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Abstract 

Multi Time period Gasoline blending is an example of multipurpose pro­

duction system that is designed to produce multiple products by switching 

from one product to another. Various factors such as demand for gasoline, 

availability of supply component, and blend recipes vary with time. Task 

of the gasoline blender is to decide how much of each product to produce 

at what point in t ime (lot sizing) and what should be the blend recipe in 

order to minimize overall cost (optimize the blend recipe) . The prod uc­

tion plans need to account for set-up t imes between blends and to minimize 

switching between different product blends. Traditional optimization tech­

niques provide a single optimal solution. This research is using evolutionary 

optimizat ion algorit hm called differential evolution to identify multiple so­

lut ions t hat all have the same total cost but offer the blend planner multiple 

choices in terms of how much of a given product to blend at what point in 

time. 
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Chapter 1 

Introduction 

Gasoline is the most important and critical refinery product. 60-70% of 

the revenues of a refinery are generated from its gasoline production [29] . 

Hence, its production is considered as key to providing competit ive edge 

to the refineries [18]. The demand of gasoline varies in t ime just as the 

properties of different grades of gasoline vary with geography of where the 

gasoline will be used. 

This t hesis will discuss Refinery Process and a Gasoline Blending System 

in the first chapter. It will give an introduction to Evolutionary Optimiza­

tion technique in the next chapter. T hen it will subsequently discuss the 

problem formulation, assumptions , data, and the algorit hm to calculate fit­

ness function. Numerical experiments and results will be discussed next 

followed by multi-process implementation of the differential evolution. The 

appendix A will give an overview of the software that was developed to aid 
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in the process to solve this problem. 

1.1 The Process of Oil Refining 

The crude oil obtained from the ground undergoes various steps of chem­

ical processing before it becomes usable. T he process of purification of crude 

oil into more usable products like gasoline, diesel , kerosene etc. is called as 

Oil Refining. Crude oil is made of hydrocarbons i.e molecules t hat contain 

hydrogen and carbon atoms. This makes crude oil a very versatile raw ma­

terial since hydrocarbons have lot of energy and they can combine to form 

very long linear or complex chain of components. In order to extract some 

usable hydrocarbons from the crude oil, various chemical processes have 

been invented. 

Oil refining consists of following major steps: 

1. Crude distillation. 

2. Conversion of intermediate streams into gasoline and diesel blend com­

ponents. 

3. Blending of final components e.g. various grades of gasoline and diesel 

fuels. 

In a crude oil distillation process, the crude oil is heated and various chains 

of hydrocarbons are withdrawn from the unit based on their boiling temper­

ature. The components obtained as a results of this process (in increasing 

2 
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Figure 1.1: Crude Oil Distillation. Re-adapted from [1] 

order of their boiling point or length of H-C chain) are Petroleum, Naphtha, 

Gasoline, Kerosene, Gas Oil , Lubricating Oil, Heavy Gas , and Residuals. 

They are categorized as light distillates (LPG , gasoline, naphtha), medium 

distillates (kerosene, diesel) , and heavy distillates and residue (heavy fuel 

oil , lubricating oils , wax, tar). As seen in figure 1.2, the process of crude oil 

refining involves several steps. The important units are explained below. 
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Figure 1.2: The Process of Oil Refining. Adapted from [26] 

• Atmospheric Distillation: Crude oil is boiled and sent to the atmo-

spheric distillation tower where is undergoes separation into end prod-

ucts such as gas , gasoline, napht ha , kerosene, and gas oil. The bottoms 

of this unit is then sent to the Vacuum Dist illation Unit . 

• Vacuum Distillation: In t his unit t he pressure above the feed is re-
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duced than its ambient pressure which distills the atmospheric bot­

toms to gas oils and asphalt. The vacuum bottoms are fed to Coker. 

• Coker: The purpose of this unit is to get feed from vacuum bottoms 

and break long chain of hydrocarbons into short chains thereby pro­

ducing low molecular weight products like naphtha, gas-oils and coke. 

• Hydrotreaters: T his unit is used to carry out t he catalytic chemical 

process of removing sulfur from its feed, called as hydrodesulfuriza­

tion. With the addition of hydrogen this process breaks the carbon­

sulfur bond to produce hydrogen-sulfur bonds. This process helps 

maintain the sulfur content in the gasoline in specified limits. 

• Hydrocracker: Cracking is a process of breaking carbon-carbon bonds 

in heavy hydrocarbons or complex organic compounds to produce 

lighter hydrocarbons in presence of some catalyst. In Hydrocracker 

t his process is carried out in the presence of high pressure of hydrogen 

gas. Just as in Hydrotreater, this process removes sulfur like compo­

nents from the feed compounds. 

• Visbreaker: A visbreaker thermally cracks large hydrocarbon molecules 

in the oil by heating in a furnace and thereby reducing its viscosity. 

This produces small quantit ies of light hydrocarbons. The process is 

called so because it cracks the residual oil by reducing its viscosity. 

• Catalyt ic Reformer: This process converts refinery naphtha of low 

5 
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octane number into product called reformate that has high octane 

numbers. Reformate is an important component for a high octane 

petrol. The process re-structures the naphtha in to more complex 

molecule in order to produce high octane rating molecule. Alkanes 

are obtained as bypro ducts in small amounts. 

1.2 Gasoline Blending Process 

As seen in the figure l.2, Gasoline Blending is the last stage of crude-oil 

refining process. The end product of this stage are various products like 

the aviation fuel , diesels, and gasoline. Gasoline is a complex mixture of 

hydrocarbons obtained by the combination of two or more refinery products 

(with some additives). Gasoline blends vary widely in their composition; 

even those having the same octane number can be widely different. The 

various properties of gasoline depend on the types and relative proportions 

of each of their constituents[20J. 

Gasoline production is a batch process where the end-point is fixed in 

terms of the amount of gasoline to blend or the blend duration [1 8]. The 

typical grades of gasoline, distinguished by their octane numbers, are Reg­

ular (87), tvIid-grade(89) , and Premium(91 and 93). Superficially speaking, 

the aim of the blender is to combine the available blend components in 

a way so as to produce different grades of gasolines. However, numerous 

challenges are faced by a gasoline blend optimizer. 

6 
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• Quality Specifications: Any gasoline grade must meet t he quality spec­

ifications that may depend on geographical location of the shipping 

area. (Octane and Reid Vapor Pressure being the most important 

ones.). Quality giveaway is t he difference between the true value of 

t he blend and the specification limit of that property[27]. It is esti­

mated that consistent octane giveaway of 0.1 octane number can cost 

refinery several million dollars a year [18] . Hence all the blends must 

be produced on time with minimal giveaway[27]. Re-blend might be 

necessary when a blend does not meet the quality specification. This 

may result into a significant loss to the refinery as it results into ad­

ditional usage of crucial refinery resources (storage, blender et c) [18] . 

• Scheduling of blends: Main concerns in scheduling are (a) to obtain 

a feasible schedule satisfying all product demands. (b) to meet the 

goals set by the long-range planning and (c) to optimize the operation 

of all blending facilities itself (e.g. to minimize product and recipe 

changeovers - minimize task switching) [10] . 

• Inventory management: Inventory management of blend component 

tanks (managing mult i-product or swing tanks) [1:3], availability of 

blend feed stocks and gasoline storage facilities need to be considered 

within the volumetric constraints of t he refinery equipment capacities. 

Thus, an ideal blend optimizer would provide t he maximum possible profit 

7 
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Pipeline 

Figure 1.3: Gasoline Blending 

from the blending process, while meeting all blend quality specifications , as 

well as satisfying demand, supply and availability limits[18]. Any gasoline 

automation system usually has 3 layers: 

1. An off-line scheduler plans t he refinery operations on a long (months) , 

intermediate (weeks) or short (days) term range . 

2. An online optimizer adjust the blend recipes based on current com­

ponent availability as well as meet the specifications. 

3. Controller controls the flow of blend components into the blender to 
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meet the recipe specification. 

A refinery typically combines number of components into an in-line blender 

or directly into a blending tank (as modeled in this thesis) to produce var­

ious grades of gasoline. The most important consideration for a gasoline 

production system is to determine the opt imum blend of raw materials to 

produce various grades of gasoline and t hereby meet the property specifi­

cations of the end product . The combination of blend components, refereed 

to as blend recipes in this thesis, vary with demand for the gasoline as well 

as the availability of the components in that time period. 

A refinery usually has a single blending uni t . As a result of this it has to 

take care of opt imally allocating the blender (blend scheduling) since there 

is a calibration t ime associated wit h the blending unit whenever there is 

task switch (a different gasoline is blended). Thus, minimizing the number 

of switches (from one grade to anot her) for the blender is another important 

consideration. In this thesis, a blender is modeled as a blending tank with 

a single virtual blender for each grade of gasoline and setup t imes are taken 

into consideration only when a part icular grade of gasoline needs to be 

blended. 

The properties of gasoline vary with the geographical location of the 

distribution area. For example, t he property of Reid Vapor Pressure which 

determines the volatility of the gasoline blending system, is set based on the 

9 
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average temperature of the location (Cold places can have a higher RVP in 

their gasoline). The value of octane number (the engine-knocking property) 

may vary from location-to-Iocation as well. 

Thus, a task of gasoline blending unit is to determine the amount of 

gasoline to blend at a given point in t ime (lot sizing), the proportion of 

each supplied component to use (blend recipes) and in what order should 

the various grades be blended (scheduling, resource allocation) over a given 

t ime horizon in order to meet the dynamically changing requirements. A 

system like gasoline blending is thereby characterized by many objectives. 

1.3 History of Gasoline Blending 

Mathematical Programming and hence Linear Programming gained a 

lot of popularity after Dantzing invented the Simplex algorithm in 1947 

[5]. Gasoline Blending is often cited as an application of mathematical 

programming and considered as the triumph of applied mathematics (Op­

erational Research). By late 1940, algorithms using this technique of Linear 

Programming were developed for t he problems of scheduling, resource al­

location, shipping and transportation and such alike. However , t he lack of 

computational resources and commercial softwares , the application of this 

approach was highly limited and few problems could be solved on paper. [5] 

With t ime and advances in computation power and learning through 

experience the refinery operations evolved itself. Non-linear properties were 

10 
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converted to linear value with the introduction of blending indices in late 

1950's[5]. Linear Programming, Sequential Linear Programming, gradient­

based methods, dynamic programming, were subsequently researched and 

developed over the next decade as the availability of the commercial pack­

ages improved. By the end of this decade mathematical programming was 

used for financial forecasting, refinery planning, distribut ion planning in the 

refineries etc. Optimization approach was used in refinery-planning with a 

significant improvement over solving it on paper t he matrices were to be 

input in column-by-column format. Report and matrix-generating tools 

hence came into picture even though the values in columns of the matrices 

had to be manually updated every t ime an LP was executed. The refineries 

soon realized that the problem was not t he mathematics but maintaining 

the model and generating the reports. This resulted in the int roduction 

of several in-house LP model-management projects like Amoco's MARS , 

Shell 's AMBUSH, Ex, ... wn 's PLATOFORM , Texaco's OMEGA etc [5]. 

Databases were incorporated in the decade of 1980 as more and more 

computational power became available[5]. By now we have variety of soft­

ware products that take care of models ILOG , AspenTech. 

1.4 Thesis Work 

Currently in industry tradit ional optimization techniques (LP) are used 

for gasoline blending. This industrial approach gives a single solut ion for a 

11 
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mult i-t ime period blending problem. As mentioned previously the refineries 

need to calibrate the blending unit every time a task switch is made (also 

refereed as the set-up times) .In this work, the model of gasoline blending 

was generated as a system of linear equations. The key assumption that 

enables generation of linear blending equations is that the volume of the 

blend (or , alternatively closing volume of the tank that receives the blended 

material from and in line blender) is known. The volume of the blend 

is a variable that is set by the evolutionary optimization algorithm. The 

optimum recipes were obtained for each t ime period for every gasoline grade 

by solving the LP for all time periods simultaneously. 

Evolutionary optimization algorit hm called differential evolut ion was 

used to determine the blend volumes for each gasoline grade in every t ime 

period. This determines the closing inventories for the linear model since 

the amount of product shipment from them is given.Each population mem­

ber represents one multi time period solut ion to the blending problem. The 

blend recipes for each population member have been optimized via linear 

programming. Experiments were carried out on four time periods and four­

teen t ime periods gasoline blending problem. Interesting results were found 

and they are discussed in chapter 4. This was later parallelized, using dis­

t ribu ted computing API of Message Passing Interface-2 for performance 

gain. 

