
A CONTEXT AWARE FRAMEWORK
FOR

PRODUCT BASED SOFTWARE CERTIFICATION

A CONTEXT AWARE FRAMEWORK
FOR

PRODUCT BASED SOFTWARE CERTIFICATION

By
VOLODYMYR BABIY, H.B.Sc.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements
for the Degree

Master of Science

McMaster University
©Copyright by Volodymyr Babiy, May 2010

MASTER OF SCIENCE (2010)
COMPUTING AND SOFTWARE

McMaster University
Hamilton, Ontario

TITLE: A context aware framework for product based software certification

AUTHOR: Volodymyr Babiy, H.B.Sc. (Laurentian University)

SUPERVISOR: Prof. Ryszard Janicki

SUPERVISOR: Prof. Alan Wassyng

NUMBER OF PAGERS: xv, 137

ii

Abstract

Software certification is becoming a reasonable expectation from the ever growing

number of software users. The process of software certification could be described as

a process in which an auditing body ensures that the product conforms to certain

requirements. The certification models which were analyzed included product based,

component based and model based. With our results and findings we have developed

a proof of concept context aware framework for product based software certification.

The proposed product based software certification process is structured on compo

nent based certification principals, while the general core of the certification process

is composed from known software certification models.

The framework was developed within an OSGi (Open Service Gateway initia

tive) environment which is being managed by a collection of automation scripts. The

certification models which we reviewed did not represent their knowledge formally

and did not have any mechanisms to derive indirect knowledge. To address this issue,

we have developed an upper ontology to formally model higher level concepts for the

certification, and described a general metric for assigning consistent weights to on

tology classes. The framework provides a dynamic environment for the certification

process by integrating development and certification domains with the help of ontol

ogy. Its main objective is to allow the certification process to be able to adjust to

ever changing certification demands and extend more easily into different domains .

. The developed ontology can maintain many properties and attributes, but for

some of these the measuring mechanism are unknown. Therefore, we have described

the process on how to derive software metrics for measurable and subjective attributes

which can be used to evaluate product, processes and resources. In conclusion, we

have outlined some areas for future research.

III

IV

Acknowledgments

I would like to thank my supervisors professor Ryszard Janicki and professor Alan

Wassyng for their valuable teaching, support, and help. Working on this thesis re

search has benefited me greatly. They gave me an opportunity to gain experience

through their mentoring and taught me how to conduct proper academic research.

I would like to thank all my colleagues who I have met during my time at

McMaster University. There feedback and support has been invaluable during my

research. They have not only helped me become better in academia but in life.

Also, I would like to thank everyone else who had either a direct or indirect

influence on the research. Specifically, I would like to thank my family and friends.

Hamilton, Ontario, Canada

May, 2010

v

Volodymyr Babiy

VI

Contents

Abstract

Acknowledgements

List of Figures

List of Tables

List of Algorithms

1 Introduction

1.1 Overview.

1.2 Scope

1.3 Contribution.

1.4 Declaration .

1.5 Thesis outline

2 Product based certification process

2.1 Product based certification .

2.2 Process based certification .

2.3 Hurdles with process based certification.

2.4 General hurdles with certification .

Vll

iii

v

IX

Xl

XUI

1

1

5

6

8

9

11

11

12

13

15

2.5 Capturing and sharing knowledge with a formal model

2.5.1

2.5.2

2.5.3

The motivation behind ontology usc.

An approach to build ontology .

Ontology structure

2.6 Certification process ...

2.6.1 Structure of the certification process

2.6.2 Stage 1: data gathering

2.6.3 Stage 2: component identification

2.6.4 Stage 3: metrics construction .

2.6.5 Stage 4: component evaluation

3 A context aware framework

3.1 Overview of a context aware framework.

3.2 Constructing independent context providers

3.2.1 Dynamic and static sections of the bundle

3.2.2 Component/bundle state

3.2.3 Verifying state of the framework.

3.3 Description of a context aware framework.

3.3.1 Context providers layer.

3.4

3.3.2 Context interfaces layer

3.3.3 Context reasoners layer.

3.3.4 Remote context providers layer

Description of the automated section

3.4.1 Automation scripts

3.4.2 Coverage reports

3.4.3 Static verification

viii

16

16

17

19

21

25

25

27

28

29

37

39

40

41

43

45

46

47

48

48

50

52

53

54

57

i
I

j

4 Process to derive software metrics

4.1

4.2

Quality as a driving factor for software metrics construction

Software metrics

4.2.1 Purpose of the metrics

4.2.2 Motivation, views and types of software metric.

4.2.3 Metric construction

5 Conclusion and future research

5.1 Conclusion

5.2 Potential areas for the future research.

Bibliography

A Metric for assigning consistent weights

A.1 Pairwise comparison method

A.1.1 Demonstration of the analysis

A.1.2 Demonstration of the matrix adjustment

A.2 Multiple attribute decision making .

A.2.1 Demonstration of the analysis

A.3 A simplified LSM for inconsistent matrices

A.3.1 Practicality for the simplification

A.3.2 Remarks about algorithm

B The automation scripts and their output

C Instructions to setup the framework

C.1 Configuration of the framework

D An upper ontology in OWL

IX

61

61

63

64

65

67

71

71

73

74

85

86

87

90

92

93

95

97

97

99

111

112

115

x

I

I

1
List of Figures

2.1 The partial visualization of the ontology 21

2.2 PECA framework [17] 26

3.1 The partial context which may be submitted by the components 39

3.2 XML definition file which describes dynamic section of the component 42

3.3 Shell of the activator class .. 43

3.4 MANIFEST.MF file which describes static section of the component. 44

3.5 Bundle/component states and service binding [70], [68] 45

3.6 Partial output produced by OSGi console by using 'ss' command. 46

3.7 Partial output produced by OSGi console by using 'status' command 47

3.8 An example of the Requirements Coverage Report 56

3.9 An example of the Code Coverage Report ... 57

3.10 High level design of a context aware framework

4.1 Goal Question Metric methodology [48], [24]

4.2 Goal Question Metric approach [48], [24] ..

A.l Relative importance of considered software quality attributes

A.2 Inconsistency analysis for a group with three attributes

A.3 Matrix for MADM problems [80]

A.4 Values assigned by two experts

Xl

59

68

69

88

91

93

94

xu

i

I
j

List of Tables

2.1 Pros and cons of product and process based certification 14

2.2 Constructors and axioms [29] 20

2.3 Description of the ontology relations [27] 22

2.4 Sections of the component [32], [52] 27

2.5 Data entities [21], [27] ... 28

2.6 Software metric entities [21] 29

4.1 Attribute breakdown as supported by ISO 9126 [14], [61] 62

4.2 Chidamber and Kemerer 00 metrics [16] 65

4.3 Point of view for the metrics [13] 66

4.4 Types of software metrics [13] .. 67

4.5 Software Quality Attributes [10], [26] 70

A.1 Comparison scale 87

A.2 Redistribution before adjustment 91

A.3 Redistribution after adjustment 91

A.4 Ranking of three alternatives .. 96

Xlll

XlV

i
j

List of Algorithms

1 Algorithm to compute Product Certification Level ... 31

2 Algorithm to compute Conformance Level Section Two 32

3 Algorithm to compute Uniformity Level Section Two 33

4 Algorithm to compute Completeness Level 34

5 Algorithm to compute inferred ontology model 34

6 Algorithm to compute Conformance Level 35

7 Algorithm to compute Uniformity Level 35

8 Algorithm to publish remote services 49

9 Algorithm to save the context within the inferred ontology 52

10 Algorithm to deduce predicate implication 53

11 Algorithm to bind with remote service 60

12 Algorithm to compute maximum inconsistency and its position 89

13 Algorithm to compute group weight vector and group decision matrix 95

14 Algorithm to rank alternatives with SAW and WP methods ... 96

15 Simplified least squares method algorithm for inconsistent matrices no
::JC

xv

xvi

I
j

Chapter 1

Introd uction

1.1 Overview

The process of software certification is time consuming and expensive. Therefore,

some smaller software systems which are not critical may never go through a certifi-

cation process. The majority of software is still being developed without any consid-

eration for software certification. Validating these types of software is a difficult task

and undoubtedly error prone. Due to substantial certification costs, it is desirable to

develop an independent tool for the certification process. This approach would not

be easily implemented because the tool would have to be modified for almost every

project [61J. In a computer system, software is considered as one of the most complex

components. At the same time it is considered as one of the most error prone, despite

the increasing demand for reliable software. As a result, there is an apparent need

for a viable dynamic software certification process [58J which can adjust rapidly to

the dynamic demands of the rapidly evolving software industry.

The desired situation for certification would be one in which a third party

would certify the software. This approach is preferred because it could eliminate

biased opinions which could be present in in-house evaluations. This approach may

also help to spread liability which could have a negative effect on the customers

1

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

and developers. Sometimes the third party is not able to thoroughly evaluate every

component of the system, therefore they may use a spot check technique where the

auditor issues a certificate based on a thorough evaluation of a few components of the

system. It is impossible to achieve an accurate understanding of the product from only

being able to thoroughly evaluate a few components of the system. Evaluation of only

a few components of the system may lead to an opinion which could be misleading. By

allowing biased opinions we create a risk of faking the software certification process.

As stated by Voas et al. [85], the certification process should include an evaluation

of resources, processes and final product. This is also known as 'the software quality

certification triangle' [85]. From the certification point of view, the product is the

most important entity. Well established software development practices and methods

do not guarantee a quality product, while reviewing processes and resources could add

extra assurance that the product was developed in an industry standard environment

[89].

Software systems are developed for different purposes. Properties such as

safety, reliability and modularity could have different priorities for different projects.

Certification providers are obliged to provide a guarantee that their software will op

erate reliably, but a certification process can not imply nor guaranty that the software

will not fail in all unexpected situations [86]. For example, some factors which could

affect software performance and lead to failure could be unexpected hardware failures,

or any other factors which can not be controlled or imitated during the evaluation

process. It is difficult to certify products by taking into account unexpected behaviors.

In certain environments, where hardware failures or other failures are unpredictable,

there should be a claim stating that everything possible was accomplished to achieve

a desirahle behavior of the product. Unexpected situations often could occur in situ

ations where the software is integrated in a very dynamic environment. It is therefore

unrealistic to expect that the software will perform exceptionally well in all scenarios.

2

1

1

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

In some domains, such as nuclear, failure of the software is not accepted. This is be-

cause software failure, in a very critical domain, could lead to a serious consequences.

Software certifiers usually state conditions under which the software was certified,

and the final output of the certification process clearly outlines what has been and

has not been evaluated during the certification process [65], [58], [6].

The current proposed approaches to software certification, which were reviewed

during the research, outline what must be evaluated, but they do not outline how to

evaluate the product. They also lack an applied infrastructure which could support

certification of the larger projects. This could be considered as one of the main

reasons why companies choose not to certify their products. The main goal of software

certification is to provide stakeholders and users with reassurance that the product

possesses low risks of failure and conforms to requirements. The entities which could

be evaluated during the certification process could consist of two domains. The first

domain is composed of entities which are measurable by some accepted methods. The

second domain is composed of entities which are subjective and require direct expert

evaluation. We should mention that the majority of automated measuring methods

heavily rely on an expert's input [84]. The following software certification hypotheses

were deduced by Keith and Vertinsky et al. [40] during their research.

• Hypothesis-l: "Companies that are in a competitive market will be more likely
to choose to certify than those companies that have relatively little competition. "

• Hypothesis-2: "Companies that have a higher exposure to risk in their projects
will be more likely to choose to certify than those companies that face relatively
lower risk. "

• Hypothesis-3: "Companies that produce products are more likely to choose to
certify than are companies that provide services."

• Hypothesis-4: "Companies that have larger project teams will be more likely
to choose to certify than those companies that have relatively smaller project
teams."

• Hypothesis-5: "Companies that are more methodologically rigorous are more

3

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

likely to choose to certify than companies that are relatively less methodologically
rigorous. "

• Hypothesis-6: "6-1: Larger companies are more likely to choose to certify than
are smaller companies. ", "6-2: Smaller companies are more likely to choose to
certify than are larger companies."

• Hypothesis-7: "Companies with a corporate culture that values quality are more
likely to choose to certify than companies that value quality less. "

The case study included twenty nine questions which were related to the proba-

bility of a company to certify their software. In addition, another twenty five questions

were asked in order to test the validity of the hypotheses. The actual survey occurred

in the fall of 2005 and in the spring of 2005. It is very unlikely that views on software

certification have changed since 2005. The participants for the survey were selected

from the Canadian software industry [40]. The hypotheses above may not apply

to companies which certify their products due to customer requests or government

regulations. Companies are faced with two choices which are either to certify their

products or not, and risk a chance of not being considered as a provider of credible

products. The above hypotheses were tested on 235 participants. Out of these, 79

were not contacted successfully and of the remaining 156 participants who were con-

tacted successfully, only 100 agreed to participate. The remaining candidates were

either not willing to participate, or considered software certification as an unrelated

subject.

A competitive environment is the most important driving factor for compa

nies to certify their software. Some of the most competitive markets are medical, civil

aviation, automotive, military, etc. The desire for companies to certify their software

may be driven by their ability to increase sales and to maintain a competitive ad-

vantage in the industry. This comparative advantage could be achieved if companies

would develop their products while conforming to the product's requirements and in

dustry regulations. Another factor which may influence software certification is team

4

i
-\

1

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

size. This comes from the fact that larger projects may require rigorous maintenance

compared with smaller projects [40], [14].

1.2 Scope

Objective one was to analyze software certification methodologies, such as product

based, component based and model based. Objective two was to evaluate current

issues with software certification and approach it from a practical point of view.

Therefore, not only to outline which properties should be evaluated during the cer

tification process, but develop a product based certification process which would be

supported by an applied proof of concept context aware framework. The framework

had to support certification of the intermediate or final product and its development

was driven by hurdle eight of software certification which was defined by Ratcliff,

Reimdahl, Lawford, Maibaum, Wassyng and Wurden et al. [31]. The description of

hurdle eight is given below.

'Lack of interoperable tools to manage, reason, and provide traceability - The

result is that small change often requires a large effort. We need tools that scale. '

In addition, the Hypothesis-5 that was described by Keith and Vertinsky et

al. [40], and listed earlier, was considered during research. In order for the software

certification process to be successful it should be integrated with current methodolo-

gies and aligned with standards from the ISO and IEEE domains. Specifically, we

focused on software which cannot be fully verified with formal verification due to its

size and complexity.

5

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

1.3 Contribution

Based on our results and findings we have developed a proof of concept context aware

framework for product based software certification. The framework provides an ap

plied environment for the software certification by integrating tools such as Eclipse,

Jena, OntoStudio, Protege, Equinox, EMMA, log4j, RCP, JUnit, Jfeature and Apache

Ant. It was developed within the Open Service Gateway initiative (OSGi) environ

ment and is managed by a collection of automation scripts. The framework is intended

for the certification of software which are developed with high level languages.

We also proposed a product based software certification process that is struc

tured on component based certification principles and integrates current methodolo

gies such as Integrated Component Maturity Model (ICMM), PECA framework (Plan

the evaluation, Establish criteria, Collect data and Analyze data) and Goal Question

Metric (GQM). The process also tries to be aligned with ISO JTC1 SC7, ISO IEC

25000, ISO 15939, ISO IEC 14598 and ISO 9126 standards. The general core of

the certification process is composed from a variety of known software certification

models. Therefore, we gathered the benefits of other software certification models

into a single model. At first every component is evaluated independently and then a

global certificate level is computed which depends on the evaluation status of every

component.

We have developed a higher-level ontology in OWL (Web Ontology Language)

to formally model knowledge for the product based certification process. The ob

jective of the upper ontology is to represent knowledge formally and consistently

throughout the certification process and provide an environment for reasoning. Some

of the developed upper ontologies are: DOLCE, BFO; Cye; GFO, Sowa's ontology,

PROTON and SUMO. Suggested Upper Merged Ontology (SUMO) is one of the

biggest upper ontologies. With its domain ontologies it has about 60,000 axioms and

6

i
I

I

1

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

20,000 terms. Initially, it was designed by Teknowledge Corporation. Currently, it

is owned by IEEE and is available for public usage under GNU General Public Li-

cense. Upper ontologies are often used in domains of reasoning, linguistics and search

applications [54]. Kluge et al. [43J defined ontology as a 'formal specification of a

conceptualization', or it can be defined in detail as:

'An ontology specification is a formally described, machine-readable collection

of terms and their relationship expressed with a language in a document file. A con-

ceptualization refers to an abstract model of a domain that identifies concepts. '

An upper ontology and ontology are almost identical in their definitions, except

upper ontology may model more general concepts of the domain while ontology may

model more specific concepts of the domain. We argue that there should be a consis

tent understanding of the certification process in order for it to become a widespread

practice for both industry and academia. The consistent understanding of the cer

tification process, knowledge capturing and knowledge sharing can be achieved with

the help of an ontology. With its help, a dynamic certification environment can occur

by bringing together the development and certification processes, because ontologies

allow for the knowledge to be freely shared between all the participants in a cons is-

tent and formal manner. This dynamic environment can expose every participant to

the certification process, because the development and certification environments are

integrated. The approach addresses issues which are currently present in the certifica-

tion processes, where the developers and the certifiers maintain different perspectives

and understanding of the certification process. Everyone should have a clear under-

standing of the certification process in order for it to be predictable and consistent.

The framework allows for the components to be developed, maintained and certified

in parallel that is achieved with the help of integrated tools.

During our research we did not come across an acceptable measuring mecha-

nisms for many attributes. For example, attributes such as quality and complexity.

7

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Therefore, we have described a process of how to derive software metrics for measur

able and subjective attributes which can be used to evaluate product.

There could be a large number of attributes which can be considered during

the certification process and in situations where it is difficult to use an algorithm,

we revert to the use of heuristics. There should be a process to assign consistent

priorities to attributes and software metrics as projects evolve and grow in complex

ity. The pairwise comparison method is ideal for this task, because it can reduce

inconsistencies while still maintaining some acceptable margin of error. In addition

to PC method, the Multiple Attribute Decision Making (MADM) method could be

used to model the scenario for ranking alternative plans in situation where one ore

more experts are present. Every expert would provide one or more alternative plans.

The consistency of every alternative would be achieved by the pairwise comparison

(PC) method. The actual ranking of alternative plans would be accomplished by the

Simple Additive Weighting (SAW) and the Weighted Product (WP) methods. An

example showing how these methods could be applied to assign consistent priorities

and to rank alternative plans is given in appendix A. The consistent priorities are

also known as consistent weights.

1.4 Declaration

Some content from this thesis has been published. A simplified least squares method

(LSM) algorithm, as an alternative algorithm to the proposed algorithm by Boz6ki

et al. [11], was accepted by the Central European Journal of Operations Research

(CEJOR) as a follow up paper [4]. One of the co-authors of the submitted follow up

paper was Boz6ki. The general description of the algorithm is given in appendix A.

The remaining content from the appendix A was submitted for review to the 0 3 s2E

(0* Conference on Computer Science & Software Engineering) [7].

8

,

i

1

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

1.5 Thesis outline

The remaining chapters are organized as follows:

Chapter 2 describes the general process and algorithms for product based soft-

ware certification and why this method was selected over other certification methods,

such as process based and model based. In addition, a brief background and compar-

is on is given for some known process based and product based certification models.

Chapter 3 describes a context aware framework for product based software

certification. The proof of concept framework was developed within an OSGi (Open

Service Gateway initiative) environment which addresses key limitations which are

present in some software certification models.

Chapter 4 describes the process of how to derive software metrics for measur-

able and subjective attributes which can be used to evaluate product. In addition,

this chapter discusses the history, purpose and motivation behind software metrics.

Chapter 5 summarizes the work which was accomplished in this thesis and

suggests areas for potential future research.

Appendix A describes an approach on how to assign consistent weights to

ontological classes and ranking of alternative plans. The consistent weight assignment

can be achieved through the Pairwise Comparison (PC) method. Multiple Attribute

Decision Making (MADM) method could be used to model the scenario for ranking

alternative plans.

Appendix B maintains a collection of an automation scripts and their output.

Appendix C provides instructions on how to obtain required software, checkout

framework from the SourceForge repository and configure it on the local system.

Appendix D contains an upper ontology in OWL (Web Ontology Language)

for the product based software certification.

9

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

10

Chapter 2

Product based certification process

This chapter describes the process and algorithms for product based software certi-

fication, and why this method was selected over others, such as process based and

model based methods. The ontology was used to formally model knowledge for the

software certification process. A brief background is also given on process based and

product based software certification methods.

2.1 Product based certification

The objective of product based certification is to deduce whether the product con-

forms to requirements and provide an evaluation of the developers abilities to produce

new products while conforming to requirements [76J. ISO lEG 14598 provides instruc

tions on how to evaluate a software product. It uses ISO lEG 9126 standard which

describes how general attributes could be subdivided into less general attributes. In

practice, both standards are often applied in parallel. ISO lEG 14598 has four phases:

defining evaluation requirements, identifying evaluation, building evaluation schedule

and executing evaluation schedule. In the defining evaluation requirements phase,

attributes and subattributes for the product evaluation are defined. These attributes

11

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

and subattributes could be taken from the McCall's and Blundell's quality models

[26], [10]. In the identifying evaluation phase, a collection of metrics are defined for

the evaluation of all attributes and subattributes. In addition, metrics which will

evaluate relationships between a product and its environment are also defined. In the

building evaluation schedule phase, a detailed evaluation plan is constructed. Finally,

in the executing evaluation schedule phase, the evaluation schedule is executed [51].

2.2 Process based certification

IEC 6150S and DO-17SB standards describe the software certification process by fol

lowing a process based methodology. These standards describe a collection of prac

tices which should be followed during the software development. They claim that it

would be easier to achieve validation and verification of the software by following the

proposed practices. IEC 6150S and DO-17SB standards should be followed in correla

tion with other regulations where they outline significance of the software failure. The

Development Assurance Levels (DALs), from the domain of civil aerospace, are an

example of this correlation which dictate critical levels of rigorous. The automotive

and European rail industries use 8afety Integrity Levels (8ILs). (DALs) and (8ILs)

are not similar in their applications, despite their strong tendency to focus on the

risk reduction. The more critical the software, the greater the need for risk reduc

tion to be an essential attribute of the software. Greater demands upon (8ILs) and

(DALs) lead to stricter demands from the process of software development. DO-17SB

standard argues that the verification of a system should be accomplished through

extensive testing, while highly emphasizing the need for a good traceability process

and a manual rcvie\v of the components [41]. The verification process Rupported by

DO-17SB standard is subdivided into four levels. There are twenty eight properties

at the lowest level, D. They validate tools, high level requirements, and configuration

12

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

of the development process. The next level, C, deals with twenty nine properties.

They validate low level requirements, testing and code coverage. The next level, B,

deals only with eight properties and logic. The highest level, A, is responsible for the

sixty six attributes. At this level, while the overall quality of the product is being

evaluated, a significant attention is being allocated to traceability [41].

2.3 Hurdles with process based certification

There is a collection of disapprovals related to the process based certification. The

most important claim, which disproves credibility of the process based certification,

claims that it is very difficult to maintain evidence which would claim that specific

processes are able to achieve and maintain a certain level of reliability and integrity.

It is also difficult to relate failures with processes.

Certification type

Product based

Process based

Pros

This approach could be applicable
to almost all software products and
this method is free of software de
velopment processes.
The software attributes are all
known during the evaluation and
are evaluated independently. The
test results, documentation, formal
proofs etc. are all directly related
to the quality of the software.
It is possible to eliminate some re
dundancy in the evaluation if prop
erties overlap in its descriptions and
requirements.

The same process could apply to a
range of software that could belong
to different groups.

The overall cost of certifying soft
ware by following a process based
certification method could be lower
compared to product based certifi
cation method.

13

Cons

Most of the time, testing meth
ods that are being developed can
not keep up with the demands that
are needed to test new products.
Large companies are less willing to
release all their documents related
to the software.

Software testing and formal verifi
cation is costly and could be time
consuming. These extra costs and
possible delays may lead to shorter
lifecycle of the software.
Software is very diverse and innova
tive, therefore some processes may
by inappropriate and infeasible for
the development.
There is no evidence to support a
claim that good software develop
ment processes will lead to the de
velopment of good quality software.

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

The time it takes to evaluate soft- Small companies may not have suf
ware processes may not heavily in- ficient resources to implement and
fluence the lifecycle of the software. maintain complex processes.

Table 2.1: Pros and cons of product and process based certification

The strong theory and regulations of the process based methodology can pre-

vent other processes from being implemented. The superior flexibility of the system

could be achieved with the Model Driven Development (M DD). If the methodology

does not allow for the new processes to be introduced, then some components of the

system could be limited to inadequate development processes. It is also could be dif-

ficult to transfer software certification judgments from one domain to another. The

software certification judgments which must be achieved in order to satisfy the lEe

6150S SIL 4 standard cannot be easily correlated with judgments which must satisfy

level A of the DO-17SB standard [41]. Potentially one of the most crucial hurdles

associated with the process based certification, is that the arguments and evidence

which support the product do not provide a sufficient guarantee concerning quality.

This is because they could be indirect. This strong argument raises an important

question, whether it is even worth considering process based certification as one of

the valid methods for the software certification. David Lorge Parnas mentioned that

instances of the processes are not always perfect. Due to nature of the software devel-

opment, processes are not always perfect and may contain work at'ounds. Therefore,

they maintain some form of backtracking, or other imperfections which may not be

a part of a formal process description. At the end of the project, it is possible to

present software development processes without any imperfections [52]. This is why

merely looking at processes of the software development is not sufficient, because it

will not provide sufficient amounts of information which is needed for the software

certification [53], [52], [77], [38], [63]. Table 2.1 describes some pros and cons of the

14

j

1

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

product based and process based certification methods.

2.4 General hurdles with certification

To the best of our knowledge, there is no well known and generally accepted scientific

method for the software certification. However, software certification is on the path

towards becoming a widely used practice, as consumers are starting to prefer software

which has been certified. In particular, important government projects may soon be

mandated to have software certification. Software certification can be described as

a process in which an auditing body ensures that the product conforms to a given

set of requirements. There seems to be no alternative to software certification. In

the absence of software certification, it comes to a 'trust me' stated by the software

developer, which goes against a well known doctrine in the justice system: 'no one can

be his own judge'. In many situations, any failure in a system could endanger human

well being; therefore potential failures must be eliminated. This creates the need for a

requirement where the system must be evaluated through testing, formal verification

and manual review, before it gets delivered to the customer [32]. Most software

certification methods require risk to be evaluated rigorously. Risk represents the

combination of undesirable outcomes and their probability. In the aviation industry,

any type of failure 'those which would prevent continued safe flight and landing' must

be very unlikely. This statement could be translated to a requirement where any type

of software failure should not occur, not only during the flight, but throughout the

entire life of a particular aircraft. The uncertainties of the software certification

could be subdivided into two groups: the possibility of undesirable outcomes and

the effectiveness of arguments that guarantee the claimed likelihood of failure. If

human judgments are present, then they must be evaluated and analyzed with some

mathematical framework to reason about the uncertainty of the judgments. Several

15

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

mathematical frameworks such as fuzzy logic, possibility theory and Dempster Shafer

theory have been proposed to deal with this issue [40].

Companies could gain financial value from products which are certified. How-

ever, software certification process could be very expensive and time consuming. It

may also require specialists, which may not be available. These, and other issues,

could prohibit companies from certifying their products. Importantly, there are a

number of benefits which companies could gain by certifying their products. Com-

panies could gain confidence in their products and maintain a competitive edge in

the industry. Certification could also increase consumers' confidence in the product.

With the certification system in place, companies could prove that their products

conform to the regulations and requirements. Especially, in situations where some

development is being outsourced. Overall, software certification could prevent poor

quality software from being developed [32], [76].

2.5 Capturing and sharing knowledge with a for
mal model

Ontology could be used to formally model knowledge for the product based certifi

cation. This approach was selected because it adds flexibility to the software certifi-

cation process. Participants can add and remove facts freely, while contributing new

knowledge. The intention was to develop an upper ontology where knowledge from

different experts could be captured and utilized throughout the certification process.

2.5.1 The motivation behind ontology use

The software certification process possesses a vast amount of knowledge, facts, regula

tions, standards, etc. Therefore, an ontology is an ideal formal mechanism to capture

16

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

all that knowledge. Other industries, such as the medical and chemistry, have already

utilized the benefits of ontologies. Ontologies have an ability to support equivalent

classes which allow for the construction of different certification models for different

domains. With an upper ontology it is possible to achieve the following goals:

• Commonalities in current proposed certification models can be identified.

• Certification gaps can be addressed.

• Acceptable and non-contradicting approaches for the evaluation of components

and attributes can be maintained.

• A formal model where facts, goals and measuring processes could be collected.

The upper ontology provides a mechanism where criteria can be captured and

identified with a complete metadata. Most importantly, it is possible to identify and

model relationship between different criteria. It serves as a framework for capturing

knowledge from standards and known certification methods. The objective was to

build an upper ontology which would allow for situations to occur where criteria could

conform to terminology and descriptions which are supported by the industry and

academia. This also includes measurement areas which are very large in terminology

and practices. The other objective was to be consistent with ISO/IEC and IEEE

organizations, which in 2002 made a decision to have their terminology as consistent as

possible and aligned with accepted international standards. ISO JTCI SC7 standard

tries to follow this objective [27].

2.5.2 An approach to build ontology

There are few different ontology building methodologies. Ontology Engineering (0 E)

is still a fairly young discipline, despite the existence of only a few ontology building

17

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

methodologies. Almost every proposed building method utilizes its own formalism

and methods. The steps to build ontology could be subdivided into four components:

• Specification: All goals are gathered and documented. The document outlines

the main objectives of the ontology, scope and abstraction level. Overall, the

main objective is to identify classes and their metadata.

• Conceptualisation: After some knowledge is gathered, it is in unstructured

format which must be structured. During this stage, knowledge is structured

with the help of the external representation language. This language is in

dependent from the implementation language. Knowledge takes a semiformal

structure where the domain exports and ontology builders can start discussing

future modifications.

• Implementation: During this stage conceptual models are implemented with

the formal languages, such as RDF /S (Resource Description Framework / Schema),

Ontolingua or OWL.

• Evaluation: During this stage the ontology goes through the rigorous technical

evaluation. This evaluation is gathered from the domain experts [21].

The Web Ontology Language is one of the preferred and dominant standard in

the industry. It was built based on the Description Logic (DL) model. OWL utilizes

Vocabulary Description Language (VDL) for its syntax. There are three different

types of OWL: OWL-Lite, OWL-DL and OWL-Full. Protege software was selected

to develop an upper ontology in OWL-DL. OWL-DL supports all the constructs

which are required to express ontologies. The most expressive language is OWL-

Full. It is used only in situations v,here elaborate expressiveness of the language

is desired. Therefore, it is very difficult to guarantee language completeness and

practically impossible to carry out an automated reasoning [34], [82].

18

Master Thesis ~ Volodymyr Babiy McMaster ~ Computing and Software

2.5.3 Ontology structure

The basic building blocks ofthe ontology are classes (D), concepts, axioms, instances,

retaliations (R) and functions. The Description Logic (DL) is one of the best lan

guages to describe knowledge representation. This language is utilized in many fields

and has been used to describe knowledge in fields such as medicine and nuclear engi

neering [60]. Classes represent concepts, which are objects and instances of entities.

They are abstract sets or collections of objects which may contain both individuals

and other classes. The axioms are known as a first order logic sentences, which do

not require formal proofs because they are believed to be true. An instance is a

representation of a specific entity which belongs to some specific domain or domains.

The instances can be concrete entities, such as animals, tables, planets, or abstract

entities such as words and numbers. The relations are utilized to model the relation

ships between different terms, instances and classes. The relationship between the

two different terms is called a binary, and in situations where it is used among n terms

it is called a function. It is a special relation where certain terms are related precisely

to one another term. For example, the binary relation could be connectedTo, subclas

sOf, partOf, etc. It is apparent that even with these basic constructs, it is possible to

build a knowledge representation framework where manual management is not feasi

ble due to its complexity [74]. Ontologies are ideal to capture and represent domain

knowledge. Their main purpose is to maintain and describe relationships between

concepts. OWL language is one of the recent standards which immerged in the in

dustry for the purpose of building formal ontologies. This standard is supported and

recommended by the World Wide Web Consortium (W3C). It supports construction

of the complex concepts where they could have more then a single parent.

The knowledge base, which is based on the description logic, is separated into

two parts: Terminology Box (TBox) and Assertion Box (ABox). The TBox maintains

19

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

axioms such as Dl ~ D 2 , and the ABox stores facts and knowledge about the entities.

For example, the role assertion R(x, y) means that x and yare related over a role

R. The entity assertion is known as concept assertion D(x) which asserts if entity

x belongs to class D. Roles and concepts can be referred to automatically by using

their global description names. It is possible to construct complex statements out of

roles and concepts with the help of constructors. This is why description logic is so

powerful in its expressiveness. As mentioned, Protege software was used to develop

an upper ontology for the product based software certification. This software was

selected because it has a built in reasoner, FaCT++, which can validate definitions

and statements for the consistency. It can also determine to which definition every

concept should belong [34]. Table 2.2 describes some constructors and axioms which

are used by the upper ontology [29].

Constructor Description Axiom Description
in DL in DL

Union Dl UD2 U ... UDn Subclass Dl t:; D2
Intersection Dl nD2 n ... nDn Equality Dl ==D2
Negation .D Subproperty Pl t:; P2
One from {Xl,X2, ... Xn } Same property Pl ==P2
Existential restriction 3R.D l)isjoint classes Dl t:; .D2
Value restriction VR.D Same entity {Xl} == {X2}
Has property 3R.{xd l)ifferent entity {Xl} t:; '{X2}
Max restrictions :=:;nP.D Inverse property Pl == P2-
Min restrictions ~nP.D Transitive p+ t:; P
Restriction =nP.D X type of D x:D

Table 2.2: Constructors and axioms [29]

The partial visualization of the ontology is shown in Figure 2.1 and it was

generated with the OntoStudio software [72]. The complete upper ontology is given

in Appendix A, and is described with Web Ontology Language (OWL). Some of the

data properties, vvhich are utilized in the upper ontology; are given in Table 2.3. They

are also known as relations. The entities which are described in Tables 2.4, 2.5 and

2.6 were modeled in the upper ontology as classes.

