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Abstract

This thesis considers the Shannon capacity of multiuser multiple input multiple out­

put (MIMO) wireless communication systems. That is, the fundamental limit on the

rates at which data can be reliably communicated. The focus is on scenarios in which

the channel has long coherence times and perfect channel state information is avail­

able to both transmitters and receivers. The thesis considers two important design

problems in multiuser MIMO wireless communication systems: the design of the sum­

rate optimal input distribution for the MIMO multiple access channel (MIMO MAC),

and the design of the sum-rate optimal input distribution for the MIMO broadcast

channel (MIMO BC).

The thesis considers algorithms for solving these design problems that are based

on the principle of iterative water-filling. The contributions of the thesis are twofold.

First, a correct and rigorous proof of convergence of the family of water-filling algo­

rithms is derived. This proof overcomes weaknesses in the previous attempts of others

to prove convergence. Second, an efficient algorithm is presented for the water-filling

procedure that lies at the heart of the iterative water-filling algorithm. This algo­

rithm will open the door for further efficient utilization of the iterative water-filling

algorithm. This novel algorithm is based on the principle of Fibonacci search, and
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since the iterative water-filling algorithm involves repeated water-filling procedures,

the impact of this efficient algorithm is magnified.

The outcomes of this research are that the iterative water-filling algorithms are

mathematically validated for the above-mentioned design problems in multiuser MIMO

wireless communication systems, and that the implementation of these algorithms is

made more efficient through the application of the efficient Fibonacci search method

for the underlying water-filling procedure.
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Notation and Acronyms

Notation:

A (.)

C(H,P)

det (.)

E[.]

f~

H

Ht

Mapping

Channel capacity

Unitary space with dimension n

The set of m x n complex matrices

Determinant operation

Expected value

The probability density function of random variable ~

Channel matrix

The conjugate transpose of matrix H

The channel matrix of the i-th user

The conjugate transpose of matrix Hi

The transpose of matrix Hi

Differential entropy

Conditional entropy
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Notation:

I r Identity matirx with demension r

II (e; 1]) Mutual imformation

log Natural logarithm

lvI t: 0 Matrix M being positive semidefinite

N The set of natural numbers

n s Dimension of vector valued variable for the generalized mathematical models

P The upper bound of signal power

Pi The upper bound of signal power for the i-th user

p[ The probability distribution function of the random variable (or vector) '[

Similarly understanding the others

Pi The (optimization) operator or mapping over the i-th coordinate block

Q Covariance matrix

~n Euclidean space with demension n

~mxn The set of m x n real matrices

S Covariance matrix

Tr (M) The trace of matrix lvI

x The input vector of the channel or a vector

x t The conjugate transpose of vector x

Xi The i-th entry (scalar) or the i-th block of vector x

Xi The input vector of the i-th user

(X)i the i-th entry (scalar) of vector x
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Notation:

Y

Ydmac

z

z

fJ,

e
LJ

r1

The conjugate transpose of vector Xi

The output vector

The output vector of the dual uplink channel

The conjugate transpose of vector y

Gaussian noise vector

Generalized objective function

Expected value

Random noise

Floor function

Ceiling function

Covariance matrix

Covariance matrix

Optimality equivalence
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Acronyms:

BC

BCAA

DBCAA

IWFA

IWFAwFIS

KKT

MAC

MIMO

WFA

Broadcast channel

Block Coordinate Ascent Algorithm

Diagonal Block Coordinate Ascent Algorithm

Iterative water-filling algorithm

Iterative water-filling algorithm with Fibonacci search

Karush-Kuhn-Tucker

Multiple access channel

Multiple input multiple output

Water-filling algorithm
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Chapter 1

Introduction

The use of multiple antennas at the transmitter and receiver, i.e., Multiple-Input

Multiple-Output (MIMO) technology) constitutes a breakthrough [4, page IJ in the

design of wireless communication systems) and MIMO technology is now at the core

of several existing and emerging wireless standards [4) page 18]. Exploiting multipath

scattering, MIMO techniques have delivered significant performance enhancements in

terms of data transmission rate and interference reduction on point-to-point links. In

this thesis) we focus our attention on multiuser MIMO systems. In particular) we

consider the design of multiuser systems so as to enable operation at rates approach­

ing the fundamental limits.

We consider two multiuser MIMO systems:

(i) the MIMO multiple access channel (MAC) in which a number of users wish to

send messages to a single destination, and

(ii) the MIMO broadcast channel (Be) in which a single source wishes to send
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independent messages to different destinations.

These two classes are illustrated for the case of two users in the following diagram.

A

~
c

/
B

2-user MAC

and

A

/
c

~
B

2-user BC

The MAC model is used in the study of the cellular uplink (from user to base­

station) and the BC model is used to study the cellular downlink.

In the case of the MAC and BC channels, the fundamental limit on the rates at

which data can be reliably communicated is the capacity region. That is, the region

of rate vectors for which there exists a coding strategy such that the probability of

error goes to zero as the block length of the code increases. In this thesis, we will

focus on one point on the boundary of the region, namely the maximum sum-rate

point. That is, the point at which the sum of the rates is maximized. More specially,

we will consider scenarios in which the channel coherence times are long, precise

channel state information is available to both the transmitter and receivers, and the

additive noise at the receivers is Gaussian. For this scenario, a popular algorithm for

designing input covariance(s) that maximize the sum rate is the iterative water-filling

algorithm [42, 20]. In this thesis, two important contribution will be made to the

generic iterative water-filling algorithm. The first contribution is to point out that

there are weaknesses in the existing attempts to prove that the water-filling algorithm

2
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converges. We also show that by taking a somewhat different approach, a rigorous

proof of convergence of the algorithm can be obtained. We develop that proof for the

MAC and BC models. The second contribution is the development of an efficient al­

gorithm for the water-filling procedure that is performed in each steps of the iterative

water-filling algorithm (IWFA). This algorithm is based on the Fibonacci search tech­

nique and reduces the complexity of the water-filling step from 0 (n) to 0 (log (n)) ,

where n is the number of columns in the channel matrix. Since this procedure must

be implemented during each iteration of the IWFA, this complexity reduction can

have a significant impact in practice.

As an aside, we point out that iterative water-filling forms the basis of a recent

patent application [18] for power control in wireless communication systems.

1.1 Structure of the Thesis

The rest of the thesis has the following structure.

In Chapter 2, the single-user MIMO wireless communication channel is consid­

ered. For multiuser systems, the iterative water-filling procedure involves considering

one user at a time and treating the signals from the other users as noise. As such,

the single-user MIMO model lies at the core of the iterative water-filling algorithms.

Therefore, this is a natural framework in which to introduce the proposed efficient

water-filling procedure that is based on the Fibonacci search. The optimality of the

obtained solution to the problem is proved and reduction in the computation cost for

the problem is evaluated.

3
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In Chapter 3, the multiuser MIMO multiple access channel (MAC) is considered.

The sum rate optimization problem is formulated, and we demonstrate how the pro­

posed Fibonacci search can be applied in this case. Then we point out the weaknesses

in the existing attempts to prove that the iterative water-filling algorithm converges,

and subsequently we develop a somewhat different proof that rigorously establishes

convergence of the algorithm.

In Chapter 4, the multiuser MIMO broadcast channel (BC) is considered, along

with its dual MIMO MAC model. Due to the equivalence between the sum rate of

the MIMO BC and that of the dual MIMO MAC, and because the latter can be

much more easily solved than the former, the iterative water-filling algorithm with

Fibonacci search for optimizing the sum rate of the dual MIMO MAC is presented.

Then we point out the weaknesses in the existing attempts to prove that the iterative

water-filling algorithm converges. Finally, in Section 4.4, a rigorous proof of conver­

gence of the algorithm is provided.

In Chapter 5, we summarize our results. We may conclude that, under the as­

sumption that the channel matrix is constant and known, the iterative water-filling

algorithms are convergent and that the proposed Fibonacci search procedure reduces

their computational cost.

4



Chapter 2

Single-User MIMO Channel

In this chapter, we consider the single-user MIMO system, and present an efficient

implementation of the water-filling algorithm for optimizing the input distribution

that is based on Fibonacci search method. The application of the Fibonacci search

in this context is new, and offers a substantial reduction in the computational cost

compared to that of the often employed approach for the WFA. Indeed, the reduction

of this component of the algorithm is by a factor of about log (n) In, where n denotes

the number for the columns of the channel gain matrix. The discussion of the single­

user MIMO system also serves as the preparation for that of the multiple-user MIMO

systems in Chapters 3 and 4.

2.1 Model of the Single-User MIMO Channel

A single-user Gaussian channel with multiple transmitting and/or receiving antennas

is considered as follows. We denote the number of transmitting antennas by t and

the number of receiving antennas by r. We restrict our discussion to a linear model

5
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in which the received vector y E C? depends on the transmitted vector x E C t via

y=Hx+z, (2.1)

where H is an r x t complex channel gain matrix and z E CT. We assume that vector z

is a zero mean circular complex Gaussian noise vector; d. [27,26,35] and Appendix-I.

For any complex matrix or vector, its superscript t denotes the conjugate transpose

of the matrix or the conjugate transpose of the vector. Without loss of generality, we

assume E [zzt] = IT) where IT is an identity matrix with order rand E [.] denotes

the expectation operation. That is, the noises corrupting the different receivers are

independent. The average power of the transmitter is bounded by P, i.e.,

Equivalently,

(2.2)

This second form of the power constraint will prove to be more useful than the first

form in the upcoming discussions.

In a generic wireless communications set up, there are three scenarios [35] for the

matrix H:

1. H is deterministic,

2. H is a random matrix, which is chosen according to a probability distribution,

and
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3. H is a random matrix, but is fixed once it is chosen.

The focus of this thesis is on the first of these cases. This case is normally referred

to as the static channel case with full channel state information at transmitter and

receiver sides; e.g., [4] [17]. In this chapter, we will develop a water-filling algorithm

with Fibonacci search for this system. This algorithm will also be utilized in the

subsequent chapters.

2.2 Channel Capacity of the Single-User MIMO

Channel

In this section we will discuss the channel capacity of the single-user MIMO system

in (2.1), with perfect channel state information at the transmitter (see, e.g., [35]).

Given the model in (2.1), the channel capacity C is defined as C ~ maXpx I (x; y) ,

where I (x; y) is the mutual information between x and y, and Px is the probability

density function of x. Let 8 ~ E [xxt ]. As shown by (2.2), the input power constraint

can be written as that Tr (8) :::; P. The corresponding channel capacity C (H, P) is

expressed as:

C (H, P) = max {I (x; y) /8 ~ 0, Tr (8) :::; P}.
Px

(2.3)

Using the argument in Appendix-II, it can be shown that for the model in (2.1)

in which the channel H is deterministic, and the additive noise is Gaussian and,

without loss of generality, has a unit variance, the optimal input distribution for the

input x is zero-mean and Gaussian and hence the mutual information can be written

as log (det (IT + H8 Ht) ) . Since a zero-mean Gaussian distribution is completely

7
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specified by its covariance, the expression in (2.3) can be simplified to

C (H, P) = mIx {log (det (IT + HSHt)) IS ~ 0, Tr (S) ::::: p} . (2.4)

The expression on the right hand side of (2.4) is a nonlinear semidefinite optimiza­

tion problem. A direct and effective algorithm is presented in the following section.

2.3 Simplification of the Problem of the Optimal

Input Covariance

To efficiently solve the problem in (2.4) of the optimal input covariance for the single­

user MIMO channel, we first simplify the problem; e.g., [35]. Using the singular value

decomposition (SVD) of the H, H = UL;V t and the properties of the determinant,

we have that

logdet (IT + HSHt) = logdet (IT + L;SL;t) ,

where S = VtSV Using Hadamard's Determinant inequality, it can be shown that
~

we can restrict attention to diagonal S, say r, and any optimal input covariance takes

the form S = vrvt , where r = Diag (ry;) and

where "fi is the i-th element of L;tL;. The remaining challenge is to obtain an effi-

cient algorithm for solving (2.5). The problem in (2.5) can be solved using a generic

water-filling procedure. However, the generic procedure involves enumeration over

8
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the number of the diagonal elements of r that are to be non zero. The following al-

gorithm uses a Fibonacci search to determine this number of active subchannels, and

hence is significantly more computationally efficient that the enumerative algorithm.

Since the water-filling procedure is repeated many times in iterative water-filling

algorithms, the reduction in complexity can have a significant impact in practice. As

far as we are aware, the following algorithm is the first time in which Fibonacci search

has been used in water-filling.

