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ABSTRACT

A detailed review of an eikonal approximation for
high energy electrons in the Coulomb potential of a
spherical nucleus is given. The matrix element for elas-
tic scattering making use of this approximgte distorted
wave is then discussed. The matrix element is written
in the form of a simple differential operator acting on

the first Born amplitude. A possible method of evalua-

tion fdf\arbitrary nuclear charge densities is discussed

and applied to the calculation of scattering cross sections

for Ca, Ni, Sn, and Pb with realistic Fermi shapes.
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1. Introduction

The simplicity and physical appeal of the first Born

approximation in scatterfng problems have made it a very use-
)

ful and popular method. Unfortunately, its 1imitatiqﬁs in

the case of electron scattering from heavy nuclei are well

known. For example, in order to calculate accurate elastic

cross sections for spherical nuclei, it is necessary to

perform an "exact" phase shift analysis, For high electron

energies (i.e. much greater than the electron rest energy)

one of the earliest and best known analyses of this type

was made by Yennie, Ravenhall, and Wilson (1954).

However, in attempting to treat more complicated
problems, such as inelastic processes,scattering from de-
formed potentials, or magnetic interactions, the "exact"
meth;ds become extremely cumbersome. Here the simplicity of
the Born approximation is of great importance. Therefore,
it is interesting to attempt an improvement of the first
Born approximation in such a manner that its accuracy is
increased without destroying its basic simpiicity.

One of the most successful attempts of this sort
was made by Yennie, Boos, and Ravenhall (1965), who treated
high energy elastic and inelastic scattering using an

analytic distorted wave approximation. Their method gives

[PV



results‘which display excellent agreement with phase shift
calculations. Specific application to Fermi charge densities
was made by Petkov, Luk'yanov, and Pol' (1967) and utilized
for scattering analysis by Shevchenko et.al. (1967). More
general charge distributions were treated by Luk'yanov,
Petkov, and Pol' (1969). '

In this work, the analytic distorted wave approxi-
mation of Yennie is applied to the calculation of elastic
electron scattering cross sections for spherical nuclear charge
distributions of arbitrary shape. The method employed was in-
spired by the work of Knoll (1974). The main feature of
the present approach is the transformation of the distorted
wave matrix element into a simple differential operator acting
on the first Born amplitude, and evaluated with an effective
wave numbér k which is slightly larger than the free wave
number ko. This simple redefinition of the effective wave
number already effects a tremendous improvement in the first
Born approximation, a fact which had been recoénized empirical-
ly long before its theoretical justification.

A detailed description of the eikonal-type distorted
waves introduced by Yennie is given in sections 2 to 6. Then,
the differential operator which yields the distorted wave scat- )
tering amplitude from thé Born amplitude is discussed in ‘
sections 7 and 8. Finally, the accuracy of the approximation
is compared with "exact” phase shift calculations in section

9. .
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2. High Energy Dirac Egquation

The motion of an electron in the static Coulomb po-

tential V(r) is given by the Dirac equation,

(aepc + Bmc2 + V}y = E ¢ (2.1)

~ ~

where Yy (r) is a four-component wave function, and the matrices

o and B are chosen to be

o 6} 01
o = B = (2.2)
- 0 —g_] 10

This particular representation is very convenient in
the case of electron energies much larger than the rest ener-
gy mcz. If the mass term in (2.1) is negligibly small, then
the Dirac equation simplifies to the following pair of un-

coupled two-component equations;

(orpc + v - B)xH) = 0 (2.3a)

(-g-pc + V - E)x(z) = 0. (2.3b)

Furthermore, if the potential V(r) is spherically
symmetric, then solutions of (2.3b) can be obtained from so-
lutions of (2.3a) by a gimple coordinate inversion. This
implies that both equationswill yield identical scattering
solutions for any given initial momentum. Therefore, all

further discussion is restricted to the following two-component



Dirac equation for high eneryy electrons;
(o-pc + V - E)¢ = 0. (2.4)

Free plane wave solutions of (2.4) have the form

1k -1
d = ve -0 - (2.5)

where the free spinor v(k) 1S given by
ﬂ~(ﬁkoc)v = Ev. (2.6)

Using E pc = ﬂkoc for high energy electrons, (2.6) can be

rewritten as
grkv = v. (2.7)

Given the spherical angles (t,¢) of the unit vector Q,

{(2.7) has the normalized solution

cos /2 1
: . (2.8)
sin 0/2 el?J
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3. The Pikonal Approximation

In order to account for distortions of the plane,
wave solution due to the potential V(r), we assume an approxi-

mate solution of the form

¢ = u(r)eis(?)

