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Abstract 

From observations of increases in global average air and oceanic temperatures, 

melting of polar ice and significant increases in net anthropogenic radiative forcing, it is 

clear our global climate system is undergoing substantial warming (IPCC, 2007). A key 

area of concern for hydrologists and engineers alike is to determine how this warming 

will affect various hydrologic processes. To date, climate change impact studies have 

generally involved the downscaling of large-scale atmospheric predictors with the result 

then being input into a hydrological model to see how flow in a riverlbasin will change 

under various future climate change scenarios. Although many studies have been 

completed using large scale global climate model (GCM) data, few studies have shown 

the strength of regional climate models (RCM). In this work, a comparison between the 

effectiveness of using CRCM4.2 vs. CGCM3.1 data in a climate change impact study 

(climate forcing under the SRES A2 climate scenario) is considered. The study area is 

the Chute-du-Diable sub-basin located within the Saguenay-Lac-Saint-Jean Watershed in 

Quebec, Canada. Downscaled results are compared with observed meteorological data 

for the years 1961-1990 at the Chute-des-Passes (CDP) and Chute-du-Diable (CD D) 

weather stations; and flow is simulated in the Mistassibi River and the Chute-du-Diable 

reservoir. A regression technique (SDSM) and a dynamic artificial neural network model 

(Time lagged feed-forward neural network (TLFN)) are used for downscaling the 

CRCM4.2 and CGCM3.1 data, and the HBV2005 hydrological modeling system is used 

for simulating flows in the watershed. For the current period (1961-1990), downscaling 

results reveal that downscaled CRCM4.2 is closer to observed meteorological data at 

both CDD and CDP stations than downscaled CGCM3 .1 is. The Wilcoxon Rank-Sum 

test and Levene test reveal that regardless of the climate model, both TLFN and SDSM 

are capable of capturing the monthly means and variance of precipitation and 

temperature. Statistical results reveal that TLFN is best for downscaling temperature and 

SDSM is best for downscaling precipitation. With respect to the future climate scenario, 

regardless of the climate model or the downscaling method, a 1 to 3 ° C increase in annual 

mean maximum temperature and a 1 to 4°C increase in annual mean mInImUm 
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temperature are predicted for the 2050s future period. In the case for precipitation, the 

CRCM4.2 model shows increases in annual precipitation will vary from 1 to 7% in the 

2050s regardless of the downscaling method used. The CGCM3.1 model on the other 

hand, shows increases in annual precipitation ranging from 15 to 23% regardless of the 

downscaling method employed. Additionally, simulations of river flows and reservoir 

inflows reveals significant changes in mean flow will occur as a result of the warming 

trend. Simulations show that for both SDSM and TLFN, CRCM4.2 and CGCM3.1 show 

an increase in river flow and reservoir flows throughout all seasons except for the 

summer where reduction of flow is observed. Annually, at the Chute-du-Diable reservoir 

mean flow changes vary from a 16-28% increase in the 2050s and at the Mistassibi River 

annual mean flow changes vary from a 12-62% increase. In all cases CGCM3.1 model 

shows a larger increasing trend than the CRCM4.2 model. 
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M.A.Sc. Thesis - Manu Sharma 

Chapter 1: Introduction 

1.1 Background 

McMaster University - Civil Engineering 

From observations of increases in global average air and ocean temperatures, 

melting of polar ice and significant increases in net anthropogenic radiative forcing, it is 

clear our global climate system is undergoing substantial warming (IPCC, 2007). It is 

well known that changes in global temperature will have a significant effect on the 

climate system and all of the five major components (the atmosphere, hydrosphere, 

cryosphere, lithosphere, and biosphere) which make up this system. Arguably, the 

hydrosphere, which is concerned with the distribution, occurrence and circulation of all 

water within the climate system, will be one of the most affected components; and as 

such, understanding the impacts of climate change on these processes through the use of 

hydrological models has become a very important area of study. Hydrological modeling 

not only provides details into how exchange processes, water quantities and flows will 

change as result of climate change, but also provides clues as to what measures will need 

to be implemented to help protect and sustain one of the earth's most precious resources. 

To date a large diversity of climate change impact studies, covering a variety of 

geographic areas have been completed. For example, Mareuil et aI. , 2007 showed that 

for the 2050s (2040-2060) under the doubling of atmospheric carbon dioxide climate 

scenario, spring and summer-fall peak flows will be reduced by 12-30%. Similarly, 

Dibike & Coulibaly, 2005 showed that under a more conservative climate change 

scenario, an overall increasing trend in mean annual river flow and reservoir inflow as 

well as earlier spring peak flows could be observed for the 2050s and 2080s future 

period. Jyrkama & Sykes, 2007 on the other hand focused on groundwater recharge and 

showed that under climate change, groundwater recharge would increase and that warmer 

winter temperatures will reduce the extent of ground frost and shift spring melt from 

spring towards winter. For more examples see (Minville et aI. , 2008; Sirnonovic & Li, 

2004; Prudhomme & Davies, 2009; Dibike & Coulibaly, 2006; Arora, 2001; Brissette et 

aI., 2006) 
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Generally speaking, climate change impact studies involve the use of two types of 

models: global climate models (GCM) and some conceptual or statistical based 

hydrological model. The large scale 3-dimensional global climate models provide both 

current estimates of various atmospheric predictors (eg. precipitation, near surface 

maximum temperature, specific humidity, air pressure etc.) and future projections of how 

these predictors will change under various climate change scenarios. Each climate 

scenario assumes a distinctly different direction for future developments and is based on 

key characteristics of population growth, economic development and technological 

change (CCCma, 2009). These climate models divide the earth into a grid of 2-4 deg 

resolution with 10-31 vertical layers and solve a variety of physical equations which 

represent the complex network of physical processes that link the radiation balance of 

Earth to the general circulation of the atmosphere, the oceans and the hydrological cycle 

(Arora, 2001). Hydrological models use current and future global climate model data as 

input and simulate flow along with other processes and how they change throughout a 

catchment. However, a major difficulty in successfully coupling these two models stems 

from the fact that the spatial resolution of GCMs is quite coarse, in the order of 300 x 300 

km, and at that scale, spatial heterogeneities of the physiography are lost, making it very 

difficult for accurate modeling of the land phase (Dibike & Coulibaly, 2005). Thus, 

although GCMs are accurate at hemispheric or even continental scales, the data is far too 

coarse for accurate hydrologic modeling at the watershed scale and as such it is necessary 

to downscale the GCM data to the appropriate site scale if accurate hydrological 

modeling is to be carried out. Regional climate models can be used in place of GCMs as 

they operate on a smaller grid size (approx. 45 x 45 km), but these models also suffer 

from similar systematic biases and have trouble capturing certain climatic elements (e.g. 

convective precipitation) over complex terrains. 

Downscaling techniques generally fall into two categories: empirical (statistical) 

downscaling and dynamical downscaling (using regional climate models). Several types 

of empirical downscaling which include, but are not limited to, regression based 

techniques (Karl et aI., 1990; Nieto & Wilby, 2005; Dibike & Coulibaly, 2005) and 
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artificial neural networks (Hewitson & Crane, 1996; Coulibaly et aI., 2005; Haylock et 

aI., 2006) have been implemented in the past. However, although many studies have 

compared various downscaling techniques (Wilby & Wigley, 1997; Xu, 1999; Dibike & 

Coulibaly 2005) few have considered the effectiveness of empirically downscaling a 

dynamical downscaling approach in a climate change impact study (or in other words, 

using an empirical downscaling technique to downscale regional climate model data). 

The importance of further statistically downscaling regional climate model data has been 

noted in several studies (Osborn & Hulme, 1997 and Murphy, 2000). 

1.2 Research Objectives 

To date, several hydrological modeling studies have been completed on the 

Saguenay-Lac-Saint-Jean Watershed located in Northern Quebec, Canada (see Dibike & 

Coulibaly, 2005; Coulibaly et aI., 2005; Khan et aI. , 2006a and Khan et aI. , 2006b). As 

an extension to some of the above work, a study is being proposed to compare the 

effectiveness of using large scale global climate data downscaled via the conventional 

statistical methods in practice (Statistical downscaling model (SDSM) and Time-lagged 

feedforward neural network (TLFN)) versus the application of a more dynamical 

downscaling approach, the use of regional climate models (RCMs). However, unlike in 

most previous studies of this nature, the goal is not to just compare downscaled GCM 

data with regional climate model data; but to further statistically downscale the RCM 

data, to assess if any improvements can be achieved. Specifically, there are four major 

objectives for this study: 

(1) Conduct a comparison of the ability of two well known empirical downscaling 

techniques (SDSM, TLFN) to downscale both GCM and RCM data. 

(2) Compare downscaled precipitation, maximum temperature and mInImUm 

temperature results with observed measurements to assess if improvements can be 

achieved from further downscaling the RCM data. 

(3) Perform a comparison of downscaled GCM data versus downscaled RCM data, as 

input into a hydrological model to provide insights as to if the use of downscaled 
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regional climate model data is more effective in hydrological studies then the use 

of conventional downscaled GeM data. 

(4) Investigate the effects of climate change III the study area through the 

incorporation of various future climate projection scenarios. 
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Chapter 2: Study Area and Data 

2.1 Study Area 

The selected study area for this research is the Chute-du-Diable sub-basin (located 

at approximately 50~, 71 °W), an area of approximately 9,700 km2 located within the 

Saguenay-Lac-Saint-Jean Watershed (Coulibaly et al. , 2001). The downscaling 

experiments are conducted with 30 years (1961-1990) of meteorological data (daily total 

precipitation, maximum temperature and minimum temperature) obtained from the 

ALCAN hydro-meteorological network at the Chute-Des-Passes (CDP) (located at 

49.5~, 71.15°W) and Chute-Du-Diable (CDD) (located at 48.5~, 71.42 OW) weather 

stations. From the 30 years of observed data representing the current climate, the first 20 

years (1961-1980) is used for calibrating the downscaling models, while the remaining 

ten years of data is used for model validation. Hydrological modelling will be completed 

for the Chute-du-Diable reservoir and Mistassibi River located in the vicinity of the CDD 

and CDP weather stations. Observed reservoir and river flows for 1961-1990 have been 

provided by ALCAN. Figure 1 provides a geographical map of the study area. 
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Figure 1: Location of Study Area in Northeastern Canada (taken from Coulibaly et al. , 

2001) 
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2.2 Data Collection 

Global climate data is extracted from the latest (currently) third generation 

Canadian coupled global climate model CGCM3.1. The CGCM3.l model is run at two 

different resolutions: the T47 version has a surface grid whose spatial resolution is 

roughly 3.75 degrees lat/lon and 31 levels in the vertical and the T63 version, which has a 

surface grid whose spatial resolution is roughly 2.8 degrees lat/lon and 31 levels in the 

vertical (CCCma, 2009). Aside from spatial resolution the largest difference between the 

two versions stems from the number of oceanic grids underlying every atmospheric grid 

cell. The T47 version has four grid cells, while the T63 version has six grid cells 

(CCCma, 2009). Thus the T63 version provides slightly better resolution of zonal 

currents in the Tropics, more nearly isotropic resolution at mid latitudes, and somewhat 

reduced problems with converging meridians in the Arctic (CCCma, 2009); see 

McFarlane et al. 2005, Scinocca et aI., 2008, Flato & Boer 2001, Kim et aI., 2002, 2003 

for more information on the specifics of the CGCM model description. In this study the 

CGCM3.1 version T63 model was used with data being extracted from the Canadian 

Centre for Climate Modelling and Analysis website. 

