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Abstract 

The significance of online process monitoring of discrete part 

manufacturing usmg multivariate analysis is its ability to help the Canadian 

manufacturing industry compete in the global market. Process monitoring can 

accomplish this by: assessing the state of a machining system for unusual 

occurrences, moving the part quality prediction upstream, and producing higher 

volumes of in specification parts for improved profits. 

The focus of this research was discrete process monitoring of a turning 

operation in a laboratory at the McMaster Manufacturing Research Institute 

(MMRI) and an industrial machining cell at Glueckler Metal Incorporated (GMI). 

Both applications involved instrumentation of a lathe with current sensors, an 

accelerometer and thennocouples. Serial port communication between the 

machine control panel and computer was established to allow for online 

automated data acquisition. The multivariate latent model applied was principal 

component analysis to develop correlations among the machining process 

infonnation. Principal component analysis was successful in identifying the 

occun'ence of an out of balance spindle, unusual surface finish, changes in depth 

of cut, and a worn tool in laboratory tests, through the use of simple control plots. 

Industrial results validated the ability of the system to differentiate machining data 

from one day to another, and to isolate an unusual piece of barstock that led to 

slightly below average part dimensions, 

111 



The difficulties experienced in the transitioning from laboratory 

conditions to industrial testing were discussed. This infonnation will allow future 

researchers to continue adding new process monitoring sensors to the system. 

In conclusion, this research demonstrated the ability of online process 

monitoring of discrete part manufacturing in a laboratory setting; and brings the 

MMRI and GMI closer to having a fully implemented process monitoring system 

for part quality prediction and machine maintenance. 
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M.A.Sc. Thesis - Holly Dzuba - McMaster University - Mechanical Engineering 

Chapter 1 - Introduction 

1.1 Overview 

An investigation into the topic of online process monitoring of discrete 

part manufacturing using multivariate analysis is presented in this thesis. To 

better understand the thesis title, each of the topics is summarized below. 

• Online process monitoring: collection of process information in real-time in 

an automated environment. This topic has been successfully applied in 

chemical engineering, both academia and industry, particularly in the 

production of foods and phannaceuticals. 

• Discrete part manufacturing: application of process monitoring III the 

manufacture of individual parts opposed to the continuous nature of many 

chemical applications. This adds additional complexity to the analysis since 

each part has natural part-to-part variation, as well as an array of process 

information collected over a period of time. 

• Multivariate analysis: statistical technique to analyze and present the process 

infonnation in a fonn similar to that of statistical process control. Traditional 

statistical process control is usually applied to monitor only the quality 

infonnation and is done offline or at the end of the process. Conversely, 



M.A.Sc. Thesis - Holly Dzuba - McMaster University - Mechanical Engineering 

multivariate analysis can be applied to collect infOlmation on many of the 

manufacturing variables and can be completed online. This aids in both 

troubleshooting applications and in the prediction of pati quality. 

To validate the application of process monitoring in manufacturing, an 

experimental setup was completed in the McMaster University Manufacturing 

Research Institute (MMRl). This setup was then applied in industry at Glueckler 

Metal Incorporated (GMI). Both setups involved turning of raw barstock on a 

lathe. 

The topic of online process monitoring and multivariate analysis applied 

to manufacturing is an extension of work completed at McMaster University by 

Wessam Hussein, B.Sc, M.Sc., Ph.D., Samar Ruparelia, B.Sc., M.Sc., Ph.D., and 

Darryl Wallace, B.Eng. M.A.Sc. Hussein developed a multivariate classification 

model of different cutting conditions, including a nonnal, worn, and chipped tool, 

as well as chatter, and used another multivariate model to predict surface 

roughness [1]. Ruparelia was able to relate excited frequency bands produced 

from an FFT perfonned on accelerometer data, to the occurrence of drill chipping 

and created a detailed process flow chart [2]. Wallace had success in 

compensating for thennal errors, detecting mis-loaded parts, and verifying the 

production of good quality parts [3]. However, the researchers had difficulties 

dealing with machining data that contained noise from common process variation 

and material inconsistencies. The goal of the present research is to extend on the 
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work by Hussein, Ruparelia and Wallace, to attempt to reduce variability during 

data acquisition, improve the data analysis process, and implement additional 

steps that would bring the MMRl closer to having a commercial online process 

monitOling system installed at a manufacturing facility. Therefore, a lot of this 

thesis will refer to the research completed by Hussein, Ruparelia and Wallace, as 

well as others who have made advances in the field of process monitoring. 

1.2 Motivation of Process Monitoring 

The motivation behind implementing process monitoring IS product 

quality. As stated by Kevin Dunn, a statistics and multivariate instructor: 

"product quality is not a cost-benefit trade-off'; it is always beneficial for a 

manufacturer, and its customers, to improve product quality [4] . A manufacturing 

process with good quality products and low variability will boost profits by 

lowering costs [4]. Lower costs are a result of minimal scrapped off-specification 

product and minimal re-work [4]. Furthennore, increased long-tenn sales follow 

as a result of loyal customers and improved reputation [4]. However, product 

quality testing is non-value added. Value creation lies in the manufacturing of 

high quality products, and utilizing testing methods at reduced rates, to verify the 

product standards. Thus, rather than waiting until the end of a process to discover 

a poor quality product, manufacturers should be monitoring, in real-time, the 

intennediate parts of the process [4]. If unusual variability is discovered, the aim 

3 
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is to make pennanent process adjustments to avoid the variability from ever 

occurring again [4] . Dunn emphasizes the importance of understanding that 

process monitoring is not a method of automatic feedback control [4]. These 

methods do share similarities in tenns of quantifying an unusual operation; 

however, the goal of process monitoring is that the process adjustments are 

infrequent, usually manual, and take place due to special causes [4]. Therefore, 

the process variability should already be at a minimum. Process monitoring 

should be implemented to monitor for unusual process variability that may be a 

consequence of a disturbance that would result in a poor quality part. 

Process monitoring to reduce product variability has the potential to help 

Canadian manufacturers compete in the global market. A survey perfonned by 

KPMG in 2006 predicted a rise in Asian automobiles manufacturers ' market 

share, at the expense of North American manufacturer's market share [5]. 

Perhaps until the recent Toyota quality incidents of 2010, the North American 

market had the perception that Asian automobiles are more reliable than North 

American automobiles [6]. This emphasizes how product variability can drive 

purchase decisions. In fact, from 2005 to 2009, Canadian manufacturing sales for 

the transportation and equipment sub sector has declined by over 30%, refer to 

Table 1 [7]. Although a recent turnaround in perceptions may begin to help the 

North American automobile market, this will need to be supported by product 

innovation delivered with improved levels of product quality. 

4 
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Table 1: Canadian manufacturing sales for transportation equipment 

(Adapted from [7]) 

2005 2006 2007 2008 2009 

Transp0l1ation equipment 
124,740.9 119,387.2 116,597.5 97,446.8 76,063.2 

($ millions) 

1.3 Description of Manufacturing Process Monitoring 

The motivations behind utilizing process monitoring as a crucial 

component in manufacturing process automation are evident. The major elements 

of a manufacturing process monitoring system, adapted from Hussein [1] are: 

1. Manufacturing process inputs including the operating parameters such as feed 

rate, depth of cut and cutting speed. 

2. Sensing system to detect changes In the process conditions, through 

measurement of various process features. 

3. Signal processing system, including both a means of pre-processing the data, 

and then analyzing that information. 

4. Decision making strategy, which should be based on an established 

confidence level. 

The schematic, shown in Figure 1, summarizes the flow of data in process 

monitoring, and relates well to the concepts that will be discussed in the following 

sections. Process monitoring follows a continuous cycle in which product quality 

is the driving force. 

5 
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Process ---+ Sensing ---+ 
Inputs System 

I 
t 1 

Decision I Signal 
.....- Making .....- 1.....- Processing 

Strategy System 

Figure 1: Process Monitoring Flow 

Implementing process monitoring in a manufacturing setting does present 

some unique challenges. Firstly, production rates are commonly high so there is 

not a lot of downtime available to install and maintain the system. Therefore, the 

necessary instrumentation must be applied in an effective and economical way 

with minimal to no effect on production. This involves the use of indirect sensors 

which are applied outside of the cutting zone. Also instrument selection is 

important, since the process data commonly has a low signal to noise ratio. High 

production rates also mean high data volumes, so data compression and storage 

becomes important. Additionally, the process data commonly has correlations 

that are difficult to detennine univariatly, as well as missing data due to many 

factors that occur within the machining environment. Thus, statistical techniques 

are required to handle the process data in an efficient and meaningful way. The 
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overall result needs to be an autonomous online process monitoring system that 

will alert an operator of a control issue only when necessary. The individual 

elements, as outlined by boxes in Figure 1, will be considered in Chapter 2. 

1.4 Thesis Layout 

This thesis will begin with a literature review that is structured around the 

process monitoring flow chart shown in Figure 1. The literature review presents a 

detailed summary on each of the flow chart topics: process inputs, sensing system, 

signal processing system and decision making strategy. Although considerable 

time was taken to understand all the background information, the goal was to 

build upon the work completed by Hussein, Ruparelia and Wallace. Therefore, 

the literature review discusses general process monitoring topics, and then focuses 

on the relevant sensors and analysis techniques as recommended by the previous 

researchers. 

Following the literature review, the experimental methods are discussed as 

they apply to both laboratory and industrial testing. The experimental methods 

follow in a similar order as the literature review, with a discussion of how the 

sensors were instrumented, detailed data acquisition techniques, and finally 

multivariate analysis. 

The laboratory and industrial testing details and results are presented in 

subsequent chapters. Each of these chapters finishes with a summary and 
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recommendations for future research. The thesis finishes with the concluding 

statements. 

8 
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Chapter 2 - Literature Review 

2.1 Process Inputs 

Successful process monitoring begins with a meticulous understanding of 

the process to be examined. Figure 1 outlines the first important step in process 

monitoring: a consideration of all the process inputs . Process inputs refer to all 

the internal, external, both desired and undesired, features relating to the system. 

Internal features are those that have to do specifically with the process, 

and are usually entered by an operator; these features may include the desired 

setting for feed rate, constant surface speed, depth of cut, use of coolant, bar stock 

material, and insert selection. For example, it is common to hold machining 

parameters constant; however, Hussein selected a range of machining parameters 

based on the capability of each of the three machines he performed testing on [1]. 

A series of spindle speeds, depth of cut, and feed per tooth was selected [1] . Each 

of these selections was included in the process monitoring model to ensure no 

unintended effect on the results [1]. 

External features are those that affect the system, but are not set by the 

operator, such as room temperature and humidity levels. Undesired features are 

those that may cause variances in the process, such as random floor vibrations 

9 
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from other machines, and hard particles in the barstock material. The goal in 

process monitoring is to detect these undesired features since they have the 

potential to adversely affect product quality. 

When building a successful process monitoring model one must consider 

the fundamentals of design of experiment techniques. Properly designed 

expeliments require a realization of all the confounding effects . Confounding 

effects are disturbances in the experiment that will likely alter the experiment and 

result in difficulty when analyzing the outcomes. Therefore, it is impOliant to 

take time to carefully understand the process and all of the confounding effects. 

Disturbances that are known, controllable, or measurable should either be 

eliminated if possible, or recorded and included into the model. An example of a 

known confounding effect that should be included in a process monitoring model 

is raw barstock length in a turning application [8]. As the barstock becomes 

shOlier, its natural frequency will change, resulting in a change in the vibration 

spectrum. If this change is not included, the vibration data will vary, making it 

difficult for the model to predict any meaningful infonnation. Therefore, 

understanding all the process inputs allows for the unknown confounding effects 

that may affect product quality to be detected more readily. 

10 
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2.2 Sensing System 

Following the flow chart from Figure 1, the next important feature is the 

sensing system. A suitable sensor system is imperative to the application of 

process monitoring. The topic of sensor fusion, which is the combination of 

multiple sensors, increases the reliability of a sensing system [9]. The use of 

sensor fusion makes the process monitoring system redundant so that various 

types of malfunctions that occur in the process can be detected, while also 

reducing the chance of incorrect analysis from inherent randomness or noise, and 

sensor drift [9]. Sensor selection depends on the objects to be sensed and the 

purpose of monitoring, as outlined in Table 2 [9]. Sensor selection is a difficult 

task because sensors depend on the following characteristics: ambient operating 

temperatures, full -scale output, hysteresis, linearity, measuring range, operating 

life, output fonnat, overload, repeatability, resolution, selectivity, sensitivity, 

response speed, and stability or drift [9]. 

11 
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Table 2: Objects, Items and Purposes of Sensing 
(Adapted from [9]) 

Object of sensing Items to be sensed Purpose of sensing and 
and monitoring monitoring 
Work State of work clamping Maintain high quality 

Geometrical and dimensional Avoid damage and loss of work 
accuracy 
Surface roughness 
Surface quality 

Machining Force Maintain normal machining 
process Heat generated process 

Temperature Predict and avoid abnormal state 
Vibration 
Noise and sound 
Chip formation process 

Tool Tool edge position Manage tool changing time 
Wear A void damage or deterioration of 
Damage: chipping, breakage, and work 
others 

Machine tool and Malfunction Maintain normal condition of 
auxiliary facility Vibration machine tool and ensure high 

Deformation (elastic, thermal) accuracy 
Environment Ambient temperature change Minimize environmental effect 

External vibration 
Condition of cutting fluid 

After in-depth review of possible sensors by Hussein, the following were 

selected: a table dynamometer to measure X, Yand Z axis forces, accelerometer to 

measure spindle bearing vibration, acoustic emission sensor, and a current sensor 

to measure spindle motor current [1] . 

Dynamometers are commonly used III the laboratory environment [10]. 

The MMRI frequently uses a dynamometer III tool wear and coating tests. 

Although dynamometers are popular in academia, there are many issues that make 

them difficult for industrial implementation [10,11]. Firstly, dynamometers have a 

high price point, making it difficult to purchase one for each machine in a 

12 
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manufacturing plant. Secondly, they can be heavy and awkward to apply to a 

machine, increasing the downtime required for installation. Thirdly, they need to 

be mounted within the cutting zone, leading to a possible disruption in machining 

if there are sensor problems, as well as a shortened life due to the harsh conditions 

including chips and coolant. Instead cutting force has been measured by use of 

motor current [10,11,12]. 

Acoustic emission sensors have shown the ability to predict events such as 

sudden crack formation and propagation as well as chip breakage [13]. However, 

Hussein concluded that the acoustic emission sensors showed poor perfonnance 

and was not suitable for his application [1]. Furthennore, to detect such events as 

crack propagation, sampling rates on the order of megahertz are required. These 

high sampling rates demand a lot of the data acquisition bandwidth, computer 

analysis, and storage systems, making the acoustic emission sensor impractical for 

industrial use. 

Since Ruparelia's focus was on drill chipping, he ruled out the 

dynamometer because Li et al. showed that it is more suitable for detecting drill 

wear not chipping [2,14]. Ruparelia examined the acoustic emission sensor and 

suggested that benefits of using this device include: placement next to drilling 

location is not crucial since the acoustic emission signal propagates through the 

entire workpiece; and the acoustic emission frequency is usually much higher than 

the natural frequency of the drilling process, meaning it cannot be misinterpreted 

13 
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for vibration during nonnal drilling [2]. However, he chose not to use the 

acoustic emission sensor due to its high cost. Ruparelia chose to use a low cost 

accelerometer [2]. 

