
A Multiple Hypothesis Tracker with Interacting 

Feature Extraction 



A MULTIPLE HYPOTHESIS TRACKER WITH INTERACTING 

FEATURE EXTRACTION 

BY 

JAMES MCANANAMA, B.Eng., P.Eng. 

A THESIS 

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING 

AND THE SCHOOL OF GRADUATE STUDIES 

OF MCMASTER UNIVERSITY 

IN PARTIAL FULFILMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

MASTER OF ApPLIED SCIENCE 

© Copyright by James McAnanama, October 2010 

All Rights Reserved 



Master of Applied Science (2010) 

(Electrical & Computer Engineering) 

McMaster University 

Hamilton, Ontario, Canada 

TITLE: A Multiple Hypothesis Tracker with Interacting Feature 

Extraction 

AUTHOR: James McAnanama 

B.Eng., (Materials Engineering and Science) 

McMaster University, Hamilton, Canada 

SUPERVISOR: Dr. T. Kirubarajan 

NUMBER OF PAGES: xi, 60 

ii 



I 
I 

I 

To My Life's GTeatest Gifts: 

Leslie, Mattl1ew, and GTallam. 



Abstract 

The multiple hypotheses tracker (MHT) is an optimal tracking method due to the 

enumeration of all possible measurement-to-track associations. However, its practical 

implementation is limited by the NP-hard nature of this enumeration. To bound the 

computational complexity, some means of limiting the number of possible associations 

is required. Typical solutions include the interposition of rules to guide the pruning 

and merging of tracks. Other proposals have shown that the performance of a tracker, 

MHT or not, can be improved using feature information (e.g., signal strength, size, 

type) in addition to kinematic data. The inclusion of feature information allows for 

the discrimination to further gate the data associations. However, in most tracking 

systems, the schemes to manage the data association problem are extraneous to the 

Bayesian framework of the MHT. Further, the extraction of features from the raw sen­

sor data is typically independent of the subsequent association and filtering stages. 

The features are then used in either an ad hoc way or are they are fused with the 

MHT tracker; they are not used intrinsically within MHT framework. In this thesis, a 

new approach whereby there is an intrinsic interaction between feature extraction and 

the MHT is presented. The measure of the quality of feature extraction is input into 

measurement-to-track association while the prediction step feeds back information to 

be used in the next round of feature extraction to increase the information available 

iv 



a priori. The motivation for this forward and backward interaction between feature 

extraction and tracking is to improve the performance in both steps. This approach 

! 

-I allows for a more rational partitioning of the feature space, removing unlikely fea-

I 
tures from. the assignment problem. In addition, a track-specific detection probability 

becomes available to the prior. This probability significantly improves the coasting 

behavior when measurements are not available for track continuation. Simulation 

results demonstrate the benefits of the proposed approach. 
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Chapter 1 

Introduction and Problem 

Statement 

1.1 Motivation Statement 

The use of airborne vision systems in intelligence, security, and reconnaissance (ISR) 

is a relatively new and growing field (Best, 2010). One aspect of this technology is the 

acquisition and tracking of multiple targets. As discussed below, the field of target 

tracking is itself a developing area of study with the majority of the effort applied 

to radar and sonar applications. The focus of this study is on the advancement of 

algorithms used in tracking multiple targets with infrared (IR) and electro optical 

(EO) imaging sensors used onboard an airborne platform without any prior target 

information. 

It is generally accepted that the current state of the art for multiple target track­

ing is given by the multiple hypothetlitl tracker (MHT) combined with the interacting 
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multiple model (IMM) kinematic filter (Blackman, 2004). The multiple hypothe-

sis tracker is an optimal tracking method due to the enumeration of all possible 

measurement-to-track associations. However, its practical implementation is limited 

by the NP-hard nature of this enumeration. To bound the computational complexity, 

some means of limiting the number of possible associations is required. The prob-

lem for this thesis is the prosect of aiding the track to measurement associations by 

exploiting feature information within the native MHT framework. Specifically, can 

additional information be garnered and can performance be im.proved with more in-

teraction between the different steps of the MHT algorithm? An approach to this 

issue is presented in section 1.2 following a literature review. 

1.2 Literature Review 

The state of the art of multiple target tracking MTT has evolved over the last half 

century with milestones realized in both the underlying algorithms and in the available 

computational speed of computing hardware. The result is the existence of multiple 

classes of solutions to the MTT problem. This evolution continues, driven in part 

by the development of new sensors with which one can track as well as increasing 

computational capabilities that allow for more complex algorithms. The following 

section describes the abstract steps of multiple target tracking (MTT) followed by a 

review of the common algorithms used to instantiate MTT. 

Semantically the problem has been described in its simplest form as a process 

of measurement formation, association of these measurements to tracked targets, fol-

lowed by an estimation ofthe target states (Bar-Shalom and Li, 1995). In the context 

of video tracking, measurements are formed by processing a frame of video to extract 
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Video Frame 
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Measurement-to- .. Track 
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Filtering and 

Computations 
~ 

Prediction 

Figure 1.1: MTT Flow Diagram 

trackable features. Each frame of video is a source of a new set of measurements. A 

track maintenance step is added after the data association to manage track initia-

tion, propagation, and termination. In addition, a gating step is required in practical 

implementations to bound the data association step (Blackman, 2004). The resulting 

video MTT architecture is shown in figure 1.1 and each process is described below. 

1.2.1 Feature Extraction 

A video image is created when a sensor on a focal plane converts incoming electromag-

netic energy into a 2-D array of intensity values proportional to the incident intensity 

and responsivity of the sensor to the incident spectrum. The end result is a spatial 

domain representation of the sampled energy intensity. Information in the spatial 

domain is represented by edges, areas of high spatial frequency. Colour images are 

made by combining triplets of picture elements that are responsive to the red, green, 

and blue wavelengths. In this case, the combined image can be thought to have both 

an average intensity content (grayscale content), and a chromatic content (Gonzalez 

and Woods, 2002). 

There are many methods that can be used to process an image into trackable 

3 
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measurements based on user defined windows, shape segmentation, detection of de-

formable contours found in the previous frame, visual learning methods, and feature 

extraction (Trucco and Plakas, 2006). Window tracking employs correlation to match 

a given pattern in the current video frame. The window definition requires some prior 

knowledge of the target appearance, typically cued by the operator. As the name im-

plies, shape segmentation techniques dichotomize foreground and background based 

on some prior notion of target shape. Similarly deformable contours and visual learn-

ing methods require a prior notion of target appearance and are thus not suited to 

the focus of this study. 

