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Abstract 
An improved Perfectly Matched Layer (PML) boundary condition is introduced that 

addresses the previously reported instabilities. A PML for acoustic waves is derived by closely 

following Serenger's derivation of a PML for electromagnetic waves. A new matching condition 

is developed to relate the velocity and stress loss-coefficients similar to the matching condition 

defined for electromagnetic waves. 

Whereas, the spatial and temporal derivatives are related by simple scalars in Maxwell's 

equations, elastodynamic equations describing waves in piezoelectric materials require the use 

of tensor quantities whose general forms are material dependent. 

In practice, SAW generation is often also accompanied by some small creation of SAWs, 

which act as parasitic waves. It is thus desired to remove the reflection of these waves from the 

bottom, in both physical SAW devices and in modeling. 

iv 



Acknowledgements 

I would like to thank Dr. M. Bakr, for his unwavering support, supervision, and presence, 

throughout this study. I would also like to thank my co-supervisor Dr. Y. Haddara. 

Lastly, I am greatly indebted to my late father, who has been, and will always be, a 

source of inspiration in my life. This work is dedicated to his memory. 

v 



Contents 
1. INTRODUCTION TO SURFACE ACOUSTIC WAVES AND DEVICES 1 

1.1 INTRODUCTION TO SURFACE ACOUSTIC WAVES 1 
1.2 SAW DEVICES ON PIEZOELECTRIC MATERIALS AND THEIR 1 

APPLICATION IN ELECTRONICS 
1.3 TYPES OF WAVES IN SOLIDS 2 

1.3.1 SAWs 3 
1.3.2 Bulk Acoustic Waves 3 
1.3.2 Pseudo-SAWs {PSAWs} 3 

1.4 ADVANTAGES OF SAW DEVICES OVER ELECTRONIC COMPONENTS 4 
1.5 PIEZOELECTRIC-BASED SAWS 4 

1.5.1 Piezoelectric Materials 4 
1.5.1.1 Piezoelectric Efficiency, and Materials Considerations 4 

1.6 THE NEED FOR MODELLING AND SAW SIMULATORS 5 
1.6.1 Available Models 5 

1.7 THE GOALS OF THIS RESEARCH AND THE ORGANIZATION OF THIS 6 
THESIS 
1.7.1 Research Motivation and Objectives 6 
1.7.2 Thesis Organization 7 

2. MATERIALS REVIEW, PHYSICS OF PIEZOELECTRICITY, AND SAW GENERATION 8 
2.1 STRESS AND STRAINS IN SOLIDS 8 
2.2 THE WAVE EQUATION IN SOLIDS 13 
2.3 PIEZOELECTRICITY 17 
2.4 EQUATIONS GOVERNING PIEZOELECTRICITY 17 
2.5 CRYSTAL CLASSIFICATION SYSTEMS 21 
2.6 SOLUTIONS OF THE ELECTROACOUSTIC WAVE EQUATIONS 22 
2.7 QUASISTATIC ASSUMPTION 23 
2.8 SOLUTIONS OF THE ELASTODYNAMIC EQUATIONS 24 
2.9 CHRISTOFFEL'S EQUATION AND SLOWNESS CURVES 25 
2.10 WAVE EQUATION IN SOLIDS 25 

3. SAW DEVICES AND DEVICE MODELING 31 
3.1 ANATOMY OF A TYPICAL SAW DEVICE 31 
3.2 REFLECTOR-BASED SAW APPLICATIONS 32 
3.3 FREQUENCY OF OPERATION OF SAW DEVICES 35 
3.4 DOMAIN OF SIMULATION 36 
3.5 REVIEW OF AVAILABLE METHODS AND SIMULATION TECHNIQUES 37 

3.5. 1 Rigorous vs . Phenomenological Techniques 38 
3.5.2 Development of Approximate Field-Theoretica l Formu lations 38 

3.6 BOUNDARY CONDITION CONSIDERATIONS 39 
3.7 CURRENT STATE OF WORK ON SOLUTIONS OF NUMERICAL FIELD- 41 

EQUATIONS 
3.8 FINITE DIFFERENCE METHOD {FDTD} 42 

vi 



3.9 THE FDTD SIMULATOR 46 
4. ABSORBING BOUNDARY CONDITIONS 49 

4.1 REVIEW OF THE EXISTING BOUNDARY CONDITIONS FOR ACOUSTIC 49 
WAVES 

4.2 REVIEW OF THE ABSORBING BOUNDARY CONDITIONS FOR 50 
ELECTROMAGNETIC WAVES 

4.3 PML FOR ELASTODYNAMIC WAVES 52 
4.3.1 A Review of Elastodynamic Wave Scattering from Boundaries 52 

4.4 DERIVATION OF THE ELASTODYNAMIC PML BASED ON BERENGER'S 56 
APPROACH 

4.5. APPLYING THE MATCHING CONDITION TO DERIVE THE PML TIME 60 
UPDATE EQUATIONS 
4.6 SIMULATION RESULTS OF THE IMPLEMENTED PML 65 

4.6.1. Domain Definition and Simulation Parameters 65 
4.6.2. Results 67 

5. CONCLUSIONS 74 
REFERENCES 75 
APPENDIX 79 

vii 



List of Figures 

Figure 1: Compressional Stress 8 
Figure 2: Shear Force Acting on Area A 9 
Figure 3: Particle Displacement 14 
Figure 4: A Sample Slowness Curve for a Cubic Crystal (GaAs) 30 
Figure 5: SAW generation and Detection using lOTs 32 
Figure 6: lOTs on a SAW Device 33 
Figure 7: SAW Structure Characteristic Lengths 34 
Figure 8: Domain Representing One lOT Finger on the Sagittal Plane 37 
Figure 9: Vee's Leapfrog Algorithm 43 
Figure 10: Staggered Stress and Velocity Field Values Based on Vee's- Approach for 45 

Simulation of Electromagnatic Waves 
Figure 11: Block-Diagram of the Implemented SAW FDTD Simulator in C++ 47 
Figure 12: Boundary Scattering of Coupled Elastodynamics Waves 53 
Figure 13: Comparison of the Normalized Txx Field Component for an Unbounded 67 

Medium and the PML 
Figure 14: Excitation near the PML 69 
Figure 15: SAW Excitation under Metallic lOT 70 
Figure 16: Absorption of the Parasitic Waves by the PML 72 

viii 



M.A.Sc. Thesis - A. Montazeri - McMaster - ECE 

Chapter 1: Introduction to Surface Acoustic Waves and 

Devices 

1.1 Introduction to Surface Acoustic Waves 

Surface Acoustic Waves (SAWs) in solids, are quite commonplace in nature. 

SA Ws are mechanical waves that travel in a superficial region of a solid [1]. In a true 

SA W (also referred to as a Rayleigh wave,) particles near the surface have an elliptical 

motion that stays close to the free surface of the solid. The motion of this wave, as we 

will see later, resembles a rolling water wave. 

Originally, this wave was discovered by lord Rayleigh in mid 19th century [2]. 

Rayleigh waves are produced during earthquakes, explosions, or upon impact on hard 

surfaces, such as the action of a hammer on a concrete slab. They can also be produced on 

very small scales on solid crystals. This latter is the basis of their application in 

electronics, examined herein. 

1.2 SAW Devices on Piezoelectric Materials and Their Application in Electronics 

The application of SAWs in electronics started when they could be generated by 

applying an electric signal to thin metallic films deposited on a piezoelectric crystal. 

These materials are capable of converting electric excitations into mechanical (acoustic) 

waves and vice versa [3]. 
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In 1969, Tancrell et al. showed the first results of a SAW device on a lithium 

niobate substrate, which is a piezoelectric material. This was the pioneering work 

resulting in the modern SA W devices. The breakthrough step was the use of a 

piezoelectric material. 

The first demonstration of piezoelectric materials dates back to 1880, by P. and 1. 

Curie [4]. Curies discovered that charge accumulates on the surface of certain crystals, 

when they are subjected to mechanical stress. However, the inverse piezoelectric effect 

(that an electric voltage applied to the surface of these materials, generates internal 

stresses) was not predicted by the Curies [5]. This inverse effect was first mathematically 

predicted by Gabriel Lippmann in 1881 [6]. The Curies quickly confirmed the proposed 

inverse effect, and proceeded to obtain quantitative measures of this reversible electro­

acoustic effect in piezoelectric crystals. In fact, it is now known that the direct 

piezoelectric effect is always accompanied by the inverse piezoelectric effect [3]. 