In the thesis, mathematical modeling of the problem was done using cus-

12 
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tom software called as Auto-Equation Generator, AEG for short. AEG was 

designed and developed using Microsoft tools like Visual Studio 2008 for 

development , MS SQL as a Relational Database Management tool etc. The 

software generates system of linear equations from a user specified process 

system network topology. These equations were generated for every node 

and stream of the topology using pre-defined generic models from library 

of node models stored as tables in a Relational Database Management Sys­

tem. Every node instance of the network was attached to a single model 

from this library and is chosen by the user . The software interprets this 

generic custom model and generates large number of equations, variables 

and matrice~ before making them persistenL for re-use. This information 

is communicated to solver in an ASCII format to solve the system. The 

usage of this software greatly improved the maintenance of large process 

system networks like heat exchanger network synthesis, multi-time gasoline 

blending etc. Making the variables and user input persistent not only eased 

the tracking of data input related error but also increased the productiv­

ity of those using heuristic-based algorithms. Figure 1.4 shows a simplified 

overview of the software while appendix A is dedicated for this software. 

13 
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Chapter 2 

Evolutionary Optimization 

2.1 Introduction 

Traditional optimization techniques like the linear programming, are ei­

ther direct or gradient-based and rely heavily on the init ial solution point[9] . 

The gradient-based approach requires the objective function to be unimodal 

(having a single minimum) and be at least one or two times differentiable 

[16]. If the objective function is singular or has large gradients the algorithm 

becomes numerically unstable[16]. On the other hand , the direct optimiza­

tion method does not require the function to be derivable. From a randomly 

initialized point the search begins in a direction where the move the either 

accepted or rejected . However , both these approaches accommodate only 

unimodal functions, i. e functions with single minima or maxima since with 

the multi-modal functions, i. e. those with more than one optima, t hey pose 

15 
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the challenge with a starting point. With these t raditional methods the 

only way to t reat conflicting objective functions is to reduce them to single 

objective function or t reat them as constraints. 

Multi-start methods which starts the process of optimization from dif­

ferent points were hence introduced. Each point serves as a sample point for 

a greedy, local optimization method. The local search could be derivative 

or direct-based. In this methods the number of start ing points could not be 

effectively known since many could lead to the same minima. 

Besides, these algorithms are difficult to adapt into a distributed com­

puting infrastructure available to us . 

Clearly such optimization techniques do not work efficiently when work­

ing on a mult i-objective optimization problems like the gasoline blending, 

where objective functions mayor may not be conflicting and there is more 

than one optimum solut ion. 

2.2 Evolutionary Optimization 

In contrast to gradient or direct optimization techniques discussed pre­

viously the evolutionary algorithms work with many different points like the 

multi-start methods and are iterative. However, unlike the mult i-start meth­

ods where each member point is independent of other points, evolutionary 

algorithms evolve the solut ion by considering all the starting point solu­

tions and t ry to gather the best of all the solutions. They are probabilistic, 

16 
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population-based and " embarrassingly parallel" . Evolutionary algorithms 

are based on Darwin theory of biological evolut ion and works on the prin­

ciple of survival of t he fi ttest. T hus, all t he solut ion points are recombined , 

mutated and the best of them are chosen to survive in the next iteration . 

Evolutionary algorithms work with mult i-modal, multi-dimensional, multi­

objective optimization problems. Since every population member can be 

evaluated in isolation before they are combined and selected for next itera­

tion they become easy to parallelize. 

There are many approaches in this class of algorit hms - Evolution strate­

gies (developed by Rechenberg,1993 and Schwefel, 1994) , Genetic Algorithms 

(Holland ,1962 and Goldberg,1989), Different ial Evolut ion etc. among oth­

ers. Even though all these techniques follow the Darwinian theory the 

difference lies in t he way they encode parameters and with the algorithms 

used in recombination, mutation and selection. For example, evolut ionary 

strategies use floating-point numbers to encode parameters while genetic 

algorithms use binary strings and hence are suited for combinatorial prob­

lem. Differential evolut ion works like genetic algorit hms with parameters 

encoded with real numbers which makes it a numerical optimizer. For a 

problem like gasoline blending, which has many related or unrelated ob­

jective functions , and multiple optimizing parameters and optimal values, 

different ial evolut ion seemed the best answer. 

17 
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2.3 Differential Evolution 

Differential Evolution (DE) is a global optimization algorithm that was 

originally proposed by Price and Storn in 1995[23]. DE has been found to 

be simple and highly effective in global optimization and hence has been 

widely studied and implemented on real world problems [23] [22] . They 

are found to be highly effective in global optimization of multi-modal multi­

objective optimization problems[16]. The next section in this chapter talks 

about differential evolution algorithm in detail. Before that I will talk about 

the terms used in any evolutionary algorithm methodology. 

1. Population - The set of randomly initialized vectors of optimizing 

parameters. 

2. Generation - An iteration of crossover , combination and selection to 

choose the parents (new population members) of next iteration. 

3. Vector - A one dimensional array of optimizing parameters that also 

qualifies as a single population member. It is analogous to biological 

Chromosome. 

4. Mutation - It is analogous to biological mutation which maintains the 

diversity in the population members. 

5. Crossover - Similar to biological crossover , this process combines two 

population members to produce a child populat ion member to com-

18 
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pete against the parent. 

6. Trial Vector - Result ing vector after perturbation and mutation. 

7. Target Vector - The parent vector against which the t rail vector com­

petes to survive in the next generation. 

8. Fitness Function - The value of the objective function for a population 

member . 

9. Termination Criteria - The stopping criteria for the algorit hm. 

The differential evolut ion works wit h three distinct vectors from the popula­

tion member pool to produce a trial population. It then performs crossover 

and mutation before selecting t he one wit h bet ter fitness function value. 

The pseudo code for differential evolut ion is in seen in algorit hm 2.1. 

The process of DE begins with init ializing a population pool of Np mem­

bers. From the init ial population , three mut ually exclusive vectors are cho­

sen that are not equal to the current t arget vector being evaluated . These 

vectors are scaled and mutated to form a t rial vector . The t rial vector is 

evaluated and is select ed as t he new parent if its fitness is no worse than t he 

target vector. Though there are many variation of DE the one proposed as 

"Scheme DEl " by Rainer Storn[22] is as follows: 

1. Initialize the Population members: DE t reats all the variables as 

floating-point numbers even if they are discrete or integral. Every 

parameter of a population vector is randomly generated . For t his 
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Algorithm 2.1: Pseudo Code for Differential Evolut ion.[16] 
Input : Np Number of population members; 
Cr Crossover probability; 
F Mutation Probability; 
Output: Converged P 
II P defines the population members 
Init ialize( P) ; 
while Not Converged do 

foreach Population member n in P do 
repeat 

ro = rand(O,Np - 1); 
rl = rand(O,Np - 1); 
r2 = rand(O,Np - 1); 

until rO ,rl,r2 and n are not mutually exclusive; 
1* ro is base vector ;rl is the first vector and r2 

the second vector to calculate the difference 
vector, d 

d = P" l - Pr 2 ; 

II Vn is the mutant vector 
Vn = ro + F*d; 
II Un is the trial vector 
Un = crossover(Pn,vn); 
if fitn ess{un} ::::: fitness{Pn} then 

1* The choice of Un over Pn on equality, enables 
the DE to search for flatter surfaces. *1 

Pn+1 = un ; 
else 

Pn +1 = Pn ; 

end 
end 

end 

to happen, upper and lower bounds, denoted by bupper and blower are 

supplied for every parameter. Every parameter , j of each population 

member p is randomly (uniformly distributed) initialized as: 

Dj,p,initial = randj(O, 1) * (buppe,' - blower) + blowe,' (2 .1 ) 

2. i{utation: As DE mutates and recombines the population members, 
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a trial population, Np , made of trial vectors is generated. MuLaLion 

is carried out by scaling a difference vector and adding it to a base 

vector to produce a mutant vector. Three mutually exclusive vector 

indices: first, second and base are chosen, none of them equal to target 

vector index, p . The vectors at indices first and second are subtracted 

and scaled with a scaling factor, F. This weighted difference vector is 

added to the base vector to produce a mutant vector , v. This process 

is also termed as differential mutation. 

(2 .2) 

3. Crossover: The user provides a crossover probability, Cr , which is 

used to recombine the mutant and target vectors to produce a trial 

vector , u. Every parameter of the trial vector u is chosen from either 

mutant or target vector. This process is also refereed to as discrete 

recombination. For every parameter, j , of trial vector, U 

Iv . 
_ } ,p,g 

Uj ,p ,g -

D } ,p ,g 

(2.3) 
otherwise 

4. Selection: The vector with better fi tness value is added to the trail 

populat ion. If t he t rial vector has equal value of fi tness function as 

the target vector , it is chosen in order to maintain diversity in the 

21 



M.A.Sc. Thesis - S. Kulkarni McMaster - SeES 

populat ion. This choice makes the DE explore flatter surfaces. 

jU i,9 

Dp,g+l = 

D ] ,p,g 

if fi t ness(ui,g) ::; fitness(Dp,g) 
(2.4) 

otherwise 

As the new population is created, the process of mutation, crossover and 

selection is repeated until the convergence criteria (or termination criteria) 

is reached. The variations in DE are induced by how the base vector is 

chosen, number of weighted difference vectors that participate in generating 

the mutant vector , and the type of crossover used [16]. A variation is 

specified as DE/ base/n/crossover where base indicates how the base vector 

is chosen; n represents the number of difference vectors t hat participate 

in mutation and crossover, the type of crossover used. Many variations of 

DE are researched , the most popular is the, DE/rand/ l / bin where the base 

vector is randomly chosen with uniform binomial (bin) crossover and one 

difference vector participates to produce the mutant vector. The schematic 

diagram of DE algorithm is shown below in the figure~.l. 
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Figure 2.1: The Schematic Diagram for Differential Evolution (Adapted 
from [1 6] 
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2.4 DE: Multi-Time Period Gasoline Blending 

In this thesis we used the DE code developed by S torn, Rainer [21] . The 

code provides methods to generate random numbers uniformly as well as 

various DE variations mentioned above. Any problem using DE needs to 

define t heir own Fitness Function calculation function called Energy 0 . The 

user also has to define the DE vector size - i. e the optimizing parameters . In 

the following section I will talk about how the DE optimizing parameters 

were defined as well as the algorit hm to calculate the fitness function of 

population members. 

2.4.1 Specifying the Optimizing Parameters 

In order to make the formulation of the problem linear, the closing inven­

tory for each grade of gasoline, g, in the blending tank at each t ime period , 

t, Vclose ,g,t , and t he amount of each grade of gasoline blended, V blend,g,t were 

calculated by volumetric balance around each blend tank. These values 

were incorporated in multi-time period LP to solve. 

The optimizing parameters for the DE, i.e the DE population vector 

definition , were defined as a vector of blend volumes for each gasoline grade 

in every time period assuming that each grade of gasoline was blended in 

each t ime period. The DE vector consisted of a blend probability, a number 

between 0 and 1, for each grade of gasoline in each t ime period. This num-
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ber would identify if that particular graue of gasoline was blended or not 

as well as , if blended t hen in what amount. The DE vector was init ialized 

to the size of total time periods multiplied-by total number of grades to 

blend. Thus, to blend a single grade of aviation gasoline for a time period 

of 4 days would make the DE vector of size 4. And, in order to blend three 

grades of gasoline over the time period of 13 days would make it of size 

39. Each parameter was defined between a value of 0 and 1 - scaled value 

showing what fraction of maximum possible blend volume is to be blended 

for a given grade and the given time period. They were initialized randomly. 

2.4.2 Known and Unknowns 

Before proceeding to the algorithm of calculating the fitness function , 

the given and calculated data of the problem needs to be identified. Let, 

G Total number of gasoline grades to blend 

T Total Time periods. 

g Gasoline of grade g 

dt Length of each time period 

t Time period 

F max i\tIau'{imum flow rate for the blender 

Fm 'in tvIinimum flow rate for the blender 
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V max Maximum volume of gasoline that the blender can blend 

Vmin Minimum volume of gasoline that the blender can blend 

in t ime period t 

Vdose,g,t 

Vout ,g,t 

Vopen,g,t 

Vblend ,g,t 

Sg,t 

The closing inventory of the blending tank wit h gasoline 

,g , in time period t . 

The demand for gasoline grade ,g, in t ime period t. 

The opening volume of blending tank wit h gasoline 

grade ,g , in t ime period t. 

The blend amount of gasoline ,g, in t ime period t. 

The threshold identifying whether we blend or not . 