Feature extraction is the process whereby corners, lines, contours, regions, etc are 

filtered from the video frame (Sonka et al., 2007). This technique has been shown to 

perform well when no prior target information is known (Cox and Hingorani, 1994; 

Papanikolopoulos et al., 2006; Zetterlind and Matechik, 2006). Further, an beneficial 

interaction between feature extraction and tracking has been presented for another 

well known tracking algorithm, the Probabilistic Data Association Filter (Kirubarajan 

et al., 1997). As a result, feature extraction techniques were selected for use in this 

study. Specifically, the video images are converted to a binary representation based on 

a threshold that dichotomizes the im.age to maximize the gray level variance between 

targets and background(Otsu, 1979; Sonka et al., 2007). Next the targets are defined 

as connected pixels in the foreground. The principal components of these target 

regions are invariant to rotation (Gonzalez and Woods, 2002) and for this reason 

they were chosen as the trackable feature used herein. 

4 
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1.2.2 Data Association 

Once a set of measurements has been obtained, a difficult problem remains in de-

termining the relationship between the measurements and the targets to be tracked. 

For example, a measurement may be from a target under track, from a new target, 

or it could be the result of a false measurement from clutter or noise. The data 

association step is computationally the most difficult task in multiple target track­

ing. In one study, the data association was found to take over 95% of the processing 

time (Pattipati et al., 2000). 

Early approaches to data association include the nearest neighbor and strongest 

neighbor filters which validate measurements based on their relative location or 

strength(Blackman, 1986; Li, 1998; Leung et al., 1999). These filters look for the 

'best' measurements and discard the others. Further, they allow for multiple tracks 

to share the same measurement. These techniques do not perform well in scenes of 

high clutter, and fail to account for the chance that all measurements may be false. 

The nearest neighbor approached was refined to find the best association hypothe-

sis across all possible track to measurement associations. This approach, called the 

Global Nearest Neighbor (GNN) algorithm, only works well in the case of widely 

spaced targets with accurate measurements and low clutter (Blackman, 2004). 

Another class of algorithms was developed to consider all of the measurements in 

a probabilistic sense - Probabilistic Data Association (PDA). These algorithms in­

clude probabilistic extensions to the nearest and strongest neighbor filters (Li, 1993; 

Li and Zhi, 1996) whereby the event that the nearest/strongest measurement does 

not originate from the tracked target is considered. In addition, another approach is 
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to use a weighted combination of all the measurements. This was first done in the sin-

gle target, multiple measurement scenario as the probabilistic data association filter 

(PDAF) (Bar-Shalom and Tse, 1975). The multiple target problem adds a combina-

torial problem of associating many measurements with many tracks. To this end, the 

PDA algorithm was extended to evaluate the joint(JPDAF) measurement-to-track 

association probabilities (Fortmann et al., 1980). Under JPDAF, multiple associa-

tion hypotheses are formed after each measurement report and the tracks are then 

updated by the sum of measurements weighted by their probabilities (measurements 

beyond a set Mahalanobis distance are ignored through a gating process) (Bar-Shalom 

and Li, 1995). The JPDAF approach has some undesirable qualities. First, measure-

ments can be shared between targets that can result in track biases and coalescence 

(Fitzgerald, 1985). Secondly, these PDA filters do not innately initiate or terminate 

tracks - it is assumed that the tracked targets exist. To address both of these issues, 

an interacting multiple model filter (IMM, discussed further in the sequel) can be 

used to improve performance in one of two ways. In the first method, the IMM more 

accurately predicts target dynamics to prevent track coalescence (Bar-Shalom, 1986; 

Blom and Bloem, 2002). In the second method, two PDAF algorithms are used in 

an IMM framework to model the case where the target exists and is observable and 

the case where the target exists but is unobservable (this second approach is called 

IMMPDAF) (Bar-Shalom et al., 1989). In an alternate approach, the track existence 

assumption is not used. Rather, the probability of track existence is integrated with 

the probability of data association. With this approach the integrated probabilistic 

data association (IPDA) and joint integrated probabilistic data association (JIPDA) 

analogs to PDA JPDA were developed(Musicki et al., 1994; Musicki and Evans, 2004). 
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A more powerful but computationally expensive approach is the Multiple-Hypothesis 

Tracking (MHT) algorithm. The MHT algorithm enumerates all possible assignment 

possibilities and evaluates the target likelihood given the measurements (Reid, 1979). 

This approach is optimal in the sense that it offers a complete evaluation of the as­

sociation problem. However, as the number of measurements and targets increase, 

the cost of the algorithm is exponential. As a result, practical implementations of 

the MHT algorithm currently require some sUboptimal concessions (Blackman and 

Popoli, 1999). Despite the complexity, the MHT remains of prin1.e interest to the au­

thor because it is an optimal approach, while the suboptimal concessions will diminish 

with the evolving speed of computing hardware. The MHT method is regarded as 

the best available approach to tracking multiple targets (Blackman, 2004). Therefore, 

the MHT algorithm was selected as the base on which this thesis offers improvement. 

The Multiple Hypothesis Tracker 

Given the virtues of MHT,there has been significant effort to bound the association 

process through approximations to the algorithm (Blackman, 1986; Bar-Shalom and 

Li, 1995; Pattipati et al., 2000; Blackman, 2004; Bar-Shalom et al., 2007). To this 

end, the association process in MHT is typically divided in two steps. First, unlikely 

assignments are removed through a gating process where a validation region is defined 

around the predicated measurements. Observations outside of this region are rejected 

as candidates for track continuation. The validation gate is typically defined as an 

ellipsoidal region based on some maximum Mahalanobis distance using the innovation 

covariance (Blackman and Popoli, 1999). To account for the event where the true 

target measurement falls outside of the validation gate resulting in a missed detection, 
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Figure 1.2: MHT Flow Diagram 

Li has proposed that the predicted state covariance should be increased (resulting in 

a larger validation gate in the next round of measurements) (Li, 1998). After gating, 

the remaining space is mapped as a linear assignment problem using the negative 

log likelihood as the cost of assigning a given measurement to a specific track (new, 

existing, or false tracks) (Miller et al., 1995; Cox and Hingorani, 1994; Cox et al., 1997; 

Miller et al., 1997). Common n1.ethods used to bound this space include clustering, 

pruning of hypotheses and tracks, and track merging (Blackman and Popoli, 1999). 

In addition, an efficient search algorithm for finding the N-best assignments based 

on Murty's method has been developed (Cox and Hingorani, 1994) that results in a 

MHT flow diagram like that shown in figure 1.2. A lucid description of this algorithm 

is given in 6.7.2 of (Blackman and Popoli, 1999). 

In implementing a N-best scheme, it is important to note that the likelihood 

of a measurement conditioned on any of the three possible assignments is not a 

dimensionless value. Therefore, one must be careful in comparing global likelihoods 

between hypotheses containing differing number of measurement associations (Bar-

Shalom and Li, 1995). An eloquent description of MHT with guidance on this issue 

is provided by Bar-Shalom, Blackman, and Fitzgerald (Bar-Shalom et al., 2007). 
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To make such comparisons possible, these authors propose the use of dimensionless 

likelihood ratios. 