1.3 Types of Waves in Solids 

The waves in solids can be categorized based on the position of the travelling 

wave and the mechanism of the wave propagation. The waves are either localized in a 

small region near the surface of the material, in which case they are labelled as surface 

waves, or they propagate into the medium, in which case they are called bulk acoustic 

waves. The other classification is based on the particle displacement pattern with respect 

to the direction of propagation. If the particle motion is in the direction of the wave 
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propagation, the wave is of longitudinal or compressional type. Waves in which the 

direction of particle motion is perpendicular to the propagation direction are called 

transverse or shear. 

This research mainly focuses on SAWs, but it is worth mentioning that SAWs are 

but a class of possible waves that can exist inside solids. Other wave types have also 

found practical applications in device design. 

1.3.1 SAWs 

These are surface waves with a localized perturbation pattern near the free surface 

of the substrate in which they propagate. 

1.3.2 Bulk Acoustic Waves (BAWs) 

The motion of bulk waves, as their name suggests, is not restricted to a thin region 

on the surface of the material , but they radiate into the substrate. It is expected then, that 

the response of a device built based on BA Ws depend on the thickness of the substrate. 

1.3.3 Pseudo-SAWs (PSAWs) 

Pseudo-SA W devices combine the characteristics of both surface and bulk 

acoustic waves. These waves have more than one component: one which travels near the 

surface, as well as a component that radiates into the substrate. 
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1.4 Advantages of SAW Devices over Electronic Components 

SA W devices have several qualities that make them attractive for electronics. A 

simple SAW device can perform complex functions such as band-pass filtering, etc. that 

would otherwise require a great number of electronic components. This makes SAW 

devices very compact and suitable for these signal processing tasks in microelectronic 

devices such as mobile phones. SAW devices are also quite energy efficient and low loss, 

thanks to the localization of energy and low dissipation. Their cost of fabrication is 

comparable to typical semiconductors, and in fact optical photolithography which is used 

for semiconductor fabrication is usually also used for SAWs. This keeps SAW device 

production cost effective and enables their mass production in a parallel method. As well, 

micro-acoustic devices including SAW devices, have higher quality factors compared to 

electromagnetic components, even in the GHz frequencies. 

1.5 Piezoelectric-Based SAWs 

1.5.1 Piezoelectric Materials 

Piezoelectric materials occur naturally, and examples include: quartz, topaz, bone, 

and sugar crystals. Man-made piezoelectric materials have also been produced which 

generally exhibit better piezoelectric efficiencies. Lithium niobate, and barium titanate are 

examples of these synthetic materials. 

1.5.1.1 Piezoelectric Efficiency, and Materials Considerations 
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Even though naturally occurring piezoelectric materials exist, their efficiency in 

converting electrical to acoustic energy, and vice versa, is inferior to some of the man­

made materials. Hence, a great deal of effort has been made to create better and more 

efficient piezoelectric materials. 

1.6 The Need for Modelling and SAW Simulators 

Fabrication of SAW devices requires design, materials, clean-rooms, technicians, 

and is a time consuming process. As SAW device designs become more complicated, 

fabrication process of devices becomes even more time consuming and consequently 

more expensive. These factors give reason for developing accurate models that reduce 

design and production errors, and significantly cut down costs. 

This makes accurate simulators, which can predict device response before the 

onset of fabrication, an extremely powerful tool for the industry. 

Additionally, simulations reduce the cost of experimenting with various design 

parameters such as: IDT geometry, substrate materials, device thicknesses, metallic film 

thickness, and so forth . Such a tool enables a more thorough computer-aided requirement 

analysis, and higher quality devices. 

1.6.1 Available Models 
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Various models have been proposed and implemented for SAW devices, and other 

types of acoustic waves. These models can be divided into two groups: physics-based 

models, and phenomenological models. The former, namely, physics-based models use 

-1 various techniques to solve the differential equations, which governing the generation of 

waves in piezoelectric materials. In comparison, phenomenological models, cannot start 

directly from the design parameters and predict the output response. Their use requires 

supplying of a certain set of parameters. These parameters can either be obtained from 

measurements taken experimentally, or from physics-based simulators. These two models 

are thus often complementary than substitutive. We will examine some of these models in 

more detail in Chapter 3. 

1. 7 The Goals of this research and the Organization of this Thesis 

1.7.1 Research Motivation and Objectives 

In this research, a time-domain physics-based simulator of SAWs is developed. 

An improved perfectly matched layer (PML) is introduced for defining the computational 

domain that does not experience the previously reported instability issues [10]. The 

simulator is implemented in C++ and the PML is employed to simulate an unbounded 

medium. This work is discussed in detail in Chapter 4. 

In numerical modeling, requirements of certain problems will reqUIre the 

simulation of an unbounded space. Computationally this has to be in a finite domain. For 

instance, in antenna simulation, this problem is often faced , where the antenna features 
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are to be studied in an unbounded, unobstructed surrounding. As we will see, absorbing 

boundary conditions (ABCs) allow the simulation of such an unbounded medium, in a 

finite, and often relatively small computational domain. Absorbing boundary conditions 

are general class of boundary conditions, used to simulate the reflectionless propagation 

of waves. 

1.7.2 Thesis Organization 

This document is organized into 5 chapters as follows: 

Chapter 2 provides a mathematical introduction to elastodynamic waves on piezoelectric 

materials, and lays the foundation for a physics-based model implemented in this work. 

Chapter 3 discusses the existing physics-based models for the simulation of SAWs, and 

compares the frequency domain and time domain techniques, their advantages and 

shortcomings. 

Chapter 4 discusses the developed method in this research in detail , along with the results, 

and a discussion on the findings . 

Chapter 5 gives the conclusion of the work and findings 

Page 17 



M.A.Sc. Thesis - A. Montazeri - McMaster - ECE 

Chapter 2: Materials Review, Physics of Piezoelectricity, 

and SAW generation 

2.1 Stress and Strains in Solids 

Let us first consider the relation between stress T and strain 5 for small static 

deformations in a solid. Stress is defined as the force per unit area of the solid onto which 

a force is applied and has units of [N/m2
] , with the force being measured in units of [N]. 

This is defined as: 

F 
T=­

A 

F 

F 

Figure 1 Compressional Stress 

Strain is defined as a dimensionless quantity: 
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11 
s=­

L 

where 11 is the lineal deformation expressed as a percentage of L. 

(2) 

The existence of stresses and strains in solids can be of compressional or shear 

type. The former are those where the applied force is normal to the area upon which the 

force acts (Figure 1.) Shear forces are refened to those, which act in the plane of A as 

opposed to normal to it (Figure 2.) Plane A, in equation (1) refers to the area A along with 

a direction which is taken as the surface normal vector. 

Shear Force 

Figure 2 Shear Force Acting on Area A 

In its simplest form, Hooke' s law relates compressional stress and strain: 
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T = cS. (3) 

where c is the stiffness, generally referred to as the Young' s modulus of the material. As 

stated however, equation (3) will only apply to the longitudinal stress-strain types shown 

in Figure 1. In order to generalize this to include all possible components of the stress 

field (defined shortly below,) it is necessary to use tensor quantities: 

(T) = (c): (5). (4) 

Summarized by the indexed tensor equation [5] . 

(5) 

where i,j, k, l = X, y, z. In this notation an implicit summation over the repeated 

subscripts k, l is made: 

3 

Tij = I CijklSkl, 

k,l=l 

Now for example the Txx component of the stress is given by: 
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Since equation (5) is in fact 9 equations for all combinations of i and j , the total 

number of stiffness coefficients is 81. However, not all these equations are independent, 

and in fact it can be shown that [5]: 

(8) 

reducing the total number of equations to 36. 

In this generalized form, the force components can take arbitrary alignment with 

the area upon which they act. This is expressed as: 

(9) 

where j denotes the direction of the force application, and k denotes the plane of action, 

defined as the surface normal to plane A. (c) in equation (4) is a fourth rank tensor, and is 

used to relate quantities in two different coordinate systems such as for instance, Txy to 

Syz [5]. 