The setup time for t he blending tank with gasoline,g, in 

time period t. 

V/ost ,t The volume lost in time period t due to the recalibration 

time. 

Vmax ,blend,t The ma.."Ximum volume that can be blended in time t. 

Ug ,t An optimizing parameter in the DE t rial vector, u , for 

gasoline grade ,g , in t ime period t. Randomly initialized 

The user needs to specify total grades of gasoline to blend , G; the length 

of each time period, dt; total t ime periods , T ; Fmax and Fmin for the blending 

tank in each t ime period; the demand for each grade of gasoline g in each 

time period t , Vout,g ,t; opening inventory for each grade of gasoline Vopen,g ,t 
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for t = 1; as well as the re calibration or set up time, Sg ,t .Vmax and Vmin 

are derived from Fmax and F min respectively. The Vblend,g,t is calculated by 

the fitness function algorithm, so is Vclose,g,t. The Vopen ,g,t is specified only 

for the first time period for all grades of gasoline and calculated for the 

subsequent t ime periods. The maximum and minimum blending flow rates, 

F max and Fmin , of the blending tank were known and the parameter in the 

DE vector , ug,t, was interpreted using a threshold value,a. The value of the 

threshold, a , is calculated as: 

(2.5) 

If the value in the DE parameter, Ug ,t is less than a , then the g grade 

of gasoline is not blended otherwise it is . If we blend this gasoline, the 

re calibration time was calculated (discussed next) as well the amount of 

gasoline g to blend, Vblend,g ,t . 

Vblend,g ,t = Fmax x dt x Ug ,t ; Vg , t (2.6) 

Using this , the closing inventory of the tank is calculated as: 

Vclose,g,t = Vopen ,g,t + Vblend,g,t - Vout ,g,t ; V g , t (2.7) 

And, the opening inventory of the tank in the next t ime period is calculated 

as: 

Vopen,g,t+ l = Vclose,g,tVg , t (2.8) 
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The detailed algorit hm for calculating t he energy or t he value of fi t ness 

function is discussed in next section. 

2.4.3 Calibration or Setup Time 

As discussed in the introductory chapter , refineries typically have a sin­

gle blending unit. However, this thesis solves the problem by creating 3 

virtual blenders for each grade of gasoline - regular, mid-grade and pre­

mium. Every time a grade of gasoline is blended, the blending unit needs 

to be re calibrated for the next blend. This is usually termed as task switch. 

The algorithm considers this re calibration time as the time when no gaso­

line is blended and hence t he volume of gasoline that the blender can blend 

in that time is lost. As a result , the maximum volume that the blender can 

blend is reduced due to the task switch. Since the DE optimizing param­

eters (trial vector) assumes that we blend each grade of gasoline per time 

period , the blender needs to be re calibrated every time we blend a grade. 

This is calculated as the volume lost, Vlost,t,which is calculated as: 

Vlost ,t = Vlost,t + Fmax * Sg ,tVt (2.9) 

The value of Vlost ,t is reset to 0 for each time period and accumulated only 

when we blend a grade of gasoline. 
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Algorithm 

As seen in the algorithm 2.2, t he fitness function calculates the blending 

amount for each grade of gasoline as well as the closing and opening inven­

tories for each time period. This info rmation is shared in an array with the 

linear solver. The solver then solves the system of linear equations and re­

t urns the value of the objective function (discussed in next chapter), which 

is also the fi t ness value of t he trial vector. After all t he population members 

are evaluated, t he mutation and crossover for each member is performed and 

new t rial population is generated. 
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Algorithm 2.2: Algorit hm to calculate fitness function value for a 
trial population member for NITP Gasoline Blending 

Input : G Total gasoline grade; 
T Total time periods; 
Fmax Maximum inflow the blender can blend; 
F m in Minimum inflow blender can blend; 
Sg ,t Setup time required to switch to grade 9 in time t ; 
u trial vector ; 
dt Length of time period t ; 
Output: Vblend,g,t Volume of gasoline 9 to blend in time t; 
V close,g,t Closing volume in blending tank 9 in t ime t ; 
Vopen,g ,t Opening volume in blending tank 9 in time t; 
foreach Time period t in T do 

Vatmost = V max; 

Vlost = 0.0 ; 
sum = 0.0 ; 
foreach Gasoline Grade 9 in G do 

a = Fmax -7- F min ; 

if Ug ,t :s; a then 
Ug ,t = 0.0; 

else 
Vlost = Vlost + Fmax *dt - Fmax * Sg ,t; 

end 
sum = sum + Ug,t; 

end 
Vatmost = V max - Vlost ; 

foreach Gasoline Grade 9 in G do 
if sum >- 1.0 then 

Vblend,g,t = (ug ,t -7- sum)*Vatmost; 

else 
Vblend,g,t = Ug ,t*Vatmost; 

end 
if t is last time period, T then 

Vclose ,g,t = 0.0; 
Vblend,g,t = Vout ,g,t - Vopen ,g,t; 

else 
Vclose,g ,t = Vblend,g,t + Vopen ,g,t - Vout ,g,t; 

end 
if t + 1 -< T then 

Vopen,g ,t+l = Vclose,g,t; 

Update X big ; 

end 
end 
Invoke Solver to solve; 
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2.5 Mutation and Crossover Factors 

DE involves 3 main parameters - Cr (crossover factor), values of Np 

(number of population members) and F(scaling factor). DE is affected by 

all these three parameters and hence performance of it varies. There is 

always a trade-off between the rate of convergence and robustness of an 

algorithm. These factors are hugely affected by the choice of scaling factor 

and the crossover rate. The higher is Cr, the faster is the convergence 

but objective function becomes less robust[21]. DE is very less affected by 

the value of Cr [21]. It acts more like a fine tuning parameter [21]. DE 

is highly affected by changes in F. But in general , large F favors global 

exploration, while small F favors local exploitation [8] . Cr determines the 

number of new components that can be int roduced in the next generation. 

The proposed init ial values of Cr and Fare F ( [0.5, 1], C,. ( [0.8, 1] and 

Np = 10 nDim where nDim is the dimensionality of the problem (number 

of optimizing parameters) [24]. The values of Cr and F are limited to [0 , 1] 

[21][22][16] . Studies have shown classical DE, DE/rand/l / bin to have been 

highly successful where parameter dependence is small[16] . When the value 

of Np is increased , values of Cr and F should also be increased [21]. 
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Chapter 3 

Multi-Time Period 

Gasoline Blending 

3.1 Understanding the Problem 

As said in the introductory chapter , the problem of gasoline blending 

is characterized by varying demand patterns. The gasoline requirement 

changes from time to time and is seasonal. As mentioned previously vari­

ous factors affecting the production of gasoline are: availability of the raw 

components, demand for t he gasoline, the recipes of various grade etc. The 

production needs to consider the availability of the raw components at any 

given time in order to determine the blend recipe. The job of the blend 

scheduler is to determine which product to blend at a given point time and 

in what quantity in order to meet the demand vvhile minimizing the overall 
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Figure 3.1: Gasoline Blending Problem 

production cost among other considerations. The blender needs to be cali-

brated every time a different grade of gasoline is blended. Hence minimum 

number of switches must to made to avoid this overhead and larger batches 

of single grade with very little recipe variation should be targeted. The 

setup times are considered and discussed in the previous chapters. 

The gasoline blending problem is mostly solved a non-linear problem. 

However, in the thesis we have been able to solve it as a linear problem 

thanks to choosing Vblend as a variable whose value is set in an outer opti-

mization loop via differential evolution. The figure 3.1 shows the gasoline 

blending production system. A typical production system will have at least 
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following component: alkylate, light and heavy naphtha, reformate, bu­

tane, hydrocarbons, cracked naphtha. Seven physical propert ies are used 

to describe every raw material and its stream as well as for each gasoline 

grade and its stream. The formulation of the linear system of equations is 

based on determining how much amount of each gasoline grade and in what 

quantity. T he demand or the lift ing amount of gasoline from each of the 

blending tanks at the end of a time period is known and hence the closing 

inventories in all the blending tanks at the end of each t ime period can be 

calculated. These calculations are handled by the equations discussed in the 

DE chapter. The tanks are modeled as mult iple outlet tanks to eliminate 

t he splitters in the image. 

3.2 Problem Formulation 

The problem of gasoline blending was formulated in two ways: (a) First 

model blends t he gasoline by summing up the volumes of the incoming 

blend components in the blending tank. (b) The second model calculates 

the contribution of each blend component as a fraction of total amount of 

gasoline blended. 

3.2.1 Assumptions 

While formulating the problem it was assumed that the demand for each 

gasoline grade in every period is known, so was the supply for blend com­

ponents. The opening inventories for each of the blend component tank , as 
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well as the blending tanks were known. It is assumed that the supply of 

components in every time period had the same chemical composition as the 

previous and the current blend component, making t hem constant through-

out the system. The tanks are constrained by their volumetric capacities. 

The specification of the chemical composit ion on every gasoline grade was 

given and they formed the constraints of the LP. 

3.2.2 System of Linear Equations 

As mentioned previously gasoline blending problem is mainly solved as 

a non-linear problem. We formulated the problem as a linear problem by 

calculating the closing inventory in the blending tanks. The formulation of 

the problem was done in two different ways which will be discussed in more 

depth in the following sections. 

Volumetric Formulation 

T he volumetric formulation consisted of defining the volumetric con-

tribution of every incoming blend component in the total blend of each 

gasoline grade in every time period to determine the blending recipe. The 

blending inlets were summed up to the amount of gasoline blended as its 

volumetric contribution in the total blend. The objective function consisted 

of minimizing the global cost over the entire t ime horizon. 

Minimize: 

T J( G 

L L L V in,k,g ,t X Ck (3. 1 ) 
t= l k=l g=l 

36 



M.A.Sc. Thesis - S. Kulkarni McMaster - SeES 

V rn.ALK 

V ln.8UT 

V 1n.ALK.regular ,.------------, 

Butan<! Tank 

V ln.HCL'lt<;IuLa, 

V In,HCH,r.gUIa, 

V ln.LeN,regUIa. 

Vln.REF,~urar 

Light Crocked N'lphlhn T:U1k 
Blc:ndiug T'lllk fur Regular G a. ... u lim .. 

Rclonnate T ;J.nk 

Figure 3.2: Volumetric Formulation for Regular Gasoline 

where, 

T Total t ime periods 

G Total grades of gasoline 

K Total components 

Vin ,k,g,t Incoming volume in blender g, from component k in 

time t (i.e. the volumetric contribut ion of component k 

in time t to blend gasoline grade g) 

Ck Unit cost of component k 

9 Gasoline grade to blend. Can be Teg (Regular),mid 

(Mid grade)or pnn (Premium). 
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The physical composit ion of every gasoline grade was calculated based on 

quality balance equations around the blending tanks. The value of physical 

property, i , at the end of any time period for each gasoline grade is calculated 

by summing up the physical property in the volume of incoming flow from all 

the blend components into the blending tanks; the value of quality, i, in the 

opening volume of gasoline in the blending tanks in t ime t and subt racting 

the property of the gasoline that leaves the tank in time t. In the first 

time period Q open,i,g,t is known, and hence is t he coefficient in equations 

3.2; however , in the rest of the time periods Vopen,g,t is known and is the 

coefficient in the same equations. 

V t X Q . t - (F x dt + Vel ) X Q . open,g, open,'l,9, Dut ,g ,t ose,9,t 'l,g,t 

J( (3.2) 

+ L(1"in,k ,g,t x Q i,k ,t) = 0 ; Vi, g, t 
k= l 

where, 

VO)Jen,g,t Opening Volume in t ime t for blender g 

Q . t OpeninbO" quality value of quality i for gasoline g in time t open,t ,9 , 

Fout ,g,t Outgoing flow in t ime t from blend g, the dema,nd. 

v"lose,g ,t Closing inventory in t ime t for grade g of gasoline 

Q. t Calculated quality i for bO"asoline bO" in t ime t '!,g , 

F in,k ,t Incoming flow for component k in t ime t , t he supply. 

Q i,k ,t Quality i for component k in t ime t, assumed same for all t 

dt Length of t ime period t. 
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The volume in each blending tank IS calculated with the volumetric 

balance equation: 

K 

L Vin ,k ,g,t - Vopen ,g,t + v"lose,g,t - Vout ,g,t = 0; ;Vg , t (3.3) 
k= 1 

The closing inventory of the blend component tanks is given by the following 

volumetric balance equations. 

