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ABSTRACT \

The Feshbach-Rubinow approximation which is one of

»

thermanyQappr$ximate methods to solve three-body problems

was.first applied to the tritqn problem. 1In this approxima-
tion, the threé—body problen is reduced to an equivalent two-
body problem aﬁd tﬁe total three~body wavefunction is assumed

to depend on 3 single non-negative' variable. The problem

then reduces to the solving of a single second order differen-

tial equation.When this, approximation is. made in the atomic
R . f

» A

. /
three-bady problem of the helium &tom and helium-like ions,

~

the Schrddinger-like equation that is obtained is analytical-

N LR .
ly solvable, yielding reasonable results for the grounc-state

energy. Calculations have previously been done with just

one varigtionqﬁ parqmetér in the 'varjable on whicggggﬁﬁéaée—
function depends. 1In this thesis, -the definition‘of the
variable has been modified on physical arounds to take
.better account of screening, .and contains two variational
parameters. Analytic solutions of the differential equétion
can again bgagoupd, énd improved numerical.r65ults are ob-

. tained. These arc compared with the results obtained from -

the more claborate K-harmonics approach.
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CHAPTLR I

INTRODUCTI1ON

Ji

Thae three-body problem has been of interos£ to 'physi-
cists long bofore the becinning of the quantum era. The prob-
lem of paths followed by two planets on their passage around
the sun is one of many examples. In quantum mechanics, the
three~body problem has enjoyed great popularity among the
physicists over the last few decades. ..

s .

In this thesis, we deal with the atomic thrce-body
problem of: two electrons and a nucleus, as in the heliqp atom
or_helium-like iogs. When one speaks of the three-bodyv problem,
"the first characteristic that comes to mind is its "insolubi-
lity". 1n atomic do&ain this describes, for instance, the!
situation for the helium atom whose Schréd%pger equation does
not admit of an exac%qsolution as 1in the-corresponding hvdrogen
atom problem. This featﬁré of insolubilaity is intimately con-
nected with the very law of force - thé.coulomp force - which
$0 raccurately describes the behaviour of atomic systems. There-
fore the best a physicist can do-with atomic three-body systems
is to devise powerful approximation techﬂiques :T chtain numeri-
cally accurate resuité for comparison with ;xpcrlmcntal data.

An excellent review of the work done upto 1956 is due to Bethe and



~

‘Salpeter {1]. Starting from the non-relativistic equation for

helium-like systems there has been a long sequence of calcula-
tions on the bound states of these syséems, culminating in the
work of Peckeris [2] which has yielded eigenvalues‘accurate up
to 10 or 11 significant figures.

Bas;pally two approaches hqve been attempted to solve
the problem 2§ helium-like éistems. The variational technique
consists 6f(éhoosing % trial function Ve ¢ontaining a number

r .
of variational parameters which are varied to minimise the

«

quantity E = <y fllly > with <y

|wt finite, where®H 1s the
‘Hamiltonlan of the system. Depending upon the flexibility of
wt, Et can be very close to the true energy E. On the other

{* hand, 1n the K-harmonlfs approach, the rclatgve mdtion of the
three-body system 1is describea by a Schrddinger-like equation .
in six-dimensional space. The two-bedy potential 1s exbressed
in terms of gcner;aigéd angular momentum ei;enfunctlons for the~"
Ehroé bSQy system and one finally gets an infinite set of
coupled differential equations. ‘ ' -

The approximatzan method that we have used here is a

variational approach and was first applied in nuclear physics
by Eeshbach and Rubinow. In this method one assumes that the.
total th%qe—body wave function depends on a. sincle non-negative
symmetricAvariable. " We have given a brief account of this
method [3] and 1ts generalization [4) in chapter II. ¢ ~

!

In chapter 111, the meghod has been apvlied to a’model

onc dimensional helium-like system with zero range forces and
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it is found that the estimates on the ground state energy are
better compared to those obtained f{rom other simple approxinmate

methods [6,7,8). The Feshbach-kubinow- me thod hqgs been then

shown to give sti1ll better results bv a more judicious choicg

-

of the variabfg,on which the wave functicen dcpoﬁds. \\\
The ground state uﬁerqy of realist'c two~-clectron atomic
systems has been determined by the modified Foshbach—Rubfnoy'
method and the results compared with those of Pekeris {[2] and
Bhaduri et al. (10) in chapter IV. It is seen that the analytic
ébluti6hs for the ground state cnegé; and wave function are
obtained. Despite the minimal computational work 1nv§l§ed,

the modified Feshbach-Rubinow apnroxination gives fairly good

results.



‘ CHAPTER 11 <

THE FLSHBACH-RUBINOW METHOD

We have applied the Feshbach-RubinoWw (FR) method to
three-body atomic systems iike H , He, Li+, Be++ etc. to
calculate the ground state energy of these systems. It is
worthwhile, therecforc, to qivg here a brief account of.the
method although resalts of the FR and the generalised FR
methods have been given in ref. [3 ] and [ 4] respectively.

In the FR method, the three-body problem is reduced
to an cquivalent two-body problem using variational prin-
ciple. The two-body forces are assumed to he central and
the total three-body wavefuﬁctlog spherically symmetric.
It is assumed at the outset that the Ehgee:body wavefunction
is a function of a single symmétrlgyvariable which leads

A N
to a second order differential equation similar to the

Schrodinger equation for deuteron. fhe lowest e}genvalue of
the obtained two-boay equation is an upﬁerbound of the ground
state encrqy of the-original three-body’system. Feshbach and
Rubinow | 3]_appllcd this method in the case of triton-
assuming all three particles to have the same mass intoraéting

with identical pair-wise nuclear force.

The Hamiltonian H for a three-body svstem in any

o



reference frame 1is”

-
. ﬁ2'
H = - =
h ) 2 l
. . A ‘
where X, and m, are the position vector and -the mass of the
o . ]

1 2
= V.7 I v({§i x. )

I i<j ~J

I > w

ith particle.
The centre of mass #fotion of the system being removed,

the Hamiltonian H in the relative coordinates 1s given by

-,

2 2
B W L TE e EcE
cyclic My M3y ory 1 551 - &
. o
1 r§+r§ - rf 22
+ m.  r.r 3r . dr b+ vl(rl)L P (2.1)

1. 273 273

where®*r, is the distance between particles 2 and 3 and so on

1
for r2‘and rye .
For a system of particles with equal mass m, egn. (2.1)
reduces to_ : ®
o
2 2 2
go - ﬁi {82 L2 0, r, + ry r 52 ;
cyclic m ‘»Bri ry 9m 2ryry 9r, Ty
+vy(ry)]. ' .- (2.2)

The Schrodinger equation

HY = Ey

- ¢

can then be written for convenience in the followina variational

.form




® oo ll' 2
0 =38 L drl J dr2 i dr3 rlrzr3
0 0 ﬂrl—r2| »
2 L2 2
L)+ By v Ry
1 2 3 - ,
2 2 2 2 2 2 a 7
r, + r, - r | r,.+ r, - r , - o
n 1 2 2 3 'Z)q; Y + 2 ) 3 1 - 8852 *
rlr2 . drl 8r2 _2r2r3 'L, 0rg .
2 2 2
3T T Ta o sw sy
2r . r or. Jr
371 3 1l - -
+ B (v.(r.) + v._(r.) + v {r )}\b2 - B Ew2] (2.3)
7 LT 252 31 P30V T2 .

wheére E is the centre of mass energy of the system.