The water-filling algorithm with Fibonacci search is stated as follows:

Algorithm: Water-Filling Algorithm with Fibonacci Search

Step 1: Pre-Processing. Compute the unitary matrix U E rctxt by the SVD:

Let {Ai}:=l be ordered in the monotonically decreasing order; Let

i ~ max {iJAi > O} :S min {t, r}.

Step 2: Water-Filling with Fibonacci Search for (2.5). For k = 1,2, ... ,i,
let

~1{ [ 1 '"' I]}Sk = - P - (k -1) - - L.J -.
k Ak AiiE{l,'" ,k-l}n{k22}

Now search for

k* = max { klSk > 0, 1 :S k :S i} ,
9

(2.6)
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using the Fibonacci search method with approximation ratios ~ and ~.

More specifically,

1st Step. Assume that a = 1 and b = i.

2nd Step. If a = b, then k* = a and go to Step 3.

Else,al= La+~(b-a)J, bl = ra+~(b-a)l

3rd Step. If Sal ::; 0, then b = al - 1 and go to the 2nd Step;

If Sbl > 0, then a = bl and go to the 2nd Step;

If Sal> °and Sbl ::; 0, then a = aI, b = bl - 1 and go to the 2nd

Step.

Step 3: Finding Optimal Solution to (2.5).

• Compute S* E ctxt as follows:

S!i = A~* - ~ + Sk*, 1 ::; i ::; k*;

S!i = 0, k* < i ::; t;

S0 = O,i =I j .

(2.7)

• Compute US*Ut , as the optimal solution to the model (2.4). US*Ut

is proved to be the optimal solution in Section 1.5.

Remark 2.3.1. In Step 2 of the above water-filling algorithm, the Fibonacci search

method is used to find k*. This can reduce the computational cost of computing

compared with the regular searching method of enumeration. Indeed, the ratio of the

computation burden from the Fibonacci search to that from the enumeration method

10
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is about log (t) It. The impact of this reduction is amplified by the fact in iterative

water-filling schemes, where the water-filling procedure is repeated many times. As

anecdote, we point out that the water level obtained in the water-filling procedure is

,.L + Sk*.
/lk*

2.4 Optimality and Complexity

For the channel capacity problem of the single-user MIMO channel, the proof of

optimality for US*Ut found by the water-filling algorithm with Fibonacci search is

presented in this section.

Theorem 2.4.1. Let H = u~vt denote the singular value decomposition of the H.

Further let k* and S* be given as in Step 2 and 3 of the Water-Filling Algorithm with

Fibonacci search; see (2.6) and (2.7). Then US*Ut is an optimal input covariance

for the problem in (2.4).

Before proving this new theorem, we present some lemmas and introduce a remark.

Lemma 2.4.2. For the channel H, there is a unitary matrix U such that UtHt HU =

diag(Al"" ,At) (a diagonal matrix) and

max {log (det (Ir + HSHt)) IS ~ 0, Tr(S) S p} =

max {log (det (It + diag(Al,'" ,At)S)) IS ~ 0, Tr(S) S P}

and utStU = STl where S/ and Sr are two optimal solutions of the two optimization

problems mentioned above, respectively.

11
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Lemma 2.4.3. For the channel H, there is a unitary matrix U such that utHtHU =

A (a diagonal matrix) and

max {log (det (Ir + HSHt)) IS ~ 0, Tr(S) S p}

= max {log (det (It+A!SA!)) IS~ 0, Tr(S) sP},

and uts1u = Sr, where Sl and Sr are two optimal solutions of the two optimization

problems mentioned above, respectively.

The proofs of both these lemmas are provided in Appendix III.

For simplification of the optimization model, which is

the Hadamard Determinantal Inequality is introduced.

The Hadamard Determinantal Inequality [25] is: if A

Hermitian) positive semidefinite matrix, then

det (A) S all ... ann'

Then we present our proof for the problem (2.5) as follows.

Proof of Theorem 2.4.1. When pre-processed, as the first step of the water­

filling algorithm,

max {lOg (g (1+ A,S,,)) 18" 2- 0, \Ii, t, 8" <; 1'}

12
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is equivalent to
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under the meaning of the equivalence for two optimization models.

Formulation

(2.8)

is equivalent to (2.4) even although it has an equality constraint and the linear in-

equality constraints.

Below, the set {Sii, 1:::; i :::;i} is proved to be the optimal solution to the problem

in (2.8).

The Lagrangian function of the problem in (2.8) is

- " 'fr.g.L..J v2 22'

i=l

where fJ, and {(J"i}~=l are the Lagrange multipliers. Therefore, the KKT conditions

13
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of the problem in (2.8) are
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Sii ;:::: 0, (JiSii = 0, (Ji ;:::: 0, Vi

2:~=1 Sii = P, I-" E IR.

Now we choose Sii = S~, 1 :s; i :s; i. Therefore,

1 1
1 +S'" .

)o.k* k*k*

Now also choose I-" = 1 ~S* and choose (Ji = 0, i = 1, ... ,k*. By simple substitution,
>'1 11

it can be shown that these values solve the KKT conditions.

To show that this point is optimal, we now argue that, for the problem in (2.8),

the KKT conditions are sufficient as well as very necessary for optimality. First the

Hessian matrix of the objective, log (rr~=l (1 + AiSii)), is clearly negative definite

and hence the objective is concave. Furthermore, the constraints are linear and hence

the feasible set is convex.

Therefore, the problem in (2.8) is a convex optimization problem. Since only

there are the linear constraints for the problem in (2.8), the constraint qualification

is satisfied and the KKT conditions are both necessary and sufficient.

Since

14
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max { log (IT (1+ >.s;,)) IS" 2' 0,Vi,t S" ~ p } ,

then US*Ut is an optimal solution of the model (2.4).

Q.E.D.

Remark 2.4.4. Although there are other proofs available (e.g. [41j), the above proof

was obtained independently and is somewhat simpler than that in [41].

15



Chapter 3

Sum Capacity of the MIMO MAC

In this chapter, we consider a multiuser multi-input multi-output (MIMO) system.

In particular, we consider the MIMO multiple access channel (MAC). We consider

the important problem of finding the set of input covariances that maximizes the

sum rate of the MIMO MAC, and we develop an efficient algorithm for solving this

problem.

In the first section of this chapter, we provide a general mathematical model for

the MIMO MAC, and we state the sum capacity of that model. Then an iterative

water-filling algorithm based on a Fibonacci search is introduced. Subsequently, we

point out the weaknesses in the existing attempts to prove that the IWFA converges

for the MIMO MAC. Finally, a rigorous proof of convergence of the iterative water­

filling algorithm is derived.

16



M.A.Sc. Thesis - Peter He McMaster - Computational Engineering and Science

3.1 Models for the MIMO MAC and Its Sum Ca-

pacity

We consider the MIMO MAC illustrated on the left hand side of the figure on Page 2,

in which the base-station has m antennas and there are K mobile stations, each of

which has n antennas. When the information flows from the mobile stations to the

base-station, we have a MAC channel or uplink channel.

With appropriate synchronization, the MAC can be described as [17]

K

'"' t iYmac = L...JHix + Z,

i=l

where Ymac is the signal received at the base-station, and HI E emxn, i = 1,2, ... , K,

denotes the matrix of channel gains from each antenna at the i-th mobile station

to each antenna at the base-station. Without loss of generality, we will assume that

Hi i= 0, Vi. The Xi'S are n x 1 complex input vectors, and Z E em is an additive Gaus-

sian noise vector and, without loss of generality, has identity covariance. We will let

Si ~ E [Xi (Xi) t] denote the covariance matrix of Xi. For the convenience of later dis­

cussion and without loss of generality, the MAC is described as Ymac = L~l HI Xi +Z

instead of Ymac = L:~l Hixi + Z [17]. Notation-wise, in this chapter, we will use dif­

ferent superscripts of vectors to denote vectors corresponding to different users and

different subscripts of a vector to denote different entries of a vector.

The sum capacity of the MIMO MAC is the fundamental limit on the sum of the

rates at which reliable communication can be achieved. When the channels are known

17
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and deterministic and the noise is Gaussian, the optimal input distribution at each

mobile station is a zero-mean Gaussian random vector with covariance Si' Therefore,

the problem maximizing the sum rate can be written as (see Appendix II and, e.g.,

[4])

where Si t 0 denotes that Si is a Hermitian positive semidefinite matrix with complex

entries.

Remark 3.1.1. Since it allows for complex representations, the expression (3.1) is

slightly more general than the real valued expressions used in {42}, and better matches

the way in which communication systems are constructed in practice.

3.2 Iterative Water-Filling Algorithm with Fibonacci

Search under Individual Power Constraints

The iterative water-filling algorithm [42] is an algorithm for finding the input co­

variances that maximize the sum rate of a MIMO MAC. The principle behind the

algorithm is to iteratively select each user and optimize that user's input distribution

using a single user water-filling algorithm in which the interference from other users

is treated as noise. This procedure is continued until a convergence criterion is met.

The basic algorithm can be formulated as follows.

Algorithm 3.1: Iterative water-filling algorithm (IWFA)

18
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Input: precision constant °< c < 1, counter n = 0, variable nmax , J = 0, J1 = 00;

channel matrices Hi, power constraints F{, covariance matrices Si = 0, Vi.

Begin

While IJ1 - JI > c x J1 and n :s; nmax Do

For i = 1 to K

Compute Si, the optimal input covariance for the single user channel Gi

with power constraint Pi using a single user water-filling technique.

End

Compute J1= log (det (1m + I:.i~l HISiHi))'

n=n+l.

End

End

The water-filling algorithm with Fibonacci search described in Section 2.3 can be

used in the single-user water-filling step of the above algorithm, as we now show.

Algorithm 3.2: Iterative water-filling algorithm with Fibonacci search

(IWFAwFIS)

Input: precision constant 0< c < 1, counter n = 0, variable J = 0, J1 = 1; channel

matrices Hi) power constraints F{, covariance matrices Si = 0) Vi.

Begin
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While 1J1 - JI > c x J1 Do

If n =1= 0, then J = J1 .

For i = 1 to K

McMaster - Computational Engineering and Science

G - ",If ts HCompute i- 1m + Dj=I,jf=i Hj j j,

1

Compute Gi = Hi (Gi )-"2,

Compute Si, the optimal input covariance for the single user channel Gi

with power constraint Pi using the single user Water-Filling Algorithm

with Fibonacci Search in Section 2.3.

End

Let J1= log (det (1m + 2:~1 HI SiHi) ) .

n=n+1.

End

End

Remark 3.2.1. It is seen from Section 2.3 that the purpose of Step 3 of Algorithms

3.1 and 3.2 is equivalent to finding the optimal input covariance of a modified single­

user MIMO channel. Algorithm 3.1 is defined by a description method from the

formation of its point sequence. This descriptive way to define an algorithm is popu­

lar among the engineering fields. An alternative method to define an algorithm is to

regard the algorithm as mapping (see !44]J pp. 83). We will use these two methods

interchangeably in this chapter. The former is used when the convenience of imple-

menting the detailed algorithm in computer programs is emphasized; the latter is more

suitable for rigorous analysis of the algorithm.
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3.3 Weaknesses of the Existing Research Regard­

ing Convergence of the IWFA on Multiuser

MIMO MAC

Many recent advances on the signalling schemes for the Gaussian Multi-Input Multi­

Output (MIMO) Multiple Access Channel (MAC) are based on the important paper

[42]. In the following sections, we first point out the a weakness of the proof of con­

vergence of the iterative water-filling algorithm for the Gaussian MAC proposed in

[42].

In the first subsection below, the iterative water-filling algorithm and the conver­

gence theorem of the capacity of the MIMO MAC with the individual power constraint

are stated. Then we discuss in detail the weakness of the proof of convergence of the

algorithm (see Theorem 2 of [42] and its proof therein).

3.3.1 The Algorithm

In [42], the iterative water-filling algorithm is used to compute the optimal input

distributions that maximize the sum rate of a Gaussian MAC with vector inputs, a

vector output, and real-valued matrices. Notation-wise, in this section, we will follow

[42] and use the symbolJ ·1 of [42] to denote the determinant.

As suggested by (3.1), the sum rate problem for a Gaussian MAC with real channel
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matrices can be written as
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maximize ~ log IL:~l HiSiH[ + Szl - ~ log ISzl

subject to tr (Si) :s; Pi i = 1, ... ,K .

i= 1, ... ,K

Notation-wise, the symbol T of If[ mentioned above means the transposition opera­

tion of the matrix.

The iterative water-filling algorithm with the individual power constraints [42J is

essentially the same as that in Algorithm 3.1 and can be stated as follows. Notation­

wise, we will follow the convention in [42J and label the iterative water-filling algorithm

with the individual power constraints as Algorithm 3.3.