Wallace's sensor selection was more tailored for an industrial based 

process monitOling system, than Hussein's, as he selected sensors capable of 

measuring critical machine process conditions without interfering or being 

interfered with the machining process [3] . However, as the sensors become more 

removed from the cutting zone, the signal to noise ratio will decrease. This 

research will follow Wallace's sensor selection by focusing on motor current 

sensors, an accelerometer, and thennocouples . 

2.2.1 Current Sensor 

Measurement of motor current has been shown to be an acceptable method 

of collecting process infonnation when more direct techniques are difficult or not 

possible [3,11,10,12]. Wallace presented a method by Jeong and Cho (2002) of 

using feed motor cun-ents on a milling machine for an estimation of cutting forces 

[3,15]. Wallace also presented work by Li et al. in 2003 , in which Hall-effect 

cun-ent sensors were used to monitor spindle current for the diagnosis of a tapping 

process; with a 93% success rate in differentiating between five different process 

conditions [3 ,16]. In 2005 , Li used Hall-effect cun-ent sensors to measure the 

cutting forces in turning [11]. He stated that other researchers have accurately 

14 



M.A.Sc. Thesis - Holly Dzuba - McMaster University - Mechanical Engineering 

measured cutting forces with various Kistler apparatus's, but these are expensive, 

and have limitations including sensor reliability in the harsh environment, layout 

constraints, and interference with cutting perfonnance [11]. Li suggests that 

measuring motor current is a good method of overcoming these disadvantages 

[11] . Li emphasized the benefit of current sensors because they are a simple and 

inexpensive method of modelling tangential, axial, and radial cutting forces in 

turning [11]. Li compared estimated cutting forces calculated from models based 

on current sensor data, to actual cutting forces collected by a Kistler cutting force 

dynamometer [11]. The estimated and actual cutting forces showed good 

agreement, with the difference between measured and estimated cutting forces 

less than: 10 % for tangential, 5% for axial, and 25% for radial [11]. 

Cutting force estimation, such as that done by Li, is important SInce 

cutting force is dependent on the material cut, chip geometry, tool configurations 

and cutting speed. A change in cutting force can indicate events such as chatter or 

chatter marks left behind from a previous pass, chip tangling, numerical or 

operator errors, and collisions. Measured cutting forces can be resolved into three 

components: cutting direction, feed direction and normal to cutting direction [9]. 

Analysis of the cutting and feed force directions can indicate surface finish or the 

presence of tool chipping or breakage [9]. The nonnal to cutting direction can 

indicate the dimensions of the feature being machined [9]. However, as Li 

showed, estimating the actual forces based on the indirect measurement by a 
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cUlTent sensor can be prone to some elTor. Jeong and Cho also concluded that the 

estimates of the cutting force normal to machined surface included some elTor, 

due to factors such as stick-slip friction, and could be improved by using well

machined feed drive parts [15]. Fortunately, using CUlTent sensors in process 

monitoring does not require an estimation of the force, but rather a repeatable and 

reliable measure of the change in CUlTent from one part to another as a 

representation of features such as tool wear, surface finish, and part dimensions. 

Wallace employed CUlTent sensors fixed to motor power leads in the 

electrical panel of the machine [3]. In terms of specifics, Wallace's research 

utilized the following CUlTent sensors: open loop Hall-effect CUlTent sensor from 

F.W. Bell, model IHA-ISO for the Z motor, and a clamp type style CUlTent sensor 

for the spindle motor [3]. Hussein used the same open loop hall-effect sensor 

from F.W. Bell, but applied it to the spindle motor [1]. 

When discussing the types of CUlTent sensors used by Hussein and 

Wallace, two characteristics should be considered: Hall-effect, and open loop 

versus closed loop. The Hall-effect was discovered by Dr. Edwin Hall in 1879 

[17]. Dr. Hall found when a magnet was placed so that its field was perpendicular 

to one face of a thin rectangle of gold through which CUlTent was flowing, a 

difference in potential appeared at the opposite edges [17]. He found that this 

voltage was proportional to the CUlTent flowing through the conductor, and the 

flux density or magnetic induction perpendicular to the conductor [17]. Hall-
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effect sensors can be applied to sensing devices when the object to be sensed 

incorporates a magnetic field [17]. When current flows through a conductor, it 

creates a magnetic field around the conductor [17]. This magnetic field is in 

direct proportion to the current level [17]. If the drive current is controlled using 

a constant current source and the differential Hall voltage is amplified, an output 

voltage proportional to the primary current can be obtained by the electronics in 

the circuit [17]. This core Hall-effect sensor, referred to as an open-loop sensor 

requires power to operate, but much less than that of a closed-loop sensor. It also 

has a higher ability to withstand overloads. When cost is a major consideration, a 

basic open loop sensor should be selected. Closed loop on the other hand, is less 

susceptible to electrical noise and should be selected based on its fast response, 

accuracy, and linearity better than 0.1 % [17]. However, the closed loop sensors 

are more expensive due to the addition of several more components including an 

operational amplifier and coil [17]. 

2.2.2 Accelerometer 

Accelerometers are widely used in industry as a means of monitoring and 

collecting vibration infonnation. Vibration measurements are important because 

depending on the cutting conditions and dynamic properties of the system, 

machine tool errors can arise as a result of a cutting operation. Machine tool 

elTors directly affect part quality and surface finish . Vibrations that occur during 
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cutting can be classified as free or forced. Free vibration occurs when the system 

is left to vibrate on its own after an initial disturbance [18]. Forced vibration 

occurs when a system is subjected to an extemal force, which is often repeating 

[18]. Forced vibration can be divided into the following categories: extemal 

forces, forces independent of the cutting process, and forces initiated by the 

cutting process. Ruparelia outlined the different vibrations sources, as shown in 

Table 3 [2]. The goal of using an accelerometer in manufacturing process 

monitoring is to detect any or all of the sources of vibration that have potential to 

affect part quality. 

Free 

• Sudden shock 
caused by material 
inhomogeneities • 

• Chipping 

Table 3: Vibration Sources 
(Adapted from [2)) 

Forced 

External 
Independent of 
Cutting Process 

Generated by • Disturbance in 
nearby machines workpiece or tool 
or factory floor drive system 

Initiated by Cutting 
Process 

• Fluctuating 
forces during 
cutting 

• Removal of chips 

An accelerometer is built using a tuned mass, that when displaced by a 

vibration, generates a charge across a piezoelectric crystal. The piezoelectric 

effect was discovered in 1880 by Pierre and Jacques CUlTie [19]. The 

piezoelectric effect describes how a piezoelectric material produces an electric 

charge in response to a mechanical stress [19]. Commercial piezoelectric 

materials, such as those in an accelerometer or dynamometer, are achieved by 
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exposing the materials to high temperatures while imposing high electric field 

intensity in the desired direction [19]. 

Inasaki and Tonshoff discussed in Sensors and Manufacturing (2001) that 

accelerometers can easily be applied to a machine tool component and do not 

need to be mounted close to the zone of contact because the frequency detected 

does not suffer severe distortion [9]. Risbood et al. used an accelerometer for 

surface roughness prediction in a cylindrical turning operation [20]. Ruparelia 

presented work by EI-Wardany et al. which involved using an accelerometer to 

detect drill failure for small diameter drills [2,21]. EI-Wardany et al. and 

Ruparelia's work used processing techniques such as kurtosis for the vibration 

data in time domain, and cepstrum ratio for in the vibration data in frequency 

domain, and did not utilize multivariate analysis [2,21]. 

Ruparelia used only one Kistler accelerometer 8702B25 mounted in the 

transverse direction to the center of the fixture securing the workpiece [2]. He 

connected the accelerometer to a charge amplifier, Kistler 8004, and a four 

channel data acquisition board and computer [2]. Ruparelia performed drilling, 

while periodically examining the cutting edge using a tool maker's microscope, 

until chipping occurred [2]. At the first sign of chipping, analysis of time-domain 

vibration signal belonging to the dlill was detected in order to identify the 

signature of chipping [2]. In the time domain, small vibration spikes appeared 

randomly, likely due to material inconsistencies or chip accumulation and not drill 
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chipping [2]. However, in the frequency domain, excited frequency bands could 

be identified that corresponded with drill chipping [2]. 

Wallace used three Kistler accelerometers, 8702B50, mounted within 

the spindle structure behind the covering panel of the machine, at a safe location 

outside of the cutting zone [3]. Wallace mounted the accelerometers on a one 

inch cube with tapped holes [3]. Hussein used the same Kistler accelerometer 

clamped on the spindle motor by means of a magnetic clamp [1]. 

2.2.3 Thermocouple 

Temperature measurements are important because temperature accounts 

for approximately 70% of the total error in machine tools [22]. Thennal sources 

include: room temperature, use of coolant, exposure to sunlight, motors, bearings 

and ball screws [22]. Wallace introduced research completed by Veldhuis on the 

geometric defonnation of machine tools as a result of thennal effects [3 ,23]. 

Veldhuis outlined the thennal en'ors affecting a machine initially at room 

temperature in the following order: local heating at spindle motor and spindle 

bearing, spindle support heats up, balls crews and gears heat up, local heating in Z 

column, and entire Z column heats up [23]. Veldhuis indicated that the listed 

thennal errors can cause extreme defonnation in the machine [23]. 

All researchers mentioned above utilized thennocouples in their work. A 

thennocouple is the most widely used temperature measurement device due to its 
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simplicity, ability to measure over a wide range, and low cost. The underlying 

physics that describes the function of a thermocouple is the Seebeck, or 

thennoelectric effect. This effect occurs when two dissimilar metals joined 

together at one end, referred to as the hot junction, are heated or cooled, produce a 

voltage that can be correlated back to the temperature [24]. The other end of the 

wires must always be connected to a cold junction [24]. The voltage is 

dependent on the difference in temperature between the hot and cold junction, and 

the material of each of the wires [24]. Each material combination is suitable for a 

different temperature range and environment [24]. Omega recommends selecting 

a thermocouple based on: temperature range, chemical resistance, abrasion and 

vibration resistance, and installation requirements [24]. 

Wallace utilized E-type thennocouples [3]. E-type thermocouples have a 

temperature range of approximately -200°C to 900°C, and greater than 1.7°C 

standard limits of error [24]. Wallace mounted the thennocouples on the 

following locations of a CNC milling machine: ambient, front spindle, spindle 

chiller, spindle motor base, spindle housing structure to measure Z column, motor 

bases to measure X, Z and Y [3]. 

Yang et al. used thennal error mode analysis to reduce the number of 

thermal sensors used on a CNC turning center from 16 to four, and to reduce the 

thennal error [25]. Although thelmistors were used instead of thermocouples, this 

research is particularly relevant since it was applied to a turning center. Thermal 
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sensor placement on the turning center included the following locations: spindle 

housing, ball screw bearings and nuts, coolant tanks, and machine structure [25]. 

2.3 Signal Processing System 

From Figure 1, the next important feature is the signal processing system. 

However, this feature encompasses many steps within the process monitoring 

system. Therefore, it has been divided into three sections in order of usage in a 

process monitoring application: data acquisition, data processing, multivariate 

analysis . 

2.3.1 Data Acquisition 

In order to acquire signals from the various sensors, the sensors must be 

connected to a data acquisition (DAQ) system. Data acquisition is the process of 

retrieving data from sensors and inputting that data into a computer for processing 

[26]. A DAQ board is a printed circuit board that provides amplification and 

analogue-to-digital conversion (ADC) [26]. ADC is important because output 

from most sensors, including accelerometers, tends to be in analogue fonn. A 

DAQ card has a clock that supplies regular time signal pulses to its analogue to 

digital converter, and every time it receives a pulse, it samples the analogue signal 

[26]. Selecting an appropriate sampling rate for data acquisition is a very 

important task. 
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A sampling frequency is usually selected based on a known frequency of 

interest. However, if the frequency of interest includes the region of rpm, as well 

as unknown frequencies, sample rate, Is, selection is not straightforward. 

Knowing that sensor data is commonly analyzed using spectral analysis the 

following tips were considered from Lyons text on Discrete Signal Processing 

[27]. The application of spectral analysis and fast Fourier transforms (FFT) will 

be discussed in 2.3.2. 

l. Sample at 2.5 to 4 times the signal bandwidth [27]. 

Sampling at least 2.5 times higher than the signal bandwidth aids in 

avoiding aliasing. An aliased signal provides a poor representation of the analog 

signal, by allowing a false lower frequency component to appear in the sampled 

data of a signal, illustrated in Figure 2 [28]. This figure illustrates that as more 

samples are collected within the same period of time, a higher frequency signal 

appears. 
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Figure 2: Aliasing (Adapted from National Instruments [29]) 

The maXImum frequency that can be accurately represented without 

aliasing is the Nyquist frequency [28]. The Nyquist frequency is equal to one-half 

of the sampling frequency [28]. Therefore, to prevent aliasing by following the 

Nyquist theory, the sampling frequency should be at minimum two times higher 

than the frequency of interest, assuming that frequency is known. National 

Instruments recommends sampling even higher, at ten times the signal bandwidth 

[28]. 
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2. Increase frequency resolution [27]. 

A high frequency resolution IS important to avoid spectral leakage. 

Spectral leakage occurs when a data signal has frequency components in between 

I the frequency bins, causing the signal to show up to some degree in all of the 

output frequency bins [27]. The relevant frequencies produced by the FFT are 

given by the following range: [O,/sI2]. The frequency spacing is referred to as the 

bin spacing, and is given by equation (1), where N is the number of samples [27]. 

bin spacing = Is 
N 

(1) 

To increase the frequency resolution, in other words, decrease the bin 

spacing, for a given frequency range, one should increase the number of samples 

collected at the same sampling frequency [29]. As shown in equation (2), this 

can only be done by increasing the sampling time. Changing the sampling 

frequency will not affect the frequency resolution, SInce as the sampling 

frequency changes, so does the number of samples collected. 

bin spacing = Is = L = ! 
N /s x t t 

(2) 

3. Consider frequency of interest [27]. 

Another method of preventing spectral leakage is to choose a sampling 

frequency and sampling time such that the frequency of interest, if known, will lie 

exactly on a bin center [27]. For example, given an integer frequency of interest, 
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sampling at any sampling frequency for one second, will force a bin center of one, 

ensuring no spectral leakage. 

4. Number of samples should be equal to a power of two [27]. 

Ensuring that the number of data samples collected during data acquisition 

IS a power of two results in faster FFT calculations. This can be done by 

appropriate selection of the sampling frequency and time period or by zero 

padding. More details about zero-padding will be discussed in 2.3.2. 

Hussein sampled all data at 33 kHz [1]. Ruparelia sampled at 24,242 Hz, 

which cOlTesponded to 1500 data points per revolution [2]. Wallace initially 

sampled at 10kHz, but found that 2 kHz was acceptable [3]. 