20

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Figure 2.1: The partial visualization of the ontology

2.6 Certification process

The described certification process is based on the product based methodology and

incorporates a collaborative approach between developers, owners, stakeholders and

certifiers. There are a few advantages from having third party certifiers, for example;

biased, unfair and accelerated evaluations could be eliminated. It is believed that

third party evaluations are the only way to certify software in which customers should

trust [89]. General definition of third party certification was defined by Councill et

al. [18J.

'Third-party certification is a method to ensure that software components con-

form to well-defined standards; based on this certification, trusted assemblies of com-

ponents can be constructed. '

Product based certification may possess a list of challenges. These challenges

could be influenced by the same issues which occur in the software development

21

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Ontology relation

belongsTo

conversion

articulatedWith

maintainsScale
measuredWith

composed Of

has

Notion

Scale or collection
of scales

Description

Every scale or collection of scalers is associated with
a scale type. A single scale type can be associated
with a collection of classes.

Conversion
tion

func- It is possible for two or more measurement functions
to be associated with each other.

Unit of measure

Scale of measure
Measurement func
tion
Collection of sec
tions
Entities have prop
erties

Every measurement is associated with a unit of mea
sure. Unit of measure is used to communicate the
objective of measurement.
Every measure must have a scale associated with it.
Every derived measurement value is achieved by ap
plied one or more measurement functions.
Entity within the ontology can be composed out of
other entities.
Entities can maintain properties which contain val
ues.

Table 2.3: Description of the ontology relations [27]

domain. They could be related to economical, organizational and technical areas.

One of the most crucial issue with product based certification is how the developers

of any system could obtain a desirable level of trust from the customers. The issue

is driven by the fact that the behavior of the system, as different components are

interrelated, is not always being considered in the certification process [49]. To address

this issue and others which are mentioned below, we have described a process for

the product based certification which is based on the component based principels.

At first every component is evaluated independently and then a global certificate is

being computed which depends on the status of the components. This approach was

selected because industry supports a collection of component development practices,

including CORBA, COM, JavaBeans, COM+, .NET and OpenDoc which can be

integrated into the certification process. This could allow for the certification process

to span more easily into different domains [39].

The research driven by component based principles could be subdivided into

two streams. The first stream deals with formalism, and addresses questions on how

22

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

to construct formal methodologies in order to foresee component characteristics. The

other stream deals with an actual quality of the component, and attempts to answer

questions on how to construct quality models which deduce quality of the attributes

[2]. In 1999 and 2000 the Software Engineering Institute (SEI) from the Carnegie

Mellon University conducted a study, from the business and technological point of

view, regarding the use of components in the software development process. The

following concerns were the most widely spread:

• The desirable components are not always available.

• The components are being developed without following industry standards.

• The certified components are not always available.

With the help of the internet, the first two issues are of lesser concern, but the

third issue has not been addressed properly [2]. Our described methodology addresses

areas which are known in software certification as magic steps (ref. Prof. Wassyng).

With component based software development it is usually the case that the user

of a component and its creator are the different parties. Therefore, users have to

determine from the collection of off-the-shelf (COTS) components which component

will fit into their requirements. This situation almost always requires some evaluation

by the user. The quality of the component is usually determined though a series of

tests and manual checks and only if the source code is provided. This process is

expensive and any average size project could require many different components.

There could be a situation where validation of the component is being accomplished

by every user. This collaborative cost could be eliminated if a third party would

certify components and customers would utilize components without implementing

in-house evaluation process. Many companies experience difficulties while selecting

appropriate components for their systems [17]. It is apparent that component based

certification could benefit not only developers and users, but the industry as well [59]

23

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

[78]. Therefore, we believe that in order for the product based certification process

Lo be successful, it should be driven by component based certification principles.

More and more systems are being developed by utilizing COTS components,

which means that consumers will start expecting components to be certified. The

current methods of validating COTS components through statistical analysis and

fault injection are not sufficient to offer reassurance that components are of a good

quality [58]. The components should be classified prior to any evaluation, and based

on the classification, different certification techniques should be applied. There is no

well known method or standard to classify components or software. ISO IEC 12182

standard describes a general framework which outlines concepts of classification, but

the framework is not very specific. It would be very difficult to group components of

the software into groups based on their permissible uses. Despite this difficulty, some

classification groups have been proposed. There are four major classification groups:

attribute value classification, free text keyword indexing, faceted classification and

enumerated classification [61].

The idea of reuse is the other compelling reason for executing product based

certification by following component based certification objectives. Currently, some

sections of the software are being developed by using existing components which can

be interoperated. The basic idea of reduced development time and a possibility to

make a good quality products from a good quality components makes this method of

certification very attractive. Current literature is not very rich on results related to

practical component based certification methods, but there has been some work done

on this method of certification in the academic area. The research on component

based certification could be divided into two time lines. The first between 1993 and

2001, where mainly all certification models were focusing on mathematical and test

based approaches, and the other from after 2001 where the focus shifted to predicting

24

j

j

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

quality of the product and its behavior. There is always some uncertainty with quality

prediction, and it is difficult to predict how products would behave in unforeseen

situations [3].

2.6.1 Structure of the certification process

The product based certification process is subdivided into four stages. They are

the data gathering stage, component identification stage, metrics construction stage

and component evaluation stage. It is apparent that in order to achieve valuable

evaluation results, it is necessary to follow a well outlined evaluation process. This

does not necessarily indicate that the evaluation process has to be very complex,

but if the evaluation process varies than it is possible that the results will vary as

well. The collaboration between the National Research Council of Canada (NRC) and

the Software Engineering Institute (SEI) from the Carnegie Mellon University have

developed a PECA framework which stands for Plan the evaluation, Establish criteria,

Collect data and Analyze data. We have incorporated this evaluation framework into

the product based certification process. The PECA framework consists of an ongoing

process where the evaluation and data gathering takes on a spiral effect. PECA

framework is demonstrated in Figure 2.2 [17].

2.6.2 Stage 1: data gathering

Collection of data requires a knowledge of the evaluation processes in order for the

meaningful content to be collect. Under different circumstances, different collecting

methods will have to be applied. For example, collecting methods for criteria of

significant value would be more rigorous, while it could not be the same for criteria

which are of a smaller value. The data gathering methods must reflect the degree of

confidence that is planned to be achieved in the final evaluation [17].

25

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

-------~-+~B:
New criteria may be t\ '(

",.. needed to distinguish 0..,,,,0°_
•••• products ••••

~
New21+ Unexpected
understanding ••••• ~..... discoveries
leads to further may require

• evaluation reevaluation
•• + + ••

• + +. .. 4.

Figure 2.2: PECA framework [17]

The data for the certification could be separated into two parts. The first part

could contain the sections of the component) and the second could contain attributes

which are considered in the certification process. Every component is associated with

six sections which are described in Table 2.4. The attributes could be either dedicated

or general. The dedicated attributes are often referred to as conformance properties)

and the general attributes are usually independent of the product. The conformance

measures are selected based on the product which is being evaluated [56]) [13]. Every

attribute can not always be evaluated without some transformation. For example) a

general attribute could be subdivided into less general attributes. The same could be

said about the sours code. It could to be transformed into a form where automatic

theorem provers could be applied. Some examples are given in)Static verification)

section which is in chapter three. For the certification purposes not only the final

product could be evaluated) but all the other intermediate deliverables which may

include design and requirement documents [32]) [2]) [88].

26

Master Thesis ~ Volodymyr Babiy McMaster ~ Computing and Software

Component

Context Description
User Requirements
High Level Design
Detail Design

Implementation
Testing
Correctness proofs

Description

Describes main objectives and environment of the component
List of expectations from the component
Represents mapping between customer's requirements and system's design
Could be a collection of designs that demonstrate every aspect of the
component
Represents relationship between component's code and its documentation
Description of the testing architecture
Formal proofs for some sections of the component

Table 2.4: Sections of the component [32], [52]

2.6.3 Stage 2: component identification

Every component within the product is associated with an achievement level. For this

task we selected a subsection of the Integrated Component Maturity Model (ICMM)

[81]. The complete model focuses on the evaluation of the final product and the

software development processes. We are only interested in the section of the ICMM

model which focuses on evaluation of the final product. Other standards such as ISO

IEC 9126 and ISO IEC 14598, which are very similar to the ICMM model, could

be integrated into this stage. The component identification levels are: preliminarily,

component reuse, quality orientation and quantitative analysis. In the preliminarily

level, the component is presented without any formal documents. In the component

reuse level, the component is presented with a goal of reusing it in a similar applica-

tions and domains. The proper automated testing framework was utilized to test the

component. The requirement document is up to date. In the quality orientation level,

the component has an acceptable quality for both internal and commercial purposes.

Some instances of the component were verified formally. In the quantitative analysis

level, the various component metrics have being utilized to evaluate the component.

The certification results of the component are consistent.

27

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Entity

Process Description
Measurable Concepts
Quality Models

Concept Models
Elementary Models

Base Measure

Decision Criteria

Measuring Approaches

Evaluation

Evaluation Result

Description

Information which describes objectives, risks and goals.
Abstract description of components that could be measured.
Specification for the quality requirements and description of entity class
relationships.
The collection of sub-concepts and associations between them.
A collection of models with are based on on some known algorithms
which can evaluate known criteria.
A basic measurement that could be applied individually without any
external input.
Description on how to achieve certain level on confidence in a particular
result.
The measurement approach could be measurement function, analysis
model which is interrelated with quality model or particular measuring
approach.
A collection of evaluation which produces measuring results for a single
attribute by applying one or more measuring approaches.
A number or an abstract value which indicates some level of achievement.

Table 2.5: Data entities [21], [27]

2.6.4 Stage 3: metrics construction

The measurement is a crucial part of the software certification process. It can provide

data through which it would be possible to answer questions related to the product.

Only a few approaches which deal with the measurable criteria have been developed.

Some of them are: the Quality Functional Deployment (QFD), the Software Quality

Metrics (SQM) and the Goal Question Metric (GQM). For the stage of the metrics

construction the Goal Question Metric method was selected, because we think it is

the most sound and applicable for the product based certification process. We are

following the ISO lEe 25000 standard, which uses the same model, by selecting the

GQM model. The individual metrics can be constructed with the help of GQM ap

proach [81]. The key attributes can be subdivided, as described by the ISO 9126

standard, into the following groups: general external; dedicated external, general in-

ternal and dedicated internal. Some of the internal attributes are usability, efficiency,

functionality, maintainability and portability. Other attributes, which are related to

28

Mastel' Thesis - Volodymyr Babiy McMastel' - Computing and Softwal'e

software quality, also can belong to this group. The software quality attributes can

be subdivided into many different weighted groups. All groups should be separated

into three domains such as high, moderate, and low. Every attribute should have a

priority weight assigned to it by the expert(s). The priority weight of the attribute

should be dictated by the expectations and requirements. The external attributes are

strictly subjective. They are responsible for the user satisfaction, and conformance

to the requirements [22], [89], [61].

Entity

Attribute

Calculable Concepts
Calculation Method

Direct Metric

Elementary Indicator

Function
Indirect Metric

Measure
Scale
Software Tool

Description

Description about what abstract or physical property should be mea
sured
The relationship between attributes and calculable Concepts
A sequence of logical steps where a formula or indicator could be applied
in order to obtain a concept of measure
An independent metric that can be applied individually and does not
depend on other metrics
An indicator that is independent and does not depend on other indicators
to deduce calculable concept
Can be a formula or an algorithm that associates two or more metrics
A metric that is constructed from other metric or metrics that are being
utilized for other attributes
A value that is associated with an attribute after evaluation process
A collection of values that have specific meaning associated with them
A tool or set of tools that is used during the evaluation

Table 2.6: Software metric entities [21]

2.6.5 Stage 4: component evaluation

Every component of the product is associated with an achievement level between 1

and 4 for the completeness, uniformity and conformance. At the same time, every

level is associated with data which has to be delivered and verified for every com-

ponent. The algorithms 4, 7 and 2 will compute levels for completeness, uniformity

and conformance. The algorithm 1 will compute the overall certification level of the

product. It is computed after all the components of a product have been evaluated.

29

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

The final certification level indicates the maturity of the product. This level is de

duced from the achievements which are obtained by the components. The described

methodology allows for the partial certification as well. For example, under differ

ent circumstances some companies may certify only specific sections of the product.

The higher the level of certification, the more rigorous and formal verification must

be applied. The final deliverable of the certification would include all the computed

results, and would provide data with detailed descriptions of the components. This

data would include a list of properties and attributes which were evaluated, objec

tives of the certification, description of the test/real data, and precise outline of the

measuring methods which were utilized [32].

30

I

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Algorithm 1: Algorithm to compute Product Certification Level
Data: Collection of components which are associated with the product
Result: Product Certification Level

1 begin
2 int score f--- 0
3 Iterator<Component> componentItr f--- product.getComponentsListO.iterator
4 Component component f--- null
5 Level 5: same as Level 4 except real data and real environment should be used for

evaluation Level 4: all relationships between elements have been evaluated with formal
mathematical (in situations where can be applied and with test data and test
environment)

6 some elements of the product and their properties have been evaluated with formal
mathematical verification

7 if product.JormalEvalTestData == true then
8 while componentItr.hasNext do
9 component f--- componentItr.next

10 if component.getCompltLevel == 4 AND component.getUnifmLevel == 4 AND
component.getConfrnLevel == 4 then

11 if product.formalEvalRealData == true then
12 I score f--- score + 5
13 end
14 e~e

15 I score f--- score + 4
16 end
17 end
18 end
19 return (iIlt) (score / product.getComponentsListO.size)
20 end
21 Level 3: all relationships between elements have been evaluated with automated tools
22 elements of the product and their properties have evaluated with automated tools
23 if product.allElemAutoValidated == true then
24 while componentItr.hasNext do
25 component f--- componentItr.next
26 if component.getCompltLevel >= 3 AND component.getUnifmLevel >= 3 AND

component.getConfmLevel >= 3 then
27 I score f--- score + 3
28 end
29 end
30 return (int) (score / product.getComponentsListO.size)
31 end
32 Level 2: all relationships between elements have been manually evaluated
33 elements of the product and their properties have been manually validated
34 if product. allElementsM anually Validated == true then
35 while componentItr.hasNext do
36 component f--- componentItr.next
37 if component.getCompltLevel >= 2 AND component.getUnifrnLevel >= 3 AND

38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54 end

end

end

component.getConfmLevel >= 2 then
I score f--- score + 2

end

return (int) (score / product.getComponentsListO.size)

Level 1: all required elements of the product have been delivered
if product.allElementsDelivered == true then

end

while componentItr.hasNext do
component f--- componentItr.next

end

if component.getCompltLevel >= 2 AND component.getUnifrnLevel >= 2 AND
component.getConfrnLevel >= 1 then
I score f--- score + 1

end

return (int) (score / product.getComponentsListO.size)

return score

31

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Algorithm 2: Algorithm to compute Conformance Level Section Two
Data: Inferred ontology model inferTedModel, ontology's local name space nameSpacelnp, list of

automated testing properties aUotoTestingPTpt, list of manual evaluation properties
manualEvalPrpt, list of rigorous evaluation properties rigorousEvalPrpt

Result: Conformance Level, component does not qualify for any Conformance Level if final computed
Conformance Level == 0

1 begin
2 int conformanceLevel f- 0
3 OntProperty ontPropertyLocal f- null
4 Levell: errors were found during regular automated testing
5 boolean errorsFoundAutoTest f- false
6 Individual auotoTesting f- inferredMode1.getIndividual(nameSpaceInp +

Status.REGULAILAUTOMATED_TESTING)
7 Iterator<OntProperty> autoTestItr f- auotoTestingPrpt.iterator
8 Statement dataStm f- null
9 while autoTestItr.hasNext do

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51

end

ontPropertyLocal f- autoTestItr.next
dataStm f- auotoTesting.getProperty(ontPropertyLocal)
if dataStm.getString{). equals{Status.ERRORS-FO UND. toString) then

I
conformanceLevel f- 1
errorsFoundAutoTest f- true; break

end

Level 2: no errors were found with manual spot evaluation and regular automated testing
Individual spotEvaluation f- inferredMode1.getIndividual(nameSpaceInp +
Status. MANUAL_SPOT ~VAL)
boolean errorsFoundManualEval f- false
Iterator<OntProperty> spotEvalItr f- manualEvalPrpt.iterator
while spotEvalItr.hasNext do

end

ontPropertyLocal f- spotEvalItr.next
dataStm f- spotEvaluation.getProperty(ontPropertyLocal)
if dataStm.getString{). equals{Status.ERRORS_FO UND. toString) then
I errorsFoundManualEval f- truej break

end

if errorsFoundAutoTest == false AND errorsFoundManualEval == false then
I conformanceLevel f- 2

end
Level 3: rigorous automatic testing did not detect any errors (includes stress testing)
Individual rigorousAutoTest f- inferredMode1.getIndividual(nameSpaceInp +
Status.RIGOROUS~UTOMATED_TESTING)

boolean rigorousTestingPass f- true
Iterator<OntProperty> rigorousEvalItr f- rigorousEvalPrpt.iterator
while rigorousEvalItr.hasNext do

end

ontPropertyLocal f- rigorousEvalItr.next
dataStm f- rigorousA utoTest.getProperty(ontProperty Local)
if dataStm.getString{). equals{Status.ERRORS_FO UND. toString) then
I rigorousTestingPass f- false; break

end

if rigorous Testing Pass == true then
I conformanceLevel f- 3

end
Level 4: all formal verification of the component pass
Individual individual Proofs f- inferredMode1.getIndividual(nameSpaceInp +
Status. CORRECTNESS_PRF .DELIVERY)
Property formalProofStatus f- inferredModel.getProperty(nameSpaceInp + Status.FORMAL_PRFS)
Statement formalVerificationStm f- individuaIProofs.getProperty(formaIProofStatus)
if formal VerijicationStm.getString(). equals{Status.PASS. toString) then
I conformanceLevel f- 4

end
52 return conformanceLevel
53 end

32

j

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Algorithm 3: Algorithm to compute Uniformity Level Section Two
Data: Inferred ontology model inferredM odel, ontology's local name space nameSpacelnp, list of general

standardization properties generalStadrdPrpt, list of company standardization properties
compStandardization, list of industry standardization properties industStandardization

Result: Uniformity Level
1 begin
2
3
4

5
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25

26

27
28
29
30
31
32
33
34
35
36
37

38

39
40
41
42
43
44
45
46
47
48

int uniformityLevel f- 0
Level 1: general uniformity and standardization for all properties is average
Individual generalUnifIndv f- inferredModel.getIndividual(nameSpaceInp +
Status.GENERAL_STANR..DELIVERY)
Iterator<OntProperty> genStadrdPrptItr f- generalStadrdPrpt.iterator
Statement dataStm f- null
OntProperty ontPropertyLocal f- null
uniformityLevel f- 1
boolean allPrpAboveAvg f- false
while genStadrdPrptItr.hasNext do

end

ontProperty Local f- genStadrdPrptItr .next
dataStm f- generalUnifIndv.getProperty(ontPropertyLocal)
if !dataStm.getString(} . equals{Status.AVERA GE.toString) AND
!dataStm.getString(}. equals{Status.ABO VKA VERA GE. toString) then

I
uniformityLevel f- 0
break

end
if dataStm. getString (). equals (Status .AB 0 VB-A VERA G E. toString) then
I allPrpAboveAvg f- true

end

Level 2: general uniformity and standardization for all properties is above average
if allPrpAboveAvg == true then
I uniformityLevel f- 2

end
Level 3: component conforms to uniformity and standardization based on companies
expectations
Individual compSndrIndv f- inferredModel.getIndividual(nameSpaceInp +
Status. COMPANY ..BTANDR..DELIVERY)
Iterator<OntProperty> compSndrIndvItr f- compStandardization.iterator
uniformityLevel ++
while compSndrlndvItr.hasNext do

ontPropertyLocal f- compSndrIndvItr.next

end

dataStm f- compSndrIndv.getProperty(ontPropertyLocal)
if !dataStm.getString(}. equals{Status. CONFORMS. toString) then

I
uniformityLevel - -
break

end

Level 4: component conforms to uniformity and standardization based on industry
expectations
Individual industSndrIndv f- inferredModel.getIndividual(nameSpaceInp +
Status. INDUSTRY _STANDR..DELIVERY)
Iterator<OntProperty> industSndrIndvItr f- industStandardization.iterator
uniformityLevel ++
while industSndrlndvItr.hasNext do

ontPropertyLocal f- industSndrIndvItr.next
dataStm (- industSndrlndv.getProperty(ontPropcrtyLocal)
if !dataStm.getString(}.equals{Status. CONFORMS.toString) then

I
uniformityLevel - -
break

end
end

49 return uniformityLevel
50 end

33

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Algorithm 4: Algorithm to compute Completeness Level
Data: Data about component: global name space globalNameSpaceInp, name space used by ontolgy

nameSpaceInp, location of the ontology onologyLocationInp
Result: Completeness Level, component does not qualify for any Completeness Level if final computer

Completeness Level == 0
1 begin
2 int completenessLevel t- 0; OntModel inferredModel t- computeInferredOntology(

globalNameSpaceInp, nameSpaceInp, onologyLocationInp)
3 OntClass componentSectionsClass t- inferredModeLgetOntClass(nameSpaceInp +

Status.COMPsECTIONS)
4 ExtendedIterator<OntClass> subClasses t- componentSectionsClass.listSubClasses
5 Property globalProperty t- null; Individual individual t- null
6 Statement deliveryProperty t- null
7 while subClasses.hasNext do
8

9
10

11
12
13
14
15
16
17
18
19
20

end

OntClass subClass t- subClasses.next; Extendedlterator<OntResource> allInstances t
(Extendedlterator<OntResource» subClass.listInstances
while allInstances.hasNext do

end

individual t- (Individual) allInstances.next; globalProperty t
inferredModeLgetProperty(nameSpaceInp + Status. DELIVERY _STATUS); deliveryProperty
t- individuaLgetProperty(globaIProperty)
if deli'UeryProperty.getString.equals{Status.NOT_COMPLETE.toString) then

I
Level 1: only some sections of the component are not complete
completenessLevel t- 1 ; break

end

Level 2: all section of the component have been delivered
if completenessLe'Uel == 0 then
I completenessLevel t- 2

end
21 Level 3: some formal and informal proofs have been delivered
22 individual t- inferredModeLgetIndividual(nameSpaceInp + Status.CORRECTNESS_PRF-DELIVERY)
23 Property infPrfsPrty t- inferredModeLgetProperty(nameSpaceInp +

Status.INFORMAL_PRFS_STATUS)
24 Property formPrfsPrty t- inferredModeLgetProperty(nameSpaceInp +

Status.FORMAL_PRFS_STATUS)
25 Statement infPrfsPrtyStm t- individuaLgetProperty(infPrfsPrty)
26 Statement formPrfsPrtyStm t- individuaLgetProperty(formPrfsPrty)
27 if infPrfsPrtyStm.getString.equals{Status.SOME.toString) AND

formPrfsPrtyStm. getString. equals (Status. SOME. toString) then
28 I completenessLevel t- 3
29 end
30 Level 4: all formal proofs have been delivered
31 if infPrfsPrtyStm.getString.equals{Status.COMPLETE.toString) AND

formPrfsPrtyStm.getString. equals{Status. COMPLETE. toString) then
32 I completenessLevel t- 4
33 end
34 return completenessLevel
35 end

Algorithm 5: Algorithm to compute inferred ontology model
Data: Global name space globalNameSpaceInp, local name space nameSpaceInp, ontology location

onologyLocationI np
Result: Inferred ontology

1 begin
2

3
4

5

I
OntModel model t- ModeIFactory.createOntologyModel; OntDocumentManager documentManager t
model.getDocumentManager
documentlvIanager.addJ\JtEntry{globalN a..'TIeSpacelnp, file: + onologyLocationlnp)
modeLread(globaINameSpaceInp); OntModel inferredModel t-
ModeIFactory.createOntologyModel(OntModeISpec.OWL_MEM_MICRO_RULE.lNF, model)
return inferredModel

6 end

34

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Algorithm 6: Algorithm to compute Conformance Level
Data: Global name space globalNameSpaceInp, local name space nameSpaceInp, ontology location

onologyLocationI np
Result: input to Conformance Level Section Two algorithm, and final Conformance Level

1 begin
2 OntModel inferredModel f-- computelnferredOntology(globalNameSpacelnp, nameSpacelnp,

onologyLocationlnp)
3 List<OntProperty> auotoTestingPrpt f-- new ArrayList<OntProperty>
4 List<OntProperty> manualEvalPrpt f-- new ArrayList<OntProperty>
5 List<OntProperty> rigorousEvalPrpt f-- new ArrayList<OntProperty>
6 Extendedlterator<OntProperty> allProperties f-- inferredModel.listAIIOntProperties
7 OntProperty f-- null
8 while allProperties.hasNext do
9 ontPropertyLocal f-- allProperties.next

10 if ontPropertyLo-
cal.getLocalName() . starts With{Status. REG ULAR_A UTOMATED_ TESTING_DATA. toString)
then

11 I auotoTestingPrpt.add(ontPropertyLocal)
12 end
13 if ontPropertyLocal.getLocaIName{).startsWith{Status.MANUAL_SPOT_EVALDATA.toString)

then
14 I manuaIEvaIPrpt.add(ontPropertyLocal)
15 end
16 if ontPropertyLocal.getLocaIName{).starts With{Status.RIGOROUS_A UT_TEST_DATA. toString)

then
17 I rigorousEvaIPrpt.add(ontPropertyLocal)
18 end
19 end
20 int result f-- ConformanceLeveISectionTwo(inferredModel, nameSpacelnp, auotoTestingPrpt,

manualEvalPrpt, rigorousEvalPrpt)
21 return result
22 end

Algorithm 7: Algorithm to compute Uniformity Level
Data: Global name space globalNameSpaceInp, local name space nameSpaceInp, ontology location

onologyLocationI np
Result: input to Uniformity Level Section Two algorithm, and final Uniformity Level

1 begin
2 OntModel inferredModel f-- computelnferredOntology(globalNameSpacelnp, nameSpacelnp,

onologyLocationlnp)
3 List<OntProperty> generalStadrdPrpt f-- new ArrayList<OntProperty>
4 List<OntProperty> compStandardization f-- new ArrayList<OntProperty>
5 List<OntProperty> industStandardization f-- new ArrayList<OntProperty>
6 ExtendedIterator<OntProperty> allProperties f-- inferredModel.listAIIOntProperties
7 OntProperty ontPropertyLocal f-- null
8 while allProperties.hasNext do
9 ontPropertyLocal f-- allProperties.next

10 if ontPropertyLocal.getLocaIName{).startsWith{Status.GENERALSTANRDATA.toString) then
11 I genera!StadrdPrpt.udd(ontPropertyLocal)
12 end
13 if ontPropertyLocal.getLocaIName{).starts With{Status. COMPANY_STANR_DATA. toString) then
14 I compStandardization.add(ontPropertyLocal)
15 end
16 if ontPropertyLocal.getLocaIName{).starts With{Status.INDUSTRY_STANR_DATA.toString) then
17 I industStandardization.add(ontPropertyLocal)
18 end
19 end
20 int result f-- UniformityLeveISecondPart(inferredModel, nameSpacelnp, generalStadrdPrpt,

compStandardization, industStandardization)
21 return result
22 end

35

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

36

I
I

j
Chapter 3

A context aware framework

A context aware framework offers a mechanism which allows for a certification process

to adapt to ever changing expectations. This is because the framework is aware of

its context and is able to adjust seamlessly to its evolved context. The context aware

applications, which could be developed within the framework, are capable of adjusting

to the evolved context in order to support new certification demands. Such flexibility

allows for the certification process to expand more easily into different domains. The

framework uses context, which is provided by the context providers, to construct

an intelligent environment of the software certification processes. This intelligent

environment is achieved by incorporating different context providers within a single

framework in order achieve a common goals. The context providers are not limited to

only specific components within the product, but other entities such as specification

documents, industry standards and company standards could be context providers.

Importantly, the framework could be located on a single machine or span over a

collection of physical machines.

Within the last decade OSGi (Open Service Gateway initiative) has gained

popularity in the industry. It has been successfully applied in the development of

software for smart homes and mobile devices. OSGi has been proven to work well in

37

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

these areas and has performed as expected [23], [68]. The definition of context aware

ness, in both literature and industry, is not precisely defined because this approach

in computing is still emerging. The wider spread of this type of computing approach

can be seen in mobile devices and service oriented systems for smart homes. Mokhtar

et a1. [57] defined context awareness as follows:

'Context awareness is a property of a system that uses context to provide rele

vant information and/or services to the user, where relevancy depends on the user's

task. '

There are three main categories by which context aware systems can be clas

sified; these are device context, user context and physical context. The user context

category deals with user driven actions and is the most appropriate type of context

awareness for the proposed framework. The efficient management of the context is

supported and driven by the context model and its structure. The philosophy be

hind modeling context models follows two main objectives; namely, the ownership of

a flexible structure in which knowledge sharing is enabled, and logical reasoning in

which reasoning over static data can occur. The success of the context aware sys

tems directly depends on their ability to maintain these key objectives. The multi

level ontological approach was selected to model the context for the framework. The

upper layer within the ontological hierarchy, which is given in appendix A, models

generic concepts and relations for the product based software certification. The lover

levels within the ontology are used for the modeling of domain specific concepts and

relations. This allows for the criteria, which occur commonly in lower levels, to be

gathered in one location which would often be moved to upper levels within the on-

tological hierarchy \vithout being redefined multiple times. This approach eliminates

issues in which concepts or properties could be defined or evaluated differently in

different domains [57].

38

I
Master Thesis - Volodymyr Babiy McMaster - Computing and Software

3.1 Overview of a context aware framework

The framework is structured as both a contextually aware and service oriented entity.

Within the framework service discovery and binding is accomplished independently

from the developed component. A high level design of the framework is given in Figure

3.10. The context discovery and interpretation is handled by a context reasoner layer.

1 <?xml version="1.0"?>
2 <!DOCTYPE rdf:RDF [
3 <!ENTITY SCS ''http://2009/9/SCS . owl#" >
4 <!ENTITY CL_ ''http://2009/9/SCS . owl#CL_−" >
5 <!ENTITYowl ''http://www.w3.org/2002/07/owl#'' >
6 <!ENTITY xsd ''http://www.w3.org/2001/XMLSchema#'' >
7 <!ENTITY owl2xml ''http://www.w3.org/2006/12/ow12-xml#'' >
8 <!ENTITY rdfs ''http://www . w3. org/2000/01/rdf-schema#" >
9 <!ENTITY rdf ''http://www . w3. org/1999/02/22-rdf-syntax-ns#" >

10 J>
11 <rdf:RDF xmlns=''http://2009/9/SCS . owl#"
12 xml:base=''http://2009/9/SCS.owl''
13 xmlns:rdfs=''http://www . w3. org/2000/01/rdf-schema#"
14 xmlns:owI2xml=''http://www . w3. org/2006/12/ow12-xml#"
15 xmlns:SCS=''http://2009/9/SCS . owl#"
16 xmlns:owl=''http://www . w3. org/2002/07/owl#"
17 xmlns:xsd=''http://www . w3. org/2001/XMLSchema#"
18 xmlns:rdf=''http://www . w3. org/1999/02/22-rdf-syntax-ns#"
19 xmlns:CL_="&SCS; CL_− ">
20 <owl:Ontology rdf:about=''''/>
21 <Correctness_proofs rdf:about="#correctness_proofs_delivery">
22 <rdf:type rdf:resource="&owl; Thing" />
23 <formalProofsStatus rdf:datatype= "&xsd; string" >complete</formaIProofsStatus>
24 <deliveryStatus rdf:datatype= "&xsd; string" >complete</ deliveryStatus>
25 <informalProofsStatus rdf:datatype=" &xsd; string" >complete</informaIProofsStatus>
26 <formalProofs rdf:datatype="&xsd; string">pass</formaIProofs>
27 </Correctness_proofs>
28 <owl:Thing rdf:about= "#industry _standardization_deli very" >
29 <rdf:type rdf:resource="#Implementation" />
30 <deliveryStatus rdf:datatype="&xsd; string">NOT complete</deliveryStatus>
31 <industryStandardization rdf:datatype="&xsd; string" >does conforms</industryStandardization>
32 </owl:Thing>
33 </rdf:RDF>

Figure 3.1: The partial context which may be submitted by the components

This layer reasons over the various direct contexts and derives indirect con-

text, it can also be described as a reasoner over a high level context to derive a

low level context. Every context aware component maintains specific roles within the

framework. The main objective of the framework is to construct a contextually aware

39

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

environment in which the development and certification processes are integrated and

managed in parallel. Importantly, a complex certification processes could be managed

by the framework because its context is formally modeled with an upper ontology [83].

An example of partial context which can be submitted by the components is given in

Figure 3.1. A complete context of the component would describe all its certification

achievements. For example, what verification techniques have been applied and their

results. The context itself is a partial ontology which is a subsection of the upper

ontology. The developed proof of concept framework for product based software cer

tification has a context providers layer, a context interfaces layer, a context reasoners

layer, a remote layer and an automation layer. The remote layer is responsible for the

secure communication between the remote components of the framework. This would

only be required in situations where the framework would have to span over multiple

physical machines. Remote communication is managed by the Remote-Open Service

Gateway initiative (R-OSGi) [68].

3.2 Constructing independent context providers

The context aware framework is designed to work completely within the Open Service

Gateway initiative (OSGi) environment. The OSGi alliance maintains and supports

the OSGi environment. This alliance includes vendors from both the industry and

academia. The environment has been successfully utilized in a number of systems,

including Eclipse, Knopflerfish, Concierge and Apache Felix. Its specifications are

currently on the third version, but the core implementation has not been changed

since the first version. Only the service binding feature has become more efficient in

the later versions. The advanced service binding capabilities, 'which are described in

the upcoming sections, offer many features which could be beneficial to the product

based certification process.

40

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

3.2.1 Dynamic and static sections of the bundle

The communication between components within the OSGi environment, which are

also known as bundles, is accomplished through declarative services. The bundles

are often referred to as agents in the Artificial Intelligence (AI) domain. An impor

tant benefit of the environment is its capability to add, remove, stop, and reactivate

components without the need of restarting. It is apparent how the properties of plug

and play capability, a well known feature in the hardware domain, has spread into

the domain of software development [68]. The architecture is implemented in a ser-

vice oriented framework where services are loosely coupled. Any class or package of

the components can be published as a service to be utilized by other components.

Therefore, the environment imposes smaller restrictions on the development domain.