Algorithm 3.3: Iterative water-filling algorithm in [42J

Initialization Si = 0, i = 1, ... ,K.

repeat

for i = 1 to K

S~ = L~l,#i HjSjHJ + Sz;

Si = arg maxs ~ log IHiSH[ + S~ I;

end

until the sum rate converges.

The sum rate converges is understood here as the difference between the current

sum rate and the previous sum rate satisfies the permitted computational error.
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3.3.2 Theorems Regarding the Iterative Water-filling Algo-

rithm

A significant part of [42J deals with convergence of the algorithm. Theorem 1 and

Theorem 2 of [42J attempt to present convergence of the algorithm and they are

quoted as follows.

Theorem 1 in [42]. "In a K-user multiple-access channel, {Si} is an

optimal solution to the rate-sum maximization problem

maximize

subject to

~ log IL~l HiSiHT + Szl - ~ log ISzl

tr (Si) :S ~ i = 1, ... ,K

i=l,oo.,K

if and only if Si is the single-user water-filling covariance matrix of the

channel Hi, with Sz + Lf=l,#i HjSjHJ as noise, for all i = 1,2, ... , K."

Theorem 2 in [42]. "In the iterative water-filling algorithm, the sum

rate converges to the sum capacity, and {Sl, S2' ... , SK} converges to an

optimal set of input covariance matrices for the Gaussian vector multiple-

access channel."

The proof of Theorem 2 in [42J is quoted below with the important passages

italicized.

"At each step, the iterative water-filling algorithm finds the single-user

water-filling covariance matrix for each user while regarding all other users

signals as additional noise. Since the single-user rate objective differs from
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the multiuser rate-sum objective by only a constant, the rate-sum objec­

tive is nondecreasing with each water-filling step. The rate-sum objective

is bounded above, so the sum rate converges to a limit.

The convergence matrices Sl, ... , SK also converge to a limit [sentence 1].

Because the single-user water-filling matrix is unique, each water-filling

step in the iterative algorithm must either yield a strict increase of the

sum rate or keep the covariance matrices the same [sentence 2]. At the

limit, all SiS are simultaneously the single-user water-filling covariance

matrices of user i with all other users signals regarded as additional noise

[sentence 3]. Then, by Theorem 1, this set of (Sl, ... , SId must achieve

the sum capacity of the Gaussian vector multiple-access channel."

3.3.3 Regarding the Proof in [42]

The proof of Theorem 2 in [42] has embedded a circular reasoning. This is stated as

follows.

As quoted above, the proof of Theorem 2 in [42] that was proposed in that paper

utilizes an argument (see sentence 3) that at the limit, all SiS are simultaneously

the single-user water-filling covariance matrices of user i with all other users' sig­

nals regarded as additional noises, in order to arrive at the conclusion of Theorem 2.

The conclusion of Theorem 2 is that in the iterative water-filling algorithm, the sum

rate converges to the sum capacity, and the set {Sl, S2, ... , SId converges to an op­

timal set of input covariance matrices for the Gaussian vector multiple-access channel.
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According to the conclusion of Theorem 1 in [42] that Si is an optimal solution

to the rate-sum maximization problem iff Si is the single-user water-filling covariance

matrices of the channel Hi, with Sz +2:.f=l,#i HjSjHJ as noise, for all i = 1,2, ... , K,

and, at the same time, according to the argument quoted in the proof of Theorem 2

that, at the limit, all the SiS are simultaneously the single-user water-filling covari­

ance matrices of user i with all other users' signals regarded as additional noises, so

the argument quoted in the proof of Theorem 2 is equivalent to the statement that,

{Si}{~l' as the limit point, is an optimal solution to the rate-sum maximization prob­

lem. Thus, the quoted argument is equivalent to the statement that, in the iterative

water-filling algorithm, the {Sl, S2, ... , SK} converges to an optimal set of input co­

variance matrices for the Gaussian vector multiple-access channel, and the sum rate

converges to the sum capacity.

If the quoted argument were proved, the proof of Theorem 2 would be correct.

However, the quoted argument for proving Theorem 2 is also the conclusion of Theo­

rem 2, i.e., what [42] intends to prove has been utilized for proving what [42] intends

to prove. In addition, the arguments used in the proof of Theorem 2 in [42] do not

guarantee that the set {Sl, S2, ... , SK} converges. The preceding observations have

highlighted the need for and have paved the way for our subsequent developments.
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3.4 Convergence of the Algorithms

3.4.1 Fixed Point Theory, Continuity and Convergence of

the Algorithms

In this section, we will develop a rigorous proof of convergence of the iterative water-

filling algorithm. The proof is based on the interpretation of the iterative water-filling

algorithm as a Block Coordinate Ascent Algorithm (BCAA), and on the represen­

tation of BCAA algorithms as a mapping. Although an alternative proof can be

constructed from arguments in [2], the proof here explicitly exposes the relationship

between the fixed point and the optimal point. As a result, a direct link is established

between the KKT conditions and the variational inequality of convex optimization.

This allows further algorithm developments under a unified mathematical framework.

Furthermore, the proof includes a proof of the continuity of the optimization operator

BCAA, which, in itself, is a contribution to optimization theory.

We begin by observing that the problem in (3.1) can be written in the following

more general form:

max {f(x)Jx E V}, where V = ®~lVi, Vi c lRni
,

x
(3.2)

where ~{~1 ni = n s , ni EN, V c lRns is convex and closed and V is a Cartesian prod­

uct. F\lrthermore, f (Xl> X2, ... ,XK) is concave and differentiable, where Xi E Vi, Vi.

As we will show in Proposition 3.4.1 below, the problem in (3.1) is a special case of

that in (3.2), but we will find the abstract form in (3.2) to be more convenient in the

development of the proof.
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Proposition 3.4.1. The problem in (3.1) is a special case of the problem in (3.2).

Proof. If matrix Si, Vi, in the problem in (3.1) is decomposed into its real part and

imaginary part matrices, i.e., Si = IRe (Si) + J=I lIm (Si), then matrix

(IRe (Si) lIm (Si)) can be vectorized (see [25]) into Xi in the problem (3.2). Further­

more, a matrix Si is positive semidefinite, Si ~ 0 iff the principal minors of Si are all

non-negative definite. The non-negative principal minors of the Hermitian matrix Si

and Tr (Si) ~ ~ form constraints on (IRe (Si) lIm (Si)) that result in a feasible set Vi

for Xi. It is easily shown that Vi is convex and closed.

Because the objective function of (3.1) is a function of Si, i = 1, ... , K, it can

easily be written as a function of (IRe (Si) ,lIm (Si)) , i = 1,2, .. · , K. This is to say

that the objective function is a function of vector Xi, i = 1,2, ... , K. This objective

function is also concave over I1~1 Vi due to both the concavity of log det (-) (refer to

[6], page 74) and the existence of isomorphism between Si and (IRe (Si) , lIm (Si)) ,Vi.

Therefore, the problem in (3.1) is a special case of the problem in (3.2). D

A block coordinate ascent algorithm (BCAA) for the generalized formulation in

(3.2) is formally defined as follows. Because the iterative water-filling algorithm is a

special case of the BCAA, the BCAA is introduced here to help develop a rigorous

proof of convergence of the IWFA.

BCAA: Block Coordinate Ascent Algorithm
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Step 1. Choice of Initial Point:

An initial point ZO E V.

Step 2. Definition of Operator 1P\:

Given zk-l E V, V* (zk-l) is defined as the optimal solution set of

(X)j E lR denotes the j-th entry (scalar) of vector x in this section.

Let operator JlD1 be defined by JlD1 (zk-l) = V* (zk-l) . Let zk-l,l denote an

arbitrary element of JlD1 (Zk-l) , i.e., zk-l,l E JlD1 (Zk-l). The second superscript

of zk-l,l means the optimal point over Vi x { (zk-l)nl+1} x .,. x { (zk-l)nJ.

Similar understanding applies throughout this section. If the operators,

are defined, V* (zk-l,l') is defined as the optimal solution set of

Hence, operator JlDl'+l is defined by JlDl'+1 (zk-l,l') = V* (zk-l,l'). Let zk-l,l'+1

denote an arbitrary element of JlDl'+1 (Zk-l,l') , i.e., zk-l,l'+l E JlDl'+l (zk-l,l') . If

.e+ 1 = K,zk = Zk-l,l'+l and zk E JlDK (Zk-l,K-l).

Step 3. Definition of Mapping A:
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Mapping A is defined by
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A f':, k A ( k-l)= ]IDK]IDK-l ... 1P\. Thus z E z .

In [44J a formal mathematical definition of an algorithm in terms of a mapping was

provided. Following that approach, mapping A will also be known as an algorithm

called the block coordinate ascent algorithm. For proving convergence of the BCAA,

the maximization mapping is defined as follows.

Definition 3.4.2 (Maximization Mapping). For the objective function, Z: if~ JR.,

where if is the set of feasible solutions, let 0 : iIr (c if) ~ if be a mapping that

projects a feasible point in Vi to the unique maximum point. Then 0 is called the

maximization mapping.

For the proposes of this thesis, the objective function Z over the abstract feasible

solution set in Definition 3.4.2 can be assumed to be continuous. As an example, if

the operator ]IDe of the block coordinate ascent algorithm is a point-to-point mapping,

then it is also the maximization mapping. In particular, the objective function Z ~ f

and the set iIr = if (~ V) are the terms associated with the maximization mapping

]IDe.

Given the definition of the maximization mapping, we have the following propo­

sition to reveal the relationship between the accumulation point and the fixed point

of the BCAA.
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Proposition 3.4.3. Let the Cartesian product mapping A be defined as

where I! ::; K) and determine an algorithm that given a point ZO generates the sequence

{Zk}:O with Zk+l = A (zk) ,\:;Ik. Suppose

1. All points zk are in a compact set X C ~ ( c V))
2. 0 1 : VI ~ V and Om : V ~ V, \:;1m > 1, are the maximization mappings)

and

3. the maximization mapping Om, \:;1m, is continuous over its domain.

Then any accumulation point of {zk}:0) zoo) is a fixed point) i. e.) ZOO = Om (ZOO) , \:;1m.

Proof. Applying Condition 1, there must be a set

/1; C Nu {O}

and a convergent subsequence such that Zk ~ ZOO for k E /1;. Using Condition 2, we

see that

So, {Z (Zk) }:o is a monotonically increasing sequence. According to the limit prop­

erty of the monotonic sequence, if the limit of some subsequence of the sequence exists

and the sequence is monotonically increasing, then the limit of the sequence exists

and the limit of the sequence is equal to the limit of the subsequence. Thus,
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exists and

Since Z is continuous,
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lim Z (zk) = Z (z=).
k->=

(3.3)

Since {zk+1} kE'" C X, where X is compact, :J/l;1 C /l; such that limkE",l Zk+1 exists.

We will write that limit as y=, Le., 1imkE",1 Zk+1 = y=. Similar to the derivation

mentioned above,

From (3.3), (3.4) and Condition 3 of Proposition 3.4.3,

Therefore,

As m = 1,

Then

(3.4)

Because z= is the feasible point related to 0 1 and 0 1 is the mapping from a point to

the unique maximum point, corresponding to the definition of mapping, 0 1 (z=) =
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Assume that, as 1 ::::: m < £, Om (ZOO) = Zoo. Because

and, due to the induced assumption,

and

Because ZOO is the feasible point related to Om+l and Om+! is a mapping from a fea­

sible point to the unique maximum point, Om+! (ZOO) = Zoo.

Therefore for the maximization mapping Om, Vm, the accumulation point, zoo, is

a fixed point, i.e., ZOO = Om (ZOO) . D

The conclusion of Proposition 3.4.3 implies that ZOO is also a fixed point for the

mapping A, because

32



M.A.Sc. Thesis - Peter He McMaster - Computational Engineering and Science

Therefore, based on the conclusions of Proposition 3.4.3, we can introduce the fol­

lowing theorem on convergence of the block coordinate ascent algorithm.

Theorem 3.4.4. Consider the abstract formulation in (3.2) and) assume that f is

concave and differentiable) that V is convex and that either V is compact or the

superlevel set {xlf (x) 2 f (zOn is bounded. Now) if the mapping lP'e is continuous

over V; 'lie, then the limit) zoo) of any convergent subsequence of {zk}:o generated

by the BCAA is an optimal point of (3.2)) and {f (zk) }:o approaches to the optimal

value.

