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Abstract

This thesis is concerned with interpolation along the Z-axis for application in medical

imaging and increasing out-of plane resolution of 3-D medical image sets. Interpolation

along the Z-axis is an essential task in clinical studies for better diagnosis and analysis of

body organs and their functions. It is also necessary when sets of images with different

out-of plane resolutions should be analyzed together.

The first part of the thesis discusses a 3-D interpolation method based on a piece-wise

autoregressive model that has been already proven to be efficient for 2-D image interpola­

tion.The 3-D image set is modeled as a 3-D piece-wise autoregressive model and the model

parameters are estimated within a cube that slides through the low resolution image set.

The major part of this thesis is devoted to a new interpolation algorithm, called context­

based 3-D interpolation. The proposed method represents a new approach of aiding 3-D

interpolation and improving its performance by efficient use of domain knowledge about

the anatomy, orientation and imaging modalities. In the new approach a family of adaptive

3-D interpolation filters are designed and conditioned on different spatial contexts (classes

of feature vectors). Training is used to incorporate the domain knowledge into the de­

sign of these interpolators. Experimental results show significant improvement of the new

approach over some existing 3D interpolation techniques.
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Notation and abbreviations

CT Computer Tomography

SPECT Single Photon Emission Computed Tomography

MRI Magnetic Resonance Imaging

MIP Maximum Intensity Projection

SAl Soft decision estimation for Adaptive image Interpolation

CGI Control Gdd Interpolation

MCGI Modified Control Grid Interpolation

CBI Context Based Interpolation

HR High Resolution

LR Low Resolution

PAR Piece-wise Autoregressive

CALIC Context Adaptive Lossless Image Coder

PSNR Peak Signal to Noise Ratio
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RM Relevance Measure

ST Smoothness Threshold
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Chapter 1

Introduction and Problem Statement

Medical imaging is the technique and process employed to create images of human body

for clinical purposes. It is a necessary part of radiological sciences for visualization of

anatomical structures and analysis of metabolic functions. Besides providing valuable in­

formation resources about human anatomy, functions of organs and related physiological

processes, structural and functional imaging allow for analyzing the physiological behavior

of an organ or tissue under treatment. In the past three decades medical imaging technology

has experienced significant improvement. Creation of multi-dimensional imaging modal­

ities is direct result of such advancements. The capability of multi-dimensional imaging

modalities in attaining anatomical, physiological, metabolic and functional data from hu­

man body makes them very useful in radiological diagnosis. While in planar imaging some

diagnostic features may be missed, the visualization of multi-dimensional images have

assisted in discovering hidden features and providing significant clinical information for

diagnosis and treatment. In broad sense medical imaging modalities are classified into two

categories. According to their category they could provide details about either anatomical

structures or functional activities. The former uses external source of energy as a mean to
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get information about the organ being imaged while the latter uses internal energy source

(e.g. radioactive pharmaceutical injected to body) for the same purpose. X-ray Computed

Tomography (X-ray CT) and Single Photon Emission Computed Tomography (SPECT)

are examples of modalities obtained by external and internal energy sources, respectively.

Besides, some modalities such as Magnetic Resonance Imaging (MRI) use both external

and internal source of energy radiation. For a better clarification, classification of imaging

modalities based on the applied energy source is illustrated in Fig. 1.1.

Figure 1.1: Different imaging modalities based on energy source used for imaging [1]

Upon radiation, the energy interacts with the specific body organ and the resulting sig­

nal, altered radiated energy, is collected and converted to a digital image by an image

processing module called data (image) acquisition unit. A simple schematic of a medical
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imaging system is shown in Fig. 1.2. The accuracy, sensitivity and specificity factors of

medical images may change due to limitation of different imaging modalities. Image pro­

cessing techniques prove to have a critical role in improving the visibility and quantification

of features of interest.

Figure 1.2: General schematic of a medical imaging system

One of the popular and common practice in clinical diagnosis is manipulation and anal­

ysis of 3-dimensional image modalities. A practical image analysis method frequently used

in medical applications is visualization. It is an efficient mean of determining functions of

internal organs and detecting possible causes of their malfunctions. With the ability to

visualize impOltant structures in great details, 3-D visualization methods are a valuable

resource for the diagnosis and surgical treatment of many pathologies. For example Maxi­

mum Intensity Projection (MIP), a computer visualization method, is used for the detection

of lung nodules in lung cancer. MIP intensifies the 3-D structure of the nodules, making

them stand out from pulmonary bronchi and vasculature.

3
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Medical imaging devices often produce set of 2-D images known as slice which forms

a 3-D volume. Different method of scanning will result in different resolution within the

image plane or along Z-axis (between slice resolution). For example a faster scan results

in lower resolution along Z-axis and in most cases the sampling rate within the image

plane (slice) is much higher than between them. As a result, voxels (volumetric pixels)

are anisotropic (non-cubical) in the 3D space. An image set with higher 3-D resolution

requires either more radiation exposure (such as in CT) or increased scan time (such as

in MRI) which is impossible in many practical situations. However isotropically (or at

least near isotropically) sampled data is a definite requirement for effective analysis and

interpretation of medical images. Visualization of a non-isotropic volume will result in

an incorrect aspect ratio that may cause geometric distortion and unequal magnification.

It ultimately could bias the analysis and diagnosis process. For a more clear justification

over the difficulty when visualizing a non-cubic image set, we encourage the reader to

take a moment examining Fig. 1.3. In the figures a horizontal cross section is created first

using a non-cubical set (512 x 512 x 212) and then using another set which is near-cubical

(512 x 512 x 420).