(3.1)

where the spinor function u(r) plays the role of a slowly
varying amplitude function.

Substitution of (3.1) 1nto (2.4) yields the following

expression for u(r)

(g+VS + V - E)Ju = 10-Vu (3.2)

~ ~ ~

(where natural units are employed such that 4c = 1).
Under the assumption that u(r) 1s a slowly varying
function, an approximation for (3.2) can be made by setting

Vu = 0. This gives a simple homogeneous equation for u(r);

~ ~

(0+VS + V - E)u = 0. (3.3)

Multiplication of (3.3) by (0+VS-V + E) then yields
the following condition for the existence of a non-trivial

u(r);

~

(YS)Z = (8- V)" . (3.4)

Having found a phase function S(r) satisfying this

condition, 1t 1s obvious that the solution of(3.3) can be
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written in the form

u f(r)(c*VS + E - V)v (3.5)
where f(r) and the spinor v are arbitrary.
For convenience, the arbitrary spinor v is chosen
to be the free spinor for the incident difection k, as dis-
&

cussed in the previous section. Furthermore, f(r) is given

the form

£(x) = N(x) [2(B-V) 17T . (3.6)

Therefore, defining the unit vector ﬁ in the direction

.
of VS, the spinor function u(r) becomes

L3

-

u = g (g°n + 1)v (3.7)
where
) Vs . (3.8)
n=TEw

Notice that the form of f(r) has been chosen in such a manner
that the normalization function N(r) simply equals unity in

the limiting case of a free particle.

The remaining arbitrariness of N(r) is removed by
-~ -

the current conservation condition,
ve (ufou) = o. (3.9)

Substituting (3.7) into (3.9) it can be shown that

the normalization function N(r) satisfies the following



equation,

(Tf-ﬁ +1)] =0 . (3.10)



e 3TTRE

+ -

4. An Approximation for S(r)

The phase function S(r) satisfles the equation

(vs)2 = (E - v)? . (4.1)

The parameter characterizing the strength of the
potential energy V(r) in this equation is y = Za, where a is
the fine-structure constant ez/ﬁc. We write S(r) as a power

series in y of the form

~

S = §(0) + 50-5 + Sl(r) + 52(5) + ... (4.2)

where Si(r) is proportional to Yl and vanishes at the origin.
Substituting (4.2) into (4.1) gives the following ex-

pressions for the lowest order terms;

keVs), = -V
2 2
2k VS, = V- (Vs,) (4.3)
kg V84 = ~V5;-VS,
etc .

In this work only the first order correction will
be considered, and terms of second or higher order in y are
neglected. We proceed, then, with the calculation of 81(5)'
In order to simplify subsequent manipulations, the z-axis

is oriented along ﬁ, and the perpendicular distance to the

8



z~axis 1s denoted p.

sl(z,p) 1s determined by the eguation

IS,
55 = "V , (4.4)
, . {
which is obviously satisfied by \
z
s, = / A2ep?
15T V(Y X"+p“)dx + A(p) (4.5)
%0

where the lower limit z, and "“the arbitrary function A(p) must
be chosen to satisfy appropriate boundary conditions. For
an incoming electron, S(r) must approach a free particle so-

lution at z = -», Therefore, recalling that Si(r) vanishes

at the origin,

Sl(0,0) = 0 (4.6)
and
Sl(-w,p) = Constant.