~Since only S-states are considered, the wavefunction
; »

17 T and I

symmetric under the\exchan@e of any two partid¢les and is

[
normalized as ¢

[ Lyt

0 e o]
’ 2
< . I =
‘ dr, [ dr,, [ dr, rlr2r3lw(rl,r2,r3)I 1.

0 0 |rl—r

p is a function of r only. The wavefunction is

5|
Reshbach and Rubinow chose the'anctiOnal form of

to depend only on a single.symmetric non-negative variable R

~

such that .

v = ¢(R) - :

Ly

1 ' ,
R = 2(rl +or, + r3) _ —— %

‘where ¢ 1s an unknown arbitrary function of the perimetex ?7/

- PR

the triangle focimed by ‘the three particles. Thus, chafging

- L] hd



the variables so that R becomes one of

1
R = é-(r1 + r, + r3)‘
Ry=1,
R3 = 1?3
the volume intearal becomes - ‘j
X 4r )
[ (® 1.2
l drl J dr2 J dr3 rlrzr3
0 0 lr rr,|
[ R (R
-2 e J ar,
0 z
0 _R-R,
g
< r(X)
N\
) 5
_f— i M
30 | K 9B
0 l/i
.
The integration over R2 and R3
and egn. (2.3) reduces to K
"~ R5 dd 2 2
= R ae RN
0=2 J daR T GR + 7 Vesr ®
H
0
where »
(R (R '
= 8 “R -
Veff~ RS dR2 } dRJ(2‘R R2 R3)R2R3[Vl
0 R-R

FOr a potential of the shape vy

-~

the independent variables

«r

-

is easily performed

s
m 14 2

— == E¢] (2.5)

W2 5

(rly+v2(r2)+v3(r3)]. "(2.6)

(ri) = Viv(ri) with Vi

constant, Veff can be iimplified, by cyclic.permutation of

variables, and writtcn as

~

A
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R

8 2.2 .3 1

\Y = kV +V, +V.,) dR,(R"R.-RR. + = R4)V(R ) . (2.7)
1 R 2 2

eff 2 3 5 2 2 2 6

0
Subseguent use of the Euler-Lagrange @quation to

eqn. (2.5) yields the differential equation

d . _ 14 .2 . =
5 g5 R kK79 + U ge¢ =0 (2.8)

2 _ m : _ _ m
where k° = — |El and Uggge = 5V

. For the bound state
H eff _

4
problem, |E| = -E.

5/2

Making the substitution F(R) = ¢ (R) , egn. (2.8)

becomes - \¥

—

4 2 15 1 .
kK"F - T ;§}?+UeffF = 0 . (2.9)

d

d2F
R2 1

n

Since egn. (2.9) ,is obtained from variational prin-
ciple, its solution gives the best function depending solely

on R. This equation is similar to the Schrodinger eguatian

-

for the deuteron. It has an effective mass of %% m and a centri-
fugal potential enercy term %? R_2 corresponding to orbital

angular momentum guantum number £ = 3/2. 1t should be noted
that the centrifucal term arises from the kinetic energy terms

in the Hamiltonian, irrespective of the choice of the two-

v

body potential. The term Ueff is an averaged potential given
by egn. (2.€). The term %? R—2 - Ueff may be called the true

effective potential of the problen.

A very important property of Veff i5worthnwntioni§?

here. From an inspection of égn. (2.7) one can say that



2

if the two-hody potentiaj V(R,)+1s a polynonial of order n

2

in Rz,tthen veff will also be a polynomial of same order in : .

’

.

R. The same result holds for two-body potentials of the
type J; and in particular the coulomb potential which goes ke

35 %. This is interesting since in the three-body at0qic

v

\
systems where the pair-wise force is coulombic infhature, \

eff oy
will be a coulomb potential. Eqn. (2.9) whll theh take the
form of Séhrédinger equation for hydfoggn—like éystems with
L = 3/2, solu;ions'of which are known analytically..
Referring o egn. (2.9) one sees thét the task of °,
finding an appropriate S-state wavefdnctipn is reduced to
solving the equation. The FR mcfhod has the advantage of
connecting direcgly the S-state wavefunqtio to thé»two-body
potential. Thus the potehtial/geing once chysen, the wave-

’ - . »

- function is uniquely determined.
One should also note the circumstayﬂbs where the FR
method is expected to work well. The method treats equally . ~7
all possible configurations having the same value of k{
indépendent of the choice of éotential. llowever, i1t can be
easily seen that for a two body potential wigh a short range
part followed by an attractivé pért, the method will not
be satisfactory since a corifiguration with two particles‘close
togethér expcricnéing repulsion and the. third particle far
away 1is clearly not the same as a confiquration in.which all

the three particles interact via attractive force. Thus,

for the FR method to give good results it is necessary that the
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two-body potential be a smogyhly varying function of the inter-
particle distance, so that all the pa;z}cles experiénce the
same typé of force in all configurations.\ This condition 1s

very well satisfied in atomic systems and therefore one may

be tempted to apply this method to such systems.

[

Generalised FR’'Method

-

The FR.method can be generalised [ 4] to take into
account the three body systems in which the particles have |,
. “
différ@nt masses and the two-body forces are different but
central. Mathematical detalls are given in the Appendix.
The wﬁvefunction W is still a function of a singie variable
R containing a few variational parameters. R is now defined

inssuch a way so as to take into account different interac-

tions.
AY
¥ = ¢(R)
" . R=2 (nr. + nor. + n.r.) (2.10)
2 171 272 373 ' :
where Njr Nys Ny are variational parameters. These are a

measure of relative strengths of the threc two-body interac-

- tions and the assymetry in the masses of the particles. Since

Lyr Yoyr Yo and hence R are non-negative quantities, the tri-

angular conditions ry +r, > r, ete. restrict the possible

values of n's such that 1 >0, n, + ny > 0 and

- 1 2

N3 + nl > 0. TFor example, using the condition rl + r2 > r3,

+ N

one has J
<



N

11
5

0 < 2R < [(ny*ny)ry + (ny+ny)r,l

It follows that for all possible values of rl and r, ranging

" from 0 to ~, the above condition is satisfied only for

+ ., > 0 and n. + - 0.

3 2 3

Proceeding the same way as the original FR method,

Ny

one finally obtains the differential eguation

2 52

_'2; Q_% + V(R)F = 8LEF (2.11)
where . 4R ‘- <«
,
F(R) = R %¢(R) J
‘ 3

1 . 2 21 )

== § ) (ny +n5) == + gn.n,n L (=) (2.12)

m eyelic 1 2 My K V23dgam y

2 -3 ;
+ + YR) = %F QU% 4 % W.(R) . (2.13)
’ 4R i=1- *

The quantities &, g, wi(R) are defined as follows.

