and is 
produced automatically by the optimal control method. 

The energy spectrum of the forcing which is defined by 

Ef(t, k) = ~ r If(t, k)12 dS(k), 
2 JC(k) 

is plotted in figure 4.4 for several time slices. It shows that the forcing is active 
on a wide range of scales which means that the energy and enstrophy cascades 
are not inertial ranges. The forcing decays to zero as time increases (also 
consistent with figure 4.3). This decay is an artifact of the control algorithm. 
Since we start with a zero initial guess (i.e. f(O) - 0) and the gradient of the 
cost functional is zero at t = T (see equation (3.20)), the forcing remains equal 
to zero at t = T for all iterations, i.e. f(n) (T, x) O. 

It is also necessary to examine the dynamical properties of the flow gener­
ated by the optimal forcing since one can generate a random phase vector field 
with -3 (or -5/3) energy spectrum (and no dynamics or cascades). Therefore, 
we need to check that the the resulting flow is dynamically active. As men­
tioned earlier, the triad interactions determine the dynamics of the energy and 
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Figure 4.4: The energy spectrum of the forcing at different time slices. As time increases 
the energy level of the forcing decreases to zero. 

enstrophy cascades associated with the nonlinear term in the N avier-Stokes 
equation. In 2-D, they transfer most of the energy to larger scales and most of 
the enstrophy to smaller scales. Since our optimal forcing is non-zero on the 
cascading ranges, it can significantly affect these transfers. In the following, 
we will show that the triad interactions still dominate the dynamics of the flow 
in the presence of the optimal control forcing. 

For each three wave vector triad k, p and q, we use the method introduced 
in [24] to calculate the the energy transfer function, Tkpq. The enstrophy 
transfer function, Skpq, is related to energy transfer function by Skpq = k2Tkpq 
where k = Ikl. The positive values of the quantity Tkpq (Skpq) correspond to 
energy (enstrophy) transfer rate into mode k due to interactions with modes 
p and q. Similarly, the negative values of these quantities correspond to the 
energy and enstrophy transfer rates out of mode k. 

We simplify the transfer functions (and make them consistent with the 
statistical KLB theory) by averaging over one of the wave-vectors and defining 

Tkp = LTkPq· 
q 

Since we consider isotropic turbulence, it is appropriate to average over angles 
in wave-number space. This further simplifies the calculations and leads to 
the following definition of the energy transfer function in terms of two wave­
numbers 

Tkp = r r Tkp dS(p) dS(k). 
J1kl=k J1pl=p 

(4.3) 
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(a) Tkp, k = 10. (b) Skp, k = 40 

Figure 4.5: The time averaged energy (Tkp) and enstrophy (Skp) transfer functions. 

The two-wave-number enstrophy transfer function, Skp, is defined similarly, 
and is related to Tkp by Skp = k2Tkp ' 

The time-averaged energy and enstrophy transfer rates are plotted in figure 
4.1 for the fixed wave-number k = 10 (for energy) and k = 40 (for enstrophy) 
and in terms of p. The data is noisy since the transfer functions are averaged 
over a relatively short time interval (0 :S t :S 4). However, some interesting 
features may be observed. In a neighbourhood of k = 40, the enstrophy 
transfer function is positive for p < k while it is negative for p > k. Similar 
behaviour is observed for wave-numbers 25 :S k :S 150 (not presented here) .. 
This shows that the enstrophy is mostly transferred to smaller scales on this 
range of wave-numbers. On the other hand, the energy transfer function is 
negative for p < k and positive for p > k which shows an energy transfer to 
larger scales. These results provide evidence that the optimal forcing respects 
the directions of the energy and enstrophy cascades. 

There is another independent way of checking the direction of energy and 
enstrophy cascades. In their proof, Gkioulekas and Tung [15] present a suffi­
cient condition for the existence of the upscale energy and downscale enstrophy 
cascades in a statistically stationary state. This condition is 

G(t, k) = 2vk2 E(t, k) - F(t, k) > 0, (4.4) 

where E(t, k) is the energy spectrum as defined in (3.4) and F(t, k) is the 
energy injected (or removed) by the forcing calculated through (4.2). Note that 
the inequality holds for band-width-limited forcings and any wave-number, 
k, outside the band-width of the forcing since F(t, k) = 0 for these modes. 
Figure 4.6 shows the quantity G(t, k) for the optimal forcing and for several 
time slices. N ate that the time dependence of the energy spectrum can be 
eliminated since a statistically steady state is considered, however, F(t, k) is 
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Figure 4.6: The fact that G(t, k) is positive for all k demonstrates the existence of inverse 
energy and direct enstrophy cascades. Each curve corresponds to a time slice between ~T 
and T. The arrow shows the time increase. 

still time dependent. This figure shows that the inequality (4.4) is satisfied and 
therefore, on average, energy is transferred to larger scales while enstrophy is 
transferred to smaller scales. 