The measurements used in MHT are typically given as a position within the 

surveillance volume (area in an imaging sensor). However, in the case of an imaging 

sensor, additional, feature-based target information is available (e.g., shape, intensity, 

color). The inclusion of features, attributes, and classification in Bayesian tracking is 

fundamentally described in a series of papers by Drummond (Drummond , 2000, 2001, 

2002, 2004, 2005). Therein, features are defined as measurements other than kine­

matic which come from a continuous sample space. This is in contrast with parameters 

which come from a discrete sample space. If the features are used strictly to describe 

the target state, then the process is called Feature-Aided Tracking(Drummond, 2000). 

In this case, the features augment the state vector and are filtered similarly to the 

kinematic data. However, if there exists a database that can cross-reference target 

types based on features, then it is possible to use these features in Classification­

Aided Tracking (Drummond, 2000, 2001; Lancaster and Blackman, 2006). In both 

approaches, the above mentioned references indicate that the feature information can 

improve the gating and assignment of the data association process. Heuristic rules 

for the use of features such as supplemental correlation matching to aid the MHT 

data association have also been proposed (Tissainayagam and Suter, 2001). Further, 

the use of feature-dependent motion models within MHT was proposed (Cox and 

Leonard, 1994). These rules, while useful in some cases, sit as external add-on's to 

the MHT algorithm. 

9 
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1.2.3 Filtering and Prediction 

The optimal estil11.ation of a target's state and the prediction of this state at a future 

time is typically pursued using a Bayesian approach (Blackman and Popoli, 1999; 

Bar-Shalom et al., 2001; Crassidis and Junkins, 2004). For the time invariant case, 

the invariant state is specifically referred to as a parameter. In the Bayesian approach, 

this parameter is treated as a random variable described by a prior probability density 

function (pdf). A measurement is then a realization of the parameter at some point in 

its pdf (Bar-Shalom et al., 2001); the measurement is of the parameter corrupted by 

noise. It is well known that if the measurement noise has a Gaussian distribution, the 

optimal estimate is given by the linear least squares approach. A recursive form of this 

estimator is available to filter the estimate over time as more measurements become 

available (Bar-Shalom et al., 2001). Given the standoff ranges and slow illumination 

changes typical in many airborne surveillance scenarios, the principal component 

features described in 1.2.1 are assumed to be time invariant target parameters in this 

thesis and are filtered over time using a recursive least squares estimate. 

For the case of a til11.e varying state, a process noise pdf is modeled in addition 

to the measurement noise. For example, a target with near constant velocity can be 

modeled by having position and velocity states that are random variables with pdf's 

defined by the process noise on the acceleration. If the measurements are a linear 

combination of the target state and if the target acceleration is zero mean, then the the 

target state at any time is a function of the previous state and the change in velocity. 

Further, if the measurement and process noises are independent and Gaussian, the 

optimal estimate of such a target is given by the Kalman filter (Bar-Shalom et al., 

2001). For nonlinear measurements or target dynamics, the extended Kalman filter 

10 
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(EKF) is available. In the EKF, the measurements and target dynamics are linearized 

over the observation interval (Bar-Shalom et al., 2001). In the case where the target 

has multiple modes of motion, such as an aircraft on take off, cruise, and landing, it 

is possible to use multiple Kalman filters. Each filter models the process noise of each 

motion mode. The interacting mUltiple model filter (IMM) offers an efficient means 

to combine these Kalman filters according to a Markov model describing the motion 

mode transitions (Bar-Shalom et al., 2001). 

Bayesian filtering takes the prior pdf and updates with information of the mea-

surement. That is, the probability of the prior target state is combined with the 

likelihood of the measurement to give the posterior distribution of the target state. 

Given that this posterior state is true, it is possible to predict the target state and 

prior pdf at the next measurement interval. By predicting the prior pdf, it is also 

possible to calculate the likelihood of the next round of measurements. Gating, by 

placing a limit on the measurement likelihood, allows unlikely measurements to be 

removed from the data association problem described in section 1.2.2 (Blackman and 

Popoli, 1999; Bar-Shalom et al., 2001). 

1.3 Problem Statement 

This thesis presents a probabilistic framework to include feature information in the 

MHT data association problem. In addition, it is shown that including the informa-

tion available from the MHT predictions improves the feature extraction from the 

next round of measurements. Using this approach, the signal processor adds informa-

tion to the prior probability of detection of a given track as indicated by Figure 1.3. 

The addition of feature information increases the effectiveness of the gating operation. 

11 
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Figure 1.3: JMHT Flow Diagram 

Moreover, by calculating the prior detection probability, the performance of track-

ing coasting targets is significantly improved. The interactions between the signal 

processor and the target tracker is denoted as a judicious behavior and as such the 

altered MHT is referred to as the JMHT. This thesis builds on the concepts presented 

earlier(McAnanama and Kirubarajan, 2009) by inclusion of the improvements from 

a calculated prior detection probability. 

The format of this thesis is as follows. In section 2 the standard Multiple Hypoth-

esis Tracker is reviewed. Section 3 describes contrast based feature extraction with 

the requirements of a feature for use in a judicious multiple hypothesis tracker and 

the use of principal component analysis (peA) in particular. Further, a method to 

determine the likelihood that the principal components of a given measurement are 

from a tracked target is presented. Finally, a method is developed on how to gauge 

the prior probability of detection based on the segmentation method. 

Section 4.1 presents the JMHT algorithm with a method on how to extend the 

IvIHT to include peA featm'e information. Direction is also provided on how to make 

the prior detection probability an adaptive parameter so as to significantly improve 

the performance of the tracker. Finally the dimensionless likelihoods required for the 

12 
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data association problem are derived. 

In section 5 we present the results of JMHT through a simulation. This is followed 

by a final summary and closing remarks in the conclusion, section 6. 

13 



I 
-i 

Chapter 2 

Review of the Multiple Hypothesis 

Tracker 

The Multiple Hypothesis Tracking algorithm developed by Reid (Reid, 1979; Bar­

Shalom and Li, 1995; Blackman and Popoli, 1999) is a hypothesis-orientated assign-

ment problem where an enumeration is made of all possible origins of every measure-

ment. A complete hypothesis assigns each measurement to at most one target. A 

joint event is hypothesized (a global hypothesis) where each measurement is assigned 

as a new track, a continuation of a previous track (from a previous global hypothesis), 

or as a false alarm. That is, a global hypothesis is formed from a parent hypothesis 

and a current association hypothesis. This joint event is made cumulative, condi-

tioned upon the sequence of measurements up to the current time k. The posterior 

14 
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probability of this cumulative joint event is given by (Blackman and Popoli, 1999) 

p (ek,llzk) = p (e(k), ek-1,sIZk) 

= ~P (Z(k)le(k), ek-1,s, Zk-l) 

. p (e(k)lek-1,S, Zk-l) p (ek-1,sIZk-l) , (2.1) 

where ek,l is the event of the global hypothesis l through to time k, Zk is the cu-

mulative measurements through to time k, e(k) is the current association event, c is 

the factor from Bayes' rule (the sum of the numerator over all possible parent and 

association hypotheses) that normalizes the distribution, and ek-1,s is the event of 

the parent global hypothesis s through to time k -1. The three functions on the right 

hand side of (2.1) represent, from left to right, the likelihood of a current association 

event, the prior probability of a current association event, and the probability of the 

parent hypothesis. 