( « .
oo 5
(dr)rlr2r3 = 2F l R7dR .,

a0 -0
2 2 2
(dr)rl(r2+r3~r1)

[

il

2nng R5dR

0

(=)

f

l R°W_ (R)dR
I

0

1

) J z ’
0 0 Irl r2| "
- Explicit forhs for ¢, ¢ and wi(R) are as followé

~

\ .

gt



5 3 ,
2~§igl+n2+n3) IPRPUEY:

£ = ; - (2.14)
15{(”l+n2)(”2i”3)(93+”l)1
N 6 2 R
27 {(nytn ) Tt ntn
C = L2y T2 a3 3l (2.15)
15{(n1+n2)(h2+n3)(n3+ni)}
2/ (ritny) .
4 f 301 . 2 2. .2
W, (R) = ————x | dt{12-12n,t+(3n-n n,)t 1 t7v. (Rt)
1 3 1 1 '2°3 1
3(n2+n3) \
0 !_&J
'n; r2/(nl+n2) , ; , ,
+ — de{32n.-12(nS+4n,n,+3n )t
A . 3 2 377 M2 2
‘ _ (n2—n3)
. ~ 2/(n3+nl)

2
2)t~

+ l2(nl+n2)(n§+2nln2+n2

ENL (nl+n2)2(3n§+4nln2+n§)t3}tvl(Rt)] . ' ©(2.16)

The n's appear in above expressions in such a way
that cyclic pernutation of these parameters leaves 7, ¢ and

Zwi(R) unchanged as expected, since Rngzand R3 are cyclic

-~

variables.

1t may be mentioned\ that the FR rethod was aeneralized

by Abou-Hadid and Higgins [ 5§ for the case¢ where two of the
particles are: considered identical and applied to p3u systen.
ar ¢ © '

All ‘the expresgswons in ref [4 ] reduce to the corresponding

expressions in ref [s5 ] for hl = n, =1 and ny = n.

\

\\ N

N
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CHAPTER III

ONE DIMENSIONAL HELIUM-LIKE SYSTEMS

-
~

—

One dimensional probIZZékare useful not only because

of the'simple mathematics involv?d but also kecause of the
o

physical insight provided which helps one to probe into »
realistic three-?ody problems. One dimensional three—Sody
problems have been studied by several authors. It is Known
that the *exact iolutions cannot be obtained d&ﬁlytfbally
for such systems except f?r the speciél case of three par-
ticles of equal mass interacting via attractive zéro—range

-~

interparticle potentials of eqgual strength [9]. The three-

body systems must, thereﬁgii: be studied b§7é;proximate' )
megg;z:sz:zg\h3“ﬁE?EHFEE%&QQé%heory, variational method and

the Hartrce-Fock approximation. Thiese technigues have been ’
applied {6, 7, 8] to a model one dimeqsional helium-like

system interacting via delta function potential. e have‘ij
shpplied heré the FR approximation to such a mddel system. It~
turns out that the corresponding solutions are sinplg igd

the ground state @nergy—is lower than pre;ious results.. This
saggcsts that Fhe FR method can yield still better results if-

the definition of the vgfiable R in the wavefunction is suitably

modified, which we have done by taking into account the screening

b .

of the nuclecus by the electrons. We have found that the ground

. ) )
state encrgy is further lowered.

N
n\ 13 // ) K‘/' -
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el

: In this chapter,; we first use the FR approximation to

get an equivalent two-body differential equation for a three-
) , \

body/S{stom w1th~ﬁ?equal masses and interacting via c¢entral
s N D)

“orces. The validity of the cquation is then checked by ap-
\ . 4

plying it to a special case for which the ground state eneray

%

is exactly known. We then proceed tH calculate the ground
state encrgy of the helium-like atom by FR and the modified
FR approximations.

The kinetic eneray OpératorT” in a reference frame 1is
2
1 3
m. .2 (3.1)
1 i 'dxi‘ - ¢

2
/oy T' = —ﬁ_.
/ ' T2

h™~w -

i
‘\§whcre x4 and m, are the position vector and mass of the ith
Z $ : :
particle. N

(/~\ The centre of mass motion being removed, the kinetic

energy 2Pﬁrator T in relative coordinates i%’

K° .1 1., 92 1 1,32 2 _%2 |
R RSy S S s SR T T R A
: 2 3 arl A 3 9r 3 ‘21922
o
where r, = X, -x,, I, = =X, and r, = x,-X,

Theé; are three possible geometries, depending upon
? N . :

which particle 1is posicioned in between the other two. The

corresponding expressions for T are not the same.

- 2 ~ 2 . 2 2
re-ig- e s e - 2 i ey
’ 2 3 Brl 1 3 3r2 "3 172




g t’\
t""'y

—_

kﬁ'
T3 7%, 70
2 2 2 -
e d e e 2
2 "3 or] 1 3 ar 3
2
-
o B B
ke 2 2 2
\ ;
etk ST L2
- 2 3:;1:l 1 3ar 3

in

(

/The Schrodinger equation for the system

thejvarLatlon form

[~ > 2 2 2
: 1 1 oy 1 1 Y
= § dr Ar J[=={ (= + =) (=) + (= + =) (—)
J lU 2 2 m, * My Iry my m or‘z
0 0
_ th.:ﬂ; - {y
m T dr } { (r )+v (r )+v (r ) Ho +Ew J
2 2
1l A 1 al 2 ad 9
+ dr,[- ——{ - —-u) (——) (—-—— —) (——) el IR
J 2 m2 L Ry L myoery 81‘2
0
- v v )y ey () e Pane?)
® 2 2
X |[ DY 2 P PRV
9 dr[-~——{(~«+—- )+(—+———)( )+ =
’ 2 2 m2_ 3 l . l m3 2 m3 drl r

dr, u
1

can be Wr itten

15

r

1 (3.4)
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= 1 .
R 2(nlrli‘r12r2+n3r3) (3.7) {
» Ry = 1,
and choosing the wavefunction 4 to be of the form
v o= ¢($)
one can wWiite eqn (3.6) as
o F2R/ (n,+ny)
0= & | GR [-—2 2 R (A5 % o (vorvorv ) 82eEr?)
Nyt 2' 0GR T VTV R
0., 0
r2R/(n2+n3)
2 ’ dd, 2 2 2
+ ’ 1 e - DA
s dR, (B (g% (vytvotvg) ¢ T+ELT)
2R,(nl+nz)
2R/ (1. +n..) A 2
2 17 dy, 2 2 .2 ,
+ a4 - 3 A
TR [ - ARy fCigR) (Vytvptvg) pTHEST)) (3-8)
0 \\\—_\
where T
A= - ﬁi [(J; + J;)(r 41 i2+(3; + ;Ld 1 )2 2 (n,+ +n )
=T g U ottty m mo) (pFg) = g (nptng) (nydng)]
3 - 1 3 ( 3
B = hz [}1 + l)('\ n )2+(l + l)(n 4 )2 ¢ 2 (n,~n,) (n +n_ )]
= T 5 _— i - P e Y - -nh
8 m2 m3 1 3" - my my 2 3 m3 1l '3 2 3
2
h ‘1 1 2 1 1 : 2 2
C = - 2 = = = — - < -
g {(m + )(nl+n3) L il )(n2 n3) o (nl+n3)(n2 n3)] ~—
2 3 1 3 . 3
Since #, dg¢ and E are independent of R2, integration

