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Abstract

Astrophysical disks are found in many areas of astrophysics, from the pro­

toplanetary disks in which planets are thought to be born, to the accretion

disks around white dwarfs, merging stars, and black holes. The key to under­

standing these disks, is to understand how material overcomes the rotational

support and acretes. 'Whatever mechanism is responsible must necessarily

explain the transport of angular momentum outward.

The current mechanism used to explain this is the magnetorotational in­

stability (MRI). Its ability to transport angular momentum as well as drive

a magnetic dynamo, will be discussed in this thesis. The linear equations of

motion for a locally Cartesian patch will be solved numerically to get the time

evolution of the magnetic and velocity fields. From these solutions, quadratic

quantities in the perturbation variables will be calculated, namely the angular

momentum and magnetic helicity. The time evolution of these quantities can

tell us about the MRI's ability to both transport angular momentum and drive

a dynamo through magnetic helicity.

By solving the equations of motion in a locally Cartesian patch of a shearing

disk, I have calculated the flux of angular momentum and magnetic helicity.

The time evolution of these quantities shows that the ability to transport

magnetic helicity is very similar the ability to transport angular momentum.

This relation is true for a parameter space which corresponds to the asymptotic

limit for the MRI.
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Chapter 1

Introduction

The formation of a disk is ubiquitous in astrophysics. These disks, called

accretion disks, play an important role in the formation of stars and planets as

well as powering the centres of active galaxies. The accretion disk moderates

how quickly material is accreted onto the central object as well as provide a

mechanism for angular momentum to be transported from the inner to the

outer region. An example is that young stars are observed to have rotation

speeds much below break up speed which would be expected since the star

forms out of a rotationally supported disk, thus a way to transfer the angular

momentum outward is needed.

For a particle or, more generally, a fluid element to fall into the central

object it must lose angular momentum. Conservation of angular momentum

implies that this fluid element must give the lost angular momentum to another

fluid element whose orbit will increase in radius.

To study the accretion disk we need to treat the disk material as a fluid so

that we can use fluid dynamics to solve the equations of motion and deduce its

properties. If the gas is assumed to be a fluid, the Rayleigh stability criterion

1



M.Sc. Thesis - Benjamin B. H. Jackel - McMaster University - Physics and Astronomy - 2010

given by a(:~ll) > 0, where n is the angular velocity and R is the radius, is

equivalent to saying that angular momentum increase outward and that the a

Keplerian disk should be hydrodynamically stable. If the fluid has a viscosity,

it will heat up the fluid through friction and will then begin to radiate energy

and angular momentum away. The first attempts using physical viscosity by

Lynden-Bell & Pringle (1974), led to accretion rates which were too small by

many orders of magnitude, thus a way to enhance this viscosity was needed.

One way was to create an enhanced viscosity by using turbulence, an idea

which, has been around since Prandtl and Boussinesq according to Frisch &

Orszag (1990). Shakura & Sunyaev (1973) invoked turbulence to create an

enhanced viscosity which led to a better fit to the observational data in their

a-disk model. It was shown that hydrodynamic instabilities were not enough

to make the disk turbulent. It is now widely accepted that the origin of tur­

bulence in accretion disks is not hydrodynamic, but rather a linear magnetic

instability as proposed by Balbus & Hawley (1991). This instability, named

the magnetorotational instability (MRI), is an instability in a weakly magne­

tized disk which creates magnetohydrodynamic turbulence, transports angular

momentum and powers a magnetic dynamo. Viscous heating and luminosity

from the central object ionize the disk which is then highly conducting so that

the magnetic field lines are frozen into and follow the dynamics of the fluid

thus providing the conditions necessary for the MRI to function.

It is no surprise that magnetic fields should play an important factor in

these types of astrophysical phenomena, Chandrasekhar (1960) and Velikhov

(1959) separately theorized the MRI, though it was not applied to accretion
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disks until much later. The model proposed by Lynden-Bell & Pringle (1974)

suggested that the turbulent effects should be much stronger than the mag­

netic effects. On the other hand, Shakura & Sunyaev (1973) hypothesized

that the magnetic field could be an important effect, but did not produce a

quantitative analysis. The MRI however, can arise from even an initially weak

field, drive a magnetic dynamo, and enhance angular momentum transport

via the magnetohydrodynamic turbulence.

'With a magnetized disk that has been modelled as a fluid it is now possible

to use the tools of magnetohydrodynamics to study accretion disks and more

specifically the MRI. There are still many open questions about the MRI and

the dynamo process tied to it such as the effects of magnetic buoyancy and

the Parker instability (Tout & Pringle, 1992). Of theoretical importance is

the role of magnetic helicity in the MRI and the dynamo process. It has been

suggested by Vishniac (2009), that the MRI creates a magnetic helicity flux

which drives the dynamo process. It is this hypothesis that I intend to study

over the course of this thesis, focussing namely on the generation of magnetic

helicity flux by an MRI using numerical methods.