2.3.2 Data Processing 

One of the difficulties with manufacturing process monitoring is that each 

observation is actually a discrete part with many sensor signals associated with it, 

and each sensor signal has an anay of time domain data. Conversely, a chemical 

process monitoring system may monitor a continuous flow of liquid with sensor 

signals acquired at specific intervals. In this case, each observation represents a 

single point in time. A manufacturing process monitoring system is analogous to 

chemical batch processes. Batch data is difficult to analyze since the data matrix, 

denoted by X, is essentially three-dimensional, as shown in Figure 3. 
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Observations / batches 

Variables 

Figure 3: X Data Matrix for Process Monitoring System with Discrete 
Observations or Batches (Adapted from [34]) 

One of the simplest methods to analyze this type of data is to process it by 

means of averaging. For example, data acquired at 10 kHz, for one second, 

results in 10,000 data points; taking an average over the entire time domain signal 

results in a compression of the 10,000 data points into a single value. Of course, 

compression always results in some loss of information. Therefore, the goal is to 

carefully select the type of data processing method that will limit the loss of 

relevant information. 

Table 4 shows a summary of the data processing techniques used by 

Hussein, Ruparelia and Wallace for each of the sensors. 
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Hussein 

Ruparelia 

Wallace 

Table 4: Summary of Data Processing Techniques 
(Adapted from [1,2,3]) 

AE Current Force: x, y Temperature 

• Mean 

• FFT-
maximum of 
2kHz 

Mean Mean frequency -
band 

• Resultant 
force rations: 
Frx,Fry 

- - - -

- Mean - Mean 

Vibration 

Mean 

• Time 
domain 

• Frequency 
domain 

• Wavelet 

• Magnitude 
ofFFT at 
tooth 
passmg 
frequency 

Both Hussein and Wallace used a mean calculation for many of the 

sensors [1,3]. In the case of sinusoidal data, root mean square (RMS) is more 

applicable than mean. The RMS is given by equation (3). 

i=1 RMS= 
N 

(3) 

Spectral analysis was applied by Hussein, Ruparelia and Wallace in order 

to break down the time domain sensor signals into their main components as 

represented in the frequency domain [1,2,3]. Spectral analysis is commonly used 
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when analyzing data from dynamometers, accelerometers, and acoustic emission 

sensors, in order to find the frequency components of the signal within the time 

domain signal. The discrete Fourier transfonn (DFT) can be used to transfonn an 

expression of a continuous time domain function into a continuous frequency 

domain function [27]. The concept behind the DFT is that any output signal is 

nothing more than the sum of tenn-by-tenn products of cosine and sine waves 

[27]. Using the DFT, it is possible to detennine the frequencies that correspond to 

the signal, allowing for a more effective interpretation of the signal. Equation (4) 

is the expression used to transfonn a continuous time domain function x(t) into a 

continuous frequency domain function x(f); where j is the imaginary unit, I 

represents hertz, and t represents time [27]. 

(4) 

In statistical signal processing, the FFT is the most commonly used 

method of spectral analysis, since it has the same characteristics and accuracy as 

the DFT, but is much more efficient [27] . Computational software such as 

MA TLAB has a built in function for FFT calculations. MA TLAB uses the 

following FFT algorithm to return the DFT to the user, as adapted in equation (5); 

where CON refers to the Nth root of unity given by equation (6) [30]. 

N 

X(/) = Lx(t)CO~- I)(I- l ) 
j ~ l 

(2lfi)IN 
CON = e 

29 

(5) 
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Although MA TLAB perfonns the FFT, it is impOliant to have an 

understanding of the appropriate application of the FFT in data acquisition. The 

guidelines listed in 2.3.1 regarding sample rate selection aid in collecting data that 

I will produce the most accurate representation of the data in the frequency domain. 

The guidelines listed below can be applied after data collection to further improve 

the frequency domain results. 

1. Number of samples should be equal to a power of two [27]. 

When the situation does not allow for sampling at powers of two, zero 

padding can be applied to add additional samples to the original input to increase 

the total number of data samples [27]. However, there is some debate as to the 

importance of this guideline. Recent infonnation suggests that the impOliance of 

the power of two may be decreasing with improved computer processors. 

Additionally, National Instruments posted infonnation suggesting that zero 

padding has a high perceived value relating to improving the speed and resolution 

of the results; but, it can actually lead to results that are easy to misinterpret [31]. 

For example, if the frequency of interest was known, and bin selection techniques 

were carried out, zero padding will actually cause a shift in the frequency spacing. 

In some cases, the fact that the bin center is no longer on the frequency of interest 

may outweigh the benefit of any efficiency gain [31]. The shift in the bin center, 

from decreased frequency spacing, corresponds to a resolution increase; however, 
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this does not improve the frequency resolution of one's analysis of the input 

signal, since the original sampling frequency did not change [31]. Therefore, it is 

important to remember to take caution when applying zero padding, and 

remember that zero padding does not improve signal resolution; this can only be 

done by increasing the time duration, as discussed previously. MATLAB does 

not automatically zero pad, but this option is available in the MA TLAB FFT 

function. 

2. Average multiple FFT's [27]. 

In the event that there is enough time domain data available, averaging 

multiple FFT's can improve the sensitivity of the FFT analysis; this allows for 

detection of the signal energy in the presence of noise [27], which is common in 

most data acquisition applications. 

3. Use windowing techniques [27]. 

A window is a mathematical function applied to the signal to minimize 

side lobes produced by spectral leakage [27]. There are various types of windows 

that can be applied, each depending on their specific application, such as: 

rectangular, triangular, Hanning, and Hamming [27]. Appropriate window 

selection can be confusing, so National Instruments suggests using a Hanning 

window for general-purpose applications, spectral analysis, and unknown content 

[32]. If zero padding is necessary, ensure that the window is applied to the data 

prior to zero padding [27]. 
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2.3.3 Multivariate Statistical Methods 

After data acquisition and processing is complete, multivariate statistical 

methods can be used to analyze the data. Multivariate methods are required to 

treat process data which commonly have the following characteristics, as outlined 

by ProSensus [33]: 

1. High dimensional data matrices - many observations and many variables 

2. Non-causal in nature - cannot imply cause and effect relationships, but can 

gather information on the correlation relationships 

3. Variables are not independent - high correlation among variables 

4. Missing data - 10 to 20 % common in industry - or different sampling 

frequencies among the variables 

5. Low signal to noise ratio - each variable contains little infonnation 

Traditional data analysis, such as multiple linear regression and statistical 

process control, is not suited for monitoring a manufacturing process because 

these techniques require a small number of independent variables and a small 

number of response variables, usually one [33]. Therefore, large multivariate data 

sets, such as the ones acquired during manufacturing process monitoring require 

multivariate statistical techniques. 

Characteristic 3- variables are not independent - is particularly important. 

Standard design of experiment techniques ensure that all factors are independent 

of one another, allowing the data to be modelled by multiple liner regression, 
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since the data matrix is of full rank. A full rank matrix is one in which all vectors 

in the matrix are linearly independent. However, recall that in manufacturing 

process monitoring the concept of sensor fusion is applied, and involves using 

multiple sensors to establish redundancy. Redundancy implies that some sensors 

will be collecting data that is con'elated with another sensor. MUltiple linear 

regression fails in the case of highly correlated data because the detenninant of 

the matrix approaches zero and the regression coefficients become inflated, 

However, with the use of latent variables, multivariate analysis easily handles the 

correlation resulting from sensor fusion and the nature of the manufacturing 

process. 

There are other methods of analysis that have been used in academia, such 

as artificial neural networks (ANNs). Both Hussein and Wallace investigated 

ANNs and other analysis methods, and concluded that multivariate analysis is 

preferred [1,3]. Hussein summarized some of the problems associated with using 

ANNs: uncertainty concerning the training time length required, risk of over 

fitting the data, the overall black-box nature of the method, and an inability to 

probe the data for root cause analysis [1]. Hussein concluded that all of these 

issues are of significant importance when considering industrial applications [1]. 

Hussein also concluded that although multivariate analysis is the prefen'ed 

solution for manufacturing process monitoring, all the reported works focused on 

batch and continuous process monitoring applications such as reactors, distillation 
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columns, fennentation, steel making, and natural gas pipelines; while there was 

no reported work on machining processes [1]. 

Multivariate analysis can be divided into two main techniques depending 

on the data set and the goal of the analysis: principal component analysis (PCA), 

and projection to latent structures (PLS). Both techniques seek out the latent, in 

other words hidden, variables in the data. 

2.3.3.1 Latent Variables 

Dunn presented a simple conceptual example of a latent variable - one ' s 

health [4]. Although overall health is extremely important, there is no single 

measurement to represent health [4]. Instead it is an abstract concept that doctors 

infer by use of blood pressure values, cholesterol level, weight, and many other 

measurements [4]. Therefore, health is a latent variable that can be defined by 

other measurements which all contribute to an assessment of overall health. 

Another conceptual example of latent variables was given by ProSensus. 

ProSensus suggested that a television is an example of a latent variable; a 

television is a two-dimensional representation of the three-dimensional world 

[33]. This means that a television uses two latent variables to represent what are 

three dimensions in the real-world [33]. 

The significance of latent variables is that they compress a large number 

of variables collected on a subject into a smaller, easier to interpret number of 
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variables. Latent variables are created by using modelling techniques that find 

con-elations between the original variables. This thesis will show that in 

machining for example, vibration, cun-ent and temperature can be measured to 

represent an overall product quality. As discussed previously, these sensors are 

likely not independent. The modelling techniques group together the con-elated 

data, creating a set of latent variables which are independent and best summarize 

product quality. As defined by Dunn, latent variables have the following 

characteristics [4]: 

1. Latent variables capture an underlying phenomenon III the system being 

investigated 

2. Actual measurements taken on the system are con-elated with the latent 

variable 

3. Latent variables are independent or orthogonal to each other 

In the case of a principal component model, such as PCA or PLS, the 

latent variable model objectives are to orientate the latent variables in the 

direction that gives the greatest variance to a matrix of scores. In summary, a 

principal component model breaks down the raw data into two parts [4]: 
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1. A latent variable model, given by: 

a. Scores (t) - distance from origin of X to a 90 degree projection of each 

observation onto a line of best fit describing the X data 

b. Loadings (P) - a direction vector that describes the line of best fit 

2. A residual error describing how the model relates to the original data - given 

by the perpendicular distance from each point in X onto the plane created by 

the latent variables 

2.3.3.2 Principal Component Analysis 

Principal Component Analysis (PCA) is used for the single data matrix X, 

to find the latent variables and the residual error. The goal of PCA is to find the 

latent variables that explain the greatest possible amount of variation in X. From 

Figure 3, X has N rows, where each row represents a different observation, and K 

columns, where each column represents a different variable. The time domain 

data has already been compressed using data processing techniques from 2.3.2. In 

machining, each row may represent a newly machined part, and the columns may 

represent data collected from the various sensors. It is common for the X matrix 

to have very large Nand K, or small N and very large K. For more than three K 

variables it would be difficult to analyze this type of data univariatly. Scatter-plot 

matrices can be used to visualize the correlation between the many variables, but 

this can be difficult as the number of variables increase. 
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The PCA model can be calculated using eigenvalue or singular value 

decomposition, or the non-linear iterative partial least squares (NIPALS) 

algorithm. The NIP ALS algorithm is used by most computer software packages, 

I so the focus will only be on this method. The benefit to using NIP ALS is the 

ability to handle missing data and calculation of the components sequentially. 

NIP ALS calculates the scores (t) and loadings (P) that are used to describe the 

model. The algorithm to calculate each of the principal components, denoted by 

a, is as follows [4): 

1. Data pre-processing of raw X matrix 

a. Mean-center by subtracting each column by its mean: moves the data 

to the center of the coordinate system to remove any arbitrary bias 

used when taking measurements 

b. Scale the data to unit-variance by dividing each column by its standard 

deviation: removes the fact that the variables are in different units of 

measurement 

Result: each variable in X is centered in the coordinate system and has equal 

scaling. Recall thatXhas dimensions Nby K. 

2. Create an initial column of scores (t) with N rows - any of the following 

methods can be used as long as t is not a column of zeros: 

a. Generate set of random numbers 

b. Arbitrarily select a column of X 
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c. Select column of X with the maximum variance 

3. Take every column in X, and regress it onto this initial column t, and store the 

regression coefficients as the loadings (P). This step is analogous to ordinary 

least squares regression, shown in equation (7), in which the y variable is 

replaced with columns of X. 

(7) 

Using the ordinary least squares regression equation, and considering the 

entire X matrix, the loadings can be calculated by equation (8). Transposing 

P is important because it is commonly expressed in terms of K rows . 

T 1 TX P - t 
a -f1t a 

a a 

(8) 

4. The loading vector P has both magnitude and direction. It must be rescaled to 

have a magnitude of exactly one, making it a unit-vector. 

T 1 T 

Pa = I T Pa 
"Pa Pa 

(9) 

5. Regress every row in X onto the normalized loading vector. The y variable 

this time is replaced with rows of X, equation (10). 

Y =f3x~x =t P 
I I ,a a (10) 

The regression coefficient becomes the score (t) values for each row. 

1 T 
ta =-T- X Pa 

Pa Pa 
(11) 
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6. Iterate steps 3 to 5 until the change in vector t from one iteration to the next is 

small, usually 10e-6 or 1 Oe-9. 

7. On convergence, the final score and loading vectors, t and p, are stored in the 

a-th column in the matrix T and P, respectively. These values represent the 

latent variable of principal component a. A principle component has the 

following characteristics: 

a. It is a line in X that best approximates the data 

b. The line explains the greatest possible amount of variation 

c. The line goes through the average point 

d. The direction of the line is determined by the loading vector, pa 

e. The position of each point, i, on the line is tai [33] 

8. Deflate the X matrix to remove the variability captured by the modelled 

component. 

Ea = Xa -taPaT (12) 

Xa+l = Ea (13) 

For the first component, X is simply the pre-processed data. For the 

following components, X is actually the residual after the prevIOus 

components were calculated. Deflating the X matrix ensures that each new 

component is only seeing the variation remaining, guaranteeing that each 

component is orthogonal and that no two components can explain the same 

type of variability. 
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9. Go back to step 2 and repeat the entire process for the next component until a 

satisfactory amount of variation has been modelled, without over-fitting the 

data. 

The amount of variation explained by the model is represented by the 

value R2. Equation (14) refers to the overall R2 value of a model with a total of A 

components [4]. 

R2 = 1- Var(EA ) 

A Var(X) 
(14) 

Cross validation can be used to avoid over-fitting. As succeSSIve 

components are added, the variation in the model is better explained, and the 

value of R2 will increase. However, at a certain point, additional components will 

begin to fit the noise inherent in the data. Once over-fitting occurs, the model will 

have difficulty predicting new observations. The value Q2 is used to measure how 

well testing data generated by cross-validation is explained by the model. ~ is 

calculated by randomly extracting rows from the X matrix to use as testing data. 