3

0,
)

over R2 can.be ser ormed for integrands contalning these terms
in egn. (3.8ly> One then gets

-

P



w

D

h2

2

'
*

[RRS

d
d

julfe)

) (

[

)

(2R/(n2+n3

2R/ (ny )

l+”2 )
dRz}{Vl(

OY—

here

= 8(nl+n2*n3)/l(nl+w2)(n2+n3

2-—
)(H2+H3)(

(L
m

(nl+n n.+n,) N

2 3

1

3
)
1
3

(nl+n3){(nl+n2+n3)(nl+n

n,+n.+n

+ny
1l 2

3)(r:l

3

(Ql+n2){(

Note that D and G are

- ).
Definfing

_ L
~ DR [

Veff ”l

{ZR/(H1+H2)

|

0

ra

nl+

dR

5]

where M is the effective mass

of the system, - -one has

17

:)2}
, r2R/(n2+n3)
g dR,
173
ZR/(nl+n2)
r. )4y (r_)+y.(r )}ﬁzj (3.9)
177Vttt TVttt :
)(”3+”1)] (3.10)
(n2+n3){(wl+n2+w3)(n2+w3)-2n2n31
3)_2”1”3}
? N -
2)—_nln2*] (3.11)
syrmmetric in n's and m's. .
G
5 (3.12)
, r2R/(n2+n3)
- dRr
Ny 2
( 2R/(nl+n2)
AN
{vl(rl)wz(r2)+v3(r3)} (3.13)
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N

2 2 2
eff“b ).

o

(G2 B -V

|

o
[}
o

RdR [~ dg

()
[N

N

(=]

Using Euler-Lagrange equation, the Schrddinger equa-

tion for the svstem 1s obtained

2 .
41 d ahs o e
"R ar Rap) fVerer T B =0 A\
L 12
Substituting F(R) = R »(R), the above equation reo-
duces to
2 2.,
- %ﬁ (4 Loa ~1§ Fl + V_, F = EF . (3.14)
dR 4R e
The centrifugal term (- % R”%) in the above equation

A}
1
corresponds to orbital guantum number ¢ = -

As a chéck to eqn. (3.14), we apply it to a system
of three particles with same mass m and interacting via
attractive interparticle delta function potentials of equal
strength: Ean. (3.14) then has exact solution. This \
system has been solved previously [ 9].

The effective mass tt and Ve from egns. (3.12) and

ff
(3.13) are then

M=

N3

2

= - &
Vetf R

where e denotes the strength of the lnterparticle force. The.
Schrddinger ecuation (3.14) reduces to

x> a’r 1 e
i A BLE B Sk
dR 4R

pO

EF . R
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\
\

This is just the wave ecquation for a céulomb poten—

tial for an effective orbital momentum state Ql: - %. The
, . !

correspondi'ng ground state energy Eo in atomic units. of
me4/h2 is ~1, which checks with the value obtained by
McGuire [ 9 ]. The unnormalised ground state wavefunction is

4 // ¢0 = exp(~-R/2a)

<
where a = ‘hﬁ/me2 is. the Bohr radius.

We now apply the FR approximation to a simple one
dimensional model of helium-like systens where the three
particles interact via zero range inperpartlcle potentials:
The nuclear charge is Ze-where -e 1s the charge of an elec;ron.
The mass of the nucleus 1is assumed to be infinite, aX¥thoudgh
the'finite*mass of nucleus can be'eas;ly taken into account.
Thé Hamiltonian H in relative coordinates is

2 2 2

H ( +

H'——- - ﬁ

@
fo ¥4

|
|

) - Ze2{6(xl)+a(§2)}+e26(xl—x2). (3.15)

Ix X

-

|l V)
[\CTN S

Here Xy and x. are the distances of the two electrons from-

2

the stationary nucleus at origin. The Schrddinger equation
.

in variational form is

2 2

_ w7, 2 a2 2 )
0=2¢ dxldXZ [T'ZE {(‘2}%{'—{) '+ (ﬂg) }" Ze {‘5(Xl)+6(>.<2)}‘{)
2 .
+ e?8 (x-x )v% - BV . (3.16)

Since two of the three interparticle potentials are

of the same type, the wavefunéwlon ¢ is chosen to Be of the

) N
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form
¥v.= 4 (R)
. ~ R = i(r +y _+nr.) . (3.17)
271 72 3 .
where n i§ a variational.parameper. Here rl.is the distance
between pafticl?s'% and 3 i.e.‘rl = [xl[. Similarly r, = |x2|

and r, = [x,-x

3 1 2l'

geometry of the systemn réstriqts\the possible values of n such

that (1+n) > 0. ' —

The effective mass M defined in egn (3.12) is

Since R is a non-negative variable, the

.

J

L , © 1 _ L4 (n°+ne+2) (3.18)
M 2+n 2m A

.
%

where m is the mass of an electron.

\Y defined in egn (3.13) is

eff
oo mPe? 2
eff 4(2+n)R - (1+n)

dR2

jZR/(l+n) j2R/(l+ﬂ)

_ o . ‘R

(R ’
‘J aR,} (28 (r))+28 (r)=6(ry))
(

+
ﬁw‘
o

2
= - &
’ R

l+ny (42-n=1) . )
T3+ . ' ‘ 1(3.19)

Note that zero-range potentials give rise to Véff

¢ >t

which is coulombic in.nature. ‘

The Schrddinger eqguation for the system, using eqns

(3.14), (3.18) and (3.19), becomes
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2 2 2 :
(d + _li F) - %T _A2-n-1 F = 2(2+n) EF . (3.20) , .

dRr 4K 2(n2+n+2) (l+n)(n2+n+2)

Ao
2m

s}

|

[\S)

'This is the radial coulomb egquation with centrifugal

term correspondiﬁg to orbital guantum number £ = - %. The
ground state energy EO corresponding to pranciple ¢guantum {
number n = % can then be easily written in atomic units as
n 1.2
. @ -z - 7
4
E o= - Lt 4 4 , (3.21)
’ (14 %) (1 + AL ﬁz)
. 2 2

The ground state unnormalised wavefunction is

(Z2 -
¢

(R) = expl- =

(W] a

(1 +

[ ST N ks

1
7)
3 ) (3.22)
n_
2

where a = ﬁz/me2 is the Bohr radius. TVhile nornalising the

wavefuncti®h one should note that

2

ax, | ax - 2052 | g
(n+1)

LS

in eun (3.21) reduces to - (2 - l)2

For, néO, BO ' 3

which is just the one paramecter variational result [ 6 |.