The transport of angular momentum is the other long standing question

about accretion disks and will be compared to the magnetic helicity flux from

this calculation. The goal is to understand how the efficiency of the mag­

netic helicity transport compares to the efficiency of the angular momentum

transport in an accretion disk. The magnetic helicity transport gives us an

understanding as to how efficient the dynamo is and together with the angular

momentum describe how important the MRI is to the accretion disk.
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Chapter 2

Background

2.1 Fluid Mechanics

To study accretion disks we can treat the gas and dust that makes up the

accretion disk as a fluid. The mathematical framework used to describe fluids

and how they move is called Fluid Mechanics. Fluid mechanics is a continuum

theory, which means that it can not be used to describe an individual particle,

rather it must treat the system as a continuous fluid. To this end, the fluid

must be highly collisional or have a small mean free path compared to the size

of the system.

The set of equations which are used to describe the motion of a fluid and

the forces involved, are called the Navier Stokes equations, with the case of

an incompressible fluid given by equation (2.1) (Chorin & lVIarsden (1979)).

Here, u is the velocity of a fluid element, p is the pressure, p is the density

and 1/ is the kinematic viscosity.
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au 1 2- + u . \7u = - - \7p + v\7 uat p

\7·u=Q

(2.1)

(2.2)

The last term of equation (2.1) is perhaps the most relevant to the discus-

sion since it is the term which is responsible for diffusion and loss of energy

and thus angular momentum in the disk. Also relevant to the discussion is

the dimensionless Reynolds number, Re. The Reynolds number describes the

ratio of the inertial to viscous forces and is defined as Re = vL. where L is a
1/ '

characteristic length scale ofthe system (disk height in an accretion disk), and

V is the mean velocity of the fluid. "When the Reynolds number is small, the

fluid flo"" is laminar, whereas it generally becomes turbulent at high Reynolds

numbers. This is important since many astrophysical fluids are observed to

have very high Reynolds numbers.

If there are additional forces at work, such as gravity, there is an additional

term to (2.1) to account for this. The part of the disk being looked at will

have a vertical length scale much shorter than the pressure scale height, so that

gravity will not contribute to the dynamics. This term will also be dropped

when the MHD equations are introduced in the next section so that buoyancy

effects are small and the fluid can be treated as incompressible.

2.2 Magnetohydrodynamics

The motivation behind magnetohydrodynamics (MHD) is to include the

forces involved in electromagnetism with the forces of fluid mechanics. Accre-
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tion disks are generally observed to be in a plasma state which satisfies the

criterion that the fluid is highly conducting.

The equations which describe E&M are condensed in Maxwell's equations,

given by equations (203) plus the Lorentz force equation, F = qE + q(v x B)o

Here E is the electric field, B is the magnetic field, c is the speed of light, p

is the charge density, and J is the current density. Of special note is equation

(2.3c), which is Faraday's law of induction and will playa special role in the

formulation of the MHD equations.

\7 0 E = 471p

\7 o B=O

loB
V' x E+ -- = 0

c at
laE 471

\7 x B - -- =-J
c at c

(2.3a)

(2.3b)

(2.3c)

(2.3d)

In the non-relativistic limit, the displacement current can be dropped. In the

presence of light charge carriers the Lorentz force vanishes in the frame of the

fluid so that E + (v x b) = O. In this limit, the field lines will become frozen

into the fluid and so the dynamics will be functions of both the magnetic field
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and the momentum of the fluid. To this end, the 1-avier-Stokes equations

along with the E&NI forces provide the basis of the MHD equations

ou .
p(75t + u· \7u) = -\7p + J x B - p\7¢g,

oBot = \7 x (u x B),

op- + \7. pu = 0ot '
\7. u = O.

(2.4a)

(2.4b)

(2.4c)

(2.4d)

Here, u is the velocity field, B is the magnetic field, j is the current density,

and p is the mass density. Equation (2.4a) describes the momentum of the

fluid, equation (2.4b) is Faraday's induction equation, equation (2.4c) is the

continuity equation and equation (2.4d) enforces the incompressibility of the

fluid.

·With these tools in place, a quantity called the magnetic helicity may be

defined. The magnetic helicity

(2.5)

is a measure of the "twistedness" of the magnetic field, and is directly anal-

ogous to the fluid helicity in fluid mechanics. An important property of the

magnetic helicity is that it is a conserved quantity even for an infinitesimal

resistivity. Also it is gauge-dependant due to the presence of the vector po-

tential, A. This quantity turns out to be especially important for driving the

dynamo which is discussed in the next section. This is because its flux provides

a term which is parallel to the large scale magnetic field, a property which is

required to complete the regenerative cycle in the dynamo.
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The vector potential is given by

(2.6)

and the gauge, which will be assumed, is the one in which the current helicity

and magnetic helicity are closely connected in space.