To overcome the shOltcoming of non-cubical voxles and make the sample distance same

in x, y and z directions, a number of 3-D interpolation methods have been published. The

proposed interpolation methods are based on different mathematical and physical concepts

but what they all share in common is estimation of the intermediate unknown slice from

statistics or geometrical features available in neighboring slices. It is worth mentioning

that the application of 3-D interpolation is not necessarily confined to the problem of non­

isotropic volumes but other cases such as changing the coordinate system or grid orienta­

tion may as well require interpolation. Another example of application of 3-D interpolation

4
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a. Non-Cubical Image Set: 512 x 512 x 212 b. Near Cubical Image Set: 512 x 512 x 420

Figure 1.3: Creating horizontal cross sections from non-cubical and near cubical image
sets

is resolution assimilation which is indispensable when two image sets (either from same

or different modalities) with different resolutions along Z-axis are to be analyzed simul­

taneously. In this situation interpolation will balance the resolutions and allow for more

accurate analysis.

By now, the imp011ance of 3-D interpolation is clearly manifested. It is also evident

that the improvement of medical scanners' rate would not eliminate the need for interpola­

tion. In the coming section a number of 3-D interpolation methods for medical images are

reviewed.
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The issue of interpolation for 3-D medical images became subject of interest following the

need to display and visualize 3-D medical image modalities. In late 1970's modem tomog­

raphy devices began to capture images of body organ in a slice-by-slice fashion. The first

commercially viable CT scanner was publicly announced in 1972 and the first MR image

was published in 1973. It was in 1977 when MRI was used to perform study on human.

Digital geometry processing, applied on series of 2-D images, pioneered visualization of

3-D images of organs inside human body. As already discussed, visualization often re­

quires an isotropic image set. It was since then that many 3-D interpolation techniques

were proposed to resolve the problematic issue of anisotropic sets.

3-D interpolation techniques are generally classified into two classes: object-independent

(non-adaptive to local statistics) and object-dependent (adaptive to local statistics). In the

literature of 3-D medical image interpolation these two classes are referred to as scene­

based and object-based, respectively. Though this classification was mentioned implicitly

in early 80's [2] it was no sooner than late 90's when it was explicitly stated as scene­

based and object-based [3]. Scene-based interpolation techniques exploit basis functions

and kernels [4, 5] to estimate voxel value of an unknown slice from neighboring slices.

The unknown voxel is usually calculated by weighted summation of voxel intensity values

in two or four neighboring slices. The weighted values depend on the specific selected

kernel. These methods are fast and low in computational complexity, however they result

in significant artifacts when the edges shift considerably from one slice to another. Nearest

neighbor, linear, cubic spline, modified cubic spline [6], cubic convolution [7], sinc-based

and Kriging [8] are some examples of scene-based interpolation class. On the other hand,

object-based interpolation methods explore the features within the slices to impose a more
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effective interpolation process considering edges and feature locations. The object-based

methods have shown superior performance compared to scene-based algorithms but at the

cost of more computational complexity. Thus choosing the suitable interpolation method is

often a trade-off between computational complexity and accuracy. Object-based methods

can be divided into two major groups: registration-based and shape-based method. The

former has also been addressed as slice matching or correspondence [9]. The registration­

based methods try to find an optimal transformation to map extracted contours and surface

boundaries of a segmented slice to contour of a neighboring slice. Method of finding the

map function is what makes for different registration-based interpolation techniques. For

example Goshtasby et al. in [9] used feature points from consecutive slices based on gra­

dient value and voxel intensity. (There are also different algorithms for contour extraction

and conversion to geometrical shapes discussed in [10, 11] but they are not focus of this

work.) Upon registering the contours, the intensity value of the contour in the unknown

intermediate slice is calculated usually through linear interpolation. The other object-based

method, shape-based interpolation utilizes the concept of distance transform. Depending on

the choice of distance transform function, different methods of shape-based interpolation

have been proposed such as in [12, 13]. Here we review and compare different algorithms

proposed during the past three decades.

As we mentioned earlier the most convenient method of interpolation is to estimate the

voxel intensity of the unknown slice by linearly combining the voxel intensity of the two

neighboring slices such as in work of Liang et al. [14], Fuchs et al. [15] or Herman and

Coin in [16]. Keys in [7] used higher order functions (cubic convolution) to estimate a

more accurate waveform to fit the statistics within the slices. However the spacing of slices

along Z-axis in medical images is not small enough to help a higher order function fit a
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better waveform to local statistics; thus a higher order interpolator or other scene-based

interpolators would not work better than a linear interpolator [17]. The linear interpola­

tor or any other interpolator of scene-based class perform poorly in case of considerable

shift of edges (which happens specially when between slice spacing is more than 4mm) or

branching which is a common issue in medical images (e.g. imaging of coronary arteries).

As to reduce the artifacts incurred in scene-based interpolation Lin et al. in [12] proposed

a method based on concept of contour registration. Their method, elastic surface interpola­

tion, attempted to solve the branching problem by determining a force field. This force field

acted to distort an extracted contour in one slice to look close to the corresponding contour

in another slice. Besides the computational complexity, the geometrical criteria introduced

in Lin et al. algorithm failed to handle highly dissimilar contours and the results suffered

from unwanted atiifacts. Chen and Lin in [13] introduced surface consistency theorem and

combined it with elastic interpolation and spline theory to settle the issue of contours dis­

similarity. This method performed better in case of sever branching and dissimilar contours

at the expense of more time and computation. Later, Raya and Udupa in [18] developed

a simpler and more efficient scheme called shape-based interpolation. This method con­

sisted of sequences of image segmentation and conversion of binary values to gray-level

values followed by interpolation between known values. Distance transform was exploited

for conversion from binary value to gray level value. The resulted gray value represented

the distance of a voxel to a specific contour; in other words, instead of intensity interpo­

lation, the distance was interpolated and this served geometric changes better. Generally

speaking, the distance transform function estimates the shortest Euclidian distance between

the voxel and the contour. (The reader may refer to [19] and [20] to get more information

8
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about distance transform functions.) Some other modified shape-based interpolation meth­

ods were published based on the same idea but using different distance transform functions

such as in [21, 22]. Shape-based interpolation then became a popular choice of interpo­

lation as it was efficient to implement and attained descent interpolation results. However

this class of methods performed less desirable in the situation where alignment was neces­

sary; specifically it could not handle objects with no overlap in consecutive slices, objects

with holes and invagination. We should also mention that distance transform is a time con­

suming operation, specially in higher dimension. The method proposed by Guo et al. in

[23], morphology-based interpolation aimed to overcome the problem of non-overlapping

objects. In this method non-overlapping regions were interpolated through sequence of

dilation and erosion operations. The reader may refer to [24] for more explanation on the

mentioned operators. Another morphology-based interpolation method was developed by

Lee and Wang in [25] which was more efficient in terms of computational complexity.