Within the OSGi environment, the interfaces are often used to serve as services to

other components. This practice allows for the implementation details of the compo-

nents to be hidden. The OSGi environment has a registry which maintains all of the

services which are offered and registered within the framework. An individual compo-

nent can search the registry to find specific services with the help of service binders,

or define the services which are necessary for its successful activation within the XML

definition file. Figure 3.2 demonstrates an example of the XML definition file which

has to be maintained by every component in the framework. In the definition file,

components identify which services will be required and which services will be offered

within the framework for other components to use. Figure 3.2 demonstrates that the

component needs two services from the framework. They are LOG-SERVICE and

CONTEXT-INTERFACE-SERVICE. These services are offered within the OSGi en-

vironment through the interface reference. The services which are offered by the com

ponent are specified within the <service> ... </service> tag. For example, <provide

interface = "ContextReasoner.I ContextReasoner" / > deceleration will offer an inter-

41

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

face as a service to the framework. Many other services could be offered within this

tag and not necessarily just interface. They could be regular Java classes. The ser-

vices which are being imported from the framework are listed within the <reference>

</reference> tag. For example, <reference name="LOG- SERVICE" inter-

face=" org.osgi.service.log.LogService" cardinality=" 1. .1" policy=" static" bind= "bind-

LogService" unbind="unbindLogService" /> declaration will import LOG-SERVICE

service from the framework by referring to an appropriate interface, set its cardinal-

ity, and correlate an appropriate methods within the activator class with bind and

unbind statements. The "1..1" cardinality means one to one relationship between

provider of the service and subscriber of the service. The other possibilities to define

cardinality are "1..n", "n .. 1" and "n .. n". The policy type can by static or dynamic

and the preferred type is static. [68], [70].

1 <?xml version="1.0" encoding="UTF-8"?>
2 <component name=" ContextReasoner . IContextReasoner" immediate=" true ">
3 <imp lemen tat ion class=" Context Reasoner . Internal. Context Reasoner "/>
4 <reference name="LOG-SERVICE"
5

6

7
8

9

10

11

12

13

14

15

16

in t e r fae e=" org. osgi . service. log. LogService"
cardinality=" 1..1"
policy=" static"
bind="bindLogService"
unbind="unbindLogService"/>

<reference name=" CONTEXT - INTERFACE - SERVICE"
interfaee="ContextInterface.IContextInterface"
cardinality=" 1 .. 1"
policy=" static"
bind="bindContextInterface"
unbind=" unbindContext Interf ace" />

17 <service>
18 <provide in t e r fae e=" Context Reasoner . IContextReasoner" />
19

w </service>
21 </component>

Figure 3.2: XML definition file which describes dynamic section of the component

Every component has an activator class which binds and unbinds the required

services. An example of the activator class is given in Figure 3.3. The activator class

42

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

1 public class ContextReasoner implements IContextReasoner {
2 private LogService logService = null j
3 private IContextlnterface contextlnterface = null j
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 }

protected void ac ti va te (ComponentContext con text) {

}
protected void deactivate(ComponentContext context) {

logService = null;
contextlnterface = null j

}
protected void bindLogService (LogService logServi ce) {

this .logService = logService j

}
protected void unbindLogServi ce (LogService logServi ce) {

this .logService = null;

}
protected void bindContextInterface

(IContextlnterface contextlnterface) {
this.contextlnterface = contextlnterfacej

}
protected void un bi nd Con textln terface

(IContextlnterface contextlnterface) {
this. contextlnterface = null;

Figure 3.3: Shell of the activator class

is associated with, and driven by, the MANIFEST file. The MANIFEST file contains

meta data which describes the properties and requirements of the component, such as

which packages are imported from the framework, and which packages are exported

to the framework for other components to use. An example of the MANIFEST file is

given in Figure 3.4. This file manages the static section of the component while the

XML definition file manages the dynamic section of the component.

3.2.2 Component /bundle state

The OSGi environment implements a white board pattern instead of the publisher

subscriber pattern. When using a publisher subscriber pattern, requesters have to

43

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

1 Manifest-Version: 1.0
2 Bundle-ManifestVersion: 2
3 Bundle-Name: Context Reasoner
4 Bundle-SymbolicName: Context Reasoner; singleton:=true
5 Bundle-Version: 0.0.1
6 Bundle-Vendor: project
7 Bundle-ClassPath:.
8

9 Service-Component:
10 OSGI-INF / ContextReasoner. xml
11

12 Import-P ackage:
13 Contextlnterface,
14 org. osgi. service .log
15

16 Export-Package:
17 ContextReasoner
18

Figure 3.4: MANIFEST.MF file which describes static section of the component

subscribe to every single service they need while providers have to maintain sub-

scriptions and usually with imposed cardinality restrictions. aSCi uses a serVIce

registry where requesters register themselves by means of a listener component, while

subscribers register through the provider component. Therefore, there is no direct

dependency between components because the service binding and releasing is handled

seamlessly by the aSCi environment. The component can not become fully active

unless all of its required services are present and offered by the environment. The

environment is interactive and supports components which can be in one of six differ-

ent states: starting, active, stopping, installed, resolved, and uninstalled. Figure 3.5

demonstrates dependency between states and the virtual binding of services between

the different components. Every component can change its state dynamically while

the aSCi environment is in active state. The same features and capabilities apply to

remote components as well [68], [70].

44

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

• W ~~_~~rviE~ u }~
§'i
(1)'

»i
~! Uninstall

Figure 3.5: Bundle/component states and service binding [70], [68]

3.2.3 Verifying state of the framework

After the framework is activated under the aSGi console a user can check for all active

bundles. The listing of all bundles can be achieved with the 'ss' command. All of

the framework's required components/bundles have to be in the active state in order

for the framework to be fully operational. Figure 3.6 shows a partial snapshot of the

bundles and their states. The snapshot shows bundles which were prototyped for the

context aware framework and some other additional bundles which are not immediate

components of the framework. These additional bundles are third party bundles. The

list of third party bundles could be extensive. The framework requires 154 external

bundles. The external bundles usually come with the redistribution of Eclipse, while

others have to be downloaded from different vendors. We gathered all the required

third party bundles which are needed for the context aware framework and made them

part of the prototype. For example, the org.eclipse.equinox.ds_1.0.0.v20070226 bundle

is responsible for handling declarative services within the framework. Appendix C

provides instructions on how to set up the framework starting from the installation

of the required software.

45

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

1 osgi> ss
2 Framework is launched.
3 id State Bundle
4 0 AGrNE org. eclipse. osgL3 .3.2. R33x_v20080105
5 1 AGrNE org. ecli pse . core. neLl. 0 .1. r33x_20070709
6 2 AGrNE org. eclipse. ui. cheatsheets_3 .3.1. v20080125_33x
7

8

9

10

11

12

13

14

94
95
96

615
616
osgi>

AGrNE
AGrNE
AGrNE

AGrNE
AGrNE

org. ecli ps e . j d t . core. manipulation_1 .1.0. v20070606 -0010
Pairwise Comparison_O. 0.1
org. eclip se . pde. build_3 .3.2. v20071019

Context Interface_O .0.1
Context Reasoner _0.0.1

Figure 3.6: Partial output produced by OSGi console by using 'ss' command

The OSGi console feature supports a collection of helpful commands. Figure

3.7 shows a small list of active services which are offered by the framework. The

complete listing of all the services can be achieved with a 'status' command. The

components within the framework do not import each other, but communicate via

published services. Therefore, if any component fails, the remaining components

would still be operational. Their state would change however, from active to resolved

as is indicated in Figure 3.5.

3.3 Description of a context aware framework

Figure 3.10 demonstrates a high level design of the context aware framework. The de-

sign has three main layers: ontology building, context aware and automation. In the

ontology building layer, information could be gathered from experts into upper ontol-

ogy which overtime may contain domain specific sub-ontologies. The context aware

layer is subdivided further into context providers layer, context interfaces layer; con-

text reasoners layer and remote context providers layer. The sections below describe

in detail the automation layer and sublayers of the context aware layer.

46

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

1 osgi> status
2 Framework is launched.
3

4 {ContextReasoner. IContextReasoner }={ component. name=ContextReasoner.
5 IContextReasoner ,component. id=l, service. id=51}
6 {ch. ethz. iks. Losgi. RemoteOSGiService, ch. ethz. iks. Losgi . Remoting}=
7 {service. id=52}
8 {ch. ethz. iks. Losgi. channels. NetworkChanneIFactory}={protocol=r-osgi ,
9 service. id=53}

10 {Con textln terface . I Con textln terface }={ component. name=Con textIn terface .
11 IContextInterface, component. id=3, service. id=54}
12 {PairwiseComparison. IPairwiseComparison}={component. name=PairwiseComparison .
13 IPairwiseComparison, component. id=2, service. id=55}
14 {r _osgLclien t . IRemoteService}={service. id=56}
15 {ch. ethz. iks. Losgi. SurrogateRegistration}={service. remote. registration=true ,
16 service. remote. smartproxy=r_osgLservice. internal. SmartService,
17 legacy. s e rvi ce . reference={ r _0 s g i _cl i e n t . IRemoteService }={ servi ce . id =56},
18 service. id=57}
19 {LosgLservice. ServiceHandler}={service. id=58}
20

21 osgi>

Figure 3.7: Partial output produced by aSGi console by using 'status' command

3.3.1 Context providers layer

In this layer, all components provide context information which is used for reasoning.

Context providers can obtain information from a variety of sources. They transform

the collected data through the context interface layer to the context reasoner layer.

Not only the context providers are able to provide valuable context, but other entities

such as calendar, schedule, or specification documents. Each context provider may

use a collection of interfaces in the context interfaces layer to submit direct context to

the context reasoner layer. This communication through the interfaces is an essential

part of the framework because it hides implementation details of the reasoner layer.

This feature is crucial for the network components of the framework. All components

within the context aware framework should communicate via the interfaces. Larger

applications may also maintain a large number of components in the context providers

layer.

The semantics of the OWL language allows for explicit knowledge to be de-

47

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

duced from implicit knowledge with the help of concepts. This ability makes OWL

language a powerful language for knowledge reasoning. The information becomes

useful and can be manipulated freely if it is presented in a higher level context. The

lower level context is not very useful because, in most situations, it is a single in

stance of data. Every context provider, within the context provider layer, has to bind

with the services necessary for allowing them to submit context. The framework sup

ports remote context providers in addition to the local context providers. Therefore,

context providers do not have to be located on a single physical machine.

3.3.2 Context interfaces layer

This layer serves as a bridge between the components and the context reasoners layer.

It was added to incorporate the network capabilities of the framework. Currently, in

terfaces support Jena selectors and are used to query OWL ontologies. Another

option for querying OWL ontologies would be by using RDQL, which a specific query

language used to query Jena's RDF ontology models. The query declarations which

follow the RDQL pattern are data oriented, while the Jena selectors follow the pro

cedural pattern. The major difference between these two approaches is that the data

oriented approach operates over static, not inferred, ontologies, while Jena selectors

can operate with inferred ontologies. This is why the Jena selectors method was

selected for communication and the other approach was left as an option [73].

3.3.3 Context reasoners layer

This layer automatically reasons over the context which is submitted by the context

providers. The main responsibility of this layer is to interpret the collected context

and evaluate it against the context which is saved in the ontology. Components within

the framework are responsible for submitting only higher level context. This high level

48

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

context represents the factual state of the component and its current achievement in

the certification process. This layer is also responsible for maintaining and updating

knowledge within the ontology. The factual information could be direct, which does

not require reasoning, or indirect, which requires reasoning. Bayesian networks can

be applied in situations where uncertainty is present and where certain reasoning

cannot be successfully applied.

Algorithm 8: Algorithm to publish remote services
Data: bundleContext an instance of the bundle which is going to publish remote services and events
Result: publish services and post events for the remote users

1 begin
2 ServiceRegistration serviceRegistration f- null
3 Hashtable localPropert f- new Hashtable
4 locaIPropert.put(RemoteOSGiService.R_OSGLREGISTRATION, Boolean.TRUE)
5 locaIPropert.put(RemoteOSGiService.SMART..PROXY, SmartService.class.getName)
6 ServiceRegistration localServiceRegist f

bundleContext.registerService(RemoteServiceInterface.class.getName, new ServiceImpl, nUll)
7 locaIPropert.put(SurrogateRegistration.SERVICE_REFERENCE, locaIServiceRegist.getReference)
8 serviceRegistration f- bundleContext.registerService(SurrogateRegistration.class.getN arne, this,

localPropert)
9 ServiceReference serviceReference f- bundleContext.getServiceReference(EventAdmin.class.getName)

10 if serviceReference! = null then
11 final EventAdmin eventAdmin f- (EventAdmin) bundleContext.getService(serviceReference)
12 activateThread(eventAdmin)
13 bundleContext.registerService(ServiceHandler.class.getName, new ServiceHandler {
14 public Object validateService(Object service) {
15 validate the service
16 return service
17 }
18 public void handleService(Object service, String[] args) throws Exception {
19 handle the service
20
21
22
23
24
25
26
27
28
29
30 end

end
else

}
}, new Hashtable)
add properties
Dictionary newProperties f- new Hashtable
newProperties.put(ServerStatus.PROP -.NAME, ServerStatus.PROP _VALUE)
locaIServiceRegist.setProperties(new Properties)

I return error f- ServerStatus.ERROR-.NULL..EVENT..ADMIN
end

Another task of the reasoning layer is to validate and inspect the consistency

between classes and relationships. This task is required because the majority of re-

lationships could be implied, especially in situations where relationships may spread

between ontologies which could integrate different domains. This layer may support

49

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

two types of reasoning which are supported by the OWL language. They are RDQL

reasoning and Jena selectors reasoning. The RDQL reasoning supports all the con

structs mandated by the RDF Core Working Group, making it a powerful reasoning

engine. However, as mentioned above, it operates only on non-inferred ontologies.

The Jena selectors support primitive constructs when compared to RDQL, but they

allows developers to construct a complex reasoning algorithms which may not be ac

complished so easily with the RDFS library. In order to allow for flexibility to occur,

it is recommended to use both methods as viable ways for reasoning over the context.

In both cases, all the rules have to be predefined within the ontology for reasoning

purposes. For example, the rules which are specified below will work in both cases.

• disjointWith: ((7A owl: disjointWith 7B) /\ (7x rdf: type 7A)/\

(7y rdf : type 7 B) =? (7x owl: dif ferentFrom 7y))

• subClassOf: ((7 X rdf s : subClassO f 7Y) /\ (7Y rdf s : subClassO f 7 Z)

=? (7 X rdf s : subClassO f 7 Z)),

• subPropertyOf: ((7 X rdf s : subPropertyO f 7Y) /\ (7Y rdf s :

subPropertyO f 7 Z) =? (7 X rdf s : subPropertyO f 7 Z))

• transitiveProperty: ((7 X rdf : type owl: transitiveProperty)/\

(7P 7X 7Q) /\ (7Q 7X 70) =? (7P 7X 70))

• inverseOf: ((7X owl: inverseOf 7Y) /\ (7A 7X 7B) =? (7B 7Y 7A))

3.3.4 Remote context providers layer

v~v'ith the help of Pt.-OSGi it is possible to create a secure communication channel be-

tween remote Java Virtual Machines (Java VM). A secure section of communication

can be obtained by using a Virtual Private Network (VPN). It is more advantageous

50

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

to rely on secure communication channels which are already maintained and offered

by the majority of both public and private networks. If we look at the Open System

Interconnection Reference Model (OSI model), the framework only deals with lower

levels, such as Physical and Data Link. The rest of the layers of the OSI model are

handled by the network. Information is sent between remote parties in a serialized

form. Every remote component is associated with a unique serial number which is

used for the identification of remote conversations. Local components do not require

serial numbers because their data is not being serialized during their transfer. Algo

rithm 8 can be used locally within the framework to publish services for the remote

components. The remote components can use algorithm 11 to search and bind with

services which are offered by the remote framework. In order for communication to

be established, the remote components require a Uniform Resource Locator (URL)

of the framework and the port number on which communication is allowed to occur.

The default port for this type of communications is 9278. This information is the

minimum of what is required for remote communication to be established between

two different context aware frameworks. Two frameworks, which reside on differ

ent physical machines, become one virtual framework after connection is established

between their remote components. This allows for declarative services to span over

many different physical frameworks. Developers may add many other layers of secu

rity and authentication to the communication channel, but it is not necessary, because

the security of the communication is already handled in the upper layers of the OSI

model [68], [70], [23].

51

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Algorithm 9: Algorithm to save the context within the inferred ontology
Data: Global name space globalNameSpacelnp, local name space nameSpacelnp, ontology location

onologyLocationlnp, new context which is stored within the ontology contextOntInput
Result: the inferred ontology will be updated with new context

1 begin
2 OntModel contextInferredModel ~ computeInferredOntology(globalNameSpaceInp, nameSpaceInp,

contextOntInput)
3 OntModel ontologyInferredModel ~ computeInferredOntology(globalNameSpaceInp, nameSpaceInp,

onologyLocationInp)
4 Iterator<Individual> ontPropertyItr ~ contextInferredModel.listIndividuals
5 Individual contextIndividual ~ null
6 Individual ontologylndividual ~ null
7 while ontPropertyltr.hasNext do
8 contextIndividual ~ ontPropertyItr.next
9 StmtIterator contextStmtIterator ~ contextIndividual.listProperties

10 ontology Individual ~ ontologylnferredModel.getIndividual(contextIndividual.get U Rl)
11 Statement ontologyStatament ~ null
12 Statement contextStatement ~ null
13 while contextStmtIterator.hasNext do
14 contextStatement ~ contextStmtIterator.next
15 if contextStatement.getObject().isLiteral then
16 Stmtlterator ontologyStmtIterator ~ ontologylndividual.listProperties
17 while ontologyStmtIterator.hasNext do
18 ontologyStatament ~ ontologyStmtIterator.next
19 if ontologyStata-

ment. getPredicate (). toString. equals(contextStatement. getPredicate(). to String)
then

20 I break
21 end
22
23
24
25
26 end
27 end

end

end
ontologylnferredModel.remove{ ontologyStatament)
ontology InferredModel.add{ contextStatement)

28 writeOntology{ontologyInferredModel)
29 end

3.4 Description of the automated section

An automation within the OSGi environment is accomplished by scripts which are

written with Apache Ant software, and they are responsible for different tasks. Some

of them will clean components from unnecessary entities, compile components for

the generation of the code coverage report and the requirements coverage report,

package components into redistributable builds, monitor the testing of the system,

and will automatically notify the use via email about the statlls of the certification

process. Automation scripts can be developed completely within the Apache Ant

developing environment without the need of integration with any other programming

52

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Algorithm 10: Algorithm to deduce predicate implication
Data: Global name space globalNameSpacelnp, local name space nameSpacelnp, ontology location

onologyLocationlnp, new context which is stored within the ontology contextOntInput
Result: implication for every predicate in ontology

1 begin
2 OntModel ontologyInferredModel f- computeInferredOntology(globaINameSpace, nameSpace,

onologyLocation)
3 Iterator<Individual> ontIndividualsItr f- ontologyInferredModel.IistIndividuals
4 Individual ontologyIndividual f- null
5 while ontIndividualsItr.hasNext do
6 ontologyIndividual f- ontIndividualsItr.next
7 StmtIterator contextStmtIterator f- ontologylndividual.IistProperties
8 Statement ontologyStatament f- null
9 collectInfo("Ont Class: "+ontologylndividual.getOntClass)

10 collectInfo("Individual: "+ontologylndividual.getLocaIName)
11 while contextStmtIterator.hasNext do
12
13
14
15
16
17
18 end
19 end

ontologyStatament f- contextStmtIterator . next
if ontologyStatament.getObject{}.isLiteral then

I
collectInfo(" Predicate: "+ontologyStatament.getPredicateO .getLocalN ame)
collectInfo(" Value: "+ontologyStatament.getString)
collectlnfo(computelndividualImplication(ontologyStatament»

end

20 return collected implication info
21 end

language. They can also invoke specific libraries to execute larger tasks which can

be written with programming languages such as Java and C++. The prototype

automation scripts, which we have developed, utilized both methods. The submission

of the context is handled entirely by the components and is accomplished through

declarative services. Algorithm 11, which uses the Jena library to communicate with

OWL ontologies, will save the context into the main ontology.

3.4.1 Automation scripts

Script B.5 will execute targets which will invoke algorithms to compute the certifi-

cation level of the product. It also has targets to compute the completeness, con

formance, and uniformity for every component of the product. Another small target

within the B.5 script will invoke an algorithm to compute the implication of every

concept which is referred to as an individual in the ontology domain. In addition to

the individual scripts, we have developed an automation script which will evaluate

53

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

the current status of the certification process and will create a comprehensive report.

This comprehensive report it is being automatically em ailed to a single individual or

can be emailed to a group of individuals. An example of the comprehensive report

is given in Appendix C. This report could be enhanced further to produce desirable

reports for evaluations. The automatic notification via email will work in both out

comes, the system will either pass or fail during the verification. Script B.4 maintains

the appropriate targets for the email management. The user may take appropriate ac

tion if failure does occur. There are two other reports which are being generated, they

are the code coverage report and the requirements coverage report. The automation

script B.l, also known as an upper automation script, is responsible for executing all

other lower level automation scripts. The general features from all of the automation

scripts have been extracted and gathered into one global common automation script,

B.2, which can be used by all other scripts. For example, the script B.3 maintains all

the targets of the automation system, but it relies on the general components in the

B.2 script by inheriting all of its properties and references.

3.4.2 Coverage reports

In our opinion, the requirements tracking could be considered as one of the most

important properties of the software certification process. The majority of software

developing companies utilize some form of requirements tracking. It provides a mech

anism which is able to trace requirements to their implementation. From the point of

view of software certification, requirements tracking is a property which any frame

work should have. It would be very difficult to verify implementation against a set of

requirements without a proper tracking system.

The main goal of the requirements coverage report is to provide a mechanism

in which links between stakeholder requirements and the system's components could

54

I

-I
J
I

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

be apparent. In order for the trace to be useful, it must follow some structured plan.

A collection of sound frameworks for traceability have been proposed. Although, they

are not easy to use or maintain because they were developed through theoretical work

and literature analysis [8]. Since 'requirements traceability', which is also known as

requirements coverage, was first mentioned in 1970, it has been described in a variety

of ways. Some examples are listed below as they were described by their authors. [5].

• 'a characteristics of a system in which the requirements are clearly linked to

their sources and to the artifacts created during the system development life

cycle based on these requirements' [8], [5]

• 'the ability to describe and follow the life of a requirement, in both a forwards

and backwards direction (i.e., from its origin, through its development and

specification, to its subsequent deployment and use, and through periods of

on-going refinement and iteration in any of these phases)' [28], [5]

• 'IEEE standard for software maintenance: the ability of a software to provide a

thread from the requirements to the implementation, with respect to the specific

development and operational environment' [35], [5]

• Solution driven: 'the ability of tracing from one entity to another based on given

semantic relations'

• Information driven: 'the ability to link between functions, data, requirements

and any text in the statement of requirements that refers to them'

• Direction driven: 'the ability to follow a specific item at input of a phase of the

software life cycle to a specific item at the output of that phase' [28]

The automation scripts that were developed integrate Jfeature software which

has ability to trace specific requirements within the framework. The reports, which

55

Mastel' Thesis - Volodymyl' Babiy McMastel' - Computing and Softwal'e

can be generated with the Jfeature software, support forward and reverse require-

ments tracking. They can also be used to check if there is a relationship between

different components of the system, primarily the predecessor to successor or succes-

sor to predecessor association. It is apparent that automation scripts integrated with

tracking software may belong to the family of traceability metrics and can be associ-

ated with documentation and test metrics. Documentation metrics can manage the

relationships between specification requirements and would deal with the low level

design of a system. Test metrics can manage the relationships between sections of the

system and the system's tests. They would also deal with the validation of developed

software [5].

~i~:-f~~~(t~;;~:~~;~~ !p, irtadu-r.lav~-·_ 'i ffi 1r~d.~a~ T~~;~~r{,,~ements'Jrq- --~(-
! .:.> ¢ lii i~ j E:\thes!s work\good thesis coding\thesis workspace\lSM_for Jnconsisteri_matrlces\caverage-report\jfeature\h:lex.html

I Horne Requirement Coverage
! All Categories Report
! Basic (lOG'>;)
~

1
! All
I Requirements
I i coordinate can ... (lOO"<-)
'! j coordinate can ... (100%)
I k coordinate can ... (100%)

I
I

Requirement Coverage Summary

None (3)

Requirement Coverage Details

1. i coordinatE: cannot bE: negative (lj

2. j coordinate cannot be negative {l}

3. k coordinate cannot be negative (1)

Number of Requirements 3

Unique Test Methods 3

: Requlrements!Test Methods 1:1
Ratio

None

Figure 3.8: An example of the Requirements Coverage Report

Some projects could have a large number of experts specifying the require

ments of the software. For such large projects, inconsistent and imprecise methods

for tracing requirements should not be used. The use of automation scripts allows

to overcome this limitation and facilitates the team with the ability to specify the

requirements and track them within the software. An additional benefit of utilizing

requirements coverage process includes a potential consistent software development in

relation to the specification documents [64], [62]. The snapshots of the Requirements

56

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Coverage Report can be seen in Figure 3.8.

One of the purposes of software testing is to provide a guarantee that the

software conforms to the requirements. It is very difficult to prove, through manual

testing and automated testing, that the software conforms to the requirements. It is

possible to provide reesuarnce that the software conforms to the requirements with

formal verification, but we have to assume that sections of the product which are not

part of the formal verification are also correct. The code coverage reports which could

be generated by EMMA software can serve as an intermediate step prior to formal

verification. Emma is a Java code coverage software [69]. EMMA's coverage reports

are very helpful for eliminating unreachable and dead code, because it provides a

graphical representation of the code base by highlighting tested code as green and,

untested code as red.

::t2::C~~.:.=SCi~:~;:'&~~::;:: ~i&'C'.f::::;!:J1!ir!@t~!L~lm'jt~AA!tilg~~~ij~iintKiti.~1!ti~!!J~L:2~:mF"';;;::~~~~~£:~k":~~C=~l
[all cla-S'ses]

OVERALL COVERAGE SUMMARY

name class 0/0

all classes 50% (7/14)

OVERALL STATS SUMMARY

total packages: 2
total executable files: 14
total classes: 14
total methods: 80
total exeoutable lines: 488

COVERAGE BREAKDOWN BY PACKAGE

name
PairwiseComparison. Internal
PairwiseColRparison. Internal. Test

method a/a
2SY, (2l/S0)

block %
7~'. (179/2432)

method 010
11~'. (7/64)
SSY, (14/16)

block %
37. (63/2195)
49% (116/237)

line 0/0

12:-: (56.3/488)

line %
5Y. {21-"427)
53% (35.3/61)

Figure 3.9: An example of the Code Coverage Report

3.4.3 Static verification

Verification by an automatic theorem provers is very appealing and could be attractive

to the average programmer, but it is very unlikely that they would be compelled to

verify developed code with an interactive prover such as PVS or Isabelle. Currently,

57

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

it is almost impossible to verify large code bases with interactive theorem provers.

Some smaller Java code bases can be annotated with the Java Modeling Language

(JML), and its correctness can be validated by the Extended Static Checker for Java

version 2 (ESC/ Java2 software). This software can be incorporated into the Eclipse

environment and become a part of the context aware framework to verify Java code.

The SoS organization, which belongs to the Radboud University Nijmegen,

has developed a Loop tool. This tool is able to prove the correctness of the JavaCard,

which is a subset of the Java language. It extracts poof obligations from the Java code

that is annotated with JML which can then be verified interactively by the Prototype

Verification System (PVS). This approach is preferred only for verifying a subset of

the Java, and it can not be applied to verify applications written with all features of

Java [42].

58

i
-1

j

Master Tllesis - Volodymyr Babiy McMaster - Computing and Software

/_~ ___ ~~ ___ ~~~ ____ + Ontology Building layer +---~---------~--_"

I \

I 2·· I'> OntoStudio I'~ :
: Of Oahta and Istru~ture ~" Protege GUI .•••. (visualization, I:'" !
I or fe onto ogy IS ~ (tabs. menus. Q.f •• editing) .; I

: ~~::'~:d by the g etc) 8 E ~ !
l ° Inferring of the ~ ~ ··?~GSE:::;g;~~t'l :~ a Jena API I

I ontology is .Q. Protege API . 0' VI ~ % fF=t (reasoning I

l ~~~~:~If~:a:~~~~h (B in~~~~Ue:lt~~:~c) t , parsing) !
\ OWL ontology I ,____ ____ ____ ~~~~ \~=3I:z::;=cs;=:=J'~"";;::":5-.~.I ________ . ______ 1-----/

___________________ + Context Aware Layer +------------ "-
r \
I EdilJse I , ,
: Open Service Gateway initiative OSGi R· OSGi I:
I ° OSGI and R· I •.• ·_·C§ont~~f~.ea$,~,n~r~,.layef· '.."..l/'rto\(!det§J.aYfl(' I
I, OSGi run inside f ~ f -, , II In erred ,-',,; Carti icatlon I 1-'
: Java VM 1 .• -. Ontologyc Algorithms ",component,':

: 0 Communication ~'-' c,' " •. ,-" , -:>;;,-,,;',;';,. - :

I between layers is J ':.Jcomponent r" I

11 accomplished Conteidlnte .. tf.a.ces,"·'·· Rim, ote'laye. r :
I with declaratlvfl- . ~. 1

i :";::'~mo" I" q~~~:~~h 'I ,~,Il ,",~:~~:d" ~ ,~~~::~:y.r' i
: ~~:U';;~~I~~~oOnf I query with ROQL I '; , I Security connection:

: the framework I Security :
d h ~,":~r·o' "<_"i'}"-'~ ':":~, .; I ,an t e port

I number. The It ~: I default port ~,
, number is 9278 .' 1 Component 1 Cont~xt e'rovlde.rS layer 1 Component I· I

: ~~~~~ ... ' Equinox '~u., ~~~~ :
, ~ ~ ~ :s ~ ~.,;~ (dec:la.rative ~.:;~!; ~ ~ ~ ~ I
1 ..:.. ..!. E .Q B 'f"'I"~.'~ serVIces, ,"7""..:....!.....c.., , -c rd n.ljc ril I , ti ~ 0 ~.f! ~, event' to VI 0 ~ & I
: ~ ~ 0 u « ad 1ll1n):~~":" :;: 0 U <t • .., I
l~; ,<~; I
I f
\ I
'--~~~-~-~~~~~~~ ~~~~-~~~--~~~---~~~~~~-~~~-~~~~~~~~~~-~_/

/---------------- + Automation Layer +------------------"
{ \

1 ~~eR:~~~~a~~nn .•.• ~._. '_ ... _I .•.. · .. ~_pa .• ,~,· .. ~~~:._A.-.",~_.t ... " r II R.q~~~~:~t~~~~~~~~~:ro" I r;r~a:u~" "~-IJ i
: syste~-~~;----- Thir~;arty ~, II Code coverage report J¢t ,.,.J. _verificat_i.on.~J :
: automatically software (emma, rx:11 (emma HTMl format) f' ,_. ';",'11' :

I
emailedtothe· . ..Il>. I

eqUinox, junit, II J 1 I, user log4j, rcp) Comprehensive report .Email "
(Ant output txt formal) "l,-,-~~-~~.J

'-. _ L!::;::;:;::;::;;;;::::::;::=:::::;;:::::;;;;:=:;;;:;:::::::::_:::J ___ ~_~_~_~_=_-_~_~_~_-~)

Figure 3.10: High level design of a context aware framework

59

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Algorithm 11: Algorithm to bind with remote service
Data: bundleContext an instance of the bundle
Result: bind with remote service and test its validity

1 begin
2 ServiceReference serviceReference +-- null
3 RemoteOSGiService remoteOSGiService +-- null
4 RemoteServiceInterface remoteServ Intrf +-- null
5 serviceReference +-- bundleContext.getServiceReference(RemoteOSGiService.class.getName)
6 if serviceReference ! = null then
7 I remoteOSGiService +-- (RemoteOSGiService) bundleContext.getService(serviceReference)
8 end
9 else

10 I return error +-- ClientStatus.ERROR..REMOTK.8ERVICE.toString
11 end
12 Hashtable localProperties +-- new Hashtable
13 locaIProperties.put(EventConstants.EVENT_TOPIC, new StringO

ClientStatus.REMOTE..BERVICE..NAME.toString)
14 bundleContext.registerService(EventHandler .class.getN ameO, this, localProperties)
15 if Boolean.getBoolean{ClientStatus.R_OSGLSERVICE-DISCV.toString) then
16 bundleContext.registerService(ServiceDiscoveryListener .class.getN ameO, new

ServiceDiscoveryListener {
17 public void announceService(String remoteServiceIntr, URI uri) {
18 remoteOSGiService.connect(uri)
19 RemoteServiceReference ref +-- remoteOSGiService.getRemoteServiceReference(uri)
20 remoteServIntrf +-- (RemoteServiceInterface) remoteOSGiService.getRemoteService(ref)
21 validateRemoteService
22 }
23 public void discardService(String remoteServiceIntr, URI uri) {
24 report(ClientStatus.SERVICE..NOT..BOUNDED.toString + uri)
25 }
26 } , nUll)
27 end
28 else
29 URI uri +-- new URI(System.getProperty(ClientStatus.R_OSGLURI.toString,
30 ClientStatus.DL+ClientStatus.LOCALHOST+ClientStatus.LOCAL.JlORT»
31 remoteOSGiService.connect(uri)
32 RemoteServiceReference[] refs +-- remoteOSGiService.getRemoteServiceReferences(uri,

RemoteServiceInterface.class.getN runeO, nUll)
33 Iterator servicesItr +-- Arrays.asList(refs).iterator
34 RemoteServiceReference remoteService +-- null
35 while servicesItr.hasNext do
36 remoteService +-- (RemoteServiceReference) servicesItr.next
37 if remoteService.getClass.getName.endsWith{ClientStatus.REMOTE-SERV_IMPL.toString)

then
38
39

40
41
42

43
44
45
46
47
48 I end
49 end

end

if REMOTE-CLIENT == REMOTE-PROXY then

I
remoteServ Intrf +-- (RemoteServiceInterface)
remoteOSGiService.getRemoteService(remoteService)

end
else if REMOTE-CLIENT == BUNDLE-NUMBER then

I
remoteServIntrf +-- (RemoteServiceInterface)
remoteOSGiService.getRemoteServiceBundle(remoteService, 0)

end
break

end
validateRemoteService

60

Chapter 4

Process to derive software metrics

This chapter describes the process of deriving software metrics for measurable and

subjective attributes which can be used to evaluate product. This chapter will also

discuss history, purpose, types, motivation and views on software metrics.