For a given Z, egn (3.21) should be minimised by varying n

between -1 and «.  The cround state energy for different Z
obtained from various. approxinations is cormpared in table 1.

It is found that the FR nethod gives a lower value of EO




~system with attractive delta potential - Zezé(x) is Zz/i \
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than other estimates. A non-zero value of n in the wavefunc-
tion takes into account the interelectronic correlations and
thus gives better result. This enco&rages one to apply the
FR method with modification invoked in the wavefunction.
Although the smallest realistic nuclear charge Z is
1, it might be interesting to see how the three-bodv binding
energy varies as 2 is further reduced. Physicallv, one can
see that as 2 is reduced gradually, the three body binding
energy becones sraller and smaller due to the decrease in the
total éttractive coulomb force and hence an increase in theg
effect of répulsive force between the electrons. A point
comes where the three-body binding energy becomes less than
the bindinc énergy of the two-body system of the nucleus
and an electron interacting via attractive potential. The
three body sys£em is then no loncer stable and it decays
into the more stable two-body conficuration and'an electron.
The ground state enercy for a one-dirmensional hydrocen-like
s
in atomic units. The critical value ZC of the nuélear charge
at wﬁ;ch the helium-like system 1s just no longer stable
has been calculated from perturbation [ 6 ], variational
[ 61, Hartree-Fock [ 7 1 and FR rmethods and are given in
table 2. The ground state energy calculated by these methods

is

s
1
3
™
!
NS
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- - _ 1,2
Evar (z 4)
_ 2 Z 1
Byp =~ (& -3+ 13
in atomic units. The verturbation and HF calculations are

-

valjd for 2 > %, whereas ﬁhé\variational calculation is wvaldd

for z > The FR approximation gives lower value of ZC conm-

1

4° 2
vared td other methods. This means that the FR method can
support a three-body bound state for a weaker attractive

interaction compared to other methodgs.

Modified FR Method

One can modify the FR method by improving the choice
of the variable on which the ground state wavefunction de-

pgpds. , In the sinple FR nrethod the distances ry and fz

entered in the definition of the variakle R on an equal
footing. However, ior those configurations of the system in
which the two electrons are at unecual distances from the

-
nucieus, the outer(électron naturallv experiences a smaller
. N

’/ 3 a
effective nuclear charge than the inner OSy’due to shielding.

, cannot be given ecual® weight

in the wavefunction for all values of rl and r2. SO0 one can

This suggests that ry and r

define the wavefunction as

v = ¢(R)

1
R = -é-(ocr> o o+ nr3) rory # X, (3.23)
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where r> = rl and r,. = r2 for rl>r2 and vice-versa. The

variable R now contains two/va;hatloﬁal parameters o« and n.,
one to take into account EHe creening and the other the
interelectronic correlations.] Since R>0, the conditions
a+n>0 and 1+n>0 restrict the possible values of o and n.

One can note that t

<
_ a+l a-1 _
ar, + r = 5= (rytr,) v 5 |rl r2|
+ For the special-case of ry = r,, one keeps R con-
tinuous by defining it as | '
&~ . N
o+l
= —= +
R 5 (rl r2) + nr3

which is obvious since when the electrons are equidistant
from the nucleus, they. must appear in the wavefunction with

equal weight.
<
The Hamiltonian H and the Schrodinger equation in

variational form are still given by .eans. (3.15) and (3.16)

respectively. One can write

-

© ® o X o -]
1 f

drl dr2 = drl dr2 + drl ar2

o

where the first term on the right hand side corresponds to

»

rl>r2 and the second term to rl<r2. So, for the three pos-

sible geomectraies ry = rl+r2t ry = r,-r, and‘rB = r,-r,

can choose the appropriate forms of the vatriable R and write

r one

eqn (3.16) as
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) 2R/ (1+a+2n) . (2R/ (a+n)
0 =26 J dR[{a%F [ dR2 + T%ﬁ dR2}{X(§%)2 + E¢2
0 0 ' 2R/ (1+a+2n)
/ - (votv_4v_)el) .
} 1 72773
o : \
12R/ (1+u) r2R/ (a+n)
2 2 de, 2 2
+ {m J dR2 + i dR2}{Y(dR) + Ed
0 2R/ (1+a)
C (v HVatvo) 60l T (3.24)
1772773 e
where
72 2 2
X =~ —— [{a+n)” + (1+n) 7]
m
12 2 2
Y = - — [(a+N)" + (1-n)"]-
m
., a6

Since ¢, gt and E are independent of R,, the corres-

ponding intecrals can be easily evaluated and one gets

o0

2

- LB déy2 2 p4?
0 = 8[| R ARr{ 51 (dR) Vefo + E¢ 1)) (3.25) ‘
0
where
1 1 2 2 " 2 2
== gy L) S () 7Y (L) +{ (a4n) "+ (1-n) ) (14a+21) )
- . (3.26)
and .
v _ _ (1+a) (a+n) (l+a+2n) 9_3_
eff = 8(1+at+tn) R
2R/ (L+qa+2n) r2R/ (a+n) 2R/ (a+n)
1 W4 L 1
X [a+n dr\2 1 T dR2 + ioh I dR2
: J
0 2R/ (1+a+2n) 2R/ (1+a)

(continued  next page) «



N 2R/ (1+u) ~ \
1
e dR2]{26(rl)+26(r2) 5(r rz)}
0
_el Qo [u(22-1) + 22 -n] ' (3.27)
T R 8 (l+atn) - 1 )
Using the Euler-Lagrange equation in ‘egqn (3.25) .

= Rl/2¢(R), one gets the following ™

and Ahen substituting F(R)
chrddinger equation

h2 sz 1 e2 [a(2Z2-1)42Z-n} (1+a+2n)
m St Tz o R 2 2 > F
2[ (e +2n“4+2na+1) (1+a+n)-2n]

4(§+a+2) — EF ' (3.28)
{(l+a+n) (a™+2n"42n0+1)-2n"]

The solutions of such equations are known analytically.

The centrifugal term corresponds to the orbital gquantum

‘number & = - % . The ground state energy, in atqpic units, is
then
(1+a) 2 (L+as2n) 2 (2 - 202
- 2(1+yu)
Bo = - 53 5 (3.29)
o 2(btadn) [(1I+a+n) (742074 2na+1) -2n7)
In the special case of a=1l, eqn (3.29) reduces to egn

(3.21). For a given 2, E, in (3.29) is minimised Ey varying
both o 'and n. Calculated values of EO are given 1in table 1

for different Z. It 1is seen that the modification in the wave-

function further lowers the ground state energy. fOne nay
b4

therefore think of 1ncorporating this improvement in realistic

»

two-electron atomic systems., One can also note that the modi-

. N

-~
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fied FR method can suppoft bound helium-like systems at

smaller‘Zc than the simple FR approximation.

e,



Table 1

Ground state energya of one-dimensional helium-like systems with d-interaction

[ PerturbationjVariational| Hartree-Fock Kiang FRb Modified FRb
A ‘ [6) [6) (7] (8} ;\ <
4 - -7 - - - ¢ y -
E, E, T, E, n E, N J\Bb\
T
1 0.500 0.563 0.583 0.583° -0.296{ 0.626{0.7127<0.175 | 0.
2 3.000 3.063 3.083 3.107 -0.1581{ 3.1364,0.867 |-0.108 | 3.V48
3 7.500 7.563 7.583 7.614 -0.108 [ 7.640 913 |-0.076 | 7.651
4 14.000 14.063 14.083 14.117 -0.08114.141 935 | =0.058 14.152
T

a., . . . . .
The energy is given in atomic units.

bThe optimum values of parameters o and n which

~

4

minimise EO are givem.