Chatsiz and Pitas method in [26] which relied on mathematical morphological skeletonisa­

tion for object representation is also another example of this class. The morphology-based

methods can effectively deal with objects with whole and invagination, yet it fails in re­

solving the problem in massively invaginated objects [27]. Another fact to consider is that

shape-based and morphology-based algorithms can not be applied to gray-level images

[28]. Grevera and Udupa in [29] modified the shape-based interpolation algorithm with

two additional steps of lifting and clasping to make it applicable to gray level images as

well.

In the past decade more efficient methods have been formulated using more advanced

9
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registration methods to effectively balance the trade-off between speed and visual qual­

ity. Lee and Lin in [30] applied the concept of image-warping of [31] to their interpo­

lation method to achieve a faster algorithm and computed line-segments automatically.

Registration-based method published by Penny et. al in [28] utilized a more modern and

effective registration method called voxel-based nonrigid registration. The mentioned reg­

istration method was first introduced by Rueckert et.al in [32]. In 2008 Frakes et al. in [33]

developed an object-based method of interpolation based on an improved version of control

grid interpolation (CGI). CGI is a common motion compensation method combining block­

matching and optical flow. For further reading about CGI the reader may refer to [34]. This

optical flow based method in Frakes et al. work is called modified control grid interpolation

(MCGI). They modified conventional CGI by incorporating adaptive optimization, putting

a constraint on displacement field precision and adding more displacement fields. As op­

posed to Penny et. al method, MCGI is directionally unbiased. To the knowledge of the

author, it has been the most competent interpolation algorithm both in terms of computa­

tional efficiency and visual quality.

1.2 Thesis Contribution

In this work two 3-D adaptive interpolation methods are presented. The first method is

an extension of SAl (Soft-decision Adaptive Interpolation) method in [35] to 3-D. A 3-D

piece-wise autoregressive model is fitted to a 3-D block of slices and the model parameters

are estimated through an optimization problem. The spacing between medical image slices

differs significantly from pixel spacing of 2-D images; thus this method has limited perfor­

mance for 3-D medical image interpolation. It is included as a pmt of the thesis because it

10
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fostered the second interpolation algorithm. The second method, context-based interpola­

tion (CBI), is the main contribution of this thesis. CBI is a new 3-D interpolation method

which is a supervised learning algorithm. A linear predictor of a gray value in a missing

slice is trained. It takes into account, apart from gray values, some additional imaging

attributes like modality, orientation and anatomy. In CBI, a large number of contexts are

extracted form a training set. The contexts are classified based on the mentioned char­

acteristics; then using classified contexts, linear interpolators are determined in the least

square sense. When interpolating a slice, an optimal interpolator is selected based on the

local statistics. The simulation results have proved that the proposed method outperforms

existing methods for the chosen anatomy and modality.

1.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 discusses the interpolation

method based on a piece-wise autoregressive model. In chapter 3 the context-based inter­

polation method is presented. Finally in chapter 4 the concluding remarks and future works

are discussed.

11



Chapter 2

Interpolation Based on an Auto

Regressive Model

In this chapter, the proposed 3-D interpolation method is based on an auto regressive model

and estimating group of voxles rather than estimating one voxel at a time. The idea was

encouraged by a 2-D interpolation method called adaptive 2-D autoregressive modeling and

soft-decision estimation (SAl) proposed by Zhang and Wu in [35]. They modeled an image

as a piece-wise autoregressive process and estimated the parameters for this process based

on local statistics of some samples within a window. In this work which is an extension

of SAl to 3-D) the model parameters are estimated within a cube that slides through low

resolution (LR) image set. The 3-D volume is modeled as a 3-D piece-wise autoregressive

(PAR) process and the parameters to estimate high resolution (RR) slices are determined

within a 3-D block of voxels.

12
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2.1 3-D Piece-Wise Autoregressive Model

A 3-D volume can be modeled as a piece-wise autoregressive process as follows

I(i,j,k)= L a(m,n,q)I(i+m,j+n,k+q)+c(i,j,k) (2.1)
(m,n,q)ET

where T is a 3-D template for the regression and c(i,j, k) is the white noise, independent

ofthe location. Such a model will adapt the model parameters, a's, to statistics of available

voxels within the template. The model parameters are not supposed to vary significantly in

a small locality. The PAR model has already been validated in lossless image compression

such as CALIC [36], TMW [37] and invertible integer wavelet [38] (Besides, the validity

of PAR model in 2-D image interpolation has been confirmed in SAl [35]).

2.2 Integration of PAR model into Adaptive 3-D Interpo-

lation

Suppose that h is a slice in an LR set. h's are used to estimate the unknown slice h that

belongs to the 3-D HR set. At the voxellevel the unknown voxel Xi E h is to be estimated

by Yi E h. There are different choices of Yi'S in a local cube that will be discussed later in

simulation results section (see Fig. 2.2). Inspired by the PAR model, the missing voxel can

be estimated as follows
n

Xi = LajYj +c
j=l

(2.2)

where n is the number of known selected voxles. To estimate more than a voxel at a time,

a local cube, W is defined that encapsulates a number of slices. Then the missing voxels

13
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are estimated within W
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n n

X = argmin{L II x i - L ajYjl1 + L IIYi - L ajxjll}
x iEW j=l iEW j=l

(2.3)

The more accurate the model parameters, a's, are estimated, the more successful the

interpolation algorithm would perform. These parameters are estimated using available

slices in the LR set
n

a = argmin 2.:)Yi - LajYj)2
a iEW j=l

Next we discuss the details of the algorithm.