The likelihood of a current association event depends on the type of association. 

For association with an existing track t i , the likelihood is given by the pdf of the 

innovation (measurement residual) with the notation A [zi(k)] for measurement zi(k) 

. The pdf of the likelihood of a false alarm is considered uniform in the surveillance 

area A (i.e., A-I). Likewise, the pdf of a new target likelihood is taken as A-I. 

The prior probability of a current event is given by the joint pdf of the association 

event, the detection events and the extraneous measurement events. Where the as-

sociation event comes from the product of the permutations of track to measurement 

associations and the combinations of possible new target associations (the permuta-

tion is required as each track has an identity) (Bar-Shalom and Li, 1995). While the 
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target detections can be considered as positive results of a Bernoulli Trial (a binomial 

distribution). However, if the probability of a new target measurement or new false 

measurement is low within the surveillance area, the binomial nature of these events 

will be approximated by Poisson distributions (Papoulis, 2001). It is assumed that 

the probability of detecting measurements from existing tracks, new measurements, 

and false measurements are independent. 

Substitution of the likelihoods and priors as define above into 2.1 results in the 

following form of the global hypothesis 

1 cpl I m(k) 

p (ek,llzk) = ~m(~)!f-tF(CP)f-tN(V)A-<P-V g {JdZi(k)]yi 

. II (P1)Ot (1 - p1)1-Ot p (ek-1,sIZk-l) . 
t 

(2.2) 

Where all constant terms have been incorporated into c, the number of false mea-

surements is given by cp, v is the number of new targets, while the total number of 

measurements at time k is given by m(k). The continuation likelihood uses Ti, an 

indicator variable, which is equal to 1 if zi(k) originated from a previous track, other­

wise equal to O. Similarly, the detection probability enters with the indicator variable 

6t (equal to 1 for track detection or 0 otherwise) and the probability of detection 

of track t given by Ph. The pmf for the number of false and new measurements is 

given by f-tF(CP) and f-tN(V) respectively. As noted earlier, these probabilities are as-

sumed Poisson distributed and are assigned spatial densities At/> and Av. By including 

the Poisson representation for the extraneous targets, Reid was able to cancel the 

dependence on the surveillance volume with the following result 
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1 m(k) 

p (ek,llzk) = c' (A4>YP(Avt II {fdzi(k)]Yi 
i=l 

. II (Pb)Ot (1 - pb)l-ot P (ek-1,sIZk-l) . (2.3) 
t 

The global hypotheses are typically compared using a cost function based on the 

negative log-likelihoods of each assignment. That is, the normalizing constant is 

dropped and comparisons are made between the association likelihoods in the rhs of 

the argument 

m(k) 

P (ek,llzk) ex (A4»4>(Av)V II {!t.[zi(k)]Yi 
i=l 

. II(Pb)Ot(l- pb)l-otp (ek-1,sIZk-l). (2.4) 
t 

However, the likelihood of a measurement conditioned on any of the three pos-

sible assignments is not a dimensionless value. Therefore, it is not valid to directly 

compare global likelihoods between hypotheses containing differing number of mea­

surement associations (Bar-Shalom and Li, 1995). This issue can be overcome by 

using dimensionless likelihood ratios(Bar-Shalom et al., 2007). These ratios are ob­

tained by dividing the rhs of (2.4) by the likelihood that all measurements are false. 

That is, as 
m(k) 

¢+1/+ LTi =m(k), (2.5) 
i=l 

then 

(2.6) 
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resulting in 

P (ek,IJzk) ex (Av)Vrf {fdZi(k)]}Ti 
A¢ i=l A¢ 

. II(Pb)Ot(1 - Pb)l-Ot P (ek-1,SJZk-1) . (2.7) 
t 

That is, the likelihood ratio for the continuation of a track t through measurement i 

is 

(2.8) 

the likelihood ratio for a missed detection of track t at time k is 

(2.9) 

and the likelihood ratio of a new target versus a false Ineasurement is 

(2.10) 

Moreover, the log of (2.7) with the substitution of (2.8) to (2.10) results in a summa­

tion of the log-likelihood ratios (LLR) and the log of the parent hypothesis probability. 

Assignment costs are then created with the negative log-likelihood ratios (NLLR) of 

these separable, track independent, variables. 

The best global hypotheses have the lowest total costs. There are several methods 

for ranking the best hypotheses in the solution space from exhaustive searching to 

optimized methods (Pattipati et al., 2000). In this thesis, Murty's Ranked Assignment 

Method with the JVC algorithm was employed to find the k-best, 2-D assignments 

(Miller et al., 1997). 
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Chapter 3 

Feature Extraction 

The two-way interaction between the sensor processing and the MHT tracking pro­

posed here is via the feed-forward of feature information and track detection probabil­

ities and via the feedback of feature and kinematic state estimations. This interaction 

is what we term as the judicious nature of JMHT. The feed-forward interaction adds 

information to the prior and makes the association likelihood critical of the joint event 

of the feature and location of a measurement being of a given track. Features that lend 

themselves to our approach should be static during the tracking interval such that the 

observations can be filtered using parameter estimation. For example, the principal 

components of a target boundary, region, or multi-spectral content (e.g., color, multi­

spectral IR) may be useful features. Principal components are a rotational invariant 

measure of the maximum covariance within the distribution of a random variable. In 

this paper the PCA of a target's pixel coordinates are used. It is assumed that, at 

a reasonable standoff range and illumination level, the frame- to-frame change in the 

scale of a target will be small such that the pixel coordinate PCA can be estimated 

as a parameter. This estimation is then accomplished recursively by segmenting each 
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image and determining the principal components of each connected pixel group (the 

target measurements). In this section we review a common segmentation method and 

describe the frame-to-frame parameter estimation of a target peA. 

3.1 Contrast Based Segmentation 

Target features are commonly taken from the boarder (e.g., corners, edges) or within 

the region ofthe target (e.g., color, intensity) (Trucco and Plakas, 2006). One compu­

tationally simple extraction method is to segment foreground from background based 

on pixel intensity (with a gray-level threshold) where each target is based on the con-

nectivity of foreground pixels. That is, let the N pixels of an image be represented in L 

gray levels [1,2, ... , L] with nj pixels in each gray level (i.e., N = nl +n2 + ... +nL). 