For simplicity, when symmetry allows, tensor equations such as equation (3) are 

converted into matrix equations. As a result, the following abbreviations will henceforth 

be used : 
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(10) 

In refening to T hereon, this abbreviated notation will be implied, that is: 

T= (11 ) 

Using the abbreviated notation, stress-strain relationship can be written as: 

(12) 

with I and J now varying from 1 to 6. Furthermore, the 6x6 compliance (or its inverse 

which is stiffness) matrix will now have only 21 unique components, as all the unique 

coefficients can be expressed as a 6x6 triangular matrix. In other words, the stiffness 

matrix is symmetric for all crystal classes, even those with the least degree of symmetry. 

For crystal classes with higher order of symmetry, the number of independent elements is 

less. 

There exists an alternative representation of equation (5), which expresses strains 

as a linear combination of stresses. 
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(13) 

where i,j, k, l = x, y, z . The tensor constants Sijkl relating these two in this case 

are called the compliance coefficients. This value is in fact a measure of deformability 

indicating how easy or difficult it is to deform the material [5]. The larger this value is, 

the larger the deformation, and the softer the material is. On the other hand deformation is 

smaller for stiffer materials, and as a result, harder materials have lower values of s. 

Experimentally measured stiffness values are within 0.1 xl 010 N/m2 for rubbery, flabby 

materials, to lOx 1010 for single crystals and metals. The matching compliance 

coefficients are 1000x10- 12 to 10x10- 12 m2/N [5]. 

2.2 The Wave Equation in Solids 

Let us start by differentiating equation (6) with respect to space: 

333 

~ aTij = ~ C['j'kl aSkl = ~ C aZUk 
Lax, Lax, L ijkl ax,ax 
j=! ] j,k,I=! ] j,k,I=! ] I 

By using the following definition for strain: 

1 (au, au,\ 
Ski = -2 ~+-a J I, 

dXj Xi! 
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where u is the particle displacement field describing the vibrational motion of all particles 

within a given solid (Figure 3.) For instance for a particle positioned at location L, the 

displacement measured from the origin is: 

u(L, t) = leL, t) - L, 

----- - - , 

- - - -- - .. -
, , , 

I I I I I 

--e- - - e- - -e- - - ~-- - ~ 
, , 
._ - -e-

" , 
I I ~ : ~ I 

--e- -- e - --e- - - e- --e- --e 
I I' I , 

o 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 
\ 
I 
J 
I 

I 
f 
J 
I 
\ 
\ 

\ 

/ 
/ 

\ 
\ 
\ 
\ 
I 
J 
I 

I 

" 

Figure 3 Particle Displacement [5] 

(16) 

We understand deformation, not by the displacement field given by equation (16), 

because translation and rotation too will have a nonzero displacement. Thus, a more 

robust definition of deformation or strain is needed. Equation (15), called the linearized 

strain displacement, corresponding to an infinitesimal displacement, resolves the 

ambiguity among strain, translation, and rotation. 
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Using the equation of motion, which is: 

3 2 

L
aT.. a u· lJ l 

ax. = P at2 J 

j=l J 

(17) 

the wave equation is obtained: 

(18) 

with i varying from I to 3 representing the three coordinate axes. 

The plane wave solutions of equation (18) can have the form: 

(19) 

As previously stated, this solution depends on the material choice and the 

direction of propagation, and both these criteria change the stiffness matrix. The stiffness 

matrices for all classes of materials are presented in Appendix A. Here, the wave 

solutions for the simple isotropic materials are given. Though the form of the wave 

equations holds valid for all types of materials, the solutions can look very different for 

materials with different crystal symmetries. For an isotropic material then: 
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(20) 

1 

Which simplify to: 

(21) 

This has three acoustic wave solutions, with three (in general different) velocities, 

per direction of propagation. These velocities are: 

_J¥11 Vi - -, 

P 

(22) 

where Vi is a compressional wave, and the two other waves are shear. 
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2.3 Piezoelectricity 

A detailed mathematical explanation of piezoelectricity is given in [5]. A brief 

and qualitative description of piezoelectricity can be given by a simple atomic model 

however. In the case of the direct piezoelectric effect, the external force , deforming the 

material, displaces the atoms, generating electric dipole moments inside the material. In 

piezoelectric materials, these electric dipoles tend to be more organized, causing 

polarization. 

This direct effect is always a reversible phenomenon for all piezoelectric 

materials. That is, in the presence of an electric field, the charge separation of the atoms 

creates a strain in the material. This is called the inverse piezoelectric effect. Both these 

effects are linear, and the change in sign of the applied field is accompanied by a change 

in sign of the strain, and vice versa. 

2.4 Equations Governing Piezoelectricity 

Application of an electric field to a non-piezoelectric material results in no 

macroscopic mechanical effects, while an electric field creates mechanical deformations 

in piezoelectric materials. In reality, changes to the electrical field will give rise to 

mechanical deformations, and these will in tum contribute to the eleclri(.; field and the 

process continues. Also known as the piezoelectric constitutive relations, the piezoelectric 

equations are written as: 
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D = €T. E + d: T , (23) 

S = d'. E + SE: T, (24) 

where the dot and double dot products indicate summation over single and double 

subscripts respectively. For instance €T. E is the summation over all j when written as: 

(OT ij' Ej , and d: T represents d ijk . Tjk with summation over both j and k. In the above 

equations, S is the strain, E is the electric field , D is electrical displacement, T is the 

stress tensor, €T is the 3 x3 dielectric permittivity matrix measured under constant stress, 

and d is defined as the piezoelectric strain constants matrix, whose inverse is denoted by 

a prime. This form of the equations is known as the strain-displacement, or the 

piezoelectric strain equations. Because it is common in the literature to also use 

piezoelectric stress-displacement relations, it is worthwhile to note that an equivalent 

form of equations (23) and (24) are: 

D = €s.E + e:S, (25) 

T = -e: E + cE
: S, (26) 

with e defined as the piezoelectric displacement, and cE is the stiffness matrix. 

Equations (25) and (26) are collectively referred to as the piezoelectric 

constitutive equations. 
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Maxwell ' s equations, together with piezoelectric constitutive relations provide the 

physics of propagation of acoustic waves on piezoelectric substrates. This is summarized 

below: 

aB aH 
\l x E = -- = -/1-at at J 

(27) 

(28) 

(29) 

(30) 

where 

E is the electric field vector, 

B is the magnetic flux density vector, 

ET is the 3 x3 electric permittivity matrix under constant stress, 

/1 is the permeability, 

d is the piezoelectric strain coefficient matrix, 
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T is the stress vector, 

v is the particle velocity vector, 

.J 

S is the stain vector, 

d' is transpose of d, 

SE is the 6x6 compliance coefficient matrix measures under constant electric field , 

p is the material density, 

F is the body force vector, 

o 0 o 8/8z 
8/Oy 0 a/az 0 

o a/8z 8/Oy a/ax 

Equation (27) is just the Maxwell equation in rationalized units. The solutions 

which simultaneously satisfy the above equations describe the motion of waves in 

piezoelectric materials. In non-piezoelectric materials, the acoustic and electromagnetic 

solutions are completely independent of each other and are decoupled. But in 

piezoelectric materials, they are coupled through the piezoelectric strain equations. 

Equations (28) and (29) denote this tie between the strain and the electric field in 

piezoelectric solids. Let us examine each term in detail: 
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(31 ) 

(32) 

The first terms in the parenthesis of equations (31) and (32) give respectively the 

electric displacement, and the strain, in response to the electric field , which are generated 

through the application of an external voltage. Due to this aforementioned strain, in a 

mechanically confined medium, stresses will develop in response to this strain. This stress 

now modifies the relationship between D and E, by contributing to the second term of 

equation (31) [5]. In the absence of this term, the relation between D and E is that of 

simple dielectrics. 

And the reverse also holds true, that is, a strain, related to the stress through 

mechanical constraints, is produced in response to a stress in the medium. These two 

equations together, explain the relation between the stress field components Ti} and 

mechanical deformations by the strain Sij. 

The preceding was a brief mathematical overview of the acoustic field equations 

together with the electromagnetic equations. Analytical solutions for these equations are 

only available for the simplest crystals, and only in certain directions of propagation. 