2.3 Details of the Algorithm

(2.4)

In 3-D volumes, edges happen to shift considerably from one slice to another. To avoid

possible artifacts, the neighboring 3-D blocks overlap. There are different choices of block

size but let us consider the simplest case where 3 available slices are used to estimate 2

unknown slices (see Fig. 2.1 ). Equ. 2.3 is rewritten in a matrix format as follows

Min·IIBX - AYiII + 111'2 - eX11 (2.5)

where B is a row vector containing either zero or one. The size of this vector is the same

as the number of parameters. Depending whether a specific voxe1 in the local cube should

be estimated or not, the elements of vector B are either one or zero accordingly. A is the

vector of estimated parameters, Yi and 1'2 contain known voxels of known slices. e also

contains model parameters but differs in size from A depending on how many voxels will

be estimated in each interpolation pass. To solve the minimization problem of Equ. 2.5, F

14
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is defined as follows
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F = (EX - AYj.) (EX - AYif + (1'2 - ex) (1'2 - eX)T (2.6)

By taking derivative of 2.6 and setting it to zero, ~~ = 0, the unknown voxels are deter­

mined as in 2.7

~
So
~

=V2 ...------------_.
n
(1l
00.

Figure 2.1: Position of known and unknown slices

15
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2.4 Simulation Results
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The simulation results prove the large spacing between medical image slices, violates the

assumption that model parameters do not vary significantly in the selected locality. The

minimum spacing between slices in an LR medical image set, used in this work, is 3.2mm;

this is significantly larger compared to pixel spacing in LR 2-D images. Parameter estima­

tion, defined in 2.4, based on LR slices, leads in a less desirable results compared to linear

interpolation. These results are regardless of overlap, selected voxels and the number of

voxels estimated at a time. Different choices for the set of known neighboring voxels from

available LR voxels are illustrated in Fig. 2.2. As the number of known voxels, engaged

in estimation process, increases, interpolation results get better (e.g. in Fig. 2.2, configura­

tion (e) works better than configuration (a)). Still at its best, the interpolation results are

few (dB) below the linear method (see Fig. 2.3). Then, to improve the results, linear ap­

proximation of the missing HR slices is used to estimate model parameters. This time the

interpolation results are almost the same as linear interpolation (see Fig. 2.4). The PSNR

values, obtained using PAR-based interpolation, versus the linear interpolation for some

brain MRI images have been plotted in Figs. 2.3 and 2.4. In Fig. 2.3, LR slices are used

to estimate model parameters and in Fig. 2.4 the linear estimate of unknown slices are em­

ployed for the same task. In both cases 9 voxels from each neighboring slices are chosen

and the 3-D block consists of 3 LR slices.

2.5 Conclusion

The large spacing between slices in an LR medical image set, frustrates the accurate model

parameter estimation. Evaluating the model parameters using linear approximation of HR

16
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set produces results similar to linear interpolation. This gives the impression that the model

parameters are estimated to be as similar as possible to linear interpolator parameters; thus

a better estimation of unknown HR slices, results in more accurate interpolation. This is

verified using real HR slices as the primary guess for unknown slices. In this case the

algorithm produces slices almost the same as the real HR slices. But in real application

there is no access to HR slices. This observation inspired the idea of employing a training

set to learn about an HR image set, then applying the obtained knowledge when the HR set

is not available. The next chapter discusses interpolation based on training.
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a. 3 voxels from each available neighbor of unknown slice

b. 4 voxels from each available neighbor of unknown slice

c. 5 voxels from each available neighbor of unknown slice

d. 7 voxels from each available neighbor of unknown slice

e. 9 voxels from each available neighbor of unknown slice

Figure 2.2: The different choices for selection of voxels from available neighbors of an
unknown slice 18
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Figure 2.3: PSNR values, PAR-based vs. linear, using slices in LR set to determine model
parameters
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Figure 2.4: PSNR values, PAR-based vs. linear, using linear estimate of missing HR slices
to determine model parameters
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Chapter 3

Context-Based Interpolation

3.1 Overview

Recently a few 2-D image interpolation algorithms have been proposed based on concepts

of machine learning and utilization of a training set of HR images such as in [39, 40]. A

training set is able to provide knowledge that is unavailable in an LR image set. Interpo­

lation based on learning consists of two related processes: off-line training to learn about

an HR set, and an online adaptive interpolation. By down sampling the HR image sets in

a training set, we would create the corresponding LR set and predict the statistical rela­

tionship between HR and LR set. The purpose of off-line training is to learn the rules for

estimation of an unknown HR slice from available LR set of slices. As structure of samples

in any image set, including medical image sets, is non-stationary, it is impossible to govern

a general rule for all the existing cases. Thus the sample statistics observed in the training

are used to determine the necessary context-based rules that adapt an interpolator to the

local 3-D waveforms. These context-based interpolators can run in real time when applied

online because the interpolation is performed by simple context quantization (i.e., feature
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vector classification) followed by linear filtering.

McMaster - Electrical Engineering

In this chapter we describe the off-line design process of context-based 3-D interpola-

tors, and develop required algorithms. Then we present the online procedure of applying

the proposed context-based 3-D interpolation technique. Experimental results are then re-

ported and then comes conclusion section.