Then a threshold, K" segments the image such that targets pixels are identified as 

nj, j > K,. A well known method of determining the best threshold, K" between tar­

gets and background is Otsu's wherein the image is dichotomized with the objective 

of maximizing the gray level variance between targets and background(Sonka et al., 

2007; Otsu, 1979), 

(3.1) 

where w( K,) = "L-Y=l Pj and f-L( K,) = "L-y=dpj are the zeroth- and first-order cumulative 

moments up to the K,th level of the normalized histogram (with pmf pj = nj / N) and 

f-LT = f-L( L) = "L-Y=dpj is the image mean intensity level. In addition to an optimal 

threshold, Otsu's method provides a "goodness" of the threshold given by 

(3.2) 

20 



I 

-I 

M.A.Sc. Thesis - Jan1.es McAnanama McMaster - Electrical Engineering 

where (}f, = Ll=l (j - flt)2Pj is the total variance of intensity levels. The lower bound 

of rJ occurs only when for an image with a single gray level and the upper bound occurs 

with two gray levels. 

Target detection is the joint event of successfully segmenting targets from back-

ground and the intensity of the targets being above the threshold. We assume that 

the gray level distribution of existing tracks is captured by the histogram of the un­

derlying target (with a normalized pmf given by Pjt = njt/Nt). As a result, we can 

express the detection probability by using Otsu's method as PD = rJ' (1 - PK,t). In 

Section 4.1, we will show how to create an adaptive method for determining the prior 

probability of detecting a tracked target based on this PD calculation. 

3.2 Regional Description by Principal Component 

Analysis 

Principal component analysis is a rotationally invariant method of describing the the 

region of a target measurement(Gonzalez and Woods, 2002; Gonzalez et al., 2003; 

Sonka et al., 2007). The peA of a region is determined by forming a set of 2-D 

vectors from the coordinates of each pixel within the region. Each set is treated as a 

sample of n random vectors, U = (a, b)T, with mean 

1 n 

U = - LUi, 
n i=l 

21 
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and sample covariance 

(3.4) 

Next, let A be a matrix with rows formed from the eigenvectors of Cu in descending 

order of eigenvalue. The principal components of the sample are then found by 

applying the Hotelling transform v = A( u - u), with a mean value v = E{ v} = 0 

and transformed covariance Cv = ACuAT. An example of a segmented target with 

an ellipse plotted along the target's pixel region PCA is show in figure 3.1. 

As the covariance matrix is square and symmetric, the transformation matrix A 

is an orthogonal basis for the column space of Cu' Therefore the transformation is a 

rotation such that C v is a diagonal matrix made from the eigenvalues of Cu' These 

eigenvalues, denoted £i, are the sample estimate of the population's eigenvalues Ai 

(i.e., as Cu is an estimator of the population's covariance ~u). That is, there exists 

a principal component decomposition ~v = r~urT, where r is a matrix made from 

the eigenvectors of ~u. Our goal is to recursively estimate Ai while considering the 

likelihood that the measured £i is from Ai. 

Indeed, of primary importance in video tracking is to identify a successful sampling 

of a target in each frame of video. To this end, we make the assumption that u( k) for 

a given target is distributed as N(JLu, ~u), where JLu is the population mean. The 

translation through PCA gives v(k) rv N(O, ~v). In addition, we assume that the 

targets are sufficiently large to make the arguments of the Central Limit Theorem. 

As shown by Girshick (Morris, 2007; HardIe and Simar, 2007; Girshick, 1939), under 
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the stated assumptions, 

~j -:j rv N(O, 1). 
jV n-l 

In addition, the log transformation of Equation (3.5)results in 

logf!j -logAj rv N (0, _2_). 
n-1 

(3.5) 

(3.6) 

Using this result, we will consider each sample of the population as a measurement 

in the form of 

log(£(k)) = 109(A) + w(k), (3.7) 

where £ = (f!l' f!2)T and A = (AI, A2)T are the eigenvalues of the covariance matrices, k 

is the frame index and w(k) is the measurement noise distributed as N (0, I (n(k)-l))' 
A recursive, least squares estimate of the parameter A is given by Bar-Shalom et al. 

(2001) 

log(~(k + 1)) =log(~(k)) 

+ W(k + 1) [log(£(k + 1)) -log(~(k))]. (3.8) 

The matrix W(k + 1) is the update gain given by 

W(k + 1) = P(k)S(k + 1)-\ (3.9) 
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where P(k) is the covariance of the estimate given by 

P(O) = I (n(o~ -1) (3.10) 

P(k + 1) = P(k) - W(k + 1)8(k + l)W(k + If, (3.11) 

and S is the residual covariance given by 

8(k + 1) = P(k) + I (n(k +21) _ 1) . (3.12) 

Using the above, the track continuation likelihood based on the principal compo-

nents of a measurement in frame k+ 1 versus the track estimated principal components 

is 

1 

At[z(k)] = 121f81-2 

. exp ( -~[V(k + 1)]T[8(k + l)tl[V(k + 1)]), (3.13) 

where v(k+ 1) = log(£(k+ 1)) -log(-X(k)) is the residual of the parameter estimation. 

The likelihood of the principal components of the false alarms and new targets is 

assumed to be uniformly distributed in [1,~] where A is the surveillance area. As 

the principal components are a measure of the maximum variance possible along any 

rotated axis within a sample, we set the bounds around the uniform distribution as 

follows. The minimum bound is set at 1 under the assumption that for a target 

to have a region-based feature it must be at least two pixels large. Further, as the 

variance is defined as (J2 = E((u-u)(u-uf), an approximate but reasonable upper 

bound of the maximum variance occurs with the centroid of the target in the middle 
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of the surveillance region and the extents of the target at the corners of this region. 

For a square surveillance area this configuration gives a variance of 4. F\u,ther, if 

A > > 1 then the pdf of the likelihood of the PCA features is ex: 2A -1. 

Therefore, the likelihood of a current association based on the PCA features is 

given as 

m(k) 

p (Z(k)IB(k), e k- 1,s, Zk-1) = II {Adzi(k)]yi ·2A(1-Ti) 
i=l 

m(k) 

= 2A-¢-v II {Adzi(k)]yi. (3.14) 
i=l 

In Section 4.1 we will use the feature likelihoods and feature-based detection proba-

bilities within the MHT to create the JMHT. 
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Figure 3.1: Example of a segmented target and its principal components. 
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The Judicious Multiple Hypothesis 

Tracker 

4.1 Adding Judicious Behavior to MHT 

Recall from Section 2, the probability of a complete track to measurement associa-

tion (a global hypothesis) is proportional to the product of the likelihood of a current 

association event, the prior probability of a current association event, and the prob-

ability of the parent hypothesis. The likelihood of a current association event in the 

judicious case is given as the joint likelihood of the kinematic state and the feature 
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parameters 

p (Z(k)le(k), ek-1,s, Zk-l) 

m{k) m{k) 

= A-¢-v II {A[Zi(k)]Vi ·2A-¢-v II {Ati[Zi(k)]Vi 
i=l i=l 

m{k) 

= 2A-2
¢-2v II {fdzi(k)] . Adzi(k)lVi. (4.1) 

i=l 

The prior probability of a current association event is largely unchanged in the ju-

dicious scheme. For example, the combinatorics involved in the association are un-

changed. Likewise, treating the detections as the result of a Bernoulli Trial remains 

the same. Further, the Poisson distribution of new and false targets remains valid 

regardless of feature. For example, the spurious glint off of specular surfaces will 

give rise to false alarms with apparent features. However, what is available under 

the judicious scheme is a means to extract an adaptive prior probability of detection. 