4.1 Quality as a driving factor for software metrics
construction

The quality of the product is one of the driving factors behind software certification.

Within the last few years not only software developers, but software users have begun

allocating greater attention to software quality [66], [14J. These expectations inspired

many organizations to implement practices which would enable them to provide evi-

dence of the quality of their products. It is possible to consider quality as one of the

primary properties for any product. Software has a tendency to evolve at a rapid pace.

Therefore, measuring mechanisms which are available must change rapidly in order

to adjust to the ever changing quality demands while results must be repeatable.

In general, almost all software certification models adopt a series of standards

which are well known and supported by the industry. For example, the ISO JIEe ISO

9126 outlines six main attributes of the software such as maintainability, reliability,

efficiency, functionality, usability and portability. A general description of these at-

61

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

tributes is given in Table 4.5. These six attributes are subdivided into sub-attributes

and the possible subdivisions are shown in Table 4.1. Constructing an acceptable

measure for a top general attribute could be infeasible and unpractical. Therefore,

the subdivision of the attributes is required in order to allow for the criteria at lower

levels to be evaluated by software metrics more accurately. The actual subdivision of

the top attributes is not a part of the official standard, but is applied in almost all

software certification models.

Attribute

reliability
efficiency
functionality
maintainability
usability
portability

Sub-attribute

fault tolerance, maturity, recover ability
resource performance, time performance
accuracy, compliance, interoperability, security, suitability
analyzability, changeability, stability, testability
learn ability, operability, understandability
adaptability, insatiability, replacing ability

Table 4.1: Attribute breakdown as supported by ISO 9126 [14], [61]

Determining the value of some of the attributes could be one of the most sub-

jective tasks in the evaluation process. It is important to mention that subjective

evaluations are not fully supported by the software industry. It is possible that one

evaluator may evaluate attributes in a positive way, while another might evaluate

them negatively. Valid evaluations should only be based on objective measurements

instead of individual preference. Software metric could produce objective measure-

ments. It also has an ability to provide indirect evaluation of the attributes. Users

should provide data based on the system's features, and that data should be used

for the evaluation of specific attributes. At the earliest stages of metric usage only

low level design and code were considered in the evaluation process. For example,

~v1cCabe's ~\'1etric focused only on the lo"v~level design and source code [87].

Over time, and with the introduction of third party evaluators, the need to

look at software attributes rather than just the initial design and source code has

62

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

begun to increase. Third party evaluators are often overwhelmed with claims and

statistics about specific products. Different companies also have a tendency to use

different reporting techniques. Therefore, it is difficult sometimes to reuse evaluation

methods. Everyone involved in the certification process should agree on a set of

software metrics. The agreement should involve regulations on how the evaluation

metrics will be implemented. The P1061 (Standard for a Software Quality Metrics

Methodology) standard attempted to standardize software metrics for similar usage,

and ISO/IEC 9126 dictates principals for software quality evaluation [66], [14]. The

quality of the software could be directly derived from its characteristics. ISO 9000

(Quality Management and Quality-Assurance Standards), which was released in 1987,

references a collection of international standards which deal with processes as a means

of deducing software quality. This standard is already a few decades old and does not

properly reflect current scenarios of software quality evaluations. Standards, such as

ISO JTCl SC7, often update the principles of the development process. In 1992 the

Computer Society released the P1209 standard (A Recommended Practice for the

Evaluation and Selection of CASE Tools). This standard outlines a general software

evaluation framework. In addition, it has almost a complete collection of evaluation

characteristics based upon ISO 9126. SC7 WG4 is an international standard which

can help with the evaluation of CASE tools [87]. The computing society has done

some work on the development of standards for safety critical systems such as IEC

1508 [26].

4.2 Software metrics

One of the known ways to collect information about software is by using software

metrics. Within the last few decades a collection of software metrics have been

proposed, but some of them are unpractical because it is difficult to interpret their

63

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

final results [20]. This difficulty is a result of the paramount values of the measuring

criteria often being unknown. Some attributes are very subjective and very difficult

to measure, but it is possible to construct a measuring mechanism for the attributes

which are less subjective such as traceability and portability.

Software metrics evolved during three periods as their principles were exposed

to the software engineering community. These three periods are the introductory pe-

riod (1971-1985), growth period (1985-1997) and current period (1997-present time).

During the introductory period the theory of metrics was just beginning to be exper-

imented with. During the growth period the development of software which utilized

software metrics began, and at the same time, the acceptance of metrics also in-

creased. There is a noticeable spread of the metrics in the software industry. The

main use of metrics has changed during these three periods, and in particular the

views and acceptance of metrics have changed [56].

4.2.1 Purpose of the metrics

Benefits which could be obtained by using software metrics, as outlined by Goldensen

from the Software Engineering Institute at Carnegie Melon, are listed below [13].

• Will it create a universal understanding of the project status

• Will it deduce required processes and information necessities

• Will it deduce acceptable methods of measure according to the expectations
and requirements

• Will it identify entities that should be measured and also store, analyze and
collect information after the measurement procedure.

• Will it provide measurement results that will inspire discussions

• Will it provide some sense of measure and understanding to the customer [13]

Metrics are intended for measuring products and processes. We think, in order

for the software certification process to be successful it should be based on the analysis

64

I

j

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

of the product and its supporting documents. As mentioned above the product is

the most important entity. The modified Process Capability Metric (PCM) can be

used for the analysis of the process [13]. The product, on the other hand, should

be evaluated with a collection of metrics. In some situations different collections

of metrics must be used and it will depend on the product. For example, if the

product was developed with a language that supports object orientation, then the

software metrics which were developed by Chidamber and Kemerer could be used in

the analysis process [16], [10], [55]. Table 4.2 lists software metrics that were described

by Chidamber and Kemerer et al. [16]. Ritz and Montazeri proposed a more detailed

implementation of metrics for object oriented languages as compared with the metrics

proposed by Chidamber and Kemerer [33].

Metric Measurement criteria

Weighted methods per class - W MG Calculates sum of the weights of methods in every
class

Depth of inheritance tree - DIT Calculates the maximum distance object can achieve
in the inheritance tree, the distance is considered
from the root of the tree

Number of children - NOG The number of classes inheriting attributes from the
parent class

Coupling between object classes - GBO The count represents the number of coupling with
other classes

Response for a class - RFG Responsiveness of the class that is based on private
and public methods

Table 4.2: Chidamber and Kemerer 00 metrics [16]

4.2.2 Motivation, views and types of software metric

"No single metric can provide wisdom!"[13] Therefore, a collection of metrics must

be used in order to gain a clear understanding of the project. The following questions

could be asked during the construction of the metric .

• What is impossible to manage or measure?

65

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

• What degree of criticism is acceptable?

• What degree of expert opinion should we consider?

• Are we looking for an indicator or measurement? [13]

This list of questions could be very large. The lack of widely accepted software

certification standards leads to conflicts and wide debate. The low success of software

metrics programs could be because software metrics programs can be viewed in many

different ways [13]. Table 4.2.2 describes some of the different views on metrics

which different individuals may have. This table could be a subject for the first

conversation between the certifier and developer during the initial stage of the software

certification process. It is very apparent that the need for software measurement and

validation has grown and there was a drift in the sixties and seventies where the

primary concern of measurement was the product. In the eighties and nineties the

concern of measurement focused upon the process and quality scheme, and after the

nineties measurement concern shifted towards process incorporation. In order for

any measurement technique to be successful it must provide Ja positive return on

investment J. The return must provide a noticeable benefit to the entire business and

not only the developing team [~3]. Table 4.2.2 examines types of software metrics, all

of which could be used in the certification process.

Participant

manager
developer
end user
estimator

Steps to derive measurement objectives
Interests Goal Metric
economic costs, dates effort, quality
technical development environment size, complexity
social usability functionality
economic costs, effort, dates effort, budget, project size,

duration
project manager technical effort, dates, size, complexity earned value, progress to date,

impact of change

Table 4.3: Point of view for the metrics [13]

66

j

j

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Metric Description Forms Examples

absolute metrics fundamental measures single data sums, start and end dates,
are manipulated averages, differences software size, effort
to collect new information in person hours

relative metrics relative data, factorial percentages of function
structuring data, figures, points attributable
relational data, relationshi ps, to EIs compared
relating derived data to the total size
several absolute of the software
measures together

coefficients indicators, maximum, measured data the relation of IT
average and Minimum, chronicled over effort to total business
calculated from other time, metrics
metrics on a time
series basis and
used for comparison

index figures figures for general percentages, single annual increase in
presentation figures indexed, productivity
of many changes basic values
of organizational data

Table 4.4: Types of software metrics [13]

4.2.3 Metric construction

In 1984 Weiss and Basili created the concept known as 'Goal-Question-Metric' (GQM).

This concept describes steps on how to build a measurement process. Building the

measurement process could be subdivided into two approaches, such as bottom-up

and top-down. The 'Goal-Question-Metric' is an example of a bottom-up approach,

while the Capability Maturity Model (CMM) and Capability Maturity Model Inte

grated (CMMI) are examples of top-down approach [24]. The top-down methodology

focuses on benchmarking and evaluation, while the bottom-up methodology focuses

on implementing measurements with the intention for improvement. The CMM model

was developed by Software Engineering Institute (SEI) at Carnegie Mellon between

1987 and 1997. The CMMI model was also developed by SEI and was introduced in

2002 [81]. The main goal of the measurement process is to provide feedback about

the product to the developer. Measuring methods could often require dedication and

67

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

a vast amount of data. This may contribute to the implementation of a complex

measuring process. Consequently, some sections of the product may never get prop-

erly evaluated. We think GQM is a preferred method, because it is able to focus

on specific areas of the product which need evaluation. There always should be a

purpose and judgment as to why certain attributes or sections are being evaluated

[9].

GQM is probably one of the most practical ways to develop measuring metrics.

Since it was first introduced, organizations such as NASA have used this method in

their evaluation process. The strongest feature of GQM is its ability to transform

business goals into a collection of characteristics which can be measured. The objec

tive of GQM concept, which is shown in Figure 4.1, could be summarized into three

steps. Step one: team members and certifiers outline business goals. Step two: for

every business goal a set of questions is constructed and answered in order to de-

termine whether or not business goals were achieved. Step three: for every business

goal a metric or a collection of metrics are defined in order to provide feedback on

them [71]. Figure 4.1 also demonstrates the relationships between phases of the GQM

concept and it tries to incorporate objectives of the ISO 15939 standard [24].

-
I Goal J------ - - - - -j Goal attainment I

I Question t--- - --- Answer I
OJ

I ~ 11 Measurement I c
Metric 'c f-

c
ro

0::: Definition Interpretation

.I Collected Data I '--- I
~ - -- Data Col/ection
t'lannmg I Ia...--________________________I

Figure 4.1: Goal Question Metric methodology [48], [24]

68

I

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

GQM
definition

Process
and product

modelling

1---
1

1

1

1

1

1

Process
phase

---------1
~--~~ 1

Check on 1
consistency I

and completeness I
I
I

Figure 4.2: Goal Question Metric approach [48]' [24J

The topology of the GQM concept has four phases: planning, definition, data

collection and interpretation. In the planning phase, the measurement applications

are selected and defined. In the definition phase, the measurement plan is defined and

documented. The goals, questions, hypotheses and metrics are also defined. In the

data collection phase, all the data is being collected. In the interpretation phase, the

collected data is being evaluated with defined metrics which produce measurements.

These measurements are used to deduce answers for the identified questions. In

the end, a goal attainment could be assessed. The interpretation phase is the most

important because during this phase the results are the most criticized. Figure 4.2

demonstrates more detailed steps which could be taken during the GQM process to

construct a specific metric. A large number of attributes could be considered during

the evaluation of a given product. Therefore, a large number of software metrics

could also be required. Table 4.5 lists some of attributes which could be considered

for the evaluation [10J, [26J.

69

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Attribute

Accuracy
Adaptability
Auditability
Availability
Changability
Completeness
Conciseness
Consistency
Correctness

Data commonality
Dependability
Efficiency

Error tolerance
Expandability
Flexibility

Functionality
Generality
Hardware independence

Human factors
Integrity
Interoperability

Maintainability

Modifiability
Modularity
Operability
Portability

Reliability
Reusability
Robustness
Security
Self-documentation
Simplicity
Supportability
Testability
Traceability
Transportabili ty
Understandability

Usability

Utility

Some description of what to measure

a possibility for an error to occur, accuracy in control
new components and features could be added easily
document can be easily verified against documentation
percentage that represents the systems' availability for the use
how easily the program could be changed
how complete is the implementation against the requirements
how precise and brief are the lines of code
how consistent the code is against design and documentation
all specifications are satisfied, user expectations are satisfied, does not
contain any known errors
use of well know types and data structures
the same as reliability
complex or simple arithmetic operations, number and complexity
of nested loops, complex arrays
how damaging the occurrence of an error to the system
design of the system is able to support expansion
resources that have to be invested in order to modify
or change the system
security, generality and capability of the system
extensiveness of the system
to what degree the system is dependent on
some type of hardware
how usable is the software, friendliness of the user interface
how the unauthorized access is managed
what resources are needed for the system to get integrated
with other systems
how long does it take to recognize and analyze the problem,
what time is needed to change the system and requirements
how easy it is to change the system
information hiding, functional independence
how easy it is for the user to operate the system
resources that are required in order for the system into be transfered
to a different unknown environment
performance of the function is accurate
the infrastructure of the system is standardized
ability to operate during invalid input
a mechanism that protects the system
how descriptive is the code
how easy it is to understand the system
how easy it is to support the system
resources that are needed to accurately test the system
ability to trace requirement to the code
the same as portability
how easy it is to understand the program for the novice
user and programmer
what resources are required in order to learn how to
use the system
to what degree the system satisfies its intended purpose

Table 4.5: Software Quality Attributes [10], [26]

70

Chapter 5

Conclusion and future research

5.1 Conclusion

Software certification is becoming an important area of research as more software is

being developed which not only controls hardware, but quite literally our daily lives.

Our research focused on addressing hurdle eight of the software certification process

which was defined by Ratcliff, Reimdahl, Lawford, Maibaum, Wassyng and Wurden

et al. [31]. It stated: Lack of interoperable tools to manage) reason) and provide

traceability - The result is that small change often requires a large effort. We need

tools that scale.

We have developed a proof of concept context aware framework which provides

a dynamic environment for the software certification process by integrating develop

ment and certification domains. The integration of domains is achieved with the help

of upper ontology which supports formal information exchange and reasoning. The

upper ontology was developed in Web Ontology Language (OWL). The framework

could adapt to the changing certification demands by being able to adapt seamlessly

to the evolved context. Such flexibility allows for the certification process to expand

more easily into different domains. It is utilizing a collection of tools such as Eclipse,

Jena, OntoStudio, Protege, Equinox, EMMA, log4j, Rep, JUnit, Jfeature and Apache

71

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Ant and was developed within an Open Service Gateway initiative (OSGi) environ

ment. We selected OSGi environment because it allows for the framework to span

over many physical machines. The communication between physical machines can

be accomplished with Remote Open Service Gateway initiative (R-OSGi). With the

help of OSGi and R-OSGi we can create a virtual framework by incorporating many

physical frameworks. The framework also has a collection of automation scripts which

manage generation of the requirements coverage and code coverage reports. Impor

tantly, automation scripts could be used to manage many other tasks of the software

certification process. We expect that the certification models which were utilized

for past projects could be incorporated with possible modifications into our context

aware software certification framework. This could allow for a more accurate and

consistent software certification process. The framework also permits for the software

certification to occur at intermediate stages of product development. This allows for

intermediate releases of a product while maintaining historical records of the certifi

cation. Overall, the software certification process could be a very large and complex

task. We believe that our context aware framework could make the process of software

certification more manageable and applicable in academia and industry.

We also described a product based software certification process which is struc

tured on component based certification principals. The core of the certification pro

cess is composed from a variety of known software certification models. Therefore,

we consolidated beneficial features of other certification models into a single certifica

tion model. The process incorporates methodologies such as Integrated Component

Maturity Model (ICMM), Plan the evaluation, Establish criteria, Collect data and

Analyze data (PECA) framework and Goal Question Metric (GQ:t<.1). It also tries to

be aligned with ISO JTC1 SC7, ISO IEC 25000, ISO 15939, ISO IEC 14598 and ISO

9126 standards. Incorporating different methodologies into the certification process

72

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

allowed us to address Hypothesis-5 that was described by Keith and Vertinsky et al.

[40]. It stated: "Companies that are more methodologically rigorous are more likely

to choose to certify than companies that are relatively less methodologically rigorous."

As projects evolve and grow in complexity, different properties and attributes

which were not part of the certification process could become an important compo-

nent of the certification. During the research, we did not come across an acceptable

measuring technique for many attributes. For example, the attributes such as com-

plexity and interoperability. In order to overcome this obstacle, we have described a

process on how to derive software metrics for measurable and subjective attributes.

The other important issue which we addressed is the maintenance of consistent prior-

ities (weights) for the attributes and properties. We demonstrated the applicability

and benefits of the Pairwise Comparison (PC) method in the software certification

process and how it can be used to assign consistent priorities (weights) to the at-

tributes and properties. In addition, we demonstrated how the PC method could be

used in correlation with Simple Additive Weighting (SAW) and Weighted Product

(WP) methods to rank alternative plans.

5.2 Potential areas for the future research

The future goal of the research is to enhance the context aware framework by en-

hancing an automated section of the framework. The other goal is to implement an

extensive verification of the messaging system and the frameworks' ability to func-

tion in situations in which some key components may fail. The beneficial feature

that could be added is the integration of the framework's self analytical feature with

the software certification process. The self analytical feature analyzes the status of

the component within the aSCi environment. This integration would provide extra

technical information which could be used in the certification process.

73

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

The other potential research goal is to contribute to the development of a

general framework for the Software Knowledge Repository which would operate on a

collection of ontologies. The achievements of the Software Engineering Institute (SEI)

at Carnegie Melon are to be carefully researched in even greater detail to determine

how they could be incorporated to further enhance the proposed framework.

74

Bibliography

[lJ P. Adamic, V. Babiy, R. Janicki, T. Kakiashvili, W. W. Koczkodaj, and

R. Tadeusiewicz. Pairwise comparisons and visual perceptions of equal area

polygons. Perceptual and Motor Skills, 108(1):37-42, 2009.

[2J A. Alvaro, E. S. de Almeida, and S. R. de Lemos Meira. Software component

certification: a survey. In Software Engineering and Advanced Applications, 2005.

31st EUROMICRO Conference, pages 106-113, Aug.-3 Sept. 2005.

[3J A. Alvaro, E. S. de Almeida, and de Lemos M. S. R. A component quality

assurance process. In SOQ UA '01: Fourth international workshop on Software

quality assurance, pages 94-101, New York, NY, USA, 2007. ACM.

[4J M. Anholcer, V. Babiy, S. Bozki, and W. W. Koczkodaj. A simplified implemen

tation of the least squares solution for pairwise comparisons matrices. Central

European Journal of Operations Research, 2010.

[5J G. Arbi. A matrix-less model for tracing software requirements to source code.

International journal of computers, 2(3):301-309, 2008.

[6J D. Aziz, J. Yahaya, and A. R. Hamdan. Software product certification: A con

tinuous improvement. International Journal of Knowledge, Culture and Change

Management, pages 125-134, 2008.

75

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

[7] V. Babiy, A. D. Bogobowicz, R. Janicki, and W. W. Koczkodaj. Selecting the

best strategy for the software certification process (under review). In C* Confer

ence on Computer Science and Software Engineering, 2010 May 19 - 2010 May

21, http://confsys.encs. concordia. calc3s2e/, 2010.

[8] R. Balasubramaniam and J. Matthias. Toward reference models for requirements

traceability. IEEE transaction on software engineering, 27(1):58-93, 2001.

[9] P. Berander and P. Jonsson. A goal question metric based approach for efficient

measurement framework definition. pages 316-325, New York, NY, USA, 2006.

ACM.

[10] J. K. Blundell, M. L. Hines, and J. Stach. The measurement of software design

quality. Annals of Software Engineering, 4(1):235-255, 1997.

[11] S. Bozoki. Solution of the least squares method problem of pairwise comparison

matrices. CEJOR, 16:345-358, 2008.

[12] S. Bozoki and T. Rapcsak On saaty's and koczkodaj's inconsistencies of pairwise

comparison matrices. Journal of Global Optimization, 42(2): 157-175, 2007.

[13] M. Bundschuh and C. Dekkers. Software measurement and metrics: Fundamen

tals. The IT Measurement Compendium, pages 179-206, Aug. 15, 2008.

[14] P. Caliman. Software product quality evaluation and certification: the qseal

consortium methodology. http://www.cse.dcu.ie/essiscope/sm4/ qseal. doc., Aug.

2009.

[15] rv1. J. A. :t'~. Caritat. }y1arquis de Condorcei: Essai sur l'-l4pplication de L J.c4nalyse

a la Probabilite des Decisions Rendues a la Pluraliste des Voix. Imprimerie

Royale., 1972.

76

I

I

Master Thesis - Volodymyr Babiy IvlcMaster - Computing and Software

[16] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.

Software Engineering) IEEE Transactions on, 20(6):476-493, Jun 1994.

[17] S. Comella-Dorda, J. C. Dean, and P. Morris, E. Oberndorf. A process for cots

software product evaluation. COTS-Based Software Systems, pages 86-96,2002.

[18] B. Councill. Third-party certification and its required elements. In Proc. of

the 4th Workshop on Component-Based Software Engineering (CBSE)) Canada,

May 2001.

[19] N. Cowan. The magical number 4 in short-term memory. a reconsideration of

mental storage capacity. Behavioural and Brain Sciences, 20:87-185, 2001.

[20] F. H. Damborg and L. Mathiassen. Information-centric assessment of software

metrics practices. IEEE Transactions on engineering management, 52(3):350-

362, Aug. 2005.

[21] M. de los Angeles Mart and 1. Olsina. Towards an ontology for software metrics

and indicators as the foundation for a cataloging web system. Web Congress)

Latin American, 2003.

[22] A. Deraman, J. H. Yahaya, F. Baharom, A. F. A. Fadzlah, and A. R. Ham-

dan. Continuous quality improvement in software certification environment. In

Proceedings of the International Conference on Electrical Engineering and Infor

matics Institut Teknologi Bandung, pages 17-19, June 2007.

[23] P. Dobrev, D. Famolari, C. Kurzke, and B. A. Miller. Device and service discovery

in home networks with osgi. Communications Magazine) IEEE, 40(8):86-92,

2002.

[24] C. Ebert and R. Dumke. Planning the measurement process. Software Measure-

ment, pages 73-90, Jul. 25, 2007.

77

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

[25] G. T. Fechner. Elements of Psychophysics. Rinehart and Winston, New York,

1965.

[26] N. E. Fenton and S. L. Pfleeger. Software Metrics. PWS Publishing Company,

20 Park Plaza, Boston, MA, 2st edition, 1997.

[27] F. Garca, M. F. Bertoa, C. Calero, A. Vallecillo, F. Ruz, M. Piattini, and M. Gen

ero. Towards a consistent terminology for software measurement. Information

and Software Technology, 48(8):631 - 644, 2006.

[28] O. C. Z. Gotel and C. W. Finkelstein. An analysis of the requirements traceability

problem. pages 94-101, Apr 1994.

[29] B. N. Grosof, 1. Horrocks, R. Volz, and S. Decker. Description logic programs:

combining logic programs with description logic. pages 48-57, 2003.

[30] W. Hasselbring and R. Reussner. Toward trustworthy software systems. Com

puter, 39(4):91-92, 2006.

[31] J. Hatcliff, M. Heimdahl, M. Lawford, T. Maibaum, A. Wassyng, and F. Wurden.

A software certification consortium and its top 9 hurdles. Electronic Notes in

Theoretical Computer Science, 238:11 - 17, 2009.

[32] P. Heck, M. Klabbers, and M. Eekelen. A software product certification model.

Software Quality Journal, June 2009.

[33] M. Hitz and B. Montazeri. Chidamber and kemerer's metrics suite: a measure

ment theory perspective. Software Engineering) IEEE Transactions on, 22(4):

267-271, Apr 1996.

[34] M. Horridge, S. Jupp, G. Moulton, A. Rector, R. Stevens, and C. Wroe.

A practical guide to building owl ontologies using protege 4 and co-

78

1

1

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

ode tools. 2009 http://www . co-ode. org/resources/ tutorials/Protege

OWLTutorial. pdf.

[35] IEEE. Ieee standard for software maintenance. IEEE Std 1219-1998, Oct 1998.

[36] R. Janicki. Ranking with partial orders and pairwise comparisons. Lecture Notes

in Computer Science, 5009:442-451, 2008.

[37] R. Janicki and W. W. Koczkodaj. A weak order solution to a group ranking

and consistency-driven pairwise comparisons. Applied Mathematics and Compu-

tation, 94(2-3):227-241, 1998.

[38] R. Janicki and A. Wassyng. Tabular expressions and their relational semantics.

Fundam. Inform., 67(4):343-370, 2005.

[39] P. Kaur and H. Singh. Certification process of software components. SIGSOFT

Softw. Eng. Notes, 33(4):1-6, 2008.

[40] F. G. Keith and I. Vertinsky. Antecedents to certification of software development

processes. In Standardization and Innovation in Information Technology, 2007.

SIlT 2007. 5th International Conference, pages 81-90, Oct. 2007.

[41] T. P. Kelly. Improvements in System Safety. Springer London.

[42] J. R. Kiniry, P. Chalin, and C. Hurlin. Integrating static checking and interactive

verifica.tion: Supporting multiple theories and provers in verification. Verified

Software: Theories, Tools, Experiments, 4171:153-160, 2008.

[43] R. Kluge, T. Hering, R. Belter, and B. Franczyk. An approach for matching

functional business requirements to standard application software packages via

ontology. In Computer Software and Applications, 2008. COMPSAC '08. 32nd

Annual IEEE International, pages 1017 -1022, Aug 2008.

79

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

[44] W. W. Koczkodaj. A new definition of consistency of pairwise comparisons.

Mathematical and computer modelling, 18(7):79-84, 1993.

[45] W. W. Koczkodaj. Statistically accurate evidence of improved error rate by

pairwise comparisons. Percept Mot Skills, 82:43-48, 1996.

[46] W. W. Koczkodaj and W. O. Mackakey. Mineral-positional assessment by

consistency-driven pairwise comparisons. Explor. Mining Geol., 6(1):23-33, 1997.

[47] W. W. Koczkodaj, M. Orlowski, L. Wallenius, and R. M. Wilson. A note on using

a consistency-driven approach to cd-rom selection. Library software review, 16

(1):4-11, 1997.

[48] H. Koziolek. Goal, question, metric. Lecture Notes in Computer Science, 4909:

39-42, May 29, 2008.

[49] C. W. Kurt. Software component certification: 10 useful distinctions,.

CMU/SEI-2004-TN-031J Carnegie Mellon University" 2004.

[50] A. M. Lazarevska, N. Fischer, A. Haarstrick, and K. MNnich. A multi-criteria

decision making conceptual approach to optimal landfill monitoring. GeoSpatial

Visual Analytics, pages 85-96, 2009.

[51] K. Lee and S. J. Lee. A quantitative evaluation model using the iso/iec 9126

quality model in the component based development process. Computational

Science and Its Applications, pages 917-926, 2006.

[52] T. Maibaum. Challenges in Software Certification, volume 4789. Springer Berlin

/ Heidelberg, 2007.

[53] T. Maibaum and A. Wassyng. A product-focused approach to software certifi

cation. Computer, 41(2):91-93, Feb. 2008.

80

I

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

[54] V. Mascardi, A. Locoro, and P. Rosso. Automatic ontology matching via upper

ontologies: A systematic evaluation. Knowledge and Data Engineering, IEEE

Transactions on, 22(5):609 -623, 2010.

[55] J. A. Mcquillan and J. F. Power. On the application of software metrics to uml

models. Lecture Notes in Computer Science, 4364:217-226, 2007.

[56] E. E. Mills. Metrics in the software engineering curriculum. Annals of Software

Engineering, 6:181-200, Oct. 28, 2004.

[57] S. B. Mokhtar, D. Fournier, N. Georgantas, and V. Issarny. Context-aware service

composition in pervasive computing environments. Lecture Notes in Computer

Science, pages 129-144, 2006.

[58] R. Moraes, J. Dures, E. Martins, and H. Madeira. Component-Based Software

Certification Based on Experimental Risk Assessment. Springer Berlin / Heidel

berg, 2007.

[59] J. Morris, G. Lee, K. Parker, G. A. Bundell, and Chiou Peng Lam. Software

component certification. Computer, 34(9):30-36, Sep 2001.

[60] Z. Nagy, G. Lukcsy, and P. Szeredi. Translating description logic queries to

prolog. Lecture Notes in Computer Science, 3819:168-182, 2006.

[61] J. Oh, D. Park, B. Lee, J. Lee, E. Hong, and C. Wu. Certification of Software

Packages Using Hierarchical Classification, volume 3026. 2004.

[62] G. O'Regan. Mathematical approaches to software quality. 2006.

[63] D. L. Parnas and P. C. Clements. A rational design process: How and why to

fake it. Proc. TAPSOFT Joint Conference on Theory and Practice of Software

Development, pages 25-29, 1985.

81

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

[64] D. K. Peters, M. Lawford, and W. B. Trancn. An ide for software development

using tabular expressions. Proceedings of the 2007 conference of the center for

advanced studies on Collaborative research, pages 248-251, 2007.

[65] A. Rae, P. Robert, and H. Hans-Ludwig. Software Evaluation for Certification.

McGraw-Hill, Inc., New York, NY, USA, 1st edition, 1994.

[66] K. Rangarajan, N. Swaminathan, V. Hegde, and J. Jacob. Product quality

framework: a vehicle for focusing on product quality goals. SIGSOFT Sojtw.

Eng. Notes, 26(4):77-82, 2001.

[67] R. Rao. Decision Making in the Manufacturing Environment. Springer London,

2008.

[68] J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-osgi: Distributed applications

through software modularization. Lecture Notes in Computer Science, pages

1-20, 2007.

[69] V. Roubtsov. Emma: a free java code coverage tool, april 2010,

http://emma.sourceforge.net/.

[70] D. Rubio. Pro Spring Dynamic Modules for OSGi Service Platforms. Apress,

2009.

[71] K. Sacha. Evaluation of expected software quality: Acustomers viewpoint. Fun

damental Approaches to Software Engineering, pages 170-183, 2006.

[72] H. P. Schnurr and J. Angele. ontoprise, nov. 2009, http://www .

ontoprise.de/en/home/ products/ontostudio.

[73] A. Seaborne. Jena tutorial a programmer's introduction to rdql, january 2010,

http://jena.sourceforge.net/tutorial/ RDQL.

82

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

[74J W. V. Siricharoen. A software engineering approach to comparing ontology

modeling with object modeling. In Computer Science and its Applications, 2008.

CSA '08. International Symposium, pages 320-325, 2008.

[75J 1. Sommerville. Software Engineering. Pearson Education Limited, Edinburgh

Gate, Harlow Essex, CM20 2JE, England, 8st edition, 2007.

[76J J. Souter. Process certification and product testing coming together. In Software

Quality Improvement Through Process Assessment, lEE Colloquium, pages 5/1-

5/6, Mar 1992.

[77J T. W. Swain and S. L. Scott. Model-Based Statistical Testing of a Cluster Utility,

volume 3514. Springer Berlin / Heidelberg, 2005.

[78J A. Taleghani. Using software model checking for software component certifica

tion. In Software Engineering - Companion, 2007. ICSE 2007 Companion. 29th

International Conference, pages 99-100, May 2007.

[79J L. L. Thurstone. Law of comparative judgements. Psychological Review, 34:

273-286.

[80J P. N. Tran and N. Boukhatem. Comparison of madm decision algorithms for

interface selection in heterogeneous wireless networks. pages 119-124, Sept. 2008.

[81] A. K. Tripathi and Ratneshwer. Some observations on a maturity model for cbse.

In Engineering of Complex Computer Systems, 2009 14th IEEE International

Conference, pages 273-281, June 2009.

[82J C. Tsinaraki, P. Polydoros, and S. Christodoulakis. Interoperability support

between mpeg-7/21 and owl in ds-mirf. Knowledge and Data Engineering, IEEE

Transactions, 19(2):219-232, 2007.

83

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

[83] H. van Kranenburg, M. S. Bargh, S. Iacob, and A. Peddemors. A context man

agement framework for supporting context-aware distributed applications. Com

munications Magazine) IEEE, 44(8):67-74, 2006.

[84] A. 1. Vermesan. Software certification for industry-verification and validation

issues in expert systems. Database and Expert Systems Applications, pages 3-14,

1998.

[85] J. Voas. The software quality certification triangle. The Journal of Defense

Software Engineering, 11(11):12-14, 1998.

[86] J. Voas and K. Miller. Software certification services: Encouraging trust and

reasonable expectations. IT Professional, 8(5):39-44, 2006.

[87] T. E. Vollman. Software quality assessment and standards. Computer, 26(6):

118-120, Jun 1993.

[88] M. Woodman, O. Benebiktsson, B. Lefever, and F. Stallinger. Issues of cbd

product quality and process quality. In Proc. of the 4th Workshop on Component

Based Software Engineering (CBSE)) Canada, 200l.

[89] J. H. Yahaya, A. Deraman, and A. R. Hamdan. Sefm_prod: A software product

certification model. In Information and Communication Technologies: From

Theory to Applications) 2008. ICTTA 2008. 3rd International Conference, pages

1-6, April 2008.

84

~

I
i Appendix A

Metric for assigning consistent
weights

In situations where it is difficult or infeasible to use an algorithm, we revert to the use

of heuristics in order to find solutions. There are a large number of attributes which

should be considered during the certification process. As projects evolve rapidly and

grow in complexity we need mechanisms to assign consistent weights to attributes

and properties. The pairwise comparison method is ideal for this task because it can

reduce inconsistencies while still maintaining some acceptable margin of error. This

chapter describes an approach on how to assign consistent weights to ontology classes

which are associated with attributes and properties. Once the inconsistency is mini-

mal, preferably not zero, the developed ontological model can be used as a dynamic

entity in the software certification process. It is very difficult and not advisable to

achieve zero inconsistency between all ontology classes [44J, [46J. In addition, the

Multiple Attribute Decision Making (MADM) method could be used to model the

scenario for ranking alternative plans in situation where one ore more experts are

present. Every expert provides one or more alternatives where the consistency of ev-

ery alternative is achieved by using the pairwise comparison (PC) method. The actual

ranking of alternative plans is accomplished by both the Simple Additive Weighting

(SAW) and the Weighted Product (WP) methods.