3.2 Context-based 3-D Interpolator Design

Instead of using linear signal-independent 3-D interpolators, we propose a family of context-

based adaptive 3-D interpolators. Such an interpolator uses four existing slices to interpo-

late the missing slice in the middle as depicted in Fig. 3.1. As shown in the figure the in­

terpolator is an 111-tap 3-D filter that estimates the missing voxel x using the M neighbors

Y = (Yl, Y2, ... ,YM) of x (M = 20 in Fig. 3.1). In the language of pattem recognition and

machine learning the vector Y is called the context or feature vector of x. The interpolated

value of x is given by

(3.1)

where am's are the interpolator coefficients. The interpolator can be optimized in least

squares sense using a large training set of feature vectors Yt and the associated center

voxels Xt. Specifically, the optimal interpolator a* is given by

a* = argm1n 2:..)Xt - a· Yt)2.
t

(3.2)

However, the above design approach is over simplistic because typical 3-D medical

images are highly non-stationary in space. Different localities of a 3-D image may have
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J'M
•

Slice (n+3)

Slice (n+l)
y(M-I)

Figure 3.1: A missing voxel x in the context y

drastically different second-order statistics. It is impossible to design a single interpolator

a* to fit all 3-D waveforms of a medical image set. A large number of contexts is the

preliminary requirement to distinguish different waveforms. Supposing the context consists

of 11/1 number of LR voxles of L gray level, there could be up to L M possible context

combination. The exponential complexity as well as data over fitting issue are factors that

prohibit one from designing an interpolator for each individual context and no practical

training set is capable of delivering enough sample to learn about all possible contexts.

For this reason, we quantize the featme vectors y into K interpolation contexts (K <
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L M), Q(y) = {I, 2, ... ,K}, and design a least-squares interpolator for each context:

ak = argm~n L (x - a· y)2, 1 ~ k ~ K

Q(y)=k

(3.3)

The context quantization of y can be performed by any vector quantizer. For instance,

we can adopt the classical k-means algorithm. But in medical image applications, users

typically know many propeliies of the image, such as anatomy, imaging modality, projec­

tion orientation, age and gender of the patient, etc. Therefore, one can classify 3-D medical

images into classes according to the aforementioned or similar attributes, and optimize

the 3-D interpolator for each class. This classification approach can improve interpolation

performance because it reduces the statistical variations. The classification can be further

refined to the object level. For instance, for an MR 3-D head sequence of N slices 11, h, ... ,

IN, we can sequentially partition the N slices into J group of slices: Sj = (Iqj-l' ... ,Iqj ),

1 ~ j ~ J. Each group, Sj, consists of nearby slices of similar statistics. The merits of

this slice grouping can be clearly seen in Fig. 3.2. In this case, when the 3-D volume is

traversed top down slice by slice, there are significant changes in object structures and in-

tensity distribution. On the other hand, the statistics remain fairly consistent within a group

of consecutive slices (see Fig. 3.4). Obviously, a 3-D interpolator optimized for a group of

slices will be more accurate than the one designed using statistics of all the N slices. In the

next section we discuss developing an optimal slice grouping algorithm.

3.2.1 Optimal J-Grouping of the Training set

We develop an optimal J-grouping algorithm to group slices of the training set based on

similarity of the slices in a group of slices. The similarity measure used is the mutual
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Slice No.79

Slice No.154
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Slice No.32

Slice No. 117

Slice No.207

Figure 3.2: Different anatomy in slices according to their number
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information. Under the criterion of maximizing the mutual information per group of slices,

we partiton slices in different groups. The mutual information of two random variable (j)

and 8 is defined by

"" p(¢,B)MI(<I>,8) = L LP(¢, B) log (¢) (B)
q,EiJ> IIEe PI P2

(3.4)

where p(¢, B) is the joint probability density function of <I> and 8, and PI (¢) and P2 (B) are

the marginal probability density functions of <I> and 8 respectively.

The J grouping is defined by the vector or quantizer q = (qo, qI, ... ,qJ). The task is

to find the number of groups, J, and the location of partitioning positions 1 = qo < q2 <

.. , < qJ-I < qJ = N such that the sum of mutual information between slices within a

group would be maximized.

(3.5)

where I j is a representative chosen for a group. There are different approaches for assigning

the representative, for example choosing the middle slice in the interval. Then the number

of slices in group Sj is

(3.6)

The above formulation will just yield the number of slices within each group and the num-

ber of groups should be known beforehand. As the purpose is to find both number of groups

and slices within each group, a heuristic method is developed. It simultaneously determines

both pa11itioning positions and number of slices within each group as follows

Stepl. We define A = MI(II,IL!fJ)' B = MI(IL!fJ,!N) and d = A - B where
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L~J is the largest integer not greater than ~. If A > B then I L~J belongs to the first

group and L~J is updated to L~J = L~J+ 1; otherwise I L~J belongs to the other group

and L~J is updated such thatL~J = L~J - 1. We continue until parameter d changes

sign. By then there are N 1 slices in the first group and N 2 slices in the second group. At

this point two more parameters are defined as follows M II = ;::1 I:~;1 M I(h Ii+l) and

MI2 = ;::2 I:~I-1 MI(h I i +1).

Step2. The same procedures as in step 1 are followed for the newly obtained groups.

The normalized total sum of mutual information for each new group is compared with

the same value from the higher level. When the difference between current value and the

fonner value is smaller than a defined threshold p, the algorithm stops.

This process is better described in the flow chart of Fig. 3.3.

For each group, Sj, a representative I j> is selected based on the following criterion

(3.7)

This representative will later used in online process to determine the relevant group an input

slice belongs to.

Partitioning the training set into J groups reduces the statistical variations within each

group. In order to make the statistics in the design of context-based interpolators even more

consistent, we fmther quantize the samples of each group Sj, 1 ~ j ~ J, into K states
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No Yes

Figure 3.3: Optimal J-grouping algorithm

3.2.2 Optimal Design of Interpolator for each Group

Each of the groups is considered as a distinct training set. For any voxel x, its associated

feature vector (see Fig. 3.1) is extracted and stored. When all voxels and their correspond­

ing feature vectors are stored, a clustering algorithm will fm1her quantize the samples.