A PCA model is built on the remaining X matrix, then the scores, predicted 

values, and residuals of the extracted row is determined. This process is repeated 

until each of the rows has been extracted, one at a time. A new, cross-validation, 

residual matrix is formed, EA,cv, and the overall ~ is then detennined from 

equation (15) [4]. 
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2 -1- Var(EA•CV ) 

QA - Var(X) 
(15) 

Both R2 and Q2 are always less than one; and e is always less than R2. R2 

will continue to increase with each successive component; Q2 will begin to 

decrease after a certain number of components, signalling over-fitting. However, 

Dunn recommends using cross-validation as a guide, and the number of 

components used should be judged on the relevance of each component 

depending on the intended use of the model [4]. 

Wallace used peA on the measured temperatures and z-axis thermal drift 

to "ensure coherent data correlation between the process and quality data" [3]. 

The loading plot indicated that as temperature increased the z-axis moved 

downward, allowing for compensation of the thermal errors [3]. However, PLS 

was then used to relate the temperature measurements as a prediction tool for z-

axis thermal drift. 

Wallace also used peA to model good process data against a training set 

of good process data from the same day, a different day, and simulated process 

fault experiments of a slightly crooked part due to residual chips from a previous 

cut [3]. The X matrix consisted of the data outlined in Table 4 in 2.3.2. The peA 

model was effective at capturing the main effects of the process, verifying good 

parts, and detecting an actual non-catastrophic event of a part mis-load [3]. 
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However, it was not sensitive enough to detect minor faults perfonned during 

experimental simulations [3]. 

2.3.3.3 Projection to Latent Structures 

Projection to Latent Structures (PLS) IS also used to find the latent 

variables and residual error; however, in this case the latent variables must not 

only explain the variance in X, they must simultaneously be correlated with a 

response matrix Y [33]. In process monitoring, Y commonly refers to a matrix of 

quality outcomes for each observation, such as measured feature on a part, or a 

good or poor product quality rating. The objective functions for PCA and PLS are 

shown below: 

• PCA: maximize the variance in X 

• PLS: maximize the covariance between X and Y 

The NIPALS algorithm for PLS, as adapted from Dunn, is stated below 

[4]. It proceeds similar to that of PCA, except that the iterations are prefonned 

through both X and y. 
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l. Data pre-processing of raw X matrix: mean-center and scale data to unit-

varIance. 

2. Create an initial column of scores, now referred to as u, by selecting a column 

of Y. 

3. Take every column in X, and regress it onto u, and store the regressIOn 

coefficients as the loadings, now referred to as w. 

(16) 

Columns in X that are strongly correlated with u will have large weights in w, 

while unrelated columns will have small weights. 

4. Nonnalize the weight vector to unit length: 

1 
(17) 

5. Regress every row in X onto the weight vector, w, and store the coefficients in 

t. 

(18) 

6. Regress every column In Y onto the score vector t, and store the slope 

coefficients in c. 

(19) 
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7. Regress every row in Yonto the weight vector, e, and update u 

(20) 

8. Iterate steps 3 to 7 until the change in vector u from one iteration to the next is 

small, usually 10e-6 or 1 Oe-9. 

9. On convergence, store the final vectors: W a, ta, eCI> ua . These values represent 

the latent variable of principal component a. 

10. Deflate to remove the variability already explained in X and Y: 

a. Calculate a loading vector for the X space. 

(21) 

In this case, the loading vector p, was actually calculated after 

convergence; thus, it is not really a part of the PLS model. This is 

done because in the future when using the PLS as a prediction on new 

testing data, the Y matrix will not be available. Therefore, X must be a 

prediction of the t scores , since these will be available for new values 

of X 

b. Remove the predicted variability in X and y. 

(22) 

(23) 
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11. Go back to step 2 and repeat the entire process for the next component until a 

satisfactory amount of variation has been modelled, without over-fitting the 

data. 

Hussein used PLS to develop a model for surface roughness monitoring, 

and to apply model inversion techniques for process planning and quality 

improvement on a milling machine [1]. The X matrix consisted of the data 

outlined in Table 4 in 2.3.2 and cutting parameters of feed per tooth, depth of cut, 

and speed; the Y matrix was the quality of the machined surface, represented by a 

surface finish value Ra [1]. Tests were carried out on sharp tools, worn tools with 

0.15 mm flank wear, and tools with breakage of 0.02 mm2 [1]. Multivariate 

models were able to successfully differentiate between the different test 

conditions and to predict surface roughness [1]. 

Wallace's PLS model of temperatures and z-axis thermal drift was applied 

for real time thennal error compensation [3]. Wallace concluded that although the 

part data was noisy, the PLS model was able to eliminate most of the variability 

and detennine the general trend of thermal distortion of the machine [3]. 

Wallace also used a PLS model to predict pari quality data from process 

data [3]. A model including 84 observations resulted in a low predictive ability; 

however, all of the predictions were within the specified tolerance limits given 

[3]. 
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2.3.3.4 peA versus PLS 

Both PCA and PLS models can be used for multivariate process 

monitoring. ProSensus recommends using PCA when there are no quality 

measurements, or when the quality measurements are inadequate; and using PLS 

when the quality outcomes are well defined, so the model will be more sensitive 

to the quality-related outcomes [33]. However, the selection of PCA versus PLS 

is subject to the specific application; for example, Nomikos and MacGregor 

selected PCA even when the quality information was accessible [34], to be 

discussed in section 2.4. According to Dunn, a PCA model will pick up a greater 

scope of alanns related to process data and quality than a PLS model on the same 

X [35]. This is because PCA represents only X, whereas PLS has to represent X; Y 

and the covariance between X and Y. The projection of the raw data onto the PCA 

plane will not always be the same as projection onto the PLS plane. Since the 

PLS plane is orientated to include Y, it can miss out on some alalms in the X

space [35]. Therefore, PCA is the predominate multivariate technique used in 

process monitoring [35]. However, one must select the modelling technique that 

is best suited for the specific application and carefully analyze the results. 

2.4 Decision Making Strategy 

Prior to implementing online process monitoring, as outlined in Figure 1, 

an offline multivariate model must first be created. This offline model is built on 
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a substantial amount of process and quality data collected during machining. This 

data is referred to as the training set. The training data set specifies the 

correlation structure inherent in the data. The multivariate model created from the 

training set is used to set the statistical process control limits. Once these limits 

are established, the data from the training set can be stored offline, and only the 

limits are retained for online monitoring. 

Nomikos and MacGregor successfully developed multivariate statistical 

process control chmis for online monitoring of the progress of new batches to 

facilitate analysis of operational and quality-control problems in a chemical 

engineering application [34]. Nomikos and MacGregor used the following 

guidelines for establishing control charts [34]: 

1. The reference distribution, or training set, should be based on a history of past 

successful nonnal observations against which future observations can be 

compared. This reference distribution should contain only those observations 

considered to be from commOn-cause variation; and all observations 

exhibiting unusual characteristics should be omitted. 

2. Build a multivariate peA model based On the reference distribution. 

3. Select the number of principal components based On the various methods 

available. Do not be alanned by low R2 or Q2. A R2 of 55%, for example, is 

to be expected when dealing with large data sets. 
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4. Construct the control charts to monitor the t scores and the error for new 

observations. 

The t scores can be easily monitored by use of the Hotelling's T2 statistic. 

A large Hotelling's T2 statistic represents that a new observation is operating in 

the same way as the observations in the training set, but has a larger than normal 

variation in the measurements. The error can be monitored by use of the squared 

prediction error (SPE) statistic. A large SPE value represents that a new 

observation has a fault that was not evident in the training set. A SPE versus 

Hotelling's T2 plot with control limits defined by the training set is a useful 

control chart for detecting both types of errors. 

2.4.1 Hotelling's T2 

Hotelling's T2 statistic (HT2), usually pronounced as Hotelling's T-

squared, is computed using the scores of the model and is given by equation (24); 

where i is the observation number and a is the component [33]. 

(24) 

The HT2 critical limit at significant level a is shown in equation (25), as 

adapted from Kourti and MacGregor; where N represents the number of 

observations, A represents the number of components, Fa the F-distribution with 

degrees of freedom of A and N-A [36]. 
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2_ (N-l)(N+l)A ( _ ) 
Ta - ( ) Fa A, N A 

N N - A 
(25) 

The HT2 limits are commonly shown on HT2 plots at significance level ex 

at 95% and 99%, representing the two and three sigma confidence limits, 

respectively. When a new observation is above these limits, it may be assumed to 

be an outlier. 

2.4.2 SPE 

Squared prediction error (SPE) glves a quantity of how well the 

observation belongs to the model [33]. A high SPE value means that the 

observation lies off the model plane created by the principal components. A high 

SPE can occur when the observation represents a correlation structure that differs 

from that of the training set. In this case, the model cannot accurately represent 

the new observation. The SPE is calculated as the sum of squares across the 

residuals, E, of each observation, denoted i, shown in equation (26), where k is the 

variable index, and K is the total number of variables [33]. The residuals account 

for any disturbance that is not described sufficiently in the data base of good 

observations, and this makes them very sensitive in detecting new faults [34]. 

(26) 
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The SPE critical limit at significant level a is shown in equation (27); 

where v is the sample variance and m is the sample mean of SPE, and X2 is the 

critical value of the chi-squared distribution [34]. 

SPE -(vi ) 2 
a - 12m %2/1/2 

-,a 
v 

(27) 

Similarly to HT2, the SPE limits are commonly shown on SPE plots at 

significance level a at 95% and 99%, representing the two and three sigma 

confidence limits, respectively. When a new observation is above these limits, it 

may be assumed to be an outlier. 

2.4.3 Outliers 

In the application of process monitoring, the occurrence of outliers from 

either a high HT2 or SPE value, requires usage of a decision making strategy with 

options such as: 

A. immediately stop production, 

B. investigate problem while production is online, or 

C. Ignore. 

This decision can be based on an examination of the variables that lead to 

the outlier. Contributions to scores, given by equation (28), or SPE, given by 

equation (29), compare how the selected observation differs from the average of 

the other observations. 
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( J
2 

. . ~-T~ 
Score ContnbutlOn k = ( X/o - X from ) L fi ~ 

as/a 

(28) 

SPE Contributioni,k = E~k X sign (Ei ,k ) (29) 

Where, Ei ,k = (Xi,k - r:,I :AJt,I:A) (30) 

Contributions can be used to find which variable contributed in causing 

the observation to differ from the others. With time and knowledge, the 

contributing variables can start to be correlated with occurrences in the process 

and the final product quality. For example, a contributing variable of higher than 

average acceleration may indicate an out of balance spindle. The end result can 

be a process monitoring control plot that highlights the likely cause of a new 

observation being an outlier. This infonnation can then be used to allow the 

technician to take the appropriate action. 

2.4.4 Process Control Confidence 

The level of confidence of a process monitoring system can be measured 

by type I and type II error. A type I error occurs when a sample of nonnal 

operation falls outside of the control limits [4]. Type I error can also be refen'ed 

to as a false alann, a false positive, and producer's risk [4]. Assuming central 

limit theory applies, and the data represents a nonnal distribution, which is 

commonly true for data sets with over 30 observations, the probability of making 

a type I error is given by equation (31). Given a confidence limit of 95 and 99%, 
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the probability of type I error is 5 and 1 %, respectively. This means that given 

100 common-cause observations, it is likely that at least 1 observation will lie 

outside of the 99% confidence limit. 

Prype I Error = 100 - a (31) 

A type II error occurs when an abnormal sample falls within the control 

limits [4]. A type II error can also be referred to as a false negative or consumer's 

risk [4]. The probability of a type II error is a function of the degree of 

abnonnality in the data [4]. 

Either error rate can be determined by simply summing the number of 

errors and dividing by the total number of observations predicted. Process 

monitoring models with minimal error rates increase the confidence of these 

techniques. However, minimal error rates is a subjective term and needs to be 

decided based on the specific application and the cost of error. 

A process monitoring system that begins to experience an unusual amount 

of false alanns, or observations that hover around the 95% confidence limit, is 

indicative of a need for calibration. Calibration is required when there is a 

phenomenon occurring in the system that was not represented by the historical 

data set used to build the training set. This can occur when the model is very new 

and the historical set did not include enough information, or when the system has 

experienced changes over a time period that shift the correlation structure, such as 

machine maintenance or ambient conditions. 
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2.5 Process Monitoring Areas of Improvement 

This literature review presented examples of work completed in academia 

and industry on the topic of process monitoring and multivariate analysis. 

However, much of this research focused on the use of individual sensors, 

applications in the chemical industry, or areas where there is room for 

improvement. The research discussed shows promise for online process 

monitoring in the manufacturing industry. The goal of this research is to bring 

together all of the knowledge learned thus far to create an online process 

monitoring system for discrete part manufacturing, which utilizes multivariate 

analysis. This will be done by continuing with the work of Hussein, Ruparelia 

and Wallace, by addressing some of their recommendations for future work 

[1,2,3]: 

• Hussein 

o Apply to turning system 

o Perfonn tests on additional faults 

• Ruparelia 

o Relate signals to quality measures 

o Selection of monitoring frequencies based on specific setup 

• Wallace 

o Increase signal to noise ratio 

o Consider more of the frequency spectrum 
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Chapter 3 - Experimental Methods 

3.1 Introduction: Laboratory versus Industrial Testing 

Prior to beginning industrial testing, sensor equipment was installed in the 

MMRl on an Okuma Crown LI060 lathe. The goal was to run testing conditions 

to prepare, plan and execute process monitoring in a controlled environment to 

establish confidence with the sensor setup and the process monitoring concepts. 

The tests simulated changes in the cutting zone by altering cutting parameters and 

other cutting conditions. A discussion of the setup and analysis of tests completed 

in the MMRllaboratory will be discussed and analyzed in Chapter 4. Following 

this, Chapter 5 will discuss the details surrounding the industrial tests, including 

the manufacturing process being analyzed, as well as the successes and challenges 

of process monitoring in industry as compared to the laboratory. The 

instrumentation, data acquisition and analysis methods discussed in this chapter 

apply to both the laboratory and industry tests. 
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3.2 Instrumentation 

3.2.1 Current Sensor 

In addition to the benefits stated in section 2.2.1 regarding use of current 

sensors, with the assistance of a skilled electrician, current sensors can be quickly 

and easily installed on a machine. It is recommended to have an electtlcian mount 

the sensors, since the electrical panel must be accessed. The main lines supplying 

the motor must be disconnected to feed through the sensors, and then reconnected. 

This process can take as little as a couple of minutes, allowing the machine to 

quickly resume production. In a machine with a three phase AC motor, it is only 

necessary to apply the current sensor to one phase, since each phase has the same 

peak to peak amplitudes, but are just displaced by 1200
. 