A = J J(x') d3x'
41rlx - x'i '

that is, the Coulomb Gauge.

The scalar potential will also be used and is given by equation (2.8).

(2.7)

(2.8)

The MHD equations give rise to wave solutions, much like the equations

of fluid mechanics do. In MHD there are 3 additional waves, compared to the

1 in fluid mechanics. In fluid mechanics a characteristic speed appears called

the sound speed, CS ' In IvIHD the characteristic speed for transverse waves is

the Alfven speed, VA. The Alfven speed is defined as VA = ~, where Bo is

the magnetic field strength and p is the density of the fluid, (Biskamp, 1993).

2.3 Magnetic Dynamos

The first use of the word dynamo applied to devices which generated electric

current through application of Faraday's law. The word was eventually used

to describe the physical process by vvhich a magnetic field is generated and

maintained from an initial field. It is from this word and definition in which

dynamo theory comes from. The motivation behind dynamo theory is to
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describe the generation of magnetic fields. The Earth's magnetic field and the

solar magnetic field were the driving forces behind the formulation of dynamo

theory. Magnetic dynamo can be found from laboratory scales all the way up

to a galactic scale. The dynamo I will be discussing are of an astrophysical

context, with a size on the order of the accretion disk being simulated.

The types of dynamo theories that are applied to astrophysical situations

generally fall under the category of mean field theories. This means that the

problem can be broken into a large scale and small scale, where the large scale

is generated from the average or mean of the fluctuating small scale field. For

example,

B T =B+ b,

(b) = O.

The key equation in magnetic dynamo theory is the Induction Equation,

aB 2at = rl'v B + V x (VT X B T ), (2.9)

The first term on the right hand side describes the magnetic diffusion,

""here 77 is the magnetic diffusivity, the second term is the induction equation.

The relative strengths of the second term to the first term gives the mag-

netic Reynolds number, which is analogous to the Reynolds number in fluid

mechanics.
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The a-elTect The w-elTect

Figure 2.1: The alpha effect, shown on the left, describes how a poloidal field
might be created from a toroidal field. If the fluid has a non-zero helicity and
also some buoyancy or turbulent motion, then the magnetic field might develop
a loop oriented in the same direction as the initial poloidal field. Reconnection
can then join the -loops to regenerate the initially poloidal field and set the
conditions for the w effect. The w effect on the right is the other half of
the a - w dynamo. The result of a differential rotation is to drag the field
lines with the fluid creating a toroidal field from the initial poloidal state.
http://solarscience.msfc.nasa.gov/ dynamo.shtml

An important concept in a dynamo is where the motion of the fluid provides

a mechanism to regenerate or grow the initial magnetic field. One way to do

this is the a effect. If the mean electromotive force can be written as

£ - (u x b),

then £ can be expanded in a series with the first term given by

(2.10)

(2.11)

(Parker, 1970). Here, £ is the electromotive force, BOj is the component of the

large scale magnetic field. The term aij is a pseudo-tensor whose trace is the
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current helicity and fluid helicity, and when multiplied by a turbulence corre­

lation time (Tc ) is the current helicity tensor minus the fluid helicity tensor.

It is this term that allows for a toroidal field to be generated from a poloidal

one, which will be turned back into a toroidal field by the next step. This next

step is called the w effect, since it is caused by differential rotation. The w

effect is simply described by the action of differential rotation on the magnetic

field lines. Since the field lines are frozen into the fluid they get dragged around

with the fluid, and so an originally poloidal field will be stretched and dragged

into a toroidal configuration. The a and w effects are perhaps best described

by a diagram, such as figure 2.1. These two effects are the basis of the a - w

dynamo which is primarily used to describe the geo and solar magnetic fields.

There are some problems with this model arising from the conservation of

magnetic helicity. The part of the magnetic helicity coming from small scale

motions is defined as h = (a . b). The conservation of this quantity implies

that there will be an accumulation of h which will poison the dynamo through

its contribution to the resulting current helicity and the a effect. The time

evolution of h from Vishniac & eho (2001) is,

8t h = -\7. JH - 2B· (v x b), (2.12)

where JH is the anomalous magnetic helicity and the second term on the

right hand side describes the transfer of h to the large scale component of the

magnetic helicity. The left hand side will be forced to be small by this effect
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so that the (v x b) term will be proportional to the divergence of the magnetic

helicity flux. \JVith this definition we may rewrite equation (2.10) as

B
£ = £ I - -\7 . J H-'- 2B2 '

(2.13)

where £1- is the component of the electromotive force which is perpendicular

to the large scale magnetic field.

The key point here is that there is a component of the magnetic helicity

current which is parallel to the large scale magnetic field which is exactly what

is needed to drive a dynamo. Thus, a way to generate a magnetic helicity flux

would also power a dynamo. For the generation of magnetic helicity on eddy

scales we look to the magnetorotational instability.