We used k-means algorithms for the clustering purpose. The k-means algorithm is lo­

cally optimal and the final clustering depends heavily on the initial choice of states, CJ~,
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Slice No.33

Slice No.35

Figure 3.4: Similarity of anatomy in consecutive slices

1 S k S K. We initialized k-means by utilizing quantized interpolation error of a non­

adaptive interpolator. For each center voxel x and its feature vector y, the bicubic interpo­

lation error, ei = Xi - G.Yg, is calculated; where Gis bicubic interpolator coefficients and

Yg = (Yl, Y6, Y15, YM) (see Fig. 3.1). A uniform quantizer is then used to quantize the error.

Thus the initialization is as follows

(3.8)

This two-layer feature vector quantizer is depicted in Fig. 3.5. By conditioning on the

state Cj,k of feature vectors, a more accurate interpolator can be designed whose coeffi­

cients are denoted by aj,k' Specifically, the interpolator coefficients aj,k are computed by
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-fr----
Figure 3.5: Off-line process for designing the interpolator

(3.3).

3.3 Online Interpolation Process

For the context-based interpolator, designed for Cj,k, the cOlTesponding M -tap linear filter

(in our case M = 20) aj,k and the centroid Yj,k of the Cj,k are stored. To interpolate a

missing voxel x in the context y, we first determine the state that y belongs to. Suppose

that x is in between two LR slices Ii and Ii+1. The average of inputs is defined as I ave,i =
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~ (Ii+Ii+l)' The best match for the primary classification layer (group of slices) is searched

out as follows

Iave,i E Sj* if IIIave,i - I j * II~ < IIIave,i - I j II~, 1 ::;; j, j* ::;; J (3.9)

where I j * and I j are representatives of groups. Then we find the state kj* in the group j*

by nearest neighbor search, namely,

and we use the interpolator aj,k~* to estimate the missing voxel x to be
J

x= aj,k~* . Y
J

(3.10)

(3.11)

However some slices may happen to be near the borders of two groups. In such cases

combination of knowledge from both groups results in a better voxel estimation. Suppose

the contexts belong to Sj*. We define E = IIIave,i - Ij * II~, E1 = IIIave,i - Ij*+lll~ and

E2 = IIIave,i - Ij*-lll~. If either IE - Ell or IE - E21 is smaller than a predetermined

threshold, the missing slice is considered as a border slice. In this situation we compute

kj* and k;~l (k;~l) and estimate x as

A e;+l e~
x = a' k** . Y+ J a' ** . yeJ + eJ+l J, j eJ + eJ+l J,kj+l

(3.12)

where eJ = Ily - y},kj* II~ and eJ+l = Ily - Yj,kj+lll~· In other words, we fuse, in least­

squares criterion, the results of the two context-based interpolators whose coefficients are

aJ, k~* and aJ, k~* (aJ' k~* ), respectively. This is a safeguard against statistical mismatches
l 1 ' J+1 ' J~l
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between input slices and the training set. A summary of interpolation process is illustrated

in Fig. 3.6

Figure 3.6: Interpolation Process

3.3.1 Algorithm Speed-Up

Depending on the location of a missing voxel and the neighborhood statistics, linear inter-

polation mayor may not perform well. Locating the areas where linear interpolator can

pelform satisfactory will decrease the computation time. We have introduced two smooth-

ness measures and depending on their magnitude decide about the suitable interpolator.
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3.3.1.1 Second-Order Derivative
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We used 3-D discrete Laplace operator to measure the smoothness. Laplacian is determined

in X, Y and Z directions. The l-D Laplacian estimation in a direction, e.g X, can be

approximated as follows

D _ I(X + 2hx ,Y, Z) - 2I(X + hx ,Y, Z) + I(X, Y, Z)
x - h2

X
(3.13)

where hx is grid spacing in X direction. Taking advantage of the property of multidimen­

sional discrete Laplacians, the 3-D discrete Laplacian, Lxyz, is computed by Kronecker

sums of 1-D discrete Laplacians

Lxyz = DxEBDyEBDz (3.14)

The smoothness measure, Lxyz, is compared with a ce11ain threshold as to make a

decision about choosing either linear or context-based interpolator. Embedding this crite­

rion into the interpolation algorithm keeps the visual and quantitative quality the same but

would not decrease the algorithm run-time.

3.3.1.2 First-Order Derivative

The smoothness measure based on second order derivative did not save us computation

time. So we considered another smoothness measure based on first order derivative as

follows

D = IYl - Y61 + !Y6 - Y151 + IY15 - YMI
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where Yl, Y6, Y15 and YM are shown in Fig. 3.1. D, the smoothness measure, is compared

with T, a smoothness threshold (ST). The choice of threshold is a trade-off between quality

and computation time.

3.4 Simulation Results

We implemented the proposed context-based 3-D interpolation algorithm for medical im-

ages. The algorithm is tested on a number of 3-D sets of brain MRI to evaluate its perfor­

mance. The trained context-based interpolators are applied to interpolate LR 3-D images

that do not belong to the training set. The number of states Cj,k, for each group is different

since the range of quantized en-or values varies for each group. The choice of step size

for the uniform quantizer also results in different number of states. Decreasing the quan-

tizer step size increases the run-time and improves the interpolation. However as the step

size becomes smaller (i.e. < 3) the interpolation en-or does not improve significantly but

the run-time increases drastically. In table 3.1 parameters of training set and test data are

Table 3.1: Parameter of training set vs. test data for brain MRI

Data Class Orientation Ave No. of Slice Thickness 2-D Plane
Slices (Spacing) Size

Training Set
Test Sets

Axial
Axial

220 1.6mm 512 x 512
101 3.2 - 4mm 128 x 128 -

512 x 512

shown. MR images are acquired on a T2 weighted scan sequence in a magnetic field of 3