Three closed loop Hall Effect current sensors, model CLSM-100LA from 

Sypris Test and Measurement, were mounted in the electrical panel. Figure 4 

shows one of the current sensors mounted on the main power line of the spindle 

motor. The other two current sensors are mounted on the X and Z axis power 

lines . 
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Figure 4: Spindle Current Sensor 

These current sensors measure AC and DC currents within a range of 0 to 

±200 A, have a sensitivity of 1 A in to 0.5 rnA out, accuracy of 0.5 A, and 

response time less than 0.5 IlS. The signal condition box shown in Figure 5 was 

used to convert the current output from the current sensors into a voltage output to 

be read by the National Instruments NI USB-9215A. This data acquisition device 

has 4 channels of 16-bit each to simultaneously sample analog input. The 

maximum sampling rate of each channel is 100 kHz. The three resistors within 

the signal condition box were from Precision Resistor; model SM281 2, with 

maximums of 5 Wand 1000 V, and an accuracy of ±1 % of the full scale output. 
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Figure 5: Signal Condition Box for Current Sensors 

3.2.2 Accelerometer 

A Kistler accelerometer, model number 8702B50 was mounted on the 

spindle bearing housing as shown in Figure 6. The accelerometer has a range of ± 

50 g, sensitivity ± 100 mV/g, a frequency range of 0.5 to 10,000 Hz, and a 

resonant frequency 54 kHz. The accelerometer requires a data acquisition device 

capable of taking frequency measurements from integrated electronic 

piezoelectric (IEPE) sensors, such as National Instruments device NI 9234. NI 

9234 has four channels of ± 5 V, with a maximum sampling rate of 51.2 kHz per 

channel. 
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Figure 6: Accelerometer mounted on spindle bearing housing of lathe 

Various methods can be employed to mount the accelerometer, including: 

stud mount, adhesive cement, and magnetic base. Table 5 outlines the advantages 

and disadvantages of each of the mounting methods. Magnetic base mounting 

was selected due to its quick and easy installation. Furthermore, shaker table 

testing of the accelerometer stud mounted versus magnetic mounted indicated that 

the mounting methods produce a similar output, with an error of only 3.5% for the 

frequency range examined. 
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Table 5: Accelerometer mounting methods 

Mounting Method Remarks Advantages Disadvantages 

- 10-32 stud - Best coupling - Requires 
- 2 ± 0.2 Nm - Highest threaded hole in 

Stud mounting torque frequency specnnen 
response 

- Clean, smooth - Good coupling - Difficult to 

Adhesive Cement surface remove sensor 
- Loctite, superglue - Requires solvent 

- Clean, flat surface - Easy and quick - Adds mass to 
- Ferromagnetic installation loading 

Magnetic Base material - Lowers resonant 
frequency 

3.2.3 Thermocouple 

Four thennocouples were mounted on the lathe to monitor changes in 

temperature. Mounting locations included: outer temperature of machine as a 

result of ambient and machine conditions, spindle bearing housing, coolant, and X 

motor housing, as shown in Figure 7. 
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Outer machine structure X motor housing r (Back of machine) 

Spindle 
bearing 
housing 

(Inside front 
panel) Figure 7: Thermocouple Mounting Locations 

(Image: Nakamura-Tome WT-lS0 [37)) 

Coolant 
(Inside coolant tank) 

Surface thennocouples with self-adhesive backing of type T were used 

from Omega, model number SAI-T-120, for the three dry measurements. A 

hennetically sealed type T thennocouple was used for the coolant measurement, 

also from Omega, model number HSTC-TT-120. The type T thennocouples are 

rated for measurements between -200 to 350°C, and have better than 0.3 s 

response time. Data acquisition was completed on NI 9219, a 24-bit universal 

analog input device. NI 9219 can be used for thennocouple measurements at 

sampling rates of 50 Hz per channel; and RTD, resistance, voltage, and cun"ent 
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measurements, with sampling rates of 100 Hz. The advantage of using NI 9219 

for thennocouple measurements is a per channel built-in thennistor for cold

junction compensation calculations; however, it is important for the device to be 

in a stable temperature environment and away from any heat sources. 

3.3 Data Acquisition 

As previously discussed, all data acquisition (DAQ) was prefonned with 

National Instruments devices. Each DAQ device was paired with its own C 

Series USB Single Module Carrier, model NI USB-9162, resulting in three 

separate USB DAQ devices. Multiple carriers were used so data from each sensor 

could be acquired at different sampling rates. For example, it is unnecessary to 

sample temperature at as high a rate as vibration. For applications in which 

precise timing is pertinent, investment in a USB carrier, with connections for 

multiple devices with different sampling rates would be more desirable. 

However, at the time of this research, this type of unit was not yet available from 

National Instruments. 

Data acquisition was perfonned in Lab VIEW using three separate DAQ 

Assistant Express Virtual Instruments for each of the DAQ devices. Lab VIEW 

was well suited for data acquisition because it allows for quick and easy setup and 

works seamlessly with NI devices. MATLAB could not be used for data 

acquisition as features on many of the NI DAQ devices were not yet supported by 
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MAT LAB 2009b. Math Works suggested that future MATLAB versions will 

support more of National Instruments device capabilities. 

3.3.1 Sampling Frequency 

It is difficult to know the frequency of interest in process monitoring 

applications, as it can change with disturbances in the process. However, one 

easily determined frequency of interest is that of the spindle RPM. Dividing the 

spindle RPM by 60 will yield a frequency value in hertz, which can be detected 

by a spectral analysis . So at minimum, the sampling frequency should be at least 

two times this value, according to Nyquist. However, in most applications, the 

RPM frequency is much lower than that of the DAQ devices and sensor 

specifications. In the case of the current sensor, a common sampling frequency of 

10kHz was selected. The accelerometer, which signal was to be analyzed by use 

of the FFT, required following some of the recOlmnendations outlined in section 

2.3.1. Since all the frequencies of interest were unknown, focus was placed on 

the maximum signal of 10kHz detectable by the accelerometer. Thus, assuming 

10kHz was the frequency of interest, and considering the Nyquist frequency and 

the power of two rule, 215 or 32768 Hz should be selected. However, a sampling 

rate of 32768 Hz leads to a problem when dealing with the accelerometer DAQ 

device NI 9234, because sampling rate selection must obey an equation defined 

by the internal master time base on the device. Acceptable sampling rates are 
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given by equation (32), where Fs represents the sampling rate, and Fill represents 

the frequency of the internal master time base [38]. 

F,1l / 
/ 256 Fs = where N = 1.. .31, F = 13. 10 72.MHz N 11/ 

(32) 

Therefore, accelerometer sampling rates range from a maximum of 51.2 

kHz, followed by 25.6 kHz, to a minimum of approximately 1650 Hz, none being 

equivalent to a power of two. 

Given the selection of available sampling rates, the maximum sampling 

rate of 51.2 kHz was selected as the accelerometer sampling frequency. Since 

zero-padding can lead to misleading results, it was decided that zero-padding 

would not be done, and the FFT efficiency would have to rest on the computer 

processor instead of the power of two suggestion. Aliasing will likely be avoided 

since NI 9234 has a built-in anti-aliasing filter that automatically adjusts to the 

selected sampling rate. The anti-aliasing filter functions as follows [38] : 

1. ADC samples at 128 times the sample rate selected, up to Fill 

2. A digital filter expands the data to 24 bits and rejects signal components 

greater than 12.5 kHz (Nyquist Frequency) 

3. Data is digitally re-sampled at original sample rate 
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Use of a high quality DAQ device coupled with appropriate sampling rate 

selection should aid in yielding accurate and repeatable vibration data during 

experimentation. 

Finally, since indirect temperature measurements tend to move slowly, a 

sample rate of 1 Hz will be adequate for the thermocouples. 

Tests performed in the MMRI were sampled at the mentioned sampling 

rates for three seconds to increase the frequency resolution. However, in the 

industrial tests, the process was so fast, that less than one second of sampling was 

available. 

3.3.2 Serial Port Trigger 

In the controlled tests completed in the MMRI laboratory, data acquisition 

was easily triggered manually, and the steady-state portion of the data which 

excluded the initial plunge and final extraction was manually selected. However, 

the industrial machining process involved many steps, which happened extremely 

quickly. The overall process was loud and difficult to observe, and as a result, 

nearly impossible to manually trigger data acquisition at the correct point in the 

process. Furthermore, collecting data for the entire process generates large 

quantities of data that would be hard to sort through; and at the CUlTent sampling 

rates and computer speed, LabVIEW will only acquire data for ten seconds. To 

resolve this issue, a serial port trigger was utilized. Serial ports on CNC machines 
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are commonly used for loading or storing programs between the CNC machine 

and a storage device such as a computer. Figure 8 shows a schematic of the 

connection between the machine and the laptop being used for data acquisition. 

The null modem cable was purchased from Allied Electronics, and the serial 

adaptor cable from Dell. 

CNC 
Machine 

RS-232 Null RS-232 Serial 

D Modem Cable 0 0 Adaptor Cable - B 
- - D Laptop 

25-pin 9-pin 9-pin USB 
male female male 

Figure 8: Serial Port Communication Cabling Schematic 

Depending on the F ANUC verSIOn on the CNC machine vanous 

parameters must be set. Appendix A lists the required parameter settings, as 

adapted from the FANUC parameter manual for the MMRI Nakamura-Tome 

SC450, FANUC version 21-TB, using RS-232 port 0[39]. 

The CNC code for serial port communication uses the 'DPRNT' 

command. This function sends infonnation from the CNC machine out through 

the RS-232 port. The following code shows the port being opened, the letter "A" 

being sent, and the port being closed. 

65 



M.A.Sc. Thesis - Holly Dzuba - McMaster University - Mechanical Engineering 

POPEN; 
DPRNT[A]; 
PCLOS; 

In order for the DPRNT command to be successful, the computer must be 

open to receiving. This means that all of the parameters must match and a 

program be used to acquire the sent infonnation. Lab VIEW Instrument VO 

Assistant was used to receive the DPRNT signal. The Instrument I/O Assistant 

was placed within a case structure, inside a while loop, with an indefinite timeout, 

so that LabVIEW would essentially sit 'idle' waiting for a signal from the CNC 

machine. Once the signal was received, the Instrument I/O Assistant would finish 

execution and the data acquisition case structure would begin. This cycle would 

repeat until the user selected to tenninate the while loop. Each cycle collected 

process data corresponding to a critical feature being machined automatically, 

without the need for any manual intervention. 

3.3.3 Data Acquisition Sample 

Figure 9 shows an example of the data collected for one observation in the 

MMRI laboratory tests from the current, accelerometer and temperature sensors, 

respectively. Note that the scales on the graphs are different in order to observe 

the signal. 
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Figure 9: Raw Data Sample 

The signals shown in Figure 9 represent the following machining 

sequence: spindle on, movement in X and Z toward workpiece, plunge, and 

cutting. Data acquisition stopped before cutting was completed. The steady state 

cutting region used for data processing was a region between approximately six 

and nine seconds. 

3.4 Data Processing 

Prior to performing MY A, the signals acquired during data acquisition 

were processed in an attempt to compress the data into a manageable size while 
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still maintaining the important information collected during machining. The RMS 

of each of the cunent sensors signals was chosen to represent this infonnation. 

As shown in Figure 9, the current signals of the active motors, both spindle and Z, 

produce sinusoidal wavefonns. The frequency of these wavefonns is proportional 

to the motor speed. However, the spindle motor speed will always be set by the 

user and programmed into the G-code, so monitoring the frequency of cunent is 

not relevant as it should never change. Instead the magnitude of the current is 

important since it is representative of the forces experienced during machining as 

discussed in Section 2.2.1. 

Unlike the current signals, the accelerometer waveform was much more 

complicated. As discussed previously, this type of signal is cOlmnonly analyzed 

using the FFT. 

Initial sensor data was analyzed by means of averaging multiple FFT's as 

discussed in 2.3.2. However, it was determined that considering the entire 

spectrum improved the frequency resolution, which likely decreased the spectral 

leakage, outweighing the benefits seen by averaging. 

Figure 10 shows the FFT of the accelerometer signal from Figure 9, 

within a range of 0 to 10,000 Hz, the maximum detectable frequency of the 

accelerometer. 

68 



M.A.Sc. Thesis - Holly Dzuba - McMaster University - Mechanical Engineering 

Frequency [Hz) 

Figure 10: Results of Accelerometer FFT 

Recall that Wallace saved only the FFT magnitude at the tooth passing 

frequency, and Hussein the maximum within the frequency band of 2 kHz, 

although he was examining the FFT of the force signal [3,1]. However, Wallace 

did mention that there is likely much more infonnation within the entire 

frequency spectrum, but had difficulty with data storage capabilities [3]. To 

retain more of the frequency infonnation, the frequency domain was divided into 

regions of frequency of 100 Hz. For each 100 Hz region, the maximum 

magnitude was found, as well as its conesponding frequency. Results of this 
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processing method for the FFT data in Figure 10 are presented as a bar chatt in 

Figure 11. 

X 10.5 

7" ---------.---------,---------,----------,---------,---------, 

Maximum Frequencies Within Each .00 Hz Region [Hz) 

Figure 11: Results of Processed Accelerometer FFT 

The overall shape of the FFT data is still present except that there are 

only 100 frequency values to consider instead of 10,000. It is important to retain 

both the maximum magnitude and the frequency at which the magnitude 

occurred. With further testing and experience one could start to relate frequencies 

with specific events within the machine. For example, the bearings likely have an 

excited frequency based on the number of balls within the bearing. 
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Since temperature is relatively slow movmg, the single temperature 

reading collected during data acquisition will be considered and no further 

processing is required. Table 6 presents a summary of each of the acquired sensor 

I signals, the processing method, and the variable notation. 

Table 6: Data Processing Methods for Sensor Signals 

Signal Data Processing Resulting Variable Notation 
Spindle current RMS RMS s 
X-axis current RMS RMSx 
Z-axis current RMS RMSz 
Acceleration IOO Hz bands based on FFT fl , £2, ... flOO, ml, m2, ... mIOO 

RMS RMS ace 
X-axis motor temperature Raw data Temp x 

Ambient temperature Raw data Temp am 
Spindle temperature Raw data Temp s 
Coolant temperature Raw data Temp cool 

Once the sensor data was processed, the resulting X matrix contained a 

total of 208 columns, which included: three current RMS values, 200 frequencies 

and magnitudes, one accelerometer RMS, and four temperatures. The number of 

rows was equal to the number of observations collected in the different testing 

situations. This X matrix was then inputted into the multivariate algorithm. 

3.5 Multivariate Analysis 

3.5.1 ProMV versus MATLAB 

ProSensus' ProMV software was used for offline multivariate analysis 

because of its ease of use, in terms of a graphical user interface which allows for 
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testing of different modelling techniques, ability to View many graphs, and 

options for selecting certain observations to examine their contribution plots. 

Recall that contribution plots allow investigation into what variables resulted in a 

certain observation being different from the average. 

However, it was important to be able to replicate these multivariate 

models in MATLAB for future use in online applications. Utilizing MATLAB 

would bring this research One step closer to having a commercially available 

online monitoring system to acquire new data, process the new data, compare the 

new data to a previously built multivariate model, and output predictions of part 

quality. This is not cun-ently possible with commercially available multivariate 

software such as ProMV or even Simca-P. 

The MAT LAB multivariate code was verified with a testing data set from 

Dunn with known scores and loadings, presented in Table 7 [8]. The MATLAB 

multivariate code exactly matched Dunn's scores and loadings to the fourth 

decimal place. ProMV matched Dunn's results to the second decimal place. 

Therefore, the MA TLAB code is accurate, but may differ very slightly from 

ProMY. 