Proof The block coordinate ascent algorithm is a product mapping,

Assume that the block coordinate ascent algorithm generates the sequence {zk}:o

and ZOO is the limit of a convergent subsequence of the sequence. We will prove ZOO

to be an optimal point below.

Due to the compactness of V or the boundness of set

Condition 1 of Proposition 3.4.3 is satisfied.

Since

lP'm : V ---? V, '11m,
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is continuous, lP'm is then a point-to-point mapping. Also due to the definition of

the operator lP'm' lP'm is the maximization mapping. Hence, Condition 2 of Proposi-

tion 3.4.3 is satisfied by lP'm.

Because the continuity of mapping lP'e, V/!, is assumed, Condition 3 of Proposi-

tion 3.4.3 is satisfied.

Therefore, according to Proposition 3.4.3, the accumulation point, zoo, is a fixed

point of the maximization mapping lP'm, i.e.,

According to the optimality condition of convex programming, if fx'Tn denotes the

transposition of the gradient of f in the variable (vector) Xm ,

So
K

L fx'Tn (z:) (zm - z:) ::; O.
m=l

Thus,

Therefore, ZOO is the optimal solution, and, due to the monotonicity of sequence

{f (zk) }:o' {f (zk) }:o approaches to the optimal value. o

Although a similar result on convergence of the BCAA can be found in [2], the
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proof presented here explicitly exposes the relationship between the fixed point and

the optimal point. As a result of this proof, a direct link is established between the

KKT condition and the variational inequality of convex optimization. This result is

proven for the first time to our knowledge. It provides an opportunity for further

algorithm developments under a unified mathematical framework.

It is meaningful to question how to guarantee that operator

JPlm : V -----+ V, "1m,

satisfies the continuity over V, as a required condition of Theorem 3.4.4. It is obvious

that if operator JPlm, "1m, has a unique optimal solution, then operator JPlm, "1m, is the

maximization mapping, i.e., it is the mappings from a point to a point, and operator

JPlm , "1m, is called satisfying uniqueness. In fact, it can be proved (see below) that

if the uniqueness holds, then mapping JP>m, "1m, also satisfies the continuity, Le., it is

continuous over V. First, the uniqueness is formally introduced and then the conti-

nuity is proved.

Definition '3.4.5 (Uniqueness Condition). Vzk E V, if the optimal solution set

is a single point set, W, then f (x) is said to satisfy the uniqueness condition over set

V.

Based on Definition 3.4.5, we have the following lemma on the continuity of the
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block coordinate ascent algorithm.

Lemma 3.4.6. Suppose that f(x) is continuous and satisfies the uniqueness con­

dition over set V in (3.2), and suppose that V is closed. If V is bounded or set

{xlf (x) 2': f (zOn is bounded, then mapping lP'm, Vm, is continuous over V.

Proof. VZ, Z E V. Assume that {Zk} C V and limk-too zk = Z.

{xk } has an accumulation point denoted by x. If {xk } does not converge, a subse­

quence {xkr }, which converges to x as r tends to infinity, can be selected from {xk }.

Hence, two convergent subsequences {xkr } and {Zkr } can be acquired. So, without

loss of generality, assume that {xk
} converges to X. From the definition of lP'£, it holds

that

£-1 (£ )
Xj= limx]= limzj=zj,j=l"",Lni, Lni +l, ... ,ns '

k-too k-too
i=1 i=1

Since V is closed and {xk } C V, x E V. Due to y ~ lP'£(z) and

£-1 (£ )
Xj=Zj=Yj,j=l"",L ni, Lni +l, ... ,ns ,

i=1 i=1

f (y) 2': f (x) .

On the other hand, construct a sequence as follows.

yk E ~ns, Vk, is defined by following two steps.

k ~ k f . . - 1 ",£-1 ("'£ ) 1• Yj - Zj, or J - , ... , L...-i=1 ni, L...-i=1 ni + ,... ,n s ·
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Thus, yk E IRns , \/k, is obtained.

It is immediate that {yk} C V and limk--->oo yk = y. Hence,

f (x) ~ f (y).

From (3.5) and (3.6),

f (x) = f (y) = f (P£ (z)).

(3.6)

When the consideration of the uniqueness condition is added into the above equalities,

x = y holds, i.e.,

Thus, P£ is continuous over V, \fl!. o

The following corollary summarizes the above analysis and states the convergence

theorem for BCAA applied to the generalized problem in (3.2).

Corollary 3.4.7. Consider the abstract formulation in (3.2). Assume that f is con-

cave and differentiable, and satisfies the uniqueness condition over set V, that V

is convex, and that either V is compact or the superlevel set {x If (x) ~ f (zOn is

bounded. Then the limit, zoo, of any convergent subsequence of {Zk}:O is an optimal

point of (3.2) and {f (zk)}:o approaches to the optimal value.
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3.4.2 Convergence of IWFA under the Individual Power Con-

straints

To simplify the discussion of convergence of the BCAA and IWFA for the problem in

(3.1), and check the conditions of Corollary 3.4.7, we define

and

Here, the block coordinate ascent algorithm is chosen as the algorithm for finding

the relevant optimal matrices. The number of entries of Si is equivalent to ni in the

definition of the algorithm. Let us define

It is known that there is a unitary matrix

Ui such that U/ (GiG!) Ui is a diagonal matrix.

Without loss of generality, we assume that Hi =I- 0, Vi. This diagonal matrix is written

where

A£::::: A£+l (W), the set {£IA£ > 0,£ E {1,2, ... ,n}}
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is not empty and
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6.
f max = max {flAe > O,f E {1,2, ... ,n}}.

Given Ui, Ut~Ui ~ {UlSiUilSi E Vi} and ViI ~ UlViUi. It is obvious that ViI is

convex, ViI C Vi and a one-to-one mapping, Vi ~ ViI' is introduced based on the

definition of ViI.

(Si)S,t = a for s =I t and s,t E {1,2, ,n}; }.

(Si) = a for s E {fmax + l,fmax + 2, , n}.s,s

It is obvious that Vi2is convex and Vi2C ViI.

It is known that f (Sl, S2,··· ,SK) is concave and continuously differentiable, due

to the concavity of logdet (.) (refer to [6], page 74). The existence of isomorphism

between Si and (~e (Si) ,lIm (Si)) ,Vi, is also straightforward, and Vi (Vi) is convex.

Hence the first condition of Corollary 3.4.7 is satisfied.

< E [Ix~12J E [IxWJ (Cauchy-Schwartz Inequality)

This implies I(Si)s t I ::; Pi (Vi, j, sand t) and further II Si IIF::; nI{. Hence Vi is,
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bounded. According to the definition of Vi, Vi is obviously closed. Then Vi is

compact. Another condition of Corollary 3.4.7 is now also satisfied. We will now

define a function Ii to denote the simplified objective function, whose domain is Vi2

mentioned above. And it corresponds to the case when the i-th user is being optimized

while other users are kept unchanged.

.emax

Ii (CS'i)I,I,(S\)2,2"" ,(S\)emax,£ma,,) ~ Llog (l+Ae (Si)e,e) (Vi),
e=1

Thus, with the differences between the definitions of Vi, ViI and Vi2 ,

{ ( (

K, .)) I St E 1ft (for t # i) }
~~ log det 1m + L HI StHt + HISiHi "
, 't=l,tioi IS glVen

is equivalent to

and then it is equivalent to

Because the Hessian matrix of

f!.max

Ii = L log (1 + Ae (Si) e,e)
1=1
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is
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it is a negative definite matrix, and the cardinality of the optimal solution set

arg (JllaX~ log (1 + Ae (Si) e,e) )
StEVt2 e=l

is one, i.e.,

Therefore, it is easily obtained that the cardinality of the optimal solution set of

{
( (

J( )) I . S }
. , gIven t

1~~ log det 1m + L HI StHt + HI SiHi .
t=l,t#i Evt(tcj:'/,)

is equal to one, corresponding to the equivalence (3.9) of the optimization problems

and the one-to-one mapping of Vi! ----7 Vi, An important consequence is that the

uniqueness condition of Corollary 3.4.7 is obtained.

The final optimization problem (3.9) of the equivalent optimization problems (3.7),

(3.8) and (3.9) can easily solved by some optimization algorithms, for instance, as

well known, the water-filling algorithm. According to Corollary 3.4.7, convergence of

the algorithm is acquired by the block coordinate ascent algorithm. If 3Hi = 0 (the

null matrix), convergence of the algorithm is still obtained from the above derivation
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and the compactness of the feasible set.

Corollary 3.4.8. For the problem in (3.1), the iterative water-filling algorithm with

or without Fibonacci search is convergent. As the number of iterative steps increases,

the corresponding objective value approaches to the optimal objective value.

We also obtain a sufficient and necessary condition of the optimal solution to the

problem in (3.1) as follows.

Corollary 3.4.9. For the problem in (3.1) with the K users, Si is an optimal solution

iff Si is obtained by the single-user water-filling algorithm, with or without Fibonacci

search, for the channel Hi with noise covariance I + r}!=l,#i HJSjHj , for all i =

1,2, ... ,K.
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Chapter 4

Sum Capacity of the MIMO BC

In this chapter, we consider the MIMO broadcast channel (BC), in which a single

base-station sends independent messages to several users. We consider the important

problem of finding the set of input covariances that maximize the sum rate of the

MIMO BC, and we study efficient algorithms for solving this problem.

In the first section of this chapter, we provide a general mathematical model

for the MIMO BC. We then explain that there is a so-called dual MIMO MAC for

the MIMO BC, and that this dual is equivalent from the sum rate perspective, in the

sense that the sum rates are equal and the optimal input covariances can be computed

from each other, e.g., [20]. The dual MIMO MAC is of significant interest because

the sum rate optimization problem is convex, whereas that for the MIMO BC is not.

Furthermore, there is the potential to extend the iterative water-filling algorithm for

the conventional MIMO MAC to this dual of the MIMO BC. However, that extension

is not straightforward (e.g., [20)) because in the case of the dual of the MIMO BC,

the power constraint couples the stages of the iterative water-filling algorithm. These
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stages are not coupled in the MAC case. In the second section of the chapter we

describe two modified iterative water-filling algorithms for the MIMO BC [20], and

we show how the Fibonacci search technique discussed in Chapter 2 can be applied to

these algorithms. In third section, we point out weaknesses in the existing attempts

to prove convergence of one of these algorithms, and in the fourth section we provide

a rigorous proof.

4.1 Models for the MIMO Be

We consider the MIMO BC illustrated on the right hand side of the figure on Page 2,

in which the base-station has m antennas and there are K mobile stations, each of

which has n antennas. When the information flows from the base-station to the mo­

bile stations, we have a BC channel or downlink channel.

With appropriate synchronization, the BC can be described as [20]

where Yi is the signal received at the i-th mobile station, and Hi E (Cnxm, i =

1,2,' .. ,K, denotes the matrix of channel gains from each antenna at the base-station

to each antenna at the i-th mobile station. As in Chapter 3, without loss of generality

we will assume Hi i= 0, Vi. The vector x is an m x 1 complex input vector, and Zi E (Cn

is an additive Gaussian noise vector that, without loss of generality, has identity co­

variance. To simplify the derivation of the sum capacity of the MIMO BC, the dual

MIMO MAC is introduced. As mentioned above, the reasons for introducing this
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dual are that the sum capacity of the MIMO BC is equal to that of the dual MIMO

MAC, Le., CBC (H1 ,'" ,HK , P) = Cdmac (HI, . .. ,Hi, p) [20], and that the latter

can be much more easily determined than the former [20].

The dual MIMO MAC can be described as

K

" t iYdmac = L...J Hi X + Z,

i=l

which is the same as that of MIMO MAC considered in Chapter 3 (see [38]). If

Qi f; E [Xi (xi)t] , then the mathematical formulation [4, 20, 38] of the sum capacity

of the dual MIMO MAC is:

Cdmac ( HI, ... ,Hi, p) =

The key difference between (4.1) and the problem formulated in (3.1) for the MAC

is the power constraint. In (4.1) we have a sum power constraint,

2:{~1 Tr (Qi) .s P, whereas in (3.1) we have individual power constraints, Tr (Qi) .s
~. As mentioned earlier, this couples the iterative water-filling stages and requires

different treatment from that in Chapter 3.

We observe that the problem in (4.1) can be written in the following abstract

form, reminiscent of that in Chapter 3,
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where f (Xl, X2, ... , XK) is concave and differentiable, ni is a natural number,

L{~l ni = n s and V c JRns is convex and closed. We would like to draw attention to

the difference between the feasible set V here and the feasible set of the formulation

for the MIMO MAC in (3.2). The problem in (4.2) will be used to construct a

rigorous proof of convergence of the iterative water-filling algorithm for the problem

in (4.1) that will be discussed in Section 4.4. Utilizing a similar derivation to that in

Proposition 3.4.1, it is simple to show that the problem in (4.1) is a special case of

the generalized mathematical problem (4.2).