85

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

A.1 Pairwise comparison method

The pairwise comparison method was used for the first time in 1785 by Condorcet. He

was using this method in the election process where voters rank candidates based on

their preference [15]. The method was a voting system which used matrices for par

ticular pairwise comparisons with rows representing each candidate as a runner and

columns representing each candidate as an opponent. It was Fechner who specified

pairwise comparisons as a scientific method in 1860, although only from the psycho

metric perspective [25]. Thurstone, in 1927, provided a mathematical analysis of this

method and called it the law of comparative judgments [79]. The law of comparative

judgments can be used to scale a collection of attributes based on simple comparisons

between attributes taken two at a time. Although, Thurstone referred to it as a law,

it can be more appropriately identified as a measurement model which could be of im

portant use for software certification. This model allows experts to synthesize diverse

procedures involved in software certification. The hierarchy reduces the number of

comparisons from O(n2
) to approximately O(nln n), making it applicable to a wide

variety of problems. For example, a moderate case with 49 features would require

1,176 comparisons without a hierarchy and only 168 comparisons of these 49 features

are arranged into hierarchy by grouping seven features. Measurements of length such

as a meter or foot or by mass and weight are commonly used and accepted. Society

has become accustomed to have standards for the majority of tasks, and sometimes it

is difficult to understand standards, which often occur in the software industry, with

out an acceptable universal measuring method; In the case of software certification

many models may need to be developed for a single project. It is safe to conclude

that developing a, single certification model is not feasible al1d v/Quld not ,;t!ork for all

types of projects, because some projects have very little in common. In the context

of software certification, the introduction of a hierarchical ontological structure can

86

I

I

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

express the fundamental knowledge that could be used for the software evaluation

[46], [47], [37].

A.I.1 Demonstration of the analysis

Every class within the ontology is associated with an attribute and all its data. For

the purpose of demonstrating how to assign consistent weights to ontology classes

we will refer to an ontology class by the name of the attribute with which it is

associated with. The pairwise comparison method does not impose any limit on the

number of criteria. Setting the maximum number of entities on one level to seven is

accepted as heuristic, because seven items gives 21 distinct pairs to compare. The first

step of pairwise comparisons is to establish the relative preference of two criteria for

situations in which it is impractical or irrelevant to provide the absolute estimations.

The relative comparison coefficients aij for criteria G1 , G2 , ... , Gn are expected to

satisfy aii = 1 and aij = l/aji. The first constraint is related to comparing a given

attribute with itself. The second constraint is a consequence of the obvious fact that

x/y = 1/(y/x) for x, y -=I- o. A scale from 1 to 5, as demonstrated in Table A.l, is

used for expressing the importance of one attribute over others. This is accomplished

in a pair. Other scales also exists, but as described by [44] larger values lose meaning

in the comparison process.

Code

1
2
3
4
5
3.5 etc

Definition of intensity or importance

Equal or unknown importance
Weak importance of one over another
Moderate to essential importance
Demonstrated importance
Absolute importance
Intermediate importance

Table A.l: Comparison scale

87

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

The absolute estimations of the weights defining the importance of analyzed

software certification criteria are practically unobtainable through either statistical or

formal procedures. It would be beneficial to have experiments which may contribute

to the accuracy of the estimates. However, it is unrealistic to expect such experiments

to take place. This approach allows us to improve the processing of often subjective

expert assessments in the certification process. We propose the use of the following

comparison scale, that is demonstrated in Table A.1, for the subjective expression of

relative preference.

Reference Criterion G1 G2 G3 G4 G5 G6

G1 1 1 3.7 3 4 4.3
C1 Functionality G2 1 1 3 2 4 3.7
C2 Reliability G3 0.27 0.33 1 0.6 1 1.7
C3 Usability G4 0.33 0.5 1.6 1 2 2.1
C4 Efficiency G5 0.25 0.25 1 0.5 1 1
C5 Maintainability G6 0.23 0.27 0.58 0.47 1 1
C6 Portability

Figure A.1: Relative importance of considered software quality attributes

The values of relative importance, which are listed in the above table, have

been entered by a single person, solely for demonstration of the method, and deduced

from the comparison in pairs. In a real scenario, the values should be reasoned by

a team of experts. The attributes have been taken from the ISO/lEe 9126 software

standard. It is also known as the top six level attributes, which are considered to be

key attributes for the software quality [65].

In the pairwise comparisons method attributes are presented in pairs to one

or more experts. It is necessary to evaluate individual attributes, derive weights for

the attributes, construct the overall ratings of the alternatives, and to identify the

haet "'1+a"nat1'ua T a+e rlan"ta +ha a+t"I'h'U+a" hu A. An A ('11 1'" thP nurnhpr nf LfulJ LtlUv.1..1. vv, UVUIJ '-....lV.LV '-' U.J..V U.L "-' VVU "-'J ..(.Ll'J. ;t) •••).I...Ln \' ... u ..L,L,-/ ..L

compared attributes), their actual weights by 11,/2, ... ,In, and the matrix of the

ratios of all weights by r = [Ii/Ii]' The matrix of pairwise comparisons M = [aii]

88

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

represents the assessments between individual pairs of alternatives (Mi versus Mj , for

all i,j = 1,2, ... n) chosen usually from a given scale. The elements aij are considered

to be estimates of the ratios 'Yd'Yj, where 'Y is the vector of actual weights of the

attributes. All the ratios are positive and satisfy the reciprocity property aij = 1/ aji,

i, j = 1,2, ... , n. The inconsistency concept was explained in [12]. The distance

based inconsistency indicator is defined as the maximum over all triads {aik' akj, aij}

of elements of M (with all indices i, j, k distinct) of their inconsistency indicators. An

implementation is demonstrated in Algorithm 12.

Algorithm 12: Algorithm to compute maximum inconsistency and its position

Data: square inconsistent decision matrix M atrixA
Result: maxlnconsistency and max inconsistency positions: iPosition, jPosition and kPosition

1 begin
2 initialization
3 double maxInconsistency f- 0
4 double inconsistancyLocal f- 0
5 int iPosition f- 0, jPosition f- 0, kPosition f- 0

doubleD result f- new double[4] 6
7
8
9

10
11
12
13
14
15
16
17
18

computation
for int i f- 1 to i ~ MatrixA.length i++ do

for int j f- i + 1 to j ~ MatrixA.length j++ do
for int k f- j + 1 to k ~ MatrixA.length k++ do

inconsistancyLocal f- Math.max(
(1 - (MatrixA[i - l][k - 1] / (MatrixA[i - 1][j - 1]
* MatrixA[j - l][k - 1]))),
(1 - ((MatrixA[i - 1][j - 1] * MatrixA[j - l][k - 1])
/ M atrixA[i - l][k - 1])))
if inconsistancyLocal > maxlnconsistency then

I
maxlnconsistency f- inconsistancyLocal
iPosition f- i-I, jPosition f- j-l, kPosition f- k-l

19 end
20 end
21 end
22 end
23 result[O] f- maxInconsistency, result[l] f- iPosition,
24 result[2] f- jPosition, result[3] f- kPosition
25 return re-sult
26 end

Three is the minimal number of attributes which may cause inconsistency.

Comparing two attributes will often lead to inaccuracy. The distance based inconsis-

tency is the minimum distance from three ideal triads with no inconsistency when the

third value is substituted using the consistency condition aij x ajk = aik. Since we are

89

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

not in a position to determine which ratio is incorrect, all three assessments must be

reconsidered before we attempt finding a consistent approximation for a given pair

wise comparisons matrix. The stress on localizing the most inconsistent assessments

is expressed by adding the consistency-driven to the name of the method since it is

easier to remedy implications of an error when we are able to localize it. There is

no practical reason to continue decreasing the inconsistency indicator to zero. Only

the high values of the inconsistency indicator are considered as unacceptable and

harmful. A very small value, or zero, may indicate a faked result rather than a true

estimate. The practical challenge in working with the pairwise comparison method

comes from the lack of consistency of the pairwise comparisons matrices. Depending

on the model it may take some time to get the matrix consistent [46], [47], [37], [36].

A.1.2 Demonstration of the matrix adjustment

Assume the following attributes are considered for evaluation: safety, security, relia

bility, resilience, robustness, understand ability, testability, adaptability, modularity,

complexity, portability, usability, reusability, efficiency and learn ability. They are

considered by [75] as a general group of attributes for any software. All the entities

are subdivided into into two main categories, such as development and maintenance.

These groups are subdivided further and weights are assigned as demonstrated in

the Table A.2. It is safe to assume that some areas of software evolution are based

on intuition and experience. In situations where there is more than just one person

making decisions there is a greater possibility for inconsistency to occur. Industry

must rely on the subjective judgments of experts in situations where the practical

methods of measure are unknown [46], [47].

From Table A.2 lets evaluate the complexity, portability and reusability triad

where C1 = complexity, C2 = portability and C3 = reusability. This triad has an

90

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

root: 100%
development: 80% maintenance: 20%

efficiency: 15.18% modularity: 43.78% reliability: 21.05% usability: 10.56%
resilience: 7.85% complexity: 25.17% understand ability: 11.75% learn ability: 6.65%
robustness: 5.44% portability: 13.32% safety: 6.73% testability: 2.79%
adaptability: 1.89% reusability: 5.29% security: 2.57%

Table A.2: Redistribution before adjustment

C1 C2 C3 C1 C2 C3

C1

[
1 3 3

1
C1 [0;3 1.25 1.75

1
C2 0.33 1 4 C2 1 2
C3 0.33 0.25 1 C3 0.33 0.25 1

inconsistency = 0.75 inconsistency = 0.30

Figure A.2: Inconsistency analysis for a group with three attributes

inconsistency of 0.75. As described in [44] it is not recommended. According to [44]

the acceptable inconsistency is around 0.33. We have to adjust the values in order

to bring the inconsistency down. After the adjustment, and as it is demonstrated in

Figure A.2, the inconsistency has decreased to 0.30 which is more acceptable.

root: 100%
development: 80% maintenance: 20%

efficiency: 15.18% modularity: 43.78% reliability: 21.05% usability: 10.56%
resilience: 7.85 '10 complexity: 18.18% understand ability: 11.75'70 learn ability: 6.65%
robustness: 5.44% portability: 16.38% safety: 6.73% testability: 2.79%
adaptability: 1.89% reusability: 9.22% security: 2.57%

Table A.3: Redistribution after adjustment

In Table A.2 the weight of the attributes are allocated based on the signifi-

cance of the attribute, the most important criteria is complexity. After the correction

we can see a new percentage redistribution, which is shown in Table A.3. The re-

distribution could be evaluated and adjusted by many experts in order to achieve a

situation in which the redistribution is accepted by all experts. Compared to other

attributes complexity could be considered the most important criteria in the evalu-

91

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

ation process. The percentage redistribution is needed in order to dictate the work

load redistribution [30].

The consistency method is a preferred choice for the construction of the soft

ware certification models, because it eliminates a substantial amount of time which

could be allocated for discussions. Meetings are very expensive, an acceptable and

consistent model is the desired outcome after almost any meeting. The statistical ev

idence of the accuracy improvement with pairwise comparisons from approximately

15% to 5% for one dimensional case (randomly generated bars) in [45], and from

approximately 25% to 15% for randomly generated 2D shapes [1] support our expec

tations of improvement. However, it is not easy to collect data for statistical analysis.

A national repository (or a knowledge base) would help to do it. Different ontology

models could be developed for a single project, however it all depends on the com

plexity of the project. It is vital to remove inconsistency from the ontology model

while the judging committee is working on it. The pairwise comparison method also

can be easily adjusted to new environments and requirements.

A.2 Multiple attribute decision making

Multiple Attribute Decision Making (MADM) method could be used to model the

scenario for ranking alternative plans in situation where one ore more experts are

present. Every expert provides one or more alternative plans where the consistency

of every alternative is achieved through the use of the pairwise comparison (PC)

method. The actual ranking of alternative plans is accomplished by the Simple Ad

ditive Weighting (SAW) and the Weighted Product (WP) methods. The Multiple

i' ... ttribute Decision Making problem is formulated as follo-lNs: P = {PI, Pz, ... Pn } is a

finite collection of alternatives and C = {OI , 0 1 , ••. Om} is a finite collection of crite

na. The following steps could be taken during the construction of MADM problem:

92

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

research the project and identify areas of measure, refine areas of measure, identify

potential criteria, agree only on relevant criteria, discuss potential alternatives, make

judgments, eliminate infeasible and overlapping criteria, rank criteria and defined

appropriate metric or metrics for measurement [50]. The Simple Additive Weight

ing (SAW) and Weighted Product (WP) methods are applied to rank alternatives.

SAW method is one of the well know methods for solving Multiple Attribute Decision

Making Problems. This method uses the weighted sum of all criteria to compute the

overall score of an alternative. This is achieved by summing the normalized values of

every Xij i=1,2,oon j=1,2,oom and multiplying by the computed weight Wj j=1,2,oom.

The weight Wj is also known as importance weight and can be computed with Algo

rithm 15 [80], [67]. The normalization of every Xij is achieved through the pairwise

comparison (PC) method.

CI C2 Cm

PI Xl,l Xl,2 Xl,m

P2 X2,1 X2,2 X2,m x=
Pn Xn,1 X n ,2 xn,m

Figure A.3: Matrix for MADM problems [80]

A.2.1 Demonstration of the analysis

The following section describes how to assign consistent weights for the functional-

ity attribute. Based on the ISO 9126 standard, and as demonstrated in Table 4.1,

this attribute can be subdivided further into accuracy, compliance, interoperability,

security and suitability attributes. Assume there are two experts which provide their

judgments and assign preferences to attributes with the pairwise comparison method.

93

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Two judgments are demonstrated in Figure A.4. Let C1 = accuracy, C2 = compliance,

C3 = interoperability, C4 = security and C5 = suitability. For all decision matrices

the independent vector Wj is computed where j = l,2, .. m.

01 02 0 3 04 0 5 01 02 03 04 0 5

0 1

r 0\
2 2 2 2 0 1 1 0.5 1.5 2 1.5

O2 1 1.5 1.5 1.5 O2 2 1 2 3 2.5
El = 03 0.5 0.6 1 1.5 1.5 E2 = 0 3 0.6 0.5 1 1.5 1.5

04 0.5 0.6 0.6 1 1.5 04 0.5 0.33 0.6 1 1
0 5 0.5 0.6 0.6 0.6 1 0 5 0.6 0.4 0.6 1 1

0 1 O2 0 3 04 0 5 01 02 03 04 0 5

P1 [! 3 5 2 l] P1 [~
5 3 3 n E 1 = P2 2 3 3 E2 = P2 1 2 2

P3 5 4 2 P3 5 1 1

Figure A.4: Values assigned by two experts

The W = {W1, W2, .. Wj } vector represents subjective weights for the attributes

where 'L/;~1 Wj = 1 and every Wj :2: OVj. The individual decision matrices which are

shown in Figure A.4, and individual weight vectors will, serve as inputs to Algorithm

13 in order to calculate the group decision matrix Pg and the group weight vector wg .

The next step, after computing the group weight vector Wg and group decision

matrix Pg , is to rank the alternatives with the Simple Additive Weighting (SAVv) and

the Weighted Product (WP) method. Algorithm 14 demonstrates the implementation

of the SAW and WP methods. The final result after the ranking is shown in the Table

A.4. These methods are known to produce rankings which are not consistent. Both

methods are able to find a preferred alternative, but the rankings may not be the

same, other then the top alternative.

94

I
Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Algorithm 13: Algorithm to compute group weight vector and group decision
matrix

Data: number of alternatives: numberO f Alternatives, number of criteria numberO fCriteria, individual
weight vectors: WI, W2, Wm and individual decision matrices: PI, P2, Pm where m is the number of
experts

Result: group weight vector Wg and group decision matrix Pg
1 begin
2 Wg f- new double[numberO fCriteria]
3 double sum f- 0.0
4 for int i f- 0 to i < wg.length i++ do
5 for int k f- 1 to k <= numberO f Alternatives k++ do
6 I sum f- sum + Wk[i]
7 end
8 Wg [i] f- sum / numberO f Alternatives
9 sum f- 0.0

10 end
11 reinitialize sum f- 0.0
12 Pg f- new double [numberO f Alternatives][numberO fCriteria]
13 for int i f- 0 to i < numberO f Alternatives i++ do
14 for int j f- 0 to j < numberO fCriteria j++ do
15 for int k f- 1 to k <= numberOfAlternatives k++ do
16 I sum f- sum + Pk[i][j]
17 end
18 Pg[iW] f- sum / numberOfAlternatives
19 sum f- 0.0
20 end
21 end
22 return Wg and Pg
23 end

A.3 A simplified LSM for inconsistent matrices

The upcoming sections demonstrate an alternative algorithm to the proposed algo

rithm by Boz6ki et al. [11J. Under stronger conditions, with regards to inconsistency

and decreased accuracy, our proposed solutions run in seconds instead of days. As

such, they may be useful for researchers willing to use the least squares method

(LS M) instead of geometric means (G M) method.

Finding a consistent approximation for a given inconsistent pairwise com par-

isons (PC) matrix by the least squares method for an Euclidean metric was presented

in [11J. The inspiration for developing an alternative algorithm came from the entry

which indicated three days in Table 2 in [11J as the Central Processing Unit (CPU)

time required to compute a case of a matrix for n = 8. We concluded that many users

are too impatient to wait three days for the results to be computed. It is important to

mention here that in practice we need to change the values in the pairwise comparison

95

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Algorithm 14: Algorithm to rank alternatives with SAW and WP methods
Data: group weight vector Wg, group decision matrix Pg , number of alternatives: nurnberOfAlternatives,

number of criteria nurnberO fCriteria,
Result: Simple Additive Weighting ranking in vector rankingsaw and Weighted Product ranking in vector

rankingwp
1 begin
2 double sum f- 0.0
3 rankingsaw f- new double[nurnberO f Alternatives]
4 for int i f- 0 to i < nurnberO f Alternatives i+ + do
5 for int j f- 0 to j < nurnberO fCriteria j++ do
6 I sum f- sum + (wg [j] * Pg [i][j])
7 end
8 rankingsaw [i] f- sum
9 sum f- 0.0

10 end
11 double sum f- 1.0
12 rankingwp f- new double[nurnberO f Alternatives]
13 for int i f- 0 to i < nurnberO f Alternatives i++ do
14 for int j f- 0 to j < nurnberO fCriteria j++ do
15 I sum f- sum * (Math.pow(wg[j], Pg[i][j]))
16 end
17 rankingwp[i] f- sum
18 sum f- 1.0
19 end
20 end

Alternatives SAW
Value
3.6199
3.2525
2.4425

Ranking
1
2
3

WP
Value
3.100 .. E-13
2.721..E-12
1.897 .. E-9

Ranking
1
2
3

Table A.4: Ranking of three alternatives

matrix's upper triangle many times where fifty or more changes are not uncommon.

With each change requiring three days of computations, we would need one hundred

and fifty days more to complete the adjustment. As described in [11], some problems

may have multiple solutions. However, all known examples having their own distinct

solutions in real life situations is highly impossible. VIc are almost sure, and t;ubject

to further research, that multiple solutions may appear when high inconsistency is

present.

96

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

A.3.1 Practicality for the simplification

It is a realistic assumption that the pairwise comparisons method is predominantly

used for processing highly subjective assessments. Subjective assessments need this

method for processing. For processing measurements or objective data methods are

nearly always based on mathematical formulas, equations, partial differential equa

tions, or a system of linear equations. We decided to decrease the accuracy to two

significant figures, since subjective assessments do not reach one percent accuracy.

We recommend a geometric means (GM) solution as a starting point for better con

vergence since GM and LSM solutions are identical for fully consistent matrices and

they are not drastically different for matrices which have low inconsistency indicators

as described in [44]. In a situation where the low inconsistency does not guarantee

one solution or a unique solution, we can always select the one which is closest to GM

by the Euclidean distance, or revert to GM solution. The importance of the incon

sistency analysis and control was stressed in [44] but better presented in [12]. The

search for a very precise solution for a highly inconsistent pairwise comparisons ma

trix is not feasible, since the high inconsistency indicates the presence of contradictory

assessments.

A.3.2 Remarks about algorithm

The proposed simple algorithm has removed one big shortcoming of LSM which was

the substantial CPU time. For subjective assessments, high accuracy for a solution

is not important. Two significant digits give an accuracy of one percent. It is more

than sufficient for the input data often on a scale of 1 to 5 used by [441, 1 to 9

used by [11, 12] or 0 to 4 used by [19] and the distance-based inconsistency indicator

with the acceptable level assumed to be ~, as explained in [44]. It is difficult to

97

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

Algorithm 15: Simplified least squares method algorithm for inconsistent ma
trices

Data: square inconsistent M atrixA and precision - value
Result: consistent approximation for inconsistent pairwise comparisons (PC) matrix

1 begin
2 compute Geometric Means Vector (GMV)
3 compute Geometric Means Normalized Vector (GMVN)
4 generate search - space
5 delta f-precision - value
6 while search - space has more unexplored solutions do
7 current - solution f- next unexplored solution from search - space
8
9

10

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34

35
36 end
37 end

compute Geometric Means Vector (GMV)
compute Geometric Means Normalized Vector (GMVN)
compute MatrixB where for all i and j < GMVN.length if (i == j) MatrixB[iW] f- Ii else
< j) MatrixB[iW] f- GMVN[i] / GMVN[j]i if (i > j) MatrixB[iW] f- 1 / MatrixB[j][i]i
compute MatrixD f-(MatrixA - MatrixB)2
while current - solution is not fully explored do

end

entity f-get randomly from current - solution
add delta to entity, recompute M atrixB and M atrixD f-(M atrixA - M atrixB)2
while SumSQ is decreasing do
I add delta to entitYi recompute M atrixB and M atrixD f-(M atrixA - M atrixB)2

end
if SumSQ did not decrease then
I revert made changes

end
try subtraction, recompute MatrixB and MatrixD f-(MatrixA - MatrixB)2
while SumSQ is decreasing do

I
subtract delta from entitYi recompute M atrixB and M atrixD f-
(MatrixA - MatrixB)2

end
if SumSQ did not decrease then
I revert made changes

end
perform recursive call with delta f-delta/2, terminate if SumSQ did not decrease
if no addition and subtraction occurred then
I collect final computed value for entity

end
if SumSQ did not decrease then
I remove entity from the consideration

end

if (i

claim that our method may work for every pairwise comparison matrix, but it is fast,

within seconds instead of hours, for not inconsistent pairwise comparison matrices.

Inconsistent matrices have a tendency to appear in most real life problems. In order

to find the optimal solution the algorithm requires 3090 changes for n = 4 and 22,938

changes for n = 7.

98

I
Appendix B

The automation scripts and their
output

<?xml version="l. 0" encoding="ISO-8859-1" standalone="yes "?>
2 <project name="runualluscripts" default="run-all-scripts" basedir=".">
3 <property environment="env" />
4 <property file="${env. DEV _HOME} /modules_build/ common_build. properties" />
5 <!-- will execute all scripts within the system -->
6 <target name="run-all-scripts" description="runucertificationuscripts" >
7 <ant antfile="${system_cert. file}" inheritAll="false" inheritRefs="false"
8 target="validate-system" output="summary. txt" />
9 <ant antfile="${system_cert. file}" inheritAll="false" inheritRefs="false" target="mail" />

10 </target>
11 </project>

Listing B.1: A main automation script

1 <?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>
2 <project name="core_build" basedir=".">
3 <!-- load build variables -->
4 <property environment="env" />
5 <property file=" ${basedir}/ common_build. properties" />
6 <!-- clean target -->
7 <target name="clean" description="ucleanutarget">
8 <delete dir="${bin.dir}" />
9 <delete dir="${lib.dir}" />

10 <delete dir="${@dot.dir}" />
11 <delete dir="${test.dir}" />
12 <delete dir="${build}" />
13 <delete dir="${junit.results.dir}" />
14 <delete dir="${reports.dir}" />
15 <delete>
16 <fileset dir="${basedir}" includes="*.log" />
17 </delete>
18 </target>
19 <!-- compile target -->
20 <target name="compile" description="ucompileutarget">
21 <mkdir dir="${bin.dir}" />
22 <javac srcdir=" ${src . dir}" destdir=" ${bin . dir}" nowarn=" ${nowarn}" debug=" ${de bug}"
23 optimize="${optimize}" deprecation="${deprecation}" target="${target}"
24 verbose="${ verbose}" depend=" ${depend}" includeAntRuntime=" ${includeAntRuntime}"

99

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

25 includeJ avaRuntime=" ${includeJ avaRuntime}" failonerror=" ${f ailonerror}"
26 source="${source}">
27 <classpath refid="module. classpath" I>
28 </javac>
29 <copy todir="${bin.dir}" includeEmptyDirs="no">
30 <fileset dir="${src.dir}">
31 <include name="**/*.properties" I>
32 <include name="**/*.ddl" I>
33 <include name="**/*. txt" I>
34 <exclude name="**/. svn" I>
35 < lfileset >
36 </copy>
37 </target>
38 <!-- package target -->
39 <target name="package" description="upackageutarget">
40 <mkdir dir="${lib.dir}" I>
41 <jar jarfile="${lib.dir}/${archive.name}">
42 <fileset dir="${bin.dir}">
43 <include name="**/*. class" I>
44 <include name="**/*. properties" I>
45 <include name="**/*.ddl" I>
46 <include name="**/*. txt" I>
47 <exclude name="**/test/" I>
48 < I fileset >
49 <manifest>
50 <attribute name="Vendor" value="DEV" I>
51 < Imanifest >
52 < I jar>
53 </target>
54 <!-- deploy module jar -->
55 <target name="deploy" description="deploYuffioduleujar">
56 <echo level="warning" message="deploYuIDoduleujar" I>
57 <copy file="${lib.dir}/${archive.name}" todir="${plugin.lib.dir}" I>
58 </target>
59 <!-- emma run -->
60 <path id="emma.lib">
61 <fileset dir="${emma.dir}">
62 <include name="*.jar" I>
63 </fileset>
64 </path>
65 <path id="emma. coverage. classes">
66 <pathelement location="${bin. dir}" I>
67 </path>
68 <taskdef resource="emma_ant. properties" classpathref="emma.lib" I>
69 <target name="emma" description="turnsuonuEMMA' suinstrumentationuforureporting" >
70 <property name="emma. enabled" value="true" I>
71 <mkdir dir="${instr.dir}" I>
72 <property name="emma.filter" value="" I>
73 </target>
74 <!-- testing -->
75 <target name="test" depends="emma" description="testuprimoucore_database">
76 <echo level="warning" message="testingumodule" I>
77 <emma enabled="${emma.enabled}">
78 <instr instrpathref=" emma. coverage. clas ses" destdir=" ${instr . dir}"
79 metadatafile=" ${ coverage. dir} /metadata. emma" merge=" true" >
80 <filter value="${emma.filter}" I>
81 </instr>
82 <lemma>
83 <junit printsummary="yes" forkmode="perBatch" haltonfailure="no" haltonerror="no"
84 includeantruntime="true" fork="true" dir="${basedir}" failureProperty="test. failure">
85 <classpath>
86 <pathelement location="${instr.dir}" I>
87 <path refid="emma.lib" I>
88 <path refid="module.classpath" I>
89 </classpath>
90 <formatter type="brief" usefile="false" I>

100

i

~

I
I

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

<batchtest fork="yes">
<fileset dir=" ${instr . dir}" >

<include name="**I*UT. class" I>
<include name="**I*FT.class" I>

</fileset>
</batchtest>
<jvmarg value="-Demma. coverage. out. file=${coverage. dir}1 coverage. emma" I>
<jvmarg value="-Demma. coverage .out.merge=false" I>

<fjunit>
<fail message="testufailed" if="test.failure" I>
<emma enabled="${emma. enabled}">

<report sourcepath=" src" sort=" +block, +name ,+method, +clas s"
metrics="method:70, block: 80 ,line: 80, class: 100">
<fileset dir="${coverage. dir}">

<include name="*.emma" I>
</fileset>
<html outfile="${coverage. dir}1 coverage. html" depth="method"

columns="name, class, method, block, line" I>
</report>

<lemma>
</target>
<!-- test for caverage report -->
<target name="test-for-cav-report">

<mkdir dir="${build.java}" I>
<mkdir dir="${build.test}" I>
<mkdir dir="${junit.results.dir}" I>
<mkdir dir="${reports.dir}/jfeature" I>
<javac srcdir="${src. test}" destdir="${build. test}">

<ciasspath refid="module. classpath" I>
<ciasspath location="${build.java}" I>

</javac>
<junit printsummary="true">

<ciasspath location="${build. test}" I>
<ciasspath location="${build. java}" I>
<ciasspath location="webapp" I>
<ciasspath>

<fileset dir="${thirdparty. dir}/net. technobuff .jfeature/lib">
<include name="**I*. jar" I>

</fileset>
</ciasspath>
<formatter type="xml" I>
<batchtest fork="yes" haltonerror="false" haltonfailure="false"

todir="${juni t. results. dir}">
<fileset dir="${src. test}">

<include name="**I*UT. java" I>
</fileset>

</batchtest>
<fjunit>

< Itarget >
<target name=" generate-caver age-report " description=" generateucaverageureport" >

<taskdef name=" jfeaturecoveragereport"
ciassname="net. techno buff. jfeature. ant. task. JFeatureCoverageReportTask" >
<ciasspath>

<pathelement path=" ${ thirdparty. dir} Inet . techno buff . jfeature" I>
<fileset dir="${thirdparty. dir}/net. technobuff. jfeature">

<include name="**I*. jar" I>
</filcsct>

</ciasspath>
</taskdef>
<jfeaturecoveragereport testresultsdir=" ${j uni t . resul ts . dir}"

todir=" ${report s . dir} I j feature" format= "html" >
<requirementsfileset dir="${basedir} Irequirements" >

<include name="**I*. jrq" I>
</requirementsfileset>

</jfeaturecoveragereport>
</target>

101

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

157 </project>

Listing B.2: A cornman autornaLion script which is used by all components

1 <?xml version=" 1. 0" encoding="ISO-8859-1" standalone="yes"?>
2 <project name="lsm" default="all" basedir=". ">
3 <!-- define build properties -->
4 <property environment="env" />

<property file=" ${env. DEV _HOME} /modules_build/ common_build. properties" />
6 <property name="src.dir" value="${basedir}/src" />
7 <property name="bin.dir" value="${basedir}/bin" />
8 <property name="@dot.dir" value="${basedir}/@dot" />

<property name="lib. dir" value="${basedir}/lib" />
10 <property name="plugin.lib.dir" value="${basedir}/deployment" />
11 <property name="archive.name" value="lsm.jar" />
12 <property name="src.java" value="${basedir}/src" />
13 <property name="src. test" value="${basedir}/src" />
14 <property name="build" value="build" />
15 <property name="build.java" value="${build}/java" />
16 <property name="build.test" value="${build}/test" />
17 <property name="junit.results.dir" value="${basedir}/junit-results" />
18 <property name="reports. dir" value=" ${basedir} / caverage-report" />
19 <!-- emma -->
20 <property name="coverage. dir" value="${basedir}/temp/emma/reports/emma" />
21 <property name="instr.dir" value="${basedir}/temp/emma/target/emmainstr" />
22 <property name="emma.dir" value="${thirdparty.dir}/emma" />
23 <!-- clean Ism -->
24 <target name="clean" description="cleanulsm">
25 <echo level="warning" message="cleaningulsm" />
26 <ant antfile="${common. build. file}" inheritAl1="true" inheritRefs="true" target="clean" />
27 </target>
28 <!-- classpath dependencies for Ism -->
29 <path id="production. classpath" >
30 <pathelement location="${thirdparty. dir}/log4j/log4j. jar" />
31 <pathelement location="${thirdparty.dir}/ant/ant-1.6.5.jar" />
32 <pathelement location="${basedir}/ .. /ContextInterface/lib/ context_interface. jar" />
33 <pathelement location=
34 "${ thirdparty. dir}/equinox/org. apache. commons . logging_i. 0.4. v200706111724. jar" />
35 <pathelement location=
36 "${ thirdparty. dir}/ equinox/ org. eclipse. equinox. ds_1. 0.0. v20070226. jar" />
37 <pathelement location=
38 "${ thirdparty. dir}/equinox/org. eclipse. equinox. event_i. 0.100. v20070516. jar" />
39 <pathelement location=
40 "${ thirdparty. dir}/ equinox/ org. eclipse. equinox .1og_1. 0 .100. v20070226. jar" />
41 <pathelement location=
42 "${thirdparty. dir}/equinox/org. eclipse .osgi. services_3 .1. 200. v20070605. jar" />
43 <pathelement location=" ${ thirdparty. dir} / equinox/ org. eclipse. osgi_3. 3.0. v20070530. jar" />
44 </path>
45 <path id="testing. classpath" >
46 <pathelement location="${basedir}/bin" />
47 <pathelement location="${thirdparty .dir}/net. technobuff. jfeature/lib/junit .jar" />
48 </path>
49 <path id="module. classpath" >
50 <path refid="production. classpath" />
51 <path refid="testing.classpath" />
52 </path>
53 <!-- compile Ism -->
54 <target name="compile" description=!lcompileulsm">
55 <echo level="warning" message="compilingulsm" />
56 <ant antfile="${common. build. file}" inheritAll="true" inheritRefs="true" target="compile" />
57 </target>
58 <!-- package Ism -->
59 <target name="package" description="packageulsm">

102

j

I

1
I

I
i

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

<echo level="warning" message="packagingulsm" />
<ant antfile=" ${ common. build. file}" inheritAll= "true" inheritRefs=" true" target= "package" />

</target>
<!-- deploying jars -->
<target name="deploy" description="deploYulsm' sujars">

<echo level="warning" message="deployingulsm' suj ars" />
<delete file="${plugin. lib. dir}/${archive.name}" />
<ant antfile=" ${ Common. build. file}" inheritAll= "true" inheritRefs=" true" target=" deploy" />