Tesla. The orientation of images in the training set and the test data is the same and MRI

samples of the training set belong to people in their 20's; however the author is unaware of

the age range for the test images.
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To show the superior performance of CBI, its performance is compared to two existing

interpolation methods. The first interpolation method is the conventional linear interpolator

and the other interpolator is MCGI introduced in [33]. MCGI is one of the latest and

most competitive existing interpolation methods. The comparison criteria are based on

PSNR and relevance measure (RM) values. PSNR is a common measure of comparison in

most video/image processing tasks; however for medical image processing the relevance

measure has been employed more frequently as in [33, 28]. The RM is defined as follows:

Let M SD1 and M SD2 be the mean squared difference between the interpolated image and

the original image for methods 1 and 2, respectively. Then the relevance measure of these

two methods is

rmethodl/method2 = (3.16)

lVISD1
+100 x (1- MSD

2
) if MSD1 > MSD2

MSD2100 (1 ) if lVISD2 > MSD1- X - MSD
1

In Fig. 3.7 the PSNR values of CBI versus the linear and MCGI interpolators is plotted for

a sequence of brain images, with X -axis being the slice number. Then table 3.2 lists the

relevance measures for CBI vs. the linear interpolator, MCGI vs. linear interpolator and

CBI vs. MCGI. According to the relevance measures in table 3.2, the overall performance

of CBI is superior to both MCGI and linear methods; CBI is also robust against changes

in 2-D plane size. To demonstrate the difference between CBI and the other two methods

in terms of visual quality, some interpolated sample images are presented in Fig. 3.9 to

Fig. 3.14. The PSNR values of these samples are also given.
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Table 3.2: Relevance measures for brain MRI

2-D Plane Size
512 x 512
256 x 256
128 x 128

r mcgi/lin

24.13
31.4

39.63

rcbi/lin

34.17
37.54
42.38

rcbi/mcgi

13.23
8.93
4.56

Table 3.3: Trade-off between objective quality and computation time
t 1 = 8 Secfor a 512 x 512 slice on a computer with 2.4GHz Intel CPU and 3.00 GB RAM in MATLAB 7.1

Smoothness Threshold r ebi/mcg r cbi/lin Computation Time
in Ascending Order Percentage

No Threshold 13.23 34.17 t 1

T1 14.47 35.2 73%tl
T2 13.91 34.68 71%tl
T3 13.35 34.26 65%tl
T4 12.30 33.46 57%tl
Ts 11.24 32.66 50%t1

T6 10.48 32.08 45%tl

Table 3.3 expresses the trade-offs between objective quality and the computation time

as the smoothness threshold varies. A carefully selected smoothness threshold not only re-

duces the computation time but also improves the objective quality. The effect of increasing

the threshold value in terms of visual quality has also been illustrated in Fig. 3.16 to Fig.

3.20.

CBl was also tested on series of abdominal MR images. The training set and test

data parameters are shown in table 3.4. The PSNR values of CBl-interpolated abdominal

slices versus linear method are plotted in Fig. 3.8 and the comparison in terms of relevance

measure can be found in table 3.5.
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Figure 3.7: Interpolation of brain slices, CBI vs MCGI and linear
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Table 3.4: Parameter of training set vs. test data for abdominal MRI

Data Class Orientation Ave No. of Slice Thickness 2-D Plane
S&~ S~

Training Set Axial 86 4mm 512 x 512
Test Sets Axial 44 8mm 512 x 512

12.9
rebi/lin

34.7
r megi/lin

512 x 512

Table 3.5: Relevance measures for abdominal MRI

2-D Plane Size

Z4t;.I;-.---:c------;l~:c--~i~---,tk.-----;~~ ---,t~,......_-....,:JG~1 ---,;~Gc----!.~s:
Slice Number

Figure 3.8: Interpolation of abdomen slices, CBI vs.linear

37



M.A.Sc. Thesis - Sahar Alipour Kashi

3.5 Conclusion

McMaster - Electrical Engineering

A novel context-based 3-D interpolation technique is proposed for medical applications.

The technique allows the use of domain knowledge in estimating the missing voxels, adapts

to local 3-D waveforms, and at the same time keeps the computational complexity low.

Experimental results demonstrate the competitive performance of the proposed technique.

The proposed method (CBI) shows significant improvement over the linear and MCGI

methods for brain MR images. Comparing interpolated brain and abdomen images, the

slice spacing of the training set is proved to be critical to the success of CBI. As the 2­

D plane size decreases (Table 3.2) the superiority of CBI to MCGI, in terms of relevance

measure, also decreases. This may be caused by the mismatch of slice size in training and

test sets.
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(a) Original (b) Linear (29.84 dB) (c) MCGl (32.00 dB)

(d) CBl without ST (33.78 dB) (e) CBl, ST=T1 (33.76 dB) (f) CBl ST=T2 (33.71 dB)

(g) CBl ST=T3 (33.69 dB) (h) CBl ST=T4 (33.68 dB) (i) CBI ST=Ts (33.67 dB)

Figure 3.9: Visual comparison of different interpolation methods and different ST's
for a T2 weighted image showing the skull
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(a) Original (b) Linear (37.84 dB) (c) MCGI (39.69 dB)

(d) CBI without ST (40.73 dB) (e) CBI, ST=T1 (40.69 dB) (f) CBI, ST=T2 (40.66 dB)

(g) CBI, ST=Ta (40.64 dB) (h) CBI, ST=T4 (40.60 dB) (i) CBI, ST=T5 (40.53 dB)

Figure 3.10: Visual comparison of different interpolation methods and different ST's
for a T2 weighted image showing the skull and hemispheres
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(a) Original (b) Linear (35.22 dB) (c) MeGr (37.29 dB)

(d) eBr without ST (38.62 dB) (e) eBr , ST=T1 (38.59 dB) (f) eBr , ST=T2 (38.57 dB)