Table 7: Raw Data, Scores and Loadings for Model Comparison 
(Adapted from [8)) 

Raw Data X=[3,4, 2, 2;4,3,4,3;5,5,6,4] 

Scores T= [-l.6229, 0.6051 ; -0.3493, -0.9370; l.9723, 0.3319] 

Loadings pT=( [0.5410, 0.3493 , 0.5410, 0.5410], [-0.2017,0.9370, -0.2017, -0.2017]) 

72 



M.A.Sc. Thesis - Holly Dzuba - McMaster University - Mechanical Engineering 

3.5.2 Model Building: Training & Testing Data 

The guidelines of Nomikos and MacGregor presented in section 2.4 were 

followed in order to build the multivariate models. A data set representing data 

from standard operation was used to form the training set for a PCA model. A 

few observations from standard operation were with-held for testing, as well as 

observations representing disturbances or poor quality parts. The models were 

built in ProMV and MA TLAB to ensure that either method produced the same 

results. The results from ProMV will be presented. 

3.5.3 Model Analysis 

The topics presented in 2.4, regarding the decision making strategy was 

used for model analysis; this includes use of the SPE versus HT2 plot and 

contribution plots. ProMV was used for analysis due to its simple graphical user 

interface. 
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Chapter 4 - MMRI Laboratory Testing 

4.1 Introduction to MMRI Laboratory Testing 

The MMRI laboratory tests focused on three distinct features to be 

examined with process monitoring. These features were selected because they 

were easy to simulate in the laboratory and represented events that may occur in 

an industrial setting. Test A considered random disturbances during the cutting 

process, the disturbances included: unusual surface, an out of balance spindle, and 

coolant versus no coolant. Test B considered changes in depth of cut. Changes in 

depth of cut have the potential to represent operator error, oversized barstock, or 

missing operations. Finally, Test C considered machining with a new tool versus 

a tool with significant wear. While some of these test sets may not necessarily 

impact product quality, they represent easily applied, realistic occurrences in the 

machining process. Capability to detect these occurrences will increase the 

confidence surrounding the possibility of machine process monitoring. 

The material used was raw barstock of mild steel that was cut down into 

three lengths of approximately 170 mm each. The length of barstock was held in 

the chuck at the midpoint, with material to be machined on either side. Tuming 

tests were performed on one side, and then the barstock was flipped, so that the 

other side could be used. These smaller barstock lengths were used because they 
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were more manageable, and so that minimal to no change in vibration would 

occur when machining further away from the chuck. This demonstrates the 

diligence with which the tests were planned and implemented. Confounding 

effects were controlled as much as possible. Each of the tests sets, A, Band C, 

had constant surface speed, feed and depth of cut. Test A used the workpiece at 

its largest diameter; then Test B was used after A passes were complete, followed 

by C. This increased testing efficiency, while keeping the RPM for each set 

controlled. To account for varying temperatures in the machine from the start of a 

testing cycle to the end, from the ambient conditions from the morning to the 

evening, and the extremely hot summer season in Hamilton, Ontario during the 

experimentation, groups of tests were taken at random time periods. For example, 

three sets of A, Band C may be taken, followed by the next group later that day, 

or the next. 24 tests of each set were taken over the period of approximately one 

month. All timestamps were recorded. Testing parameters were based on a 

finishing operation used by GMI. These parameters will be referred to as the 

standard machining parameters. The standard machining parameters resulted in 

very minimal tool wear. Tool wear was monitored, and the insert was replaced 

periodically to ensure that tool wear was not confounding the results. 
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4.2 Test A - Simulate Disturbances 

Test A included 20 tests using the standard machining parameters. For 

two tests, the surface to be machined was 'roughed' , by hand, with a file. 

Although, this may not affect the finished surface quality, it does represent a 

change in the original surface, which has the potential to represent a change in the 

overall material. Catching incorrectly loaded material into the barstock feeder 

could be advantageous. To simulate an out of balance spindle, a bolt and nut was 

placed in a hole on the spindle housing as shown Figure 12. Finally, the coolant 

was turned off for one test; all other tests utilized coolant. 

Figure 12: Spindle with bolt 
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4.2.1 peA Model on All Variables 

A multivariate model was built on the all 208 variables - 100 frequency 

and 100 magnitude values corresponding to the maximum FFT locations, 3 

current RMS values, one accelerometer RMS value, and four temperature values. 

The observations shown in the first row of Table 8, corresponding to standard 

machining parameters, referred to as the training set, were used to build the 

model. The other observations shown in Table 8 correspond to the four 

disturbances and one standard observation withheld for testing purposes. A 

common mistake made is to randomly select 'good' observations for testing; 

however, a better representation of how the model will be used is to select the 

most recent' good' observation for testing [8]. 

Table 8: Test A Observations 

Observation Number Description 

1,2, 10, 11, 12, 19,21,28,29,30,38,39, 
Standard machining - training set 

47, 48,55, 56,57,64,65 

3, 20 Rough surface 

37 Bolt 

46 Coolant off 

66 Standard machining - for testing 

ProMV fitted a PCA model with 2 components and an R2 value of 

approximately 29%; meaning only 29% of the variability in the data was 

explained. The SPE versus HT2 plot is shown in Figure 13 . 

77 



M.A.Sc. Thesis - Holly Dzuba - McMaster University - Mechanical Engineering 

SPf ¥s. HI2 - X-Spaa! - Test A - AU Variables 

.~ 
600 

Surface Damage 
I 

. HtOIt .. ...". 

500 

Ii. 1~-_f------+---11 ~ 4110 
u 

i i 
" .95 , I : 300 ------------------------------------------------------------------1 --------------- ------------------------------ ----------. I 

~ I 
III e2F.H-o 
~ .0 - et.o.f19-o 

200 

100 

. 1Lti-9-O 

· 11-0 

. 5 

I I I 
6 8 10 

HT2 (X-5pace-Comp 11D 2 ] 

I 
12 

Figure 13: ProMV SPE vs. HT2 Plot for Test A 
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The control plot is able to isolate the disturbances 3, 20, and 37, but did 

not detect the coolant off condition. The control plot accurately represented 

observation 66 as a standard observation with the control limits. Contribution 

plots on each of the disturbances showed various frequency and magnitude 

variables as the contributing factors. Further investigation would be required to 

explain the reason behind the contributing frequency bands. 

A contribution plot of the squared prediction error for observations 3 and 

20, roughed surface, is shown in Figure 14; this plot illustrates the difficulty in 
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analyzing the results from the contributions of the 200 frequency and magnitude 

variables. 
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Figure 14: ProMV Contribution Plot for Observation 3 and 20 from Test Set A 

Observation 2, which was from the standard machining parameters, was 

outside the HT2 95% control limit. Recall that an observation that does not fit 

within the HT2 limit, but is within the SPE limit, fits the model but has a larger 

variation in the measurements as compared to the other observations. A 

contribution in the score space of observation 2, Figure 15 and Figure 16, showed 

that the maximum variables were an order of magnitude smaller than that of the 
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other contribution plot examined; but did show an interesting result in tenns of an 

increase in both Z CUlTent and temperature. The difficulty in seeing the final eight 

variables amongst the frequency and magnitude infonnation suggests that perhaps 

these variables need to be considered in independent PCA models. 
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Figure 15: ProMV Contribution Plot for Observation 2 from Test A 
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Figure 16: ProMV Contribution Plot for Observation 2 from Test Set A - Zoomed 
to exclude Frequency and Magnitude Information 

4.2.2 2 peA Models 

The variables were separated into two groups; group FFT conesponded to 

the 200 frequency and magnitude variables, and group RMS conesponded to the 

cunent RMS, accelerometer RMS and temperature variables. ProMV fitted a 

PCA model on the RMS group. The same observations in Table 8 were used. 

This model fitted four components with an R2 of 94%. Unfortunately, this model 

did not isolate the disturbances and did place some of the standard observations 

slightly outside of the 95% limits. An independent PCA model was then fitted in 
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ProMV on the FFT group, resulting in a model with two components and R2 of 

29%. Despite the much lower R2, this model was able to detect the disturbances, 

and actually gave nearly identical results to the model using all 208 variables. 

Two lessons can be taken from these results: one, not all variables are required to 

represent these disturbances; two, the 200 frequency and magnitude variables 

overshadow the RMS and temperature variables. 

4.2.3 peA Model on Entire Frequency Spectrum 

Test A data was also used to validate the method of compressing the 

acceleration frequency spectrum into 100 Hz bands. The X matrix had rows 

corresponding to observations, and columns corresponding to magnitude values at 

each frequency bin. Since ProMV was not able to handle such a large data file, 

MATLAB was used for PCA calculations. A PCA model of two components 

resulted in an R2 of 60%, as compared to 29% in the case of the previous PCA 

model on the compressed data. However, this PCA model was only able to 

isolate the addition of the I-bolt, observation 37. The reason for this may be the 

amount of noise in the frequency spectrum associated with machining. 

Considering the maximum amplitudes only, forces the model to filter out this 

noise. Furthennore, using such a large data set has the following disadvantages: 

cannot use commercial multivariate software, requires a lot of computational 

power, and makes analyzing contributing factors very difficult. Therefore, in this 
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case, processmg the frequency spectrum is an acceptable approximation and 

results in better isolation of disturbances. Therefore, the following tests will 

continue the method of compressing the frequency spectrum. 

4.3 Test B - Simulate Changes in Depth of Cut 

Test B included 21 tests using the standard machining parameters, which 

involved a radial depth of cut of 1.5 mm. For two tests , the depth of cut was 

increased to 2 mm, and then for a final trial the depth of cut was taken at 1.8 mm. 

Table 9 lists the observation numbers and descriptions. 

Table 9: Test Set B Observations 

Observation Number Description 

4,5, 13, 14, 15,22,23,24,31,32, 33,40, 
Standard machining (1.5 mm) - training set 

42, 59,60,67, 68,69 

6, 41 2 mm radial depth of cut 

58 1.8 mm radial depth of cut 

69 Standard machining (1.5 mm) - testing set 

A PCA model was built again on the entire set of 208 variables and only 

the standard machining observations, in ProMV, and resulted in two components 

with R2 of 27%. It is important to note that ProMV removed variables that had 

very low variances. This model was able to isolate both 6 and 41, above the SPE 

and HT2 control limits, and place 69 within the control limits. However, it was 

not able to isolate observation 58 . Using the knowledge learned in Test A, the 
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PCA models were separated into the FFT and RMS groups. The PCA model of 

group FFT fit two components with an R2 of 26%. It isolated 6 and 41, similar to 

the original model of all variables, but again did not isolate 58. However, the 

PCA model of the RMS group was fitted with four components, and an R2 of 

90%, and was able to isolate all three of the observations with larger depths of cut. 

The SPE versus HT2 control plot is shown in Figure 17. 
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Figure 17: ProMV SPE vs. HT2 Plot for Test B 
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Interestingly, the observations shown in the SPE vs. HT2 plot tend to 

move outward in both SPE and HT2 as the radial depth of cut increases. The 

standard observation at 1.5 rnrn used for training, was fitted into the model within 
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the control limits. A contribution plot for 6 and 41 in the score space indicates 

that the outlying observations have a lower X current. The contribution plot of 

the squared prediction error, shown in Figure 18, also indicates a lower X current. 
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Figure 18: ProMV Contribution Plot for Observation 6 & 41 from Test B 

A contribution plot of squared prediction error for observation 58, Figure 

19, shows a similar result, with a lower X current, although less negative than 

observation 6 and 41. 
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Figure 19: ProMV Contribution Plot for Observation 58 from Test B 

A decrease in X CUlTent with an increase in the depth of cut may be 

explained by the fact that the tool had a positive lead angle . As the depth of cut 

increases within a certain range, the resultant force from the positive lead angle of 

the tool essentially pulls it into the cut and the X motor has to do less work to 

maintain position. 
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4.4 Test C - Simulate Worn Tool 

Test C included 20 tests using new inselis, or inselis with less than 50 11m 

of wear, and four tests using a tool with greater than 300 11m of flank wear, shown 
..j 

I in Table 10. 

Table 10: Test C Observations 

Observation Number Description 

7, 8, 9, 18,25,26,27, 34, 35, 36, 43 , 44, 
Standard machining (new tool) - training set 

45 , 52, 54, 61 , 62, 70, 71 , 72 

16, 17, 53,63 Worn tool 

72 Standard machining (new tool) - for testing 

A PCA model built in ProMV, using all variables, fit five components 

with an R2 of 53%. Only observations 16 and 17 were isolated in the SPE versus 

HT2 control plot. A PCA model built on the FFT group again resulted in 16 and 

17 being the only outliers. A contribution plot of observations 16 and 17 in both 

PCA models showed that various frequency bands were responsible for this 

effect. A PCA model built on RMS group included four components and an R2 of 

96%. In addition to the high R2, all four worn tools were isolated outside of the 

control limits, in most cases the SPE limit; and the new tool was placed within the 

limits, as shown in Figure 20. 
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A contribution plot of the squared prediction error on all worn tools 

indicated that the worn tools cause an increase in the spindle current This 

increase in spindle current can be accounted for by an increase in the cutting 

forces due to the worn tool. 
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Figure 21: ProMV Contribution Plot for All Worn Tools from Test C 
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As discussed previously, the SPE versus HT2 is ideal for monitoring 

because it gives the user insight into two multivariate parameters: the scores and 

the residuals; and SPE and HT2 values take into account all the components. 

However, during model building, it may be worthwhile to consider some of the 

other multivariate plots, including the score plot. A zoomed in region of the score 

plot of Test C is shown in Figure 22. This plot has the scores computed in the 

first component along the x -axis and the scores computed in the second 

component along the y-axis. 
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Figure 22: ProMV Score Plot for Test C - Components 1 and 2 - Zoomed within 
95% Control Limit 

The most interesting detail of this plot is the evident clustering of tests 

taken during the same time period. For example, the following observations form 

extremely visible clusters, when moving from right to left: (1) 43, 44, 45; (2) 61, 

62, 63; (3) 25, 26, 27; (4) 34, 35, 36; (5) 7, 8; and, (6) 16, 17. Recall that tests 

were taken in groups of three, so tests in numbered groups of three were taken at 
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the same time of day, and would likely have experienced similar machine and 

ambient conditions. Furthermore, when insert changes were necessary, to 

maintain the new insert condition, these changes were always made after a set of 

I three tests, and never in the middle. This pattern of changing inserts was possible 

since the tool wear was minimal. A contribution plot for 43, 44 and 45 indicate 

that these observations experienced cooler temperatures and a higher spindle 

current RMS. These observations were the first taken on that day, which is the 

likely explanation for the lower machine temperatures. Table 11 outlines each 

cluster of the observations, what the contribution plots revealed, and a possible 

explanation for these clusters. The explanation for some of the clusters are 

unknown, however, with extended testing it would be possible to create a 

knowledge base to match contributions to specific events in the machining 

process. 

Table 11: Overview of Observation Clusters 

Group Observations Contribution Plot Results Possible Explanation 

1 43,44,45 Lower temperatures First tests of the day 

2 61,62,63 Lower accelerometer RMS 
Lower vibration - reason 

unknown 

3 25,26,27 Lower X current 
Reason unknown -

possible larger depth of cut 

4 34,35,36 Lower X CWTent 
Reason unknown -

possible larger depth of cut 

5 7,8 
Higher machine temperature; 1 hour of machine use; 
lower spindle CUlTent RMS less tool wear 

6 16, 17 
Higher machine temperature; 2 hours of machine use; 
higher spindle CUlTent RMS worn tool 
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4.5 PLS Model 

Although Nomikos and MacGregor utilized PCA for multivariate process 

control [34], Hussein and Wallace applied PLS [1 ,3]. PLS was investigated to 

verify that PCA was the appropriate selection. The observations were 

categorized, and a quality variable was created, in which standard machining 

observations were rated as a zero and disturbances a one. 