As in previous Canadian global climate models, along with the current period, 

data is available for four future climate scenarios (SRES AlB, SRES B1, SRES A2 and 

COMMIT). Each future climate scenarios assumes a distinctly different direction for 

future developments and cover a wide range of key "future" characteristics such as 

population growth, economic development, and technological change (CCCma, 2009). 

Figure 2 below shows how greenhouse gas concentrations and aerosol loadings vary for 

the four future climate scenarios. 
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Figure 2: Future climate change scenarios (taken from CCCma, 2009) 

All the 2D and 3D predictors available on the CCCma website were downloaded for the 

grid point (104, 50) closest to both CDP and CDD stations. SRES A2 future climate 

scenario was selected for the climate change impact analysis. The A2 scenario describes a 

very heterogeneous world, where population growth is high and economic development, 

per capita growth and technological change are more fragmented and slower than in other 

storylines (CCCma, 2009). Daily data was extracted for both the current (1960-1990) and 

2050s (2046-2065) future period. 

Canadian regional climate model (CRCM) data was made available by 

Environment Canada. The CRCM which can be set up to run on a domain covering any 

part of the globe, first emerged from combining the semi-Lagrangian semi-implicit MC2 

(Compressible community mesoscale model) dynamical kernel with the CCCma 

atmospheric GCM physics parameterization package (CCCma, 2009). Briefly, the MC2 

is based on fully elastic, non-hydrostatic Euler field equations solved with a state-of-the­

art semi-implicit and semi-Lagrangian (SISL) numerical integration scheme (Bergeron et 

aI., 1994 and Laprise et aI., 1997). The first part of the nesting procedure consists of 

driving the CRCM with a time series of atmospheric fields from the driving model (e.g., 

CGCM2) (namely pressure, temperature, water vapor and horizontal wind components) 

at the external lateral boundaries exactly. Towards the interior of the domain, through an 

external sponge belt ("sponge zone"), the driving atmospheric fields (e.g., CGCM3) 
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(generally only the winds) are gradually blended with corresponding CRCM fields 

(CCCma, 2009). The second part of the nesting consists in specifying fixed geophysical 

(i.e. soil and vegetation properties including orography) and time-dependant fields (i.e., 

sea-surface and sea-ice temperature) adapted to the CRCM grid (CCCma, 2009). More 

details on the numerical formulation of the CRCM can be found in Caya & Laprise, 

1999. 

RCM data was extracted from the latest version CRCM4.2 model. A description 

of CRCM4.2 and its validation can be found in Music & Caya, 2007. Data was 

downloaded for the grid points 49 .6~, 71.2°W and 48.8~, 71.6°W closest to the CDP 

and CDD stations, for both the current period (1961-1990) and the 2050s future period 

(2046-2065). As with the CGCM3 .1 model, the SRES A2 climate scenario was selected. 
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Chapter 3: Review of Downscaling Methods 

Although much progress has been made in developing global climate models, the 

spatial resolution remains quite coarse: typically, the cells are about 3 to 4 degrees in 

latitude and from 4 to 10 degrees in longitude (Prudhomme et aI., 2002). At this 

resolution details about the local climate are lost and accurate hydrological simulations 

are difficult to produce. Downscaling techniques are thus implemented to convert GeM 

outputs into local or station scale meteorological variables which are a necessity for the 

reliable modelling of the hydrosphere as shown in Figure 3. 

Oownscaling 

GCM 

\Y 
RCM 

\Y 
SITe-scale 

Figure 3: Schematic illustrating the general approach to downscaling (adapted after 

Wilby & Dawson, 2007) 
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Generally there are two broad downscaling methods, dynamic downscaling and 

empirical (statistical) downscaling. Dynamic downscaling involves extracting local-scale 

information by developing and using regional climate models (RCMs) with the coarse 

GCM data used as boundary conditions (Coulibaly et aI., 2004). Empirical downscaling, 

on the other hand, derives local scale information from the larger scale through inference 

(Coulibaly et aI., 2004). This approach involves developing statistical relationships 

between the large scale atmospheric GCM predictors (e.g. specific humidity, geopotential 

heights, and sea level pressure) and locally observed climate data (e.g. temperature and 

precipitation). As outlined in Xu (1999), the statistical downscaling procedure generally 

follows four steps: (1) identify a large-scale predictor G which controls the local 

parameter L; (2) find a statistical relationship between Land G; (3) validate the 

relationship with independent data; (4) if the relationship is confirmed, G can be derived 

from GCM experiments to estimate L. 

The general practice of downscaling and its limitations are well documented (see, 

for example, Kattenberg et aI., 1996; Wilby, 1994, 1997; Wilby & Wigley, 1997; Xu, 

1999; Dibike & Coulibaly 2005; Prudhomme et aI., 2006; Grotch & MacCracken, 1991; 

Von Storch et aI., 1993; Giorgi & Mearns, 1991) 

3.1 Dynamical Downscaling 

Dynamic downscaling models involve creating limited area models (LAMs) or 

regional climate models (RCM) that are nested from data contained within GCMs 

(Murphy, 2000). Nesting an RCM within the 'driving' global climate model enables 

simulations of climate features and physical processes to be in much greater detail for a 

limited area of the globe, whilst drawing information about initial conditions, time­

dependent lateral meteorological conditions and surface boundary conditions from the 

larger scale GCM (CrCS, 2009). Subsequently, the global model simulates the response 

of the global circulation to large-scale forcings, whilst the RCM accounts for sub-GCM 

grid scale forcings, such as complex topographical features and land cover 

inhomogeneity, in a physically-based way and thus enhances the simulations of 
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atmospheric and climatic variables at finer spatial scales (CrCS, 2009). Here the 

assumption is that predictions based explicitly on relevant physical processes will be 

better than those in which the underlying physics is only represented implicitly, via 

empirical relationships (Murphy, 2000). 

Dynamic models, because of their uniqueness to a particular study region have 

several advantages and disadvantages. Regional climate models can resolve smaller-scale 

atmospheric features such as orographic precipitation or low-level jets better than the host 

GCM (Wilby, 2002). As such dynamic downscaling is well suited to areas that have a 

high degree of topographic, or land cover variation. However, although RCMs have 

recently been developed that can attain horizontal resolutions in the order of tens of 

kilometers or less over a selected area of interest; the models are computationally 

demanding (Coulibaly et ai., 2005). RCMs are as computationally demanding as GCMs: 

placing constraints on the feasible domain size, number of experiments and duration of 

simulations (Wilby et ai., 2002; Hewitson and Crane, 1996). Furthermore, the scenarios 

are very sensitive to the choice of boundary conditions (such as soil moisture) (Wilby et 

aI. , 2002). The models also suffer from similar bias problems as the larger scale global 

climate models (Hay & Clark, 2003). Compared with statistical downscaling, the spatial 

patterns produced by RCMs are more homogeneous, but not necessarily more realistic 

(Cubash et ai., 1996; Mearns et aI., 1999). Finally, dynamical downscaling operates on 

some (high-resolution) grid-point scales and thus the results will be in the form of spatial 

averages. These models still cannot meet the needs of spatially explicit models of 

ecosystems or hydrological systems, and there will remain the need to downscale the 

results from such models to individual sites or localities for impact studies (Xu 1999; 

Osborn and Hulme, 1997; Murphy 2000). 

3.2 Empirical (Statistical) Downscaling 

The second general method for downscaling global climate data is through the use 

of empirical techniques. In situations where a low-cost, rapid assessment of highly 

localized climate change impacts is required, statistical downscaling (currently) 
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represents the more promising option (Wilby et aI., 2002). Several types of empirical 

downscaling which include, but are not limited to, regression based techniques (Karl et 

aI., 1990; Nieto & Wilby, 2005 ; Dibike & Coulibaly, 2005) and artificial neural networks 

(Hewitson and Crane, 1996; Coulibaly et aI. , 2005) have been implemented to date. 

Notably, mathematically, in all empirical cases a predictor-predictand relationship needs 

to be defined [Predictand = f (predictors)] where the predictor variables provide daily 

information concerning the large-scale state of the atmosphere and the predictand 

describes conditions at the site scale (Dibike & Coulibaly, 2005). The transfer function 

(f) then represents the variety of modeling tools ranging from linear regression to neural 

networks that can be used to fulfill the inequality. To date, linear and non-linear 

regression, artificial neural networks, canonical correlation and principal components 

analyses have all been used to derive predictor-predictand relationships (Wilby & 

Dawson, 2007). The underlying assumption of this technique is that there are certain 

physical relationships underlying the statistical relationships developed, and that these 

physical relationships hold regardless of whether the model simulation is a control 

(stationary) experiment or an experiment incorporating a changed climate (Easterling, 

1999). Xu, 1999 summarize the common assumptions of statistical downscaling with 

three points: (1) local-scale parameters are a function of synoptic forcing; (2) the GCM 

used to derive the downscaled relationships is valid at the scale used and; (3) the 

relationship derived remains valid under greenhouse gasing. In the context of climate 

change, it is difficult to guarantee this assumption, and it remains a main weakness of the 

methodology (Hewitson & Crane, 1996; Prudhomme et aI. , 2002). 

3.2.1 Regression based downscaling technique 

Among types of regression based downscaling, a technique widely used, and 

focused on in this study is the statistical downscaling method (SDSM) (Wilby et. aI, 

2002, Dibike & Coulibaly 2005). SDSM is best described as a hybrid of the stochastic 

weather generator and transfer function methods as large-scale circulation patterns and 

atmospheric moisture variables are used to condition local-scale weather generator 
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parameters (Wilby and Dawson, 2007). The task of statistically downscaling daily 

weather series can be broken into several discrete processes (denoted in Fig. 4 by the 

heavy boxes): (1) quality control and data transformation; (2) screening of predictor 

variables; (3) model calibration; (4) weather generation (using observed predictors); (5) 

generation of climate change scenarios; (6) diagnostic testing and statistical analyses. 

SDSM uses multiple linear regression to model the relationship between a dependant 

variable (the predictand) and the independent variables (the predictors). Since regression­

based downscaling methods rely on empirical relationships between local-scale 

predictands and regional-scale predictor(s), predictor selection is a very involved process 

in this method if accurate results are to be attained (Wilby et aI., 2002). Predictor 

variables are selected by using correlation analysis, partial correlation analysis and scatter 

plots, and also considering physical sensitivity between selected predictors and 

predictand for the site in question (Coulibaly et aI. , 2005). 
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Figure 4: SDSM downscaling procedure (adapted after Wilby and Dawson, 2007) 
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Three implicit assumptions are made when using this downscaling technique: 1) 

the predictors are variables of relevance and are realistically modeled by the GCM; 2) the 

predictors employed full represent the climate change signal; 3) the relationship is also 

valid under altered climate conditions (Von Storch et al., 2000). The main strength of 

regression methods is the relative ease of application; once the method has been 

established and tested it can be applied effectively to other regions and parameters 

(Haylock et al., 2006). Unfortunately, these models often explain only a fraction of the 

observed climate variability (especially when the predictand is precipitation) (Dibike & 

Coulibaly, 2005). Regression methods also assume stationarity of model parameters 

under future climate conditions and scenarios are known to be highly sensitive to the 

choice of predictor variables and statistical transfer function (Winkler et a1., 1997). 