The boundary conditions (4.6) are satisfied by

Z

90}
n
4

0
v/ 2\ aplyan + I V(A)dA (4.7)
)

=00 -0

which can be rewritten as

[
(1) (2)
S, = S) + 8, (4.8)
y: J—
s{l) - ’ V(Y A2+p2)dA (4.9)

0
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s{z) = l vy - v/ 2%4p2) 1dn. (4.10)

0

In order to evaluate the integrals (4.9) and (4.10)

we adopt the procedure of expanding S(r) in powers of r.

This, of course, restricts the validity of the resulting wave
function to the region near the origin. It will be shown,

however, that this is not a serious shortcoming.

For a typical nuclear charge distribution roughly uni-

form at the centre, the potential energy can be expanded in

the form

V(r) = v(0) + % ak3r? 4

5 . (4.11)

where the constant k is intquEfed for dimensional convenience

and will be defined shortly. For example, in the case of a

uniform charge distribution of radius R,

V(0) = - 3% , a = —;l—§ . (4.12)
(kR)
Using the form (4.11) for V(r), S{l) is easily inte-
grated;
s{l’ = =V(0)z - 7 a(k’p’z + % K323y . (4.13)

Expanding the integrand of 5{2) in powers of p2 gives

FCARUCRSRE WL e

1.
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b (kp) 2
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1 av
l -A‘——)-\-d)\
0
- 1l 82V 1 3V
(= —= - = £5)dx (4.14)
A2 ot \3
0
4
+ c(kp) + ... . (4.15)

Equation (4.15) defines the parameters b and c.

The potential energy V(A) is related to the normalized

nuclear charge“distribution p(A) by the expression

VAQY)

Using (4.16) in

For the

o
I
N

}\ <o
= -4ny[% [ xzpdx + [ xpdx] . (4.16)
0 A
{4.14), it can be shown that
b= J p(A)dx (4.17)
k
0
= - 1Ty 1 3p
c = 5 4 J Y 3 dx . (4.18)
k
0
uniform charge distribution, for example,
ﬁ*l_i , c = é% __I~Z . (4.19)
(kR) (kR)

Therefore, to first order in y and fourth order in r,
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z - V(0)z - % a(k3p22 + 1 k323)

S = 8(0) + k 3

0

- b(kp)2 + c(kp)4 . (4.20)

Up to this point,the constant k has been arbitrary. Now

define the effective wave number k

It

ko - V(0), and use

kz = k-r' , k°p? = (kxr)? (4.21)

to obtain the following expression for S(r);

2

§ = 5(0) + ker - % a(E-E)[3k2r - 2(x-0) %)

- b(kxr)? + c(kxr)? . (4.22)

The solution (4.22) corresponds to the boundary con-

ditions (4.6) for an incoming electron. It is therefore deno-

(+)

ted S . However, it is also desirable to obtain the solution

S(—) for an outgoing electron which approaches the free particle

(=)

solution at z = +», It is easily seen that S ?s'obtained

(+) .-

from S simply by reversing the signs of b and #. \\\,/
\ A
\

\ AN
~

)
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5. galou{gtlon of ul(r)

. . + .
Hav1ngobta1neds( )(r) to first order in y, we proceed

. +
to calculate the spinor function u( )(r) to the same order
(i.e. first order 1in a,b,c).

From the definition (3.8),

e Y
i
¢R D
+

Lla(k-r) + 2b = de(kax)?)

* Lok - KorT (5.1)

Notice that ken = 1 to first order in y, and therefore the

current conservation condition (3.10) becomes !

Ve(nNT) = 0 (5.2)
or equivalently,
n- (WN%) = -n%(V-n). (5.3)
From (5.1) we obtain
ven = -[2ak(k-r) + 4bk - 16ck(5xg)2] . (5.4)

Now a solution for (5.3) is attempted of the form

B e S S

N% = Noz(l +6N%) (5.5)

where NO2 is the value of N2 at the origin, and 6N2 is a

first order function which vanishes at the origin.

. T
A N R

Substituting (5.5) into (5.3) and retaining only first

order terms gives

R N

13
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g 2
}":"\if(‘N - =\*n (E) ())
which is simply
A6N? 2 3 2
Tl 2ak”z + 4bk - léck™p ., (5.7)
(5.7) 1s easily integrated;
sN% = ak?22 + 4bkz - l6ck3p22 + A(p) (5.8) 3

where A(p) is an arbitrary function which vanishes at p = 0.