In all cases, PLS was not very successful. The PLS model for Test A was 

not able to reach convergence, even after four components. Tests Band C 

produced a model with good fit, and was able to isolate the disturbances . 

However, it was expected that the model would isolate the disturbances, since the 

quality variable essentially told the model which observations were standard and 

which were not. In both cases, a false quality column was created, in which a few 

standard observations were marked as disturbances and vice versa. Re-fitting the 

model resulted in the standard observations that were falsely marked as 

disturbances being isolated, and the disturbances marked as standard fitting within 

the control limits. According to Dunn, PLS can be misleading for data sets with 

few observations and many variables because the model is essentially being told 

which observations are 'good' or 'bad' [8]. When the X data set is subject to 

random perturbations, such as those experienced in a machining environment, 

there may always be an orientation of the principal components that best explains 

the Y data [8]. 
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The ability to manipulate the multivariate results, the application of PCA 

by Nomikos and MacGregor, and the success of PCA with the laboratory data, 

leads to the conclusion that PCA is the appropriate multivariate technique for 

online process monitoring. 

4.6 New Process Data 

After analysis was completed on Tests Band C, questions arose regarding 

the models ability to detect less obvious events, especially in the case of the worn 

tool. Since a manufacturing facility would likely want to change an insert prior to 

end of life criterion of 300 11m, it was suggested that a tool with 150 11m of flank 

wear should be tested. It was also decided that observations of 1.6 and 1.7 mm 

radial depth of cut would be completed to fill in any gaps in Test B. The goal was 

to perfonn another six observations, as outlined in Table 12, and treat the new 

data as a testing set with the existing models. 

Table 12: New Process Observations 

Test Observation Number & Description 

Standard machining: 77,78,85, 87 
Test B 1.6 mm radial depth of cut: 76 

1.7 mm radial depth of cut: 86 

Test C 
Standard machining: 79,80, 81 , 88,90 
Worn tool (150 f.lm): 89 

After these observations were completed, the first issue that was noticed 

was the temperature of the X motor was significantly lower than that of the 
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prevIOUS tests. Inspection of the X motor thermocouple revealed that it had 

actually come loose from the surface. Thus, process monitoring can also be 

applied to assess the state of the sensors to ensure robustness. Even sensors 

subject to unusual machining conditions will likely be producing signals within a 

certain range. When a sensor signal begins to move outside of this range and 

violates the established trend, the model would trigger this occurrence. The 

existing PCA model of Test B and Test C were updated to no longer include 

temperature X. However, it was noticed that many of the new observations were 

plotted outside of the control limits, whether they were part of standard machining 

or an event. Reasons for this included increased values of RMS acceleration and 

X current. The new process data resulting from standard machining, with the 

exception of one observation which was withheld for testing, was added into the 

training set for each PCA model, and the models were rebuilt. 

Test B PCA model built on the RMS group, as well as all standard 

machining observations, with the exception of the events, and observations 69 and 

87 for testing, resulted in three components with a total R2 of 76%. Recall that the 

original model had an R2 of 90%. This new model was successful in isolating all 

the observations with increased depths of cut, and fitting the standard machining 

observations, previous and new, within the control limits. This SPE versus HT2 

plot for this model is shown in Figure 23. Furthennore, the control plot illustrates 

a gradual increase in SPE and HT2 with radial depth of cut. 
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Test C PCA model built on the RMS group, as well as all standard 

machining observations, with the exception of the events, and observations 72 and 

90 for testing, resulted in three components with a total R2 of 82%. Recall that 

the original model had an R2 of 96%. This new model was successful in isolating 

all the observations with worn tools of both 300 and 150 !lm, and fitting the 

standard machining observations, previous and new, within the control limits . 

This model is shown in Figure 24. 
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Figure 24: ProMV SPE vs. HT2 Plot for Test C with New Process Data 

4.7 Laboratory Summary 

The multivariate process monitoring models developed in the MMRI 

laboratory proved successful in identifying 13 out of the 14 disturbances 

introduced over the three test sets. Furthermore, all of the standard machining 

observations that were withheld for testing were correctly identified as being in-

control. The most successful multivariate models were produced from two 

separate peA models, one using all 200 variables corresponding to the 
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accelerometer frequency and magnitude infonnation produced by the FFT, and 

another using the eight variables of RMS cun'ent and acceleration, and 

temperature. Separating the 200 FFT valiables was impOliant as the magnitudes 

of these valiables seemed to overshadow the other eight variables. The most 

interesting discovery made during the MMRI tests, was that the same type of 

disturbance seemed to consistently result in changes in the same variables. This is 

a very promising result, since an outlier with a specific variable contribution, can 

be correlated to an exact cause, and a specific course of action. The disturbances 

introduced in Test A, roughed surface and out of balance spindle, were detected 

by the accelerometer FFT frequency and magnitude variables. The changes in 

depth of cut in Test B were consistently represented by a decrease in the X 

current. Finally, observations with a worn tool in Test C resulted in an increase in 

the spindle RMS current. These are relevant results that can be applied in 

industry. For example, increases in spindle current beyond an established limit, 

mean that the ins eli needs to be replaced to maintain product quality. 

Unfortunately, the ability to use the previously built models on new 

process data in online process monitoring applications was not successful due 

primarily to changes in the accelerometer and X current process data. It is 

unknown as to what specifically caused the changes in sensor data, but a time 

period of approximately a month between when the model was built and when the 

new process data was collected could explain changes in the machine 
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components, lubrication levels, and many other features. The success and failure 

experienced with this new process data may be a consequence of an under

developed training set. As the historical database encompasses more common

cause variation, the multivariate models can better fit new observations. 

However, periodic calibration of the model is also important. This calibration 

could be based On a time period, such as weekly or monthly, or on known changes 

in the machine or process. Anytime the correlation structure between the different 

variables is changed, the model will need to be rebuilt. Many commonly used 

tools in machining need periodic calibration, such as callipers, coordinate 

measuring machines, and accelerometers, so process monitoring models should be 

treated similarly. Conversely, the need for frequent calibration of the model could 

be indicative of a need for machine maintenance and therefore could be used as a 

preventative measure. 

Recommendations for future laboratory process monitoring research are 

listed below: 

• Consider other disturbances that may occur in machining 

• Test smaller changes in depth of cut to simulate high precision machining 

applications 

• Use plots to map out progression of tool wear from a new tool to worn tool 

for tool condition monitoring 
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• Examine alternative methods of dealing with the FFT and RMS groups, 

other than building two distinct models 
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Chapter 5 - Industrial Testing 

5.1 Introduction to Industrial Testing 

The industrial research was completed at GMI in Barrie, Ontario. GMI is 

an advanced machining supplier who specializes in machining automotive parts 

for the world market [40]. The company processes 25,000 tons of raw materials 

to manufacture millions of parts annually, including pump shafts, decoupler 

shafts, alternator pulley housings, and brake cam rollers [40]. In order to compete 

in the global economy, GMI focuses on innovative projects, such as its modem 

machining cell, coolant recovery system, and integrated quality control systems. 

The company values research projects including the goal of having an online 

process monitoring system. 

The industrial testing was based on an automated turning cell that 

produces decoupler shafts. The shafts are machined from hot rolled steel barstock 

of approximately one meter in length. The barstock is held in the lathe at the 

collet only, with a linear tube around the remaining material, acting only as a 

safety mechanism. Approximately 25 parts are produced per bar. Two turrets and 

various speeds, feeds, and depths of cut, are used to produce the different part 

features. For purposes of this research, only a single critical feature was 

monitored, as this feature had 100% inspection by an air gage. The goal was to 
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build a process monitoring model on data acquired from good quality parts, in 

order to attempt to predict the occurrence of out of specification parts. However, 

as one might expect the industrial testing required consideration of many more 

factors than the laboratory testing. 

5.2 Industrial Implementation Challenges 

Due to a recent facility relocation and production scheduling, only a small 

window of time was available to complete the tests. Thus, it was planned that the 

industrial research would mimic the thorough research done in the MMRl 

laboratory. However, industrial setup proved to be more difficult. Each of the 

issues will be discussed, as they relate to important learning experiences that can 

be applied to future work. 

Firstly, a machine was selected from the online cell based on its low 

variability, but tendency to produce occasional bad parts. This made it an ideal 

candidate for multivariate analysis trials. However, after instrumentation, it was 

realized that the RS-232 port was not communicating, and the machine produced 

the following error: "DR SIGNAL OFF". Many different port and parameter 

settings were selected, that did not resolve the problem. This en"or message 

relates to a miscommunication between the machine and the receiving port. One 

would expect this error if the connected computer was not open to receiving. 

However, this was not the case. According to the CNC supplier Elliot-Matsuura, 
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an electrical surge or similar issue could unknowingly defect the RS-232 ports 

[41]. After multiple trials, a machine was found with a functioning RS-232 port. 

However, this machine produced very well with low variability and no poor 

quality parts during the testing period. 

Secondly, current sensor instrumentation on the spindle motor was similar 

to that in the laboratory and involved unscrewing the wire terminal and feeding it 

through the current sensor window. However, for the X and Z motors, the wires 

were mounted within a box and had to be unhooked and spliced. This resulted in 

the machine between offline for longer than anticipated. 

Thirdly, once serial port issues were resolved and all sensors were 

mounted, an error occurred with the data acquisition devices. It is believed that 

the USB hub overloaded, and was not able to accommodate the serial cable, and 

three data acquisition devices . Thus, the temperature device was selected to be 

neglected for the tests. 

Finally, establishing documentation of the tool wear, barstock length, and 

quality was very important. Tool wear was easily recorded as a count of how 

many parts the tool has made in its life. GMI changes the inselt after a set 

number of parts are machined. Barstock length was recorded as the number of 

parts to go, by the barstock feeder. Quality was the most significant parameter as 

it was required for correlations with the process data. Quality can be tracked by 

the serial number, which is given to the part along its path to the CMM. The time 
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stamp on the serial number does not have the resolution to allow it to be related 

back to the data acquisition data. It can become difficult to track the part until it 

receives its serial number since the critical feature is machined on turret one, 

while turret two is machining another part, and a third pali is in the process of 

transferring out of the machine and onto the conveyor to begin its path to the 

CMM. If the first part acquired is tracked properly and the serial number 

recorded, then all other parts should sequentially follow. 

All the issues discussed were important for organizing the data, and have 

the potential to be solved in a timely manner for future industrial testing 

opportunities that become available. Possible solutions to these issues will be 

discussed in section 5.5 . 

5.3 Data Acquisition & Analysis 

Despite the difficulties experienced, infOlmation including process data, 

quality, parts to go on barstock, and tool wear, were acquired on a total of 150 

parts over the span of two days. Day one included 58 observations with the tool 

at the start of the first observation, having produced 667 parts. Day two included 

92 observations with the tool at 279 parts. Therefore, the tool was in a newer 

condition on day two as opposed to day one. As previously discussed, all parts 

machined during data acquisition were within the specification limits, denoted by 

USL and LSL on Figure 25. However, a few parts were outside of the control 
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limits, UCL and LCL shown in Figure 25 , as defined by the current univariate 

statistical process control model. 

Day One Quality 

USL 

!:!-~~------- ---------------------------- - - ----------- - --------------------- -- ----------------- ~\ 

~ l\ 11 ~ ~£~----~"v------ -------------------------------------------------------- . 

~ 
co 
::J 

o 

LSL 

10 20 30 
Observation Number 

Day Two Quality 

40 50 

a ________ _________________________________________________________________________________________ . 

LSL 

60 70 80 90 100 110 120 130 140 150 
Observation Number 

Figure 25: GMI Quality Control Chart 

Since there was no poor quality parts produced, a multivariate model was 

built on a training set of data within the upper and lower control limits . The 

observations outside of the limits were withheld from the model, as well as a few 

'good ' observations for testing purposes. 
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Table 13: Industrial Observations 

Observation Number Description 

1-5, 7,8, 10, 17, 19, 21-23,25-56,58,60-
Good observations - training set 

73 , 75-89, 91 , 93-150 

1 
57, 90, 92 Above UCL 

6,9, 11-16, 18,20, 24 Below LCL 

56,58, 149, 150 Good observations - testing set 

The FFT and RMS groups were considered separately in the multivariate 

models as demonstrated by the laboratory results. In addition to these variables, 

the number of parts to go on the barstock and the number of parts machined by 

the tool were included in the models. Recall that temperature was not considered. 

5.4 Results 

The initial multivariate model was built as described in section 5.3 with 

the RMS, tool and barstock infonnation. ProMV fitted three components with an 

R2 of 90%. The SPE versus HT2 plot is shown in Figure 26. 
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Many of the observations below the LCL limit were identified outside or 

approaching the SPE or HT2 control limits. An examination of the contribution 
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plots indicated that the conttibuting variables were an increase in tool wear, 

spindle current, and X current. Due to the complex nature of this data set, one 

must take caution not to assume causation over correlation. The SPE versus HT2 

indicates a large number of observations that do not appear to fit the data. Most 

of these observations are in fact from day one. Many more observations were 

collected on day two than day one, therefore, the SPE versus HT2 may be 

identifying day one observations rather than observations approaching the LCL. 

The cause of the difference in data from day one to day two may be related to tool 

wear, or it may also be related to the machine, ambient conditions or unknown 

effects . The loading bi-plot shown in Figure 27 for the first and second principal 

component allows better examination into the spread of the data in this case. A 

loading plot rescales the loadings and scores so they can be superimposed to show 

their relationships [33]. 
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Figure 27: ProMV Loading Bi-Plot for Industrial Test - Components 1 and 2 

The loading bi-p10t shows a distinct separation from day one to day two. 

This plot also demonstrates the previously known fact that a newer tool was used 

on day two; and that there was a decrease in spindle and X current, and an 

increase in vibration. Laboratory testing had indicated that as the tool becomes 

worn, the spindle current increases. Although this was true between days, 

observations within a day did not show an increase in spindle current, even 
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though the tool wear would have been progressing. In fact, on day one, the 

spindle current actually decreased over the testing period. Tool wear generally 

progressed as a steep incline followed by a period of slow wear, followed by 

another steep incline until failure. Perhaps during each day, the tool wear is in the 

region of slow wear, and therefore other factors are taking precedence. 

The loading bi-plot also indicates that as one moves down each cluster in 

the negative y-direction, there is a decrease in Z current, and decrease in parts to 

go, meaning the barstock is becoming shorter. However, upon examining the 

loading bi-plot for the first and third principal component, this cOlTelation 

between the Z current and barstock length was reversed, meaning that there likely 

is no correlation at all. This confusion illustrates the complexity involved in 

analyzing the industrial data that was not evident in the laboratory testing data set. 