2.4 The Magnetorotational Instability

The magnetorotational instability (MRI) plays a central role in accretion

disks for the transport of angular momentum, generation of magnetohydrody-

namic turbulence and the magnetic helicity flux to drive the magnetic dynamo.

A fluid element which is perturbed outward will fall behind the fluid el-

ements it is connected to by the embedded magnetic field. This leads to an

acceleration of the perturbed element, transferring angular momentum to it

and causing it to continue to move outward.

The concepts and theory for the 1tIRI have been around since Chandrasekhar

(1960) and Velikhov (1959), but the first application to an accretion disk was

done by Balbus & Hawley (1991). The original work and the work by Balbus
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& Hawley (1991) assume an external vertical field and indeed the description

of the MRI given above is for a vertical field. In the context of studying the

dynamo, starting with an internally generated, large scale azimuthal field will

be more relevant (Vishniac & Diamond (1992)).

In the case where the large scale magnetic field is azimuthal or B = B</>¢,

and including the Keplerian shear V = rD(r)¢, the governing linear equations

of motion are given by equations (2.14) from Vishniac & Diamond (1992),

(2.14a)

(2.14b)

(2.14c)

(2.14d)

Here, kr , k</>, and kz are wavenumbers with ~ = k<jJ, D is the angular frequency

of the disk, (;) is the comoving frequency, VA is the Alfv8n velocity, and 'IjJ is

the pressure.

The dispersion relation is then,

where k; = k; + (m/r)2, w2 = (;)2 - w~, WA = TVA and \l . u = 0 have been

used. Finally, this dispersion relation can be reduced to

2 k 2 2with WI = k2D . and k is the total wavenumber.

14
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In the limit of large radial wavenumbers, the above dispersion relation

reduces to that of the MRI dispersion relation quoted in Balbus & Hawley

(1991),

An important result from this MRI dispersion relation is the growth rate of

the perturbed magnetic field V3k¢ VA when k¢ is small, and will grow for

kz / k¢ e-foldings. These predictions will provide test cases for numerical solver

that will be employed in chapter 4.

2.5 Accretion Disks

The key question surrounding accretion disks is how do they transport

angular momentum away from the central mass? If a disk can be treated as

a fluid undergoing Keplerian rotation so that n rv R-3/ 2 , then it should be

hydrodynamically stable. More generally, a disk will be stable if a(;~n) > 0,

where n is the angular velocity and R is the radius. This inequality is known as

the Rayleigh Stability Criterion and is automatically satisfied for a Keplerian

disk. If, on the other hand, the disk has a magnetic field threaded through

it, it will be subject to a new stability criterion, ~r;:. A Keplerian disk will

almost never satisfy this criterion and so should be unstable.

If the fluid in the disk has a viscosity, then differential rotation will lead to

energy being radiated away from this disk through viscous heating. To reach

the observed accretion rates, the viscosity must be orders of magnitude higher

than estimates from microphysical processes.

15



M.Sc. Thesis - Benjamin B. H. Jackel - McMaster University - Physics and Astronomy - 2010

Shakura & Sunyaev (1973) put forth an empirical model using turbulence

as a way to artificially enhance the viscosity in the so called a disk model.

The enhanced viscosity is parametrized by Vt = asscsH where Vt is a turbulent

viscosity, Cs is the sound speed in the fluid and H is the scale height of the

disk. The standard a model suggests that a typical accretion disk should be

hydrodynamically unstable corresponding to an ass of order unity.

Although the a prescription remains a popular way to approximate disk

behaviour, some caution must be taken. vVhile it is normally the case that

a high Reynolds number means turbulence and thus enhanced transport, the

presence of epicycles leads to there being no enhanced transport and so a tur­

bulent disk should be hydrodynamically stable (Balbus et al., 1996). This is

not the end of the a prescription though, if the turbulence is magnetohydro­

dynamic it could still cause an enhanced viscosity and make the disk unstable.
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Chapter 3

Methodology

The goal is to calculate the magnetic helicity flux and angular momentum

flux caused by the MRI in an accretion disk. The first step is to start at the

large scale accretion disk level. That is, there is a disk with a rotation velocity,

V = rn¢ and an azimuthal magnetic field, B = VA ¢. The coordinate system

is cylindrical with VA as the Alfven speed and n is the angular velocity. To

calculate the magnetic helicity flux from the MRI we must look at a small patch

of the accretion disk to study the behaviour of the velocity and magnetic fields

on that scale. In this small patch the fluid will be incompressible with a scale

height much smaller than the pressure scale height. In this way vertical gravity

will not enter the dynamics, and the effects of buoyancy will be small so that

we may focus on the generation of magnetic helicity. The large scale fields, V

and B are to be considered background fields, while in this small patch we will

consider u and b as the small scale velocity and magnetic fields. In general,

capital letters will denote the large scale while lower case will denote the small

scale quantities such that B T = B + b, and (b) = O.
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3.1 Equations of motion

vVhile it is natural to work in cylindrical coordinates for the large scale

fields, the local patch can be considered to have a radial length scale much

larger than any other scale of interest so that the curvature effects can be

neglected and we can work in Cartesian coordinates. It is this local patch

which the dynamics of the MRI will be worked out and the magnetic helicity

will be calculated from.

