
J ory: A Tool for Feature Modelling
Based on Product Families Algebra and BDDs

By

FADIL ALTURKI, B.Se

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Applied Science in Software Engineering
Department of Computing and Software

McMaster University

© Copyright by Fadil Alturki, March 18, 2010

11

MASTER OF SCIENCE (2010)
(Computer Science)

TITLE: Jory: A Tool for Feature Modelling
Based on Product Families Algebra and BDDs

McMaster University
Hamilton, Ontario

AUTHOR: Fadil Alturki, B.Sc (King Fahd University of Petroleum and Minen

SUPERVISOR: Dr. Ridha Khedri

NUMBER OF PAGES: xii, 110

III

Abstract

Feature models are commonly used to capture the commonalities and the vari

ability of product families. There are several feature modelling notations that

correspondingly depict the concepts of feature modelling techniques. Therefore,

the tools based on them reflect this diversity in the notations used and the fuzzi

ness of the concepts adopted.

The thesis discusses the design and the construction of a tool that is based on

Product-Families Algebra (PFA) and on Binary Decision Diagrams (BDD). The

first brings the mathematical formalism to the specifications of product families

and the mathematical theory that enables calculations on feature-models. The

second brings efficient algorithms in time and in space. Hence, the tool allows

several algebraic manipulations of feature models that are specified within the

language of PFA. We coined this tool Jory.

The main contribution of the thesis is the design of the tool, and the imple

mentation of four layers of its architectural design. As well, the thesis gives an

implementation of multi-sets and the operations on them using BDDs.

Several case studies are presented and used in the validation of the tool.

IV

Contents

List of Figures

List of Tables

1 Introduction

1.1 Problem .

1.2 Motivation.

1.3 Contribution.

1.4 Thesis Organisation .

VIll

x

1

6

7

8

10

2 Feature Modelling Techniques and Tools 11

2.1 Graphical Feature Modelling Techniques 11

2.1.1 Convergence Between Feature Modelling Techniques. 12

2.1.2 Divergence Between Feature Modelling Techniques 14

2.2 Non-graphical Feature Modelling Techniques 16

2.2.1 Product Family Algebra . . . 17

2.3 Tools Supporting Feature Modelling. 24

3 Product Family Algebra Implementation Using BDDs 27

3.1 Introduction to Binary Decision Diagrams 27

3.2 Implementing Product Family Algebra using BDDs 30

v

vi

3.3

3.2.1 The Implementation of the Set-Model.

3.2.2 The Implementation of the Bag-Model

Conclusion.