The constant NO2 and the function A(p) are determined

by the value of N2 in the transverse plane through the origin:
i.e.
2 2
N™ (z=0) = NO (I + a(p)). (5.9)

These quantities can be calculated using classical con-

servation of energy and angular momentum. It is shown in
Appendix A, that

2 2
N = (k/k)
0 0 (5.10)
Alp) = -2ak’p® .

Therefore, reverting back to vector notat:ion,

N= (5911 + £ aker)? - atkxr)? + 2b(k-r)
K, 5 alk-r kxr k-r

- 8c(k-x) (kxr)?) . (5.11)
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Using (5.1), the spinor (c'n + 1)v is simply

(O°§+l)v = [2+a(§~r)2+2b(k-r)—4c(k-r)(er)2]v

-k [a(k+x) +2b=dc (kxr) “lo-rv . (5.12)

Finally, combining (5.11), (5.12) and (3.7), the spinor

function u(g) is given by,

eI

(ﬁi){[l - a(er)2 + a(k°r)2 + 3b(k-r) (5.13)
0 ~ = ~ ~ ~ =

i

- 10c(k-x) (kxr) ]

k[% a(k'r) + b - ZC(EXr)Z]o-r}v .
Of course, u(_) is obtained from u(+) by reversing

the signs of b and c.

e e w T e avm e o b T



6. The Matrix Element for¥lastic Scattering

In this section we employ ghe symbols x, ¢, and ¢ to
represent plane waves, eikonal functions, and exact scat-
tering solutions respectively. Furthermore, the subscript 1
shall denote an incident state and the subscript 2, a final
state.

The exact T-matrix element for elastic scattering from

the potential V(r) is given by
<2|r|1> = <x2|Vle(+)>- (6.1)

In previous sections an eikonal approximation to the
solution of the Dirac equation has been developed of the
form ¢(£) = u({)exp iS(f). It is obvious that this eikonal
form does not contain the outgoing spherical waves of the exact
solution. In other words, ¢ does not include any large angle
scattering components. However, although ¢ is a very poor
representation of ¢y in the asymptotic region, it is a reasonab-
ly accurate approximation near the origin. Indeed, we have
resigned ourselves to this fact when ¢ was expanded in powers
of r.

~

Unfortunately, the matrix element (6.1) contains a long

range Coulomb potential which would therefore render the sub-

(+)

stitution of ¢(+) for ¢ a poor approximation. However, a
short range potential may be constructed by subtracting from
V(r) some auxiliary potential V(r), which is created by an

16
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auxiliary charge distribution p(r) with the same normalization

and roughly the same size as p(r). Therefore, we rewrite the T-

matrix element using the well known two-potential formula,

) N

<2|T|l> = <X2|v|¢( > + <lb( )|v vlw( (6.2)

If V(r) is chosen to give negligible scattering compared
to V(r) in -the angular region of interest, then the first term
in (6.2) may be ignored. Moreover, V may also be ignored in

the second term. Therefore, (6.2) is approximated by
+
<2fr|1> = <ol vl (6.3)

where the short range of (V-V) has justified the substitution
of ¢ for Y, and the eikonal parameters of V and V are assumed
to be roughly equal.

Provided that some V(r) exists with all of the stated
characteristics, the approximation (6.3) is expected to be
fairly reasonable. ,Crudely speaking, we require the existence
of some p(r) which is the same size as p(r) and generates
the same eikonal parameters, and yet is much "smoother" than
p(r) in that its higher Fouriér components are negligibly small.