G 

F in ,k ,t X dt - Vclose,k ,t + Vopen ,k ,t - L (Fout ,k ,t ,g * dt ) = 0 ; Vk , t (3.4) 
g= 1 

where, 

Vclose,k ,t Incoming flow from component k in blender g in t ime t. 

Vopen ,k ,t Opening Volume in the component tank k in t ime t . 

F out ,k,t ,g Outgoing flow from tank k into blending tank g. 

The closing inventory in the component and blending tanks at the end 

of time period, t , must be wit hin t he volumetric capacity of the tank. 

V m in ::; Vclose,k ,t < V max ; Vk , t (3.5) 

Vmin ::; Vclose,g,t < V m ax ; Vg , t (3.6) 

where, 

Vmin Minimum volume that the tank can hold , usually 0 

v'nax ?vlaximum volume the tank can hold 

39 



M.A.Sc. Thesis - S. Kulkarni McMaster - SeES 

To ensure that each gasoline grade maintains its physical composit ion 

calculated in equation 3.2, the value of the properties are governed by the 

following constraints: 

Q i,min::; Q i,g,t < Q i,max; Vi, g, t (3.7) 

where, 

Qi,min Minimum quality specification for quality i 

Q i,max Maximum quality specification for quality i 

Fractional Formulation 

V 1n,BUT 

Outane Tank 

Li ght Cr . .u,: kcd Naphlhll Tank 
B lclIJing Tank fur Rc~ulur Gu!>ulim: 

Re furmul': T ank 

Figure 3.3: Fractional Formulation for Regular Gasoline 
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Unlike the volumetric formulation t he fractional formulation calculates 

the contribut ion of each blend component as a fraction of total gasoline to 

blend. The actual volume of the component in the blended gasoline can be 

calculated by equation 3.8. 

v: - V; x f Vk t tn ,k ,g,t - blend,g,t k ,g,t , (3.8) 

where, 

Vblend,g,t Amount of gasoline g to blend in time t. 

fk Fraction of component k used to produce gasoline g in t ime t . ,g,t 

The objective function of this formulation is defined as: 

Minimize: 
T K G 

L L L (Vblend,g,t X !k,g ,t x Ck ) (3 .9) 
t=l k=l g=l 

The physical properties of the gasoline in the blending tanks are handled 

by the following equation (Quality Balance Equations): 

K 

(Vopen ,g,t x Qopen ,i ,g,t) + L (Vblend,g ,t X !k ,g,t x Qi,k ,t) 

k=l 

- (V t t X Q . t) - (Vl t X Q. t) - 0 . Vi g au ,.9 , 1.,9 , C ose ,g , ~ , g , - ) , 

(3.10) 

The closing volume of the blend component tank in every t ime period t is 

given by: 

G 

Vclose k t = Fin k t X dt + V open k t - ~ V out k 9 t = 0 ,. V k, t " " " L I I I 

(3. 11) 
g=l 

where, 
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Vout ,k ,g,t Volume of component k used to produce gasoline gto blend in t ime t. 

The sum of fract ions of each component 's contribution to the total blend 

must be equal to unity. 

K 

L fk ,g,t = 1.0 ; Vg, t (3.12) 
k=l 

The bounds on the closing volume of the blending and component tank 

as well the specification of physical properties are bounded by equation as 

in the previous formulation equations 3. 6, ~3 . 5 and ;1.7. Additionally the 

bounds on the fractions are specified as (i .e the fraction of component k 

used to blend Vblend,g,t of gasoline 9 in time t): 

O.O:S fk ,g,t :S 1.0 ; 'Ilk, g, t (3.13) 

3.2.3 Multi-Time Period Connection Equations 

Information from the current t ime period is passed to the next time 

period by the multi-time period connectivity equations. 

The component tanks are connected by their inventories. i.e the closing 

inventory of a time period is the opening inventory for the next time period. 

Vopen ,k ,t - Vclose,k ,t-l a ; 'Ilk, t(t = 2 to T) (3.14) 

The blending tank inventories are similarly connected like above: 

Vopen,g,t - Vclose,g,t-l = 0 ; Vj , t(t = 2 to T ) (3 .15 ) 
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T he chemical composit ion of t he gasoline at the end of every t ime period 

in the blending tank is the opening composit ion of the gasoline (equations 

3.2and 3.10) in the next t ime period. They are equated by: 

Qopen,i,g,t - Q i,g ,t- l = 0 ; Vt(t = 2 to T) , g, i (3.16) 

3.3 Chemical Properties 

The chemical composit ion of the blend components and t he gasoline is 

defined by the following set of propert ies: 

• Aromatic (ARO): The aromatic content in the gasoline affects its ig­

nition quality. Aromatic material usually has high octane content and 

is desirable in t he gasoline end products. 

• Benzene (BEN) : Benzene as an additive in gasoline increases the oc­

tane rating and thereby reduces knocking. However , due to environ­

mental restrictions the its usage is restricted . 

• Octane Ratings: In an internal combustion engine the ignit ion occurs 

due to combustion of air-fuel mixture. vVhen t he entire mixture of fuel 

and air in the combustion chamber is not burnt properly, it undergoes 

spontaneous combustion. This is called detonation which occurs after 

t he normal combustion is initiated. T he octane rating determines 

the resistance of gasoline against this detonation. Thus, the octane 

rating of the fuel reflects t he ability of t he unburned end gases to 

43 



M.A.Sc. Thesis - S. Kulkarni McMaster - SeES 

resist spontaneous auto ignition under the engine test conditions used 

[11] . There are two standards to test this resistance. They are called 

as the Motor and Research Octane Numbers, referred as MON and 

RON respectively. The difference in these two ratings for a chemical 

component lies in the reference against which they are compared and 

the conditions in which they are tested. Usually, MO ratings are 

obtained under more stressed condit ions (severe, sustained high speed, 

high load driving) than RON (typical mild driving, without consistent 

heavy loads on the engine) which gives a lesser numerical value for 

MON than RON [11]. The average of RON and MON, also called as 

the" ant i knock index" , (RON~MON) is the standard octane number 

seen on the gas stations and the single most important criteria for the 

motorists . 

• Reid Vapor Index (RVI) : This property defines the volat ility of the 

gasoline. The required volatility depends on the average temperature 

of the market area. In cold climates lower volatility can cause failure 

in ignit ion hence usually higher values of RVI are desired. In hot 

climates higher number of this property could result into vapor lock 

where t he liquid fuel changes in to gaseous state making the engine 

starve for the fuel and hence lower values of RVI might be desired . 

• Sulfur (SUL): Various streams that enter into the gasoline blending 
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section of a crude oil distillatory contain sulfur to some extent. Due to 

environmental concerns about sulfur emission , its content is desirable 

to as low as possible value. 

3.4 Blending Components 

The main blend components used for this problem are described briefly. 

• Light Naphtha (NAP): Naphtha is a chain of pentane and hexane. 

Processing of this intermediate product gives light naphtha that is 

used in gasoline for its high octane value. 

• Reformate (REF): Reformate is a high octane rating liquid product 

obtained t hrough the process of catalytic reforming of low-octane rat­

ing naphtha . 

• Alkylate (ALK): Alkylates are the most expensive of all components 

are highly desirable for their exceptional anti-knocking propert ies. 

They are obtained t hrough the process of alkylation which is an im­

portant (and economically expensive) refinery process. The octane 

rating of alkylates depend on the alkenes used in t he process and also 

on the operating conditions. 

• Light cracked Naphtha (LCN): Light cracked naphtha is obtained by 

process of fluid catalyt ic cracking where heavy molecules are converted 

into light weight molecules. 
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Chapter 4 

Numerical Results 

4.1 4-Time Period Optimization 

This small size problem has been used to explore various facets of mult i­

t ime period gasoline blending and to illustrate various aspects of the solution 

method. 

Solving the LP requires the knowledge of physical propert ies of the com­

ponents to blend as well as the specifications of the same for the gasoline. 

The user also provides the available inventory of components in tanks and 

gasoline in the blending tanks in the beginning of the t ime horizon over 

which the problem is solved. Next couple of pages will show the data that 

was used to solve this small 4-time period , 3-grade gasoline blending prob­

lem. 

The charts in figure 4.1 illustrate the varying demand and supply pattern 
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with t ime for different grades of gasoline and the 7 blend components re-

spectively. The unit cost of blending components used in objective function 

calculation is shown in table 4.4. 

Table 4.3 lists the opening inventory of the material in the component 

and blending tanks. The physical properties of the material in the compo-

nent tanks (which are assumed to remain same throughout) and those of 

gasoline in the blending tanks at the beginning of time horizon is shown in 

table 4.6 and 4.5 respectively. The specifications (constraints in equations 

3.7) of these physical properties for all gasoline grades appears in table 4.7. 

Time Period 
Grade 1 2 3 4 
Regular 9000 5000 3000 9000 
Midgrade 6000 7000 8000 8000 
Premium 7000 9000 5000 4000 

Table 4.1: Demand in Bbl for various grades of Gasoline in various t ime 
periods 

Time Period 
Component 1 2 3 4 
Alkylate 5000 4000 3000 5000 
Butane 4000 8000 3000 3200 
HCL 5600 6000 7000 4000 
Hydrocarbons 3000 4000 7000 7000 
Light Cracked Naphtha 3000 4300 3200 5000 
Light Naphtha 3000 3000 8000 6300 
Reformate 5000 9000 6000 3000 

Table 4.2: Supply in Bbl for Components in different t ime periods 
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-Regular 

- r..,1idgrade 

Premium 

- ALK 

- BUT 

- HCL 

- HCN 
LCN 

- LNAP 

RFT 

Figure 4. 1: The first chart shows the demand , V out ,g ,t in Bbl per time period 
for each blending tank. The second chart shows the supply, Yin ,k ,t in Bbl 
per time period for each blending component tank. 
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Material Opening Volume 
Alkylate 
Butane 
HCL 
Hydrocarbons 
Light Cracked Naphtha 
Light Naphtha 
Reformate 
Regular Gasoline 
Midgrade Gasoline 
Premium Gasoline 

500 
400 
160 
350 
700 
200 
500 
7000 
6000 
6000 

Table 4.3: Opening Volume in Bbl in various tanks 

Component 
Alkylate 
Butane 
HCL 
Hydrocarbons 
Light Cracked Naphtha 
Light Naphtha 
Reformate 

Unit Cost 
29.20 
11 .50 
20.00 
22.00 
25.00 
19.70 
24.50 

Table 4.4: Unit Cost in USD per Bbl for components 
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Gasoline 
Property Regular Midgrade Premium 
Aromatics 21.061 21.061 14.569 
Benzene 3.821 3.821 3.032 
MON 85.00 86. 00 87.00 
Olefins 13.00 16.00 10.00 
RON 92.00 94.00 97.00 
RVI 5.458 13.00 15.60 
SPG 0.750 0.80 0.80 
Sulfur 0.008 0.005 0.005 

Table 4.5: Physical Property of the gasoline in the blending tanks at the 
beginning of time horizon. They are recalculated for every time period as 
new gasoline is blended into the tank. 

Components 
Property ALK BUT HCL HCN LCN LNAP REF 
Aromatics 0.0 0.0 0.0 25.0 18.0 2.97 74.90 
Benzene 0.0 0.0 0.0 0.50 1.00 0.59 7.50 
MON 93.70 90.00 79.80 75.80 81.60 81.60 90.80 
Olefins 0.00 0.00 0.00 14.00 27.00 0.00 0.00 
RON 95.00 93.80 82.30 86.70 93.20 67.80 103.00 
RVI 5.15 138.00 22.33 2.38 13.88 19.90 3.620 
SPG 0.703 0.584 0.695 0.791 0.744 0.677 0.818 
Sulfur 0.000 0.000 0.000 0.490 0.080 0.010 0.000 

Table 4.6: Physical Property of t he Components, assumed constant through 
out 

Regular Midgrade Premium 
Property Min Max Min Max Min Max 
Aromatic 0.00 60.00 0.00 60.00 0.00 60.00 
Benzene 0.00 5.90 0.00 5.90 0.00 5.90 
rvro N 82.00 100.00 84.00 100.00 86 .00 100.00 
Olefin 0.00 24.20 0.00 24.20 0.00 24.20 
RON 92.00 100.00 94.00 100.00 96.00 100.00 
RVI 0.00 15.60 0.00 15.60 0.00 15.60 
SPG 0.73 0.81 0.73 0.81 0.73 0.81 
Sulfur 0.00 0.01 0.00 0.01 0.00 0.01 

Table 4.7: Constraints on the Physical Propert ies for Gasoline 
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4.2 4-Time Period Results Discussion 

Unlike the tradit ional direct optimization techniques that give a single 

point solut ion, differential evolut ion gave mult iple solut ions with same op­

t imum value. The DE algorithm discussed in Chapter 2, determined the 

amount of each gasoline grade to blend in every time period, and there by 

calculated the closing inventory as t he lifting amount for each time period 

was known. As discussed in Chapter 2, DE selects a t rial vector when it 's 

fitness is no worse t han t he target vector. Hence, t rial population members 

with cost value within the 1% of the optimum cost were saved for analysis 

purpose. Multiple feasible solut ions of such kind were obtained in every 

generation , and can be seen in the chart 4. 2. 