In summary, our results demonstrate the existence of a forcing which is 
consistent with the predictions of KLB theory (i.e. coexisting cascades of 
energy and enstrophy with -5/3 and -3 spectral slopes). The upscale energy 
and downscale enstrophy cascades are active under this forcing. However, these 
cascades are not inertial ranges since the forcing is active on a wide range of 
scales including the cascade ranges. The forcing injects energy (and enstrophy) 
mostly around the wave-number at which the slope of the energy spectrum 
changes from -5/3 to -3. Moreover, it automatically removes energy from 
large scales and produces a statistically steady state. 

4.2 Band-limited Forcing 

We now confine the forcing to the space of band-limited functions defined in 
(4.1). Since kl = 3, k2 = 18, ki = 25 and kz = 200, the forcing is non-zero only 
for the wavenumbers k E [1,2] U [19,24]. Note that conventionally, energy is 
removed from large scales by Ekman drag or by inverse viscosity. Here, we do 
not use any energy dissipative mechanisms at large scales. Instead, we simply 
allow the forcing to be non-zero at largest scales. The forcing may remove the 
energy from those scales if necessary (As the following results demonstrate, 
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Figure 4.7: The controlled energy spectrum (with band-limited forcing) at t = ~T (-) 
and the energy spectrum resulting from the conventional band-limited forcing and inverse 
viscosity (- - -). 

this is in fact the case). The advantage of this method is that the energy 
injection and large scale energy dissipation are now determined by the control 
procedure alone: they are not fixed a priori. 

Figure 4.7 shows the energy spectrum resulting from the band-limited op­
timal forcing at t = 3.5 (Note that in this case T = 4 ~ four eddy turnover 
times). The energy spectrum follows the KLB scaling law E rv k-5/ 3 for a 
decade of wave-numbers and E rv k-3 for a quarter of a decade. As expected, 
the enstrophy range is extended over a shorter range of wave-numbers com­
pared to the previous case where broad band forcing was used. The energy 
spectrum resulting from a conventional band-limited forcing and inverse vis­
cosity is given for comparison (dashed line in figure 4.7). 

The vorticity field at t = T is presented in figure 4.8a. Figure 4.8b shows 
the instantaneous non-zero component of \7 x f in physical space. It appears 
that the forcing is homogeneous and isotropic. However, more careful investi­
gation shows that the forcing is particularly aligned in the favour of enstrophy 
injection into the system. To see this, note that the total energy and enstrophy 
injections are given by JlI' f . u dx and JlI' f . (-.6.u) dx respectively. Therefore, 
a forcing aligned with velocity injects energy lllore efficiently while a forc­
ing aligned with -.6.u injects enstrophy more efficiently. Figure 4.9 shows 
the probability distribution function of these alignments over time and space 
where Be and Bz are respectively the distributions of the angles L(f, u) and 
L(f, -.6.u). These figures reveal that the forcing is aligned such that the en-
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Figure 4.8: The vorticity field resulted from the optimal band-limited forcing (left) and the 
curl of the optimal forcing (right) at t = iT. 

strophy injection is relatively more efficient than the energy injection. Note 
that in the case of a random phase forcing (which is conventional in numerical 
simulations of 2-D turbulence) there are no preferential alignments of the forc­
ing with the velocity field. Figure 4.10 shows that the time correlation of the 
optimal forcing defined as (f(x, t) . f(x, t + r)) where ( ) denotes the average 
in time and space. The curves are normalized by the correlation at r = O. It 
shows that the time correlation of the optimal forcing is relatively small which 
resembles the short correlation of the conventional forcing. 

The energy contribution to the system from the external forcing (i.e. F( t, k)) 
is shown in figure 4.11. Energy is injected in the wave-numbers k E [19,24]' 
while it is removed from largest available scales, i.e. k E [1,2]. This agrees 
with the fact that a sink of energy at large scales is a necessary condition for 
achieving the KLB limit in a finite domain. 

Since the forcing is band-limited, the inequality (4.4) is automatically sat­
isfied on the range k E [3, 18] U [25, +(0). Therefore, the upscale energy and 
downscale enstrophy fluxes are dominant. 