Clearly, the above reéuirements far the validity of (6.3)
cannot be met for a charge distribution with rapidly décreasing

high Fourier components. Therefore, we might expect our calcu-

lations to break down for "smooth" charge distributions.

e ISR
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7. Calculation of the Matrix Element

In terms of the spinor and phase functions derived in

previous sections, the matrix element (6.3) becomes

V(r)d3£ ) (7.1)

(+)_g ()
{ WO T HI8 S
2 M

S e e Wt T *

Using (4.22) and (5.13) and retaining first order terms

“#

in vy, the matrix element (7.1) is simply

k 2 iger 3
() m(r)e vina’c (7.2)
0 ~
where q = El 52 and,
m(r)- v, V {1+ 3b[(§l-r) - (§2°£)] (7.3)
. 2 2 E
+ (22 + ib) [(k +0)° + (ky-1)”) :
+ (10c + i %)[(51-5)3 - (52-5)33 \

+ ic[(gl.5)4 + (§2-5)4]

2 (a+ib)k2r? + 2ickir?

(10c + i )1k, 0) - (k,-0)1K°r? »

2icliky 02 + (k,ex) 21k2e? | “

1 1 h -
- xvyler vz altyrn + Bpen)

+ 2cl(ky o) % = (kyox) %))

18
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However, it is well known from Fourier transform theory

that

m(x)e* 3Ly (r)dr = m(-iN)V(q) (7.4)
where G(q) is the Fourier transform of V(r) and the gradient
operator acts with respebt to the variable q. :

‘ For a spherically symmetric potential, the Fourier trans-
form V(g) is also spherically symmetric, and the matrix ele-

ment for scattering simply becomes

2

(%i) m(-i9) V (q). . (7.5)
; v

Therefore, the problem is transformed into an evalua-
tion of the differential operator m(-i¥). This is a relative-
ly straightforward but laborious procedure, and the details

are omitted here. The final result, however, is vexry simple:

2 .
<2|Tf1> = (&) cos 2 0(D)V(g) : (7.6)

o

where the real and imaginary parts.of the operator 0(D) are
given by (D denotes differentiation),

2

Rel0(D) = 1 + (a %; + % aq)D
+ (2ak? - 3 aq?)p? (7.7)

1l 2 1 3.3

+ (5 ak'q 5 aq )b

CANES > o briarae Tat Undantn s AR T o liro e >

1 Bt BT T e M bSO L



20

2 4

. k 5 k "k 4
Im0 (4) (2b-a— -ibq-l- 2c—3-' 30_ g +-—8—cq)D
4
+ (20k? - 2 bg® + 3ek? - 2¢ K5 - %? éq?)p?
x4 7 3 39
-+ (4c — - 8Ck2q + +- ©q”)D; T
, q 4
+ (2ck4(- ckzq2 + %:cg4)D4 . ‘ (7.8)

1n.(7.é3 the angle 6 is the scattering angle (i.e.
the angle between k.- and 55), and .the effective momentum

transfer q is given by the familiar expression,

.‘ . (7.9) -

Njoo

g = 2ksin
.‘)] ’ *

It is de51raQ;g, of course, to work directly wmth the

charge dlstrlbutlon p rather than the potent1a1 energy. Therxe-.

fore, we recall the following well known relation between the

Fourler transforms of p and V;

-~

V@ = - 4ny 2L . (7.10)
/q .

The scattering cross section is given by

wfdc —

a|2
dw *

2 )
|<2|T|1> (7.11)

)

Therefore, combining (7.6), (7 10) and (7.11) we obtaln

the following expressxon for the electron scattering cross

section; -
897 - 2k y) 2 (1194 00;2‘9 0 (D) Eiﬂi-z ' (7.12)
do o Y%, 2 <

P P T sl

[ oob o e kMR Syt



%
8. Computational Procedure

The implementatiqn of the method described in the pre-
. ceding section for an arbitrary éharge distribution would
seem to be a hopeless prospect, since the operator 0(D) in-
volves up to fourth order derivatives. This poses a serious
' problem, due to the éifficulﬁy of numerical differentiation.
It i; possible; however, to circumvent this‘difficul—
ty by expanding the charge distribution in 'some suitable set
of bésis functions which can be handled by algebraic means.