Furthermore, downscaling future extreme events using regression methods is problematic 

since these phenomena, by definition, often lie at the margins or beyond the range of the 

calibration data set (Haylock et a1., 2006, Dibike & Coulibaly 2005). Robust estimates 

are strongly dependent on the quality and the length of the data series used for the 

calibration (Wilby and Wigley, 1997) and on the performance of the regression models in 

capturing the variability of the observed data (Barrow et al., 1996) 

3.2.2 Time-Iagged-feedforward Neural Networks 

An Artificial Neural Network (ANN) is a very sophisticated information 

processing paradigm that is inspired by the way biological nervous systems, such as the 

brain, process information. In order to achieve good performance, neural networks 

employ a massive interconnection of simple computing cells referred to as "neurons" (or 

processing elements) that perform useful computations through a process of learning 

(Haykin, 1999). Generally, the development of ANN is based on the following rules: (i). 

Information processing occurs at neurons or nodes; (ii). Signals are passed between nodes 

through connection links; (iii). Every connection link has an associated weight that 

represents its connection strength; (iv). Each node typically applies a nonlinear 
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transfonnation called an activation function to its net input to detennine its output signal 

(Haykin, 1999). 

---1~. Activation function 

-1o-.~ ---10]] ---1 Output 

.~ng T 
---10/ junction ~ 

Threshold 

• Connection weights 

Figure 5: Nonlinear structure of an artificial neuron (adapted after Haykin, 1999) 

In other words, a neural network is characterized by its architecture that 

represents the pattern of connection between nodes, its method of detennining the 

connection weights, and the activation function (Khan et aI., 2006). Without getting into 

too many details, it is important to note that neural networks are further classified by the 

number of layers they posses (single-Hopfield nets; bi-layer- Carpenter/Grossberg 

adaptive resonance networks; and multilayer perceptrons (MLP)) and the direction of 

flow and processing (feed-forward or recurrent). Multilayer perceptrons (MLP) 

combined with a back propagation algorithm are the most widely used in hydrological 

studies and such will be the main focus here (Coulibaly et aI., 2001). 

Time lagged feed-forward neural network (TLFN) is a neural network that can be 

fonnulated by replacing the neurons in the input layer of an MLP with a memory 

structure, which is sometimes called a tap delay-line (Coulibaly et aI., 2005). The size of 

the memory layer (the tap delay) depends on the number of past samples that are needed 

to describe the input characteristics in time and it has to be detennined on a case-by-case 

basis. A major assumption in the use of TLFN is that the local weather is not only 

conditioned by the present large-scale atmospheric state, but also the past states 
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(Coulibaly et aI., 2005). TLFN uses delay-line processing elements which implement 

memory by delay as shown in Figure 6. 

Input 
xm) 

xm·2) 

xm·k) 

Output 

Output L1yer 

Figure 6: TLFN with one hidden layer, two processing elements and a tap-delay line with 

k+ 1 taps (Z-l is an operator that delays the input by one sample (adapted after Coulibaly et 

aI., 2005) 

In a feed-forward network, the nodes are generally arranged in layers, starting 

from a first input layer and ending at the final output layer with network computations 

proceeding in the forward direction only (Coulibaly et aI., 2005). There can be several 

hidden layers, with each layer having one or more nodes. Information passes from the 

input to the output side. The nodes in one layer are connected to those in the next, but not 

to those in the same layer. Thus, the output of a node in a layer is only a dependent on the 

inputs it receives from previous layers and the corresponding weights. The output (y) of 

such a network with one hidden layer is given by (1): 

where m is the size of the hidden layer, n is the time step, Wj is the weight vector for the 

connection between the hidden and output layers, Wji is the weight matrix for the 
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connection between the input and hidden layers <P I and <P2 are transfer functions at the 

output and hidden layers and bj and bo are bias values to be determined during training 

(Coulibaly et al., 2005). 

The ability of neural networks to model both linear and nonlinear processes as 

well as their ability to adapt weights within the structure to correspond with changes to 

the surrounding environments making them adaptable to many regions makes these 

models effective downscaling instruments (Coulibaly et al., 2005). However, the user 

must also have a good understanding of network architecture and transformations that are 

present within the network. Without such knowledge there is an increased risk of errors 

associated within the structure of potentially complex networks (Coulibaly et. al., 2005). 

Further neural networks generally have difficulty downscaling precipitation owing to the 

inability of ANNs to reproduce two key features of high-resolution precipitation time 

series: intermittency and variability (Liu, 2007). ANNs tend to generate small trace 

precipitation amounts on actual dry days and therefore tend to underestimate dry spell 

length. To date, several studies have been completed where ANNs are used in 

downscaling large scale global model output (see for example, Schoof & Pryor 2001; 

Khan et al. , 2006; Dibike & Coulibaly, 2006; Haylock et al. , 2006; Tripathi et al. , 2006; 

Tolika et al. , 2008; Coulibaly et al. , 2005) 
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Chapter 4: Exploratory Raw Data Analysis 

4.1 Raw CGCM3.1 vs. Raw CRCM4.2 

In order to establish the importance of downscaling, a good place to begin is by 

comparing the raw CGCM3.l and raw CRCM4.2 outputs of daily precipitation, 

maximum temperature and minimum temperature with observed records at the Chute-du­

diable (CDD) and Chute-des-Passes (CDP) weather stations. In all cases, the residual 

plots in Figures 7-12 represent the difference between the statistics (mean and variance) 

of the observed daily data and those of the raw output from the CGCM3.1 and CRCM4.2 

climate models (or simply, the observed-simulated). Residual plots for station CDP can 

be found in the Appendix (A1-A6). 
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Figure 7: Residual plot of mean precipitation at CDD: Raw GCM & Raw RCM output 
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Figure 8: Residual plot of precipitation variance at CDD: Raw GCM & Raw RCM output 
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Residual Plot of Max. Temperature at COD 
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Figure 9: Residual plot of mean max. temp. at CDD: Raw GCM & Raw RCM output 
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Figure 10: Residual plot of max. temp. variance at CDD: Raw GCM & Raw RCM output 
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Figure 11: Residual plot of mean min. temp. at CDD: Raw GCM & Raw RCM output 
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Residual Plot of Min. Temperature at COD 
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Figure 12: Residual plot of min. temp variance at CDD: Raw aCM & Raw RCM output 

From Figures 7, 8 above and Figures lA and 2A in the Appendix, it appears that 

for precipitation the caCM3.1 model overestimates the mean for all months at both CDD 

and CDP stations. The CRCM4.2 model on the other hand underestimates mean 

precipitation during the winter season and over estimates the remainder of the year. 

Further, it appears that the raw CRCM4.2 precipitation is more accurate at representing 

the observed mean precipitation than the raw CaCM3.1 output as the residual values are 

smaller. When comparing the variance we see at both CDD and CDP stations, the raw 

CRCM4.2 output is better than the caCM3.1 model at representing the observed 

variability for precipitation. 

For maximum temperature, Figures 9, 10 and Figures 3A and 4A in the Appendix 

shows that the raw CRCM4.2 output is more accurate than the raw caCM3.1 output at 

representing the mean maximum temperature throughout the entire year for both CDD 

and CDP stations. Both models generally underestimate the mean maximum 

temperature, except for the October, November and December months at CDP where the 

CGCM3.1 model overestimates the mean. In terms of variability, both models 

overestimate the mean maximum temperature in all months. In general, the raw 

CRCM4.2 model output is better at representing the maximum temperature variability. 

Similarly for minimum temperature, Figures 11, 12 and Figures SA and 6A in the 

Appendix shows that both the CRCM4.2 and caCM3.1 models generally underestimate 
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the mean minimum temperature at both CDD and CDP stations. The residual values 

reveal that in this case, the raw CGCM3.l output is more accurate than the raw CRCM4.2 

output at representing the mean minimum temperature. At representing the variability, it 

can be seen that both models, at both stations, underestimate the minimum temperature 

variability for the winter months and overestimate the variability for the rest of the year. 

In terms of overall accuracy, there is no clear distinction between the two models as in 

some months the raw CRCM4.2 residual values are smaller and in others the raw 

CGCM3 .1 residuals are smaller. 

From the above residual plots and their respective analysis, it appears overall that 

the raw CRCM4.2 is more accurate than the CGCM3.l at representing the observed 

conditions at both CDD and CDP stations. However, the CRCM4.2 residuals are still 

fairly significant and the goal in the next section will be to see if further downscaling the 

raw CRCM4.2 data will bring improved results. 
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Chapter 5: SDSM and TLFN Downscaling 

5.1 Predictor Selection and Model Setup 

As mentioned in Chapter 3, since regression-based downscaling methods rely on 

empirical relationships between local-scale predictands and regional-scale predictor(s), 

predictor selection is a very involved process if accurate results are to be attained (Wilby 

et aI., 2002). Predictor variables are selected by using correlation analysis and also 

considering the physical sensitivity between selected predictors and predictand for the 

site in question (Coulibaly et aI., 2005). Table Al and A2 in the Appendix outline the 

predictors selected for downscaling the CRCM4.2 and CGCM3.1 data at CDD and CDP 

stations using the SDSM and TLFN downscaling methods respectively. 

Prior to downscaling all predictors were normalized using equation (2) with mean 

and standard deviation for the baseline period 1961-1990 (Wilby et aI., 2002): 

z = X-j1 (2) 
(J 

Where z is the normalized value, x is the raw predictor value, f1 is the mean of x for the 

baseline period and a is the standard deviation of x for the baseline period. 

Table A4 in Appendix A provides an example of the model parameters used in the 

setup of the SDSM and TLFN downscaling models for the case of precipitation at Station 

CDD. For Tmax and Tmin both SDSM and TLFN are very effective at modeling these 

predictands and much model parameter manipulation is not required. 

5.2 Downscaling with SDSM 

The results of downscaling daily precipitation, maXImum temperature and 

minimum temperature are explained via bias plots, bias statistics tables, statistical tests, 

and a line plot comparing observed and simulated means. Analysis is divided into two 

sections, one for the CDD station and the other for the CDP station. In each section a 

comparison of downscaled CRCM4.2 and downscaled CGCM3.1 will be established. 
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Statistical analysis of the downscaled results is carried out by computing the root mean 

square error (RMSE), the mean absolute error (MAE) and the mean relative error (RE). 
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5.3 Downscaling with TLFN 
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5.4 Comparison of CRCM4.2 and CGCM3.1 Downscaling Results 

For downscaling daily precipitation, from the bias plots in the figures above, 

aswell as those in the Appendix, it is shown that for both SDSM and TLFN downscaling 

methods, CRCM4.2 downscaling results are better than CGCM3.1 downscaling results as 

the monthly mean and variance bias values are smaller. In other words, the downscaled 

CRCM4.2 results are closer to the observed values than the downscaled CGCM3.1 results 

at both CDD and CDP stations. Both CRCM4.2 and CGCM3.1 models, at both CDD and 

CDP stations over estimate the mean precipitation in the summer to early fall months and 

underestimate the mean precipitation during the November and December months. In 

terms of variance, the TLFN downscaling method, drastically underestimates the variance 

at both stations with both CRCM4.2 and CGCM3.1 data throughout all months. The 

TLFN downscaled bias values are particularily large in the summer months. The SDSM 

downscaling procedure is much better at capturing the degree of variance, but is 

consistent with TLFN in showing that the largest variance bias values are in the month of 

July. Additionally, Figures 25 and 26 below reveal that regardless of the downscaling 

method, significant improvement is achieved by downscaling the CRCM4.2 as the 

downscaled CRCM4.2 results are closer to the observed mean precipitation readings than 

the raw CRCM4.2 data at CDD. The same is found for the CDP station as shown in the 

Appendix. From Table 1, it is clear that regardless of the downscaling technique, the 

downscaled CRCM4.2 generally has a lower root mean square error (RMSE) and mean 

absolute error (MAE) then the downscaled CGCM3.1. The mean absolute error is 

calculated such that the cumulative difference between the simulated and observed 

precipitation values is considered. In comparing SDSM and TLFN, TLFN has larger 

MAE values due to the inability of TLFN to properly account for days with no 

precipitation. The bias values are thus larger for the TLFN model as compared to SDSM. 