2.5 Crystal Classification Systems 
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Based on the anangement of their constituent atoms, solids take on vanous 

structural systems. There is a finite number of possibilities. In fact, all anisotropic crystals 

can be categorized into nine classes, by specifying their stiffness matrices. In Appendix 

A, all these crystal classes are given. As mentioned earlier, the most number of unique 

stiffness constants are 21 , and this corresponds to the triclinic crystal system. In the other 

extreme, the most symmetric materials are isotropic systems, with only 2 independent 

stiffness coefficients. As we will see when solving for the wave equation, and also in 

dealing with boundary condition, the crystal classification has a direct impact in 

determining the complexity of the solution. 

2.6 Solutions of the Electroacoustic Wave Equations 

Maxwell ' s equations namely equations (27) and (28), have two plane wave 

solutions. The acoustic waves, I.e. equations (29) and (30), have three plane wave 

solutions for each direction. 

As it is clear from equations (28) and (29), if the material is non-piezoelectric, the 

acoustic and electromagnetic solutions are completely independent of each other. This is 

simply because the terms involving the electric field drop out of the last two equations for 

non-piezoelectric materials. The stress (or strain) equations, create a coupling between the 

five types of plane waves mentioned above [5]. 

Which of these solutions become coupled, depends on the materials properties, 

most importantly on the symmetry classification. As well, the direction of the wave 
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propagation changes the coupling between the waves. In certain crystals, and for specific 

propagation directions, waves of a pure type, without coupling to others can exist. These 

directions are often of practical interest for device design, and they enable the use of pure 

waves for the device operation. For such set ups, the presence of other modes is usually 

considered parasitic. 

2.7 Quasistatic Assumption 

In solving these equations, it IS often worthwhile to consider the quasistatic 

assumption. It is important to realize where this assumption stems from. When solving 

these equations, it becomes apparent that the coupling between acoustic waves and 

electromagnetic waves, (evcn for the strongest piezoelectric materials,) is relatively small 

in comparison by the effects of the quasistatic electric field [5] . A quasistatic electric field 

is one which is non-rotational or mathematically, it is a field with zero curl. This means 

that the electric field is a gradient of a scalar potential. For the sake of analysis, the 

electric field can be written as having rotational and non-rotational parts: 

E = E(r) - V<P , (33) 

When the coupling between the acoustic and electromagnetic waves vanishes, the 

rotational part of the electric field, namely E(r) , reduces to a pureiy eiectromagnetic wave 

as expected. That is: 
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(34) 

The use of the quasistatic assumption simplifies the piezoelectric equations, and 

the set of equations (27)- (30) becomes: 

(35) 

(36) 

(37) 

Discretization of these equations is necessary for a numerical treatment of waves 

propagating in piezoelectric materials. Physics-based models take on the discretization of 

these equations using various techniques. Chapter 3 is dedicated to the study of various 

models used for approximating the solutions of these equations. Phenomenological 

models are typically not directly concerned with the elastodynamic equations given 

above, and use instead other equations for wave modeling. This will be reviewed in 

Chapter 3. 

2.8 Solutions of the Elastodynamic Equations 

Here the possible solutions of the combined piezoelectric and electromagnetic 

differential equations are reviewed in some detail. This provides insight into the 
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behaviour of the elastodynamic waves in piezoelectric solids. Often, the simplest means 

of studying the wave propagation phenomena, is to consider plane wave solutions of the 

differential equations. 

2.9 Christoffel's Equation and Slowness Curves 

As previously mentioned, the combined piezoelectric and Maxwell 's equations 

have in general five solutions. The acoustic wave equations have three uniform plane 

wave solutions for each propagation direction, and the electromagnetic wave equations 

have two [5]. These solutions are in general not independent but coupled through the 

piezoelectric constitutive equations discussed above. As such, each propagation direction 

can in general have up to five coupled wave equations, describing the physics of the 

particle perturbation. 

2.10 Wave Equation in Solids 

In order to find the equation of the waves travelling in a piezoelectric material, it 

is simpler to first eliminate either T or v from the acoustic field equations below: 

(38) 

(39) 
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(40) 

where F is the external body force (generally not present unless the body is subjected to 

external stresses.) But for the sake of completeness, F is retained here.) 

Acoustic wave equations are then derived by eliminating either T, or v from the 

acoustic field equations and constitutive relations. The prefelTed approach is to eliminate 

T as it contains 6 variables, instead of v which only contains three [5]. 

In order to do this elimination, equation (38) is first differentiated with respect to 

time: 

aT a2v aF 
V' at = P at2 - at' 

and equation (40) is multiplied by the stiffness matrix: 

aT 
c: Vsv = at 

(41) 

(42) 

The equation of the acoustic wave can now be found in terms of v by replacing 

the time derivative of T in equation (39) into (41): 

(43) 
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This equation can be written in matrix form with abbreviated subscripts as: 

(44) 

where i , j = x,y,Z, and K, L=1 ,2,3,4,5,6. 

As the discretization problem here will not involve external forces , F will be 

henceforth left out. The matrix differential operators ViK , and VLj are 

defined as: 

o 
a/fJy 

o 

o 
o 

a/az 

o 
a/az 
a/fJy 

a/az 
o 

a/ax 

a/aYJ a/ax 
o 

Since a uniform plane wave traveling along an arbitrary direction 1 = xlx + yly + 

zlz is sought here, which is of the form: ei(wt-kJ) , resulting the simplified forms of ViK , 

(and the transposed form VLj ): 

[

Lx 0 0 

- ik ~ ~ l~ lx 

lyj 
lox, 

This will give the simplified wave equation: 
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known as the Christoffel ' s equation. 

For example, for an isotropic solid, Christoffel ' s tensor becomes: 

(C12 + C44)lx l y 

cll ly
2 + c44 (1-ly2) 

(C12 + C44 )lylz 

(45) 

(46) 

As it can be seen, the Christoffel tensor Ii) , is only a function of the propagation 

direction, and that of the propagation medium's stiffness constant CKL. Equation (45) 

holds for all materials, whether isotropic or anisotropic [7]. 

In general, there can be three olihogonal polarizations for each propagation 

direction of a given crystal. These waves do not necessarily travel with the same phase 

velocity. In addition, the displacement vector can have any arbitrary angle with the 

propagation vector. 

Analytical solutions of equation (45) are only available in special cases. That is, 

only when the determinant of Ii} , can be factorized into a product of polynomials in terms 

of velocity. This is possible when two of the three non-diagonal entries of the Christoffel 
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tensor become zero. In all other cases numerical solutions of the equation have to be used. 

Such is the case for most wave propagation problems in piezoelectric media. 

To identify the solution set, the inverses of the wave velocities are plotted. 

Referred to as slowness surfaces, there are generally three such surfaces for the three 

waves previously mentioned (one called quasi-transverse and the two other are termed 

quasi-longitudinal). The slowness surfaces are particularly important in reflection 

problems at the boundaries, and they relate to Snell ' s law [5]. 
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(k/W)2 Quasishear 

(k/wh Pure shear, 
IDIDI-polarized 

Figure 4 A Sample Slowness Curve for a Cubic Crystal (GaAs) [5] 

Figure 4 shows a sample slowness curve for gallium arsenide which 

belongs to the cubic crystal group. For simplicity the effects of piezoelectricity 

(which change the curves only slightly,) have been ignored. 
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Chapter 3 : SAW Devices and Device Modeling 

3.1 Anatomy of a Typical SAW Device 

SA W devices were long known before piezoelectric materials were used to 

generate them. The application of SAWs in electronics was initiated in 1965 by White 

and Voltmer at the University of California, at Berkeley [1). This was accomplished 

through the invention of the interdigital transducer (IDT), which is a thin metallic 

structure deposited on the surface of piezoelectric materials (Figure 5). Other structures 

such as reflectors, and directional IDTs were later developed for interacting with, and 

manipulating the surface waves. 

The most basic IDT is comprised of two comb-like structures inserted into one 

another without touching. (Figure 5). When an alternating voltage is applied to the 

metallic structure, the electric signal creates surface charges that are converted into 

mechanical stresses by the piezoelectric substrate. ( In the previous chapter, the 

piezoelectric process governing this energy conversion was discussed.) The resulting 

stress causes a deformation in the solid, launching a wave on the surface of the material. 