The testing data set was not able to be shown on the loading bi-plot, so 

Figure 28 shows a score plot zoomed into the region of data for day one including 

the training and testing observations . 
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Figure 28: ProMV Score Plot for Industrial Test - Components 1 and 2 -
Zoomed within Day One 

In Figure 28, observations one through 16, shown in Cluster A, were 

machined from the same barstock and were below the LCL. An increase in 

accelerometer data caused the cluster and potentially identified a barstock issue. 

A multivariate model was created on only the day one data in the hopes that these 

observations would be shown as outliers on the SPE versus HT2 plots; however, 
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that was not the case. A multivariate model of day two data also was not able to 

yield any additional insight into the process. 

The second multivariate model was built as described in section 5.3 using 

1 the variables from the FFT group. ProMV fitted 12 components and an R2 of 

82%. The score plot clustered the observations from day one and two similar to 

that of the score plot in Figure 27. Additionally, the overall trend of an increase 

in vibration from day one to day two was also evident. However, similar to the 

previous model, the observations outside of the control limits fit within the model 

and were not identified as unusual. 

All observations that were withheld from the model, including both the 

training set and those outside the control limits, were fit into clusters with 

observations collected around the same period of time. This indicates the good 

predictive ability of the model and the potential of the model to fit new good parts 

with other good observations and identify out-of-tolerance parts as outliers. 

5.5 Industrial Summary 

In summary, the industrial testing experience was successful in identifying 

some of the difficulties associated with experimental testing in industry versus an 

academic laboratory setting. This research established a framework of process 

monitoring at OMI that can be applied for future research efforts. The mounted 

current sensors were safely left in the machine at OMI to allow for easy setup and 
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minimal production downtime for the next researcher. This machine is also able 

to easily connect to the serial port with the parameter settings outlined in section 

3.3 .2. The USB issue could be resolved by use of a computer that supports more 

USB hubs or new National Instrument equipment such as a multiple device 

chassis that supports per device sampling rates. It is important to acquire data 

from many sensors to gain as much insight as possible into the process. 

Temperature is a particularly important parameter as the ambient 

temperature on the machining floor were quite high, occasionally in excess of 

30°C, due to fact that all of the machines were running. If possible, the collection 

of temperature measurements of the part after machining would also be ideal. 

This could be done through the use of a non-contact temperature measuring 

device. The final issue that will need to be addressed is a careful linking of 

production data with quality data. At this point the serial numbering system is not 

designed to provide the time resolution required to line up the data. 

The PCA models built from the industrial data showed obvious clustering 

between days, likely a result of tool wear. As data from more inserts over more 

days is acquired, the models will begin to accept the variance from the tool wear. 

A score plot was also able to identify one barstock from the others as a result of 

increased vibration. Tool wear within each day was not identified by an increase 

in spindle current as was the case in the laboratory testing. It is impOliant to 

consider that the tolerances on the parts are on the order of microns; thus, 
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detection of a part slightly above the control limits may be difficult. Since there 

were no out of tolerance parts in the data set collected, it is impossible to 

detennine with certainty whether or not process monitoring was successful. 

However, correlations in the sensor data were evident in the multivariate plots. 

With the cooperation and encouragement of GMI, along with the 

experience gained from industrial testing, the MMRl is in the position to prepare 

an online process monitoring system that will acquire data automatically for 

extended periods of time, in order to develop an historical data base of good data. 

A longer time period will yield out of tolerance parts which can then be used to 

test the model. Measures such as type I and type II error can then be used to 

validate the model. 
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Chapter 6 - Conclusions and Recommendations 

6.1 Conclusions 

The research presented in this thesis, on the topic of online process 

monitoring of discrete part manufacturing, was able to meet many of the criteria 

suggested by Hussein, Ruparelia and Wallace, as outlined in section 2.5. The 

process considered was turning of raw barstock in both the laboratory and 

industrial setting. The experiments completed in the laboratory allowed the 

researcher to develop instrumentation and data acquisition techniques to collect 

relevant cun-ent, vibration and temperature measurements. Review of frequency 

analysis methods aided in gaining insight into the accelerometer data, and allowed 

more of the frequency spectrum to be considered. The use of PCA as the 

multivariate teclmique was shown to be most successful when the frequency 

spectrum variables were considered separate from the RMS variables. The 

multivariate SPE versus HT2 plots identified the disturbances in a manner that 

would easily be interpreted by a technician in a manufacturing facility, who could 

then take the necessary action. The process monitoring techniques investigated in 

the laboratory were shown to be successful in identifying the occurrence of an out 

of balance spindle, rough surface texture, changes in depth of cut, and tool wear. 
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The application of the laboratory process monitoring setup in industry was 

a significant learning experience. The novel addition of the RS-232 serial POlt 

trigger from the CNC G-code to a computer equipped with Lab VIEW, allowed for 

automated data collection on the feature of interest. Multivariate results presented 

con"elations among tool wear and spindle cunent between testing days. The PCA 

model had good fit and ability to cluster testing observations with training 

observations collected during the same time period. Installed cunent sensors 

remain in the electrical panel at GMI for future testing opportunities. An itemized 

process monitoring kit including all sensors, data acquisition devices, and 

instmctions, was created in the MMRI to aid new researchers in maintaining and 

continuing online process monitoring at both the MMRI and GMI. 

In conclusion, knowledge and experience has been presented in this thesis 

on a system for online process monitoring of discrete part manufacturing using 

multivariate analysis. This topic promotes value creation in the manufacturing of 

high quality products to help the Canadian manufacturing industry compete in the 

global market place. 

6.2 Recommendations for Future Work 

The recommendations for future work focus on bringing process 

monitoring closer to full industrial implementation. It is important to continue to 

tune the process monitoring system to be sensitive to problems occuning in 
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industlY Laboratory research should further refine the results by considering 

more disturbances, small changes in depth of cut, and the effect of the progression 

of tool wear with spindle CUlTent. Industry research should include temperature 

measurements and a method of aligning the serial numbering system with data 

acquisition. This will require a method of interfacing with the current serial 

numbering system. A computer and equipped process monitoring system needs to 

be prepared for full-time data collection on the factory floor. The goal is to 

automate the process monitoring system in order to collect data over extended 

periods of time to build a comprehensive historical database. Once this database 

is complete, the system can be configured to test to new process infonnation and 

establish part prediction and machine maintenance monitoring. 

116 



I 

M.A.Sc. Thesis - Holly Dzuba - McMaster University - Mechanical Engineering 

Chapter 7 - Bibliography 

[1] Wessam Mahmoud Hussein, "Machining Process Monitoring Using 
Multivariate Latent Variable Methods," McMaster University, Hamilton, 
Ontario, Ph.D. Thesis 2007. 

[2] Samir Ruparelia, "Online Monitoring Technique for Detection of Drill 
Chipping," McMaster University, Hamilton, Ph.D. Thesis 2002. 

[3] Darryl Wallace, "Multivariate Analysis Applied to Discrete Part 
Manufacturing," Mechanical Engineering, McMaster University, 
Hamilton, M .A.Sc. Thesis 2007. 

[4] Kevin Dunn. (2010, April) McMaster Course: Statistics for Engineering 
(CHE 4C3/6C3). [Online]. http://stats4.eng.mcmaster.ca 

[5] KPMG in Canada. (2006, January) KPMG. [Online]. 
http: //www.kpmg.ca/en/news/pr20060 104.html 

[6] David Welch. (2010, April) Bloomberg Businessweek. [Online]. 
http: //www.businessweek.comlautos/autobeat/archives/20 1 0/04/ detroits _ 0 

pportune _moment_american _cars_are _better_than _asian_cars _americans 
_say.html 

[7] (2010, Apr.) Statistics Canada. [Online]. 
http://www40.statcan.gc.callOlIcstOllmanuf11 -eng.htm 

[8] Kevin Dunn, Interview with Instructor, July 28, 2010. 

[9] 1. Inasaki and H. Tonshoff, Sensor Applications - Volume 1: Sensors in 
Mamifacturing, Verkay GmbH, Ed. New York, United States: Wiley
VCH, 2001, vol. 1. 

[10] J. M. Lee, D. K. Choi, J. Kim, and C. N. Chu, "Real-Time Tool Breakage 
Monitoring for NC Milling Process," Annals ojCIRP, vol. 44, no. 1, pp. 
59-62, 1995 . 

117 



M.A.Sc. Thesis - Holly Dzuba - McMaster University - Mechanical Engineering 

[11] Xiaoli Li, "Development of Cunent Sensor for Cutting Force 
Measurement in Turning," IEEE Transactions on Instrumentation and 
Measurement, vol. 54, no. 1, pp. 289-296, February 2005. 

[12] Y. Altintas, "Predication of Cutting Forces and Tool Breakage in Milling 
from Feed Drive Cunent Measurements," Journal of Engineering for 
Industry, pp. 387-392, 1991. 

[1 3] G. Byrne et aI., "Tool Condition Monitoring (TCM) - The Status of 
Research and Industrial Application," Annals of CIRP, vol. 44, no. 2, pp. 
541-567, 1995. 

[14] G. W. Li, W. Lau, and Y. Zhang, "In-Process Drill Wear and Breakage 
Monitoring for a Machining Centre Based on Cutting Force Parameters," 
International Journal of Machine Tools and Manufacture, vol. 32, no. 6, 
pp. 855-867, 1992. 

[15] Young-Hun Jeong and Dong-Woo Cho, "Estimating cutting force from a 
rotating and stationary feed motor cunents on a milling machine," 
International Journal of Machine Tools & Manufacture, vol. 42, no. 14, 
pp. 1559-1566, July 2002. 

[16] W. Li, D. Li, and J. Ni, "Diagnosis of tapping process using spindle motor 
cunent," International Journal of Machine Tools & Mamifacture, vol. 43, 
no. 1, pp. 73-79,2003. 

[17] Honeywell. (2009) Honeywell. [Online]. 
http://sensing.honeywell.com/index.cfm/ci_idlI50217 /la _id/ lldocumentll 
Ire idlO 

[18] Singiresu S. Rao, Mechanical Vibrations. Upper Saddle River, New 
Jersey: Pearson Prentice Hall, 2003, vol. 4. 

[19] Seung-Bok Choi, Piezoelectric Actuators: Control Applications of Smart 
Materials.: CRe Press, 2010. 

118 



M.A.Sc. Thesis - Holly Dzuba - McMaster University - Mechanical Engineering 

[20] K. A. Risbood, U. S. Dixit, and A. D. Sahasrabudhe, "Prediction of 
surface roughness and dimensional deviation by measuring cutting forces 
and vibrations in turning process," Journal of Materials Processing 
Technology, vol. 132, pp. 203-214, 2002. 

[21] T. 1. EI-Wardany, D. Gao, and M. A. Elbestawi, "Tool Condition 
Monitoring in Drilling Using Vibration Signature Analysis," International 
Journal of Machine Tools Manufacturing, vol. 36, no. 6, pp. 687-711, 
1996. 

[22] A. K. Srivastava, S. C. Veldhuis, and M. A. Elbestawi, "Modelling 
Geometric and Thennal En"ors in a Five-Axis CNC Machine Tool," 
International Journal of Machine Tools Manufacturing, vol. 35, no. 9, pp. 
1321-1337, 1995. 

[23] S. Veldhuis, "Modelling and compensation of errors in five-axis 
machining," McMaster University, 1998. 

[24] Omega. (2010) Omega Engineering Technical Reference. [Online]. 
http: //www.omega.ca/prodinfo/thennocoup les .hhnl 

[25] Jianguo Yang, Jingxia Yuan, and Jun Ni, "Thennal error mode analysis 
and robust modeling for elTor compensation on a CNC turning center," 
International Journal of Machine Tools Manufacturing, vol. 39, pp. 1367-
1381, 1999. 

[26] W. Bolton, Electronic Control Systems in Mechanical Engineering. New 
York: Addison Wesley Longman Limited, 1999, vol. 2. 

[27] Richard G. Lyons, Understanding digital signal processing, 2nd ed., 
c2004 Prentice Hall PTR, Ed.: Upper Saddle River NJ, 1948. 

[28] National Inshllments. (2009) Inh"oduction to Digital Signal Processing and 
Analysis in Lab VIEW. [Online]. http: //zone.ni.comireference/en
XXlhelp/3 71361 F -0 lIlvanlsconcepts/aliasing/ 

[29] National Instruments. (2009, June) NI Developer Zone. [Online]. 
http: //zone.ni.comidevzone/cdaltutiplid/4278 

119 



M.A.Sc. Thesis - Holly Dzuba - McMaster University - Mechanical Engineering 

[30] Math Works. (2009) fft. [Online]. 
http: //www.mathworks.comlhelp/techdoc/ref/fft.html 

[31] National Instruments. (2006, September) Zero Padding Does Not Buy 
Spectral Resolution. [Online]. 
http://zone.ni . coml devzonel cda/tut/p/id/ 4880 

[32] National Instruments. (2009) Windowing: Optimizing FFTs Using 
Window Functions. [Online]. 
http://zone.ni.com/devzone/cda/tut/plid/4844 

[33] ProSensus, "Multivariate Methods for Process Analysis, Montoring and 
Quality Improvement," Burlington, Ontario, Intenstive Course 2008. 

[34] Paul Nomikos and John MacGregor, "Multivariate SPC Charts for 
Monitoring Batch Processes," Technometrics , vol. 37, no. 1, pp. 41-59, 
February 1995. 

[35] Kevin Dunn, Interview with Instructor, October 7,2010. 

[36] Theodora Kourti and John F. MacGregor, "Process analysis, monitoring 
and diagnosis, using multivariate projection methods," Chemometrics and 
Intelligent Laborat01Y Systems, vol. 28, pp. 3-21 , Novemeber 1994. 

[37] Nakamura-Tome. (2008) Nakamura-Tome Precision Industry. [Online]. 
http://www.nakamura-tome.co.jp/e/products/tulTet/wt -series/wt -150 .htrnl 

[38] National Instruments. User Guide and Specifications: NI USB-9234. 
[Online]. http: //sine.ni.com/nips/cds/view/p/lang/en/nid/208802 

[39] FANUC LTD, "FANUC Series 21-MODEL B Parameter Manual," 1995. 

[40] Glueckler Metal Inc. G.M.I. [Online]. http://www.gluecklermetal.com/ 

[41] Elliot-Matsuura, Phone Interview, Oct 13,2010. 

120 



M.A.Sc. Thesis - Holly Dzuba - McMaster University - Mechanical Engineering 

Appendix A 

Table 14: Serial Port Communication FANUC Parameters 
(Adapted from [39]) 

Parameter Value Note 

TV CHECK 0 0: off 1: on 

PUNCH CODE 0 0: ISO 1: EIA 

INPUT DEVICE 0 RS 232 

I/O CHANNEL 0 Port Number 

0000 0000010 
TV check, output code, unit of input, automatic 

sequence number insertion 

0020 0 Port Number 

0100 0 Character count, output ofEOB, DNC operation 

0101 1000001 Stop bit and other data 

0102 0 Number for input/output device 

0103 11 Baud Rate (11: 9600) 

• Parameters adapted from the F ANUC parameter manual for the MMRl 

Nakamura-Tome SC450, FANUC version 21-TB, using RS-232 POlt ° 
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