First, start with the linear equations of motion in this small patch with

equations (2.14) from §2.4. Note that wavenumbers for k¢ and kz have been de-

fined, while a radial wavenumber has not. This is because a radial wavenumber

would evolve in time and so it is left out. That is, the azimuthal and vertical

directions are in Fourier space, while the radial part is in real space. To sim-

plify these equations, 47fp = 1 so that the magnetic field is a velocity, VA and

'l/J become a pressure, Q. vVith these changes 2.4 can be transformed into,

(Ot - iky~DX) b = -~DbxY + ikyVAll,

(Ot - iky~DX) II = 2Duyx - ~DUxY - \7Q + ikyVAb,

\7. U = O.

(3.1a)

(3.1b)

(3.1c)

These equations then need to be put into dimensionless units, so that they are

conducive to solving with numerical methods. The scaling is such that time is

in units of k ~ , x (radial distance) is in units of ~ ~4., velocity in units of VA,
y .4

and Q in units of Vi.
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With the units in place, we can define WA

equations (3.1a)-(3.2c) can be recast as

kJ};4 and K, _ ~, so that

3
(Ot - ix) b = --_-bxy + iu,

2WA

( ~ .) 2 ~ 1 ~ 3 ~ Q~ 'Q~ i Q~ 'bUt - '/,x u = -u x - --u y - --u x-'/, y - - z + '/,
WA Y 2WA x 2WA x K,'

3 ._ iWA
-oxux + '/,WAUy + - = O.
2 K,

3.2 Projection Method

(3.2a)

(3.2b)

(3.2c)

To solve (3.1a)-(3.1c), a method laid out by Chorin (1967) is used called

the projection method. The method is formally described by Helmholtz-Hodge

decomposition where the solenoidal and irrotational parts of a vector are sep-

arated. Alternatively, the incompressible part is mapped or projected onto

the compressible solution and thus enforcing the incompressibility of the fluid.

The relevant equation to work with is equation (3.2b), and will be rewritten

as

OtU = RHS - \lQ

where RHS has absorbed ixu + ib2Duyx - ~DuxY. The next step, is to

discretize this equation according to a first order finite difference method.

Even though the method I will use is not a first order finite difference method,

this example is illustrative of the actual technique used. After discretizing,

where 11, represents the number of timesteps.
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The discretized equation is then split into two parts,

and

un+1 = u* - dt(VQ).

(3.3)

(3.4)

The first step then, is to calculate the intermediate timestep, u*, from equa-

tion (3.3). This can be done by any numerical ordinary differential equations

solver (in this case, a fourth order Runge-Kutta scheme).

The correction step is done by enforcing the divergence free condition, and

is carried out by taking the divergence of equation (3.4) giving,

V· u* = V 2Q
dt '

(3.5)

and solving this equation. The result is then substituted into equation (3.4)

to give the corrected timestep, un +1
.

To summarize this process,

1. Calculate the intermediate timestep u* using eq. (3.3)

2. Calculate the pressure correction from eq. (3.5)

3. Correct u* with the updated pressure with eq. (3.4)

'Where the process diverges slightly from the standard projection method,

IS in the second step. The pressure correction is calculated by taking the

divergence of equation (3.2b) to arrive at
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using \7 . u = O.

In the normalized units, \l

becomes

(~ox, iWA, i~) and so the equation for Q

02Q 2 4 4._
ox2 - K Q = 30XUy + g2WA U X'

where K = ~WAJ1 + ;2' The third step is followed as normal.

3.3 Magnetic Helicity

(3.6)

At each timestep the magnetic helicity current, J H, needs to be calculated

according to

J H = A x (u x B) + B<p,

where <p is the scalar potential, and A is the large scale vector potential.

(3.7)

The contribution to the helicity current due to small scale motions, jh, is

the quantity of interest and follows the derivation by Vishniac & Cho (2001),

except that there is the addition of a term from the large scale background

velocity. Combining these gives

where

jh = (a· B)u + b<p - B(a· u),

and

f:.h = (a· b)V - b(a· V) + bf:.<p.
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The small scale vector potential with the gauge such that

a = J j(x
/
) d3x '

47fIX - xii '

is calculated from

The scalar potential is the combination of the large scale fields with the

small scale fields, given by

( ) = -J \7 0 (u(x+x
/
) X B(x+x

/
)) d3 I

cp x 47fIX/1 x ,

and

A ( ) = _ J\7 0 (V(x + x') x b(x + x')) d3 I

ucp x I I x 047f x'