7

8¢
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Table 2
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Perturbation

Variational

Hartree-Fock

FR

Modified FR

1.000

0.854

0.789

0.639

0.511

AN



CHAPTLR 1V

THE TUWO-LLECTRON ATONIC PROBLLM

The two-electron atoﬁ:d problem has rcceived con-
siderable attention from the carliest years of quantum me-
chanics and it still continues to be of current interest.
Extensive calculations have been made on helium-like systems,
through both variational [1,2] and K-harmonics approach [12-15].
Pekeris (2,11] has‘determined the upper and lower bounds of the
helium atom ground state. His variational calculations for
the upper boundwere performed with 1078 parameters in the
trial wavefunction. On the other hand the Ktharmonic approach
has attracted attention, but the accuracy of the results is
limited by slow convergence and even very involved computations
do not yield the desired accuracy.

The FR method was first applied [10 ] to atomic
systems and fairly good results were obtained for the ground
state energy of such systems. The authors [ 10 ] had hoped
that a systematic way to improve the met%od EOuld be developed.
In the last chapter we found that better results éould be 6b—
tained, in the model one-dimensional problem, by improving
the definition of the variable on which the wavefunction depends.

Encouraged by this, we attempt here to apply the same modifica-

b 3

30
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tion to the realistic two-electron atomic problem.

o
For simplicity we assume the nucleus to be of infinite

mass and stationary at the origin. The Hamiltonian H of the

. A~
system 1s

2 2
H = - g (V? + Vz) - Zez(ﬁL . b

) =]
— + 4,
2m 11 L2 <) [x,-x, ] (4.1)
1 2 c1l 22
where m and -e are respectively mass and charge of ah electron

and X and x are the electron coordinates.

i ~2
In terms of the interparticle distances Ly r2 and r3,
egqn (4.1) reduces to
n? 0% 2 32 2 3 2 9 4 2
Ho= -y 7By B P S TSN
or or or 1 “f 2 °F2 3 753
1 2 3
2,2 2 2,2 2 N
. r2+r3 ry b%*. . rl-13 ry 32
r2r3 Brzor3 rlr3 Drlar3
. 2
- ZC?‘(;}— ¥ ;l—) v & (4.2)
1 2 3
where 1, = |§ b, r, = l§2| and r, = 151*521'
The Schrddinger equation can be obtained by applying
the variation 8<y|H}y> = 0, with the restriction that <y|y> is

finite. With Hamiltonian in egn (4.2) this gives

[ ® 117, 2 ) '
- 7 vy y2, w2 3Py 2
0 S drl dr2 dr3rlr2r3[ 2m{,(8r ) T4 (55 ) T2 (5)
- l 2 " 3
0 0 ]rl—rzl .
‘r2+r2-—r2 r2+r2—r2
+ A r3 2 5@_ T‘@g_ + 27371 aa}p Naw}
lr3 rl cr3 r2r3 12 or3
+ {% - zQ(-rL + ;l~) ~Ehp?) (4.3)
3 1 2
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In ref. [10], the wavefunction y was defined by

assuming it to be dependent on a single non-necgative variable

R = %—(r + r. +nr.)

1 2 3

where n 1s a variational parameter. However, we have scen
that the value for the ground state eonergy of one-dimensional

helium-like model is significantly improved by modifying the

definition of the variable R . So we try out the same modi-
fication in -helium-like atomic systems. Defining
¥ = ¢(R)

. .
R = E(ur\ + r_ + nr3)

where r, = rl and r., = r for rlvr and vice-versa. a and n

2 2

are the two variational parameters. We now choose the variables

R, R2 = r2 and R3 = r3, so that R is an independent variable.

To perform integration in éqn (4.3), the region r REN

1

need only be considered as ¢ and the various terms in eqgn

(4.3) are symmetric 1in ry and r2.Changing the variable gives

2

drldrzdr3 = dedeR3 .

( - [N
¥

Referring to Fig. la, one notes that for a given R

defined <or RN the region of integration ig_thé plane.li1J.

However, the triangular conditions r

“

l+r2>r3~,- r2+r3>rl ahd

Iy

r3+rl>r2 restrict the region of integration to the plane LMN.

A plane intersecting the plane LMN along the line 1§ where Q



0i

is the mid point of line MN, divides the plane LMN into two

regions; plane LON corresponding to rl\r and planc LMQ

2

corresponding to rl<ré. To intcgrate over the varaiables R2 and

one obtains the required plane of integra-

3 first, for rl>r2,

tion ABC by projecting the plane NQI. on the R2—R3 plane as
!

depicted in Fig. 1lb. Since the wavefunction ¢ depends onlyxﬁ\\

R

on R, integration in egn (4.3) over other variables R2'and R3

can be performed. /’\\\\\

Denoking nalf of the volume integral by J[dr], we

r

have ’ -

R (rl £yt
[dr] = J drl J dr2 dr3 rlr‘zr3
0 0 rl-r2

. :
o 2R/ (l+at2n) D 2 y

dR{ dR2 dR3

1 ’ -
T (2R (l+a)R2)

2
2
o

0

o

?

2R/ (1+0) L2R-(14+0)R.)

r m 2
A+

| a,

2

R/ (1+a+2n) 1
a—_’jﬁ- (ZR“ (1+OL)R2)

dR3]R2R3(2R—R2—nR3)

= p [ R° ar (4.4) _ .
) A

where



6 N
p = 212 (L+a+n) * (2= (L+a+n) (1-5a-4n) ¥

+ n(l+a)(1+a+2n)—3(a¥q)(l+a)2'

= (1+a) 21/ (1+a) D (atn) S (1tar2m) ]
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(4.5)

éiﬁilarly, one can show, after kengthy but straight-

forward manipulation that

g r2+r2-r2 r2+r2—r2 (=
[dr]l {«a lr f, (2 + 2r ﬁ 1 - q R°AR
J o F273
0
r [s]
[dr) (= + &) = 57| rar
J 1 2
0. .
r o ]
l[dr] = = t-[ rRYdaR
r -
N 3
* 0
where ‘
- 28 ' 3 2
, q = 75 [2(+o+n) 7{2 (1+a+a™y-n(l-a) }

4

- 2(1+a) (L+a+n) (L+a#2n+n)

(4.6)
(4.7).