4 System Design

4.1 Architectural Design

4.2 Detailed Design ...

4.2.1 The Interface Layer .

4.2.2 The Translation Layer

4.2.3 The Term Evaluation Layer

4.2.4 The Concrete Models Layer

4.2.5 The BDD Layer

4.3 Major Decisions, Capabilities, and Future Extensions

5 Testing and Validation

5.1 Testing Techniques Adopted

5.1.1 Unit Testing

5.1.2 Integration Testing

5.1.3 Parallel Testing . .

5.1.4 Acceptance Testing

5.2 Validation Examples ...

5.2.1 The Employee Self Service

5.2.2 The Robot Example . . .

5.2.3 Other Validation Remarks

6 Conclusion and Future Work

6.1 Contribution.

6.2 Future Work.

CONTENTS

30

33

42

45

45

47

48

49

49

53

54

60

63

63

63

64

65

65

66

66

70

74

75

76

77

CONTENTS vii

A FM Techniques Notations and their corresponding PF A Expres-

SIOns 79

B Robot Example Results 89

viii CONTENTS

List of Figures

1.1 Bicycle Feature Model in FODA . 3

2.1 Bicycle Feature Model in FODA . 14

2.2 AND-composition in FORM ... 21

2.3 XOR-decomposition in FeatuRSEB 21

2.4 OR-decomposition in FeatuRSEB . 21

2.5 Mandatory and Optional Features in PL USS 21

2.6 AND-Composition of a,b,c,d in FeatuRSEB 22

2.7 XOR-Decomposition of e,f,g,h in FeatuRSEB . 22

3.1 The BDD of f /',. x V 'y A z 28

3.2 The BDD for the set S 29

3.3 The empty BDD ... 31

3.4 The BDD corresponding to PI 31

3.5 The BDD corresponding to P2 32

3.6 The BDD corresponding to the product in X. 32

3.7 The BDD corresponding to Pw in W 34

3.8 The BDD corresponding to Pz in Z 35

4.1 Architectural Design 46

4.2 A Snapshot of the Interface of J ory 48

IX

x

4.3 The Term Evaluation Layer

4.4 Concrete Models' Layer and the BDD Layer

LIST OF FIGURES

50

54

List of Tables

A.l FODA elements and the corresponding PFA expressions. 81

A.2 FORM elements and the corresponding PFA terms ... 82

A.3 FeatuRSEB elements and the corresponding PFA terms . 83

A.4 van Gurp elements and the corresponding PFA terms 84

A.5 Riebisch elements and the corresponding PFA terms . 85

A.6 PLUSS elements and the corresponding PFA terms 86

A.7 Feature Modelling Notations and the Corresponding PFA Terms 87

Xl

xii LIST OF TABLES

Chapter 1

Introduction

This thesis is on the design and the implementation of a tool for product fami

lies. The tool implements an algebraic feature modelling technique that is based

on Product Families Algebra (PFA) [HKM09]. The thesis aims to extend the

benefits of the various available feature modelling techniques used for handling

product families, and empower them with mathematics for specification, analysis,

calculus, and inference.

In this chapter, we introduce the basic concepts related to this work and

illustrate them with simple examples. We introduce feature modelling using

FODA [KCH+90] - a graphical feature modelling technique. We then present

feature modelling using PFA. We follow with the problem we need to tackle, the

motivation, and the contribution of this work.

In the automotive industry, cars are manufactured in product lines. A year's

model, can be seen as a product family. The members of the car family are built

from basic components or artefacts that are sometimes called features. Usually,

the members of this family have one or more prototype family members from

which they are derived. A prototype member contains the aggregation of what

is called the commonality features. The products are differentiated by what is

1

2 1. Introduction

referred to as the variability features. In the car product family, all the members

have engines, transmission systems, and many other common features. However,

some of these cars (products) derived from a prototype, are distinguished by

having powered windows and doors. Yet, other cars are distinguished by having

advanced audio systems and GPS systems.

The concept of product families is adapted in Software Engineering. It is

sometimes referred to as Software Product Lines (SPL) [KDn06]. A software fam

ily example can be a set of editions of an operating system. The set of operating

systems can be modelled as a family, where we have editions for personal com

puters; for those with 32-bit and those with 64-bit architectures. We can also

have editions for servers with 32-bit and 64-bit architectures, and editions for

netbooks and older machines. One way to analyse and build such a hierarchy is

using Feature Modelling.

Feature Modelling (FM) is an approach to capturing software families in terms

of features. The outcome of the process of feature modelling is a feature model.

There are several FM techniques and most of them produce graphical feature

models. One PM technique is FODA which was introduced in 1990 [KCH+90].

There are other FM techniques used like FORM [KKL +J, FeatuRSEB [GFd98J,

Generative Programming [Cza98] (GP) and PLUSS [EBB]. For the graphical

FM techniques, a feature model is a graphical representation of a product family

where the vertices correspond to the basic or composite features and the edges

corresponds to the relationships between them.

Consider a factory producing bicycles. Looking at the basic parts of a bicycle,

we see that it consists of a frame set, a wheels set, a front set, a saddle set, gears,

pedals, and brakes. Every part of these consists of a set of components as laid

out in the FODA feature model of our bicycle product family given Figure 2.1.

In FODA, we call the root node, a concept and we enclose it in a box. The

1. Introduction

Pedal Set Chain Set

cra~ A
/ch:in Saddle Set

Chain Rings

Wheels Set """~
HU~re

ili / spo~es I

Seat Post

Rim

Frame

Break Set

Down Tube A.
Seat Tube / ""-

3

Front Set

Shock Absorber

Gears set

~'iII'",G""
Hub Gears

Rear Brakes Front Brakes

Figure 1.1: Bicycle Feature Model in FODA

concept node is the bicycle in our case. Every node is a feature. A feature can

be primitive or compound. The top_tube is a primitive feature while the frame is

compound. We denote that the frame is composed of the features underneath

(the different tubes) by using the AND-composition notation. It is denoted by

the edges coming out of the frame node. When we have alternatives, we use the

XOR-composition like in the case of the gears. The gear system selected has to

be one and only one of the two types of gears. The XOR is denoted in a similar

way to the AND but with an arc crossing the edges.