The relative error (RE) statistics reveal that regardless of climate data type (CRCM4.2 or 

CGCM3.1), both downscaling techniques over estimate the mean annual cumulative 

precipitation. 
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For downscaling maximum daily temperature, from the bias plots in the previous 

sections, regardless of the climate data type, both SDSM and TLFN downscaling 

methods are capable of effectively capturing the mean maximum temperature. In some 

months CRCM4.2 downscaling mean bias values are smaller and in other CGCM3.1 bias 

values are smaller, but overall there is no observed trend in the downscaling results for 

the mean maximum temperature. More importantly however, Figures 27 and 28 below 

reveal that regardless of the downscaling method, a notable improvement results by 

downscaling the CRCM4.2 data as the downscaled results are much closer to the 

observed mean maximum temperature records (particularily through late spring - early 

fall) than the raw CRCM4.2 output. In terms of variability, we see the TLFN 

downscaling procedure once again drastically underestimates the variablity in all months 

at both CDD and CDP stations, regardless of the type of climate data being downscaled. 

In this case, the largest bias values for the TLFN procedure are observed in the winter 

months and the smallest bias values throughout the summer months. There is no clear 

trend with the SDSM downscaling procedure as at the CDD station the model 

understimates the variabilty throughout all months, but at the CDP station in some 

months there is no trend at all. For both methods, we see SDSM downscaling at station 

CDP is the best at capturing the observed variance. From Table 1, overall the 

downscaled CRCM4.2 has a lower RMSE and MAE than the downscaled CGCM3.1. For 

temperature the MAE is computed based on the average of the monthly differences in 

mean between the observed and simulated values. TLFN is the better downscaling 

technique as it has the lowest RMSE and MAE values. The RE values tell us that, TLFN 

underestimates the annual mean maximum temperature, whereas SDSM overestimates. 

For downscaling minimum temperature, from the bias plots above and those in 

the Appendix, it is clear that regardless of the climate data type or the downscaling 

method, the downscaled results are very good as the mean is captured very well at both 

the CDD and CDP stations. In terms of the mean, both downscaled CRCM4.2 and 

downscaled CGCM3.1 results at both stations are improved with no clear trend in the 

results to justify one downscaling technique to be more accurate than the other. In terms 
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of variabilty, TLFN once again undersestimates the degree of variance in all months, with 

the largest bias values in the winter months and smallest in the summer months. SDSM 

is much better at capturing the variance as the bias values are small throughout all months 

for both downscaled CRCM4.2 and CGCM3.1 at both stations. More importantly 

however, Figures 29 and 30 below reveal that regardless of the downscaling method, a 

significant improvement (most notably throughout the entire spring, summer and fall 

seasons) results by down scaling the CRCM4.2 at both CDD and CDP. From table 1, the 

downscaled CRCM4.2 has a lower RMSE and MAE then the downscaled CGCM3 .1, 

with TLFN once again outperforming SDSM as it has lower RMSE and MAE values. 

From the RE values, in this case regardless of the downscaling technique, the downscaled 

CRCM4.2 underestimates the mean minimum temperature and the downscaled 

CGCM3.1 overestimates. 
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PREC - STATION COO TMAX TMI N 
SOSM TLFN SOSM TLFN SOSM TLFN 

RCM GCM RCM GCM RCM GCM RCM GCM RCM GCM RCM GCM 
RMSE 8.3 8.54 9.09 9.12 5.79 5.81 4.47 4.5 5.21 5.24 4.45 4.59 

RE 0.12 0.98 1.02 1.41 0.03 0.04 -0.1 2 -0.1 7 -0.27 0.36 -0.36 0.36 

MAE 1.92 2.35 5.47 6.49 0.1 7 0.24 0.14 0.22 0.36 0.37 0.36 0.37 

PREC - STATION COP TMAX TMI N 
SOSM TLFN SOSM TLFN SOSM TLFN 

RCM GCM RCM GCM RCM GCM RCM GCM RCM GCM RCM GCM 
RMSE 7.76 7.93 9.32 9.88 5.21 5.4 4.08 4.59 5.17 5.86 4.29 4.64 

RE 0.14 1.27 1.23 1.31 0.01 -0.02 -0.07 -0.08 -0.19 0.24 -0. 18 0.21 

MAE 1.46 2.73 6.07 6.77 0.19 0.25 0.12 0.19 0.24 0.21 0.21 0.23 ; 

Table 1: Downscaling model validation statistics for the CDD and CDP stations 
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It is important to assess the validity of the downscaling experiments through an 

uncertainty assessment. In the case of downscaling daily temperature, because of their 

nearly normal distribution, the uncertainty can be assessed with comparisons of means 

and variances of downscaled temperature data with observed readings. In the uncertainty 

assessment for downscaled precipitation however, comparisons of means and variances is 

not enough because of the non-normality of precipitation and such is important for some 

parameter or non-parametric approach to be employed (Khan et aI., 2006). 

The Levene Test was used to test the equality of variances for precipitation 

(Levene, 1960). Simply the test assesses the null hypothesis, that the variances of 

populations from which different samples are drawn are equal; or simply if n samples 

have equal variance (equality of variance) (Khan et aI., 2006). If the resulting p-value of 

Levene's test is less than some critical value (typically 0.05), the null hypothesis is 

rejected and it is concluded that there is a difference between the variances of the two 

populations. The variance test results in Table 2 show the p-values are all above 0.05 . 

This concludes that the observed and simulated daily precipitation variance can be 

considered statistically equal in all months with a 95% confidence level. 

LEVENE TEST RESULTS - CDD 

SDSM TLFN 

Month RCM GCM RCM GCM 

Jan 0.783 0.737 0.484 0.932 

Feb 0.849 0.733 0.216 0.375 

Mar 0.706 0.972 0.654 0.204 

Apr 0.458 0.562 0.158 0.599 

May 0.512 0.365 0.629 0.326 

Jun 0.834 0.353 0.417 0.486 

Jul 0.239 0.866 0.341 0.795 

Aug 0.769 0.095 0.641 0.276 

Sep 0.392 0.148 0.563 0.313 

Oct 0.672 0.795 0.690 0.231 

Nov 0.835 0 .059 0.786 0.439 
Dec 0.510 0.717 0.492 0.885 

Table 2: Levene Test p-values for precipitation at CDD 
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The Wilcoxon Rank-Sum Test was used to test the difference of means. This non 

parametric test tests the hypothesis that two populations have the same population mean, 

i.e. observations that come from the same distribution. The null hypothesis is that the 

population means are equal and thus any p-value above a critical value (0.05) will 

indicate that the observed and generated means are close and come from the same 

distribution. Further description of the test can be found in Khan et aI., 2006b. Table 3 

provides the p-values for the precipitation downscaling experiments. As shown, overall 

the SDSM downscaling method is more effective at capturing the mean as regardless of 

the climate data type, the p-values are generally larger than 0.05. TLFN on the other 

hand, is not as good, particularly in August and September. The results also reveal that 

regardless of the downscaling method employed or the climate data type downscaled the 

test failed in April. This may be a result of the atmospheric predictors selected for the 

downscaling. Further both SDSM and TLFN are effective at capturing the mean in the 

winter months. 

WILCOXON RANK SUM TEST - CDD 

SDSM TLFN 

Month RCM GCM RCM GCM 

Jan 0.515 0.312 0.180 0.221 

Feb 0.322 0.868 0.128 0.018 
Mar 0.646 0.447 0.531 0.397 
Apr 0.013 0.014 < 0.0001 < 0.0001 
May 0.685 0.407 0.055 0.201 
Jun 0.476 0.929 0.766 0.445 
Jul 0.371 0.476 0.024 0.127 
Aug 0.970 0.360 0.004 0.006 
Sep 0.133 0.015 0.009 0.028 

Oct 0.884 0.783 0.536 0.298 
Nov 0.268 0.010 0.966 0.264 
Dec 0.283 0.909 0 .291 0.391 

Table 3: Wilcoxon Rank Sum Test p-values for precipitation at CDD 
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5.5 Future Climate Change 

Once the downscaling models have been calibrated and validated for the current 

period (1961-1990), the models are used to generate future values of precipitation, 

maximum & minimum temperature corresponding to the SRES A2 future climate 

scenario. The goal is to understand and compare what each climate model (CRCM4.2 

and CGCM3.l) and downscaling method (TLFN, SDSM) will project for the future 

period (2046-2065). The monthly mean statistics for the future period (2050s) are 

compared with current period (1961-1990) results in the following figures. Each figure 

contains three series - the blue represents the current observed mean value, the red 

represents the RCM projected mean for the 2050s and the green represents the GCM 

projected mean for the 2050s future period. 
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Figure 31: Monthly mean precipitation at CDD for current and future period 
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Figure 32: Monthly mean precipitation at CDD for current and future period 
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Figure 33: Monthly mean maximum temperature at CDD for current and future period 
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TLFN Downscaled Scenario Max. Temperature at COD 
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Figure 34: Monthly mean maximum temperature at CDD for current and future period 
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Figure 35 : Monthly mean minimum temperature at CDD for current and future period 
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TlFN Downscaled Scenario Min. Temperature at COD 
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Figure 36: Monthly mean minimum temperature at CDD for current and future period 

From Figures 31-36 above and Figures A25-A30 in the Appendix it is clear that at 

both station CDD and CDP the CGCM3.1 model shows a larger increasing trend in mean 

precipitation, mean maximum temperature and mean minimum temperature in the 2050s 

future period than the CRCM4.2 model. For precipitation, regardless of the climate 

model type, or the downscaling method, the most significant changes in mean occur 

during the late winter, spring and early summer months. Additionally, regardless of the 

downscaling method, the CGCM3.l future monthly mean trend is smoother throughout 

the year, whereas the CRCM4.2 trend tends to be more sporadic. For maximum 

temperature, the changes are gradual throughout the entire year for both climate models 

and downscaling methods with the largest increase in mean maximum temperature 

occurring during the fall and winter months. For minimum temperature, the most 

significant changes occur during the winter months with gradual changes throughout the 

remainder of the seasons. Both CRCM4.2 and CGCM3.l models provide smooth trends 

of mean minimum temperature for the future period. Table 5 shows the annual average 

increase/decrease in mean precipitation, mean maximum temperature and mean minimum 
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for both stations using both SDSM and TLFN downscaling methods. At both CDD and 

CDP, for precipitation it is clear the CGCM3 .1 shows a much larger increase than the 

CRCM4.2 model for the 2050s future period. Additionally, the TLFN model shows 

larger increases in annual mean precipitation than the SDSM model. For maximum and 

minimum temperature the results are similar as the CGCM3.1 model once again shows a 

larger increasing trend than the CRCM4.2 model regardless of whatever downscaling 

method was employed. In these cases however, sometimes the SDSM downscaling 

model shows a larger increasing trend and in others the TLFN downscaling models does . 