The terms which are aligned with the large scale fields, B(aou) and (aob)V,

can be ignored since they do not contribute to \7 -jh' That is to say, they simply

move the magnetic helicity in the azimuthal direction in the disk. The last

two terms of h combine to give

J
d3X'

b(t:::.cp-aoV) = b(x) -1-1 (-b(x + x') . (\7 x V) + j(x + x') 0 (V(x + x') - V(x))) .
47f x'

Finally, this can be rewritten as

Jd3X'
b(t:::.cp - a 0 V) = -b(x) - (Odi(X - x')) Ix/ISij

47f

by using integration by parts and

V(x + x') - V(x) = (x' 0 \7)V,

where
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which has symmetric and antisymmetric parts described by

1a,v = -E'kWk + S··
I J 2 D D'

where Sij is the shear tensor defined as Sij == ~ (aiV; +aj Vi) and W = \7 x V,

the vorticity.

This integral may be simplified by noting that J 4~ Ix'i dx'3 is the inverse

operator to -2\74, in the same way that J 4~ I~/I dX'3 is the inverse Laplacian,

\72
. This is similar to how the pressure correction was calculated in §3.2.

The Green's function for this operator is

1+ 4J(2

G(x,x') = 1
41<3

[e-I«X-X/)H(x - Xl) + el«x-x/)H(x' - x)] ,
[(x - x')e-I«x-x

/
)H(x - X') + (x' - x)el«x-x

/
)H(x' - x)] ,

where H is the Heaviside step function.

Thus,

b(.6.cp - a· V) = -2b(x) Jdx' G(x, x') (adi(X - x')) Sij'
411"

3.4 Angular Momentum Flux

The idea now is to compare the angular momentum flux to the magnetic

helicity fllue calculated in the last section. The angular momentum flux can

simply be written down as
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and when cast into Cartesian coordinates is,

where

and similarly,

The latter of these equations is the Maxwell stress while the former is the fluid

momentum or Reynolds stress.
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Chapter 4

Results and Discussion

4.1 Initial Conditions

A linear perturbation in the radial magnetic field was evolved according to

the linear equations of motion, (3.2a)-(3.2c). The perturbation is characterized

by a Gaussian with height of 1.0 and a full width half maximum of 10.0.

To ensure that \l . b = 0 is satisfied, a corresponding perturbation in the

azimuthal component of the magnetic field and is equal to - 2'~ oxbx. These
tWA

initial conditions are put more clearly in the following form:

(';-64)2

bx(x,o) =e~
3

by(x,O) = --._-3x bx (x, 0)
2'lWA

u=o

(4.1a)

(4.1b)

(4.1c)

(4.1d)

These initial conditions were chosen in such a way as to create a linear per-

turbation in the magnetic field.

25



M.Sc. Thesis - Benjamin B. H. Jackel - McMaster University - Physics and Astronomy - 2010

It is also important to specify the behaviour of the solution on the bound-

aries. The solution is calculated over a region from x=O to x=128 with the

radial perturbation centred at x=64. The requirement is that the solution go

smoothly to zero on the edges, this will also be enforced for the solution of Q

in the pressure correction step.

A graphical representation of the initial conditions is given in figures 4.1.
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Figure 4.1: Initial conditions. Plotted are the amplitudes of the radial and
azimuthal magnetic fields as a function of position at t=O.

Equations (3.1a)-(3.1c) are characterized by the normalized parameters K,

and WA. The parameters K, and WA were taken at discrete values of 3.2-1 , 2°
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4.2 Test Cases

The first test case will be a test of the growth rate of the radial mode

when /'l, « WA « 1. With these parameters the dispersion relation predicts a

growth rate of -/3k¢VA which when put into the dimensionless units used in

the numerical code is -/3. The results of this test can be seen in figure 4.2.

bx(max) as a function of t

25

I . b,(m.,)

- ":3t+c

20

15

10

10 12 14 16

Figure 4.2: The growth rate of the radial mode with a Gaussian perturbation in
the radial magnetic field and a corresponding perturbation in the y-component
of the field is predicted to be -/3. Plotted above is the natural logarithm of
the maximum amplitude of the radial mode as a function of time. Along with
the solution from the code is a line with a slope of -/3. The above calculation
is a robust result and is consistent with a calculation done with no pressure
term in equation (3.2b) as well as the condition that /'l, «WA « 1.
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A result using the MRI dispersion relation from Balbus & Hawley (1991)

is that a perturbation will grow for kz / k¢ e-foldings in the asymptotic limit

('" « WA « 1) 0 \JVith the Cartesian coordinates used this prediction becomes

k
k, = 1.. A test of this case is given in 4.3.

y '"

bx(max) as a function of I

"0~----'------:o-----:--------'---=----:---~------:o----!----J'0'

Figure 4.3: The amplitude of the radial mode grows exponentially for approx­
imately 7 e-foldings. The growth rate of the radial mode with a Gaussian
perturbation in the radial magnetic field and a corresponding perturbation
in the y-component of the field is expected to grow for f"V Z; e-folding times.