</target>
<!-- test Ism -->
<target name="test" description="testulsm">

<echo level="warning" message="testingulsm" />
<ant antfile="${common. build. file}" inheritAll="true" inheritRefs="true" target="test" />

</target>
<!-- test caverage report for Ism -->
<target name="test-for-cav-report" description="testuforucaverageureportuforu1sm">

<echo level="warning" message="testinguforucaverageureport" />
<ant antfile=" ${ common. build. file}" inheritAll= "true" inheritRefs=" true"

target="test-for-cav-report" />
</target>
<!-- generate caverage report for Ism-->
<target name="generate-caverage-report" description="generateucaverageureportuforulsm">

<echo level="warning" message="generatingucaverageureportuforulsm" />
<ant antfile=" ${ common. build. file}" inheritAll= "true" inheritRefs=" true"

target=" generate-caverage-report" />
</target>
<!-- clean, compile, package, test, test for caverage report and generate caverage report for Ism -->
<target nan"le=lIallll
depends=" clean , compile ,package ,test ,test-for-cav-report ,generate-caverage-report"
description=" clean, ucompi1e ,upackage ,utest, utestuforucaveureport, ugenerateucaverageureport" >
<echo level="warning"
message=" clean, ucompile, upackage, utest, testuforucavureport, ugeneratingucaverageureport" />
</target>

</project>

Listing B.3: An upper level automation script for the component

<?xml version="l. 0" encoding="ISO-8859-1" standalone="yes "?>
2 <project name="Validateusystem" default="validate-system" basedir=". ">
3 <property environment="env" />
4 <property file="${env. DEV _HOME} /modules_build/ common_build. properties" />
5 <!-- run cert system -->
6 <target name="validate-system" description="certusystem">
7 <echo level="warning" message="------------" />
8 <echo level="warning" message="CERTuSYSTEM" />
9 <echo level="warning" message="------------" />

10 <ant dir=" ${basedir} / . ./ Context Reasoner" antfile=" context _reasoner _build. xml "
11 inheritAll="false" target="all" />
12 <ant dir="${basedir}/ . ./Contextlnterface" antfile="context_interface_build. xml"
13 inheritAll="fa1se" target="al1" />
14 <ant dir="${basedir}/ . ./LSM_for _inconsistent_matrices" antfile="lsm_build. xml"
15 inheritAll="fa1se" target="a11" />
16 <ant dir=" ${basedir} / . ./ Context Reasoner " antfile=" certif i cation_ s cri pt . xm1 "
17 inheritAll="false" target="all" />
18 <echo message="VALIDATION:uPASS" />
19 </target>
20 <target name="mail">
21 <Ioadfile property="message .log" srcFile="summary. txt" />
22 <condition property="condition">
23 <contains string="${message .log}" substring="VALIDATION:uPASS" casesensitive="true" />
24 </condition>
25 <antcall target="passed" />
26 <antcall target="failed" />

103

Master Thesis ~ Volodymyr Babiy McMaster ~ Computing and Software

27 </target>
28 <target name="passed" if="condition">
29 <loadfile property="change.log" srcFile="summary.txt" />
30 <mail mailhost="univmail. cis .mcmaster. ca" mailport="25" subject="VALIDATION: uPASS">
31 <from address="babiyv@univmail.cis.mcmaster.ca" />
32 <reply to address="babiyv@univmail.cis.mcmaster.ca" />
33 <to address="babiyv@univmail.cis.mcmaster.ca" />
34 <message>The build was successful.
35 ${ change.log}
36 </message>
37 </mail>
38 </target>
39 <target name="failed" unless="condition">
40 <loadfile property="message .log" srcFile=" summary . txt" />
41 <mail mailhost="univmail. cis .mcmaster. ca" mailport="25" subject="VALIDATION: uFAILEO">
42 <from address="babiyv@univmail.cis.mcmaster.ca" />
43 <replyto address="babiyv@univmail.cis.mcmaster.ca" />
44 <to address="babiyv@univmail. cis. mcmaster. ca" />
45 <message>${ message.log} </message>
46 </mail>
47 </target>
48 </project>

Listing B.4: An upper level automation script for the framework management

1 <?xml version=" 1. 0" encoding="ISO-8859-1" standalone="yes"?>
2 <project name="certificationuscript" default="all" basedir=". ">
3 <!-- define build properties -->
4 <property environment="env" />
5 <property file=" ${env. DEV _HOME}/modules_build/ common_build. properties" />
6 <property name="archive.name" value="context_reasoner.jar" />
7 <!-- classpath dependencies for certification script -->
8 <path id="production. classpath">
9 <pathelement location="${thirdparty.dir}/log4j/log4j .jar" />

10 <path element location=" ${ thirdparty . dir} / anti ant-1. 6 . 5 . jar" / >
11 <pathelement location=" ${ thirdparty. dir} / Jena-2. 6.2/ j ena-2. 6. 2-sources . jar" />
12 <pathelement location=" ${ thirdparty. dir} / Jena-2. 6. 2/lib/arq-2. 8.1. jar" />
13 <pathelement location=" ${thirdparty. dir} / Jena-2. 6. 2/lib/icu4j -3.4.4. jar" />
14 <pathelement location="${thirdparty. dir}/ Jena-2. 6. 2/lib/iri -0.7. j ar" />
15 <pathelement location=" ${ thirdparty. dir} / Jena-2. 6. 2/lib/ j ena-2. 6.2. jar" />
16 <pathelement location="${thirdparty. dir}/ Jena-2. 6. 2/lib/jena-2. 6. 2-tests. j ar" />
17 <pathelement location=" ${ thirdparty . dir} / J ena -2.6. 2/li b/ j unit-4 . 5 . jar" />
18 <pathelement location="${thirdparty. dir}/ Jena-2. 6. 2/lib/log4j -1.2.13. jar" />
19 <pathelement location="${thirdparty. dir}/ Jena-2. 6. 2/lib/lucene-core-2. 3.1. j ar" />
20 <pathelement location="${thirdparty. dir}/ Jena-2 .6.2/lib/slf4j-api-1.5. 6. jar" />
21 <pathelement location="${thirdparty. dir}/ Jena-2.6.2/lib/slf4j-log4j 12-1. 5. 6. jar" />
22 <pathelement location=" ${ thirdparty. dir} / Jena-2. 6. 2/lib/ stax-api -1. O. 1. j ar" />
23 <pathelement location="${thirdparty. dir}/ Jena-2. 6. 2/lib/wstx-asl-3. 2.9. j ar" />
24 <pathelement location="${thirdparty. dir}/ Jena-2.6 .2/lib/xerceslmpl-2. 7 .1. jar" />
25 </path>
26 <path id="testing.classpath">
27 <pathelement location="${basedir}/bin" />
28 <pathelement location="${env. DEV _HOME}/ContextReasoner/lib/${archive. name}" />
29 </path>
30 <path id="module. classpath" >
31 <path refid="production. classpath" />
32 <path refid="testing.classpath" />
33 </path>
34 <!-- target will compute certification level of the product -->
35 <target name="product-certification-level"
36 description=" computeucertifi cat ionuleveluofu theuproduct" >
37 <taskdef name="productCertificationLevel"
38 classname="ContextReasoner. Internal. Certification. ReportCertLevel" >

104

~
I

I

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

<classpath refid="module. classpath" />
</taskdef>
<productCertificationLevel />

</target>
<!-- target will compute completeness levels of the components -->
<target name=" components-completeness-levels"

description=" computeucompletenes suleveluofutheucomponent s" >
<taskdef name=" components-completeness-levels"

classname="ContextReasoner. Internal. Certification. ReportCompletenessLevel" >
<classpath refid="module. classpath" />

</taskdef>
<components-completeness-levels />

</target>
<!-- target will compute conformance levels of the components -->
<target name=" components-conformance-levels"

description=" computeuconformanceulevelsuof utheucomponents" >
<taskdef name=" components-conformance-levels"

classname="ContextReasoner. Internal. Certification. ReportConformanceLevel" >
<classpath refid="module. classpath" />

</taskdef>
<components-conformance-Ievels />

</target>
<!-- target will compute uniformity levels of the components -->

62 <target name="components-uniformi ty-levels"
63 description=" computeuuniformi tYulevelsuofutheucomponents" >
64 <taskdef name=" components-uniformi ty-levels"
65 classname="ContextReasoner. Internal. Certification. ReportUniformityLevel" >
66 <classpath refid="module. classpath" />
67 </taskdef>
68 <components-uniformity-Ievels />
69 </target>
70 <target name="all" description="willuexecuteuallutheutargetsu">
71 <echo level="warning" message="willuexecuteuallutheutargetsu" />
72 <antcall target=" components- completeness-levels" />
73 <antcall target=" components-conformance-levels" />
74 <antcall target=" components-uniformity-levels" (>
75 <antcall target="product-certification-level" (>
76 </target>
77 «project>

Listing B.5: A product certification script

The listing below shows the complete output as it is being reported by the

automation system. This is the verbose report which is being automatically emailed

to the appropriate individual.

1 validate-system:
2 [echo] ------------
3 [echo] CERT SYSTEM
4 [echo] ------------
5 clean:
6 [echo] cleaning context reasoner
7 clean:
8 [delete] Deleting directory E:\coding\workspace\ContextReasoner\bin
9 [delete] Deleting directory E:\coding\workspace\ContextReasoner\lib

10 [delete] Deleting directory E:\coding\workspace\ContextReasoner\temp
11 [delete] Deleting directory E:\coding\workspace\ContextReasoner\build
12 [delete] Deleting directory E:\coding\ workspace\ ContextReasoner\junit-results
13 [delete] Deleting directory E: \coding\ workspace\ ContextReasoner\caverage-report
14 compile:

105

Mastel' Thesis ~ Volodymyl' Babiy McMastel' ~ Computing and Softwal'e

15 [echo] compiling context reasoner
16 compile:
17 [mkdir] Created dir: E:\coding\workspace\ContextReasoner\bin
18 [javac] Compiling 29 source files to E:\coding\workspace\ContextReasoner\bin
19 package:
20 [echo] packaging context reasoner
21 package:
22 [mkdir] Created dir: E:\coding\workspace\ContextReasoner\lib
23 [jar] Building jar: E:\coding\ workspace\ContextReasoner\lib\contexLreasoner.jar
24 test:
25 [echo] testing context reasoner
26 emma:
27 [mkdir] Created dir: E: \coding\ workspace\ ContextReasoner\ temp \emma \ target\emmainstr
28 test:
29 [echo] testing module
30 [instr] processing instrumentation path ...
31 [instr] instrumentation path processed in 688 ms
32 [instr] [58 class(es) instrumented, ° resource(s) copied]
33 [instr] metadata merged into [E:\coding\workspace\ContextReasoner
34 \temp\emma\reports\emma\metadata.emma] {in 328 ms}
35 [junit] Running ContextReasoner.lnternal.Test.ProductUT
36 [junit] Testsuite: ContextReasoner.lnternal.Test.ProductUT
37 [junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0.015 sec
38 [junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0.015 sec
39 [junit]
40 [junit] ------------- Standard Output ---------------
41 [junit] EMMA: collecting runtime coverage data ...
42 [junit] ------------- ---------------- ---------------
43 [report] processing input files ...
44 [report] 2 file(s) read and merged in 16 ms
45 [report] writing [html] report to [E:\coding\workspace\ContextReasoner
46 \ temp \emma \reports\emma \coverage.html]
47 test-for-cav-report:
48 [echo] testing for caverage report
49 test-for-cav-report:
50 [mkdir] Created dir: E: \coding\ workspace\ ContextReasoner\build\java
51 [mkdir] Created dir: E:\coding\workspace\ContextReasoner\build\test
52 [mkdir] Created dir: E:\coding\workspace\ContextReasoner\junit-results
53 [mkdir] Created dir: E: \coding\ workspace\ ContextReasoner\caverage-report \jfeature
54 [javac] Compiling 29 source files to E:\coding\workspace\ContextReasoner\build\test
55 [junit] Running ContextReasoner.lnternal.Test.ProductUT
56 [junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0.531 sec
57 generate-caverage-report:
58 [echo] generating caverage report for context reasoner
59 generate-caverage-report:
60 [jfeaturecoveragereport] Generating requirement coverage report under "E: \coding

u9i!Juuuuu \workspace \ContextReasoner / caver age-report/ j feature" ... Done
62 all:
63 [echo] cleaning, compiling, packaging, testing, testing for caverage report
64 and generating caverage report for context reasoner
65 clean:
66 [echo] cleaning context interface
67 clean:
68 [delete] Deleting directory E:\coding\workspace\ContextInterface\bin
69 [delete] Deleting directory E:\coding\workspace\ContextInterface\lib
70 [delete] Deleting directory E:\coding\workspace\ContextInterface\temp
71 [delete] Deleting directory E:\coding\workspace\Contextlnterface\build
72 [delete] Deleting directory E:\coding\ workspace\ ContextInterface\junit-results
73 [delete] Deleting directory E:\coding\ workspace\ ContextInterface\caverage-report
74 compile:
75 [echo] compiling context interface
76 compile:
77 [mkdir] Created dir: E:\coding\workspace\ContextInterface\bin
78 [javac] Compiling 3 source files to E:\coding\workspace\ContextInterface\bin
79 package:
80 [echo] packaging context interface

106

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

81 package:
82 [mkdir] Created dir: E:\coding\workspace\Contextlnterface\lib
83 [jar] Building jar: E:\coding\ workspace\ ContextInterface\lib\context..interface.jar
84 test:
85 [echo] testing context interface
86 emma:
87 [mkdir] Created dir: E: \ coding\ workspace \ ContextInterface \ temp \ emma \ target \ emmainstr
88 test:
89 [echo] testing module
90 [instr] processing instrumentation path ...
91 [instr] instrumentation path processed in 204 ms
92 [instr] [2 class(es) instrumented, 0 resource(s) copied]
93 [instr] metadata merged into [E:\coding\workspace\Contextlnterface\temp
94 \emma\reports\emma\metadata.emma] {in 63 ms}
95 [junit] Running Contextlnterface.InternaI.Test.ContextlnterfaceUT
96 [junit] Testsuite: ContextInterface.InternaI.Test.ContextInterfaceUT
97 [junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0.016 sec
98 [junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0.016 sec
99 [junit]

100 [junit] ------------- Standard Output ---------------
101 [junit] EMMA: collecting runtime coverage data ...
102 [junit] ------------- ---------------- ---------------
103 [report] processing input files ...
104 [report] 2 file(s) read and merged in 0 ms
105 [report] writing [html] report to [E:\coding\workspace\Contextlnterface
106 \temp\emma\reports\emma\coverage.html] ...
107 test-for-cav-report:
108 [echo] testing for caverage report
109 test-for-cav-report:
110 [mkdir] Created dir: E:\coding\workspace\Contextlnterface\build\java
111 [mkdir] Created dir: E:\coding\workspace\ContextInterface\build\test
112 [mkdir] Created dir: E:\coding\ workspace\ Contextlnterface\junit-results
113 [mkdir] Created dir: E:\coding\ workspace\ Contextlnterface\caverage-report\jfeature
114 [javac] Compiling 3 source files to E:\coding\workspace\Contextlnterface\build\test
115 [junit] Running ContextInterface.InternaI.Test.ContextlnterfaceUT
116 [junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0.078 sec
117 generate-caverage-report:
118 [echo] generating caverage report for context interface
119 generate-caverage-report:
120 [jfeaturecoveragereport] Generating requirement coverage report under
121 "E: \coding\workspace\Contextlnterface/ caverage-report/jfeature" ... Done
122 all:
123 [echo] cleaning, compiling, packaging, testing, testing for caverage
124 report and generating caver age report for context interface
125 clean:
126 [echo] cleaning Ism
127 clean:
128 [delete] Deleting directory E: \coding\ workspace\LSMJor ..inconsistent_matrices\ bin
129 [delete] Deleting directory E:\coding\ workspace\LSMJor..inconsistentJllatrices\lib
130 [delete] Deleting directory E:\coding\ workspace\LSMJor..inconsistentJl1atrices\ temp
131 [delete] Deleting directory E:\coding\workspace\LSMJor..inconsistentJl1atrices\build
132 [delete] Deleting directory E:\coding\ workspace\LSMJor..inconsistentJl1atrices\junit-results
133 [delete] Deleting directory E: \ coding\ \vorkspace \LS1\.1Jor -inconsistent-tllatrices \ caVerage-report
134 compile:
135 [echo] compiling Ism
136 compile:
137 [mkdir] Created dir: E:\coding\ workspace\LSMJor..inconsistentJl1atrices\bin
138 [javac] Compiling 15 source files to E:\coding\workspace\LSMJor..inconsistentJl1atrices\bin
139 package:
140 [echo] packaging Ism
141 package:
142 [mkdir] Created dir: E:\coding\workspace\LSMJor..inconsistentJl1atrices\lib
143 [jar] Building jar: E:\coding\workspace\LSMJor..inconsistentJl1atrices\lib\lsm.jar
144 test:
145 [echo] testing Ism
146 emma:

107

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

147 [mkdir] Created dir: E: \coding\ workspace\LSM.lodnconsistent..matrices\ temp \emma \target\emmainstr
148 test:
149 [echo] testing module
150 [instr] processing instrumentation path ...
151 [instr] instrumentation path processed in 484 ms
152 [instr] [14 class(es) instrumented, 0 resource(s) copied]
153 [instr] metadata merged into [E:\coding\workspace\LSM.lor~nconsistent .. matrices
154 \temp\emma\reports\emma\metadata.emma] {in 141 ms}
155 [junit] Running PairwiseComparison.lnternal.Test.InconsistancyCalculatorUT
156 [junit] Testsuite: PairwiseComparison.lnternal.Test.InconsistancyCalculatorUT
157 [junit] Tests run: I, Failures: 0, Errors: 0, Time elapsed: 0.016 sec
158 [junit] Tests run: I, Failures: 0, Errors: 0, Time elapsed: 0.016 sec
159 [junit]
160 [junit] ------------- Standard Output ---------------
161 [junit] EMMA: collecting runtime coverage data ...
162 [junit] ------------- ---------------- ---------------
163 [junit] Running PairwiseComparison.Internal.Test.MainUT
164 [junit] Testsuite: PairwiseComparison.Internal.Test.MainUT
165 [junit] Tests run: I, Failures: 0, Errors: 0, Time elapsed: 0 sec
166 [junit] Tests run: I, Failures: 0, Errors: 0, Time elapsed: 0 sec
167 [junit]
168 [junit] Running PairwiseComparison.Internal.Test.PairwiseComparison UT
169 [junit] Testsuite: PairwiseComparison.lnternal.Test.PairwiseComparisonUT
170 [junit] Tests run: I, Failures: 0, Errors: 0, Time elapsed: 0 sec
171 [junit] Tests run: I, Failures: 0, Errors: 0, Time elapsed: 0 sec
172 [junit]
173 [junit] Running PairwiseComparison.Internal.Test.StatusUT
174 [junit] Testsuite: PairwiseComparison.Internal.Test.StatusUT
175 [junit] Tests run: I, Failures: 0, Errors: 0, Time elapsed: 0.016 sec
176 [junit] Tests run: I, Failures: 0, Errors: 0, Time elapsed: 0.016 sec
177 [junit]
178 [junit] Running PairwiseComparison.Internal.Test.TriadUT
179 [junit] Testsuite: PairwiseComparison.lnternal.Test.TriadUT
180 [junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.015 sec
181 [junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.015 sec
182 [junit]
183 [junit] Running PairwiseComparison.Internal.Test.VectorUT
184 [junit] Testsuite: PairwiseComparison.Internal.Test.VectorUT
185 [junit] Tests run: I, Failures: 0, Errors: 0, Time elapsed: 0 sec
186 [junit] Tests run: I, Failures: 0, Errors: 0, Time elapsed: 0 sec
187 [junit]
188 [report] processing input files ...
189 [report] 2 file(s) read and merged in 0 ms
190 [report] writing [html] report to [E:\coding\workspace\LSM.lodnconsistent..matrices
191 \temp\emma\reports\emma\coverage.html] ...
192 test-for-cav-report:
193 [echo] testing for caverage report
194 test-for-cav-report:
195 [mkdir] Created dir: E: \coding\ workspace\LSM.lodnconsistent..matrices\build\java
196 [mkdir] Created dir: E: \coding\ workspace\LSM.lodnconsistent..matrices\build\ test
197 [mkdir] Created dir: E: \coding\ workspace\LSM.lodnconsistent .. matrices\junit-results
198 [mkdir] Created dir: E: \coding\ workspace\LSM.lorJnconsistent..matrices\caverage-report\jfeature
199 [javac] Compiling 15 source files to E:\coding\workspace\LSM.lorJnconsistent..matrices\build\test
200 [junit] Running PairwiseComparison.Internal.Test.InconsistancyCalculatorUT
201 [junit] Tests run: I, Failures: 0, Errors: 0, Time elapsed: 0.469 sec
202 [junit] Running PairwiseComparison.Internal.Test.MainUT
203 [junit] Tests run: I, Failures: 0, Errors: 0, Time elapsed: 0.438 sec
204 [junit] Running PairwiseComparison.Internal.Test.PairwiseComparisonUT
205 [junit] Tests run: I, Failures: 0, Errors: 0, Time elapsed: 0.219 sec
206 [junit] Running PairwiseComparison.Internal.Test.StatusUT
207 [junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0.078 sec
208 [junit] Running PairwiseComparison.lnternal.Test.'l'riadU'l'
209 [junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.078 sec
210 [junit] Running PairwiseComparison.Internal.Test.VectorUT
211 [junit] Tests run: I, Failures: 0, Errors: 0, Time elapsed: 0.094 sec
212 generate-caverage-report:

108

I
I

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

213 [echo] generating caverage report for Ism
214 generate-caverage-report:
215 [jfeaturecoveragereport] Generating requirement coverage report under
216 "E: \coding\workspace \LSM_for _inconsistent_matrices/ caverage-report/ j feature" ... Done
217 all:
218 [echo] clean, compile, package, test,test for caY report, generating caverage report
219 all:
220 [echo] will execute all the targets
221 components-completeness-levels:
222 [components-completeness-levels] Component completeness level: 4
223 components-conformance-Ievels:
224 [components-conformance-Ievels] Component conformance level: 4
225 components-uniformity-Ievels:
226 [components-uniformity-Ievels] Component uniformity level: 4
227 product-certification-Ievel:
228 [productCertificationLevel] cert level: 4
229 [echo] VALIDATION: PASS

Listing B.6: Verbose output produced by automation scripts

109

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

110

Appendix C

Instructions to setup the
framework

Below are the instructions on how to set up and use the context aware framework

within OSGi environment. The version of the OSGi environment which we were using

was tested on Eclipse 3.x. The software which are mentioned in the listing below is

required. All other third party software will be downloaded with a code base from

the repository which is located in the SourceForge domain.

• Eclipse 3.3.2 can be download from the http://archive.eclipse.org/eclipse/ down

loads/ drops/ R-3.3.2-200802211800/ index.php website. This software will

maintain everything.

• Protege software can be download from the http://protege.stanford.edu/ web

site. This software can be used to create and edit OWL ontologies.

• OntoStudio software can be download from the http) /www.ontoprise.de/in-

dex.php?id=296 websit. This software is used to visualize OWL ontologies.

The Protege tool is better at creating and additing OWL ontologies, while the

OntoStudio tool is better at visualization.

• SVN client software can be downloaded for the http://tortoisesvn.net/ down

loads website. This software will be used to checkout the framework form the

111

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

SourceForge repository.

• Java 5 can be downloaded from the http://java.sun.com/ javase/downloads/in

dex_jdk5.jsp website. Some components of framework were developed with Java

5. Therefore, it is a mandatory requirement.

• Create some new folder on your desktop or any other location. Right click on

the newly created folder and from the drop down menu select" SVN Checkout

... " option.

• In the 'URL of repository:' box enter this location of the SourceForge repository.

The location of the repository is https://contextaware.svn.sourceforge.net/ svn

root/contextaware. This is an open source software, therefore anybody can

download it without the need of having any special access privileges.

• Under the "Revision" option select "HEAD revision" and click "0 k". These

steps will allow the user to get the most recent version of the framework.

• Note: It is possible that the checkout may fail. If if does occur, then repeat

the steps above or instead of checking out the framework from the begging

simply right click on the folder which was created in a previous step and select

the "SVN Update" option.

C.l Configuration of the framework

• Configure system variable: In the" Control Panel" double click" System"

select" Advanced" and click on "Environment Variables". Under the "Sys

tem variables" click "Nevi'. Create the new variable by specifying the name

DEV ~OME and location of the folder which was created in the steps above.

For example, the "Variable value" may look like "C:jcontext aware framework".

112

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

• Importing framework into Eclipse: Start Eclipse software select "File"

then "Import" then expand the "General" tree menu and select "Existing

Projects into Workspace". Click "Next" and click "Browse" then navigate to

the folder where the framework was checked out. Expand the tree by navigating

to the "workspace" folder then select it, then click "OK" and " Finish" . The

following list of projects should be imported into the Eclipse's workspace: " Con

textInterface", "ContextReasoner", "LSMJor _inconsistenLmatrices", " client" ,

" service" , "remote" and " modules_build" .

• Configure system variable in Eclipse: The framework should have the

class path errors after the step above was completed. In order to remove the class

path errors follow these steps. Select any project within the Eclipse environment

and right click on it and then select properties. In the open window on the left

hand side click" Java Build Path" then on the right hand side click " Libraries" .

Click" Add Variable" followed by clicking "Configure Variables". In the new

window select " New" , in the "Name:" entry box type DEV_HOME and in the

"Path:" entry box type the location of the folder where the framework was

checked out and click " Ok" . Now the user should see the DEV JIOME variable

under the "New Variable Classpath Entry". There is no need to do anything

else, therefore click" Cancel" and then click" OK". Clean the projects within the

Eclipse environment by selecting option "Project" then" Clean" and make sure

to select " Clean all projects" and click " Ok" . After this process the framework

should not have any class path errors and is ready to be used by the user.

• Invoking the framework: Select "Run" and then click "Open Run Dia

log ... ". Double click the "OSGi Framework" option. This step will create a new

run environment for the OSGi framework. Within the bundles window modify

the start options of the remote service and client bundles by setting the " Start

113

Master Thesis ~ Volodymyr Babiy McMaster ~ Computing and Software

Level" of the remote bundle to 4, the service bundle to 5 and remote bundle

to 6. Under the target platform almost all default bundles could be selected.

It is beneficial to click the" Add Required Bundles" button which will add the

missing bundles automatically. After clicking the "Run" button the following

output should appear in the OSGi console.

osgi> Mar 22, 2010 10:55:19 PM org.mortbay.http.HttpServer doStart
2 INFO: Version Jetty/5.l.x
3 Mar 22, 2010 10:55:19 PM org.mortbay.util.Container start
4 INFO: Started org.mortbay.jetty.servlet.ServletHandler@14aa2db
5 Mar 22, 2010 10:55:19 PM org.mortbay.util.Container start
6 INFO: Started HttpContext[j,/j
7 Mar 22,2010 10:55:19 PM org.mortbay.util.ThreadedServer start
8 WARNING: Failed to start: SocketListenerO@0.0.0.0:80
9 Activated Context Reasoner layer

10 R-OSGi listens on port 9278
11 Activated Context Interface layer
12 Activated LSM in Context Providers layer
13 L-S-M Echo test context reasoners
14 SENDING EVENT org.osgLservice.event.Event [topic=test/topicj
15 Activated Remote Server
16 Invoking remote service:
17

18 Activated Remote Client

Listing C.l: Partial output after framework activation

114

Appendix D

An upper ontology

1 <?xml version="1.0"?>
2 <!DOCTYPE rdf:RDF [
3 <!ENTITY 8C8 ''http://2009/9/SCS.owllt'' >

• In

4 <!ENTITY CL_ ''http://2009/9/SCS.owl#Ck−'' >
5 <!ENTITYowl ''http://www.w3.org/2002/07/owl#'' >
6 <!ENTITY xsd ''http://www.w3.org/2001/XMLSchema#'' >

OWL

7 <!ENTITY owl2xml ''http://www.w3.org/2006/12/ow12-xml#'' >
8 <!ENTITY rdfs ''http://www . w3. org/2000/01/rdf-schema#" >
9 <!ENTITY rdf ''http://www . w3. org/1999/02/22-rdf-syntax-ns#" >

10 J>
11 <rdf:RDF xmlns=''http://2009/9/SCS . owl#"
12 xml:base=''http://2009/9/SCS . owl"
13 xmlns:rdfs=''http://www . w3. org/2000/01/rdf-schema#"
14 xmlns:owI2xml=''http://www . w3. org/2006/12/ow12-xml#"
15 xmlns:8C8=''http://2009/9/SCS .owl#"
16 xmlns:owl=''http://www . w3. org/2002/07/owl#"
17 xmlns:xsd=''http://www . w3. org/2001/XMLSchema#"
18 xmlns:rdf=''http://www . w3. org/1999/02/22-rdf-syntax-ns#"
19 xmlns:CL_="&SCS; CL_− ">
20 <owl:Ontology rdf:about=""/>
21 <!--
22 //

23 / /

24 / / Object Properties
25 / /

26 //

27 -->
28 <!-- http://2009/9/8C8.owl#articulatedWith -->
29 <owl:ObjectProperty rdf:about="#articulatedWith">
30 <rdfs:comment
31 >Every measurement is associated with a unit of measure.
32 Unit of measure is used to communicate the objective of
33 measurement. </rdfs:comment>
34 <rdfs:domain rdf:resource="#Attributes" />
35 <rdfs:range rdf:resource="#Metrics" />
36 </owl:ObjectProperty>
37 <!-- http://2009/9/8C8.owl#belongsTo -->
38 <owl:ObjectProperty rdf:about="#belongsTo">
39 <rdfs:comment
40 >Every scale or collection of scalers is associated with a
41 type. A single type may be associated with a collection
42 of classes. </rdfs:comment>
43 </owl:ObjectProperty>
44 <!-- http://2009/9/8C8.owl#composedOf -->
45 <owl:ObjectProperty rdf:about="#composedOf">

115

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

46 <rdf:type rdf:resource="&ow1 ; Functiona1Property" />
47 <rdf:type rdf:resource="&ow1 ; TransitiveProperty"/>
48 <rdfs:comment
49 >Entity within the ontology can be composed out
50 of other entities.</rdfs:comment>
51 <rdfs:domain rdf:resource="#Attributes"/>
52 <rdfs:range rdf:resource="#Attributes" />
53 </owl:ObjectProperty>
54 <!-- http://2009/9/SCS.owl#conversion -->
55 <owl:ObjectProperty rdf:about="#conversion">
56 <rdfs:comment
57 >It is possible for two or more measurement functions
58 to be associated with each other.</rdfs:comment>
59 </owl:ObjectProperty>
60 <!-- http://2009/9/SCS.owl#hasDelivery -->
61 < owl:O b jectProperty rdf: about=" #hasDe1i very" >
62 <rdfs:comment
63 >Entities can maintain properties which contain
64 values </rdfs:comment>
65 <rdfs:domain rdf:resource="#Component_sections" />
66 <rdfs:range rdf:resource="#Context_description" />
67 <rdfs:range rdf:resource="#Correctness_proofs"/>
68 <rdfs:range rdf:resource="#Detai1_design"/>
69 <rdfs:range rdf:resource="#High_1eve1_design" />
70 <rdfs:range rdf:resource="#Imp1ementation" />
71 <rdfs:range rdf:resource="#Testing" />
72 <rdfs:range rdf:resource="#User _requirements" />
73 </owl:ObjectProperty>
74 <!-- http://2009/9/SCS.owl#maintainsScale -->
75 <owl:ObjectProperty rdf:about="#maintainsScale">
76 <rdf:type rdf:resource= "&ow1; Transi ti veProperty" />
77 <rdfs:comment
78 >Every measure must have a scale associated with
79 it. </rdfs:comment>
80 <rdfs:domain rdf:resource="#Measure"/>
81 <rdfs:range rdf:resource="#Sca1e" />
82 </owl:ObjectProperty>
83 <!-- http://2009/9/SCS.owl#measuredWith -->
84 <owl:ObjectProperty rdf:about="#measuredWith">
85 <rdfs:comment
86 >Every derived measurement value is achieved by applied
87 one or more measurement functions.</rdfs:comment>
88 <rdfs:domain rdf:resource="#Attributes"/>
89 <rdfs:range rdf:resource="#Metrics"/>
90 </owl:ObjectProperty>
91 <!--
92 ///

93 / /

94 / / Data properties
95 / /

96 ///

97 -->
98 <!-- http://2009/9/SCS.owl#companyStandardization -->
99 <owl:DatatypeProperty rdf:about="#companyStandardization" />

100 <!-- http://2009/9/SCS.owl#deliveryStatus -->
101 <owl:DatatypeProperty rdf:about="#de1iveryStatus" />
102 <!-- http://2009/9/SCS.owl#formaIProofs -->
103 <owl:DatatypeProperty rdf:about="#forma1Proofs" />
104 <!-- http://2009/9/SCS.owl#formaIProofsStatus -->
105 <owl:DatatypeProperty rdf:about="#forma1ProofsStatus" />
106 <!-- http://2009/9/SCS.owl#generaIStandardization -->
107 <owl:DatatypeProperty rdf:about="#genera1Standardization" />
108 <!-- http://2009/9/SCS.owl#industryStandardization -->
109 <owl:DatatypeProperty rdf:about="#industryStandardization" />
110 <!-- http://2009/9/SCS.owl#informaIProofsStatus -->
111 <owl:DatatypeProperty rdf:about="#informa1ProofsStatus" />

116

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

112 <!-- http://2009/9/SCS.owl#manuaISpotEvaluationStatus -->
113 <owl:DatatypeProperty rdf:about="#manualSpotEvaluationStatus" />
114 <!-- http://2009/9/SCS.owl#regularAutomatedTestingFTStatus -->
115 <owl:DatatypeProperty rdf:about="#regularAutomatedTestingFTStatus" />
116 <!-- http://2009/9/SCS.owl#regularAutomatedTestingGUIFTStatus -->
117 <owl:DatatypeProperty rdf:about="#regularAutomatedTestingGUIFTStatus" />
118 <!-- http://2009/9/SCS.owl#regularAutomatedTestingGUIUTStatus -->
119 <owl:DatatypeProperty rdf:about="#regularAutomatedTestingGUIUTStatus" />
120 <!-- http://2009/9/SCS.owl#regularAutomatedTestingUTStatus -->
121 <owl:DatatypeProperty rdf:about="#regularAutomatedTestingUTStatus" />
122 <!-- http://2009/9/SCS.owl#rigorousAuotmaticTesting -->
123 <owl:DatatypeProperty rdf:about="#rigorousAuotmaticTesting" />
124 <!--