For example, the charge density p(r) may be approximated by

a finite Fourier Bessel series over the interval 0 < r'f RO'

i.e.’
L
rp(x) = I agsin(%¥£) (8.1)
2=1 0 ‘
where the Fourier coefficients a, are given by the familiar
formula
2 RO LTx
al =5 | rp(r)sin(ir—)dr . - (8.2)
il 0 , 0
0

Using (8.1}, we egsily'obtain'

2

p{q) =i§- [ rp(r)sin(qr)dxr
q qa

. 2' y " )
ta, (-) F, (q) (8.3)

where

21
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sin(qRo)
Fol@ = 553777 (8.4)
q g - (ig) ]

Successive derivatives of (8.3) are obtained by dif-

ferentiating Fl(q) analytically. The results of this exercise

are given in Appendix B.

In order to apply (7.12), however, it is also necessary

to determine the parameters k = k0,~ v(0), a, b, and c. PFirst
- of all, the total charge must be normalized using
a
o(total) = 4R? 3 (-1t %
0 4 L
= 1 (8.5)

Then the potential energy V(r) is calculated for small

r using

X ©
V(r) = "4“Y[% J' xzpdx + J xpdx] . . (8.6)
0

r

L4

Comparing the results with equation' (4.11l), we extract
the parameters V(0) and a,

L

My o= - X _ 2 :
v (0) R 4R, i - | (8.7)
) .
_ 4w
a =3 P—LR Lta, . , (8.8)
0 2 ;

The values of b and ¢ are determined‘using (4.17) and .

(4.18) ;

A b Ao

e ™S

&
3
4
%
A
B
“i
b
=
»
é
4
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b = E% I a, $i(am) " (8.9)
k* 2
c = = TY (7,2, ,2 [")2 + 8i (2w ] (8.10)
16 . 4 Ry a2 AT .

-

X .
_where Si (x) J sin u 4.

u
0

Unfortunately, equatjions (8.7)*(8.10) may yield unrea-
sonable results if the finite Fourier series is a poor re- |
presentation of p(r). This is especially true in the case
"of the parameter c, ;hich depends very sensitively on the
shape of the charge distribution. For example, charég densi-
ties with "sharp" features are very poorly approximated by

finite Fourieg'expansions, and experience has indicated that

the eikonal parameters calculated using (8.7)-(8.10) are

unreliable in such extreme cases. .
'Howeve;, for typical nuclear shapes, it is sufficiently
accurate to replace p(r) with an equivalent uniform sphere
for tpe purpose of calculating ﬁﬁé distorted wave. The equiva-
lent uniform radius is givgn by
( ,

R = <xr”> .

3
where the mean square radius is simply
S , 24R04 . :
<r”> = R~ + L (=) . (8.12)
0 2 3 -
m 2 )

The eikonal parameters are then given by the simple

formulae (4.12) and (4.19).
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" The above procedure is;adequate for charge distribu-
tions ‘0of roughly uniform shape. However, a slightly more
sophisticated approach involves the calculation of V(0),
'a, b, and ¢ using a Fermi distribution of the form

o
Pr = T+ expliz-a)/e] (8.13)

If the ratio t/d is small, then 4 is the radius at which
Pp falls to half of its maximum value Py’ and the "skin
thickness" T = 4.4t is the distance over whicH'SF decreases
from 90% to 10% of its maximum value.

For € = % << 1,

d .~
pg = ——5 (L + 12}t (8,14)
4xd
3y w2 2.2 -1
v{(0) = - 33 (1 + 3 € Y(L + w7e™) . (8.15)
a=—Yo q+ahHt (8.16)
(kd) '
b = % ——1—5 (1 + n2e)~t (8.17)
(kd) ‘ ’
c = é%‘;-l—z (1 + 3.2899 €2 + 45.458 2 + 1419.2 €9
(kd)
cx (L + a%eHh (8.18)
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9. Example Calculatiohs

e The eikonal approximation to first order in y, as out-
lined in the previous sections, has been tested against'an
"exact" phase-shift calculation for the nuclei Ca(y = 0.14e6),
Ni(y = 0.204), Sn(y = 0.365) and Pb(y = 0.598).