This adaptive PD is important as the prior probability of detection varies across the 

surveillance region. For example, the probability of detecting a target with an in-

tensity equal to the search area (i.e. the probability of detecting a target without 

contrast) is zero. That is, in addition to the peA information, we can also maintain a 

record of the tracked target's pixel intensity histogram; this information is available 

a priori to a measurement. Therefore, an adaptive prior PD is defined by the appli-

cation of (3.1) to every pixel location in the surveillance area. Fortunately there is 

no need to calculate the prior PD for every pixel. Instead, we only need to know PD 

at measurement locations and at the predicted measurement location. The prior PD 

at each measurement location is written as PD Im{k)' The prior PD at the location of 

the predicted measurement, Z, is written as PDlzt{k) and is obtained by considering 
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the segmentation of the region of interest defined by all the pixels nj that are in 

(4.2) 

where p is a gating limit that is selected depending on the desired size of the region of 

interest relative to the measurement accuracy. In our implementation, we have used 

a bounding box approximation of p. 

In considering the local segmentation of p, the threshold has been set from the 

global threshold K. But the goodness of this threshold depends on the pixel values 

within p. If p contains some foreground (target) pixels, then the detection probability 

for a given target depends on the local foreground/background dichotomy of p given 

the global threshold. For example, a given target that is bounded by background 

pixels is easier to detect than one that is occluded by other foreground pixels. Further, 

a loss of target contrast is indicated if p contains only foreground pixels. The local 

"goodness" of the threshold is given by equation 3.2 applied only to the pixels within 

p. If, however, there are no foreground pixels in p, then the detection probability 

is set by the global segmentation described in section 3.1. That is, we have no 

more detection information in the prior other than what is available from the global 

threshold that lead to p containing only background pixels. In this case equation 3.2 

is evaluation using the entire image. 

An accurate determination of (l-Pv!Zt(k)) is desirable as it will allow for a low 

cost assignment of a missed detection in cases where a target contrast vanishes with 

the local background or occlusion from crossing targets. Without such an accurate 

determination, the track may be seduced by new or false measurements. The resulting 
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prior probability of an association is then, 

(4.3) 

By substituting (4.1) and (4.3) into (2.1) and incorporating all of the constant 

terms into c, we get that the posterior probability of a global hypothesis is 

P (ek,llzk) 

= ~ (.\Aif>t (.\Avt Tf{A[Zi(k)]. Adzi(k)]Vi 
c i=l 

. II(Pblm(k))8t(1 - PbIZt(k))1-8t P (ek-1,sIZk-l) . (4.4) 
t 

To create a separable cost function we follow the work of Bar-Shalom et al. (Bar­

Shalom et al., 2007). and divide by the likelihood that all measure111_ents are false. 

The false detection likelihood is Sf and so we divide (4.4) by 

(4.5) 

B 
. . Am.(k). t 

y mcorporatmg (.\p)m.(k) moe we get 

P (ek,llzk) = ~ (.\v)VIT {A[Zi(k)]' At.[Zi(k)]· A}Ti 
c .\if> i=l .\if> 

. II(Pblm(k))8t(1- PbIZt(k))1-8tp (ek-1,sIZk-l). (4.6) 
t 
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From the above, the track continuation likelihood ratio of a track t through mea-

surement i is 

(4.7) 

the likelihood ratio for a missed detection of track t at time k is 

(4.8) 

and the likelihood ratio of a new target versus a false n1.easurement is 

(4.9) 

Note that the residual covariance in the estimation of the principal components in 

(3.12) is <X ~. As a result the physical dimension of Ati[Zi(k)] is the same as A-I. Thus 

( 4.7) is indeed dimensionless. As we have a separable, dimensionless score function 

we can use the NLLR values and employ any of the assignment methods discussed in 

Section 2 such as Murty's Ranked Assignment Method with the JVC algorithm to find 

the k-best, 2-D assignments(Miller et al., 1997). Each of these hypothesis are filtered 

to update the peA parameter estimates as described in Section 3.2. In addition, the 

kinematic state can be updated with any of the commonly used tracking filters such 

as the interacting multiple model (IMM) estimator (Bar-Shalom et al., 2001, 2007; 

Yeddanapudi et al., 1997; Wang et al., 1999). The use of IMM is straightforward but 

with attention given to the correlation between the feature information and kinematic 

measurements. For example, the parameter estimation of peA completed on pixel 

location is correlated with the position measurement noise and uncorrelated with the 

process noise. That is, the peA is the estimate of the population covariance rotated 
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to align with the axes of maximum variance. Therefore, the peA estimate should be 

used to generate the target centroid measurement covariance. 

4.2 Kinematic Filter 

The tracking filter implemented in our study is an Interacting Multiple Model filter 

(IMM) for which there are standard discussions on its derivation(Bar-Shalom et al., 

2001) and implementation(Blackman and Popoli, 1999). A discussion is presented 

here only on the details relevant to the handling of the correlation with the featm'e 

estimate and for the improvements available fro111. the proposed judicious interaction 

scheme. 

The mUltiple models in IMM refer to a set of kinematic models that are chosen 

to best represent the aggregate target dynamics. The estimates fro111. each of these 

models is mixed to create an initial condition for each model filter based on the 

probability that the given model was in effect at the previous iteration. Each of these 

augmented priors is then run through its own Kalman filter to account for state and 

measurement data. The outputs of these filters are combined into an aggregate state 

estimate based on the posterior likelihoods. The mixing probabilities for the next 

round are generated fro111. the model likelihoods and the probability of switching from 

one model to another. The portion of the IMM that is specifically relevant to our 

discussion occurs at the level of the Kalman filters. 
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4.2.1 Kalman Filter Update 

The models of the IMM differ in their kinematic models. However, they can be describe 

at an abstract level as follows. The target state is described by a discrete Markov 

process as 

x(k + 1) = «px(k) + q(k) + f(k + 11k), (4.10) 

where x is the n-dimensional state vector, «P is an assumed state transition matrix, 

q(k) is the process noise assumed distributed as N(O, Q) with an assumed covariance 

matrix Q, and f(k + 11k) is the relative change in position of the sensor.(Blackman 

and Popoli, 1999) 

Measurements are assumed to be observations of M state variables corrupted by 

noise uncorrelated with the process noise, given as 

z(k) = Hx(k) + v(k), (4.11) 

where H is M x n measurement matrix and the measurement noise, v, is assumed 

distributed as N(O, R) with known covariance matrix R. 