If the polarity of the applied signal is periodically changed, the resulting strain also 

changes sign, generating a wave such a Rayleigh wave. 
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Figure 5 SAW generation and Detection using IDTs 

The acoustic waves generated in the fashion explained above, undergo partial 

reflections at discontinuities and imperfections of the substrate. If these imperfections are 

not planned for, the result is: a random reflection pattern, which dissipates the wave 

energy every which way. However, by placing reflectors on the path of the propagating 

wave at integer multiples of the wavelength, it is possible to cause these reflections 

interact constructively so that the end result of several partial reflections is a significant 

reflection of the original wave. As well, the energy of the wave will remain concentrated 

in a region close to the surface of the substrate. 

3.2 Reflector-Based SAW Applications 

The reflection mechanism mentioned above, allows for creation of endless 

configurations for different applications. Let us note that, in the presence of ref1 ectors, the 

input and output IDT can be combined into one. Using this scheme a periodic signal of a 
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short duration is applied to the IDT, launching an acoustic wave. This wave then travels 

along, and upon encountering reflectors, is partially reflected back towards the IDT. 

When several reflectors are placed in the path of a wave, several reflections are sent back 

in the direction of the IDT. When a unique pattern of reflectors is created, the device can 

be used as an identification tag, whereby a signal detection circuit connected to the IDT 

can identify this pattern as a number, similar to a barcode. 

A typical SAW device generally includes IDTs, reflectors and gaps. Figure 6 

shows a device consisting of an IDT with reflectors on both sides . 

. ~\. ~~: ~ \"/ I," ' 
.< • 

AC 

Figure 6 IDTs on a SAW Device 

The IDT is separated by a gap from the reflectors, and the reflectors are typically 

grounded to avoid the regeneration of SAW waves. 
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w 

Figure 7 SAW Structure Characteristic Lengths 

Figure 7. shows the characteristic lengths of an IDT. The overlap of the opposite 

side fingers of the IDT is the called device aperture often denoted by W, the period PI is 

defined as the distance containing two metallic strips which is also equal to the 

wavelength A as shown. The periodicity is defined as p = p/2. The ratio of the finger 

width w to P is typically referred to as the metallization ratio, denoting the thickness of 

the structure. The metallization ratio becomes important for thick structures, as: the mass-

loading effect will interfere with the vibrational patterns of the free substrate surface. 

In this configuration, an alternating electric signal with a frequency f, applied to 

the IDT, launches an acoustic wave with a wavelength A. Similar to the IDT structure, the 

reflectors can have their own period, and operate at a frequency Iref = VSA w/(2 Pref)' which 

need not be (but generally is:) the same as the IDT and other SAW components. A 

reflector typically reflects around its own frequency lreI If an IDT is surrounded on both 
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sides by two reflectors, it is possible to effectively create a standing wave, and trap the 

acoustic energy with the frequency close to !rej-

The periodicity of the grating has another energy storing effect in addition to the 

wave confined to the surface. The traveling surface acoustic wave is not only reflected 

within the surface, but it is also reflected into the bulk of the material. Most of the 

reflected wave into the bulk of the material interferes destructively, and has little energy 

loss or energy storing effect. However, around f,'ej this interference becomes constructive 

and the acoustic energy is stored close to the surface. By the same token, continuity of a 

periodic structure is imperative for keeping the losses low and maintaining the energy-

storing effect. Thus, losses are significantly reduced by replacing gaps with periodic 

structures of the right periodicity. [8] ,[9]. 

3.3 Frequency of Operation of SAW Devices 

The speed of propagation of sound in a gIven medium is determined by the 

material. For anisotropic materials this speed is generally dependent on the direction of 

propagation. The relation connecting this speed with the frequency of the vibrations is: 

v 
iI.=-

f 
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Where A is the wavelength of the acoustic wave and f is the frequency of the 

excitation propagating in the medium. As previously mentioned, the wavelength of the 

SAW is defined by specifying the geometry of the IDT, and that of the reflectors. 

3.4 Domain of Simulation 

Figure 5 shows the symmetry of the device with respect to a line denoted as the 

"sagittal plane cut line." When the device aperture W, is large enough compared to A, the 

structure can be considered infinite in the y direction. This permits the reduction of the 

problem to two dimensions, whereby the dependence ony is removed. 

The domain of study then becomes the plane whose intersection with the zy plane, is the 

dotted line shown in Figure 5. This plane will be referred to as the sagittal plane, and for a 

region containing only one IDT finger, the computational domain becomes that depicted 

in Figure 8. 
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Figure 8 Domain Representing One IDT Finger on the Sagittal Plane 

The periodic boundary conditions shown in Figure 8 simply mean that the domain 

repeats itself infinitely on the left and right. As for the rest of the boundaries noted, they 

will be discussed in detail below. 

3.5 Review of Available Methods and Simulation Techniques 

The chief objective of this research was to improve on the available techniques in 

implementing an efficient FDTD SAW simulator [10] . This includes the discretization of 

the electro acoustic equations: discussed in Chapter 2, and the advanced boundary 

conditions required to fully des:cribe the physical system. The latter is the topic of Chapter 

4. 

First a review of existing numerical techniques, currently in use for modeling 

SAW devices, is given. 
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3.5.1 Rigorous vs. Phenomenological Techniques 

For the design of high perforn1ance SAW devices, accurate modeling and 

simulation techniques are essential. Although rigorous (or physics-based methods) 

provide the highest accuracy, time constraints often render such methods impractical. For 

this reason, several phenomenological methods have been proposed and developed. In 

light of the periodicity of these devices, a departure from the physics-based models 

becomes possible under certain conditions. Several innovative models have been 

designed making use of this harmonic feature . The most successful of these methods 

employ the concept of harmonic admittance, developed by Bl0tekjrer et al. and explained 

in [ll],[12].This method was later reformulated by Zhang et al. [13]. By employing this 

method, it is possible to obtain the harmonic device admittance and the dispersion 

relationships using only a small segment of the device. 

3.5.2 Development of Approximate Field-Theoretical Formulations 

In Chapter 2, the details of the governing differential equations required for the 

development of field-theoretical formulation were discussed. We will now tum to the 

discretization of these differential equations, and the various numerical techniques used 

for solving them. 

Several approximations and appropriate boundary conditions have to be 

considered. First, it is noted that the acoustic wave velocities are very much slower than 

the speed of electromagnetic radiation. When the acoustic wave perturbation is the 
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dominant mode, in comparison by the electromagnetic waves, it is possible to resort to the 

quasistatic approximation, with little loss of accuracy. 

Another appeal of the quasistatic approximation IS that the inclusion of the 

electromagnetic waves would require time steps so small, that the simulation would 

simply take too long. It must be noted that size of the time step is also a stability 

requirement for the simulation. For example, in a 2D FDTD simulation, the Courant 

stability criterion requires [29]: 

b..x 
b..t < --­- ..J2vmax 

(48) 

Where vmax is the speed of propagation of the wave in the medium. It can be seen 

that if the speed of light it used, the timestep becomes very small. 

3.6 Boundary Condition Considerations 

In modeling SAW devices, the substrate is generally considered to be seml-

infinite (z <0 halfspace), which, because of the low penetration depth of the waves is a 

satisfactory approximation. It must be noted that this is the case only when pure surface 

acoustic waves are launched on the surface, and there are no imperfection, discontinuities, 

or reflectors present. In the presence of any of these structures, there will indeed be 

reflections which will radiate acoustic energy into the substrate causing further reflections 

from the bottom of the device. These unwanted reflections will interfere with the device 
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response, unless an absorbing boundary condition is used to suppress them. Chapter 4, 

which includes the essential portion of this Masters research is dedicated to the absorbing 

boundary conditions in order to remove any unwanted reflections. 

The deposited metallic strips on the surface are assumed to be infinitely thin as far 

as the charge accumulation is considered. There are also situations when the mechanical 

mass-loading effects due to the weight of the metallic layer have to be included. 

For the sake of completeness both electrical and mechanical boundary conditions 

will be stated below [14]: 

The mechanical boundary conditions are: 

1- The acoustic (mechanical) displacement field IS continuous across the 

electrode-substrate boundary, 

2- The normal component of stress IS continuous across the electrode-

substrate boundary, 

3- On the free substrate surface, the normal component of stress vanishes. 