The parameters in the above plot are '" = WA = 2-3 so that the number of
e-foldings expected is f"V 8 which is in rough agreement with the above plot.
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4.3 Magnetic and Velocity Fields

In this section I present the time evolution of the magnetic and velocity

fields. The radial magnetic field will be followed as well as the magnitude of the

total magnetic field. The former can tell us about how each mode is evolving

over time while the latter can tell us if the overall mode is growing or not. The

plots of the modes which do not show growth and are thus uninteresting can

be found in the Appendix.

..o!-----!---------.Jc----~.,.---~,.---~,O:----~"·
t

-"'A =1.5 -"'A =1 -"'A =0.75 -wA=0.5 -"'A = 0.375 -"'A =0.25 -"'A =0.125 -"'A = 0.0625

Figure 4.4: Varying WA with r;, = 0.5. Modes with values of WA between 0.5 and
0.0625 grow exponentially until t rv 3 and then begin to oscillate temporally.
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.~,----+-----+--~,c-------1-______J,.__________;.

I

Figure 4.5: K, = 0.375 on the left, K, = 0.25 on the right. As K, is decreased,
the exponentially growing phase is increased in duration. As WA is decreased
the modes approach an asymptotic limit.
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t

-"'A -1.5 -"'A- 1 -"'A -0.75 -"'A- 0 .5 -"'A -0.375 -"'A- 0.25 -"'A-0.125 -"'A- 0.0625

Figure 4.6: Radial magnetic mode with K, = 0.125. A long lived growing mode
is present which corresponds to the asymptotic limit when WA « 1 for small
K,.
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Figure 4.7: Radial magnetic mode with r;, = 0.0625
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The plots of the hydrodynamic modes are similar to the magnetic modes

and simply show the relation to the magnetic modes.
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Figure 4.8: Total magnetic mode with K, = 0.375.
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Figure 4.9: Total magnetic mode with K, = 0.25.
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Figure 4.10: Total magnetic mode with K, = 0.125.
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Figure 4.11: Total magnetic mode with K, = 0.0625.
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Figure 4.12: Radial hydrodynamic mode for /'1, = 0.375.
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Figure 4.13: Radial hydrodynamic mode for K, = 0.25.
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Figure 4.14: Radial hydrodynamic mode for /'l, = 0.125.
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Figure 4.15: Radial hydrodynamic mode for r;, = 0.0625.
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4.4 Quadratic Quantities

The following plots are of the magnetic helicity flux along the z-direction

as a function of time.
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Figure 4.16: Mean magnetic helicity flux with fi, = 0:375.
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Figure 4.17: Mean magnetic helicity flux with K = 0.25.
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Figure 4.18: Mean magnetic helicity flux with K, = 0.125.
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Figure 4.19: Mean magnetic helicity flux with K, = 0.0625.
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The following plots are the mean angular momentum flux as a function of

time defined in the same way as the magnetic helicity flux,
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Figure 4.20: Mean of the angular momentum flux with r;, = 0.375.
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Figure 4.21: Mean of the angular momentum flux with fi, = 0.25.
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Figure 4.22: Mean of the angular momentum flux with K, = 0.125.
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Figure 4.23: Mean of the angular momentum flux with /'l, = 0.0625.
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Finally the ratio of the magnetic helicity flux to the angular momentum

flux as a function of time. This ratio is approximately constant during the

growing phase of the perturbations and is characterized by oscillations in time

after this growing phase.
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Figure 4.24: Ratio of the magnetic helicity flux to the angular momentum flux
for K = 0.375
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Figure 4.25: Ratio of the magnetic helicity flux to the angular momentum flux
for r;, = 0.25
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Figure 4.26: Ratio of the magnetic helicity flux to the angular momentum flux
with K, = 0.125. The ratio is constant over the growing part of the solution.
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Figure 4.27: Ratio of the magnetic helicity flux to the angular momentum flux
for'" = 0.0625

59



M.Sc. Thesis - Benjamin B. H. Jackel - McMaster University - Physics and Astronomy - 2010

60



M.Sc. Thesis - Benjamin B. H. Jackel - McMaster University - Physics and Astronomy - 2010

4.5 Discussion

The rate of growth for the magnetic and hydrodynamic modes are in agree­

ment with the predictions for the MRI in the asymptotic limit. Specifically,

the rate of growth in this limit should be J3 using the normalized variables,

this is shown in figure 4.2. In addition, the time for which these modes grow is

also in agreement in that a particular mode should grow for ~ e-folding times.

Growing modes were seen to occur when WA was below 0.5 and K, was

similarly small. In this regime, the mean of the magnetic helicity flux over

time was found to grow and peak at a time corresponding to the peak of the

magnetic and hydrodynamic modes. The angular momentum flux followed a

similar pattern except that the growth rate was much lower than the magnetic

helicity flux.