4.2 Iterative Water-Filling under a Sum Power Con­

straint

Given the successful application of iterative water-filling to the MIMO MAC (with

individual power constraints; d. Chapter 3), a natural question to ask is whether the

iterative water-filling algorithm can be modified in such a way that it will generate

an optimal solution to the dual MIMO MAC of the MIMO BC (in which there is

a sum power constraint), and hence generate an optimal solution to the sum rate

optimization problem for the MIMO Be. In [20], two such modifications were pro­

posed. The first is based on the principles of the block coordinate ascent algorithm,

but requires a significant amount of memory. The second is a modification of the

first that requires less memory, but deviates from the principles of block coordinate

ascent. The algorithms are as follows.

Algorithm 4.1 (Algorithm 1 in [20]):
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Input: Channel matrices Hi, the initial covariances Q~ii) assigned to arbitrary positive

semidefinite matrices, n = -(K - 2), ... ,0 and i = 1, ... ,K.

1) Generate effective channels

i = 1, ... , K, where [xlI(" ~ mod ((x -1), K) + 1.

2) Treating these effective channels as parallel, noninterfering channels, obtain the

new covariance matrices { Q~ii)}::1 by water-filling over a virtual block diagonal

channel matrix with diagonal blocks G~ii) under the sum power P constraint.

That is,

{
(ii)}I(" _Q. -
t i=l

Set n= n+ 1 and then go to 1).

Remark 4.2.1. Each set of K iterations in Algorithm 4.1 constitutes one iteration

of the corresponding block coordinate ascent algorithm (BCAA). Therefore, Algorithm

4.1 can be viewed as a submapping of the BCAA under the sum power constraint, and

hence it converges (to the global optimum). This conclusion stems directly from the

rigorous proof of the convergence theorem in Section 3.4.
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The above statement is a clean proof of convergence of Algorithm 4.1, but this

algorithm bears a heavy memory burden [20], and the following modification was

proposed in [20].

Algorithm 4.2 (Algorithm 2 in [20]):

Input: Channel matrices Hi, the initial covariances Q~O) assigned to arbitrary positive

semidefinite matrices, i = 1, ... , K.

1) Generate effective channels

1

d ii) = H (1 + " HtQ(.ii-1) H.)-i
• • DJJ J'

#i

i = 1, ... ,K.

2) Treating these effective channels as parallel, noninterfering channels, the new

covariance matrices {Q~ii)}::1 by water-filling over a virtual block diagonal

channel matrix with diagonal blocks G~ii) under the sum power P constraint.

That is,

{
(ii)}K _Q. -
• i=l

3) Compute the updated covariance matrices Q~ii), as

Q(ii) = ...!.-Q~ii) K - 1Q(ii-l)
• K' + K • ,i = 1, ... , K.
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Set n= n+ 1 and then go to 1).

Remark 4.2.2. As was the case for the conventional MIMO MAC discussed in Chap­

ter 3, in the water-filling steps of both Algorithm 1 and Algorithm 2 (step 2 in both

algorithms) one can employ the Fibonacci search algorithm developed in Chapter 2.

However, because of the block diagonal nature of the virtual channel, the details of

that algorithm need to be modified for this case. The modifications to find Q~n) are

divided into the following three steps:

Step 1: Pre-Processing.

Compute the unitary matrix UPi) E cnxn by calculating the eigenvalue decom­

position satisfying

Assume that (Ai)!!,!! 2: (Ai)!!+l,!!+l' W, i. Let {(AI)l,l"" , (AK)n,n} be ordered

monotonically decreasing into {At}~~n .

and let
K

n ~Lj (i) ::; min{Kn,Km}.
i=l

Step 2: Water-Filling with Fibonacci Search.

Let

L.1{ [ 1 " I]}Sk = - P - (k -1) - - LJ -.
k Ak AiiE{l,. .. ,k-I}n{k~2}
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k* = max {klSk > 0,1:S k:S n}

Here, the Fibonacci approximation ratio ~ and i are used for searching k* and

ki and this method is also called the Fibonacci search. Searching k* is similar

to that in Algorithm 3.1. The searching of ki is presented as follows.

1st Step. Assume that a = 1 and b = j (i) ,Vi.

2nd Step. If a = b, then ki = a and go to Step 3.

Else, al = La+~(b-a)J, bl = fa+i(b-a) 1-

3rd Step. If (Ai) a < Ak*, then b = al - 1 and go to the 2nd step;aI, 1

If (Aih1,bl 2': Ak*' then a = bl and go to the 2nd step;

If (Ai)a a 2': Ak* > (Ai)b b , then a = aI, b = bl - 1 and go to the 2nd
1, 1 1, 1

step.

Step 3: Find Optimal Solution of (4.3).

1st Step. Compute S* E cnxn as follows:

(S;)tt = -f- - (AI) + Sk*, 1 :S t :S kij
, k* 'l tIt

(S;)tt = O,ki < t:S nj,

(S;)8 t = 0, s =1= t.,

2nd Step. Compute Q~ii) = Ui(ii) Si (ut») t.
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4.3 Weaknesses of the Existing Research Regard­

ing Convergence of Algorithm 4.2

As discussed in Remark 4.2.1, Algorithm 4.1 (Algorithm 1 in [20]) is based on the

principles of block coordinate ascent and by modifying the convergence argument

in [20] to include the rigorous convergence proof in Chapter 3, a rigorous proof of

convergence of Algorithm 4.1 can be established. Algorithm 4.2 (Algorithm 2 in [20])

was developed to avoid the heavy memory burden carried by Algorithm 4.1, but the

modifications that were made to obtain Algorithm 4.2 result in deviations from the

principles of block coordinate ascent, and hence convergence of this algorithm needs to

be examined separately. This was attempted in [20], but as we will discuss intuitively

below, that attempt contains a weakness, due to an invalid application of Zangwill's

Convergence Theorem B (see [44], page 128). Interestingly, a similar weakness can

be found in [23]. In Section 4.4 we will provide a rigorous proof of convergence of

Algorithm 4.2 based on fixed point theory.

4.3.1 Inapplicability of Zangwill's Convergence Theorem B

to Algorithm 2 of [20]

Let us use the symbol Sl to denote steps 1) and 2) of Algorithm 4.2 and let BS

denote step 3), which is sometimes called the spacer step. Algorithm 4.2 iterates in

the following order: Sl, SS, Sl, SS, Sl, SS,···.

The cyclic coordinate ascent algorithm with the spacer step iterates by this order:

CCAA, SS, CCAA, SS, CCAA, SS,· .. where CCAA denotes the cyclic coordinate
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ascent algorithm. Therefore, to apply Zangwill's Convergence Theorem B, which ap­

plies to cyclic coordinate ascent algorithm, to Algorithm 4.2 it must be shown that

81 is a CCAA step. However, it is clear from Algorithm 4.2 that 8 1 is not cyclic.

Indeed it is only a submapping of a CCAA step.

Without further ado, the difference here is easily seen. A counter example can

be easily constructed so that a sub-mapping of CCAA, e.g. 8 1 , is not guaranteed to

converge under Zangwill's Convergence Theorem B. Hence, Zangwill's Convergence

Theorem B cannot be used to guarantee convergence of Algorithm 4.2. Therefore, the

convergence proof in [20], which relies on Zangwill's Convergence Theorem B, does

not guarantee convergence of Algorithm 4.2.

4.4 Convergence of Algorithm 4.2

We will provide a rigorous proof of convergence of Algorithm 4.2.

4.4.1 Fixed Point Theory, Continuity and Convergence of

the Algorithms

In this subsection, we will first propose a definition of the average function to present

a new algorithm that we will denoted by DBCAA, which stands for the diagonal block

coordinate ascent algorithm. Convergence of the DBCAA will be proved rigorously,

and this will lead to a rigorous proof of convergence of the iterative water-filling al­

gorithm for the MIMO BC, with or without Fibonacci search.
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To clearly express the process of finding the solution to the problem in (4.1),

function F will be defined as follows,

\-I E TrnKns f', ( . • )vX IN,. ,X = X1,I, X1,2," . ,X1,K," . , XK,l, XK,2,'" ,XK,K ,

f', 1 K

F(x) = K L f (Xl,l, Xl,2,'" ,Xl,I<J,

1=1

where we call the function F the average function. We also define the sets

A { I Z = (Zll .. , Zl K' .... ZT.( 1 .,. ZT.( T.()' }
V

L.j,. , ., ,,, '1', , '1' ,£' lJ1)I<"n
D = Z C IN,. 5,

Zl,j EJRnj ,Vl,j;(Zl,1,Z2,2'''' ,ZK,K) E V

It can be easily seen that VD and Vm are convex, and Vm C VD .

(4.6)

The diagonal block coordinate ascent algorithm for the generalized mathematical

problem in (4.2), which is an abstract framework for Algorithm 4.2, is formally defined

as follows.

DBCAA: Diagonal Block Coordinate Ascent Algorithm

Step 1. Choice of Initial Point:
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Zo - (ZO ZO . . ZO ZO )- 1'"'' J(, ... , 1"'" J( ,

where (z~, . .. ,z~U EVe JRns and zp E JRnt , \il E {l, 2, ... , K}.

Step 2. Definition of Operator B:

Given

zk-1 E VDl (C VD C JRJ(ns) , \ik - 1 E K, C N U {O} ,

where N is the set of natural numbers. Here, K, ~ {O, 2,4,6, ... ,2m, . .. }, where

m is a non-negative integer, i.e., the set of non-negative even numbers.

Operator B is obtained as follows. It is a mapping from zk-1 to the optimal

solution set of

max {F(X) I
xEVD

Xi,j = zj-1, for i i- j and 1 ~ i,j ~ K

an optimal solution belongs to B (zk-1) (C VD) and we denote by zk the optimal

solution. Obviously, operator B is an algorithm over VD . Thus it is called the

block diagonal coordinate ascent algorithm. Note the difference in terminology

between the block diagonal coordinate ascent algorithm and the diagonal block

coordinate ascent algorithm.
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Step 3. Definition of the Average Mapping:

Given zk E B (zk-l) C VD ) k -1 E K" i.e., k tj. K,)

(

KKK )k+1 ~ 1 k 1 k 1 k ns
Z[l:K] - K L Zj,l) K L Zj,2) ... , K L Zj,K EVC.IR. .

j=l j=l j=l

Tl k+1
IUS, Z[l:K] =

Furthermore,

(
![ )k+l 6. 'k+l k+l '

Z = Z[l:Kj) ... , Z[l:Kj

where a mapping from Zk to zk+l is formed naturally and it is called the average

mapping and is written as Av. This step will be called the spacer step.

Step 4. Definition of Algorithm DBCAA:

Algorithm DBCAA is defined as the mapping product Av . B.
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Since f is concave,

Remark 4.4.1. In Step 3 of the diagonal block coordinate ascent algorithm, the aver­

age mapping, which has already been denoted by Av, can be extended into Av: VD ~

VD . If, Vx,x E VD , then Av(x) E VD and F(x) :s: F(Av(x)), due to the definitions

of VD and F.

Because Proposition 3.4.3 is only applicable to the block coordinate ascent al-

gorithm (BCAA), a more general proposition than that in Proposition 3.4.3 will be

introduced to help to establish convergence of the diagonal block coordinate ascent

algorithm (DBCAA). This more generalized proposition will unify the foundation for

convergence of Algorithm 3.1 and Algorithm 4.2.

The maximization mapping was defined previously by Definition 3.4.2. For ex-

ample, algorithm B of the diagonal block coordinate ascent algorithm is the maxi-

mization mapping, when its optimal solution is unique. In detail, algorithm B, as a

/':" - /':"
maximization mapping, is defined with the objective function Z = F, Vi = VDl and

11 ~ VD in the diagonal block coordinate ascent algorithm.
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To simplify the discussion of convergence of the DBCAA and its extension, the

monotonically increasing mapping is defined as follows.

Definition 4.4.2 (Monotonically Increasing Mapping). For a continuous junction

Z : V ----7 lR, if the mapping M: V ----7 V satisfies

Z (M(v)) ~ Z (v) ,

then M is said to be a monotonically increasing mapping.

For instance, the identity mapping I and the average mapping, Av, of the diagonal

block coordinate ascent algorithm are monotonically increasing mappings.

Given the definition of a monotonically increasing mapping, we have the following

proposition to reveal the relationship between the accumulation point and the fixed

point for more generalized algorithms.