The electrical boundary conditions are: 

1- The electric potential has no discontinuities, 
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2- Inside the metallic electrodes, the electric potential is constant, 

3- On the free substrate the surface charge density must vanish, 

4- The system is charge neutral. 

Furthermore, we assume that there is no radiation on the surface. And that the 

source of excitation is always and only from the electrodes by means of an applied 

electric potential [14]. As well, it is assumed that there is no radiation (of the mechanical 

or electromagnetic nature) from inside the substrate towards the surface. 

With these assumptions, the described system can be modeled. In order to extract 

the desired characteristic response, what remains is to solve for the fields under an 

excitation, and to obtain the total surface charge density over the electrode-substrate 

interface. 

Some phenomenological techniques also use this produced harmonic (oscillating) 

net charge, to find the harmonic admittance. 

3.7 Current State of Work on Solutions of Numerical Field Equations 

There are currently several numerical methods suggested for field equations 

described. The most successful approaches involve one or a combination of below 

techniques. References containing detailed description of each approach are given for 

each approach: 
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Frequency-domain techniques: 

1- Finite Element Method (FEM) [15],[16] . 

2- Space harmonics expansion [17]. 

3- Green ' s function [18][19]. 

4- Boundary element method [20]-[28] 

5- Both FEM and space harmonics expansion [29] 

Time-domain techniques: 

6- Finite Difference Time Domain (FDTD) [30]. 

3.8 Finite difference method (FDTD) 

FDTD has long been used for the analysis of the propagation of electromagnetic 

waves. Maxwell ' s equations are discretized in time and space, and solving this system 

yields the solution for the wave. Several improvements have been made over the years to 

enable efficient calculation of the solution. One particular advancement is attributed to 

Yee ' s algorithm which, through the use of an ingenious grid system, provides a very 

robust basis [31]. 
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Figure 9 Yee's Leapfrog Algorithm 

Figure 9 provides the essence of this method for simulating the electromagnetic 

waves, where E and H components are centered in the three dimensional space; every H 

component is sunounded by four E components, and conversely every E component is 

surrounded by four H components. The resulting FDTD expressions are second order 

accurate and are central-difference. The complete finite difference equations of Maxwell 

can be found in [32]. 
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As far as elastodynamic equations presented in Chapter 2 are concerned, which 

describe the acoustic and Maxwell's equations, a parallel situation can be worked out. 

Using this scheme and noting that the velocity vector v is the analog of H , and T is the 

analog of E, a similar algorithm can be found to discretize the elastodynamic set of 

equations This has been demonstrated in [10] and shown in Figure 10. 

The advantages of a time-domain technique such as FDTD are manifold. It might 

be desired to obtain the broad-band frequency response of a SAW structure. This can be 

achieved using a time-domain technique, and an impulse excitation. Visual wave 

propagation tools can also be implemented in an FDTD simulator with relative ease. 

Using Yee's approach as described, efficient parallel processing techniques can be 

implemented into the simulator. The code implemented here which incorporates these 

features is visually summarized in Figure 11. 
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Figure 10 Staggered Stress and Velocity Field Values Based on Yee's- Approach for 

Simulation of Electromagnatic Waves 
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By assuming that the device is infinitely periodic, the computational domain can 

be reduced to one period of the device. Since most devices are long compared to the 

wavelength of the SAW and generally include tens of fingers , the preceding assumption is 

justified. This simplifies the computational domain by solving the equation only for one 

period. Although, the details of the Y ee ' s algorithm have been spared in this analysis, it is 

well known that Yee' s approach is particularly suitable for parallel processing. Each point 

on the grid can be calculated based only on, the grid values from the previous timestep. 

This will enable for instance, several processors to run in parallel and collate their data 

once at the end of a single timestep (Figure 11.) Reference [32] provides a complete 

description of this approach for the electromagnetic case. These considerations make 

FDTD, and the extension of current work a potentially powerful technique for the 

analysis of SA W devices. 

3.9 The FDTD Simulator 

The FDTD simulator used in this work is implemented in C++ with a MA TLAB engine 

interfaced for real-time plotting of the field values. Figure 11 depicts the block diagram of 

the simulator program, outlining the important features discussed in the preceding and 

current chapters, and the treatment of boundaries using the perfectly matched layer 

discussed in the next chapter. 
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Figure 11 Block-Diagram of the Implemented SAW FDTD Simulator in C++ 
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The absorbing boundary conditions, in particular the perfectly matched layer for 

the elastodynamic problem will be discussed next. 
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Chapter 4: Absorbing Boundary Conditions 

4.1 Review of the Existing Boundary Conditions for Acoustic Waves 

Several absorbing boundary conditions CABCs) have been introduced for acoustic 

waves, with progressive improvements. Most of these ABCs were originally developed 

for electromagnetic wave propagation, and the majority were developed in the frequency­

domain. In Chapter 3, the strengths of time-domain methods were highlighted. The main 

focus of this work will be on the time-domain ABC boundary conditions. 

In his 1994 paper, Berenger described a new boundary called the perfectly matched 

layer CPML) for electromagnetic waves, which offered significant improvements over 

previous ABCs [33]. 

As previously stated, frequency domain modeling methods have enjoyed a more 

developed set of domain termination techniques, including ABCs and the PML. 

In a pioneering work in 1996, Chew and Liu developed a PML for elastodynamics 

[34]. In 2006, Chagla and Smith introduced a PML for piezoelectric materials by splitting 

the velocity components into normal and tangential subcomponents. The resulting 

absorbing boundary condition showed instabilities for some crystal classes LiD]. 
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Here, we apply the PML to anisotropic materials, which include all piezoelectric 

crystals, and show numerical measures of the PML for SAWs. It is further shown that the 

instabilities are removed by introducing a matching condition. 

4.2 Review of the Absorbing Boundary Conditions for Electromagnetic Waves 

The ABC equations for the electromagnetic waves are: 

(49) 

aH 
flo at + a * H = - v x E (50) 

where a is the conductivity and a * is a non-physical quantity introduced to symmetrise 

the absorption of the magnetic field with that of the electric field [36]. to , and flo are the 

permittivity and permeability of the free space, respectively. 

The matching condition in Berenger' s derivation is defined as [36]: 

a a * 
(51 ) 

to flo 

Equation (51) states that the ratios of loss-coefficients are the same as the ratios of the 

corresponding field coefficients. This relation, also referred to as the impedance matching 

equation, ensures that the impedance of the wave travelling inside the domain, matches 
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that of the lossy ABC medium defined by equation (49) and equation (50). The result is a 

reflectionless propagation of a normally incident plane wave as it passes through the 

interface. This works well at normal incidences but the reflection becomes large at 

grazing angles. 

Berenger addressed this problem, by splitting the field quantities into normal and 

tangential components and modifying equation (49) and equation (50) for a TE mode 

electromagnetic wave, (where the E field is in the xy plane, and the H field is parallel to 

the z direction.) The reflection coefficient with n = 1 for vacuum, matched to this newly 

defined lossy medium is given by: 

r = (1 - COS())n 

1 + cos() 

This reflection coefficient is zero for both normal and grazing incidence. 

A fictitious medium is subsequently defined by: [36] 

aHzx * _ aEy 
110 at + a H zx - - a x 
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(55) 

The subcomponents of the H field in the z direction are denoted as Hzx and Hzy . This 

is a generalization of the physical electromagnetic equations as a linear combination of 

the normal and tangential components. By defining the H field in this manner, it is 

possible to absorb the normal component of the wave, whilst the tangential component 

freely propagates without loss in the medium. Reference [36] provides a detailed 

derivation of the PML for electromagnetic waves. 

4.3 PML for Elastodynamic Waves 

Before presenting the derivation of the PML for elastodynamic waves in 

anisotropic solids, the scattering problem concerning boundary conditions for such waves 

is reviewed. 

4.3.1 A Review of Elastodynamic Wave Scattering from Boundaries 

As previously stated, the combined piezoelectric and Maxwell 's equations have in 

general five wave solutions. (The acoustic wave equations have three uniforn1 plane wave 

solutions for each propagation direction, and the electromagnetic equations have two.) 