The ratio of the magnetic helicity flux to the angular momentum flux ought

to be a constant over time by use of a simple argument. This argument is as

follows: If the magnetic and hydrodynamic modes grow at the same rate, then

any quadratic quantities in the perturbation variables should grow at the same

rate as well. Checking figure 4.28, the individual modes do indeed grow at the

same rate.

Checking figure 4.26, it is confirmed that the ratio of the magnetic helicity

flux and the angular momentum fllL,( are approximately constant over the times

when the modes are exponentially growing. This suggests that the efficiency

of these processes is approximately equal.
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log(lbl) and log(lul) versus time
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Figure 4.28: Magnitude of b and the magnitude of u as a function of time.
The solutions to the equations of motion are characterized by exponentially
growing solutions. These solutions show that the hydrodynamic and magnetic
modes should have the same approximate growth rate.

62



M.Sc. Thesis - Benjamin B. H. Jackel - McMaster University - Physics and Astronomy - 2010

Chapter 5

Conclusions

The intent of this thesis was to look at the ability of an accretion disk to

both power a dynamo and accrete matter. The efficiency of these processes

are captured in the magnetic helicicy and the angular momentum transports.

The results of the simulations seem to show that the efficiency of the mag­

netic helicity transport is similar to the transport of angular momentum when

the MRI in the accretion disk is in the asymptotic regime when the MRI is

undergoing a growing mode.

The NIRI was simulated in a locally Cartesian patch which the equations

of motion were solved with a parameter space covering the asymptotic regime,

that is when WA « 1 for small r;,. The subsequent growth rate of the mag­

netic and hydrodynamic modes were consistent with predictions from the MRI

dispersion relation for an azimuthal magnetic field laid out by Vishniac & Dia­

mond (1992). A projection method, similar to how the incompressible Navier­

Stokes equations are solved, was used to correct the pressure. To evolve the

equations, a second order Runge-Kutta method was used.
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The magnetic helicity flux was calculated using the definitions in Vishniac

& eho (2001), but with three additional terms due to the large scale back­

ground velocity field. This quantity is then integrated along x at each timestep

with the intention of comparing it to the angular momentum flux. The angular

momentum flux is the combination of the fluid momentum and the Maxwell

stress due to the magnetic field and is similarly integrated along x to get a

mean value of the flux. These quantities are important to describe both how

the accretion disk transports its angular momentum and thus accretes mat­

ter as well as how the dynamo process in the disk works. The latter process

is dependant on the generation of magnetic helicity on eddy scales and the

transporting of this quantitiy to the large scale where the dynamo is powered.

The flw< of this quantitiy provides a term in the electromotive force which

is parallel to the large scale magnetic field to complete the regenerative cycle

necessary for the dynamo process.

The results of this calculation show that the efficiency at which the mag­

netic helicity is transported, is very similar to the efficiency at which the

angular momentum is transported during the growing phase of a linear per­

turbation. This result follovvs from the simple argument that the magnetic

and hydrodynamic perturbations grow at the same rate, then the quadratic

quantities derived from them ought to be growing at the same rate as well.

The various growing modes all display an oscillating behaviour with the

direction of the transport of the quadratic quantities changing after the modes

finish growing oscillating after this point.
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Appendix

5.1 Extra Plots
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Figure 5.1: Radial mode of the magnetic field for /'1, = 1.5 (top left), /'1, = 1.0
(top right), /'1, = 0.75 (lower left), /'1, = 0.5 (lower left). Since the parameters lie
outside of the asymptotic regime there is little to no growth in these modes.
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Figure 5.2: Magnitude of the magnetic mode for K, = 1.5 (top left), K, = 1.0
(top right), K, = 0.75 (lower left), K, = 0.5 (lower left). Since the parameters lie
outside of the asymptotic regime there is little to no growth in these modes.
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Figure 5.3: Radial mode of the velocity field for K, = 1.5 (top left), K, = 1.0
(top right), K, = 0.75 (lower left), K, = 0.5 (lower left). Since the parameters lie
outside of the asymptotic regime there is little to no growth in these modes.
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Figure 5.4: Mean of the magnetic helicity flux for /'i, = 1.5 (top left), /'i, = 1.0
(top right), /'i, = 0.75 (lower left), /'i, = 0.5 (lower left). Since the parameters lie
outside of the asymptotic regime there is little to no growth in these modes.
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Figure 5.5: Mean of the angular momentum flux for /'i, = 1.5 (top left), /'i, = 1.0
(top right), /'i, = 0.75 (lower left), /'i, = 0.5 (lower left). Since the parameters lie
outside of the asymptotic regime there is little to no growth in these modes.
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Figure 5.6: Ratio of the Mean of the magnetic helicity flux to the mean of the
angular momentum flux for K, = 1.5 (top left), K, = 1.0 (top right), K, = 0.75
(lower left), K, = 0.5 (lower left). Since the parameters lie outside of the
asymptotic regime there is little to no growth in these modes.
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