4.3 Enstrophy Cascade with Large-Scale Forcing 

In the previous section, we have observed the dual cascade following the KLB 
scaling. However, the k-3 range extended only on a quarter of a decade of 
wavenumbers. The question is whether this is only due to lack of resolution 
and entering a region where the energy dissipation due to viscosity becomes 
significant. One way to answer this question is to increase the resolution which 
is equivalent to decreasing the viscosity. This is however not the best approach 
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Figure 4.9: The probability distribution function of Be (the angle between f and u) and Bz 
(the angle between f and -~u) 

since increasing the resolution increases the computational time significantly. 
An alternative method is to shift the forcing band to a few smallest wavenum­
bers. As a result, inverse energy cascade will not exist any more since there 
are not larger scales than the forcing scale. But then there would be enough 
modes to resolve an enstrophy cascade up to a decade of wavenumbers. This 
large scale forcing of 2-D turbulence has been studied extensively [see, e.g., 
6, 5, 22]. In all these studies the forcing is either random phase or a simple 
function of the velocity field. These studies confirm that in the limit of infi­
nite Re-number, the energy spectrum scales as k-3 . However, for moderate 
Re-number flow the spectrum is steeper. To give an estimate, in a 10242 res­
olution the spectrum scales as k-4 in []. We show in the following that with 
a particular choice of forcing the energy spectrum scales as k-3 with a resolu­
tion of 10242 . We emphasize, however, that this result can not be immediate 
carried over to the case of dual cascade since presence of the inverse energy 
cascade can steepen the enstrophy cascade. 

In the following, the enstrophy cascade is controlled over the range k E 

[5,100], the forcing is active over a few first wavenumbers k E [1,4] and the time 
interval is t E [0,4]. Figure 4.12 shows the resulting energy spectrum in the 
last iteration. It shows clearly that the energy spectrum now scales as k-3 over 
more than a decade of wavenumbers. We emphasis that the energy spectrum 
scales (almost) as k-4 when a random-phase white-noise-in-time forcing is 
used. 

Figure 4.13 compares the instantaneous vorticity fields resulting from the 
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Figure 4.10: Normalized time-correlation functions. 

conventional forcing (left) and the optimal forcing (right). The vorticity re­
sulting from the optimal forcing contains relatively finer filamentary structures 
which are extended over a longer distance in the domain of the flow which is 
to be expected given its shallower energy spectrum. 
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Figure 4.11: Contribution of the forcing to the energy spectrum at t = ~~T. 
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Figure 4.12: Controlled energy spectrum over the enstrophy range. 
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Figure 4.13: Comparison of the instantaneous vorticity fields with (a) conventional forcing 
and (b) optimal forcing 
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Chapter 5 

Summary and Conclusion 

In this chapter, we summarize the main results and add some concluding 
remarks. 

5.1 Optimal Control Method 

We have developed an optimal control method in order to control the spectrum 
of the incompressible fluid flow. The method is based on the optimal control 
techniques. The cost functional is defined as an appropriate difference between 
the target and calculated energy spectra. This cost functional is minimized 
by a gradient based method. The gradient of the cost functional is obtained 
based on the solutions of the appropriate adjoint equation. 

The particular interest in here is to discovering whether it is possible to 
produce the simultaneous dual cascades of energy and enstrophy and the cor­
responding scaling laws (i.e. E rv k-5/ 3 on the energy cascade and E rv k-3 

on the enstrophy cascade) predicted by the classical KLB theory in a non­
asymptotic sense. However, we emphasize that the method of controlling the 
energy spectrum of the flow introduced here can be used for other problems in 
fundamental turbulence research. For example, by making a particular choice 
of the weight function w(t, k) in equation (3.6) one can control the rate at 
which an initially localized energy spectrum spreads over all scales. This can 
provide a different perspective to some problems such as transition to turbu­
lence and drag (or lift) control in a flow over a rigid body which have already 
been studied through other approaches. Moreover, Gioia and Chakraborty 
[14] showed that the wall friction in a turbulent flow depends significantly on 
the energy spectrum of the flow. Therefore by controlling the energy spec­
trum one can also control the turbulent friction in pipe flow. The method 
could also be used in some benchmark studies in geophysical fluid dynamics. 
For instance, in a separate attempt (not published) we have produced the 
Gage-Nastrom spectrum [13] of mesoscale atmospheric flow in a forced two-
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dimensional Navier-Stokes flow. Furthermore, our method could be modified 
easily to control the energy spectrum of geophysical fluid dynamics models 
such as the quasi-geostrophic and surface quasi-geostrophic equations. 

5.2 Computations 

Obtaining the gradient of the cost functional, requires solving an adjoint 
equation. In addition, the line-minimization (see §3.2.3) requires solving the 
Navier-Stokes equations several times. We have used a pseudo-spectral method 
with Krylove subspaces time integration to solve these equations. 