4.2.1 Gasoline Recipes 

Eight solutions points from the chart 4.2 were randomly chosen with the 

optimum cost value and are discussed over the next few pages. 

The solut ions obtained had population members with same objective 

function value but in every solut ion different amount of each gasoline grade 

was blended in every time period. As a result ,the proportion of blend com­

ponents in every solut ion was different. Hence, blend recipes for each gaso­

line grade in each t ime period was different for different solut ion points. T his 

can be seen in figures 4.5, 4.6 and 4A for selected eight solution members. 

Common indices combined to gather represent a single solution point. Each 
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Feasible Solutions within 1% of optimum cost in 

trial population of every generation 
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i 
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Figure 4.2: Each solution point is a feasible trial population member in 
various generations, whose fitness value is within 1% of t he optimum fitness 
value. 

index shows the % of each blend component used, the amount of gasoline 

blended and the closing inventory in the blending tank at the end of every 

time period. For example, consider index 1. The solut ion blends 4881.9 Bbl 

mid grade gasoline (figure 4.5) , 6804.5 Bbl premium gasoline (figure 4.6) 

and 5313.7 Bbl regular gasoline (figure 4.4). In figure 4.4 in column ALK 

this solution uses 42.6% of Alkylate to blend 5313.7 Bbl regular gasoline. 

In the same a different solution, say indexed 3, uses 8.7% Alkylate to blend 

7303.3 Bbl of regular gasoline. Similar such differences can be pointed out 

in these figures for each gasoline grade in every time period. 

Since the amount blended varied in every population member , the clos-

ing inventory in each blending tank was different . This fact is illustrated in 
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charts of figure 4.3. 

All the eight illustrated solut ion members have the same objective func­

tion cost value: 1, 428, 969U SD. 

4.2.2 Mutation and Crossover Factor 

Generations with smaller population sizes (10) were studied to under­

stand t he effect of crossover, mutation and strategy on the algorithm's con­

vergence. For exponential strategy, the entire population converged in less 

than 25 generations when the mutation probability was fixed at 0.8 and 

the crossover probability was varied in the range [0.7,0.95] . The rate of 

convergence for each population members using an exponential strategy is 

shown in figure 4.7.As can be seen the population members converged at a 

slightly better rate as crossover was increased from 0.7 to 0.95. Similar ob­

servations can be made for t he binomial strategy in figure 4.8 with members 

converging at a better rate with increase in the crossover probability. 

However , the two strategies differed in that the population members 

converged in lesser number of iterations (~ 25) for an exponential strategy 

of crossover than the binomial strategy (~ 50) of the same. 
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Figure 4.3: Plots illustrating varying amount of closing inventories as well 
as the amount of gasoline blended in the blending tanks for each gasoline 
grade in each t ime period , for different solutions 
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Mult iple Regular Recipes 

Index 
Time 

Period 
ALK BUT HCL HeN LeN LNAP RFT Vblend,reg,t I V clo,e, reg,t 

0 42.6 lS.5 15.1 4.6 0.0 6.5 15.6 S313.7 3313 .7 

1 0.0 1.9 50.7 2.0 0 .0 0 .0 45.4 2171.7 485.3 
1 

2. 0 .0 1.9 50.7 2.0 0.0 0.0 45 .4 864&. 5 6133.& 

3 39.9
1 

3. 7 34.5 ! 2.0 0.0 0.0 19.9 2856.2 0.0 

0 21.1 10.3 37.4 3.9 0.0 0 .0 27.4 7791.0 5791.0 

1 0.0 0.0 0.0 0.0 0 .0 0.0 0 .0 0 .0 791.0 
2 

2 0 .0 2.9 36.5 1.9 0.0 8 .1 SO. 6 61.37 .6 3928.6 

3 9 .3 2.2 45.8 ! 1.6 2.8 0 .0 37 .8 5071.4 0.0 

0 8.7 10.3 39.0 2.6 8.& 0 .0 30.6 7030.3 50 30. 3 

1 0 .0 0.0 0.0 0.0 0 .0 0.0 0.0 0 .0 30. 3 
3 

2 0,.0 1.9 50 .7 2.0 0.0 0.0 4 5.4 7454.5 4434.9 

3 0.0 1.9 50.7 I 2.0 0.0 0.0 45.4 4515.1 0.0 

0 8.5 10.3 42.2 4.0 0.0 0.0 35.1 7266.1 5266.1 

1 0 .0 0.0 0.0 0.0 0.0 0.0 0.0 00 266.1 
4 

2 0.0 1.9 50.7 2.0 0.0 0 .0 45.4 9684.9 6951.0 

3 29.0 2.8 34.8 0 .0 12.5 0.0 20.9 2049.0 0.0 

0 32.6 10.7 31.2 3.2 4.4 0.0 17.9 7757.4 5757.4 

1 0.0 0 .0 0 .0 I 0.0 0.0 0 .0 0.0 0.0 757.4 
5 

2 275 3.1 395 2.0 0.0 0.0 27.8 6791 .4 4548.8 

3 23.8 2.6 35.9 ! 0.0 125 0.0 24.2 44S1.2 I 0 .0 

0 42.1 14.4 12.6 4.0 1.2 8 .3 17.4 6012.9 4012.9 

1 1.5 1.9 50.1 2.0 0.0 0 .0 44.4 4237 .9 3250.3 
6 r---

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 .0 250.8 

3 0.0 1.9 50.7 i 2.0 0.0 0.0 45.4 8749.2 0.0 

0 0.0 9.1 3&.0 0 .3 22.9 0.0 29.7 7281.3 5281. 3 

1 0 .0 0 .0 0.0 0.0 0.0 0 .0 0 .0 0.0 281.3 
7 

2 0.0 2.2 46.4 2.0 0.0 2.5 47.0 6972.9 4254.2 

3 0 .0 1.9 SO.7 ! 2.0 0.0 0 .0 45.4 4745.8 0.0 

0 38.0, 13.8 28.7 4.6 0.0 0.0 14.9 5&80.5 3680. 5 

1 0 .0 1 .9 50.7 i 2.0 0.0 0.0 4S.4 3003.8 16.84. 3 
8 

2 0.0 1 .9 50.7 2.0 0.0 0.0 45.4 7001.9 56.86.2 

3 59.'1 S.O 22.5 1 2.0 0.0 0.0 1.1 3313.8 0.0 

Figure 4.4: Regular Gasoline Blend Recipes along with blend volumes and 
closing inventories obtained for different time periods 
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Multiple Midgrade Recipes 

Time 
HClIHCN 

, 
Index 

Period 
ALK BUT LeN LNAP RFT Vbl d 'd ! V I · '<1 en ,ml It l t O$e,ml Jt 

0 0 6.2 37.2 4. 5 0.0 0 .0 52 .1 4&81:9 1 4&81.9 

1 0.0 3.3 40A 2.0 0.0 0.0 54.2 6337.9 I 4219.7 
1 

I 2 4.0 3 .5 38.8 2.0 0.0 0 .0 51.7 93 51.5 5571.3 

3 0.0 3.3 40A 2.0 0.0 0.0 54. 2 2428.7 i 0.0 , 
0 0 .0 7.9 35.1 6.1 0.0 0.0 50 .8 3005.7 I 3005.7 

1 0 .0 3.3 40A 2.0 0.0 0.0 54.2 7550.6 3556.4 
2 I 2 0.0 3.3 40.4 2.0 0.0 0.0 54.2 8148.7 370 5.1 

3 72 .1 6.6 111.1 2.0 0.0 0.0 8 .2 4294.9 i 0 .0 I 

0 0.0 6.7 36.6 5.0 0.0 0 .0 51.8 4161.7 I 4161.7 

1 0 .0 3.3 40.4 2.0 0 .0 0 .0 54.2 6858.9 4020.6 
3 

i 2 19.9 5.0 20.7 1.9 0.0 6.7 45.8 7 511.0 3531.6 

3 13 .3 3.9 35.0 2.0 0.0 0.0 45.8 4468.4 ! 0.0 

0 0.0 7.0 36.3 5.2 0.0 0 .0 51.5 3820.2 1 3820.2 

1 0.0 3.3 40.4 i 2.0 0.0 0.0 54.2 5830.9 i 2&51.1 
4 

! 2 54.3 6.6 0.0 0.6 7.9 9 .0 21.6 5529.3 180.5 

3 0 .0 2.9 36.3 1 0.0 12 .5 0.0 48.3 7813.5 0.0 

0 44.8 9 .3 17.7 5.5· 0.0 0.0 22.7 3522.5 ! 3522 .5 

1 36.2 4. 5 21.6 0.0 12.5 0.0 25.2 6189.0 I 2711.4 
5 

I 2 15.6 4.0 3 4.1 2.0 0.0 0 .0 44.3 .8352.7 3064.1 

3 51 .0 5. 6 1.9.7 i 2.0 0 .0 0 .0 21.7 4935.9 j 0 .0 

0 0 .0 6.6 36.6 5.0 0.0 0.0 51.8 4178.6 j 4178.6 

1 0.0 2.9 36.3 0 .0 12. 5 0.0 48.3 9 439.9 i 661 8. 5 
6 

i 2 67.9 6.4 12.8 2.0 0.0 0.0 10.9 ]lSO.3 5798.8 

3 39.7 5.1 24.3 I 2.0 0.0 0.0 28.9 2201.2 i 0 .0 

() 0.0 7.6 35.5 5.9' 0.0 0.0 51.0 3211.1 I 3211.1 

1 0.0 3.3 40.4 2.0 0.0 0.0 54.2 6268.2 ! 2479.3 
7 I 

2 0.0 3 .3 40.4 2.0 0.0 0.0 54.2 8775.0 I 3254.3 

3 69.8 7.3 0.0 1.9 0.0 6.9 14.0 4745.7 ! 0 .0 

0 0.0 6.2 37.1 4.6 0.0 0.0 52.1 4744.2 i 4744.2 

1 0 .0 2.9 36.3 0.0 12.5 0.0 48.3 8552.4 I 6296.7 
8 I 2 41 .8 5.2 23.4 2.0 0.0 0.0 27. 5 6304.4 4601.0 

3 5&.7 6.0 16.6 1 2.0 0.0 0.0 16.8 3359.0 I 0 .0 

F igure 4.5: Mid-grade Gasoline Blend Recipes along with blend volumes 
and closing inventories obtained for different t ime periods 
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Multip le Premium Reci pes 