(4.8)

- (4a)?(2+3a+4n) 1/ [ (L+a) > (a+n) > (Lrar2n) P (4. 9)

o,

4 .
s = 2= [2(L+a+n) 2(5 (wrn) ~1F-2n>+n(1-a) °
& .+ 3(l—a2)]/{(1+d)2(a+n)3(l+a+2n)3]
24 . 2. ‘ :
t = =5 {4 (a+n) (L+o+n) +(l+a)1%+u+2n)]/

[(l+a)3(a+h)2(l+a+2n)3].

>

(4.10)

(4.11)
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Using these relations, eqn (4.3) reduces to
* 2 2 2. .2
- 5 _h d¢ (1+o"42n"7) n
0
e2 2 2
+ = (2s-t)¢~ + pE®~ 1 . (4.12)

Using the Euler-Lagrange eguation one gets a Schrédiqger

like equation

2 2 2 .
_H l+a"+2n n 1l d 5 d¢ e o .
m g P * 7 al 5 aR (R™ 3R’ g (Zs-t)¢ = pE¢.  (4.13)
. . . 5/2
On making the substitution F(R) = R $ (R} eqn (4.13)

leads to the following differential equation

»

2 2
p+ 7 all- é—% + 35% F) - S (Zs-t)F = pEF . (4.14)
R

d 4R

(l+a2+2n2)

This i$ the wave equation of a particle in a coulomb

potential with effective orbital momentum number £ = %. The

solutions of such equations are known analytically. For the

special case of o = 1, egn (4.14) reduces to egn. (6) of ref.
[ 10]. The ground state energy E., in atomic units, corres-
ponding to the principle guantum number n = % is

. 2

K%) p{kl+a2+2n2)p+nq}

and the unnormalized ground state wavefunction ¢0 is
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8(Zs-t)

> 5 ] . (4.16)
5{ (L+a"+2n")p+nq}

- r2/2 - -
¢y = R Fo(R) = expl

For a given 2, E, is minimised with respect to the para-

0

meters o and n. The calculated values of EO for different 2
are given in table 3 and are compared with the results of ref
[ 10] and the best estimates of Pekeris [ 2 J. The values of
EO from di?férent methods given in the table have been calcula-
ted with the assumption that the nucleus is infinitely heavy.
However, the finite mass of the nucleus can be easily taken
into accéunf in the FR formalism. Our results are consistently
better than the conventional one parameter variational calcu-
lations [16 ] and the simple FR approximatign {10 ].

From table 3 we can see that except in the caséwof H ,
the best estimate for E, is lowgé\than our result by about
0.005 a.u. only while for H this aszerence is 0.007. Although
the FR method has the merit of yieldiné simple analytic expres-
sions for the energy and the wavefunct;on of the two-electron
atomic systems, it cannot compete in a%curacy with the more
elaborate variational calculations:

By an inspection of the wavefunction ¢O(R) in eqn (4.16),

one can say that by choosing at the outget a wavefunction of

the form

&

by = o I°

where A 1s a variational parametér, the ground state enerqgy .
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of the system could be determined as well. However, in the
framgwork of FR formalism, we show that i1if the wavefunction 1s a
function of the single non-negative variable R, the best form of
¢0 is exponential in nature. TQi inclusion of the interelectronf&
distance r_ in the exponent may be an efficient way of taking

3

interelectronic correlations into account.

We now compare the FR approach with the K-harmonics
approach; One knows that if Qply the K=0 component is retained
in the wavefunction,‘the problem reduces to solving a sincgle
differential equation in the variable ¢ = (r2+r2+r )1/2
instead of R in the FR formalism. This differential equation
was first solved by Morpurgo [17] for a model triton problem.
McMillan | 18] using different forms of nuclear potentials
has shown ‘that the FR appro;imation vields better results than
the Morpurgo equation in the case of triton. The Morpurgo
equation, however, has the advantage that it can be systematical-
ly developed through the K-harmonics approach.

In the K-harmonic formalism,where an infinite set of
coupled differential eéuations of a single variable is obtained,
one has to truncate the set at scme point and solve the coupled
equatioﬁs numerically to estimate the energy cigenvalues of
the three-body system. It has been shown [ 15) in the case
of helium atom that rapid convergence of the K-harmonic ex-

pansion does not occur and hence a large number of coupled

equations are neccessary to achieve good accuracy in the ground
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state encrgy. Darling and Schoucri [ 15] have made calculations
up to 16 terms and they guote the value -0.28871 a.u. for the
ground state energy, which is about 0.011 a.u. higher than

our estimate. Whitten and Sims [ 12] carried out calculations
up to B8 terms, obtaining a value -2.8443 a.u. for helium atom
ground state ehgrgy. However, they improved their results by
incorporating the variational approach in K-harmonics by intro-
ducing a few variational parameters in the K-harmonic wave-
function. The value for the helium atom ground state energy
was -2.90107 a.u., which is slightly better than our present
estimate.

Summarizing, we note that the FR meéthod yields simple
analytic solutions with minimum computational .work involved. Even
then, the results are comparable in accuracy with the results
obtaiged from the more elaborate K-harmonics avproach. However
the FR approximation in its present form cannot compete in

accuracy with the conventional variational calculations involving

many variational parameters.
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Table 3

Ground state energya of helium-like atoms

TwWO Previousb , Present Calculationc Best Eétimated
electron calculation '
system —EO a n —Eo -EO

H 0.5079 0.6894 | -0.1735 0.5206 0.5278

He 2.8896 0.8931 -0.11902 2.8983 2.9037

Li+ 7.2668 0.9340 -0.0767 7.2748 7.2799

Be++ 13.6429 0.9522 -0.0587 13.6505 13.6556

a . . L . .
The energy is given in atomic units.

Pref. [10]-
“The optimum values of o and n which minimise EO of egqn (4.15).
dRer. [2].

6¢
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[ (0,2R,0)
2R, 2R

"atn

]

- )
f <
Fig. la. The plane of integration for a given R is the plane
. HIJ. The triangular conditions r,+r,-r, ctc restrict
the region of integration LQ the plane NML. A plane
intersecting the plane NQL along the line LQ where Q
is the mid-point of lifie NM, divides the plane into

two parts; plane NQL corresponding to rl"r2 and plane

LMQ corresponding to rl/rz.
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R3
2R 4R
B (l+xt+2r1'l+.1+2_n‘
C
2R
’wam)
A
O
2R 0) R,

1+«

Fig. 1b. The region of R2—R integration for r.° r

3 1 72
is the plane ABC which is the projection of

the plane NQL (fig. la) on the R2—R3'plane.
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APPENDIX
(2.15) and in

We give here some of the mathematical details for
(2.14), (2.16)

the derivation of egns (2.11),
Chapter II for the gencralised FR approximation in three

>

dimensions [4].
The Hamiltonian H in relative coordinates for a three

body system interacting via central forces is

2 2
N STL IR ST R
cyclic 2 3 ari 1 71 \
r2ir2or? 2 : 4
+ o 2rf‘ 133 et vy rp ] (A=1)
273 2 3
is the distance