(g) eBr , ST=T3 (38.56 dB) (h) eBr , ST=T4 (38.53 dB) (i) eBr , ST=n (38.50 dB)

Figure 3.11: Visual comparison of different interpolation methods and ST's
for a T2 weighted image showing scalp fat, bone and hemispheres
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(a) Original (b) Linear (37.85 dB) (c) MCGl (39.69 dB)

(d) CBl without ST (40.73 dB) (e) CBl, ST=T1 (40.70 dB) (t) CBl, ST=Tz (40.66 dB)

(g) CBl ,ST=T3 (40.65 dB) (h) CBl·, ST=T4 (40.61 dB) (i) CBl, ST=T5 (40.53 dB)

Figure 3.12: Visual comparison of different interpolation methods and ST's
for a T2 weighted image showing cortex, white and grey matter, and superior sagittal sinus
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(a) Original (b) Linear (36.67 dB) (c) MCGl (37.49 dB)

(d) CBl without ST (40.46 dB) (e) CBl, ST=T1 (40.48 dB) (f) CBl, ST=T2 (40.47 dB)

(g) CBl, ST=T3 (40.34 dB) (h) CBl, ST=T4 (39.62 dB) (i) CBl, ST=Ts (38.69 dB)

Figure 3.13: Visual comparison of different interpolation methods and different ST's
for a T2 weighted image showing cortex, lateral ventricle, and falx cerebri
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(a) Original (b) Linear (32.26 dB) (c) MCGl (32.32 dB)

(d) CBl without ST (32.84 dB) (e) CBl, ST=T1 (32.84 dB) (f) CBl, ST=T2 (32.81 dB)

(g) CBl , ST=T3 (32.74 dB) (h) CBl , ST=T4 (32.64 dB) (i) CBl , ST=Ts (32.57 dB)

Figure 3.14: Visual comparison of different interpolation methods and different ST's
for a T2 weighted image showing the skull base stalting at the cranial base
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(a) CBl without ST (33.78 dB)
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(b) CBl ST=n (33.66 dB)

Figure 3.15: Visual comparison of interpolation of an image featuring skull
with no smoothness threshold and the least sensitive threshold (ST=T6)

(a) CBl without ST (40.73 dB) (b) CBl, ST=T6 (40.45 dB)

Figure 3.16: Visual comparison of interpolation of an image featuring skull and
hemispheres with no smoothness threshold and the least sensitive threshold (ST=T6)

(a) CBl without ST (38.62 dB) (b) CBl, ST=n (38.46 dB)

Figure 3.17: Visual comparison of of interpolation of an image featuring scalp fat, bone
and hemispheres with no smoothness threshold and the least sensitive threshold (ST=T6)
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(a) CBl without ST (40.73 dB) (b) CBl, ST=n (40.45 dB)

Figure 3.18: Visual comparison of interpolation of an image featuring cortex and
sagittal sinus with no smoothness threshold and the least sensitive threshold (ST=T6)

(a) CBl without ST (40.46 dB) (b) CBl, ST=T6 (38.15 dB)

Figure 3.19: Visual comparison of interpolation of an image featuring cortex,lateral
ventricle and flax cerebri with no smoothness threshold and the least sensitive threshold (ST=n)

(a) CBl without ST (32.84 dB) (b) CBl, ST=T6 (32.53 dB)

Figure 3.20: Visual comparison of interpolation of an image featuring skull base
with no smoothness threshold and the least sensitive threshold (ST=n)
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Chapter 4

Concluding Remarks and Future Works

In this thesis we investigated the issue of non-isotropic medical image volumes and pro­

posed two interpolation methods to overcome this shortcoming. The interpolation methods,

PAR-based and CBI, both belong to adaptive interpolation class. Though the PAR-based

method has been already validated in 2-D image interpolation, its pelformance, extended

to 3-D, was not desirable; but it encouraged the initial idea for the latter method, CBl.

In CBI, the problem of slice up-conversion is aided by studying a training set. An HR

set is used to determine statistical relations between the HR set and its corresponding LR

set. In real-time applications, these statisticalmles are employed to estimate the missing

HR slices.

The second algorithm has been tested on a variety of brain MRI's of different patients

and proved to outpelform MCGI and linear methods. It has been also tested on some ab­

dominal MRI's whose thickness is significantly greater than brain's. CBI showed superior

pelformance to linear method; however MCGI works better for abdominal images. This

could be due to the fact that MCGI is a motion compensating algorithm; it estimates the
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missing slice based on a motion field but switches to bicubic interpolator when the mag­

nitude of the field is not very significant (the motion field increases as the slice spacing

increases).

4.1 Future Works

Despite the fact that CBI method shows competitive peIformance compared to other in­

terpolation approaches, there are some other issues that worth further investigation in the

future. Some of them are outlined here:

1. In this work the training set parameters were confined to anatomy, modality and

orientation. Future works may consider other parameters such as age, gender, slice

size, ethnic background, etc.

2. The CBI method works better than MCGI for smaller slice spacing, while MCGI

peIforms better as the slice spacing increases. The future works may design an inter­

polator that switches to optimal context-based interpolator or motion compensated

interpolator based on the magnitude of the motion field. Alternatively, designing a

context-based interpolator based on knowledge of motion field may also work similar

to a switching interpolator.

3. A bigger motion field results in less accurate linear statistical rules. Higher order

functions may establish more precise rules to relate the HR and LR sets.

4. Other approaches may be proposed to decrease algorithm run-time. Speed-up may be

achieved by either a faster search method in online process or examining the training

set to rule out areas where a non-adaptive interpolator peIforms satisfactory.
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5. The applied clustering algorithm was k-means. Other clustering algorithms such as

fuzzy clustering could be used in later works.

6. Different distance measures such as cosine, cOlTelation, Mahalanobis, etc. could be

utilized in clustering.

7. For optimal segmentation of a training set, some sophisticated shape detection algo­

rithms can be used.
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