Using this state model and measurement equation, the Kalman filter equations 
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are as follows Blackman and Popoli (1999) 

x(klk) = x(klk - 1) + W(k)[z(k) - Wx(klk - 1)] 

W(k) = P(klk -l)H'[HP(klk -l)H' + Rtl 

P(klk) = [1 - W(k)H]P(klk -1) 

x(k + 11k) = <I>x(klk) + f(k + 11k) 

P(k + 11k) = <I>P(klk)<I>' + Q 

(4.12) 

(4.13) 

( 4.14) 

(4.15) 

Under the judicious interaction suggested herein, the feature information is mod­

eled as a target region estimation described in section 3.2. The target region is defined 

about its centroid. This centroid is also used as the kinematic position measurement 

Therefore, while the feature parameter noise is assumed uncorrelated with the process 

noise, it is correlated with the measurements. Therefore, the measurement covariance 

R is given from the target pixel covariance Cu. For example, if the video pixels are 

related to target state coordinate system by a linear transformation matrix A such 

that z = A . u, then R = ACuA'. 

4.2.2 Measurement Prediction and Gating 

Given the state prediction of 4.14, a predicted measurement for the next scan is given 

by z(k + 11k) = Hx(k + 11k). Feeding this predicted position back to the signal 

processor allows the judicious filter to determine the prior PD for the tracked target 

as discussed in section 4.1. Measurements from this scan(now referred to as scan k) 

are then fed into the data association engine . If a target measurement is associated 

with track continuation, then a measurement residual is given by (z) - Hx(klk -1). 
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Under the linear Gaussian assumption of the Kalman filter, the residuals (known 

as innovations), are distributed as N(O, S), where the covariance matrix is S = 

H P H' + R. The track continuation likelihoods, A [Zi (k)], are given by the likelihood 

of a measurement under the distribution of the innovation. A gate can then be 

defined by a set Mahalanobis distance about the innovation. As mentioned in the 

introduction, such gating is useful in managing the assignment problem. 

A gating scheme limits the number of measurements for the data association 

problem based on a minimum likelihood. For the event that the true measurement is 

contained in the validation region, gating is an effective way of eliminating unlikely 

measurements. If the target dynamics are known a priori, then it is possible to account 

for different maneuvers by using appropriate models within the IMM filters. Using this 

approach, there will be a high likelihood that the true measurement will sit within 

the gate. However, in the case of unknown targets, the IMM can be setup to cover 

likely scenarios only. As a result, it is possible to be faced with the event that the true 

measurement is beyond the gate. That is, if the kinematic estimation error is large, 

gating can result in the true measurement being excluded from the data association 

problem. When the true target behavior diverges from the kinematic models, gating 

can result in track failure. Therefore, as noted by Blackman (Blackman and Popoli, 

1999) and developed by Li (Li, 1998), the track covariance should grow when no track 

continuation measurement is found. Li's conclusion is based on the fact that gating 

truncates the pdf of the innovation, resulting in a gated innovation covariance that is 

a scaled reduction of the true covariance, SG = cTS. Where Li's scale factor CT for 

a 2-D measurement is 

(4.16) 
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When a measurement is not associated with a track, the state covariance prediction 

should then grow weighted by the probability that the true measurement was beyond 

the gate (and not just undetected within the gate)(Li, 1998), 

F(klk - l)tO =F(klk - 1) 

+ Fv FG(l- CT)W(k)S(k)1¥(k),. 
1- FvFG 

(4.17) 

In the case of video tracking, sampling intervals can run at the frame rate. As a 

result the covariance growth of 4.17 is significant when the probability of detection 

is high. This behavior is desirable when tracking a target that is truly maneuvering 

beyond the predicted gate. However, in the case where the modeled probability of 

detection is overstated and the true target is within the gate but not detected, this 

covariance growth is undesirable as it dilutes the likelihood when the target is finally 

detected. Therefore, the the judicious evaluation of Fv described in 4.1 is desirable 

as it regulates the rate of covariance growth. The performance of using a set Fv to 

an that of an adaptive Fv for track coasting conditions is compared in section 5. 
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Results 

5.1 Improvements to the MHT 

To demonstrate the benefits of the judicious interactions between the signal processor 

and MHT tracker two synthetic video segments were created to simulate tracking 

through clutter and coasting through an area of vanishing target contrast. The merits 

of the adaptive PD , use of features, and combined use of these were evaluated over a 

series of 1000 monte carlo simulations. 

5.1.1 Tracking Through Clutter 

In the first synthetic segment, four targets maneuver through a cluttered area such 

that the targets are occluded by each other and by the clutter. The clutter area 

consists of 'randomly placed point targets that are dilated into disks and blurred in 

each frame. A sample frame showing the four targets, their routes and the nature of 

the clutter is shown in figure 5.l. The measurement reports for all fral11_es from one 
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Table 5.1: Results of 1000 Monte Carlo Simulations. 

Algorithm 

MHT 
MHTp 
MHTF 
JMHT 

Average Over the Final 100 Frames 

RMS Error [pixels2] True Tracks [%] False Tracks [%] 

140 47 29.1 
79 58 18.7 
49 72 0.8 
31 82 0.4 

simulation are plotted in figure 5.2. Each simulation generated a new set of video 

frames. The clutter was random in each frame of each run. Further, the motion 

for each target had a specified tangent and axial noise. This noise varied with one 

standard deviation across all of the simulations. The average RMS pixel error, % true 

and % false tracks for the simulations are summarized in Table 5.1. Where a true track 

is one where the tracking algorithm correctly associates a measurement to a track. 

A false track is one where the tracking algorithm associates a measurement to the 

incorrect track. The balance of tracks are coasting without measurement association. 

As the most difficult portion of tracking is through the cluttered region, only the final 

100 frames of each simulation are used in the tabled average. The results across all 

frames are plotted below. In the following discussion, MHT refers to the classical 

algorithm, MHTp refers to MHT augmented with an adaptive PD , MHTF refers 

to MHT augmented with feature information, and JMHT refers to the extension of 

MHT using both features and an adaptive PD' 
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RMS Error 

The average RMS tracking errors (the pixel error from track state estimate to ground 

truth) across the monte carlo simulations are shown in Figure 5.3. By comparing these 

plots and observing the summary data in Table 5.1, it is apparent that the tracking 

error is the highest with the classical MHT algorithm. The error is reduced by 44% 

when the adaptive probability is included and by 58% when feature information is 

used. A symbiotic error reduction of 78% is achieved when both feature and PD 

information are used in the JMHT case. 

True and False Tracks 

The average percent of true and false tracks per frame across the monte carlo simula­

tions are shown in Figures 5.4 to 5.7. Again, by comparing these plots and observing 

the summary data in Table 5.1, it is apparent that the number of true tracks is lowest 

and false tracks highest with the classical MHT algorithm. The true tracks are im­

proved by 23% with the adaptive probability, and by 53% when feature information is 

used. While the corresponding reductions in false tracks is 36% and 97% respectively. 

The JMHT algorithm improves the true and false tracks over the MHT algorithm by 

74% and 99% respectively. 