A feature can be mandatory or optional. The saddle is a mandatory feature

while the seat-post is optional. We show that a feature is optional using a blank

circle on the node. Constraints exist in feature models. In some cases, we will

need to state that a feature requires another feature or a feature is mutually

exclusive with another. In FODA, constraints are expressed in text.

4 1. Introduction

FODA has been adapted and extended by other FM techniques [SHTB07].

There are several graphical notations introduced to accommodate new concepts

and semantics. FeatuRSEB supports the OR relation. In FORM and FO

PLE [KLD02] techniques, features are depicted inside boxes. van Gurp [vGBSOI]

technique represents features with different box styles to express internal

features and external features. Riebisch [RBSP02] technique adapts use-case

terminologies and UML notations. GP takes into the consideration the number

of occurrences of a feature in a family and grouping features and assigning an

occurrence to them. While FODA, FORM and GP state the constraints in text,

van Gurp and Riebisch express them graphically using dashed lines with labels.

In Chapter 2, we provide a thorough survey of the literature of the FM techniques.

There are several attempts to extend these techniques in another perspective.

The above extensions are concerned with the specification of product families

using graphical notations. But there is always a need to express complex con

straints. For example, we can have a constraint which states that in a product,

the selection of a feature requires the selection of another feature to exist within

a range of the number of occurrences. In the cases of such constraints, we

sometimes need to verify whether a product considered faulty or undesirable.

Such needs lead to introduce propositional logic into the context [Bat05] and the

use of Prolog in Pure:: Variants [PurIO]. We also need to perform validations

and calculations. We need to know the answers to questions like, how many

potential products of bicycles based on the feature model we have are there, or

how similar two products are.

The above FM techniques are graphical. As far as we know, there is only

1. Introduction 5

one non-graphical FM technique which is Product Families Algebra (PFA). One

of PFA aims is to provide a means for the specification of product families

algebraically. This extends the feature modelling with calculus, analysis, and

inference.

PFA is an algebraic structure, that is an idempotent commutative semiring

(8, ., +,0,1). We formally present PFA in Chapter 2. Intuitively, we say, 8 is the

set of all the product families, . is a binary operation interpreted as composition

or mandatory presence, + is a binary operation interpreted as choice, 0 is a

faulty product family, and 1 is the empty family.

We can specify the pedal-set in PFA as pedal-Bet = pedal· crank. This states

that the pedal-set is composed of a pedal and a crank. These two features are

mandatory to every pedaLset.

We can specify the saddle_set as saddle_set = saddle· (seat-post + 1). This

states that the saddle_set is composed of a mandatory saddle and an optional

seat-post. We express that a feature f is optional using the plus + and 1, and

we write (f + 1); the choice of the feature or nothing. For the gears_set, we write

gears_set = hub_gears + derailleuLgears. This states that we can choose either one

ofthe gear sets, but not both at the same time (i.e., it gives a way to write XOR).

We introduce PFA formally in Chapter 2 with larger examples and show

more capabilities like product refinements and constraints.

With PFA, we can also do calculus on features and products. We can know

the potential number of possible products, the number of products that have

a combination of features but not another combination. In addition, we can

6 1. Introduction

validate product families, simplify them, and combine them. We can infer

information from the specification such as whether a family is a subfamily of

another, or whether a product refines another.

For the support and feature modelling, several tools were implemented.

However, they are mostly concerned with the graphical FM techniques. Some of

the tools are: AmmiEdi [GenlO], CaptainFeature [SoulO], FeaturePlugin [AC04] ,

Pure:: Variants [Pur 1 0]' RequiLine [vdML04], and XFeature [XFelOj. For PFA,

there is only a prototype tool implemented in Haskell [HKM06].

1.1 Problem

Feature modelling tools support mostly one FM technique or their proprietary

notations [DSF07]. They do not have a way to convert from one notation to

another. In some cases, they add some extensions and new concepts that are

not part of the supported technique or not part of feature modelling concepts

like what we found in Pure:: Variants [PurlO] and RequiLine [ReqlOj. Some of

the tools are not fully dedicated to feature modelling but feature modelling is a

sub-functionality of a CASE tool like CASE-FX [FAC07j.