Overall, regardless of the climate model or the downscaling method, a 1 to 3°C 

increase in annual mean maximum temperature and a 1 to 4°C increase in annual mean 

minimum temperature are predicted for the 2050s future period. In the case for 

precipitation, the CRCM4.2 model shows increases in annual precipitation will vary from 

1 to 7% in the 2050s regardless of the downscaling method used. The CGCM3.1 model 

on the other hand, shows increases in annual precipitation ranging from 15 to 23% 

regardless of the downscaling method employed. All of these predicted changes will 

translate into different effects on the catchment scale hydrology. 
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AveraQe Increase/Decrease 
Station 
CD Precipitation (%) TMAX (0C) TMIN(OC) 

SDSM TLFN SDSM TLFN SDSM TLFN 
RCM GCM RCM GCM RCM GCM RCM GCM RCM GCM RCM GCM 

2050s 1.73 16.76 6.97 23.13 1.27 2.78 1.21 2.68 1.43 3.34 _ 1.41 3.12 

Average Increase/Decrease 
Station 
COP Precipitation (%) TMAX (OC) TMIN(°C) 

SDSM TLFN SDSM TLFN SDSM TLFN 
RCM GCM RCM GCM RCM GCM RCM GCM RCM GCM RCM GCM 

2050s 0.93 14.60 4.30 16.39 1.49 2.58 2.22 2.78 1.40 3.07 1.76 3.07 

Table 4: Changes in annual average values at both Stations from current conditions as predicted by the SDSM and TLFN 

downscaling models 
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Chapter 6: Hydrological Modeling 

Hydrological models are simplified mathematical formulations of a particular 

phase in the hydrological cycle. At the field scale, models are used for varied purposes, 

such as planning and designing soil conservation practices, irrigation water management, 

wetland restoration, stream restoration, and water-table management. On a large scale, 

models are used for flood protection projects, rehabilitation of aging dams, floodplain 

management, water-quality evaluation, and water-supply forecasting. Generally, 

hydrological models can be classified based on (1) process description; (2) timescale; (3) 

space scale; (4) techniques of solution; (5) land use and (6) model use (Singh et aI., 

2002). Here a more specific classification will be discussed: fully distributed physical vs. 

lumped conceptual deterministic models and data driven models. 

Physical models are based on the underlying physical equations that represent the 

physics of the hydrological processes which control the catchment response. These 

models will solve for processes such as: interception, infiltration, evaporation and 

transpiration, snow accumulation and ablation, interflow, recharge, baseflow, overland 

flow, wetland and channel routing throughout the entire catchment (Kouwen, 2009). In 

these models transfer of mass, momentum and energy are calculated directly from the 

governing partial differential equations which are solved using numerical methods, for 

example the St. Venant equations for surface flow, the Richards equation for unsaturated 

zone flow and the Boussinesq equation for ground water flow (Seth, 2009). Some of the 

latest most comprehensive models are capable of incorporating radar LANDSAT land 

cover and radar rainfall data to accurately account for the spatial variability in largely 

heterogeneous watersheds. Conceptual models on the other hand are based on more 

simplified representations of the hydrologic processes in a watershed and are normally 

run with point values of precipitation and temperature as the primary input (Liden & 

Harlen, 2000). The idea with conceptual modelling is to consider the catchment as a 

system whose components are precipitation, evapotranspiration, storage and runoff. The 

water balance equation for a catchment model can be written as 
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p - ET±~S = Q (3) 

where P is total precipitation on the catchment, ET is the evapotranspiration, ~S is the 

change in water storage, and Q the runoff from the catchment (Liden & Harlen, 2000). 

The fully distributed nature of a hydrological model refers to its ability to divide 

the watershed into a square grid system where input is required and output information is 

produced at all points. These models are capable of incorporating the entire physiography 

and hydrological variability of a study area accounting for heterogeneities throughout the 

watershed. Thus, fully distributed physically based models are very data intensive as 

large amounts of high quality physical, geographical and meteorological data is required 

to ensure accuracy (Cranmer et. aI, 2001).Conventional lumped models on the other 

hand, simply consider spatial averages of the land surface and are thus less data intensive, 

but also much less precise. 

In the last decade, artificial neural networks (ANNs) have been employed in 

hydrological modeling as they have the ability to recursively learn from data and are 

particularly suited for modeling nonlinear systems where traditional parameter estimation 

techniques are not convenient (Singh et. al 2002). Another benefit stems from the fact 

that no information on the physics or physiographic nature of the watershed is required as 

model performance is based on the minimizing of some statistic rather than conceptually 

representing the hydrologic processes in the study area. A full description of preliminary 

concepts and applications can be found in (ASCE, 2000 a,b). 

Although hydrological models have been around for quite some time, there is yet 

to be one exclusive model that can stand apart from the rest and be declared best at 

modeling all aspects of the hydrologic system. The major problem in hydrological 

modeling is that it is impossible to measure and simulate every single interaction between 

air, water, and land, whether by limitations in science or in finance (Carlaw, 2000). Thus, 

models become estimations of real world conditions based on information that is feasible 

to obtain. With this, models must be comprehensive enough to accurately represent real-
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life conditions, but they must also be simple enough to run within a suitable time frame 

on standard computing resources (Carlaw, 2000). It is this balance between accuracy and 

simplicity that is hindering the development of a model which simulates all hydrologic 

processes with perfect accuracy. 

6.1 HBV Hydrological Modeling System 

Originally developed at the Swedish Meteorological and Hydrological Institute 

(SMHI) in the early 70's to assist hydropower operations, the Hydrologiska Byrans 

Vattenbalans-avdeling (HBV) model is a conceptual hydrological model used for 

continuous calculation of runoff (Linden & Harlin, 2000). The model can be classified as 

semi-distributed as it uses sub basins, as primary hydrological units in which an area­

elevation distribution and a crude classification ofland use (for~st, open areas, and lakes) 

are made (Linden & Harlin, 2000). A schematic sketch of the structure and parameters of 

the HBV model is shown in Figure 37 (Linden & Harlin, 2000). Input data are 

observations of precipitation, mean temperature, vapour pressure, wind speed and 

estimates of potential evaporation. 

Precipitation calculations are made separately for each elevation/vegetation zone 

within a basin and a threshold temperature is used to differentiate between snow and 

rainfall. The snow routine is based on a simple degree day relation and is applied to both 

snow accumulation and snow melt. Evapotranspiration values are based on long-term 

monthly averages of potential evaporation as input and a simplified variation of 

Thomthwaite's equation (Lindstrom et aI. , 1997). A soil moisture accounting routine is 

the main part controlling runoff formation. Water not retained in the soil is routed 

through two stores, an upper one interpreted conceptually as saturated soil and a lower 

one representing groundwater (Dibike & Coulibaly, 2007). The model parameters are 

determined through a calibration process, where the parameters are adjusted until 

simulated and observed flow readings show a good statistical agreement. 
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Figure 37: HBV Model schematic (taken from Linden & Harlin, 2000) 
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To date the HBV model has been applied effectively in over 35 countries 

encompassing a large variety of climate and geographic locations. See Bergstrom & 

Forsman, 1973; Brandt, 1990; Liden & Harlin, 2000; Coulibaly et aI., 2005. More 

importantly however, HBV has been used in previous studies in the same study area, the 

results of which revealed that the HBV model is quite effective in the particular climate 

and physiography of the study area (Dibike & Coulibaly, 2007 and Dibike & Coulibaly, 

2005). 

In this study HBV will be used to simulate inflow in the Chute-du-Diable 

reservoir and flow in the Mistassibi river. The models will first be calibrated with 

observed data obtained from the CD and CDP weather stations for the years 1961-1980 

and then validated for the years 1981-1990. Once a good model has been created, the 

downscaled CGCM3.l and CRCM4.2 results will be input in place of the observed data 

to see how well the downscaled results are able of capturing the observed flows. The 

root mean square error (RMSE), correlation coefficient (r) and Nash-Sutcliffe model 

efficiency index (Nash) will be used to judge the accuracy of the models. 

6.2 HBV Simulation Results for the Chute-Du-Diable reservoir 
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With CGCM3.1 downscaled with SDSM 
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Figure 38: HBV Simulation results for the Chute-du-diable reservoir inflow 
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Figure 39: HBV simulation results for the Mistassibi River flow 

Figure 38 and Figure 39 provide the HBV simulation results for the Chute-du­

diable reservoir and Mistassibi River. The model is calibrated for the years 1961-1980 
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and validated for 1981-1990 period. The plots provide the simulation results for the last 

three years for clarity of visualization. As can be seen, each Figure contains 5 plots; the 

first represents the HBV model setup with observed meteorological data and the 

remainder plots represent the model setup with the downscaled results as input. The 

figures reveal that regardless of the climate data type (CRCM4.2 or CGCM3.1) or the 

downscaling method (SDSM or TLFN) accurate flow simulation results are produced. 

The overall inflow at the Chute-du-Diable reservoir and river flow in the Mistassibi River 

are well simulated as the magnitude of flow peaks are generally captured, the base flow 

values are close and the time and shape of the flow recession curves are almost identical 

to the observed flow. The scatter plots in Figures B 1-B 10 in the Appendix also confirm 

that for the entire validation period, regardless of the input data, overall good 

performance is achieved. 

Table 6 provides the RMSE, r and nash values for inflow simulation at the Chute­

du-Diable reservoir with the different input data cases. For the Chute-du-diable inflow 

simulation with observed data as input, a 0.85 rand 0.70 Nash value is obtained. When 

the model input is substituted with CRCM4.2 downscaled with SDSM or TLFN an r 

value of 0.84-0.87 and Nash of 0.68-0.73 are obtained. When the model input is 

substituted with the downscaled CGCM3 .1 data a 0.84-0.87 r value and 0.7-0.75 Nash is 

obtained. The results reveal that regardless of the climate data type, the TLFN 

downscaling method provides slightly stronger modeling results than the SDSM 

downscaling method. 

Similarly, Table 6 provides the RMSE, r and Nash values for flow simulation at 

the Mistassibi River with the different input data cases. For Mistassibi River flow 

simulation with observed data as input, a 0.84 rand 0.69 Nash is obtained. When the 

model input is substituted with CRCM4.2 downscaled with SDSM or TLFN an r value of 

0.85-0.90 and a Nash of 0.71 -0.81 are obtained. When the model input is substituted 

with the downscaled CGCM3 .1 data a 0.84-0.90 r value and 0.69-0.79 Nash is obtained. 
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Thus, the downscaled CGCM3.1 data once agam, the TLFN downscaling procedure 

provides slightly more accurate Mistassibi River flow simulation results. 