Discussion 

The classical MHT method had the lowest tracking performance on all targets. These 

results are expected due to the mutual occlusion as the targets pass each other in the 

presence of clutter. However, it is possible to increase the performance of kinematic­

only tracking if the true PD is calculated by the signal processor and included in 
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the prior. The reason for the improvement is due to the consideration of a loss of 

PD when a target is occluded. As shown in Figure 5.8, the calculated PD can drop 

significantly depending on the local target background (i.e. the true background and 

mutual occlusion of targets and clutter). A low PD allows the tracker to correctly 

assign a target coasting event as the most probable. 

The improvements for tracking with region PCA feature and kinematic inform a-

tion, but with a set PD = 0.9 are most evident in the number of false tracks. When 

there is enough information in the PCA features, the tracker can correctly discriminate 

against extraneous measurements. However, an artificially high PD and availability 

of somewhat similar clutter measurements can result in false assignments. This effect 

is seen by comparing the number of false tracks in the middle of the cluttered region 

as shown near frame 250 in Figures 5.6b and 5.6b. However, the performance can be 

increased by running the full judicious version of the tracker with both feature and 

PD information. 

5.1.2 Tracking Through Occlusion 

In the second segment, a single target moves through a censored area such that the 

target is completely obscured for a long period of the track life. A sample frame 

showing the target, target route and the nature of the obscuration is shown in figure 

5.9. The calculated prior PD under the judicious scheme is shown in figure 5.10. The 

calculated probability of detection is high away from the censored area and very low 

within this area. These results are as expected given the contrast of the target and 

background. The low PD within the censored area implies that a missed detection is 

likely due a lack of detection rather than the event that the target outmaneuvered 
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our gating function. As a result, the state covariance is not forced to grow due this 

unlikely event. However, a small increase in the covariance naturally occurs from the 

filter iteration without a measurement. The slow growth in state covariance results 

in a slow growth in the innovation covariance and resulting gate size. The gate size is 

proportional to the square root of the innovation covariance eigenvalues. These values 

are shown in figure 5.11. This slow increase in the gate size is desired as it allows a 

target with a true low PD to coast for long periods while maintaining a meaningful 

gating function. The tracking results are shown in figure 5.12. Using this approach, 

the tracker can coast for long periods while still remaining critical of targets emerging 

from the censored area. 

However, if the detection probability is set as an algorithm design parameter then 

the covariance growth through the censored area may not be valid. For example, 

setting PD = 0.9 for the scenario described here results in a rapid growth of the state 

covariance. As shown in figure 5.13, the growth of the validation gate reaches an 

exponential rate within the censored area. The likelihood at any point within the 

gate quickly approaches the machine epsilon resulting in zero likelihood everywhere 

within the gate. As a result, even targets that are exactly modeled by the kinematic 

filter will be spawned as new targets when they reappear like as shown in figure 5.14. 

In summary, by calculating the prior PD the tracker can rapidly grow the val­

idation gate in the case that the PD appears high (indicating that the target may 

be maneuvering beyond the gating limit), while it can maintain a low growth in the 

validation region when PD is low allowing it to remain critical of future measurements. 
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Figure 5.1: Synthetic video frame with target routes. These targets are referenced as 
Tl, T2, T3, and T4 as shown here. 
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Figure 5.2: Measurement reports from all frames. 
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Figure 5.3: By video frame, the average RMS tracking error across the simulations. 

44 



M.A.Sc. Thesis - James McAnanama 

'. 
90 - •• . 
80 '. 

" . 
70 

....... 
60 

50 

40 

30 

20 

o 

• o 

'. o 

o 
o 

MHT % True Tracks 

+ 

+ 
++ ~ 

McMaster - Electrical Engineering 

~ 
1~70------~1700~------1~5~0------~2700~~~--2=5~0------~3~00~----~3=57o------~40~0~------4~50 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

50 10 150 

Frame 

(a) TI:ue Tracks 

200 

MHT % False Tracks 

250 
Frame 

(b) False Tracks 

300 350 400 450 

Figure 5.4: Classical MHT, assuming PD = 0.9: By video frame, the percentage of 
true and false tracks over the simulations. 
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Figure 5.5: Classical MHT augmented by an adaptive PD : By video frame, the 
percentage of true and false tracks over the simulations. 
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Figure 5.6: Classical MHT augmented with feature information: By video frame, the 
percentage of true and false tracks over the simulations. 
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Figure 5.7: Judicious MHT, augmented by an adaptive PD and feature information: 
By video frame, the percentage of true and false tracks over the simulations. 
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Figure 5.8: By video frame, the target PD averaged over the simulations. 
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Figure 5.9: Synthetic video frame with target route. The target is referenced in the 
following figures as Tl. 
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Figure 5.10: Calculated prior PD under the judicious implementation. 
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Figure 5.12: Tracking results using the full judicious implementation. 
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Figure 5.13: The growth in the state covariance at an artificially high PD results in 
exponential growth in the validation region. Note that the y-axis is plotted on the 
logarithmic scale. 

Figure 5.14: Tracking results assuming PD = 0.9. The track fails due to the zero 
valued likelihood in an essentially infinite validation region. 
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I Chapter 6 

Conclusion 

6.1 Conclusion 

This thesis presented a probabilistic framework to include feature information in the 

MHT data association problem. In addition, it was shown that including the informa­

tion available from the MHT predictions improved the feature extraction from the next 

round of measurements. Using this approach, the signal processor adds information 

to the prior probability of detection of a given track. That is, the judicious interaction 

between the signal processor and tracking algorithm shown in figure 1.3 ultimately 

increases the information available to the Bayesian prior. This prior information 

includes target feature information and target detection probability. Using this infor­

mation, the MHT algorithm is improved as gating is achieved on both kinematic and 

feature aspects. Moreover, the growth of these gates and cost of a coasting assignment 

during missed detections is appropriately governed by a meaningful, target specific 

detection probability. The tracking performance through clutter and obscuration is 

improved as a result as is the ability of the tracker to expand the gating function for 
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a maneuvering target with a high probability of detection. 

In the current implementation, the state covariance during coasting is increased 

per equation 4.17 using the prior probability of detection. For many cases this ap­

proach works well. However, in the case where the target loiters at the edge of a cen­

sored area, the prior probability of detection will be much higher than the posterior 

probability. That is, the predicted location will be easily segmented into foreground 

and background (a region that includes the normal and censored area described herein 

is essentially a two tone image). When the target is partially occluded by the censored 

area it will be segmented with this area and will not appear as its own measurement. 

In this case, a posterior probability of detection, the probability of detection given 

the assignment hypothesis of pixels within the validation gate, is more appropriate 

for use in growth of the covariance matrix. This is the course for our current research. 

Finally, the interaction between signal processor and tracking algorithm described 

here is passive in the sense that the signal processor does not react to information 

from the tracking filter. F\lrther effort is required to examine the prospect of an active 

interaction such that the signal processor changes the image acquisition to optimize 

the detection probability. In addition, the segmentation used herein looks for a single, 

global, threshold to segment foreground from background. The segmentation method 

should be extended to look at multiple thresholds to adaptively segment trackable 

features from the local background. 
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