Indel< 
Time 
P-eriod 

ALK BUT HCL HeN LeN LNAP RFT V blend, prm,t V<lose,prm,t 

0 47.5 5.7 6.0 0.0 23 .5 0.0 17.2 6004.5 5004. 5 

1 47. 1 6.8 10.7 1 .3 0.8 0.0 3 2.6 8490. 5 523 4.9 
1 

2 0 .0 0 .0 0 .0 0.0 0.0 0.0 0.0 0.0 294.9 

3 56.1 7 .8 0.0 2.0 0.0 4.2 30.0 3705.1 0.0 

0 62.2 6 .3 0.0 0 .0 24.6 0 .0 6.9 6203 .3 5 203.3 

1 53.0 7 .1 8 .5 2.0 0.0 0.0 23.2 7 542.9 3746.2 
2 

2 0.0 4 .7 30 .1 2.0 0.0 0 .0 63.1 2713.7 14 59 .9 

3 0.0 4.7 30.1 2.0 0.0 0.0 63 .1 2540.1 0.0 

0 82.7 8.0 0 .0 4.1 0 .0 0.0 5.1 5808.0 4008.0 

1 48.6 6.5 6.2 0.0 12S 0.0 26 .1 8 399. 3 4207. 3 
3 

2 74.0 S .l 0 .0 2.0 0.0 0 .0 15.8 2034S 124 1.7 

3 0.0 4.7 30. 1 1 2.0 0.0 0.0 6 3.1 27 58 .3 0.0 

0 8 2.6 S .O 0.0 4.1 0.0 0.0 5.3 5913. 6 4913.6 

1 40.9 6.6 13.5 2.0 0.0 0 .0 37.0 9 774.3 56<&3.0 
4 

2 0.0 0.0 0 .0 0.0 0.0 0.0 0.0 0.0 688.0 

3 0.0 4 .7 30. 1 2.0 0.0 0 .0 63.1 3312 .0 0.0 

0 0.0 4.3 33 .7 4.2 0.0 0.0 57.9 5720.1 4720.1 

1 0 .0 4.7 30. 1 2.0 0.0 0.0 63 .1 9 518.4 523 8..5 
5 

2 0.0 0.0 0.0 0 .0 0 .0 0.0 0 .0 0.0 23S .5 

3 0.0 5. 3 7.0 1 .8 0.0 13 .3 71.6 37 61 .5 0.0 

0 39.2 6.1 17.2 3 .8 0.0 0 .0 33.7 6808.4 58-0 8.4 

1 0.0 4. 3 26.0 0.0 1 2.5 0.0 57.2 33 22. 3 130.7 
6 

2 0 .0 4.7 30 .1 2.0 0.0 0.0 63.1 517 5.9 306.6 

3 56.3 7 .3 7.2 2 .0 0.0 0 .0 27.1 3693,4 0 .0 

0 8-1.8 8 .0 0.0 3 .9 0.0 0 .0 6.2 6507.7 5507.7 

1 27. 9 6.0 18.8. 2.0 0 .0 0 .0 4 5.3 90 52.1 5559.8 
7 

:1 0.0 0 .0 0 .0 0.0 0.0 0.0 0.0 0.0 559.8-

3 56.1 7.3 7.3 2.0 0 .0 0.0 27.3 3440.2 0.0 

0 39'.6 6 .1 17.1 3.:9 0.0 0 .0 33.2 657 5.3 5575.3 

1 2 5.7 5.6 16.0 0.2 11 .0 0.0 41. 5 5443 .& 2019.1 
g 

2 0.0 4 .7 30.1 2.0 0 .0 0.0 63.1 3693.7 712.8-

3 0 .0 6.6 3 .7 1 .7 0.0 1 5.2 72.8 3287 .2 0.0 

Figure 4.6: P remium Gasoline Blend Recipes along with blend volume and 
closing inventories obtained for different t ime periods 
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4.3 14-Time Period Optimization 

A larger size real life problem was solved using data part ially extracted 

from AspenTech. The physical properties of t he blend components and 

gasoline in the blending tank at the beginning of the t ime horizon were 

same as in tables 4.6 and 4.5 respectively. The specification on t he t hem 

for the each gasoline grade were same as in table 4.7. The demand for each 

gasoline grade is shown in table 4.8 and plotted in chart 4.9. In order to 

remain feasible the supply of all the components was fixed to be 500 M Bbl 

in every time period. 

Gasoline Demand Pattern 
200 ~----~------~------~----~------~------~~ 

175 -1----+ 

150 -I--.--+----+_ 

125 -1----1+\ 

Demaoo 100 -~---+~"---~-~ 
(MBbl) 

50 -1---1-1·-+-\\ 

o 2 

- Regu lar (ia;.olin·e 

4 6 

Tilll1e Period 

~MidgradeG$oli rne 

10 12 

- . - Premi um Gasoli l11 e 

Figure 4.9: Demand, Vout ,g,tJ in M Bbl for each gasoline grade in every t ime 
period. 
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Time Period Regular Mid-grade Premium 

0 15. 13 0 0 

1 143.63 120 42 

2 0 0 0 

3 73 0 0 

4 63 89.3 30 

5 183.05 0 0 

6 63 107.1 36 

7 183 0 0 

8 100 0 0 

9 110 115.92 42 

10 0 0 0 

II 143.6 0 0 

12 163 107.1 66 

Table 4.8: Demand in M Bbl for various grades of Gaso-

line in each t ime periods 

Material Opening Volume 

ALK 100 

BUT 43 
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HCL 25 

HCN 50 

LCN 250 

LNAP 125 

RFT 150 

Regular 70 

Midgrade 185 

Premium 11 

Table 4.9: Opening Volume (M Bbl) in blend component 

and tanks 

4.4 14 Time Period Results Discussion 

The nature of this problem resulted in large number of equations and 

variables. From [24] the size of the population members should be 5 to 

10 times t he vector size. The vector size (i.e the number of optimizing 

parameters) is 39 and hence, t he population member size of 200 was used. 

Unlike the previous 4-time period simulation this problem converged slightly 

better using a binomial st rategy of crossover, and can be seen in the the 

charts of figure 4.14. 

Similar observations regarding results can be made in this problem. 
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While the chart 4.10 shows all the unique feasible solut ions with cost value 

wit hin 1% of t he optimal value, t he tables and charts in figures 4.11, 4.12 and 

4.13 show the multiple solutions against the opt imum cost value (38 , 029, 918.52USD). 

Once again, t he results are to be interpreted as previous example. 

Feasible Solutions within 1% of optimum cost in 

t rial population of every generation 

~ 3.8SE+7 

I 3.84E+7 

Objective 3.83E+ 7 

Funtion 
Value 3.82E+ 7 

3.8lE+ 7 

3 .80E+ 7 

I 
I 
I 

-j 

I 
! 

I 
o 

Ge ner at ion No . 

I 
Optimum: 38,029,918.51 USD r-I 

+ 1 **+ +J:"'~t"! + 
I +++ t:+ ... :t..~+ l 

<;+ +It *~ .. -+:t1.1--
+ .. +++ +.Ji:-++ 

+ + ,t, 
+ + + + + *~ +l 

+t : ~-"1-~~*~I----+ 
+ +++ *+ ;..~ 

+ + + 1 +i+ 
+ ~ + + 

++ + + ' ~; + ++ ++ 
+ + * ++ + ++ III 111'11 1 ..... 1. lIll!! 

100 

--------7 
200 300 400 

+ Objective Function Cost Value 

Figure 4. 10: Each solut ion point is a feasible t rial population member (14 
Time Period), whose fi t ness value is wit hin 1 % of the opt imum fi tness value. 
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Figure 4.11: Each line in t he graph shows the blend amount and closing inventory (in M B bl) in the regular gasoline blend 
tank in each time period for 7 randomly chosen solut ion points from chart 4.10. The corresponding values are shown in 
the adjacent table, 
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Figure 4.12: Each line in the graph shows the blend amount and closing inventory (in M Bbl) in the midgrade gasoline 
blend tank in each time period for 7 randomly chosen solut ion points from chart 4.10. The corresponding values are shown 
in t he adjacent table. 
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Figure 4.13: Each line in the graph shows the blend amount and closing inventory (in M B bl) in the premium gasoline 
blend tank in each time period for 7 randomly chosen solution points from chart 4.10. The corresponding values are shown 
in t he adjacent table. 
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Figure 4.14: The rate of convergence plotted as best cost in every generation for the 14-time period optimization problem. 
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Chapter 5 

Multi-Processor Optimization 

The problems that can be easily divided across many cores into different 

parallel tasks without much effort are called as Embarrassingly Parallel 

problems. In different ial evolut ion , evaluation of each population member 

is independent of other member. Hence, all the population members can 

be evaluated on separate cores before performing the operation of mutation 

and crossover where synchronization might be necessary. This makes the 

differential evolution algorithm a type of embarrassingly parallel problems. 

T his fact about different ial evolution was exploited and a distributed com­

puting approach was adopted to solve large number of population members 

in parallel. 
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~PUJ 
, 

I 

CPU Memory : I CPU I 

Figure 5.1: Shared Memory with Uniform Memory Access Time. Adapted 
from [:3] 

5.1 Shared and Distributed Memory models 

The two main memory models available to the programmer are the dis-

tributed and shared memory models. The shared memory architecture has 

a global address space available for all the processors. They were originally 

used to designate a symmetric multi processor (SMP) system where all the 

processors would access the same memory space at same speed thereby hav-

ing a uniform memory access (UMA) t ime [7]. A non-uniform access time 

(NUMA) of memory is achieved by linking several SMP through by various 

interconnects[7]. In an SMP, every processor has a non-shared cache at its 

disposal. These cache memories save memory access time due to locality 

of reference. However, sometimes when a cache memory is updated for one 
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Figure 5.2: Shared Memory with Non-Uniform Memory Access Time. 
Adapted from [3] 
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Figure 5.3: Cache Coherent N on-Uniform Memory Access Time (cc­
NUMA). Adapted from [7] 

processor it does not get reflected into other cache memory. This can lead 

to data consistency issues, also termed as false-sharing [7]. When a NUMA 

architecture machine maintains cache coherency, it is called as cc-NUiVIA 

(cache coherent NUMA) [7]. 

Distributed memory architectures differ from the SMP architecture in a 
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Memory CP1U I",,~.," •• ~o~ ·· ....• 

Communication Network 1 

Figure 5.4: Distributed Memory Architecture. Adapted from [3] 

way that there is no common sharable address space among different pro-

cessors. In t his memory model each processor has its own local memory. 

Inter-process communication is carried via network communication chan-

nels. Unlike the SMP models cache coherency does not apply here as each 

processor has its own local memory and any changes made therein do not 

apply for other processors[3]. The communication of data and tasks among 

various processors has to be explicitly handled by the programmer through 

the available programming interfaces. 

5.2 Parallel Programming Models 

The memory models described above are exploited by the programmer 

with the available programming models available at his disposal. However , 

a programming model may not be associated with a particular architecture. 

The choice of model is solely at programmer 's discretion. The most popular 

programming models are the Threads and Message Passing Interface Nlodel. 

In both these models t he parallelism is ident ified by the programmer. 
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.... -
Thread 

Global Memory 
Space 

Thread 

McMaster - SeES 

Figure 5. 5: OpenMP Memory Model. Adapted from [7] 

Thread-based Models 

The Thread-based model includes the POSIX and the OpenMP imp lemen-

tation and is usually associated with the shared memory architectures . In 

this model, a single program has many concurrent execution paths. When 

the process begins, it forks into many parallel threads that work simulta-

neously using its own local private memory called as TLS - Thread Local 

Storage and a shared global address space. This is also called as the fork-

join model. This kind of parallelism can be obtained by invoking some 

library routines (POSIX) or through compiler derivatives (OpenMP ). 

Distributed Processing Models 

As mentioned previously distributed memory architecture has several pro-

cessors with their own memory. As a result each processor needs to commu-
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nicate its data explicitly through the inter-connects, i.e by passing messages. 

The message passing implementation was standardized with the int roduc-

t ion of message passing interface (MPI) - which is a specification of what 

a library implementing message passing routines should do. Recently, MPI 

was introduced for a Shared Memory Processor. From a programmer's view 

point , the entire process is being executed on many processors (i.e. mult iple 

copies of the same program). Data Parallelism (where same computation is 

performed on different sets of unrelated data) is achieved when the master 

process distributes the data across processors using message passing rou-

tines (MPI specification of scatter) and then collects the results from the 

slave processes (MPI specification of gather). 

I Process 1 I J Process 3 
·1 1 1 

MPI_SandO MPI_RecvO 

Network Node 2 Node 1 Communication 

1 

Process 2 1 .1 Process 4 
1 I I 

MPI_RecvO MPI_SendO 

Figure 5.6: MPI Memory Model. Adapted from [3] 
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5.3 Parallelizing Differential Evolution 

In task parallelism computer instructions are forked (threads) across 

various cores on same or different sets of data . Unlike task parallelism, 

data parallelism divides a chunk of data across various processors. The 

most common way of obtaining parallelization is Single Program Multiple 

Data technique (SPMD) [4]. In this method many processes execute t he 

same program but on its own set of data. This kind of parallelism is found 

in differential evolution where each population member can be evaluated at 

the same t ime on different processors. 

The differential evolution was parallelized using communication routines 

of Message Passing Interface specification. This specification was used over 

shared memory approach because the GNU's library of linear programming 

optimization (GLPK) and t he Sparse 1.4, is not thread-safe. It means 

that the library environment is static and share-able across various threads 

which makes the data parallelism hard to achieve using shared memory 

architectures. Using OpenMP for thread-unsafe third party libraries would 

result into data corruption causing the program to crash. The process of 

parallelism for the differential evolution begins with init ializing the ~/IPI 

environment using MPLInit ialize routine. Each processor knows the size 

of its communication group and its rank within it . It uses this information 

determines the available concurrency i.e the number of population members 
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Thread 

Figure 5.7: OpenMP Implementation of Differential Evolution. All threads 
accessed the same glpk environment leading to data inconsistency. 

it can evaluate. This is obtained by: 

avlConcuTTency = Np -7- n (5.1) 

where, 

Np is Population member size 

n is number of processors. 