CRCM4.2 

ass SDSM TLFN 

RMSE r Nash RMSE r Nash RMSE r Nash 
Chute-Du-Diable 
Reservoir 115.95 0.85 0.70 119.73 0.84 0.68 110.61 0.87 0.73 

Mistassibi River 109.85 0.84 0.69 106.71 0.85 0.71 86.19 0.90 0.81 

CGCM3.1 

ass SDSM TLFN 

RMSE r Nash RMSE r Nash RMSE r Nash 
Chute-Du-Diable 
Reservoir 115.95 0.85 0.70 116.52 0.84 0.70 105.39 0.87 0.75 

Mistassibi River 109.85 0.84 0.69 109.50 0.84 0.69 89.16 0.90 0.79 

Table 5: HBV Model Validation Statistics 
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6.4 Future Climate Change Flow Simulations 

Downscaled meteorological data corresponding to the future 2050s period was 

input into the HBV modelling system to understand how flow will change in the Chute­

du-diable reservoir and Mistassibi River from current conditions. As before, future 

changes are considered for both climate data types (CRCM4.2 and CGCM3 .1) and both 

downscaling methods (SDSM and TLFN) 
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Figure 40: Changes in mean future inflow at Chute-du-Diable reservoir for the 2050s 
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Figure 41 : Changes in mean future flow in the Mistassibi River for the 2050s 
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% IncreaselDecrease in Annual 
Flow 

CRCM4.2 CGCM3.1 

SDSM TLFN SDSM TLFN 
Chute-Du-Diable 
Reservoir 16.90 24.95 28.10 26.52 

Mistassibi River 12.36 37.20 58.40 61.74 

Table 6: Percentage of Increase/Decrease in annual flow corresponding to the 2050s 

% Increase/Decrease in Seasonal Flow for 
the 

Chute-du-diable Reservoir 

CRCM4.2 CGCM3.1 

SDSM TLFN SDSM TLFN 

Winter 27.36 29.48 34.52 32 

Spring 15.4 31 .28 51 .66 56.65 

Summer -57.72 -47.46 -42.31 -44.89 

Fall 0.23 5.68 29.35 17.52 

Table 7: Percentage of Increase/Decrease in seasonal flow for the 2050s at the Chute-du­

Diable Reservoir 

% Increase/Decrease in Seasonal Flow for 
the 

Mistassibi River 

CRCM4.2 CGCM3.1 

SDSM TLFN SDSM TLFN 

Winter 11.12 58.58 70.17 88.32 

Spring -30.04 -10 .92 9.75 23.29 

Summer -27.09 -41.91 -36.28 -28.47 

Fall 9.16 24.51 17.42 36.67 

Table 8: Percentage of Increase/Decrease in seasonal flow for the 2050s in the Mistassibi 

River 
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The results in Figure 40 and Figure 41 show the changes in mean inflow for the 

Chute-du-diable reservoir and the changes in mean flow in the Mistassibi River. The 

results reveal that regardless of the climate data type (whether CRCM4.2 or CGCM3.1) 

or the downscaling procedure the overall trends in the change are similar throughout. At 

both the Mistassibi River and Chute-du-diable reservoir, significant decreases in flow are 

observed in the summer months with increases throughout the remainder of the seasons. 

Further at Chute-du-diable the decrease in flow occurs during May-August, whereas at 

the Mistassibi River the decrease occurs earlier from April-July. This difference may be a 

result of their geographical location as the Mistassibi River lies further west than the 

Chute-du-diable reservoir. Overall, the changes in flow, corresponds well with the 

predicted increase in temperature found for the 2050s future period in the downscaling 

experiments. Specifically, higher temperatures in the winter months will have an 

associated earlier beginning of snow melting which would increase the runoff and bring 

forth larger flows in the spring. Further, the decrease in flow during the summer months 

can also be explained partly by the warmer summer temperatures. Higher temperatures 

during the summer will mean more water will be lost to Evapotranspiration and thus less 

water will be available to contribute to runoff. Additionally, the downscaling experiments 

revealed an increase in annual precipitation will occur for the 2050's future period, this 

can also help explain the increases in flow that occur throughout the remainder of the 

year. 

For the Chute-du-diable reservoir, Table 6 reveals that the CRCM4.2 downscaled 

with SDSM shows a 17% increase in mean annual flow, whereas the CGCM3.1 

downscaled with SDSM shows a 28% increase in mean flow. This trend is similar with 

the TLFN downscaling procedure and as such the CGCM3.1 downscaled results reveal a 

larger increase in inflow at the Chute-du-diable reservoir than the CRCM4.2 downscaled 

results. In terms of comparing the two downscaling methods, TLFN shows larger 

increases in mean flow with the CRCM4.2 data and SDSM shows larger changes with the 

CGCM3.1 data. Table 8 shows the seasonal increase/decrease in reservoir inflows. As 

shown, regardless of the climate data or the downscaling method, significant decreases in 
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mean flow occur during the summer seasons and smaller changes occur during the fall. 

Further in all seasons, the CGCM3.1 reveals larger changes in mean flow than the 

CRCM4.2. 

For the Mistassibi River we see once again the CGCM3.1 data shows larger 

increases in mean annual river flow than the CRCM4.2 data. This time however, the 

difference between the CRCM4.2 and CGCM3.1 results is much larger as shown in Table 

7. For example, the CRCM4.2 data downscaled with TLFN reveals a 37% increase in 

mean annual river flow, whereas the downscaled CGCM3.1 with TLFN reveals a 62% 

increase in mean flow. Table 8 shows that the CRCM4.2 model suggests a reduction in 

flow for both the spring and summer seasons, whereas the CGCM3.1 model shows a 

reduction in flow for only the summer. In comparing the two downscaling methods, 

regardless of the climate data type, TLFN once again produce larger changes in flow than 

SDSM. 
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Chapter 7: Conclusions 

To date, climate change impact studies have generally involved the downscaling 

of large-scale atmospheric predictors with the result then being input into a hydrological 

model to see how flow in a riverlbasin will change under various future climate change 

scenarios. Although many studies have been completed using large scale global climate 

model (OCM) data, few studies have shown the strength of regional climate models 

(RCM). In this work, a comparison between the effectiveness of using CRCM4.2 vs. 

COCM3 .1 data in a climate change impact study (climate forcing under the SRES A2 

climate scenario) is considered. The study area is the Chute-du-Diable sub-basin located 

within the Saguenay-Lac-Saint-Jean Watershed in Quebec (Canada). Downscaled results 

are compared with observed meteorological data for the years 1961-1990 at the Chute­

des-Passes (CDP) and Chute-du-Diable (CDD) weather stations; and flow is simulated 

for the Mistassibi River and the Chute-du-Diable reservoir. A multivariate regression 

technique (SDSM) and a dynamic artificial neural network model (Time lagged feed­

forward neural network (TLFN» are used for downscaling the CRCM4.2 and COCM3.l 

data, and the HBV2005 hydrological modeling system is used for simulating flows in the 

watershed. 

F or the current period (1961-1990), downscaling results reveal that downscaled 

CRCM4.2 is closer to observed meteorological data at both CDD and CDP stations than 

downscaled COCM3.1 is. More importantly however, the downscaling results reveal that 

regardless of the predictand, the downscaled CRCM4.2 results are much closer to the 

observed data than the raw CRCM4.2 data is. Statistical results reveal that regardless of 

the climate model, TLFN is best for downscaling temperature and SDSM is best for 

downscaling precipitation. The Levene Test and Wilicoxon Rank-Sum Test were carried 

out to determine the uncertainty of the downscaling results. The results revealed that 

regardless of the climate model, or the downscaling method employed, overall both the 

mean and variance was captured quite well. With respect to the future "business as usual 

climate scenario", regardless of the climate model or the station or the downscaling 
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method, a 1 to 3°C increase in annual mean maximum temperature and a 1 to 4°C 

increase in annual mean minimum temperature are predicted for the 2050s future period. 

In the case for precipitation, the CRCM4.2 model shows increases in annual precipitation 

will vary from 1 to 7% in the 2050s regardless of the downscaling method used. The 

CGCM3.1 model on the other hand, shows increases in annual precipitation ranging from 

15 to 23%. Further, whether simulating future mean precipitation, mean maximum 

temperature or mean minimum temperature, the CGCM3.1 model consistently shows a 

larger increasing trend than the CRCM4.2 model. 

The hydro graphs and statistical results of the hydrologic model HBY shows that 

good flow simulation results were obtained for the Chute-du-diable Reservoir inflows 

and Mistassibi River flows - Nash values range from 0.69-0.81 and correlation coefficient 

values range from 0.84-0.90. Simulations of future river flows and reservoir inflows 

reveal that significant seasonal changes in mean flow will occur as a result of the 

warming trend and the increased precipitation predicted in the downscaling experiments 

for the 2050s. For the Chute-du-Diable reservoir, the results show that for TLFN and 

SDSM, the CRCM4.2 and CGCM3.1 model shows decreases in mean annual flow during 

the summer season and increases during the remaining seasons for the 2050s. For the 

Mistassibi River, the CRCM4.2 model shows that decreases in mean flow will occur 

during the spring and summer seasons with increases in flow during the remaining two 

seasons. The CGCM3.1 model consistently shows larger increases in mean flow for the 

2050s when compared with the CRCM4.2 model, but it also indicates significant 

decreases in the summer season regardless of the downscaling method used. Further in 

all cases, the TLFN downscaling procedure shows larger changes in mean flow than 

SDSM. 

Incorporation of downscaled RCM data in a hydrologic impact study can help to 

provide a broader picture for decision making, as the GCM consistently gives large 

estimates of changes for the 2050s, whereas the RCM consistently gives smaller 

estimates. 
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Figure AI: Residual plot of mean precipitation at CDP: Raw GCM & Raw RCM output 
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SDSM Predictors 

Precipitation Max. Temperature Min. Temperature 

CRCM4.2 CGCM3.1 CRCM4.2 CGCM3.1 CRCM4.2 CGCM3.1 

hsf hfss hsf hfss hfs hfss 

pcp Pr pcp pr pcp pr 

phi8s0 Psi pmsl psi phi8s0 psi 

pmsl tas stmxd tas pmsl tas 

sq uas su uas stmnd uas 

stmnd vas sv vas su vas 

stmxd swmx sv 

Su swmxx 

Sv 

Table AI: GeM and ReM predictors used in SDSM downscaling 

TLFN Predictors 

Precipitation Max. Temperature Min. Temperature 

CRCM4.2 CGCM3.1 CRCM4.2 CGCM3.1 CRCM4.2 CGCM3.1 

Hsf evspsbl Hsf Hfss hsf prsn 

Pcp Hfls Pcp Rids pcp ps 

phi8s0 hus_8s0 phi8s0 Rsds phi8s0 psi 

Pmsl Pr Pmsl ta 850 pmsl ta 850 

Sq Ps i Sq Vas sq vas 

Stmnd Rlus stmnd zg_sOO stmnd zg_sOO 

Stmxd Tas stmxd Rlus stmxd 

Su Uas Su Ps su 

Sv Vas Sv sv 

Swmx zg 850 Swmx swmx 

Table A2: GeM and ReM predictors used in TLFN downscaling 
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CRCM4.2 Predictors 

hsf surface upward sensible heat flux (W/m2) 

pcp Precipitation(mm) 

phi850 geopotential height at 850 hPa (m2/s2) 

pmsl mean sea level pressure (Pa) 

sq screen specific humidity at 2m (kg/kg) 

stmnd minimum temperature © 

stmxd maxmimum temperature © 

su eastward surface wind (m/s) 

sv northward surface wind (m/s) 

swmx mean amplitude of sustained wind at 10 m (m/s) 

CGCM3.1 Predictors 

evspsbl surface water evaporation flux (kg m-2 s-l ) 

hfls surface upward latent heat flux (W m-2) 

hus_850 specific humidity at 850 m(dimensionless fraction) 

pr precipitation f lux (kg m-2 s-l ) 

psi air pressure at sea level (Pa) 

rlus surface upwelling longwave flux in the air (W m-2) 

tas near surface daily mean temperature (K) 

uas near-surface eastward wind (m s-l) 

vas near-surface northward wind (m s-l) 

zg_850 geopotentia l height at 850 (m) 

hfss surface upward sensible heat flux (W m-2) 

rlus surface upwelling longwave f lux in the air (W m-2) 

rlus surface upwelling longwave flux in the air (W m-2) 

rids surface downwelling longwave flux in the air (W m-2) 

rsds surface downwelling shortwave flux in the air (W m-2) 

ps surface air pressure (Pa) 

zg_500 geopotential height at 500 (m) 

ta 850 mean air temperature at 850 m (K) 

Table A3 : Description ofCRCM4.2 and CGCM3.1 predictors. 