Furthermore, feature models have the advantage of the visualization of

product families. However, the visualization feature is by itself a problem for

large systems and hard to utilize for calculation, analysis and inference.

PFA is a formal FM technique that extends feature modelling with mathemat

ical capabilities. Our work intends to provide the design and the implementation

1. Introduction 7

of a tool based on PFA that contribute to feature modelling and extend the

other FM techniques and their benefits.

1.2 Motivation

PFA defines the concepts of feature modelling mathematically for the pur

pose of handling product families precisely and rigorously. For instance, it

explicitly defines the terms product, family and feature in the context of

product families. This helps avoid the ambiguity found in the graphical FM

techniques where features sometimes are primitive, and sometimes are compound.

PFA is an idempotent commutative semiring. It inherits all the benefits of

this algebraic structure and the benefits of the mathematical models it imple

ments such as sets and bags. Furthermore, PFA provides compact specifications

of product families - we refer the reader to Section 2.2.1. With this and the above

benefits, it can be used for large and critical systems. Given the specification is a

set of algebraic formulas, they can be manipulated and processed mathematically.

PFA can also extend the graphical FM techniques. A feature model can be

translated from its graphical notation to the language of PFA. We can then

simplify the specification, factorize it, merge it with another before translating

the result into a graphical feature model. In this case, we can also search for a

product family, count the number of products satisfying certain conditions, or

find the size of a certain family.

As we can translate from a graph notation to the PFA language, we should

8 1. Introduction

be able to translate from an FM technique notation to another via PFA. We

should be able to translate from FODA to PLUSS for example. This makes PFA

work as a bridge between the various FM techniques.

For the problem of the visualization of large product families, we can extract

sub-graphs of interest from a feature model, encoded in PFA, and show them

in a given FM technique notation. We should be able to customise the way

we display the feature model through grouping and selected product families

relationships.

The tool is not only an implementation of PFA and its basic operations, but

it can be an all-in-one platform that facilitates feature modelling and brings the

benefits of FM techniques together in one place.

1.3 Contribution

This thesis provides the design and implementation of the tool Jory for feature

modelling based on Product Family Algebra. The design aims to establish a

platform for bringing the benefits of feature modelling whether they are graphical

or non-graphical techniques in one place.

We have designed the tool in a layered architecture with separation of concerns

in mind. The layers can be managed, maintained and replaced independently.

We take into consideration the need to scale and extend the functionality and

incorporate new future concepts and techniques. We also aim to make the tool

cross-platform and serve all the audiences in the community of feature modelling.

1. Introduction 9

To handle large systems efficiently, we have implemented PFA using Binary

Decision Diagrams (BDDs). We implemented PFA for the set model and the

bag model in BDDs. Using BDDs, we encode the features in binary diagrams

and we use the efficient algorithms to perform PFA operations.

We parse and evaluate the user input of the specification of the product

family, and produce terms that can be then manipulated mathematically. The

terms and expressions generated can be then calculated, validated, analysed and

queried. We can then extract features, products, families, apply constraints, and

make assessments.

Using syntax-based translation, feature models can be translated from graph

notations to the language of PFA for processing or translation to other feature

models. Through this translation, visualizations can be customised. It can ease

the communication between groups that are using different FM techniques.

We have implemented the core part of the tool. We have implemented PFA

using BDDs with two models: a set model and a bag model. The bag model is

implemented to handle product families when feature duplication is required.

The tool is now capable of taking specifications of product families and is capable

of parsing and processing them. It can perform calculus, analysis and inference

on product families. The designed tool is seen as a a mathematically-based

platform for feature modelling bringing all the benefits of the current state of

the art techniques and practices, and extendible to new concepts and ideas.

10

1.4 Thesis Organisation
1. Introduction

In Chapter 2, we take a closer look at the graphical and the non-graphical FM

techniques and introduce PFA and its mathematical background. In Chapter 3,

we discuss the implementation of PFA using BDDs. In Chapter 4, we give the

architectural and the detailed design of the tool. The validation procedures and

the test results are given in Chapter 5. In Chapter 6, we conclude and point to

future work.