In order to perform the optimization in a reasonable time, we have par­
allelized the NSE and adjoint equation solvers as described in §3.2.2. All 
computations are performed on the cluster requin of the SHARCNET facil­
ities. The scaling analysis, shows almost linear speedup in most cases with 
efficiency close to 100%. This high efficiency is achieved thanks to the simple 
geometry of the problem together with the optimal structure of the code which 
minimizes the processor communications. 

In our simulations 10242 number of grid points are used. The scaling anal­
ysis show that in this case, minimum computational time is achieved with an 
efficiency of almost 100% when 64 processors are used. Therefore, we have 
performed all computations on requin clusters with 64 processors. 

5.3 Main Results 

Our results demonstrate that when a full-band forcing is used (i.e. a forcing 
active over all scales), the KLB spectral slopes can be observed in a flow with 
a moderate Reynolds number. Such forcings clearly violate the inertial range 
assumption because some energy is directly injected by the external forcing 
into the wave-numbers of the scaling ranges. However, the inverse energy and 
forward enstrophy cascades still exist and their dynamics are dominated by 
the inertial interactions (i.e. triad interactions). This is similar to the linear 
forcing suggested by Lundgren [23] for numerical simulations of 3-D turbulence. 
Linear forcing is also full-band and therefore interferes with the inertial range 
dynamics. However, as we have found here for 2-D turbulence, Rosales and 
Meneveau [30] showed that the resulting statistical properties (e.g. stationarity 
and power-law scaling) of the flow under linear forcing are similar to the case 
where the conventional band-limited forcing active over largest scales is used. 

Full-band forcings such as those considered here are of interest because they 
can be physically more realistic than band-limited forcings. Moreover, they 
are much easier to implement in numerical simulations which do not benefit 
from the scale selective property of spectral methods. 
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We also found that the optimal forcing automatically creates a sink of 
energy at largest scales. It has already been proved [7, 36, 34] in the case of 
monoscale forcing that such an infrared sink is a necessary condition in order 
to obtain the dual cascades and KLB scaling laws. We have observed a similar 
sink even when the forcing is full-band. Our result suggest the possibility to 
generalize the existing proofs to more general types of forcing. 

In the case of band-limited forcing, the optimal control method still finds 
a forcing which results in the KLB scaling laws. However, the -3 range of 
the spectrum extends over only a quarter of a decade of wavenumbers. It is 
possible, however, to extend this scaling range by increasing the resolution 
(results not presented here). 

Comparison of the energy spectra resulting from our optimal forcing and 
from the conventional random-phase band-limited forcing (figure 4.7) suggests 
that the details of the space-time structure of the forcing can crucially alter 
the statistical properties of the flow. For example figure 4.9 shows that the 
optimal forcing is particularly aligned in the favour of enstrophy injection. 
Replacing the phase-structure of the optimal forcing with a random variable 
(and preserving other properties of it) leads to a much steeper spectrum of the 
enstrophy cascade (i.e. E rv k-4 ). This shows that the conventional forcing 
(which is usually random in' phase) has determining effects on the scaling 
properties of the enstrophy cascade. 

On the other hand, small perturbations in the band-limited optimal forcing 
leads to a much steeper fall-off of the energy spectrum (close to k-4 ). More­
over, we have not succeeded in constructing a simple model of the forcing 
based on the observed space-time properties of our optimal forcing. These 
observations imply that solutions of optimization problem (3.7) are quite sen­
sitive to perturbations which is to be expected given the ill-posed character 
of the problem. This suggests that the optimal forcing belongings to a sparse 
set in the space of square-integrable band-limited functions. Therefore, it is 
quite unlikely to be physically realizable. This implies that reproducing the 
co-existing dual cascades which follow the KLB scaling laws is unlikely when 
a band-limited forcing is used with a moderate Reynolds number. 

We would like to finish by suggesting some future research directions for 
this project. 

1. Here, it was shown that a particular type of forcing can change the energy 
spectrum to an extent that the KLB prediction can be observed. However, 
the question to be investigated is: what is special about this forcing? 
We believe that a careful study of the alignments of the forcing with 
principle directions of the strain tensor (i.e. stretching and compression 
of the vorticity gradient) will answer this question and lead to a better 
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understanding of the dual cascade in two-dimensional turbulence. 

2. Given the properties of the turbulent flow, one should ideally be able to 
fabricate a forcing which leads to the KLB energy spectrum without using 
the optimal control machinery. This will save a significant computational 
effort. A more detailed study of the optimal forcing is required in order 
to achieve this goal. 

3. Finally, the optimal control method introduced here can be applied to 
study some fundamentals of turbulence such as study of drag/lift in a flow 
past a rigid body (as an alternative approach to the existing methods), 
turbulent friction control in a pipe flow and energy transfer in geophysical 
fluid flow. 
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