A charge distribution of Fermi form (8.13) is assumed
in each case, and the eikonal‘parameters are calculated using
equations (8.15)-(8.18). The resulting cross sections are

plotted on the following pages, where the curve type denotes,

{
Dotted : Born.Approximation

Dashed : Eikonal Approximation
Solid : Phase-shift Calculationt
In all cases, the electron energy is E = 300 Mev.
The accuracy of thé method is seen to be reasonably

good for the medium-Z nuclei Ca and Ni. In the case of Sn

and Ph, however, agreement with the phase shift calculation is

poorer, due to the much larger values of .y. Notice, however,

that agreement is noticeably better for the "sharper” charge

densities of Figures 5 and 6. This improvement seems reasonable

in light of the discussion following équation (6.3).
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Appendix A

The value of the normalization function N(£) in the
transverse plane through the origin can be calculated by ap-
pealing to the semiclassical aspects of the eikonal approxi-
mation. In order to exploit the connection with classical
mechanics, we notice that equation (3.4) is just the Hamilton-
Jacobi equation for particles, of zero rest mass. Therefore,
the vector § defined by (3.8) gives the direction of the
ciassical trajectory at any point.

Now consider a small tube of trajectories extending
from -« to the transverse plane through the origin. The
transverse cross sectional areas at z = -» and z = 0 are
denoted A, and A respectively. Integrating (5.2) over the

0

volume of the tube gives

A_ = ken N°A. © (A.1)
Therefore, to first ordeg in vy, (ﬁ-ﬁ = 1)
A
2 _ 0
N° = = - (A.2)

The area ratio (A.2) can be calculated using classi-
cal conservation of energy and angular momentum along any

given trajectory.

~
—
\\4—’—

k' + V= k (Energy Conservation) (A.3)

0

k'r(ﬁ-ﬁ) = koh (Angular Momentum Conservation) (A.4)

where h is the classical impact parameter.
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Substituting (A.3) into (A.4),

k.h = r(k0 - V)

1]

r(k, - V(0) - % ak3r2) (A.5)

1]

r(k - % ak3r2) .

Therefore,

koh = kr(l - % ak?r?y. (A.6)
Differentiating (A.6) yields
kodh = kdr(l - % ak?r?) . (A.7)

Therefore, from (A.6) and (A.7) we obtain

2
hdh = (&9 rdr(l - 2ak’r’). - (A.8)
0.
This result gives the desired area ratio for use in

(A.2),

N2 = bdh kT L 2ak2e?). . (AJ9)

Alp) = -2ak’p® . (A.10)



Appendix B

For notational convenience, we employ the symbols

0n
It

S}anRO)
c = cog(qRo)

2 Lw, 2

B =.q - ()]
Ry
- 3 :
- F,l@ =s/aB | (B.1)
DFl(q) = - 35/q4B - Zs/qu2 + Roc/q3B ‘ (B.2)
¢ 2 . .‘
D.Fl(q) =.125/qu + 10s/q3B2 - 6R0c/q4B
N ]
+ 85/qB3 - 4Roc/q232 - Rozs/qBB (B.3)
D3F2(qX = —60§/q6B - 54s)q432 + 36Rnc/q5B,
- 485/q253 + 30Roc/q3B2 + 9R02§/q4B
- 483/34 + 24Roc/qB3 + 6R0_Zs/qZB2
T~ R03c/q3B' ' . (B.4)
D4Fz(q).=13603/q73 + 336;—3/qu2 - 240Roc[q68
+ 3125/q333 - 216R00/q4B2 - 72R025/q53

+ 288s/qBY - 192R0c/q233 - GORgs/q3Bz

+ 12R3c/q"B -+ 384qs/8° - 192 c/B"

\ . '
- 48R§s/qB3 + 8Rgc/q2B2 + ggs/q3B (B.5)
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A problem arises in the applicatioq of these expres-
sions, owing to thé presence of singularities in the deriva-
tives at the points q, = Ln/Ro. Experience h;s indicated,
however, that thése singularities are extremely narrow (i.e.
<0.001 fm-l) and offending points are simply ignored. 1In
other words, the calculated scattering amplitude is inter-
polated'in the negligibly small regions (q2 - 0.001) to

(q, + 0.001) fm L.
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