Chapter 2

Feature Modelling Techniques

and Tools

In Chapter 1, we introduced with simple examples, the basic concepts of feature

modelling. In this chapter, we explore the FM techniques and the tools we found

in the literature. We first study the graphical FM techniques and illustrate their

similarities and differences with examples. We then follow with non-graphical

FM techniques and present PFA in detail with illustrations. We conclude the

chapter with an overview of the tools found in the literature.

2.1 Graphical Feature Modelling Techniques

In our survey of the literature, we found the following techniques:

FODA [KCH+90], FORM [KKL +], FOPLE [KLD02], FeatuRSEB [GFd9S], Gen

erative Programming [Cza9S] (GP), FORE [Str04], Riebisch Technique [RBSP02],

van Gurp Technique [vGBS01] and PLUSS [EBB].

To have a good understanding of the graphical techniques, we first introduce

11

12 2. Feature Modelling Techniques and Tools

the terminology where they converge and follow that with where they diverge.

In Appendix A, we provide tables illustrating every FM technique notation.

For the comparison of the terminologies, concepts and graphical notations, we

refer to the FM techniques papers and to [DS06], [Kot05], [Rob03] and [SHTB07].

2.1.1 Convergence Between Feature Modelling Tech

niques

Looking at where they converge, we observe that all the FM techniques share the

concept of feature and feature model. They all use graphs (nodes and edges) to

represent their feature models. The nodes are the features and the edges are the

relations between these features. The term "feature" is ambiguous. It refers to

nodes. A node can be primitive, compound, a root or a leaf. The root node is

called a "concept" where it represents a set of of features. Internal nodes might

not be primitive. A node, which is still called a "feature", can be a combination

of other subsequent features.

Figure 2.1 gives the feature model in FODA of the bicycle example. The

concept node is the bicycle and it is the root feature. The nodes are features,

related by edges. The frame is a compound feature and the fork is primitive.

For the perspective of nodes, they all have the following concepts of:

• mandatory: a feature is mandatory if it must be selected in a product .

• optional: a feature is optional if can be selected in a product.

In our example of Figure 2.1, the break_set is a mandatory feature while the

shock_absorber is optional.

For the edges, all the FM techniques, except for Riebisch's, have the following

concepts of:

2. Feature Modelling Techniques and Tools 13

• XOR-decomposition: a relation from a feature x to a set of other features

such that x is composed of only one of the features of that set. It is some

times used to denote alternative features. In this case, a feature is selected

from a set of alternative features i.e. one and only one feature must be

selected .

• AND-composition: a relation from a feature x to a set of other features

such that x is composed of all of the features of that set. In this case, this

node, or feature, is compound.

In Figure 2.1, the gears_set is an XOR-decomposition of hub_gears and de

railleuLgears feature while the shock_absorber is optional. In this case, we have

to choose one of these features but not both at the same time for a gears_set. An

example of an AND-composition is chain_set where it is composed of chain and

chain_rings.

14 2. Feature Modelling Techniques and Tools

Front Set
Pedal Set Chain Set

cra~ A
/ch~in Saddle Set

Chain Rings

Wheels Set """~
HU~re

ili / spo~es I

Seat Post

Rim

Shock Absorber

Frame

Break Set

Down Tube A
Seat Tube / ""

Rear Brakes Front Brakes

Gears set

~""",G""
Hub Gears

Figure 2.1: Bicycle Feature Model in FODA

All the surveyed feature model techniques denote the dependencies between

features using constraints. Constraints could be on the following:

• requires constraint: it states that the selection of a feature x reqU'l,res a

feature y.

• mutex or excludes constraint: it states that the selection of a feature x is

mutually exclusive with the selection of a feature y. Either x is selected or

y but not both at the same time.

2.1.2 Divergence Between Feature Modelling Techniques

However, these FM techniques diverge in many ways. We present this diversion

with regards to the following perspectives: the overall feature model graphs,

nodes, edges and constraints.

From the perspective of the nature of graphs, the diagrams of FODA, FO

PLE, GP and PLUSS are trees. On the other hand, the diagrams of FORM,

2. Feature Modelling Techniques and Tools 15

FeatuRSEB, FORE, Riebisch's and van Gurp's technique are directed acyclic

graphs (DAGs).