125 //
126 //

127 // Classes
128 //

129 //
130 -->
131 <!-- http://2009/9/SCS.owl#Attributes -->
132 <owl:Class rdf:about="#Attributes">
133 <owl:disjoint With rdf:resource="#Certificate_sections" />
134 <owl:disjointWith rdf:resource="#Certification" />
135 <owl:disjointWith rdf:resource="#Component_sections"/>
136 <owl:disjointWith rdf:resource="#Data"/>
137 <owl:disjointWith rdf:resource="#Metrics" />
138 </owl:Class>
139 <!-~ http://2009/9/SCS.owl#Base-Iueasure -->
140 <owl:Class rdf:about= "#Base_measure " >
141 <rdfs:subClassOf rdf:resource="#Data" />
142 <owl:disjoint With rdf:resource="#Concept_Models" />
143 <owl:disjointWith rdf:resource="#Decision_cri teria" />
144 <owl:disjoint With rdf:resource="#Elementary _Models" />
145 <owl:disjointWith rdf:resource="#Evaluation"/>
146 <owl:disjointWith rdf:resource="#Evaluation_resul t" />
147 <owl:disjointWith rdf:resource="#Measurable_concepts"/>
148 <owl:disjoint With rdf:resource= "#Measuring_approaches" />
149 <owl:disjointWith rdf:resource="#Process_description" />
150 <owl:disjoint With rdf:resource="#Quali ty _models" />
151 <rdfs:comment
152 >A basic measurement that could be applied individually
153 without any external input.</rdfs:comment>
154 </owl:Class>
155 <!-- http://2009/9/SCS.owl#CL_−_1 -->
156 <owl:Class rdf:about="#CL_− _1" >
157 <rdfs:subClassOf rdf:resource="#Certification_Level" />
158 <owl:disjointWith rdf:resource="#CL_− _2" />
159 <owl:disjointWith rdf:resource="#CL_− _3" />
160 <owl:disjointWith rdf:resource="#CL_− 3" />
161 <owl:disjointWith rdf:resource="#CL_− _5" />
162 <rdfs:comment
163 >CL − 1 >= 1 & CL − 2 >= 1 & CL
164 − 3 = 0
165 All the necessary elements of the product have been delivered and the
166 evaluator can start executing certification process.</rdfs:comment>
167 </owl:Class>
168 <1-- http://2009/9/SCS.owl#CL_−.2 -->
169 <owl:Class rdf:about="#CL_− _2" >
170 <rdfs:subClassOf rdf:resource="#Certification_Level" />
171 <owl:disjointWith rdf:resource="#CL_−_3"/>
172 <owl:disjointWith rdf:resource="#CL_−3"/>
173 <owl:disjointWith rdf:resource="#CL_− _5" />
174 <rdfs:comment
175 >CL − 1 >= 1 & CL − 2 >= 1 & CL
176 − 3 = 1
177 All the necessary elements of the product and their properties have been

117

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

178 manually validated. Also, all relationships between elements
179 have been manually evaluated.</rdfs:comment>
180 </owl:Class>
181 <!-- http://2009/9/SCS.owl#CL_−j_3 -->
182 <owl:Class rdf:about="#CL_− _3">
183 <rdfs:subClassOf rdf:resource="#Certification_Level" />
184 <owl:disjointWith rdf:resource="#CL_− _4" />
185 <owl:disjointWith rdf:resource="#CL_− _5" />
186 <rdfs:comment
187 >CL −j 1 >j= 2 &j CL −j 2 >j= 2 &j CL −j 3 = 2
188 All the necessary elements of the product and their properties
189 have been validated with the help of automated tools. Also, all
190 relationships between elements have been evaluated with the help
191 of automated tools.</rdfs:comment>
192 </owl:Class>
193 <!-- http://2009/9/SCS.owl#CL_−jA -->
194 <owl:Class rdf:about="#CL_− _4">
195 <rdfs:subClassOf rdf:resource="#Certification_Level ,,/>
196 <owl:disjointWith rdf:resource="#Ck− _5" />
197 <rdfs:comment
198 >CL −j 1 = 3 &j CL −j 2 = 3 &j CL −j 3 = 3
199 All the necessary elements of the product and their properties
200 have been validated with the help of mathematical methods in
201 situations where formal mathematical verification can be applied.
202 The same applies for relationships between elements.</rdfs:comment>
203 </owl:Class>
204 <!-- http://2009/9/SCS.owl#CL_−j_5 -->
205 <owl:Class rdf:about="#CL~−_5">
206 <rdfs:subClassOf rdf:resource="#Certification_Level "/>
207 <rdfs:comment
208 >CL −j 1 = 3 &j CL −j 2 = 3 &j CL −j 3 = 3
209 The same requirements as for FCL −j 4, but the architecture is
210 formally verified where possible with real input data and not only
211 testing data. </rdfs:comment>
212 </owl:Class>
213 <!-- http://2009/9/SCS.owl#Calculable_Concepts -->
214 <owl:Class rdf:about="#Calculable_Concepts" >
215 <rdfs:subClassOf rdf:resource="#Metrics"/>
216 <owl:disjoint With rdf:resource= "#Calculation_Method" />
217 <owl:disjoint With rdf:resource="#Direct_Metric" />
218 <owl:disjoint With rdf:resource="#Elementary _Indicator" />
219 <owl:disjoint With rdf:resource= "#Function" />
220 <owl:disjoint With rdf:resource= "#Indirect_Metric" />
221 <owl:disjointWith rdf:resource="#Measure"/>
222 <owl:disjointWith rdf:resource="#Scale" />
223 <owl:disjointWith rdf:resource="#Software_Tool" />
224 <rdfs:comment
225 >The relationship between attributes and calculable
226 Concepts</rdfs:comment>
227 </owl:Class>
228 <!-- http://2009/9/SCS.owl#Calculation_Method -->
229 <owl:Class rdf:about="#Calculation_Method">
230 <rdfs:subClassOf rdf:resource="#Metrics" />
231 <owl:disjointWith rdf:resource="#Direct_Metric" />
232 <owl:disjointWith rdf:resource="#Elementary_Indicator" />
233 <owl:disjointWith rdf:resource="#Function" />
234 <owl:disjointWith rdf:resource="#Indirect_Metric" />
235 <owl:disjoint With rdf:resource=" #Measure" />
236 <owl:disjointWith rdf:resource="#Scale"/>
237 <owl:disjoint With rdf:resource="#Software_ Tool" />
238 <rdfs:comment
239 >A sequence of logical steps where a formula or indicator could
240 be applied in order to obtain a concept of measure</rdfs:comment>
241 </owl:Class>
242 <!-- http://2009/9/SCS.owl#Certificate...sections -->
243 <owl:Class rdf:about="#Certificate_sections">

118

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

244 <owl:disjointWith rdf:resource="#Certification"!>
245 <owl:disjointWith rdf:resource="#Component_sections"!>
246 <owl:disjointWith rdf:resource="#Data"!>
247 <owl:disjointWith rdf:resource="#Metrics"!>
248 <!owl:Class>
249 <!-- http://2009/9/SCS.owl#Certification -->
250 <owl:Class rdf:about="#Certification">
251 <owl:disjointWith rdf:resource="#Component_sections"!>
252 <owl:disjointWith rdf:resource="#Data"!>
253 <owl:disjointWith rdf:resource="#Metrics"!>
254 <!owl:Class>
255 <!-- http://2009/9/SCS.owl#Certification..Level -->
256 <owl:Class rdf:about="#Certification_Level ">
257 <rdfs:subClassOf rdf:resource="#Certification"!>
258 <owl:disjointWith rdf:resource="#Completeness"!>
259 <owl:disjoint With rdf:resource= "#Conformance"!>
260 <owl:disjointWith rdf:resource="#Uniformity"!>
261 <!owl:Class>
262 <!-- http://2009/9/SCS.owl#Completeness -->
263 <owl:Class rdf:about="#Completeness">
264 <rdfs:subClassOf rdf:resource="#Certification"!>
265 <owl:disjointWith rdf:resource="#Conformance"!>
266 <owl:disjointWith rdf:resource="#Uniformity"!>
267 <rdfs:comment>Conformance<!rdfs:comment>
268 <!owl:Class>
269 <!-- http://2009/9/SCS.owl#Completeness_LeveLl -->
270 <owl:Class rdf:about="#Completeness_Level_l ">
271 <rdf~:~ubClassOf rdf:resource="#Completeness"!>
272 <owl:disjointWith rdf:resource="#Completeness_Level_2"!>
273 <owl:disjoint With rdf:resource="#Completeness_Level_3"!>
274 <owl:disjoint With rdf:resource="#Completeness_Level_ 4"!>
275 <rdfs:comment
276 >errors in the component are found<!rdfs:comment>
277 <!owl:Class>
278 <!-- http://2009/9/SCS.owl#Completeness_LeveL2 -->
279 <owl:Class rdf:about="#Completeness_Level_2">
280 <rdfs:subClassOf rdf:resource="#Completeness"!>
281 <owl:disjointWith rdf:resource="#Completeness_Level_3"!>
282 <owl:disjoint With rdf:resource="#Completeness_Level_ 4"!>
283 <rdfs:comment
284 >no errors were found with manual
285 evaluation and testing of the component<!rdfs:comment>
286 <!owl:Class>
287 <!-- http://2009/9/SCS.owl#Completeness_Level...3 -->
288 <owl:Class rdf:about="#Completeness_Level_3">
289 <rdfs:subClassOf rdf:resource="#Completeness"!>
290 <owl:disjointWith rdf:resource="#Completeness_Level_4"!>
291 <rdfs:comment
292 >rigorous automatic testing did not detect
293 any errors<!rdfs:comment>
294 <!owl:Class>
295 <!-- http://2009/9/SCS.owl#Completeness_LeveL4 -->
296 <owl:Class rdf:about=1I#Completeness_Level_4">
297 <rdfs:subClassOf rdf:resource="#Completeness"!>
298 <rdfs:comment
299 >formal verification of the component pass<!rdfs:comment>
300 <!owl:Class>
301 <!-- http://2009/9/SCS.owl#Component -->
302 <owl:Class rdf:about="#Component ">
303 <rdfs:subClassOf rdf:resource="#Certificate_sections"!>
304 <owl:disjoint With rdf:resource= "#Documentation"!>
305 <owl:disjointWith rdf:resource="#Final_certification_level"!>
306 <owl:disjointWith rdf:resource="#Input_data"!>
307 <owl:disjointWith rdf:resource="#Measuring_methods"!>
308 <owl:disjointWith rdf:resource="#Properties"!>
309 <rdfs:comment

119

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

310 >Description of the component</rdfs:comment>
311 </owl:Class>
312 <!-- http://2009/9/SCS.owl#Component..sections -->
313 <owl:Class rdf:about="#Component_sections">
314 <rdfs:subClassOf>
315 <owl:Restriction>
316 <owl:onProperty rdf:resource="#hasDelivery" />
317 <owl:some Values From rdf:resource="#Correctness_proofs" />
318 </owl:Restriction>
319 </rdfs:subClassOf>
320 <rdfs:subClassOf>
321 <owl:Restriction>
322 <owl:onProperty rdf:resource="#hasDelivery" />
323 <owl:some ValuesFrom rdf:resource="#Context_description" />
324 </owl:Restriction>
325 </rdfs:subClassOf>
326 <rdfs:subClassOf>
327 <owl:Restriction>
328 <owl:onProperty rdf:resource="#hasDelivery" />
329 <owl:someValuesFrom rdf:resource="#High_level_design" />
330 </owl:Restriction>
331 </rdfs:subClassOf>
332 <rdfs:subClassOf>
333 <owl:Restriction>
334 <owl:onProperty rdf:resource="#hasDelivery" />
335 <owl:some Values From rdf:resource="#User _requirements" />
336 </owl:Restriction>
337 </rdfs:subClassOf>
338 <rdfs:subClassOf>
339 <owl:Restriction>
340 <owl:onProperty rdf:resource="#hasDelivery" />
341 <owl:some ValuesFrom rdf:resource="#Detail_design" />
342 </owl:Restriction>
343 </rdfs:subClassOf>
344 <rdfs:subClassOf>
345 <owl:Restriction>
346 <owl:onProperty rdf:resource="#hasDelivery" />
347 <owl:someValuesFrom rdf:resource="#Testing" />
348 </owl:Restriction>
349 </rdfs:subClassOf>
350 <rdfs:subClassOf>
351 <owl:Restriction>
352 <owl:onProperty rdf:resource="#hasDelivery"/>
353 <owl:someValuesFrom rdf:resource="#Implementation" />
354 </owl:Restriction>
355 </rdfs:subClassOf>
356 <owl:disjointWith rdf:resource="#Data"/>
357 <owl:disjointWith rdf:resource="#Metrics" />
358 </owl:Class>
359 <1-- http://2009/9/SCS.owl#Concept_Models -->
360 <owl:Class rdf:about="#Concept_Models">
361 <rdfs:subClassOf rdf:resource="#Data" />
362 <owl:disjointWith rdf:resource="#Decision_cri teria" />
363 <owl:disjointWith rdf:resource="#Elementary _Models" />
364. <owl:disjointWith rdf:resource="#Evaluation" />
365 <owl:disjointWith rdf:resource="#Evaluation_result" />
366 <owl:disjointWith rdf:resource="#Measurable_concepts" />
367 <owl:disjoint With rdf:resource="#Measuring_approaches" />
368 <owl:disjoint With rdf:resource="#Process_description" />
369 <owl:disjoint With rdf:resource="#Quali ty _models" />
370 <rdfs:comment
371 >The collection of sub-concepts and associations between
372 them. </rdfs:comment>
373 </owl:Class>
374- <1-- http://2009/9/SCS.owl#Conformance -->
375 <owl:Class rdf:about="#Conformance">

120

I
Master Thesis - Volodymyr Babiy McMaster - Computing and Software

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

<rdfs:subClassOf rdf:resource="#Certification" />
<owl:disjoint With rdf:resource= "#Uniformi ty" />
<rdfs:comment>Completeness</rdfs:comment>

</owl:Class>
<!-- http://2009/9/SCS.owl#Conformance_LeveLl -->
<owl:Class rdf:about="#Conformance_Level_l" >

<rdfs:subClassOf rdf:resource="#Conformance" />
<owl:disjointWith rdf:resource="#Conformance_Level_2" />
<owl:disjoint With rdf:resource=" #Conf ormance_Level_3" />
<owl:disjoint With rdf:resource= "#Conformance_Level_ 4" />
<rdfs:comment

>errors were found during regular automated testing</rdfs:comment>
</owl:Class>
<!-- http://2009/9/SCS.owl#Conformance.LeveL2 -->
<owl:Class rdf:about="#Conformance_Level_2">

<rdfs:subClassOf rdf:resource="#Conformance" />
<owl:disjointWith rdf:resource="#Conformance_Level_3" />
<owl:disjoint With rdf:resource="#Conformance_Level_ 4" />
<rdfs:comment

>no errors were found with manual spot evaluation and regular
automated testing</rdfs:comment>
</owl:Class>
<!-- http://2009/9/SCS.owl#Conformance_LeveL3 -->
<owl:Class rdf:about="#Conformance_Level_3">

<rdfs:subClassOf rdf:resource="#Conformance" />
<owl:disjoint With rdf:resource="#Conformance_Level_ 4" />
<rdfs:comment

>rigorous automatic testing did not detect any errors
(includes stress testing)</rdfs:comment>
</owl:Class>
<!-- http://2009/9/SCS.owl#Conformance_LeveL4 -->
<owl:Class rdf:about="#Conformance_Level_ 4" >

<rdfs:subClassOf rdf:resource=" #Conf ormance" />
<rdfs:comment

>all formal verification of the component pass and
have beed delivered</rdfs:comment>
</owl:Class>
<!-- http://2009/9/SCS.owl#Context_description -->
<owl:Class rdf:about="#Context_description">

<rdfs:subClassOf rdf:resource=" #Component_sections" />
<owl:disjoint With rdf:resource="#Correctness_proofs" />
<owl:disjoint With rdf:resource="#Detail_design" />
<owl:disjoint With rdf:resource= "#High_level_design" />
<owl:disjoint With rdf:resource= "#Implementation" />
<owl:disjointWith rdf:resource="#Testing"/>
<owl:disjoint With rdf:resource= "#User _requirements" />
<rdfs:comment

>Describes main objectives and environment of the
component</rdfs:comment>
</owl:Class>
<!-- http://2009/9/SCS.owl#Correctness_proofs -->
<owl:Class rdf:about="#Correctness_proofs">

<rdfs:subClassOf rdf:resoufce=II#Component_sections II />
<owl:disjoint With rdf:resource= "#Detail_design" />
<owl:disjoint With rdf:resource="#High_level_design" />
<owl:disjoint With rdf:resource="#Implementation" />
<owl:disjoint With rdf:resource="#Testing" />
<owl:disjoint With rdf:resource="#User _requirements" />
<rdfs:comment

>Formal proofs for some sections of the component
</rdfs:comment>
</owl:Class>
<!-- http://2009/9/SCS.owl#Data -->
<owl:Class rdf:about="#Data">

<owl:disjoint With rdf:resource= "#Metrics" />
</owl:Class>

121

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

442 <!-- http://2009/9/SCS.owl#Decision_criteria -->
443 <owl:Class rdf:about="#Decision_criteria">
444 <rdfs:subClassOf rdf:resource="#Data" />
445 <owl:disjoint With rdf:resource="#Elementary _Models" />
446 <owl:disjointWith rdf:resource="#Evaluation" />
447 <owl:disjointWith rdf:resource="#Evaluation_result"/>
448 <owl:disjoint With rdf:resource="#Measurable_concepts" />
449 <owl:disjoint With rdf:resource="#Measuring_approaches" />
450 <owl:disjoint With rdf:resource="#Process_description" />
451 <owl:disjoint With rdf:resource="#Quali ty _models" />
452 <rdfs:comment
453 >Description on how to achieve certain level on confidence
454 in a particular result.</rdfs:comment>
455 </owl:Class>
456 <!-- http://2009/9/SCS.owl#Dedicated~xternal -->
457 <owl:Class rdf:about="#Dedicated_External ">
458 <rdfs:subClassOf rdf:resource="#Attributes" />
459 <owl:disjointWith rdf:resource="#Dedicated_Internal" />
460 <owl:disjointWith rdf:resource="#General_External" />
461 <owl:disjointWith rdf:resource="#General_Internal" />
462 </owl:Class>
463 <!-- http://2009/9/SCS.owl#Dedicated_ExternaLHigh -->
464 <owl:Class rdf:about="#Dedicated_External_High ">
465 <rdfs:subClassOf rdf:resource="#Dedicated_External" />
466 <owl:disjoint With rdf:resource="#Dedicated_External_Low" />
467 <owl:disjoint With rdf:resource= "#Dedicated_External_Moderate" />
468 </owl:Class>
469 <!-- http://2009/9/SCS.owl#Dedicated_ExternaLLow -->
470 <owl:Class rdf:about="#Dedicated_External_Low">
471 <rdfs:subClassOf rdf:resource="#Dedicated_External" />
472 <owl:disjointWith rdf:resource="#Dedicated_External_Moderate" />
473 </owl:Class>
474 <!-- http://2009/9/SCS.owl#Dedicated_ExternaLModerate -->
475 <owl:Class rdf:about="#Dedicated_External_Moderate">
476 <rdfs:subClassOf rdf:resource="#Dedicated_External" />
477 </owl:Class>
478 <!-- http://2009/9/SCS.owl#Dedicated..Internal -->
479 <owl:Class rdf:about="#Dedicated_Internal">
480 <rdfs:subClassOf rdf:resource="#Attributes" />
481 <owl:disjointWith rdf:resource="#General_External" />
482 <owl:disjointWith rdf:resource="#General_Internal" />
483 </owl:Class>
484 <!-- http://2009/9/SCS.owl#Dedicated..InternaLHigh -->
485 <owl:Class rdf:about="#Dedicated_Internal_High">
486 <rdfs:subClassOf rdf:resource="#Dedicated_Internal" />
487 <owl:disjointWith rdf:resource="#Dedicated_Internal_Low"/>
488 <owl:disjoint With rdf:resource="#Dedicated_Internal_Moderate" />
489 </owl:Class>
490 <!-- http://2009/9/SCS.owl#Dedicated..InternaLLow -->
491 <owl:Class rdf:about="#Dedicated_Internal_Low" >
492 <rdfs:subClassOf rdf:resource="#Dedicated_Internal" />
493 <owl:disjoint With rdf:resource="#Dedicated_Internal_Moderate" />
494 </owl:Class>
495 <!-- http://2009/9/SCS.owl#Dedicated..Internal..Moderate -->
496 <owl:Class rdf:about="#Dedicated_Internal_Moderate">
497 <rdfs:subClassOf rdf:resource="#Dedicated_Internal" />
498 </owl:Class>
499 <!-- http://2009/9/SCS.owl#DetaiLdesign -->
500 <owl:Class rdf:about="#Detail_design" >
501 <rdfs:subClassOf rdf:resource="#Component_sections" />
502 <owl:disjointWith rdf:resource="#High_level_design"/>
503 <owl:disjointWith rdf:resource= "#Implementation" />
504 <owl:disjointWith rdf:resource="#Testing"/>
505 <owl:disjointWith rdf:resource="#User_requirements" />
506 <rdfs:comment
507 >Could be a collection of designs that demonstrate

122

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

508 every aspect of the component</rdfs:comment>
509 </owl:Class>
510 <!-- http://2009/9/SCS.owl#DirecLMetric -->
511 <owl:Class rdf:about="#Direct_Metric">
512 <rdfs:subClassOf rdf:resource="#foletrics" />
513 <owl:disjoint With rdf:resource="#Elementary _Indicator" />
514 <owl:disjointWith rdf:resource="#Function"/>
515 <owl:disjointWith rdf:resource="#Indirect_Metric" />
516 <owl:disjointWith rdf:resource="#Measure" />
517 <owl:disjoint With rdf:resource= "#Scale" />
518 <owl:disjoint With rdf:resource= "#Software_ Tool" />
519 <rdfs:comment
520 >An independent metric that can be applied individually
521 and does not depend on other metrics</rdfs:comment>
522 </owl:Class>
523 <!-- http://2009/9/SCS.owl#Documentation -->
524 <owl:Class rdf:about="#Documentation">
525 <rdfs:subClassOf rdf:resource="#Certificate_sections" />
526 <owl:disjointWith rdf:resource="#Final_certification_level" />
527 <owl:disjointWith rdf:resource="#Input_data" />
528 <owl:disjointWith rdf:resource="#Measuring_methods" />
529 <owl:disjointWith rdf:resource="#Properties" />
530 <rdfs:comment
531 >Description of goals and what is being planed to be achieved
532 with the certification</rdfs:comment>
533 </owl:Class>
534 <!-- http://2009/9/SCS.owl#Elementary..lndicator -->
535 <owl:Class rdf:about="#Elementary_Indicator" >
536 <rdfs:subClassOf rdf:resource="#Metrics" />
537 <owl:disjointWith rdf:resource="#Function" />
538 <owl:disjoint With rdf:resource="#Indirect_Metric" />
539 <owl:disjoint With rdf:resource="#Measure" />
540 <owl:disjointWith rdf:resource="#Scale"/>
541 <owl:disjointWith rdf:resource="#Software_Tool" />
542 <rdfs:comment
543 >An indicator that is independent and does not depend on
544 other indicators to deduce calculable concept</rdfs:comment>
545 </owl:Class>
546 <!-- http://2009/9/SCS.owl#Elementary_Models -->
547 <owl:Class rdf:about="#Elementary_Models ">
548 <rdfs:subClassOf rdf:resource="#Data" />
549 <owl:disjointWith rdf:resource="#Evaluation"/>
550 <owl:disjoint With rdf:resource="#Evaluation_resul t" />
551 <owl:disjointWith rdf:resource="#Measurable_concepts"/>
552 <owl:disjointWith rdf:resource="#Measuring_approaches" />
553 <owl:disjointWith rdf:resource="#Process_description"/>
554 <owl:disjointWith rdf:resource= "#Quali ty _models" />
555 <rdfs:comment
556 >A collection of models with are based on on some known
557 algorithms which can evaluate known criteria.</rdfs:comment>
558 </owl:Class>
559 <!-- http://2009/9/SCS.owl#Evaluation -->
560 <o\vl:Class rdf:about="#Evaluation ll >
561 <rdfs:subClassOf rdf:resource="#Data" />
562 <owl:disjointWith rdf:resource="#Evaluation_result" />
563 <owl:disjointWith rdf:resource="#Measurable_concepts" />
564 <owl:disjointWith rdf:resource="#Measuring_approaches" />
565 <owl:disjoint With rdf:resource="#Process_description" />
566 <owl:disjoint With rdf:resource="#Quali ty _models" />
567 <rdfs:comment
568 >A collection of evaluation which produces measuring results for a
569 single attribute by applying one or more measuring approaches.</rdfs:comment>
570 </owl:Class>
571 <!-- http://2009/9/SCS.owl#EvaluationJesult -->
572 <owl:Class rdf:about="#Evaluation_resul t ">
573 <rdfs:subClassOf rdf:resource="#Data" />

123

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

574 <owl:disjointWith rdf:resource="#Measurable_concepts" />
575 <owl:disjoint With rdf:resource="#Measuring_approaches" />
576 <owl:disjointWith rdf:resource="#Process_description"/>
577 <owl:disjoint With rdf:resource="#Quali ty _models" />
578 <rdfs:comment
579 >A number or an abstract value which indicates some
580 level of achievement.</rdfs:comment>
581 </owl:Class>
582 <!-- http://2009/9/SCS.owl#FinaLcertification.J.evel -->
583 <owl:Class rdf:about="#Final_certification_level" >
584 <rdfs:subClassOf rdf:resource="#Certificate_sections"/>
585 <owl:disjointWith rdf:resource="#Input_data" />
586 <owl:disjointWith rdf:resource="#Measuring_methods" />
587 <owl:disjointWith rdf:resource="#Properties" />
588 <rdfs:comment
589 >An overall level of certification</rdfs:comment>
590 </owl:Class>
591 <!-- http://2009/9/SCS.owl#Function -->
592 <owl:Class rdf:about="#Function">
593 <rdfs:subClassOf rdf:resource="#Metrics"/>
594 <owl:disjointWith rdf:resource="#Indirect_Metric"/>
595 <owl:disjoint With rdf:resource= "#Measure" />
596 <owl:disjointWith rdf:resource="#Scale"/>
597 <owl:disjoint With rdf:resource= "#Software_ Tool" />
598 <rdfs:comment
599 >Can be a formula or an algorithm that associates
600 two or more metrics</rdfs:comment>
601 </owl:Class>
602 <!-- http://2009/9/SCS.owl#GeneraLExternal -->
603 <owl:Class rdf:about= "#General_External" >
604 <rdfs:subClassOf rdf:resource="#Attributes" />
605 <owl:disjointWith rdf:resource="#General_Internal" />
606 </owl:Class>
607 <!-- http://2009/9/SCS.owl#GeneraLExternaLHigh -->
608 <owl:Class rdf:about="#General_External_High">
609 <rdfs:subClassOf rdf:resource="#General_External" />
610 <owl:disjointWith rdf:resource="#General_External_Low" />
611 <owl:disjoint With rdf:resource="#General_External_Moderate" />
612 </owl:Class>
613 <!-- http://2009/9/SCS.owl#GeneraLExternaLLow -->
614 <owl:Class rdf:about="#General_External_Low" >
615 <rdfs:subClassOf rdf:resource="#General_External" />
616 <owl:disjoint With rdf:resource="#General_External_Moderate" />
617 </owl:Class>
618 <!-- http://2009/9/SCS.owl#GeneraLExternaLModerate -->
619 <owl:Class rdf:about="#General_External_Moderate">
620 <rdfs:subClassOf rdf:resource="#General_External" />
621 </owl:Class>
622 <!-- http://2009/9/SCS.owl#GeneraUnternal -->
623 <owl:Class rdf:about="#General_Internal ">
624 <rdfs:subClassOf rdf:resource="#Attributes" />
625 </owl:Class>
626 <!-- http://2009/9/SCS.owl#GeneraUnternaLHigh -->
627 <owl:Class rdf:about="#General_Internal_High" >
628 <rdfs:subClassOf rdf:resource="#General_Internal" />
629 <owl:disjoint With rdf:resource= "#General_Internal_Low" />
630 <owl:disjointWith rdf:resource="#General_Internal_Moderate" />
631 </owl:Class>
632 <!-- http://2009/9/SCS.owl#GeneraUnternaLLow -->
633 <owl:Class rdf:about="#General_Internal_Low">
634 <rdfs:subClassOf rdf:resource="#General_Internal" />
635 <ow I:disjoint With rdf:resource=" #General_Internal_Moderate" />
636 </owl:Class>
637 <!-- http://2009/9/SCS.owl#GeneraUnternaLModerate -->
638 <owl:Class rdf:about= "#General_Internal_Moderate" >
639 <rdfs:subClassOf rdf:resource="#General_Internal" />

124

I
I

1

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

</owl:Class>
<!-- http://20D9/9/SCS.owl#High.JeveLdesign -->
<owl:Class rdf:about="#High_level_design">

<rdfs:subClassOf rdf:resource="#Component_sections" />
<owl:disjoint With rdf:resource="#Implementation" />
<owl:disjoint With rdf:resource="#Testing" />
<owl:disjoint With rdf:resource="#User _requirements" />
<rdfs:comment

>Represents mapping between customer’s require
ments and system’s design</rdfs:comment>
</owl:Class>
<!-- http://20D9/9/SCS.owl#Implementation -->
<owl:Class rdf:about="#Implementation">

<rdfs:subClassOf rdf:resource="#Component_sections" />
<owl:disjointWith rdf:resource="#Testing" />
<owl:disjointWith rdf:resource= "#User _requirements" />
<rdfs:comment

>Represents relationship between component’s code
and its documentation</rdfs:comment>
</owl:Class>
<!-- http://20D9/9/SCS.owl#Indirect_Metric -->
<owl:Class rdf:about="#Indirect_Metric">

<rdfs:subClassOf rdf:resource="#Metrics" />
<owl:disjointWith rdf:resource= "#Measure" />
<owl:disjointWith rdf:resource="#Scale" />
<owl:disjointWith rdf:resource="#Software_ Tool" />
<rdfs:comment

>A metric that is constructed from other metric or metrics
that are being utilized for other attributes</rdfs:comment>
</owl:Class>
<!-- http://2DD9/9/SCS.owl#InpuLdata -->
<owl:Class rdf:about="#Input_data">

<rdfs:subClassOf rdf:resource="#Certificate_sections" />
<ow I :disjoint With rdf:resource=" #Measuring_methods " / >
<owl:disjoint With rdf:resource= "#Properties" />
<rdfs:comment

> Precise description of the input data for the certification
process</rdfs:comment>
</owl:Class>
<!-- http://2009/9/SCS.owl#Measurable_concepts -->
<owl:Class rdf:about="#Measurable_concepts">

<rdfs:subClassOf rdf:resource="#Data" />
<owl:disjoint With rdf:resource=" #Measuring_approaches" / >
<owl:disjointWith rdf:resource="#Process_description" />
<owl:disjoint With rdf:resource= "#Quali ty _models" />
<rdfs:comment

>Abstract description of components that could be
measured. </rdfs:comment>
</owl:Class>
<!-- http://2D09/9/SCS.owl#Measure -->
<owl:Class rdf:about="#Measure">

<rdfs:su bClassOf rdf:resource="#Metrics" />
<owl:disjoint With rdf:resource=II #Scale II />
<owl:disjointWith rdf:resource="#Software_Tool" />
<rdfs:comment

>A value that is associated with an attribute after
evaluation process</rdfs:cornrnent>
</owl:Class>
<!-- http://20D9/9/SCS.owl#Measuring_approaches -->
<owl:Class rdf:about="#Measuring_approaches" >

<rdfs:subClassOf rdf:resource="#Data" />
<owl:disjoint With rdf:resource="#Process_description" />
<owl:disjoint With rdf:resource="#Quali ty _models" />
<rdfs:comment

>The measurement approach could be measurement function,
analysis model which is interrelated with quality model or particular

125

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

706 measuring approach.</rdfs:comment>
707 </owl:Class>
708 <!-- http://2009/9/SCS.owl#Measuring-IIlethods -->
709 <owl:Class rdf:about="#Measuring_methods ">
710 <rdfs:subClassOf rdf:resource="#Certificate_sections" />
711 <owl:disjointWith rdf:resource="#Properties" />
712 <rdfs:comment
713 >Precise description of the measuring methods</rdfs:comment>
714 </owl:Class>
715 <!-- http://2009/9/SCS.owl#Metrics -->
716 <owl:Class rdf:about="#Metrics" />
717 <!-- http://2009/9/SCS.owl#Process_description -->
718 <owl:Class rdf:about="#Process_description">
719 <rdfs:subClassOf rdf:resource="#Data" />
720 <owl:disjoint With rdf:resource= "#Quali ty _models" />
721 <rdfs:comment
722 >Information which describes objectives, risks
723 and goals.</rdfs:comment>
724 </owl:Class>
725 <!-- http://2009/9/SCS.owl#Properties -->
726 <owl:Class rdf:about="#Properties">
727 <rdfs:subClassOf rdf:resource="#Certificate_sections" />
728 <rdfs:comment
729 >The list of properties that should be
730 evaluated</rdfs:comment>
731 </owl:Class>
732 <!-- http://2009/9/SCS.owl#QualitY-IIlodels -->
733 <owl:Class rdf:about="#Quality_models">
734 <rdfs:subClassOf rdf:resource="#Data" />
735 <rdfs:comment
736 >Specification for the quality requirements and description
737 of entity class relationships.</rdfs:comment>
738 </owl:Class>
739 <!-- http://2009/9/SCS.owl#Scale -->
740 <owl:Class rdf:about="#Scale" >
741 <rdfs:subClassOf rdf:resource="#Metrics" />
742 <owl:disjointWith rdf:resource="#Software_Tool" />
743 <rdfs:comment
744 >A collection of values that have specific meaning
745 associated with them</rdfs:comment>
746 </owl:Class>
747 <!-- http://2009/9/SCS.owl#Software_Tool -->
748 <owl:Class rdf:about="#Software_Tool ">
749 <rdfs:subClassOf rdf:resource="#Metrics" />
750 <rdfs:comment
751 >A tool or set of tools that is used during the
752 evaluation </rdfs:comment>
753 </owl:Class>
754 <!-- http://2009/9/SCS.owl#Testing -->
755 <owl:Class rdf:about="#Testing" >
756 <rdfs:subClassOf rdf:resource="#Component_sections" />
757 <owl:disjointWith rdf:resource="#User _requirements "/>
758 <rdfs:comment
759 >Description of the testing architecture</rdfs:comment>
760 </owl:Class>
761 <!-- http://2009/9/SCS.owl#Uniformity -->
762 <owl:Class rdf:about="#Uniformity">
763 <rdfs:subClassOf rdf:resource="#Certification" />
764 <rdfs:comment>Uniformity</rdfs:comment>
765 </owl:Class>
766 <!-- http://2009/9/SCS.owl#Uniformity_LeveLl -->
767 <owl:Class rdf:about="#Uniformity_Level_1 ">
768 <rdfs:subClassOf rdf:resource="#Uniformi ty" />
769 <owl:disjoint With rdf:resource= "#Uniformi ty _Level_2" />
770 <owl:disjoint With rdf:resource=" #Uniformi ty _Level_3" />
771 <owl:disjoint With rdf:resource= "#Uniformi ty _Level_ 4" />