1
The variational principle

is the mass of particle 1 and r

where my
between particles 2 ‘and 3 and so on.

for the Schrdédinger equation may then be written as

rl+r2
dry X r,r,

0 = 6( drl l dr2 l 3
J
0 0 lrl r2|
® 2 2 2 2
h™ 1 1 3y 1 1 Ay 1 1 o
x [= S {5 4 ) () 4 (5 b =) ) 4 (B k=) ()
2 m, my ar 4 m m, 3r2. my m., 8r3
(equation continued next page)
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r2+r2-r r2+r2-r2
D S A i § \:)g_i 2, 1 T37M1TR2 gy d[)ly
my Iy p ory My IjIg 0@, dry
r2+r2 r2
1 71772703 S o 2 2
+ — , = v (r )+v (r)+v, (r ) o +EpT)
m3 rlr2 dfl drz 1 1 2 2 373

The three-body®?wavefunction J, assumed to be spherical-

ly symmetric, is defined as

Y = ¢(R)
R = l(n r.o+n.r. +n.r.) {(A-3)
2171 272 '3°3

where n's are variational parameters.

The transformation of variables from the old set

(rl,rz,r3) to the new se? (R,RZ,R3) whefe R2 = r2 and R3 = Iy
is given by
_ 3 (R)
dedeR3 = 3 drldrzdr3‘
where the Jacobian .
a R aRrR 3R
. arl Jrz 8r3 9
am) _ | 2 2Ry Ry
(r) ry 9r2 8r3 -
3R3 833 8R3
arl 3r2 8r3
-1
=7 M
so that
_ 2 ;
drldrzdr3 = dedeR3

™

(A-2)

v M o gy

C o y——— -

- g T g+ oy

e ——
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One must now find the limits of R, R2 and R3. Consider

Fig. 2a . For a given R, the definition of R in (A-3) repre-

sents ‘a plang.AQR with intercepts 2R/”l’ 2R/n? and 2R/n3

respectively. lHowever, the triangular conditlops rl+r2‘-r3 etc.
restrict the region.of integration to the plane LMC. To per-
form R2 and R3 integrations first, one considers the plane ABC
in Fig. 2b which 1s the projection of plane LMC on the R2—R3
plane. Thus the volume integral can be written as

© o rl+r2

(dr)rlr2r3 = drl dr2 J dr3 rlrzr3
0 0 lrl—r2|

2R+(nl—n2)R2

, o r2g/(nl+n2) ( n3+ﬂl
= ? dRr [ dR., . i dR3

1

0 0 2R-(n;+n,)R,
n3tng
2R+(nl—n2)R2
(PR nytng) ‘ Naytny
+ — -
dR2 dRB](ZR n2R2 H3R3)R2R3

2R/(nl+n2) 2R—(nl+n2)R2

37
(A-4)

While depicting the region of integration in Fig., 2a ,

it has been agsumed that nl>n2>n However, the final results

3°

-

are independent of such assumptions. With the help of egn (A-4)

one finds
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o0
- 5
I (dr)rlr2r3 = 2F R™dR (A-5)
0
{ 2 2 ) 5
2 - 12 v -
I (dr)rl(r2+r3-rl) = 211» R7dR (A~6)
0
where explicit forms for ¢ and : are given 1in eqgns (2.14)

and (2.15) respectavely of chapter II.

The integrations over the two-body potentials are not
straightforward. For instance, integration over R3 cannot be
performed in the following integral

s oo o frl+r2
J ar, { ar,, ) ar, r T rov (r)) (A-7)
0 0 ]rl—r2|
since by. definition rl = (2R—n2R2—?3R3)/nl. We therefore use

the cyclic permutation of rye I and r, which leaves the volume

< integral unchanged to write the above integral as

oo w r3+rl
{ dr3 [ drl J dr rlr2r3vl( l) ) (A-8)

0 lry-xy |

Accordingly, the definition of the new variables is

_ L ..
Ry = 5(nyr) + nyry + ngvy)
R = 1,
R2 = r2

so that integral (A-8) becomes
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) had fR3 1
‘= — J dR3 dR J dR& (2R3—an-n2R2)RR2V1(R) . (4-9)

Integration over R2 can now be performed by defining

the region of integration in the R-R, plane.

5 Integral (A-9) 1is
éhen
(2R3+(n3—nl)R) e
, o 2R3/(nl+n3) no*n, i ,
Nt
2R .+ -n
(2R3+(ny-n)R)
2R3/(nl+n2) [ N,*T, ' on
dR - - -
+ dR 2 3 an n2R2)R2va(§) . (A~10)
2R3/(n)+n3) (2R3—(nl+n3)R)

My Ny

After performing the R, integration, one gets
r(x)

- 5 , _
{ (dr)rlr2r3vl(rl) = J R wl(R)dR N (A-11)

0

4

where W, (R) has been defined in egn (2.16) of chapter I1I.

Similarly one can make cyclic permutation of variables to evaluate

the integrals containing v

L 4

2(r2) and v3(r3).

Eqn (A-2) can now be written as

, 2
$ RSdR[~ gr {E[GL-+ 450n2 + (QL-+ QL) 2 +(¥L + ;L)nzl
' my 3 3 M 3

(o]
1l

n
2 ml m2
0 .
1 1 1, 40,2 . 2.2
+ inn2n3(ﬁz 4 ﬁ; + Eg)}(aﬁ) - (wl(R)+w2(R)+w3(R))¢ +2EETT.
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- ' N
Defining reduced mass m by egn (2.12), one has
(o) ' * ’(\
2
_ 5., 17 dp. 2 2 2 _
0 =39 RTAR| e dR) + 8I{E¢ 4(wl+w2+w3)¢ ] . (A-12)

0

Us%ng Euler—Lagrangé equation, one gets
£

o

H a |

1 5
',;;;a‘ﬁ‘R

o3
<

l

) - 8LEQ + 4(wl+w +w3)¢ =0 . (A-13)

’

o))
~

2

Substituting F(R) = R5/2¢(R) in the above equation, the

differential eqguation obtained is >
) 2 2 .
- dE 4 vr)F = 8EF ‘ (A-14)
dR
where V(R) is defined in egn (2.13). The Schrddinger equation

(A-14) is egqn (2.11) of chapter II.
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- rz
M
( 2R 2R 0) .
2B,0,0) p nptn Ny, ’
nl .
A

3

Fig. 2a. The planipof integration for a given R is the plane

[

180573

- <
the region of integration to the plane LCM.,

P L .
»aom - . -

PQR. The triangular conditions r etc. limit

AR



CZR ) 2R

”2,%3 n2+n3

A -

( )

0] , . Re
B L
2R !
~= :0) \ o -
N2 - 7

‘Fig. 2b. The projection of the plane LCM (fig. 2a).on the

.

R,-Ry plane is ACB which is, the region for,Rz—R

integratioh.
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