Proposition 4.4.3. Let the product mapping A ~ MeOe··· ]..120 2J11I10 1, where the

natural number f ::; K, determine an algorithm that given a point ZO generates the

sequence {zk}:o with zk+1 = A (zk) ,Vk. Suppose

1. All points zk are in a compact set X C ~ ( c V),

2. 0 1 : ~ ----7 V and Om: V ----7 V, Vm> 1, are the maximization mappings,

and each JIIIm : V ----7 V, Vm, is a monotonically increasing mapping,

3. For any accumulation point, z=, of {zk}:o' JIIIm (z=) = z=,

m E {I 2 ... l - I} and)" J
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4. the maximization mappings Om and the monotonically increasing mappings

.Nlm , \1m, are continuous over their domains respectively.

Then for the maximization mapping Om, the accumulation point, zoo, is a fixed point,

i. e., ZOO = Om (ZOO) ,m = 1, 2, ... ,f!.

Proof Observing Condition 1, there must be a /'i, eN U {O} and a convergent subse­

quence such that zk ----7 zoo, for k E /'i,. Using Condition 2, we see that

So, {z (zk) }:o is a monotonically increasing sequence. According to the limit prop­

erty of the monotonic sequence, if the limit of some subsequence of the sequence

exists and the sequence is monotonically increasing, then the limit of the sequence

exists and the limit of the sequence is equal to the limit of the subsequence. Thus,

limk-too Z (Zk) exists and

Since Z is continuous,

lim Z (zk) = Z (ZOO) .
k-too

(4.7)

Due to the fact that {Zk+l} kEn, C X, where X is compact, 3/'i,1 C /'i, such that

limkEn,l zk+1 exists and the limit is written as yoo, i.e., limkEn,l Zk+l = yoo. Similar

to the derivation mentioned above,

(4.8)
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From (4.7), (4.8) and Condition 4,

For m = 1, Z (ZOO) = Z (A (ZOO)) ~ Z (01 (ZOO)) = Z (ZOO). Then Z (ZOO) =

Z (01 (ZOO)). Because ZOO is the feasible point related to 0 1 and 0 1 is the map-

ping from a point to a maximum point, corresponding to the definition of mapping,

Assume that, as 1 :s; m < f, Om (ZOO) = Zoo. Because

and, due to the induced assumption and Condition 3,

Because ZOO is the feasible point related to Om+1 and Om+1 is a mapping from a fea­

sible point to a maximum point, Om+1 (ZOO) = zoo.

Therefore for the maximization mapping Om, \1m, the accumulation point, zoo, is

a fixed point, i.e., ZOO = Om (ZOO). o

Based on Proposition 4.4.3, we can introduce the following theorem on convergence

of the diagonal block coordinate ascent algorithm.
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Theorem 4.4.4. Consider the abstract formulation in (4.2) and, assume that f is

concave and differentiable, that V is convex and that either V is compact or the

superlevel set {xlf (x) ~ f (zOn is bounded. Now, if the mapping B is continuous

over VDl , then the confined preceding K block components, zool[l:K], of the limit of any

convergent subsequence of {zk}:o generated by the diagonal block coordinate ascent

algorithm is an optimal point of (4·2) and {f (zk) }:o approaches to the optimal

value.

Proof. Assume that the diagonal block coordinate ascent algorithm produces the se­

quence {zk}:o and ZOO is the limit of a convergent subsequence of the sequence.

Due to the compactness of V or the boundedness of set {xlf (x) ~ f (zOn, Con­

dition 1 of Proposition 4.4.3 is satisfied. If M 1 : VD ------7 VD is the average mapping

and mapping 0 1 is defined by mapping B : VDl ------7 VD, then the diagonal block

coordinate ascent algorithm, as an algorithm, is the same as the product mapping

A(= ]./!I 0 1) and Condition 2 o{ Proposition 4.4.3 is satisfied. Condition 3 of Propo­

sition 4.4.3 is satisfied due to f! = 1. Because the average mapping is continuous over

VD , the continuity of mapping B is assumed, Condition 4 of Proposition 4.4.3 is satis­

fied. Then for maximization mapping B, the accumulation point, zoo, is a fixed point,

i.e., ZOO = B (zoo). According to the optimality condition of convex programming,
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where, V(Zl,l, Z2,2,' .. ,ZK,Id, (Zl,l' Z2,2,' .. ,ZK,Id E V

So,

Hence,

:s; 0, (4.10)

Therefore, ZOO![l:Kj is an optimal solution, corresponding to the assumption of convex

programming from the generalized mathematical problem in (4.2), and, due to the

monotonicity of sequence {f (zk) }:l' the sequence approaches to the optimal value.

D

It is a meaningful question how to guarantee that algorithm B : VDl --7 VD in

the definition of the diagonal block coordinate ascent algorithm is a mapping and

satisfies the continuity over VDl . It is immediate that if the maximization program­

ming, corresponding to algorithm B, has a unique optimal solution, then algorithm

B is a mapping, i.e., it is a mapping from a point to a point, and algorithm B satisfies

the uniqueness condition. In fact, it can be proved that if the uniqueness holds, then

mapping B also satisfies the continuity, i.e., it is continuous over VDl. Below, we will
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first show the uniqueness of algorithm B. Then the continuity of algorithm B will be

proved.

Definition 4.4.5 (Diagonal Uniqueness Condition). VZk- 1 E VDl , If the optimal

solution set

( {
1

K })'" f ( k-l k-l k-l k-l) Varg l;;E~ K f;;t Zl , ... , Z£_l ,X£, Z£+l , ... , ZK C

is a single point set, then the average sum function F(x) in (4.6) of f (x) is said to

satisfy the diagonal uniqueness condition over set VDl .

The name "Diagonal Uniqueness Condition" stems from positions of the optimized

block variables, which match with the diagonal blocks of a blocked matrix.

X2,1 X2,2 X2,K

XK,l XK,2 XK,K

The meaning of an entry X£,j (ve,j), as a block ofthe blocked matrix, is the same as

in (4.6).

Based on Definition 4.4.5, we have the following lemma on the continuity of the

diagonal block coordinate ascent algorithm.

Lemma 4.4.6. Suppose that f(x) is continuous and F(x) satisfies the diagonal

uniqueness condition over set VDl , and suppose that V is closed. If V is bounded
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{x E V1f(x) ~ f(zO)} is bounded, then the algorithmic mapping B is continuous.

Proof U, z E Vm . Assume that {zk} C Vm and limk->oozk = Z. vk ;; B (zk) ,W ;;

B (z). {vk } has an accumulation point denoted by v due to the boundedness of V

or set {x E V1f(x) ~ f(zO)}. If {vk} does not converge, a subsequence {vkr }, which

converges to v as r tends to infinity, can be selected from {vk }. Hence, two convergent

subsequences {vkr } and {zkr} can be acquired. So, without loss of generality, assume

that {vk} converges to V. From the definition of B, it holds that v/!,j = limk->oovZj =

lim k->ooZZj = z/!,j (e,j E {I, ... ,K} n {e # j}). Since Vis closed and {vk} C VD ,V E

VD . Due to W ;; B (z) and v/!,j = z/!,j = w/!,j, (e, j E {I, ... ,K} n {e # j}),

F(w) ~ F(v).

On the other hand, construct a sequence as follows.

W k E lRKns , \fk, is defined by following two steps.

k ~- £ 11_'• w/!,j - W/!,j, lor .(; - J

Thus, w k E VD , \fk, is obtained.

It is easily seen that {wk } C VD and limk->oowk = w. Hence,

F(v) ~ F(w).

(4.11)

(4.12)

From (4.11) and (4.12), F(v) = F(w) = F(B (z)). When the consideration of
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the diagonal uniqueness condition is being added into the above equalities, 11 = w

holds, i.e., limk-tooB (zk) = limk-toovk = v = w = B (z). Thus, B is continuous over

~. D

Corollary 4.4.7. Consider the abstract formulation in (4.2). Assume that f is con­

cave and differentiable, that the average sum function F(x) in (4.6) satisfies the

diagonal uniqueness condition over set VDl, that V is convex and that either V is

compact or the superlevel set {x E Vlf (x) ;:::: f (zOn is bounded. Then the confined

preceding K block components, ZOO I[1:I(j, of the limit of any convergent subsequence

of {zk}:o generated by the diagonal block coordinate ascent algorithm is an optimal

point of (4.2) and {f (zk) }:o approaches to the optimal value.

Remark 4.4.8. Proposition 4.4.3 offers a unified structure for the block coordinate

ascent algorithm and the diagonal block coordinate ascent algorithm. Under this struc­

ture, the block coordinate ascent algorithm and the diagonal block coordinate ascent

algorithm are considered as two cases of the same theoretic framework.

4.4.2 Convergence of IWFA under the Sum Power Constraint

To simplify the discussion of convergence of the DBCAA and Algorithm 4.2, for the

problem in (4.1), we define
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Here, the diagonal block coordinate ascent algorithm with the spacer step, as applied

to the problem in (4.1), corresponds to Algorithm 4.2. The number of entries of Qi

is equivalent to ni in the definition of the DBCAA. Let us define

where Qt denotes the t-th input covariance at the previous iteration, and

We know that there is a unitary matrix Ui such that

is a diagonal matrix, written as Ai, and

where
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is not empty due to the assumption Hi i= 0 made just before the definition of Algo­

rithm 4.1 and, Vi,

J!max (i) ~ max {J!I (Ai)f,f > 0,£ E {1, 2, ... , n}}.

Given {UJ~I ,

and it is easy to see that VI is convex and VI C V.

{ I
(Q .) - 0 for s --I- t· }

V2~ (QI, Q2,'" ,QK) E V _ t s,t -, . r, .'
(Qi)s,s - 0, Vs E {£max (~) + 1, ... ,n}, V~

and it is true that Tfi is convex and Tfi c "0. The objective

where x = (QI,Q2,oo. ,QK;'" ;QI'''' ,QK-I,QK) and (Ql,Q2,oo. ,QI<J E v. It

is easy to see that the assumed f (QI, Q2,'" ,QK) (the definition of f is referred to

in the beginning of this subsection) is concave and continuously differentiable due to

the concavity of log det (.) (refer to [6], page 74). It is also easy to see the existence of

isomorphism between Si and (JRe (Si) ,IIm (Si)) ,Vi, and that VDl and V are convex
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and closed. Hence, the first condition of Corollary 4.4.7 is satisfied. The boundedness

of V is to be proven as follows.

Let (Q1, Q2,'" ,QK) E V hold. VQi, Qi = E [Xi (xi)t] implies (Qi)j,j ::::; P. Thus,

using the Cauchy-Schwartz inequality,

I(Qi)s,t I IE [(xD (~)] I

< E [lx~12] E [lx~12]

< (Qi)ss(Qi)tt·, ,

So I (Qi)st I::::; P (Vi,j, sand t).,

Hence V is bounded, and hence compact. Another condition of Corollary 4.4.7 is now

also satisfied. We will now define a function Ii to be the simplified objective function

that corresponds to the case when the i-th user is being optimized while other users

are kept unchanged under the sum power constraint.

Jlmax(i)

Ii ((Qi)l,l , (Qih,2 , ... ,(Qi)Jlmax (i),£max (i) ) ~ L log (1 + (Ai )£,£ (Qi)£,£) (Vi).
£=1

Thus,
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J(

~ max 1 I)og (det (In + AIQiAI)) (4.14)
(Ql,.·· ,QldE V i=l

J( £max(i)
~ max L L log (1 + (Ai )£,£ (Qi)£,£) . (4.15)

(Ql'''',QK)ElP i=l £=1

J( J( lmax(i)
Because the Hessian matrix of Lfi' Le., L L log (1 + (Ai )£,£ (Qi)£,£) , is

i=l i=l £=1

-diag

it is a negative definite matrix, and the cardinality of the optimal solution set

is one, i.e.,
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Therefore, it is easily obtained that the cardinality of the optimal solution set of

Qt is }

glVen

is equal to one, corresponding to the equivalence (4.15) of the optimization problems

and the definitions of V, VI and lfi. An important consequence is that the diagonal

uniqueness condition of Corollary 4.4.7 is obtained.

The final optimization problem in (4.15) can be easily solved by some optimiza-

tion algorithms, for instance, as well known, the conventional water-filling algorithm,

or the water-filling algorithm with Fibonacci search presented in Chapter 2. Ac­

cording to Corollary 4.4.7, convergence of Algorithm 4.2 is acquired. If 3Hi = a
(the null matrix), a guarantee of convergence of Algorithm 4.2 to the global optimal

solution is obtained from the above derivation and the compactness of the feasible set.