126

-1

I

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

<rdfs:comment
>uniformity and standardization is missing</rdfs:comment>

</owl:Class>
<!-- http://2009/9/SCS.owl#Uniformity_LeveL2 -->
<owl:Class rdf:about="#Uniformi ty _Level_2 ">

<rdfs:subClassOf rdf:resource="#Uniformity"/>
<owl:disjoint With rdf:resource="#Uniformi ty _Level_3" />
<owl:disjointWith rdf:resource="#Uniformity_Level_4"/>
<rdfs:comment

>some uniformity and standardization is present</rdfs:comment>
</owl:Class>
<!-- http://2009/9/SCS.owl#Uniformity_LeveL3 -->
<owl:Class rdf:about="#Uniformity_Level_3">

<rdfs:subClassOf rdf:resource="#Uniformi ty" />
<owl:disjoint With rdf:resource= "#Uniformi ty _Level_ 4" />
<rdfs:comment

>component conforms to uniformity and
standardization based on companies expectations</rdfs:comment>
</owl:Class>
<!-- http://2009/9/SCS.owl#Uniformity_LeveL4 -->
<owl:Class rdf:about= "#Uniformi ty _Level_ 4" >

<rdfs:subClassOf rdf:resource=" #Unif ormi ty" / >
<rdfs:comment

>component conforms to uniformity and
standardization based on industry expectatio</rdfs:comment>
</owl:Class>
<!-- http://2009/9/SCS.owl#UserJequirements -->
<owl:Class rdf:about="#User _requirements" >

<rdfs:subClassOf rdf:resource="#Component_sections" />
<rdfs:comment

>List of expectations from the component</rdfs:comment>
</owl:Class>
<!-- http://www.w3.org/2002/07 /owl#Thing -->
<owl:Class rdf:about="&owl; Thing"/>
<!--

///
//
/ / Individuals
//
//1//
-->

<!-- http://2009/9/SCS.owl#company..standardization_delivery -->
<owl:Thing rdf:about=" #company _standardization_deli very" >

<rdf:type rdf:resource= "#Implementation" />
<deliveryStatus rdf:datatype= "&xsd; string" >complete</ deliveryStatus>
<company Standardization rdf:datatype=" &xsd; string" >conforms

< I companyStandardization>
</owl:Thing>
<!-- http://2009/9/SCS.owl#contexLdescription_delivery -->
<owl:Thing rdf:about="#context_description_delivery">

<rdf:type rdf:resource="#Context_description" />
<deliveryStatus rdf:datatype= "&xsd; string" >complete< / deliveryStatus>

</owl:Thing>
<!-- http://2009/9/SCS.owl#correctness_proofs_delivery -->
<Correctness_proofs rdf:about=" #corre ctness _proof s_deli very" >

<rdf:type rdf:resource="&owl; Thing" />
<formalProofsStatus rdf:datatype="&xsd; string">complete
</formaIProofsStatus>
<deliveryStatus rdf:datatype=" &xsd; string" >complete< / deliveryStatus>
<informalProofsStatus rdf:datatype=" &xsd; string" >complete
</informaIProofsStatlls>
<formalProofs rdf:datatype="&xsd; string" >pass</formaIProofs>

</Correctness_proofs>
<!-- http://2009/9/SCS.owl#detaiLdesign_delivery -->
<owl:Thing rdf: abollt=" #detail_de sign_delivery" >

<rdf:type rdf:resource="#Detail_design" />

127

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

838 <deliveryStatus rdf:datatype="&xsd; string" >complete</ deliveryStatus>
839 </owl:Thing>
840 <!-- http://2009/9/SCS.owl#general...standardization_delivery -->
841 <owl:Thing rdf:about="#general_standardization_delivery">
842 <rdf:type rdf:resource="#Implementation" />
843 <generalStandardization rdf:datatype="&xsd; string" >above average
844 </ generalStandardization>
845 <deliveryStatus rdf:datatype="&xsd; string">complete</deliveryStatus>
846 </owl:Thing>
847 <!-- http://2009/9/SCS.owl#highJeveLdesign_delivery -->
848 <owl:Thing rdf:about="#high_level_design_delivery">
849 <rdf:type rdf:resource= "#High_level_design" />
850 <deliveryStatus rdf:datatype="&xsd; string" >complete</ deliveryStatus>
851 </owl:Thing>
852 <!-- http://2009/9/SCS.owl#implementation_delivery -->
853 <owl:Thing rdf:about="#implementation_delivery">
854 <rdf:type rdf:resource="#Implementation" />
855 <deliveryStatus rdf:datatype="&xsd; string" >complete</ deliveryStatus>
856 </owl:Thing>
857 <!-- http://2009/9/SCS.owl#industry...standardization_delivery -->
858 <owl:Thing rdf:about="#industry_standardization_delivery">
859 <rdf:type rdf:resource="#Implementation" />
860 <deliveryStatus rdf:datatype="&xsd; string" >complete</ deliveryStatus>
861 <industryStandardization rdf:datatype="&xsd; string" > conforms
862 </industryStandardization>
863 </owl:Thing>
864 <!-- http://2009/9/SCS.owl#manual...spoLevaluation_delivery -->
865 <owl:Thing rdf:about="#manual_spot_evaluation_delivery">
866 <rdf:type rdf:resource="#Correctness_proofs" />
867 <manualSpotEvaluationStatus rdf:datatype="&xsd; string" >complete
868 </manuaISpotEvaluationStatus>
869 <deliveryStatus rdf:datatype="&xsd; string" >complete</ deliveryStatus>
870 </owl:Thing>
871 <!-- http://2009/9/SCS.owl#regularJtutomated_testing_delivery -->
872 <owl:Thing rdf:about="#regular _automated_ testing_deli very" >
873 <rdf:type rdf:resource="#Correctness_proofs" />
874 <regularAutomatedTestingFTStatus rdf:datatype="&xsd; string">
875 complete</regularAutomatedTestingFTStatus>
876 <regularAutomatedTestingUTStatus rdf:datatype="&xsd; string" >
877 complete</regularAutomatedTestingUTStatus>
878 <deliveryStatus rdf:datatype="&xsd; string" >complete</ deliveryStatus>
879 <regularAutomatedTestingGUIUTStatus rdf:datatype="&xsd; string">
880 complete</ regular AutomatedTestingG UIUTStatus>
881 <regularAutomatedTestingGUIFTStatus rdf:datatype="&xsd; string" >
882 complete</regularAutomatedTestingGUIFTStatus>
883 </owl:Thing>
884 <!-- http://2009/9/SCS.owl#rigorous_automatic_testing_delivery -->
885 <Correctness_proofs rdf:about="#rigorous_automatic_testing_delivery">
886 <rdf:type rdf:resource="&owl; Thing" />
887 <rigorousAuotmaticTesting rdf:datatype="&xsd; string">complete
888 </rigorousAuotmaticTesting>
889 <deliveryStatus rdf:datatype="&xsd; string" >complete</ deliveryStatus>
890 </Correctness_proofs>
891 <!-- http://2009/9/SCS.owl#testing_delivery -->
892 <owl:Thing rdf:about="#testing_delivery">
893 <rdf:type rdf:resource="#Testing"/>
894 <deliveryStatus rdf:datatype="&xsd; string" >complete</ deliveryStatus>
895 </owl:Thing>
896 <!-- http://2009/9/SCS.owl#useLrequirements_delivery -->
897 <owl:Thing rdf:about="#user_requirements_delivery">
898 <rdf:type rdf:resource="#User_requirements" />
899 <deliveryStatus rdf:datatype="&xsd; string" >complete</ deliveryStatus>
900 </owl:Thing>
901 <!--
902 //

903 / /

128

I
I
I

I
I
I

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

/ / General axioms

//
//
-->

<rdf:Description>
<rdf:type rdf:resource="&owl j AllDifferent" />
<owl:distinctMembers rdf:parseType="Collection">

<rdf:Description rdf:about= "#testing_deli very" />
<rdf:Description rdf:about=" #implementation_deli very" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl j AllDifferent" />
<owl:distinctMembers rdf:parseType="Collection">

<rdf:Description rdf:about="#user _requirements_deli very" />
<rdf: Description rdf:about= "#high_level_design_deli very" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl j AllDifferent" />
<owl:distinctMembers rdf:parseType="Collection">

<rdf: Description rdf: about= "#te sting_deli very" / >
<rdf: Description rdf: about=" #industry _ standardization_delivery" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl j AllDifferent" />
<owl;distinctMembers rdf;parseType=" Collection" >

<rdf:Description rdf:about="#testing_deli very" />
<rdf:Descri ption rdf:about= "#context_des cri ption_deli very" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl j AllDifferent" />
<owl:distinctMembers rdf:parseType= "Collection" >

<rdf:Description rdf:about="#implementation_delivery"/>
<rdf:Description rdf:about=" #manual_ spot_ evaluat ion_delivery" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl j AllDifferent" />
<owl:distinctMembers rdf:parseType="Collection">

<rdf:Description rdf: about= "#high_level_de sign_deli very" />
<rdf:Description rdf: about= "#context_des cription_deli very" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl j AllDifferent" />
<owl:distinctMembers rdf:parseType="Collection">

<rdf:Description rdf:about= "#implementation_deli very" />
<rdf:Description rdf:about= "#correctness_proofs_deli very" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl j AlIDifferent" />
<owl:distinctMembers rdf:parseType="Collection" >

<rdf:Dcscription rdf;about= "#testing_deli very" />
<rdf: Description rdf: about=" #user _requirement s_deli very" / >

</owl:distinctMembers>
< / rdf: Description>
<rdf:Description>

<rdf:type rdf:resource="&owl j AllDifferent" />
<owl:distinctMembers rdf:parseType="Collection">

<rdf:Description rdf:about= "#implementation_deli very" />
<rdf:Description rdf:about="#context_description_delivery" />

</owl:distinctMembers>

129

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

970 </rdf:Description>
971 <rdf:Description>
972 <rdf:type rdf:resource= "&owl; AIIDifferent" />
973 <owl:distinctMembers rdf:parseType="Collection" >
974 <rdf:Description rdf:about="#user _requirements_delivery" />
975 <rdf:Description rdf:about="#industry _standardization_deli very" />
976 </owl:distinctMembers>
977 </rdf:Description>
978 <rdf:Description>
979 <rdf:type rdf:resource="&owl; AIIDifferent" />
980 <owl:distinctMembers rdf:parseType="Collection" >
981 <rdf:Description rdf:about= "#correctness_proofs_deli very" />
982 <rdf:Description rdf:about="#company _standardization_delivery" />
983 </owl:distinctMembers>
984 </rdf:Description>
985 <rdf:Description>
986 <rdf:type rdf:resource="&owl ; AIIDifferent"/>
987 <owl:distinctMembers rdf:parseType="Collection">
988 <rdf:Description rdf:about="#high_level_design_deli very" />
989 <rdf:Description rdf:about="#general_standardization_delivery" />
990 </owl:distinctMembers>
991 </rdf:Description>
992 <rdf:Description>
993 <rdf:type rdf:resource="&owl ; AIIDifferent " />
994 <owl:distinctMembers rdf:parseType="Collection">
995 <rdf:Description rdf:about="#regular_automated_testing_delivery"/>
996 <rdf:Description rdf:about="#detail_design_delivery"/>
997 </owl:distinctMembers>
998 </rdf:Description>
999 <rdf:Description>

1000 <rdf:type rdf:resource="&owl ; AIIDifferent "/>
1001 <owl:distinctMembers rdf:parseType="Collection">
1002 <rdf:Description rdf:about="#implementation_delivery"/>
1003 <rdf:Description rdf:about="#company _standardization_deli very" />
1004 </owl:distinctMembers>
1005 </rdf:Description>
1006 <rdf:Description>
1007 <rdf:type rdf:resource="&owl;AllDifferent"/>
1008 <owl:distinctMembers rdf:parseType="Collection" >
1009 <rdf:Description rdf:about="#testing_delivery" />
1010 <rdf:Description rdf: about=" #manual_spot_evaluation_deli very" />
1011 </owl:distinctMembers>
1012 </rdf:Description>
1013 <rdf:Description>
1014 <rdf:type rdf:resource="&owl ; AIIDifferent"/>
1015 <owl:distinctMembers rdf:parseType="Collection" >
1016 <rdf:Description rdf:about=" #manual_spot_eval uation_deli very" />
1017 <rdf:Description rdf:about="#detail_design_delivery" />
1018 </owl:distinctMembers>
1019 </rdf:Description>
1020 <rdf:Description>
1021 <rdf:type rdf:resource="&owl; AIIDifferent" />
1022 <owl:distinctMembers rdf:parseType="Collection" >
1023 <rdf:Description rdf:about="#company _standardization_delivery" />
1024 <rdf:Description rdf:about="#general_standardization_delivery" />
1025 </owl:distinctMembers>
1026 </rdf:Description>
1027 <rdf:Description>
1028 <rdf:type rdf:resource="&owl; AIIDifferent" />
1029 <owl:distinctMembers rdf:parseType="Collection" >
1030 <rdf:Description rdf:about= "#user _requirements_delivery" />
1031 <rdf:Description rdf:about="#general_standardization_deli very" />
1032 </owl:distinctMembers>
1033 </rdf:Description>
1034 <rdf:Description>
1035 <rdf:type rdf:resource= "&owl; AIIDifferent" />

130

i

I
I

I
I

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1l0l

<owl:distinctMembers rdf:parseType="Collection">
<rdf:Description rdf:about=" #high_level_design_deli very" />
<rdf: Description rdf:about=" #detail_design_deli very" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource= "&owl; AllDifferent" />
<owl:distinctMembers rdf:parseType="Collection">

<rdf: Description rdf:about=" #context_des cri ption_deli very" />
<rdf: Description rdf:about=" #general_standardization_deli very" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl; AllDifferent" />
<owl:distinctMembers rdf:parseType=" Collection" >

<rdf:Description rdf:about= "#implementation_deli very" />
<rdf: Description rdf:about=" #general_standardization_deli very" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl; AllDifferent" />
<owl:distinctMembers rdf:parseType= "Collection" >

<rdf: Description rdf:about=" #rigorous_automati c_ test ing_deli very" / >
<rdf:Description rdf:about="#detail_design_deli very" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource= "&owl; AllDifferent" />
<owl:distinctMembers rdf:parseType="Collection">

<rdf:Description rdf:about="#regular _automated_ testing_deli very" />
<rdf:Description rdf:about="#testing_deli very" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource= "&owl; AllDifferent" />
<owl:distinctMembers rdf:parseType=" Collection" >

<rdf:Description rdf:about="#company _standardization_deli very" />
<rdf:Description rdf:about="#context_description_delivery" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource= "&owl; AllDifferent" />
<owl:distinctMembers rdf:parseType="Collection" >

<rdf:Description rdf:about="#correctness_proofs_delivery"/>
<rdf:Description rdf:about=" #industry _standardization_deli very" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl; AllDifferent" />
<owl:distinctMembers rdf:parseType=" Collection" >

<rdf: Description rdf: about=" #manual_spot _ evaluat ion_deli very" / >
<rdf:Description rdf: about= "#high_level_de sign_deli very" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl; AllDifferent" />
<owl:distinctMembers rdf:parscType="Collection" >

<rdf:Description rdf: about=" #implementation_deli very" />
<rdf:Description rdf: about= "#high_level_de sign_deli very" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl; AllDifferent" />
<owl:distinctMembers rdf:parseType="Collection">

<rdf:Description rdf:about="#testing_deli very" />
<rdf:Description rdf: about=" #general_standardization_deli very" />

131

Master Tllesis - Volodymyr Babiy McMaster - Computing and Software

1102 </owl:distinctMembers>
1103 </rdf:Description>
1104 <rdf:Description>
1105 <rdf:type rdf:resource="&owl; AllDifferent "/>
1106 <owl:distinctMembers rdf:parseType="Collection" >
1107 <rdf:Description rdf:about="#correctness_proofs_delivery" />
1108 <rdf:Description rdf:about="#general_standardization_delivery"/>
1109 </owl:distinctMembers>
1110 </rdf:Description>
1111 <rdf:Description>
1112 <rdf:type rdf:resource="&owl;AllDifferent"/>
1113 <owl:distinctMembers rdf:parseType="Collection">
1114 <rdf:Description rdf:about="#rigorous_automatic_ testing_delivery" />
1115 <rdf:Description rdf:about="#general_standardization_delivery" />
1116 </owl:distinctMembers>
1117 </rdf:Description>
1118 <rdf:Description>
1119 <rdf:type rdf:resource="&owl;AllDifferent"/>
1120 <owl:distinctMembers rdf:parseType="Collection">
1121 <rdf:Description rdf:about="#implementation_deli very" />
1122 <rdf:Description rdf:about="#user _requirements_deli very" />
1123 </owl:distinctMembers>
1124 </rdf:Description>
1125 <rdf:Description>
1126 <rdf:type rdf:resource="&owl ; AllDifferent"/>
1127 <owl:distinctMembers rdf:parseType="Collection" >
1128 <rdf:Description rdf:about=" #regular _automated_ testing_delivery" />
1129 <rdf:Description rdf:about="#general_standardization_deli very" />
1130 </owl:distinctMembers>
1131 </rdf:Description>
1132 <rdf:Description>
1133 <rdf:type rdf:resource="&owl;AllDifferent"/>
1134 <owl:distinctMembers rdf:parseType="Collection">
1135 <rdf:Description rdf:about="#testing_delivery" />
1136 <rdf:Description rdf:about="#correctness_proofs_deli very" />
1137 </owl:distinctMembers>
1138 </rdf:Description>
1139 <rdf:Description>
1140 <rdf:type rdf:resource="&owl; AllDifferent "/>
1141 <owl:distinctMembers rdf:parseType="Collection">
1142 <rdf:Description rdf:about="#industry _standardization_deli very" />
1143 <rdf:Description rdf:about="#general_standardization_delivery" />
1144 </owl:distinctMembers>
1145 </rdf:Description>
1146 <rdf:Description>
1147 <rdf:type rdf:resource="&owl;AllDifferent"/>
1148 <owl:distinctMembers rdf:parseType="Collection">
1149 <rdf:Description rdf:about="#regular _automated_ testing_delivery" />
1150 <rdf:Description rdf:about="#correctness_proofs_deli very" />
1151 </owl:distinctMembers>
1152 </rdf:Description>
1153 <rdf:Description>
1154 <rdf:type rdf:resource="&owl; AllDifferent" />
1155 <owl:distinctMembers rdf:parseType="Collection" >
1156 <rdf:Description rdf:about="#implementation_deli very" />
1157 <rdf:Description rdf:about="#detail_design_deli very" />
1158 </owl:distinctMembers>
1159 </rdf:Description>
1160 <rdf:Description>
1161 <rdf:type rdf:resource="&owl; AllDifferent" />
1162 <owl:distinctMembers rdf:parseType="Collection" >
1163 <rdf:Description rdf:about="#testing_delivery"/>
1164 <rdf:Description rdf:about="#company _standardization_deli very" />
1165 </owl:distinctMembers>
1166 </rdf:Description>
1167 <rdf:Description>

132

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

<rdf:type rdf:resource="&owl; AIIDifferent" />
<owl:distinctMembers rdf:parseType=" Collection" >

<rdf: Description rdf: about=" #regular _automated_ testing_deli very" />
<rdf: Description rdf:about= "#implementation_deli very" />

< / owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl; AIIDifferent" />
<owl:distinctMembers rdf:parseType= "Collection" >

<rdf: Description rdf:about=" #general_standardization_deli very" / >
<rdf:Description rdf: about= "#detail_des ign_deli very" />

< /owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl; AIIDifferent" />
<owl:distinctMembers rdf:parseType=" Collection" >

<rdf:Description rdf:about="#high_level_design_delivery"/>
<rdf:Description rdf:about=" #industry _standardization_deli very" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource= "&owl; AIIDifferent" />
<owl:distinctMembers rdf:parseType="Collection">

<rdf:Description rdf:about=" #manual_spot_evaluat ion_delivery" />
<rdf:Descri ption rdf:about=" #general_standardization_deli very" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl; AIIDifferent "/>
<owl:distinctMembers rdf:parseType="Collection">

<rdf:Description rdf:about=" #industry _standardization_deli very" />
<rdf:Description rdf:about=" #context_des cri ption_deli very" / >

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource=" &owl ; AIIDiff erent " / >
<owl:distinctMembers rdf:parseType="Collection">

<rdf: Description rdf:about=" #industry _standardization_deli very" / >
<rdf:Description rdf:about=" #detail_design_deli very" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl; AIIDifferent" />
<owl:distinctMembers rdf:parseType="Collection" >

<rdf:Description rdf:about="#testing_deli very" />
<rdf:Description rdf:about="#detail_design_delivery" />

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl; AIIDifferent" />
<owl:distinctMembers rdf:parseType="Collection" >

<rdf: Description rdf: about=" #rigorous_automati c_ testing_deli very" / >
<rdf:Description rdf:about="#company _standardization_deli very" />

</owl:distinctMembers>
</rdf:Description>
<rdf: Description>

<rdf:type rdf:resource="&owl; AIIDifferent" />
<owl:distinctMembers rdf:parseType="Collection">

<rdf:Description rdf:about="#testing_delivery"/>
<rdf:Description rdf: about=" #high_level_design_deli very" / >

</owl:distinctMembers>
</rdf:Description>
<rdf:Description>

<rdf:type rdf:resource="&owl; AIIDifferent" />
<owl:distinctMembers rdf:parseType="Collection" >

<rdf: Description rdf:about=" #rigorous_automati c_ testing_deli very" />

133

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

1234 <rdf:Description rdf:about="#industry _standardization_deli very" />
1235 </owl:distinctMembers>
1236 </rdf:Description>
1237 <rdf:Description>
1238 <rdf:type rdf:resource="&owl;AllDifferent"/>
1239 <owl:distinctMembers rdf:parseType="Collection">
1240 <rdf:Description rdf:about="#user _requirements_deli very" />
1241 <rdf:Description rdf:about="#detail_design_deli very" />
1242 </owl:distinctMembers>
1243 </rdf:Description>
1244 <rdf:Description>
1245 <rdf:type rdf:resource="&owl ; AllDifferent "/>
1246 <owl:distinctMembers rdf:parseType="Collection">
1247 <rdf:Description rdf:about="#high_level_design_delivery"/>
1248 <rdf:Description rdf:about= "#company _standardization_delivery" />
1249 </owl:distinctMembers>
1250 </rdf:Description>
1251 <rdf:Description>
1252 <rdf:type rdf:resource= "&01011; AllDifferent" />
1253 <owl:distinctMembers rdf:parseType="Collection">
1254 <rdf:Description rdf:about="#regular _automated_ testing_deli very" />
1255 <rdf:Description rdf:about="#company _standardization_deli very" />
1256 </owl:distinctMembers>
1257 </rdf:Description>
1258 <rdf:Description>
1259 <rdf:type rdf:resource="&owl; AllDifferent" />
1260 <owl:distinctMembers rdf:parseType="Collection">
1261 <rdf:Description rdf:about="#correctness_proofs_deli very" />
1262 <rdf:Description rdf:about= "#high_level_design_deli very" />
1263 </owl:distinctMembers>
1264 </rdf:Description>
1265 <rdf:Description>
1266 <rdf:type rdf:resource="&owl;AllDifferent"/>
1267 <owl:distinctMembers rdf:parseType="Collection" >
1268 <rdf:Description rdf:about= "#correctness_proofs_deli very" />
1269 <rdf:Description rdf:about="#detail_design_delivery"/>
1270 </owl:distinctMembers>
1271 </rdf:Description>
1272 <rdf:Description>
1273 <rdf:type rdf:resource="&owl ; AllDifferent "/>
1274 <owl:distinctMembers rdf:parseType="Collection">
1275 <rdf:Description rdf:about="#user _requirements_deli very" />
1276 <rdf:Description rdf:about="#correctness_proofs_delivery" />
1277 </owl:distinctMembers>
1278 </rdf:Description>
1279 <rdf:Description>
1280 <rdf:type rdf:resource="&owl; AllDifferent" />
1281 <owl:distinctMembers rdf:parseType="Collection" >
1282 <rdf:Description rdf:about= "#regular _automated_ testing_delivery" />
1283 <rdf:Description rdf:about= "#user _requirements_deli very" />
1284 </owl:distinctMembers>
1285 </rdf:Description>
1286 <rdf:Description>
1287 <rdf:type rdf:resource="&owl; AllDifferent" />
1288 <owl:distinctMembers rdf:parseType="Collection">
1289 <rdf:Description rdf:about= "#user _requirements_deli very" />
1290 <rdf:Description rdf:about="#context_description_delivery" />
1291 </owl:distinctMembers>
1292 </rdf:Description>
1293 <rdf:Description>
1294 <rdf:type rdf:resource="&owl; AllDifferent" />
1295 <owl:distinctMembers rdf:parseType="Collection">
1296 <rdf:Description rdf:about= "#rigorous_automatic_ testing_delivery" />
1297 <rdf:Description rdf:about="#regular _automated_ testing_delivery" />
1298 </owl:distinctMembers>
1299 </rdf:Description>

134

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

1300 <rdf:Description>
1301 <rdf:type rdf:resource="&owl; AllDifferent" />
1302 <owl:distinctMembers rdf:parseType="Collection">
1303 <rdf:Description rdf:about="#regular _automated_ testing_deli very" />
1304 <rdf:Description rdf:about="#high_level_design_deli very" />
1305 </owl:distinctMembers>
1306 </rdf:Description>
1307 <rdf:Description>
1308 <rdf:type rdf:resource="&owl; AllDifferent" />
1309 <owl:distinctMembers rdf:parseType="Collection">
1310 <rdf:Description rdf:about="#correctness_proofs_deli very" />
1311 <rdf:Description rdf:about="#context_description_deli very" />
1312 </owl:distinctMembers>
1313 </rdf:Description>
1314 <rdf:Description>
1315 <rdf:type rdf:resource="&owl; AllDifferent" />
1316 <owl:distinctMembers rdf:parseType="Collection">
1317 <rdf:Description rdf:about="#user _requirements_deli very" />
1318 <rdf:Description rdf:about="#manual_spot_evaluation_delivery"/>
1319 </owl:distinctMembers>
1320 </rdf:Description>
1321 <rdf:Description>
1322 <rdf:type rdf:resource="&owl; AllDifferent" />
1323 <owl:distinctMembers rdf:parseType="Collection">
1324 <rdf:Description rdf:about="#manual_spot_evaluation_deli very" />
1325 <rdf:Description rdf: about= "#company _standardization_delivery" />
1326 </owl:distinctMembers>
1327 </rdf:Description>
1328 <rdf:Description>
1329 <rdf:type rdf:resource="&owl; AllDifferent" />
1330 <owl:distinctMembers rdf:parseType= "Collection" >
1331 <rdf:Description rdf: about=" #company _standardization_deli very" />
1332 <rdf:Description rdf:about= "#industry _standardization_deli very" />
1333 </owl:distinctMembers>
1334 </rdf:Description>
1335 <rdf:Description>
1336 <rdf:type rdf:resource="&owl; AllDifferent" />
1337 <owl:distinctMembers rdf:parseType="Collection">
1338 <rdf:Description rdf:about="#rigorous_automatic_ testing_deli very" />
1339 <rdf:Description rdf:about="#correctness_proofs_deli very" />
1340 </owl:distinctMembers>
1341 </rdf:Description>
1342 <rdf:Description>
1343 <rdf:type rdf:resource="&owl; AllDifferent" />
1344 "<owl:distinctMembers rdf:parseType="Collection">
1345 <rdf:Description rdf:about="#implementation_deli very" />
1346 <rdf:Description rdf:about="#industry _standardization_deli very" />
1347 </owl:distinctMembers>
1348 </rdf:Description>
1349 <rdf:Description>
1350 <rdf:type rdf:resource="&owl; AllDifferent" />
1351 <owl:distinctMembers rdf:parseType="Collection">
1352 <rdf:Description rdf: about= "#company _standardization_delivery" />
1353 <rdf:Description rdf:about="#detail_design_delivery" />
1354 </owl:distinctMembers>
1355 </rdf:Description>
1356 <rdf:Description>
1357 <rdf:type rdf:resource="&owl; AllDifferent "/>
1358 <owl:distinctMembers rdf:parseType="Collection">
1359 <rdf:Description rdf:about= "#regular _automated_ testing_delivery" />
1360 <rdf:Description rdf:about= "#manual_spot_evaluation_deli very" />
1361 </owl:distinctMembers>
1362 </rdf:Description>
1363 <rdf:Description>
1364 <rdf:type rdf:resource="&owl; AllDifferent" />
1365 <owl:distinctMembers rdf:parseType="Collection" >

135

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

1366 <rdf:Description rdf:about="#rigorous_automatic_ testing_deli very "/>
1367 <rdf:Description rdf:about="#high_level_design_delivery"/>
1368 <lowl:distinctMembers>
1369 </rdf:Description>
1370 <rdf:Description>
1371 <rdf:type rdf:resource=" &01'1; AllDifferent "/>
1372 <owl:distinctMembers rdf:parseType="Collection">
1373 <rdf:Description rdf:about="#rigorous_automatic_ testing_deli very"/>
1374 <rdf:Description rdf:about=" #manual_spot_evaluation_deli very"l >
1375 <lowl:distinctMembers>
1376 </rdf:Description>
1377 <rdf:Description>
1378 <rdf:type rdf:resource="&owl; AllDifferent "/>
1379 <owl:distinctMembers rdf:parseType="Collection" >
1380 <rdf:Description rdf:about="#manual_spot_evaluation_delivery"/>
1381 <rdf:Description rdf:about="#industry _standardization_deli very"/>
1382 <lowl:distinctMembers>
1383 </rdf:Description>
1384 <rdf:Description>
1385 <rdf:type rdf:resource="&owl; AllDifferent "/>
1386 <owl:distinctMembers rdf:parseType="Collection" >
1387 <rdf:Description rdf:about="#regular _automated_ testing_deli very"/>
1388 <rdf:Description rdf:about="#industry _standardization_deli very"/>
1389 <lowl:distinctMembers>
1390 </rdf:Description>
1391 <rdf:Description>
1392 <rdf:type rdf:resource="&owl; AllDifferent "/>
1393 <owl:distinctMembers rdf:parseType="Collection" >
1394 <rdf:Description rdf:about="#rigorous_automatic_ testing_deli very"/>
1395 <rdf:Description rdf:about="#context_description_delivery"/>
1396 <lowl:distinctMembers>
1397 </rdf:Description>
1398 <rdf:Description>
1399 <rdf:type rdf:resource="&owl; AllDifferent "/>
1400 <owl:distinctMembers rdf:parseType="Collection">
1401 <rdf:Description rdf:about="#rigorous_automatic_ testing_deli very"/>
1402 <rdf:Description rdf:about="#implementation_deli very"/>
1403 <lowl:distinctMembers>
1404 </rdf:Description>
1405 <rdf:Description>
1406 <rdf:type rdf:resource="&owl ; AllDifferent "/>
1407 <owl:distinctMembers rdf:parseType="Collection">
1408 <rdf:Description rdf:about="#manual_spot_evaluation_delivery"/>
1409 <rdf:Description rdf:about="#context_description_deli very"/>
1410 <lowl:distinctMembers>
1411 </rdf:Description>
1412 <rdf:Description>
1413 <rdf:type rdf:resource="&owl; AllDifferent "/>
1414 <owl:distinctMembers rdf:parseType="Collection">
1415 <rdf:Description rdf:about="#regular _automated_ testing_deli very"/>
1416 <rdf:Description rdf:about="#context_description_deli very"/>
1417 </owl:distinctMembers>
1418 </rdf:Description>
1419 <rdf:Description>
1420 <rdf:type rdf:resource="&owl; AllDifferent "/>
1421 <owl:distinctMembers rdf:parseType="Collection">
1422 <rdf:Description rdf:about="#user _requirements_delivery "/>
1423 <rdf:Description rdf:about= "#company _standardization_delivery "/>
1424 </owl:distinctMembers>
1425 </rdf:Description>
1426 <rdf:Description>
1427 <rdf:type rdf:resource="&owl; AllDifferent "/>
1428 <owl:distinctMembers rdf:parseType="Collection">
1429 <rdf:Description rdf:about="#context_description_delivery"/>
1430 <rdf:Description rdf:about= "#detail_design_deli very"/>
1431 </owl:distinctMembers>

136

Master Thesis - Volodymyr Babiy McMaster - Computing and Software

1432 </rdf:Description>
1433 <rdf:Description>
1434 <rdf:type rdf:resource="&owl; AllDifferent" />
1435 <owl:distinctMembers rdf:parseType="Collection">
1436 <rdf:Description rdf:about= "#correctness_proofs_deli very" />
1437 <rdf:Description rdf:about="#manual_spot_evaluation_delivery"/>
1438 </owl:distinctMembers>
1439 </rdf:Description>
1440 </rdf:RDF>
1441 <!-- Generated by the OWL API (version 2.2.1.1138)
1442 http://owlapi.sourceforge.net -->

Listing D.l: An upper ontology in OWL for the product based software certification

137