The index of the population members for each process is obtained by using 

the rank of each processor and the avlConcuTTency. The master thread 

generates the entire population in random before scattering the population 

members (i.e. data) in equal or unequal chunks across various processors. 

This is achieved using the MPLScatterv rout ine which scatters a buffer in 

a specified chunk size to all the available tasks. This is a blocking operation 

which means that all the processes will be bared to proceed further unt il 

the master process finishes the scatter. The master process then gathers the 

updated population members and their fitness function , calculates the best 
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4. t-lilsie: Process gather'} the 
adjusted pc;:adakm :r:(';mbe :~, 

N; .. ,n Gqual chunks of Si7.0 

a .. ;ConcunYJnq' along with 

th~rr fitness iLlf:ction values. 

Master Process 
rank = 0 

1. Generate Population 
Members in Random 

,-------1 5. Perform Mutation and 
Crossover on gathered 
data and generate Trial 
Population. 

Sc ttering of Popula on Members amol g slave proce sors 

2. Mester Proct';S5 scatters the 

. population members, Nt: . in 
equal chunks oi size 
dvfConCWTel!CY for eva!uation 

: across slave processors 

n ::: Number of Processors 
Np::: Population Members 
nDim ::: Vector Size (No. 
Of Optimizing Parameters) 
avlConcurrency ::: No';' n 

I Gathering of Population Mem ers with their fitness values from slave processors I 
,-----~---------. 

3. Slave Process 1 
Evaluates, avlConcurrency, 
population members. 

Slave Process 
rank = 1 

3. Slave Process 2 
Evaluates, avlConcurrency, 
population members. 

Slave Process 
rank = 2 

3. Slave Process (n·1) 
Evaluates, av/Concurrency, 
population members. 

Slave Process 
rank = (n·1) 

Figure 5.8: The Master P rocess, usually wit h a rank 0, generates t he initial 
population members in random and scat ters t hem in specified chunk size 
using the MPLScatterv routine in the specified chunk size. 

fitness function member using t he MPLGatherv routine , and performs 

crossover and mutation before proceeding to scatter the newly generated 

t rial populat ion. T his is carried unt il t he specified criteria of termination is 

reached. 

5.4 Performance Gain and Speedup 

T he parallelized differential evolut ion for gasoline blending was executed 

on SHARCNET - Shared Hierarchical Academic Research Comput ing Net-

work (https: //www.sharcnet.ca/) using OpenMPI on its 10-19, (called as 

hnd10-hnd19) 32 core Opteron-based nodes of the cluster Hound. This clus-
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ter uses the LimLx-based Community Enterprise Operating System (CentOS 

5.3) and Infiniband interconnect. Please see more information about this 

cluster on https ://www.sharcnet.ca/my/systems/show/42. 

The tests were performed on varying number of processors on hnd[lO-

19], all of then Opteron@2.2GHz. 500 generations of differential evolution, 

each of 200 population members, solving two sparse and one simplex for 

each population member converged from days (3-4) to hours (-< half a day) . 

The graph of wall-clocked t ime vs. the number of processors is shown below. 

TIme in 
HH: MM:SS 

144:00:00 

1 
120:00:00 1 

96 :00:00 l 
72:00:00 1 
48:00:00 11 

24 :00:00 

Performance Improvement 

08 :19:33 

0 :00 :00 +I----,------.-----r----.------. 
o 10 20 30 40 50 

- Performance Improvement Numberof Proce.ssors 

Figure 5.9: The performance improvement using OpenMPI on Opteron­
based cores hosted on Hound cluster. 
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Chapter 6 

Conclusion and Future Work 

As can be seen from the numerical results , the differential evolution ap­

proach give refineries the choice of multiple blend recipes against same cost 

value. They can choose a solution that best suits their current condit ion at 

no or very little addi tional cost. For example, it can choose to use a recipe 

that preserves usage of Alkylate for its octane value. These solutions main­

tain the physical characteristic of the gasoline, and costs the same (or in a 

chosen margin) over a given time horizon. This approach of having mult i­

ple solutions by calculating blend amount of gasoline in every t ime period 

over a given time horizon gives an important unexplored facet of the nature 

of the problem. The algorithm will be enhanced to accommodate multiple 

objectives (e.g. preserve components); improve resource allocation strat­

egy(e.g. mult i-product swing tanks , blender allocation and scheduling etc) 

and will be parallelized using Openi\tIP for a possible better performance. 
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Appendix A 

Software Engineering 

A.I Software Development 

As mentioned in the introductory chapter a multi-tier software (client­

server architecture) was developed to help users solve process system net­

works to improve productivity and efficiency. A relational database model 

was developed to store and retrieve persistent information related to the 

system. Efforts were made to keep all the information data-driven to elim­

inate any information assumptions. A team of 5 people was involved at 

various layers (or sub-layers) as can be seen in the Figure A.I. The purpose 

of this software, implementation overview and future work in this regard 

will be discussed in this appendix. 
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Figure A.l: Mult i-Layered Software Implementation for Generating, Solv­
ing and Report ing of Process System Mathematical Models 
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The Software development and management tools used can be seen are 

shown in figure A.1. Some additional Software Productivity tools used are: 

Subversion Software Code Management and Version Control Server. 

VS 2008 Professional Edit ion Integrated Development Environment 

VisualSVN TortoiseSVN-based add-in for VS2008 

.NET 3.5 Framework C# Application Programming Interface 

Bugzilla Bugs and issue tracking 

Scrumworks Agile-based, Scrum Software Management Tool 

Microsoft SQL Server 2008 Relational Database NIanagement System 

Windows 2008 Server Windows-based server for Software Development 

Visual Paradigm RelaLional Database Designing Tool 

LINQ Language Integrated Query (.NET 3.0+ ) 

Languages Used C,C++, C#, XML, ASP etc. 

This project was managed by a Incremental Agile Software Development 

methodology called Scrum. The tasks were identified and distributed to t he 

members, who decomposed them into smaller tasks of 8 hours result ing in 

40 hours of weekly t ime. 

Software version controlling was done using VisualSVN (client) and Sub-

version (server) . Issue tracking is being done by Bugzilla. Object Rela-

tional Mapping was used to query t he database and Microsoft 's . ET 3.0 

Language Integrated Query which uses lambda expressions was used. The 

entire Project was divided into 3 main parts : 
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1. Mappings: Defini t ion of all t he classes t hat were mapped to the 

database. 

2. Except ion: Definition of all the possible exceptions: information in 

the database , input provided by the user etc. 

3. Engine: The code that generates equations, variables, coefficients 

along wit h the files for the solver . 

4. Test Process System: Testing for heat exchanger Network synthesis 

and gasoline blending problems. 

As can be seen in Figure A.l , the software is a multi- tiered application 

with separation of all 3 layers: business, presentation and persistence. The 

back end uses Microsoft SQL server Express 2008, while the front end was 

developed using web-based technologies like XAML, ASP. NET etc (please 

refer to figure A.l for the person to contact). The business logic was mainly 

written in C#, ~IIicrosoft 's Object Oriented language. The above mentioned 

four items were written C#. However , the solvers were all implemented 

in native languages of C and C++ (please refer figure A.I for details). 

Tremendous amount of t ime was spent in designing the database model, 

especially for t he definit ion of generalized node models, referred to as Node 

Templates. 
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A.2 Database Model 

Problems like Heat exchanger Network Synthesis and Mult i t ime Period 

Gasoline Blending have thousands of equations, variables and constraints. 

Keeping t rack of these variables and their values is a mammoth task. Back 

tracking errors, coefficient accuracies, data input validation is like finding a 

needle in haystack. Not only a need to generate these equations , variables 

with easier data validation in an automated fashion was recognized but also 

t he need to manage the models with ease was required. A database was 

designed to define a generic form of each kind of equation , variable and 

coefficient that belonged to the node. Streams are defined as belonging to 

a node's port with each stream carrying a set of physical properties with 

it called as Stream Property Set. Non-linear equations were handled by 

solving bilinear t erms in different phases called as Calculation Phases or by 

external function calculation. 

A.3 Generalized Node Models (Templates) 

In order to define a model every equation, variable and coefficient were 

identified to belong to a node. The streams in the topology were identified 

to belong to the node. The position of the stream was defined by the kind 

of port it was attached to e.g . INLET,COLD_OUTLET etc. 

Every stream belonged to tvvo nodes - the start node, from where is 
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originates and the end node, where it terminates. These two streams are 

distinguished by an internal connector. So, every stream that originates in 

a node would terminate in a connector node, and the one that originates 

in the connector node terminates in a node. The properties of these two 

streams are connected by the PROPAGATE equations around the connector 

node, which equates the physical property in the connector nodes incoming 

stream to its outgoing stream. 

A.3.t Node Templates 

Every Node that a user can create has a Node Template attached to 

it. At a database-level this is a unique integer number and is referred to 

as Template ID. A node can have more than once Template ID but a node 

instance can be attached to at most one Template ID . 

TEMP_ID Node Type Template Description 

9 TANK Single Outlet Tank 

16 TANK Tank with Multiple Outlets 

10 BLENDER Blender with Volumetric inlets. 

17 BLENDER Blender with Fractional inlets. 

2 HEAT _EXCHANGER Heat Exchanger Template 

Every Node Template has a Node Equation Template (NET) - defining the 

set of equations that it contains and a bunch of Node Variable Template 

(NVT) which are attached to Node Template and Node Equation Tem-

plate. Each variable or equation is defined by five column properties that 
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help identify the variable or equation uniquely. This five column defini t ion 

makes the definition of t he RHS of an NET and Coefficient of an NVT to 

be generically defined. The three Template tables are linked by ID 's as 

illustrated in figure. 

MST_TEMP _LIST MST_TEMP _ EQUATION 

PK TEMP 10 ..... PK,FK1 TEMP 10 
~ PK gQJQ 

EQUIP_TYPE 
TEMP_NAME EQ_NAME 

EQ_TYPE 
OBJECT 
VAR_TYPE 
VAR_NAME 
VAR_SUBSET 
VAR_SET 
RHS_RELN 
RHS_OBJECT 
RHS_VAR_SET 
RHS_VAR_SUBSET 
RHS_VAR_TYPE 
RHS_VAR_NAME 

~~ 

MST_TEMP _EQ_VAR 

PK,FK1 TEMP ID 
PK,FK1 gQJQ 
PK VAR 10 

VAR_OBJECT 
VAR_TYPE 
VAR_SET 
VAR_SUBSET 
VAR_NAME 
OOF 
COEFF _VAR_SET 
COEFF _VAR_SUBSET 
COEFF _ VAR_ TYPE 
COEFF _OBJECT 
COEFF_NAME 
OPERAND 
SIGN 

Figure A.2: Relationship amongst Template Tables 

93 



M.A.Sc. Thesis - S. Kulkarni McMaster - SeES 

A.3.2 Node Equation Templates (NET) 

As mentioned previously every equation belongs to the node. A node is 

attached to a Model ID which is a set of equations of different types. Every 

equation has a right hand side as well as set of variables and coefficients. 

A node can have multiple lVIodel ID 's with each model consisting different 

set of equations to solve the node. A user can attach atmost one Model 

ID to a node instance as well as choose the type of equations from it that 

he would like to generate and solve. This gives user the flexibility to use 

already existing models and not go through t he pain of redefining them. 

A generic equation or Node Equation Template ( ET) defines a type of 

equation and its RHS . NET has the following structure: 

Field 

TEMP_ID 

EQ_NAME 

OBJECT 

Descript ion 

An integer value uniquely ident ifying the model number 

and node to which this equation belongs to. 

An integer value uniquely identifying an equation in a 

N ode Template. 

Name of the Equation 

The object to which this equation belong to . NODE 

itself or STREAM belonging to the node. 
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The type of variable to which this equation belongs to. 

e.g BULK, QVOL. This depends on the VAR_NAME and 

it 's VAR_TYPE defined in the Master Physical Property 

Table. 

The Variable or property for which this equation is being 

defined for. e.g MFLOW, DENSITY, VOLUME etc. 

This is t he subset of the set to which this equation be­

longs to. The use of this column is reserved for future. 

If the OBJECT is STREAM, then this column will iden­

tify the port of the node e.g INLET, OUTLET etc. If 

the OBJECT is NODE, this column will contain SELF 

indicating that the equation is for node itself. 

The Relationship of th equation with is RHS. Can be 

EQ (=), LE (:::;) , GE (:::~) etc. 

RHS_VAR_SET Determining the Variable set of the RHS 

RHS_VAR_SUBSET Variable subset of the RHS. 