According to the discussion of convergence of Algorithm 4.2, the following corol-

lary is obtained.

Corollary 4.4.9. For the dual MIMO MAC problem (or the problem in (4·1}) of

the MIMO BC model, the iterative water-filling algorithm (with or without Fibonacci

search) under the sum power constraint (i.e., Algorithm 4.2) converges to the optimal

solution of the dual MIMO MAC problem. In addition, as the number of iterative

steps increases, the corresponding objective value approaches to the optimal objective
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value of (4·1).

In other words, the optimal solution of (4.1) can be found by the iterative water­

filling algorithm (Algorithm 4.2) with or without Fibonacci search.
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Chapter 5

Conclusions and Future Work

In this thesis, three new water-filling algorithms with Fibonacci search are presented

for finding optimal input covariances for the single-user MIMO channel, the MIMO

multiple access channel (MAC) and the MIMO broadcast channel (BC). Rigorous

convergence proofs for the algorithms are also established.

In detail, Chapter 2 of this thesis presents the Fibonacci search method for speed­

ing up the computation of optimal solutions to the single-user problem. It also de­

scribes how the optimal input covariance is constructed, and offers a formal proof of

optimality for the constructed solutions. Because the algorithms for the MIMO MAC

and the MIMO BC are iterative algorithms in which a single-user problem is solved

at each step, the Fibonacci search and the proof of optimality together allow us to

find solutions to these multiuser problems more conveniently and efficiently.

In Chapter 3 we studied iterative water-filling algorithms for the multiuser MIMO

MAC. In particular, we exposed a weakness in previous convergence proof proposed
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by others. Then we established a rigorous proof of convergence for the iterative water­

filling algorithm based on fixed point theory. This was done via a complex-valued

framework that better matches practical communication systems than the real-valued

framework used in previous work. Also, we showed how Fibonacci search could be

incorporated into the iterative water-filling algorithm for the MIMO MAC to reduce

the computational cost.

In Chapter 4 we studied iterative water-filling algorithms for the multiuser MIMO

BC. We explained that there is a so-called dual MIMO MAC for the MIMO BC,

and that this dual is equivalent from the sum rate perspective, in the sense that the

sum rates are equal and the optimal input covariances can be computed from each

other, e.g., [20]. The dual MIMO MAC is of significant interest because the sum rate

optimization problem is convex, whereas that for the MIMO BC is not. However,

the extension of the iterative water-filling algorithm for the MIMO MAC to the dual

MIMO MAC ofthe MIMO BC is not straightforward (e.g., [20]), because the power

constraint couples the stages of the iterative water-filling algorithm, whereas those

stages are not coupled in the MAC case. In our analysis, we exposed a weakness in

the previous convergence proof proposed by others. Then, we established a rigorous

proof of convergence of the iterative water-filling algorithm for the case of the MIMO

BC, based on an extended fixed point theory. Also, we showed how Fibonacci search

could be incorporated into the iterative water-filling algorithms for the MIMO BC to

reduce the computational cost.

On a more general level, this thesis sets up a unified theoretical framework, based
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on generalized fixed point theory, for the discussion of convergence of iterative algo­

rithms for the optimal input covariances for MIMO systems. Under this framework,

a rigorous convergence proof for each of the constructed algorithms was presented.

Although we managed to answer some of the basic algorithmic questions concern­

ing iterative water-filling algorithms, a number of questions and directions remain

open for future work, two of which we will highlight below.

The utilization of the iterative water-filling algorithm with Fibonacci search for

the optimization of the sum rate of a MIMO relay system (RS) will be proposed and

studied. The MIMO RS of interest consists of a single source-destination pair, with

multiple half-duplex decode-and-forward MIMO relays and no direct path from the

source to the destination. This system is the concatenation of a MIMO BC (source

to relays) and a MIMO MAC (relays to destination). In order to find the solution to

the problem of optimizing the rate of the MIMO RS, a hybrid iterative water-filling

algorithm with Fibonacci search will be presented, which will combine the iterative

water-filling algorithm for the MIMO BC with that for the MIMO MAC. Conver­

gence of this hybrid algorithm will be studied and proved based on our discussions in

Chapters 2, 3 and 4, under the unified framework established in this thesis.

The reader might recall from previous discussions that the Fibonacci search can

speed up the computation of water-filling, which is one step of the iterative water­

filling algorithms (IWFAs). In fact, it may also improve the performance of other

aspects of IWFAs. For example, we can replace the simple spacer step in the existing

73



M.A.Sc. Thesis - Peter He McMaster - Computational Engineering and Science

K=28 K=38
25

x A2
-UP

20

~
a:
§ 15 p

If)
m
£
'0
~

10

!£
x

5 :.

0 0
0 50 100 0 50 100

lIeration Times Iteration Times

Figure 5.1: Performance of UP Compared with A2, as K=28 and 38

IWFAs for the MIMO BC (d. [20]) by a more sophisticated spacer step inspired by

Fibonacci search. Although the detailed machinery is still being researched, some

preliminary numerical experiments, such as that provided below, suggest that this

new spacer step can significantly improve the convergence rate of IWFA algorithms

for the MIMO BC.

Consider a MIMO BC with m = 8 transmitter antennas, n = 8 receiver antennas

at each of the K = 28 and K = 38 receivers, and a sum power bound of P = 2. The

convergence of the sum rate for Algorithm 2 from [20] (Algorithm 4.2 in this thesis),

denoted A2, and that for the algorithm with the Fibonacci-search-inspired spacer

step, denoted UP, are plotted in Figure 5.1 for the case of a single realization of chan­

nel matrices from the standard Li.d. Rayleigh distribution. As can be seen from this

figure, the proposed algorithm converges much more quickly than Algorithm 2 of [20].

In conclusion, we would like to point out that the quest for better algorithms for

the sum rate optimization problem in MIMO communications system has led to some
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important progress in optimization theory, in addition to significant successes in prac­

tice. As this thesis provides ample evidence, the iterative water-filling algorithm can

be efficiently performed for a wide variety of MIMO communications systems, and this

now raises the hope that the analogous pursuit of constructive capacity-approaching

algorithms for some of the other MIMO communications systems discussed above

might actually be tractable. The end result of such a pursuit, if it is successful, will

have a significant impact in practice, but in addition we believe that there are also

more algorithmic techniques to be discovered en route.
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Chapter 6

Appendix

6.1 Appendix-I: Complex Gaussian Random Vec-

tors

For any z E en and A E enxm, let us define

Z= ( JRe (z) )
JIm(z)

and

A= ( JRe (A) -JIm(A)).

JIm(A) JRe (A)

A complex random vector eE en is said to be Gaussian if the real random vector
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[ E JR2n consisting of the real and imaginary parts of e,

is Gaussian [35, 39, 40]. In fact, any complex random vector, without restricting to a

complex Gaussian random vector, has such a real and expanded random vector. The

relationship between these two complex and real vectors is a one to one mapping. Let

us recall

and

E JR2nx2n, the former is called the mean of [ and the latter is called the covariance of [.

According to standard Lebesgue integration [29] on JR2n, the mean and covariance of

[ can be found respectively. Thus, to specify the distribution of a complex Gaussian

random vector e, it is necessary to specify the mean and covariance of e, namely,

The definitions of the mean and covariance are also suitable for the case of any com-

plex random vector.

According to standard Lebesgue integration [29] on (Cn, mean fJ, and covariance Q
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of ~ can be defined as follows.

McMaster - Computational Engineering and Science

f.l = E [~], where E [~] ~ r xdPt;,(x) E en.len

where

A complex Gaussian random vector ~ is said to be circularly symmetric [27, 26,

35] if the covariance of the corresponding vector f has the structure

E [(f- E [~) (f_E [~)T] = ~ ( ~e (Q) -lIm(Q)) (6.1)
2 lIm(Q) ~e (Q)

for some Hermitian positive semidefinite matrix Q E enxn. Note that the real part

of a Hermitian matrix is symmetric, and the imaginary part of a Hermitian matrix

is skew-symmetric. Thus the matrix appearing in (6.1) is real and symmetric. In

this case E [(~ - E [~D (~ - E [eD t] = Q, and thus, a circularly symmetric complex

Gaussian random vector eis specified by its mean and variance.

Let ebe a circularly symmetric complex Gaussian random vector. Then the

probability density function (with respect to the Radon-Nikodym derivative of the

standard Lebesgue measure [29] on en) of a circularly symmetric complex Gaussian

random vector with mean f.l and covariance Q is derived by the following:
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Due to the definition of eand the relationship between eand e,

The next step is to simplify the exponent part from the previous exponent func­

tion in order to finally remove the symbol" ~". This can be done by utilizing the

following algebraic property.

Due to C = A-I being equivalent to C= (A) -1, we have

1 _ 1 exp {- (X - mt (Q)-l (x - /i)}
1r

n [det(Q)F

1_ lexp{-(x-mt(Q=i)(x-/i)}.
1rn[det(Q)F

The next step is to remove the symbol " ~" in the preceding exponent func-

tion. Due to z = x + y being equivalent to z = x + fj, .IRe (x ty) = xtfj and y =

Ax being equivalent to fj = Ax, we have

1 _ 1 exp {- (x - f-t)t Q-l (x - f-t)} .
1rn[det(Q)F

We may remove the symbol"~" in the determinant: Due to det (A) = 1det (A) 12 ,

we have
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Therefore,

h (Xj Il, Q) = 1fn d~ (Q) exp { - (x - J-l)t Q-1 (x - J-l)}

= det (1fQ)-l exp { - (x - J-l)t Q-1 (x - J-l)} .

According to the uniqueness of the Radon-Nikodym derivative [29] and the corre­

spondence between .lR2n and en, we have

as the probability density function of e.

Remark 6.1.1. For [35]) it only uses (4d) and (4h) and thus it only can obtain the

probability density distribution of the real random vector of a complex random vector.

Only due to the uniqueness of the Radon-Nikodym derivative) mentioned above) in

measure theory) may we acquire the probability density distribution of the complex

random vector.

6.2 Appendix-II: Maximum of Entropy

The channel capacity is dependent on the definition of the mutual information. At

the same time the mutual information can be computed also by introducing the

differential entropy and the conditional entropy. Therefore, the mutual information,
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the differential entropy and the conditional entropy are revisited, referring to [10]. If

familiarity of these concepts are assumed, we may skip them over to (6.2).

Definition 6.2.1 (Mutual Information). Assume that ~ E <e,n and rJ E <e,n are two

complex continuous random vectors) and p (x) and p (y) are the corresponding prob­

ability density functions. The mutual information II (~j rJ) between the two random

vectors is defined as:

II(~;rJ) ~ r r p(x)P(YIX)lOgP(~)f(~I~)dXdY,lcnlcn p x p y

where p (ylx) denotes the conditional probability density function.

In information theory, the mutual information of two random variables (or vec-

tors) is a quantity that measures the mutual dependence of the two variables (or

vectors).

In information theory, the following concept of the differential entropy is measure­

ment for the entropy of a random variable (or vector).

Definition 6.2.2 (Differential Entropy). Assume that ~ is a complex continuous

random vector) and p (x) is the corresponding probability density function. Then

1HI (~) ~ - r p (x) logp (x) dxlcn

is called the differential entropy of~.

In information theory, the conditional entropy quantifies the remaining entropy of

a random variable (or vector) ~ given that the value of a second random variable (or
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vector) TJ is known.
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Definition 6.2.3 (Conditional Entropy). Assume that ~ and TJ are two complex con­

tinuous random vectors, p (x) and p (y) are the corresponding probability density junc­

tions and p (x, y) is the corresponding joint probability density junction. Then the

conditional entropy oj ~ jor given TJ is defined as:

lHI(~ITJ) ~ r r p(x,y) logp(xly) dxdy.
len len

The following proposition offers the mathematical relationship among the mutual

information, the differential entropy and the conditional entropy.

Proposition 6.2.4. Assume that ~ and TJ are two continuous random vectors. Then

and

The differential entropy of a complex Gaussian variable (or vector) ~ with mean

I-" and covariance Q is derived as follows. Due to the definition of lHI (~; 1-", Q), we have

(6.2)

where Et:, is the expectation operator of ~, i.e., Et:, [~] ~ fen XPt:, (x) dx.
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Due to the form of the probability density function of the circularly symmetric com­

plex Gaussian random vector ~, we have

Due to the definition and basic properties of the trace operator, we may write

log det (1rQ) + E [(~ - fl) t Q-1 (~ - fl) ]

= logdet (1rQ) + E [Tr ((~ - fl) (~- fl)t Q-1)] .