These solutions are in general not independent but coupled through the piezoelectric 

constitutive equations. In total therefore, each propagation direction has five coupled 

equations. 
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In scattering problems involving these waves, there can be up to five reflected and 

five transmitted waves for an arbitrary type of incident wave (Figure 12) [1]. 

-Bounda~----~~~--------r----

'0 
Q) 

~ 
E 
C/) 

c 
C/) 

~ 
I--

Figure 12 Boundary Scattering of Coupled Elastodynamic Waves 

In equation form, the general boundary-matching results in ten component-form 

equations: five reflected (of the types mentioned above) and five transmitted of each kind 

[7]. 
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v= v' 

T.n = T'.n 

(56) 

n x E = n x E' 

n x H = n x H' 

where n is the unit vector normal to the boundary of the two media, and the primed 

quantities represent the values in the medium which lie on the other side of the boundary. 

(i.e. transmitted wave quantities.) 

The behaviour of these waves in a piezoelectric material, is determined by the 

type of crystal (symmetry group), the direction of propagation with respect to the crystal 

axes, and the crystal cut axis, which defines the plane of propagation. Propagation of the 

waves on specific directions-usually intentionally chosen planes of symmetry, can cause 

decoupling of these waves resulting in pure acoustic (or pure electromagnetic waves) in 

that direction. For example, on a y-cut lithium niobate crystal with the z-axis as the 

direction of propagation, one of the acoustic waves decouples from piezoelectricity and 

propagates as a purely acoustical wave. When this happens, the piezoelectric property of 

the crystal becomes irrelevant for the propagation of that particular mode, and the crystal 

simply acts as an elastic medium for the acoustic wave, as though, it were a non­

piezoelectric material. The only relevance of piezoelectricity in this case, is when the 

wave is generated or upon its detection. The wave is usually generated, as explained in 
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chapter 2, by applying an electric signal to a thin metallic interdigital transducer (lOT) on 

the surface of the substrate. 

For a decoupled acoustic wave, once the wave is launched, it travels without 

regard to piezoelectricity. Upon detection, the inverse of generation takes place, where 

the mechanical wave is converted to an electric impulse at the output lOT. In short, for 

pure acoustic waves, the relevance of piezoelectricity is only in the lOT regions and not 

in between [3]. 

Oecoupling from piezoelectricity creates a special case of waves as mentioned; in 

general however, there are three acoustic waves per each direction of propagation [5]. 

These acoustic waves have different propagation velocities at any given direction, and 

they are identified, by their velocities VI , vz , and V3 plotted as a function of propagation 

direction. 

The slowest wave is termed (quasi-) longitudinal and the other two are called 

(quasi -) transverse. It is more useful as stated in Chapter 2, to represent these surfaces 

using the inverses of velocity values, called slowness surfaces. Such plots are very useful 

in studying reflection and transmission phenomena according to Snell ' s law, and also for 

determining the state of each wave at a given direction (i .e. whether the wave is 

evanescent or not). A line drawn from the origin denoting the direction of propagation 

will intersect with the three slowness curves providing the velocities of each type of wave 

in that direction [7]. 
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Slowness curves are most important in choosing the ideal crystal cut angle for a 

given problem. This allows for example, to choose a direction in which one of the three 

waves is highly sensitive to piezoelectricity, while the other two are not. The excitation in 

that direction of the piezoelectric crystal then, yields pure waves of that mode, with 

minimal arousal of other types by choosing different crystal cut axes. 

4.4 Derivation of the Elastodynamic PML Based on Berenger's Approach 

Here, the PML for the elastodynamic wave propagation on piezoelectric solids is 

derived in exact parallelism with Berenger's fom1Ulation of the PML for electromagnetic 

waves [32] . 

The equations describing the propagation of elastodynamic waves in piezoelectric 

crystals are [7]: 

(57) 

(58) 

And 

(59) 

d is the piezoelectric strain coefficient matrix, 
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T is the stress vector, 

v is the paIiicle velocity vector, 

S is the stain vector, 

d' is transpose of d, 

SE is the 6x6 compliance coefficient matrix measures under constant electric field, 

p is the material density, 

o 
o/Oy 
o 

o 
o 

%z 

o %z 

%z 0 

%y %x 

o/Oy j 
%x 

o 

Equation (59) is called the stiffening equation to include the effects of 

piezoelectricity at zero displacement [7]. In component-form, the first line of equation 

(57), for a trigonal 3m symmetry class (to which lithium niobate (LiNb03) belongs,) is: 

(60) 

The PML is defined by introducing losses for the component field variables in 

equation (60). The loss terms are introduced in accordance with the existing terms in the 

equation, i.e.: 
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(61 ) 

where lJ'Ti denote the loss terms for the corresponding stress field components. 

The form of the stiffness matrix determines which components of the stress field are 

related through equation (60) . Accordingly, the number of terms in this equation depends 

on the choice of substrate material. Similar to electromagnetics, equation (60) is used to 

develop a Berenger-like boundary condition. 

Equation (61) is likewise split into the normal and tangential subcomponents in the 

xz plane, (i.e. no y -dependence.) In analogy to equation (53) and (54) we have: 

(62) 

(63) 

A similar hypothetical construct is required for attenuating the stress field 

components, together with the velocity components, while also satisfying the matching 

condition. 
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Berenger's approach is taken here to define a matching condition based on equation 

(57) and equation (58), by first introducing the loss-terms explained above, to give the 

complete PML equations: 

(64) 

(65) 

(66) 

(67) 

where rp T is a 6 x 6 non-physical loss tensor containing the stress loss-coefficients 

shown in equation (61) and ljIv is a non-physical scalar denoting the velocity loss-

coefficient. Vsx is the same as Vs except that it only contains the spatial derivatives with 

respect to x. 

Noting that some coefficients are now tensor quantities and that (5 E ) -1 = cE
, we 

define the acoustic matching condition as [35]: 

~ 
111 _ v ~E 
AT --5 

P 
(68) 
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This relation states that the ratios between the stress and velocity loss-coefficients are 

the same as the ratios of the field variable coefficients. Similar to the electromagnetic 

case, the matching condition ensures that the loss-coefficients always maintain the same 

ratio, even as they progressively increase through the PML. The matrix multiplication 

which is new in this equation, ensures the term-wise satisfaction of the matching 

condition, for all components of the stress field. 

4.5. Applying the Matching Condition to Derive the PML Time Update Equations 

The derivation of the PML for the velocity field is less burdensome, as the loss 

coefficient in equation (66) are scalars. This has been previously reported as: [10] 

(69) 

However, both field variables v and T, have to be attenuated in accordance with a 

matching condition that ensures that there are no reflections from the boundary. 

In order to carry this out in component form, we will work with the first row of 

equation (64), noting that the same analysis applies to the remaining five: 
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(70) 

And the first row of the lossless equation (65) can be written as: 

(71) 

Using a central difference scheme to find the time derivative, and applying the time-

averaging, for unknown quantities at time n we get: 

Page 161 



M.A.Sc. Thesis - A. Montazeri - McMaster - EeE 

( 
1 1) ( 1 1) n+- n-- n+- n--

Tlx l . . 2 - T1 X I . . 2 T2x l . . 2 - T2x l . . 2 
l,j l ,j + l,j l,j 

Sl1 b.t S12 b.t 

( 
1 1) n+- n--

T4xl . . 2 - T4xl . . 2 + l,j l,j 

S14 b.t 

( 
1 1) n+- n--

T1X I .. 2 - T1X I .. 2 + lJl l,j t,j 

T1 2 (72) 

( 
1 1) n+- n--

T2x I .. 2 - T2x I .. 2 + lJl l,j l,j 

T2 2 

Grouping the terms at time n + ~ yields the time update equation: 
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1 
n--+ (2S12 - b.tlJ.'T2)T2x I .. 2 
l,j 

(73) 

As stated above, the procedure applied to the rest of the five equations is the same, 

and the result can be cast into the more concise matrix form: 

(74) 

Without loss of generality, the attenuation matrix rp T is defined to contain all the 

corresponding loss-terms, allowing for a concise representation of the component form 

equations. 

Making use of the matching condition defined in equation (68) to sub in for rpT , 

results in: 
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(75) 

By multiplying from left by cE
, the time update equation within the PML becomes: 

(76) 

where Sv = (2 - /).t :v) and S; = (2 + /).t ~). 