Figure A 7 shows an example of the correlation matrix produced in SDSM and the 

bar plot produced in TLFN during the sensitivity analysis procedure to determine the best 

predictors for downscaling. The case for downscaling precipitation at station CDD with 

GCM data is shown here. In SDSM the correlation matrix helps investigate the inter­

variable correlations and the partial correlations identify which predictors have the 
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strongest association with the predictand. In TLFN the sensitivity about the mean of the 

predictand and predictors is carried out. 

cd Closes this window IIX 

n alysis Period: 01 /01/1 961 - 31 /1 211 990 (Annual) 

M issing values: 0 
M issing rows: 0 

a lues less than or equal to threshold: 51 73 

1 2 3 
1 obs_cd_precip.dat 1 0 .044 0.00 4 
2 gcm3hfssxx. d at 0.044 1 -0.340 
3 gcm3prxx.dat 0.004 -0.340 1 
4 gcm3pslxx. dat 0.009 0 .085 -0.202 
5 gcm3tasxx. dat 0.111 0 .222 0.183 
6 gcm3uasxx. dat 0.000 0. 153 -0.275 
7 gcm3vasxx. dat 0.001 -0.419 0.198 

4 
0.009 
0 .085 
-0.202 
1 
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gcm3uasxx. dat 
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Partial r 
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0.028 
0 .106 
-0.002 
-0 .018 

P value 
0.5559 
0.4929 
0.0556 
0.0000 
0.5595 
0.2306 

5 
0. 111 
0.222 
0. 183 
-0.207 
1 
0.053 
0.196 

Sensitivity About the Mean 

0.6 

0.5 

0.4 
~ 
·S .. 0.3 'iii 
c 
III 
III 

0.2 

0.1 

0 

:0 '" '" 0 0 '" a. c: '" Vi '" '" '" '" ~ ~ 0 '" '" '" 0.. 0.. " '0 '0 " '" ~ " a. -.::: -.::: ~ ~ 0.. ~ "'I ':1 '" 
~ 

> '" QJ " " ~ ~ 

Input Name 

6 7 
0.000 0.001 
0. 153 -0.419 
-0.275 0.198 
-0.313 -0.006 
0.053 0. 196 
1 -0.122 
-0.122 1 

• prec 

-
I 
'0 '" '" '" 0 0 
c: !!l '" '" 0 '" " > '" '" 00 

1 1 
QO QO 
N N 

Figure A7: Example of Sensitivity Analysis results for SDSM and TLFN downscaling 
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Example of SDSM and TLFN Model Setup 

SDSM 

ReM GeM 

Prec Natural log, 13 V.I., 0.8 Bias, Ordinary Simplex Natural log, 11 V.I.,D.9 Bias, Ordinary Simplex 

Tmax No transformation, 12 V.1.1 Bias, Ordinary Simplex No transformation, 12 V.1.1 Bias, Ordinary Simplex 

TLFN 

ReM GeM 

Prec TDNNAxon, 9 PE, delta-bar-delta, 3000 epochs TDNNAxon, 11 PE, de lta-bar-delta, 3000 epochs 

Tmax TDNNAxon, 7 PE, delta-bar-delta, 2000 epochs TDNNAxon, 9 PE, delta-bar-delta, 2000 epochs 

Table A4: SDSM and TLFN model setup for the case of downscaling precipitation at 

CDD 
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Figure A21 : Comparison of Raw RCM and TLFN Downscaled RCM mean ppt. at CDP 
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- .- -_ . -. .--. .- .- ._-- .. _--_._- ------ .---------_ .... _-_ •. __ .. _---_. --_ _ • _ __ 0 ••• _ . ________ • , __ • •• ___ •• __ •• • _. ___ _ •• _ ._ .. --- ... - ..... 

Bias Table -PPT Monthly Mean -STATION CDD Bias Table -PPT Monthly Variance -STATION CDD 
- ... -. 

Month SDSM TlFN Month SDSM TLFN , . ... _---- --_.. .-

Raw RCM ReM GeM Raw ReM ReM GCM Raw ReM RCM GeM Raw ReM RCM GCM - - - -_ , _ _ _ _ _ 'M_ 

J -0.257 -0.032 0.040 -0.257 0.072 -0.345 J -2.917 -0.565 -2.524 -2.917 -6.364 -6.663 
-. - .-~ ... . _-

F -0.283 0.014 0.172 -0.283 0.184 -0.116 F -5.243 1.785 -1.342 -5.243 -5.311 -7.733 
... --.---. 

M -0.143 0.044 0.132 -0.143 0.098 -0.267 M -5.876 -1.526 -4.322 -5.876 -5.240 -6.711 
.. _--

A 0.145 -0.058 -0.191 0.145 -0.050 -0.050 A -1.742 -2.583 -4.083 -1.742 -5.175 -6.298 
..... _ .. _-_ .. , 

M 0.001 -0.066 -0.010 0.001 0.017 0.188 M -2.762 -0,562 -2,081 -2.762 -8,235 -10.171 
I 

~ _. ---- ----
I 

J 0.469 0,025 0.136 0.469 0.188 0.537 J -0.888 -6.083 -9.558 -0.888 -12.929 -15.846 
._-

J 0.097 0.092 0.435 0.097 0.086 0.396 J -24.288 9.882 -4.260 -24.288 -21.402 -21.757 
. - -. ..-

I 
I A 0.202 0.134 0.267 0.202 0.202 0.213 A -15.516 0.483 3.477 -15.516 -12.716 -13.995 

---~ 

S 0.255 0.175 0.346 0.255 0.195 0.300 S -11.240 0.092 -2.412 -11.240 -11.146 -20.408 
-

0 0.229 0.036 0.136 0.229 0.202 0.316 0 -5.373 2.728 0.271 -5.373 -6.136 -3.350 
-- .-----

N 0,116 -0,091 -0.297 0.116 -0.065 -0.328 N -0,019 -2.149 -4.321 -0.019 -10.163 -15.508 
--. --. 

D -0.235 -0.149 -0.188 -0.235 -0.106 -0.436 D -5.137 -3.167 -4.490 -5.137 -9.321 -11.797 i 
I -. - '--- .-. 

Table A5: Bias Statistics of monthly mean and variance of precipitation at Station CDD 
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---..., '., .-. - ~ .- ,--- -- -.- ---_._,----- --.-- . __ ._ .... _------..- ----...... __ ... ... ---, .. - - .... -. - ~ .. , ..... ._. - .. 

Bias Table -PPT Monthly Mean -STATION CDP , Bias Table -PPT Monthly Variance -STATION CDP 
.... -,----

Month SDSM TLFN ' Month SDSM , TLFN 
- .. -. ----..--- -

Raw RCM RCM GCM Raw RCM RCM GeM Raw RCM RCM GeM Raw RCM ReM GCM - ___ . ,' __ "_~d_'" 

J -0.354 -0.033 0.032 -0.354 0.126 -0.087 J -3.840 -3.309 -2.090 -3.840 -5.170 -7.466 ._-_. 
F -0.308 -0.211 -0.167 -0.308 -0.120 0.158 F -3.267 -3.045 -2.025 -3.267 -4.584 -0.673 

. -<' .-

M -0.141 -0.116 0.100 -0.141 0.190 -0.050 M -4.514 -4.084 -1.993 -4.514 -4.879 -5.025 
----.--..... 

A 0.162 -0.089 -0.269 0.162 -0.145 -0.079 A -4.110 -5.122 -2.896 -4.110 -6.722 -6.923 --._-_. 

M 0.477 -0.002 0.028 0.477 0.235 0.302 M -2.349 0.211 0.960 -2.349 -6.288 -5.077 
.... ' ---

J 0.582 0.137 0.538 0.582 0.352 0.422 J -12.625 lOSS 11.720 -12.625 -24.029 -27.500 
..... _- --' " 

J 0.150 0.180 0.281 0.150 0.133 0.240 J -32.528 11.464 21.175 -32.528 -33.798 -42.165 
-- - .--- _ .. 

A 0.386 0.212 0.279 0.386 0.176 0.267 A -9.253 2.944 14.330 -9.253 -13.927 -16.854 --
S 0.322 0.016 0.278 0.322 0.243 0.356 S -0.380 2.099 15.098 -0.380 -15.123 -17.610 ---_ .. 
0 0.173 0.203 0.387 0.173 0.200 0.294 0 -2.747 3.026 4.148 -2.747 -13.035 -7.938 

, .--..... -

N -0.171 -0.198 -0.293 -0.171 -0.132 -0.434 N -0.633 -7.648 -5.357 -0.633 -10.614 -17.052 
-,~" .... 

D -0.188 -0.057 0.075 -0.188 -0.022 -0.083 D -4.407 -2.831 -1.928 -4.407 -7.285 -11.584 
-. --

Table A6: Bias Statistics of monthly mean and variance of precipitation at Station CDP 
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---... _---, -- -_._-_. ~ -_._-------,,----- ----_ .. ---, ---- ------._-_ .... - .--- .. - .-.. -.. _- --- - ._- -
, : Bias Table -TMAX Monthly Mean -STATION CDO I Bias Table -TMAX Monthly Variance -STATION CDD 

-.- .-.--._-
: Month SDSM : TLFN : Month SOSM . TlFN 

-,. .-. "" ... _--- -. -_ ...... 
Raw RCM ReM GeM Raw ReM ReM GeM Raw RCM RCM GeM Raw ReM ReM GeM - - - --

I 

J -0.934 -0.101 0.049 -0.934 -0.079 0.105 J -1.640 -3.325 -4.669 -1.640 -11.649 -12.576 
I 

F -1.840 -0.338 -0.622 -1.840 -0.550 -0.597 F 9.680 -7.436 -7.483 9.680 -14.563 -17.093 

i M -1.273 0.122 -0.286 -1.273 -0.094 -0.189 M 15.418 -4.540 -5.973 15.418 -13.620 -14.250 -----
A -0.901 -0.057 -0.297 -0.901 -0.016 0.042 A 5.387 -5.057 -4.413 5.387 -12.086 -11.196 .-._---
M -2.080 0.149 0.265 -2.080 -0.357 -0.692 M -12.185 -3.946 -3.205 -12.185 -10.358 -11.048 

- --
J -2.86{) 0.448 0.702 -2.860 -0.067 -0.378 J 2.372 -2.758 -2.372 2.372 -8.778 -9.147 

...... __ ....... -, 

, J -2.168 0.112 0.231 -2.168 -0.123 -0.173 J 7.110 -3.969 -3.472 7.110 -9.294 -9.901 
..... -.-.-.. -. 

A -3.237 0.098 0.142 -3.237 -0.137 -0.361 A 6.154 -2.533 -2.101 6.154 -8.699 -8.311 --_. 
S -1.481 0.107 0.124 -1.481 0.097 0.193 S 13.145 -1.684 -2.821 13.145 -8.769 -9.522 

.---- .. -

0 -1.362 0.075 0.065 -1.362 0.022 -0.064 0 8.394 -0.270 0.654 8.394 -7.056 -7.217 
----

N -0.907 0.091 0.117 -0.907 0.142 0.195 N 6.971 -1.864 -2.308 6.971 -9.110 -9.162 
---, 

D -0.155 -0.309 -0.032 -0.155 -0.311 -0.113 D 3.183 -3.976 -6.304 3.183 -13.153 -14.666 
--

Table A 7: Bias Statistics of monthly mean and variance of maximum temperature at Station CDD 

87 



M.A.Sc. Thesis - Manu Sharma McMaster University - Civil Engineering 

----- - --- --- -- '-,.,-, ._--- ----' -----------~----------~-.-- ------- '--- ------ ------- -._-." - - "---- .- - .-

. Bias Table -TMAX Monthly Mean -STATION CDP . . Bias Table -TMAX Monthly Variance -STATION COP -----......... -
Month . SOSM ! TLFN ' Month SOSM : TlFN I I I - - ,~~ -..~ -"-" , 

Raw RCM ReM GeM Raw RCM ReM GeM Raw ReM RCM GCM Raw ReM RCM GCM - - - ----
J -0.822 0.233 0.166 -0.822 0.030 0.313 J -1.042 1.681 2.659 -1.042 -11.942 -13.141 

F -0.330 -0.517 -0.672 -0.330 -0.434 -0.506 F 6.441 -1.784 -2.645 6.441 -14.550 -18.122 , ._--

M -0.159 0.104 -0.230 -0.159 -0.144 -0.216 M 12.355 -0.588 -1.635 12.355 -13.340 -14.709 -_. 
A -0.1&3 -0.180 -0.431 -0.183 -0.154 -0.324 A 2.199 -1.741 -2.031 2.199 -12.607 -12.014 

~ .... -. --.-- -

M -1.521 0.109 0.085 -1.521 0.083 0.156 M -19.211 -0.332 -2.386 -19.211 -12.403 -13.195 
----

; J -3.660 0.504 0.719 -3.660 -0.041 
; 

-0.294 J -3.332 -0.742 -1.117 -3.332 -10.110 -10.646 
---: 

J -2.939 0.011 0.089 -2.939 -0.028 0.070 J 4.082 0.028 -0.277 4.082 -8.109 -9.250 ; 
I 

--~~--. - -_. 