Due to the commutative property for the product of the trace and expectation oper-

ators, we have

logdet (1rQ) + E [Tr ((~ - fl) (~- fl)t Q-1)]

= logdet (1rQ) + Tr (E [(~ - fl) (~- fl)t] Q-1) .

Then the definition of the covariance of ~ implies that

and using the definition of the logarithm function and the fact,

e ~ limm->oo (1 + ~)m, we have

log det (1rQ) + Tr (QQ-1) = log det (1rQ) + log en.
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This can be simplified to

log det (1fQ) + log en = log det (1feQ) .

The following proposition, which states that a circularly symmetric complex Gaus­

sian variable (or vector) is the entropy maximizer, highlights the importance of cir­

cularly symmetric complex Gaussian vectors. [35] also claims this proposition. For

proving that a circularly symmetric complex Gaussian variable (or vector) is the en­

tropy maximizer, [35] uses the argument, i.e., 10g'YQ (x) is a linear combination of the

terms XiX;. But it is incorrect and unnecessary. In addition, the last step of deriving

]HI (p) -]HI ('YQ) .:s; 0, and ]HI (p) -]HI ('YQ) = 0 implying p = 'YQ are not proved. Thus,

we offer a formal and alternative proof.

Proposition 6.2.5. Suppose that the complex random vector ~ E en has zero mean

and ~ satisfies E [~~t] = Q, i.e., E [~i~J] = Qi,j, 1 .:s; i,j .:s; n. Then the entropy of ~

satisfies ]HI (J (~; p" Q)) .:s; log det (1feQ) , with equality if and only if ~ is a circularly

symmetric complex Gaussian random variable (or vector).

Our proof is partly based on the proof given by [35].

The following two important facts are needed to complete our proof. The first

important fact is:

The second one is a simple but crucial inequality in our proof. The second important

fact is:

logx .:s; x -1, \Ix> 0; logx = x-I, iff x = 1.
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The first one needs a proof that is given as follows.

Lemma 6.2.6. If assumptions are the same as those of Proposition 6.2.5, the ran­

dom vector eand 7] satisfy the assumptions and 7] is a circularly symmetric complex

Gaussian random vector, then

The Proof of Lemma 6.2.6. Due to the definitions of 7] and (6.2), which qualify the

relationship expression between the differential entropy and the mean, we have

Due to the linearity property of integration, we have

fen [-log det (1fQ) - (x - fl)t Q-l (x - fl)] PrJ (x) dx

= -log det (1fQ) - fen (x - fl)t Q-l (x - fl) PrJ (x) dx.

Due to the circular invariance property of the trace, Tr (ABC) = Tr (BCA) , we have

-logdet (1fQ) - fen (x - fl/ Q-l (x - fl) PrJ (x) dx

= -log det (1fQ) - fen Tr ( Q-l (x - fl) (x - fl)t) PrJ (x) dx.

Because the order of the trace and integration can be interchanged, one has

-log det (1fQ) - fen Tr ( Q-l (x - fl) (x - fl)t) p,/ (x) dx

= -log det (1fQ) - Tr (fen Q-l (x - fl) (x - fl)t PrJ (x) dX) .
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Due to the linearity property of the integration, we have

-log det (7rQ) - Tr (fen Q-I (x - f-L) (x - f-L)t Pry (x) dX)

= -logdet (7rQ) - Tr (Q-I fen (x - f-L) (x - f-L)t Pry (x) dX) .

The assumption that the variances of ~ and 'rJ are the same implies

Q = 1 (x - f-L) (x - f-L)t Pry (x) dx = 1 (x - f-L) (x - f-L)t Pi; (x) dx,
en en

-log det (7rQ) - Tr ( Q-I fen (x - f-L) (x - f-L)t Pry (x) dX)

= fen -logdet (7rQ) Pi; (x) dx + Tr (Q-I fen - (x - f-L) (x - f-L)t Pi; (x) dX) .

Because of the basic property, log (ab) = log (a) + log (b), of the logarithm, it is

obtained that

fen -logdet (7rQ) Pi; (x) dx + Tr (Q-I fen - (x - f-L) (x - f-L)t Pi; (x) dX)

= fen log (det (7rQ)-I exp {Tr ( _Q-I (x - f-L) (x - f-L)t) }) Pi; (x) dx.

The circular invariance property, Tr (ABC) = Tr (CAB), of the trace implies

fen log (det (7rQ)-I exp {Tr ( _Q-I (x - f-L) (x - f-L)t) }) Pi; (x) dx

= fen log (det (7rQ)-I exp { - (x - f-L)t Q-I (x - f-L)}) Pi; (x) dx.

Finally, due to the definition of Ei; [logpry (~)] , i.e.,

D
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The proof of Proposition 6.2.5 is offered as follows.

Proof Let Pt;. : en ----t lR be the probability density function of';' According to the

assumption of the random vector e,

Let '/] be a circularly symmetric complex Gaussian variable (or vector) with zero mean

and variance E ('/]'/]t) = Q. Let the probability density function of '/] be PT/ (x).

The definitions of lHI (e) and lHI ('/]) imply

The first important fact holding is followed by

Because of the linearity property of the expectation,

(6.3)

Due to the second important fact holding and basic properties of Lebesgue integration,

it is to see
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The definition of the expectation implies

E [Pll (e) _ 1] = E [PlI (e)] - E [1] = 1 - 1 = 0
€ pde) € pde) € .

Hence, according to (6.3), JHI (e) - JHI (1]) ::::; o.

Therefore, taking note of the second important fact, the entropy of esatisfies

JHI (e) = -Edlogpde)] ::::; logdet (?reQ) ,

with equality if and only if eis a circularly symmetric complex Gaussian random

I
I

variable (or vector) under the given mean and variance. o

Remark 6.2.7. (6.4) is explained as follows. First) define u log ulu=o ~ limu!o u log u =
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°and ;Iu=o ~ limu!o ; = 1. Second, (6.4) holds because

[
Pry (~)] r (pry (x))

EI:, log pf,(~) = len log pf,(x) pf,(x) dx

= (r + r )log (pry (x)) PI:, (x)dx
l{xlp«x)=o} l{xlp«x»o} PI:, (x)

= r Odx + r log (pry (x)) Pt; (x) dx
l{xlp«x)=o} l{x/p«x»o} PI:, (x)

< r (pry (x) _ 1) PI:, (x) dx
- l{x/pdx»o} Pt; (x)

:s; r p,/ (x) PI:, (x) dx - ( r + r ) PI:, (x) dx
len Pt; (x) l{xlp«x)=o} l{xlpdx»o}

1Pry (x) 1= -(-)PI:, (x) dx - PI:, (x) dx
en Pt; x en

= E [p,/ (~)] - E [1]
I:, pf,(~) t;

= E [p,/ (~) - 1]
t; pf,(~) .

Using the definition of the mutual information, we have that

C (H, P) = max {JHI (y) - JHI (ylx) IS t 0, Tr (S) :s; P},
Px

where the model (2.1) implies

maxpx {JHI (y) - JHI (ylx) IS t 0, Tr (S) :s; P}

= maxpx {JHI (y) - JHI (z) IS t 0, Tr (S) :s; P}.

The assumptions of z in model (2.1) also imply

maxpx {JHI (y) - JHI (z) IS t 0, Tr (S) :s; P}
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= maxpx {lHI (y) 18 ~ 0, Tr (8) :S P} -lHI (z) .

Note that we may assume that x satisfies E (xtx) :S P and is a zero mean ran­

dom vector. Furthermore for such an x, if x is a zero mean random vector with

covariance E (xxt ) = 8, then y is a zero mean random vector with covariance

E (yyt) = H8Ht + IT) which results from the form of model (2.1) and the lin­

earity of the expectation operation, and by Proposition 6.2.5 among such y vectors

the entropy is the largest when y is a circularly symmetric complex Gaussian random

vector, which is the case when x is a circularly symmetric complex Gaussian random

vector by the two facts at the end part of last section. Thus, we can further restrict

our attention to the circularly symmetric complex Gaussian random vector x. In this

case the mutual information is given by log (det (IT + H8 Ht) ) .

The two facts (refer to [27,26,35]) are claimed as follows. A linear transformation

of a circularly symmetric complex Gaussian random vector is a circularly symmetric

complex Gaussian random vector. The set of circularly symmetric complex Gaussian

random vectors is closed for addition. They are used for calculating the channel

capacity in the following section.
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6.3 Appendix-III: Proofs of the Lemmas in Section

2.4

Lemma 6.3.1. For the channel H, there is a unitary matrix U such that UtHtHU =

diag (AI,' .. ,At) (the diagonal matrix) and

max {log (det (Ir +HSHt)) IS t: 0, Tr(S):S p} =

max {log (det (It + diag(AI,'" ,At) S)) IS t: 0, Tr(S) :S P}

and utSzU = STl where Sz and S,' are two optimal solutions of the two optimization

problems mentioned above, respectively.

Proof According to the matrix theory, it is easily known that there is a unitary

matrix U such that

(6.5)

(the diagonal matrix) and the two maximum points exist due to the compactness of

the two constraints. Let

Sz E argmax {log (det (Ir +HSHt)) IS t: 0, Tr (S) :S p} .

Because U is a unitary matrix and det (I + AB) = det (I + BA) with appropriate

dimensions of the matrices, we have
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Since SI t: °and Tr (SI) ::; P,

log (det (It + diag (A1," . , At) UtSIU))

::; max {log (det (It + diag (A1,' .. ,At) UtSU)) IUtSU t: 0, Tr (UtSU) ::; p} .

As the unitary similarity transformation keeps the semidefinite positiveness and trace,

max {log (det (It + diag (A1,'" ,At) utSU)) IUtSU t: 0, Tr (UtSU) ::; p}

::; max {log (det (It + diag (A1,'" ,At) S)) IS t: 0, Tr (S) ::; P}.

Hence,

max {log (det (Ir + HSHt)) IS t: 0, Tr (S) ::; p} ::;

max {log (det (It + diag (A1,'" ,At) S)) IS t: 0, Tr (S) ::; P}.

On the other hand,

'iSn Sr E argmax {log (det (It + diag (AI," . ,At) S)) IS t: 0, Tr (S) ::; P}.

Because the definition of matrix A,

log (det (It + diag (A1' . .. ,At) Sr)) ::; log (det (It + utHt HUSr )) .
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Due to det (I + AB) = det (I + BA),

As the unitary similarity transformation keeps the semidefinite positiveness and trace,

we get

log (det (Ir + HUsrutHt))

S max {log (det (Ir + HUsrutHt)) IUsrut ~ 0, Tr (USrUt) S p} .

The same reason implies

max {log (det (Ir + HUSrUtHt)) Iusrut ~ 0, Tr (USrut) S p}

S max {log (det (Ir + HSHt)) IS ~ 0, Tr(S) S p}.

Thus,

max {log (det (It + diag (AI, ... ,At) S)) IS ~ 0, Tr (S) S P}

S max {log (det (Ir + HSHt)) IS ~ 0, Tr (S) S p}.

Therefore,

max {log (det (Ir + HSHt)) IS ~ 0, Tr (S) S p}

= max {log (det (It + diag (AI, ... ,At) S)) IS ~ 0, Tr (S) S P}

and further utSzU = STl where Sz and Sr are two optimal solutions of the two

optimization problems respectively. 0

Lemma 6.3.2. For the channel H, there is a unitary matrix U such that utHtHU =

A (the diagonal matrix) and
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max {log (det (Ir + HSHt)) 1St 0, Tr (S) :s; p}

= max {log (det (It +A!SA!)) IS to, Tr(S) :s; p},

and UtSzU = STI where Sz and Sr are two optimal solutions of the two optimization

problems mentioned above, respectively.

Proof. According to Lemma 6.3.1, we have

max {log (det (Ir + HSHt)) IS to, Tr (S) :s; p}

= max {log (det (It + diag (A1," . ,At) S)) IS t 0, Tr (S) :s; P}.

According to the definition of the matrix A and (6.5), we have

max {log (det (It + diag (A1,'" ,At) S)) IS t 0, Tr (S) :s; P}

= max {log (det (It + AS)) IS t 0, Tr (S) :s; P}.

Due to the definition of the square root for the matrix A, we get

max {log (det (It + AS)) IS t 0, Tr (S) :s; P}

= max {log (det (It + A!A!S)) IS t 0, Tr (S) :s; p}.

For the reason that det (I + AB) = det (I + BA), we have

max {log (det (It + A!A!S)) IS t 0, Tr (S) :s; p}

= max {log (det (It + A! SA! )) IS t 0, Tr (S) :s; p}.

o
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