RHS_VAR_TYPE Variable type of the RHS. 

RHS_NAME Name of the RHS Variable (whether the RHS value is 

constant or a variable defined or calculated previously 

is identified by RHS_OBJECT). 
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Same as OBJECT but now it defines t he RHS. This value 

is a SIMPAR (meaning simulation parameter) if the 

RHS is a constant (like ZERO) or a simulation param­

eter (like dt , length of each time period). This column 

can have a value FUNC, indicating that the RHS is calu­

lated by an external function. 

A.3.3 Node Variable Templates (NVT) 

Every equation defined in an NET for a Node has bunch of Node Vari­

able Templates (NVT's). NVT 's are generic definition of variables and 

coefficients that belong to a given NET. A coefficient can be defined as a 

simulation parameter , a constant like unity, or as a variable that has been 

calculated in some previous phase. If an NET is expanded for an instance 

of a node, the corresponding NVT's are also expanded. Combination of 

an instance of equation, variable and coefficient, generated from a an NET 

and its NVT's creates a matrix entry. The structure of an VT is as follows: 
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Field 

TEMP_ID 

OBJECT 

Description 

An integer value uniquely identifying the model number 

and node to which this variable belongs to. 

An integer value uniquely identifying this NVT's NET. 

An integer value uniquely identifying the NVT in a 

(Node Template, NET). 

The object to which this NVT belongS to . NODE itself 

or STREAM belonging to the node. 

The type of variable to which this NVT belongs to. e.g 

BULK, QVOL. This depends on the VAR_NAME and it 's 

VAR_TYPE defined in the Master Physical Property Ta­

ble. 

The Variable or property for which this NVT is being 

defined for. e.g MFLOW, DENSITY, VOLmdE etc. 

This is the subset of the set to which this NVT belongs 

to . This column was used to identify the t ime periods 

in Time period connectivity Equations. 

If the OBJECT is STREAM, then this column will iden­

t ify the port of the node e.g INLET, OUTLET etc. If 

the OBJECT is NODE, this column will contain SELF 

indicating that the equation is for node itself. 
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DOF Degree of Freedom. Identifies if this variable is fixed 

(FIXED) or calculated (CALC). 

COEFLVAR_SET Determining t he Variable set of the Coefficient. 

COEFF _ VAR_SUBSET Variable subset of the Coefficient. 

COEFLVAR_TYPE Variable type of the Coefficient. 

COEFF _OBJECT Same as OBJECT but now it defines the Coefficient. This 

value is a SIMPAR (meaning simulation parameter) if 

the RHS is a constant (like ONE) or a simulation pa­

rameter (like dt , length of each t ime period). 

COEFF_NAME 

OPERAND 

1 arne of the Coefficient Variable (whether the Coeffi-

cient value is constant or a variable defined or calculated 

previously is identified by COEFLOBJECT). 

The binary operation to perform between t he variable 

and the coefficient (e.g. MULT for multiplication) 

SIGN The sign of the Coefficient. Can be 1 or -1. 

A.4 User Input 

Before invoking the engine to generate equations, variables and matrices, 

user needs to define the process system. A complete set of process system 

is definit ion of six tables. An internally generated, Process System ID is 

assigned whenever a new process System ID is created. This is the unique 

98 



M.A.Sc. Thesis - S. Kulkarni Mc laster - SCES 

ident ifier t hat links t he information of t he process system spread across t he 

tables in the database. 

The user needs to begin by defining the topology, models to use for t he 

node, init ial parameters and Stream Property Sets. The information that 

needs to be provided is explained t he subsequent sub-sections. 

A.4.1 NET _NODE_MODEL and NET_TOPOLOGY 

The Nodes and Streams form the terminals and arcs for a process system 

topology. Every node and stream is defined by model and property sets 

respectively. Node Models are the Templates discussed in previous sections; 

while the Property Sets describe the physical characteristics of the stream. 

Nodes 

Every node is defined by its name and the Template ID to use. This in­

formation is populated in the ET _NODE_MODEL table. Every node model 

in this table has parameters (e.g. Capital Cost , Area, Volume etc.) associ­

ated with it . This information is stored in the AMSLEQUIP _PARAM table 

along with the process system's initial conditions (input data), if any. 

Streams 

Each stream is uniquely defined by its name and its start node and 

end node. Each stream has physical properties associated with it - density, 

temperature, specific heat, flow , volatility etc. A set is defined by t he 

user that can be customized by adding or removing the process system's 
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relevant or irrelevant properties to the stream. Such a set is called as Stream 

Property Set. A Stream with its name, terminal nodes and the property set 

to which it belongs is stored in the NET _TOP OLOGY. The elements (i.e the 

physical properties) of this property set are defined in t he AMST _PROP _SET. 

A.4.2 Calculation Phases 

The user chooses from the NT the set of all the equations t he process 

system needs to solve to solve. From these models he can fi lter equations 

that he will be using. The order of how these equations are to be evaluated 

is also important. Say, user would like to solve MASS_BALANCE equations 

before the ENERGY.J3ALA:\CE equations since t he coefficient in a later 

phase is a variable that needs to be calculated before , in the earlier phase. 

Both of these information is supplied in the AMST _CALC_PHASE table, where 

each EQUATION_TYPE has a number 1..n associated with it - the iteration 

in which they are to be solved. More than one type of equations can be 

solved in one phase. (visa-a-versa is not possible). 

A.4.3 Simulation Parameters 

Any simulation parameters t hat the Process System has are defined in 

AMST _SI},iLPAR. 

Further fi ltering of the stream equations can be done by omitting the 

properties in the Stream Property Set. For example a model may have 

stream equations for temperature and density. However , if a process sys-
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tem is not concerned about the density of t he stream, any equations wit h 

VAR_NAME density will not be generated since the property set of the 

stream does not contain density. This is true even if the equation type of 

such an equation is a calculation phase in the system. 

A.5 Matrix Generating Engine 

After all the necessary information is filled up t he engine will gener­

ate instances of equations, variables and matrices for each node and its 

streams. This information is stored in the NET _EQUATIONS , NET _ VARS and 

NET _MATRIX tables. This makes the entire model persistent and experi­

menting with varying numerical values is only the matter of updating t he 

AMST _EQUIP _PARAM . 

A.6 Solver File Format 

The information is shared with the native solvers in an ASCII File For­

mat. This information consists of Matrix A, RHS b and the variable vector 

X in the equation AX = b. All the variables are given away to the solver , 

with their init ial values, and bounds. The solver updates these values after 

each phase of evaluation before returning the final ASCII solution file to be 

stored in the database for analysis. In all five file ASCII Files are sent to the 

solver . The names and formats of these files are shown in figure A.3 . The 

explanation of some of the fields is in the t able below. The ent ire process 
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of generating matrices and solving them using this software is summarized 

in figure 1.4. 

Field Name 

RUNID 

GLOBAL VAR NO 

LOCAL VAR NO 

GLOBAL EQ NO 

LOCAL EQ NO 

PHASE NO 

Descrip tion 

The run number. 

Global Variable Number. This is unique identifier of a 

variable over the entire process system (i.e. 1..n phases) 

Local Variable Number. T his is a unique identifier of a 

variable for t he given phase. This identifies the column 

of a matrix. 

Global Equation Number - a unique identifier for an 

equation over the entire process system. 

Local Equation Number - unique identifier of an equa­

tion (row number of a matrix) for the given phase. 

The calculation phase to which the equation or matrix 

entry ([equation, variable , coefficient]) belongs. 
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RHS VALUE TYPE This is used to interpret the value column in the rhs.aeg 

file. If this column has "0" , the value column defines the 

RHS value itself. If if is >- 0, the value of the RHS is is 

value of the variable with that global variable number. 

If it is a string then the RHS value is calculated by a 

function of similar name. 

COEFF VALUE TYPE This column of abig.aeg, has similar meaning for coeffi-

cients as the RHS VALUE TYPE has for the RHS. 
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-------------------1 
xbig.aeg & xbase.aeg 

INT I INT DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE l+- File Name 

+- Data Type 

RUN D I GLOBAL 
SOFT SOFT HARD HARD 

VALUE LOWER UPPER LOWER UPPER 
I IVAR NO. 

BOUND BOUND BOUND BOUND 
J-- ASCI I File Field 

xbase.aeg and xbig.aeg conta in the initial values of t he variables The values of 
variables in xbig. aeg are updated after every phase is solved. The va lues of the 
co-effic ient are also obta ined f rom t his fi le(s) . 

rhs.aeg I File Name 

I 
INT 

I 
INT INT INT DOUBLE STRING STRING(2) Data Type 

RUNID IGLOBAL LOCAL EO PHASE RHS 
RHS 

VALUE RELATION 
I EONO. NO. NO. VALUE 

TYPE 
ASCII File Field 

This fil e is used to form the RHS vector, b 

abig.aeg l 

INT INT INT INT INT INT :DOUBLE CHAR 
SIGNED 

BOOL STRI NG 
INT 

LOCAL GLOBAL PHASE LOCAL GLOBAL ! 
COEFF 

RUN ID 
EONO. EONO. NO. VAR NO. VAR NO. ! 

VALUE OPERAND SIGN DOF VALUE 
TYPE 

This fil e is used to form the LHS matrix, A 

Data Types 

., 

~ r-
./ 

eqlist.aeg l l+--- File Name 

~ Data Type 

DOUBLE : Double Precision Floa ting Point 
INT: Unsigned Integer 

INT STRING 

GLOBAL EOUATION 
EONO. NAME 

STRING 

PROPERTY 
NAME 

}-- ASCII File Field 

CHAR: Character 
SIGNED INT: Signed Integer 
BaaL: Boolean (0 or 1) 

File Name 

Data Type 

ASCII File 
Field 

This fil e has the list of all the equat ion names and is used for debug purpose. 

va rlist.aeg I 

INT STRING STRING 

GLOBAL VARIABLE NODE 
VAR NO. NAME NAME 

~ File Name 

b Data Type 

J.-- "'" "', "," 
This fil e has t he list of all t he variab le names and is used for debug purpose. 

Figure A.3: ASCII File Specificat ion for Solver Interface 
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Appendix B 

List of Variables 

Variable Description 

I Total qualities 

G Total Products 

K Total Components 

T Total Time Periods 

dt Length of time period 

Vin,k,j,t Incoming Volumetric flow for blender g from component k in t ime t 

Vout ,k ,j ,t Outgoing Volumetric flow for component k in blender g in time t 

Ck Unit cost of component k 

Vopen ,g,t Opening Volume of blender g in time t 

Vout ,g,t Outgoing volume for blender g at time t 

Vclose,g,t Closing Volume of blender g in t ime t 
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Q open,i ,g,t Opening quality i of blender g in time t 

Vblend,g,t Volume blended in time t in blender g 

f k t Fraction of Component k used to blend product in blender g in t ime t ,g , 

Q i,g,t Calculated quality i of product g in time t 

F out ,g,t Demand for product g in time t 

F in ,k ,t Supply for component k in t ime t 

Q i ,k ,t Quality i for component k in time t (assumed constant for all t ime periods) 

v"lose ,k ,t Closing inventory of component k in time t 

Vopen,k ,t Opening volume of component tank k in t ime t 

Vk ,min Minimum volume specification for tank with component k 

Vk ,max Maximum volume specification for tank with component k 

Q . . Minimum specification for quality i for product in blender bO" ~ , g,m'ln 

Q i ,g,max Maximum specification for quality i for product in blender g 
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Appendix C 

List of Abbreviations 

Abbreviation Description 

ALK Alkylate 

BUT Butane 

REF Reformate 

HCL hcl 

HCN Hydrocarbons 

LNAP Light Naphtha 

LCN Light Cracked N aphta 

RO Research Octane Number 

MON Motor Octane Number 

ARO Aromatic 

BEN Benzene 
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SUL 

SPG 

OLE 

RVI 

AEG 

DE 

LP 

EP 

SMP 

UMA 

NUMA 

cc-NUMA 

MPI 

TLS 

POSIX 

GLPK 

NT 

NET 

NVT 

ASCII 

Sulfur 

Specific Gravity 

Olefin 

Reid Vapor Pressure 

Auto-Equation Generator 

Differential Evolut ion 

Linear Programming 

Embarrassingly Parallel 

Symmetric Mult i Processor 

Uniform Memory Access 

Non-uniform memory access 

cache coherent Non-uniform memory access 

i\lIessage Passing Interface 

Thread Local Storage 

Portable Operating System Interface for Unix 

GNU Linear Programming Kit 

Node Template 

Node Equation Template 

Node Variable Template 

American Standard Code for Information Interchange 
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