From the perspective of nodes, in FOPLE and FORM, the nodes are depicted

in boxes. On all other FM techniques, they are depicted as textual names and

only the concept node is represented as a box. All FM techniques represent

the concept of mandatory and optional using nodes, except Riebisch's technique

which uses edges, instead. All other feature models - those using nodes - use

circles to represent optional features. Optional features are represented by blank

circles. Riebisch's technique and PLUSS use blank circles for optional features

and black circles for mandatory ones.

From the perspective of edges, most of the FM techniques represent XOR

and OR using edges except Riebisch's technique and PLUSS. Some techniques,

like FODA and FORM, do not have the OR. Riebisch's technique uses UML-like

multiplicities and PLUSS uses the concept of single adapter for XOR and multiple

adapter for OR.

For the constraints, FODA and FORM have their constraints written in text.

On the other hand, FeatuRSEB and other techniques represent them as textural

and graphical dashed arrows.

For the the concept of number of the occurrences of features, it is used only

in GP and Riebisch's techniques.

In van Gurp technique, there are some more differences to note. We find the

following concepts:

• binding times features: represented by solid-line boxes. In [vGBSOl], the

concept "binding times" is used to express the need for a delayed decision.

It takes into consideration the feature aggregations that happen at different

variation points of the software life cycle and these points are called "binding

times". We are concerned with this the time where a product is selected.

16 2. Feature Modelling Techniques and Tools

• external features: represented by dashed-line boxes. The "external" fea-

tures are those that are external to the system modelled and part of the

target platform. These are considered in van Gurp's technique because the

modelled family depends on them.

• XOR-decomposition: represented by a blank triangle.

• and-composition: represented by a black triangle.

In G P, there is the concept of the group of features and the concept of a

group cardinality. In GP, we can put a set of features in group and assign

it a minimum and maximum cardinality. This implies that for the selection,

the number of features selected in this group, should be in the inclusive range

between the minimum and the maximum.

The graphical and the textual notations of feature models, are illustrated

in Appendix A. In addition to notation illustrations and the usage, we also write

the corresponding PFA expressions.

2.2 Non-graphical Feature Modelling Tech-

.
nlques

There are several attempts to do feature modelling using means other than

graphs. In [DKDK02], they introduce a feature modelling language (FDL) which

is a textual language to describe features. In [HM85], they introduce a min

imal set of algebraic laws claimed to be sound and complete to be used for

feature modelling refactoring. [Bat05] combines feature models with proposi

tionallogic to debug them using satisfiability solvers. There is also the attempt

2. Feature Modelling Techniques and Tools 17

in [CHE05] where they specify feature models as context-free grammars. They

transform the language recognized by grammars and specify cardinality-based

feature models. There is also the attempts to express the constraints in Prolog

as in Pure:: Variants, or express them in tool-specific languages.

Another attempt is Product Family Algebra (PFA). PFA is an idempotent

commutative semiring devised to specify feature models. The theory derived

from PFA enables calculus and inference on product families. PFA can handle

the specifications, constraints, view reconciliation and other feature modelling

needs.

We choose this all-in-one technique for our tool as a kernel that can work

well with feature models, translations, transformations, calculus, and inference.

In the next section, we give an overview PFA and show how the various FM

notations are expressed in PFA terms.

2.2.1 Product Family Algebra

Product Family Algebra (PFA) was proposed to provide a formalism in which

feature modelling terms are defined precisely and software families are dealt with

mathematically. In this section, we define Product Family Algebra and introduce

its concepts and how it relates to the graphical FM techniques. The material in

this section is mainly from [HKM06, HKM08, HKM09].

Definition 2.2.1. ([HKM06]) A semiring is a quintuple (8, +, 0, " 1) such that

(8, +, 0) is a commutative monoid and (8, " 1) is a monoid such that· distributes

over + and 0 is an annihilator, i.e., O·a = 0 = a·O. The semiring is commutative

if . is commutative and it is idempotent if + is idempotent, i.e., a + a = a. In

the latter case, the relation a ::; b ~ a + b = b is a partial order (i.e., a reflexive,

antisymmetric and transitive relation) called the natural order on S. It has 0 as

18 2. Feature Modelling Techniques and Tools

its least element. Moreover, + and· are isotone with respect to :S. D

Product Family Algebra (PFA) is a mathematical algebraic structure that is

an idempotent commutative semiring.