By making use of the derived matching condition given by equation (68), the 

quantities Sv and S; become scalars, thus eliminating the need for matrix inversion. This 

significantly relaxes the computational burden for calculating the field values inside the 

PML, turning matrix algebra into simple scalar manipulation. 

The end of the PML boundary is terminated with a perfect reflector. This ensures that 

any reflections from the terminal layer of the PML undergo a secondary attenuation upon 

return. This completes the PML equation for the stress field. 

The matching condition is in essence a constraint, which connects the loss-

coefficients of the stress and velocity fields. That is, setting IJ'v is sufficient for defining 

both equation (69) and equation (76) . Note that these two equations define one iayer of 

the PML. An arbitrary number of layers can be specified, and generally the more layers 

the PML has, the better it is in suppressing reflections. 
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From one layer to the next, starting at the medium-PML interface, the loss-

coefficients are gradually increased according to a profile function. At the starting layer, 

this loss-profile lJ'v is small ; however, it is ramped up at every layer, terminating at a final 

value lJ'v,o at the end of the PML. Generally, either a polynomial or an exponential loss 

profile is employed to define the sequence of lJ'v values, as is done in electromagnetics. 

Here, a polynomial loss profile defined in [36] is used: 

(77) 

where XpML is the position of the onset of the PML, i is the position of each PML, 0 is the 

thickness of the PML, lJ'v,o is the loss-coefficient at the terminal layer of the PML, and m 

is the order of the polynomial used. lJ'v,o is either chosen heuristically, or usmg an 

empirical formula similar to the electromagnetic PML explained in [36]. 

4.6 Simulation Results of the Implemented PML 

4.6.1. Domain Definition and Simulation Parameters 

The computational domain shown in Figure 8.is used for the discretization of the 

sagittal plane. The domain is terminated on the left and right sides by periodic boundaries, 

that model an infinite interdigital transducer (IDT). This is the case for example in a SAW 

resonator, where the excitation travels symmetrically in both directions. 
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The domain is one IDT period of the sagittal plane, with the assumption that the IDT is 

infinitely long compared to the wavelength of the SAW. This reduces the problem to a 

two dimensional analysis on the sagittal plane. 

A spatial resolution of 33 .57x 10-5 m, and a temporal timestep of 0.318 ns were used on 

a 91 x91 cell grid. 

The PML was tested for sinusoidal, Gaussian, and impulse excitations. The reflection 

for the a sinusoidal excitation from a PML with 15 layers, placed 8 spatial steps from the 

PML, was less than 10-6 after 6000 timesteps or 19 J.!S. 

The implemented PML is used for the bottom of the domain. This allows any 

unwanted parasitic waves to be removed from the computational domain, as though the 

computational domain were a semi-infinite plane. Any other boundary conditions will 

result in spurious reflections from the bottom that will show up in the detection IDT of 

the device as computational noise. 

The top boundary condition is stress-free, implying that all components of the stress 

normal to the boundary (i.e. Tl , Ts , T6 ) are set to zero [30]. Therefore at the stress-free 

boundary, the only non-zero components of the stress are the transverse ones. 

A periodic excitation with the frequency of 1 GHz with a Gaussian envelope is applied 

to the middle of the free surface. This excitation is applied to the T3 component of the 

wave which is a compressional stress component in the z-direction. 
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4.6.2. Results 

The implemented PML was tested using Gaussian, impulse and sinusoidal excitations. 

As well, a host of various materials, both isotropic (i.e. non-piezoelectric media,) and 

piezoelectric substrates were tested. Several substrate rotations specifying the crystal cut 

axis and the direction of propagation were tested. The PML was stable under all these 

conditions, and no instabilities were seen for the classes of materials previously reported 

[10]. 

1 01 3001 501 

~Unbounded 

• PML 

Figure 13 Comparison of the Normalized T xx Field Component for an Unbounded 

Medium and the PML 

Page 167 



M.A.Sc. Thesis - A. Montazeri - McMaster - ECE 

Figure 13 shows the plot of the Txx component of the field in an unbounded region, 

with the results of the PML superimposed on it, comparing the effectiveness of the PML 

in modeling an unbounded region. The difference is less than 10-6 % between the 

unbounded case and the domain terminated with the PML. 
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PML 

Figure 14 Excitation Near the PML. Top: A Gaussian Excitation in an Unbounded 

Region. Bottom: Symmetric Spread of the Same Excitation Near the PML after 15.9 Ils or 

5000 Timeteps. 
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x z 
~ 

Figure 15 SAW Excitation under Metallic IDT 

Figure 14 bottom, shows: the excitation near the boundary after 15.9 /ls. The 

symmetric shape of the excitation is preserved even after a prolonged interaction with the 

PML. 
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Figure 15 shows the SAW launched by an excitation applied to the metallic IDT 

shown in the computational domain in Figure 8. The crystal cut is chosen as 128 X-cut Y 

propagating lithium niobate. The main excitation type is of Rayleigh type, however some 

bulk waves are also excited. These excitations if not removed appear as computational 

noise in the output port. Figure 16 shows the effective removal of the bulk wave type 

reflections by the implemented PML. 
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Figure 16 Absorption of the Parasitic Waves by the PML. Top: Parasitic Waves Before 

Introduction of the PML. Bottom: Removal of the Parasitic Waves using the PML. 
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Chapter 5: Conclusions 

A PML for acoustic waves is developed which addressed the instability issues 

previously reported in [10]. 

A parallel derivation of the elastodynamic PML for FDTD is drawn following 

Berenger' s development of the electromagnetic PML. It was shown that in addition to the 

scalar loss-coefficients introduced for the velocity field, a loss-coefficient tensor was also 

necessary for the stress field components. These two loss-coefficients were shown to be 

connected through a matching condition that bears close resembles to the one developed 

for electromagnetic waves. This condition when implemented in the FDTD time update 

equations of the PML, simplifies the matrix algebra to scalar math and therefore obviates 

the need for matrix inversion. 

The results show stability under various test cases including different piezoelectric 

crystals and excitations. The implemented PML was then used to terminate a model of a 

periodic SAW device suppressing parasitic bulk wave radiation. 
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Appendix A 

Symmetry Characteristics: Compliance and Stiffness Matrices 

Triclinic System 

Monoclinic System 

S11 S12 S13 0 S16 0 

S12 S22 S23 0 S25 0 

S12 S23 S33 0 S35 0 
13 constants 

0 0 0 S44 0 Su 

S16 S26 S35 0 S66 0 

0 0 0 S46 0 S66 
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Orthorhombic System 

S11 S12 S13 0 0 0 

S12 S22 S23 0 0 0 

S13 S23 S33 0 0 0 
9 constants 

0 0 0 S44 0 O. 

0 0 0 0 s6S 0 

0 0 0 0 0 S68 

Tetragonal System 

Classes 4, 4, 4/m S11 S12 s13 0 0 S16 

S12 S11 S13 0 0 -S16 

S13 S13 S33 0 0 0 

7 constants 
0 0 0 S44 0 0 

0 0 0 0 s" 0 

S16 -S16 0 0 0 S66 

Tetragonal System 
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Trigonal System 

Classes 3, j o 

o 

o 

7 constants 

Trigonal System 
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32, 3m, 3m Sll S12 S13 Sa 0 0 

S12 Sll S13 -Sit 0 0 

S13 S13 S33 0 0 0 

6 constants 

sa -Sit 0 S« 0 0 

0 0 0 0 s" 2sa 

0 0 0 0 2sa 2(su - SlJ 

Hexagonal System: 

Su S12 S13 0 0 0 

S12 Sll S13 0 0 0 

Su s18 S33 0 0 0 

5 constants 
0 0 0 Su 0 0 

0 0 0 0 Su 0 

0 0 0 0 0 2(Sll - S12) 

Cubic System: 
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511 512 5 12 0 0 0 

512 5 11 512 0 0 0 

5 12 512 5 11 0 0 0 
3 constants 

0 0 0 5« 0 (} 

0 0 0 0 5U 0 

0 0 0 0 0 5« 

Isotropic System: 

Sl1 S12 SI:.! 0 0 0-

S12 S11 S12 0 0 0 

S12 S12 S11 0 0 0 
2 constants 

0 0 0 S« 0 0 

0 0 0 0 S44 0 

0 0 0 0 0 S4 
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