I A -3.699 -0.267 -0.105 -3.699 -0.290 -0.131 A 2.913 -0.337 -0.308 2.913 -8.536 -9.173 ! ---_ .. -
I 

S -1.578 0.021 -0.040 -1.578 0.032 -0.040 S 7.089 0.990 1.009 7.089 -8.081 -8.983 
-

0 -0.876 0.154 -0.091 -0.876 0.045 -0.025 0 2.913 2.571 3.067 2.913 -7.301 -7.853 : .-.... 

N -0.426 0.098 0.088 -0.426 0.076 0.092 N 5.546 0.668 -0.319 5.546 -8.482 -10.380 

D 0.175 -0.130 0.229 0.175 -0.039 -0.059 D -1.038 -1.147 -0.778 -1.038 -14.537 -14.636 

Table A8: Bias Statistics of monthly mean and variance of maximum temperature at Station CDP 
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------- --. ,---, --------.--------.----- ----or----------''-'---,.--_._---'_._ .. __ .. _ .. --.--. '-- .. - ._. -, - .... 

: Bias Table -TMIN Monthly Mean -STATION COO I ' Bias Table -TMIN Monthly Variance -STATION COD .-.--.. 
: 

Month SDSM : TLFN ' 
I 

Month SOSM TLFN 
.. -.. ~ -"'- - - .-

! Raw ReM ReM GeM Raw ReM ReM GCM Raw ReM RCM GeM Raw RCM ReM GCM , - - - -
! J -0.436 -0.710 -0.364 -0.436 -0.572 -0.736 J -10.706 1.316 0.018 -10.706 -12.327 -15.678 -_ .... 
! F -1.822 -1.018 -1.116 -1.822 -1.315 -0.928 F -26.761 -14.734 -16.781 -26.761 -23.643 -22.642 , .-
I 

i M -4.676 -0.380 -0.480 -4.676 -0.835 -0.544 M -21.432 -7.068 -10.038 -21.432 -19.575 -17.960 I ---I 

I A -7.312 -0.319 -0.709 -7.312 -0.340 -0.608 A 20.824 1.120 1.342 20.824 -9.812 -8.088 I I 
~-----.-

I 

M -5.960 -0.286 -0.310 -5.960 -0.256 -0.346 M 4.739 0.197 -1.165 4.739 -10.647 -10.669 
--

j -5.197 0.078 0.259 -5.197 -0.058 -0.129 J 1.453 0.463 1.449 1.453 -9.284 -10.735 
----

J -4.648 0.000 0.120 -4.648 -0.049 -0.100 J 1.893 0.194 0.629 1.893 -7.401 -7.859 
"-'--" 

, A -5.527 0.099 0.099 -5.527 -0.115 -0.202 A -0.133 -0.933 -1.383 -0.133 -8.619 -9.716 

S -3.979 -0.273 -0.308 -3.979 -0.371 -0.212 S 5.628 -0.884 -1.438 5.628 -7.769 -5.770 
---.-. 

0 -4.100 -0.234 -0.345 -4.100 -0.317 -0.361 0 8.794 -0.658 -0.080 8.794 -9.372 -6.014 -... -----~ 
, 

N -4.005 0.418 -0.263 -4.005 -0.123 -0.142 N 5.874 -0.569 -2.187 5.874 -13.290 -13.751 , 
-.. ~--.-.-

1 

1 D -0.171 -0.494 0.036 -0.171 0.013 0.122 0 -23.829 -3.216 -4.471 -23.829 -14.041 -15.924 
-... -~ ---

Table A9: Bias Statistics of monthly mean and variance of minimum temperature at Station CDD 
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-- -'-' - -----'----.---------.-.---~ .- --1 ------_._-- ",---' - --, _. -, - ,- - -- . . 

Bias Table -TMIN Monthly Mean -STATION CDP , Bias Table -TMIN Monthly Variance -STATION CDP 
--. --,~-

I 

, Month : SDSM i TLFN I Month SDSM UFN 
\ _. .~ --.... ~~ --,- -. - .. -. 

I Raw ReM ReM GCM Raw RCM ReM GeM Raw ReM ReM GeM Raw ReM ReM GeM 
I - - - -
I J -1.142 -0.255 -0.101 -1.142 -0.255 -0.101 J 0.513 -9.144 -9.887 0.513 -15.144 -12.887 
; 

I 
F -3.408 -0.270 -0.143 -3.408 -0.270 -0.143 F 0.568 -9.561 -13.415 0.568 -13.561 -17.415 ! , -_ . .--, 

; M -5.066 -0.195 -0.378 -5.066 -0.195 -0.378 M -13.645 -17.189 -13.789 -13.645 -17.189 -13.789 
"-'---, 

, A -6.925 -0.290 -0.247 -6.925 -0.290 -0.247 A 14.638 -10.871 -12.668 14.638 -10.871 -12.668 ! . ---.-.-.---

I M -5.041 -0.292 -0.151 -5.041 -0.292 -0.151 M 6.257 -3.787 -5.234 6.257 -8.787 -7.234 
I 

-~ .- .-
I 

J -3.989 0.084 0.207 -3.989 0.084 0.207 J -3.654 -1.821 -1.165 -3.654 -10.821 -10.165 
I --- -: 

J -3.026 0.072 0.145 -3.026 0.072 0.145 J -1.384 -6.421 -5.471 -1.384 -6.421 -5.471 
-_.. . 

A -3.586 -0.197 -0.126 -3.586 -0.197 -0.126 A -2.961 -3.551 -4.635 -2.961 -7.551 -6.635 ' 
--

S -2.511 -0.560 -0.218 -2.511 -0.560 -0.218 S 2.287 -5.374 -3.973 2.287 -5.374 -3.973 

0 -2.866 -0.095 -0.419 -2.866 -0.095 -0.419 0 8.991 -6.302 -3.138 8.991 -6.302 -3.138 
-----

N -3.126 -0.117 0.244 -3.126 -0.117 0.244 N -0.694 -7.544 -12.590 -0.694 -7.544 -12.590 
...... _' .. 

\ D -0.197 -0.073 0.407 -0.197 -0.073 0.407 D -18.211 -17.362 -17.808 -18.211 -17.362 -17.808 
-. --

Table AlO: Bias Statistics of monthly mean and variance of minimum temperature at Station CDP 
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LEVENE TEST RESULTS - CDP 

SDSM TLFN 

Month RCM GCM RCM GCM 

Jan 0.294 0.174 0.578 0.806 

Feb 0.056 0.066 0.107 0.759 

Mar 0.963 0.827 0.122 0.639 

Apr 0.294 0.173 0.962 0.799 

May 0.723 0.158 0.715 0.734 

Jun 0.963 0.827 0.203 0.142 

Jul 0.056 0.041 0.746 0.605 

Aug 0.068 0.009 0.472 0.204 

Sep 0.723 0.158 0.492 0.253 

Oct 0.808 0.273 0.261 0.202 

Nov 0.156 0.022 0.786 0.708 

Dec 0.959 0.372 0.800 0.978 

Table All: Levene Test p-values for precipitation at CDP 

WILCOXON RANK SUM TEST -CDP 

SDSM TLFN 

Month RCM GCM RCM GCM 

Jan 0.575 0.300 0.024 0.209 

Feb 0.336 0.223 0.006 0.008 

Mar 0.437 0.588 0.940 0.649 

Apr 0.050 0.003 < 0.0001 < 0.0001 

May 0.669 0.197 0.312 0.984 

Jun 0.979 0.050 0.495 0.057 

Jul 0.296 0.100 0.017 0.040 

Aug 0.003 0.003 0.001 0.006 

Sep 0.155 0.103 0.067 0.024 

Oct 0.787 0.350 0.135 0.433 

Nov 0.008 0.007 0.367 0.550 

Dec 0.314 0.329 0.612 0.339 

Table A12: Wilcoxon Rank Sum Test p-values for precipitation at CDP 
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Figure A26: Monthly mean trend in precipitation at CDP using SDSM 
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Figure A27: Monthly mean trend in precipitation at CDP using TLFN 
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SOSM Oownscaled Scenario Max. Temperature at COP 
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Figure A28: Monthly mean trend in maximum temperature at CDP using SDSM 

TLFN Oownscaled Scenario Max. Temperature at COP 

25.00 

20.00 

15.00 

10.00 ,-, ~Current 
U 
~ 
a. 5.00 _ RCM_ TLFN_2050s 
E 
Qj 

..... GCM_ TLFN_2050s .. 
0.00 

-5.00 

-10.00 

-15.00 

Figure A29: Monthly mean trend in maximum temperature at CDP using TLFN 
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SOSM Oownscaled Scenario Min. Temperature at COP 
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Figure A30: Monthly mean trend in minimum temperature at CDP using SDSM 
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Figure A31: Monthly mean trend in minimum temperature at CDP using TLFN 
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APPENDIXB 
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Figure B1: Scatter plot of Simulation Results for (1981-1990) for Chute-du-Diable 
inflows 
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Figure B2: Scatter plot of Simulation Results for (1981 -1990) for Chute-du-Diable 
inflows 
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With CGCM3.1 downscaled with TLFN 
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Figure B3: Scatter plot of Simulation Results for (1981-1990) for Chute-du-Diable 
inflows 

With CRCM3.1 downscaled with SDSM 

2,000.0 

'iii -1,500.0 M 
E -
~ 
0 

u::: 1,000.0 
'0 
OJ .... 
III 
3 500.0 E 

• Simulated Flow 

Vi 

0.0 

0.0 500.0 1,000.0 1,500.0 2,000.0 

Observed Flow (m3/s) 

Figure B4: Scatter plot of Simulation Results for (1981-1990) for Chute-du-Diable 
inflows 
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With CRCM3.1 downscaled with TLFN 
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Figure B5: Scatter plot of Simulation Results for (1981-1990) for Chute-du-Diable 
inflows 
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Figure B6: Scatter plot of Simulation Results for (1981-1990) for Mistassibi River flow 
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Figure B7: Scatter plot of Simulation Results for (1981-1990) for Mistassibi River flow 
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Figure B8: Scatter plot of Simulation Results for (1981-1990) for Mistassibi River flow 
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Figure B9: Scatter plot of Simulation Results for (1981-1990) for Mistassibi River flow 
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Figure B 1 0: Scatter plot of Simulation Results for (1981-1990) for Mistassibi River flow 
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