For PFA, the universe of discourse is the collection of families. A product is

made up of an aggregation of features and a product family is a collection of prod

ucts. The operator + can be interpreted as the choice operator between product

families. On the other hand, the operator· can be interpreted as the composition

operator of product families. The + can be used to express optional features and

the. can be used to express mandatory features. With these two operators, PFA

can express the relationships found in the feature modelling techniques.

We go through the core concepts of PFA and illustrate with simple examples.

We start by defining what is a product family, a product, a feature and refinement.

Definition 2.2.2. ([HKM08]) A product family a is a product if

V(b I: b:S a=} b = 0 V b = a) and

V(b, c I: a:S b + c =} a :S b V a :S c) .

In particular, 0 is a product. A product a is proper if a =1= 0 D

Definition 2.2.3. ([HKM08]) An element a is called feature if it is a proper

product and

V(b I: bla =} b = 1 V b = a) and

V(b, c I: al(b· c) =} (alb Vale)) .

where the divisibility relation I is given by xly {:::::::} 3z : y = x . z. D

We say that this algebra is feature-generated if every element we have, is a

finite sum of finite products of features. In this case, the size of element a is the

minimum number n such that a = L Pi for suitable products Pi·
i<n

2. Feature Modelling Techniques and Tools

Definition 2.2.4. ([HKM06])

The refinement relation I;: on a product families algebra is defined as

a I;: b {:::=} :3(c IcE S : a:S b· c)

where :S is the natural order on S.

19

o

Informally, we can say that a product family a is said to refine another product

family b if a has the same set of features and more. This is expressed as a I;: b.

Intuitively, we say that the product a has the same features of b or more. And

we say that a family a refines another family b to mean that all the members of

a refine some of the members of b.

There are several models that can be given for PFA. Two useful models are

the set model and the bag model. We use the set model when our product families

are not concerned with multiple occurrences of features and we use the bag model

otherwise.

2.2.1.1 The Set-based Model

Let IF be a set of features. Then the set of all possible products is given by

IP def P(IF). We call the set of features, as in Definition 2.2.2, a product and

we call the set of products (an element of P(IP)) a product family. The 0 in this

model is defined as {} or 0, and the 1 is defined as {{}} or {0}.

The operation· on product families expresses the composition of features .

. : P(IP) x P(IP) -+ P(IP)

P . Q {p U q : PEP, q E Q} .

On the other hand, the operation + expresses the choice between products in

20 2. Feature Modelling Techniques and Tools

different product families.

+ : P(IP) x P(IP) --7 P(IP)

P+Q PUQ.

2.2.1.2 The Bag-based Model

If we need to handle multiple occurrences of features in a product, then we should

adapt multi-sets (bags) of features which is denoted by IPFB.

In this model, the 0 and the operation + are in the same way as those of the

set model. The 1 is defined as {{I ~} or {0B }.

However, we define the operation· on product families as the composition of

features .

. : P(IP) x P(IP) --7 P(IP)

p. Q {p U q : PEP, q E Q}

where U is the bag union. This is how we take into consideration the occurrences

of features in the bag model.XOR

Now, we give illustrative examples expressed in PFA terms and see how they

relate to the graphical feature modelling. Figure 2.2 is given using FORM nota

tion. This is an AND-composition of b, c and d. If we take this in the set model,

we express this in PFA with the sentence a = b . c . d. It states that the features

in the product a are mandatory, which is implied by the use of the· operation.

Figure 2.3 is an XOR-decomposition of the features b, c and din FeatuRSEB.

To express this in PFA, we write a = b+c+d. The + operation in this expression

implies that these are alternatives. To instantiate a product from the product

family a, only one of b,c and d should be selected.

A more interesting example is the OR-decomposition of b, c and d in Fea

tuRSEB in Figure 2.4. We write this in PFA as a = b + c + d + (b.c) + (b.d) +

2. Feature Modelling Techniques and Tools 21

(c.d) + (b.c.d).

Figure 2.5 is an illustration of a feature b that is optional and a feature c that

is mandatory. To express this in PFA, we write a = (b + l).c. The + operation

between band 1 implies that the feature b is optional.

Figure 2.2: AND-composition in FORM

a

~
bed

Figure 2.3: XOR-decomposition in FeatuRSEB

a

;f\
bed

Figure 2.4: OR-decomposition in FeatuRSEB

A
b c

Figure 2.5: Mandatory and Optional Features in PLUSS

To see how we model product families using PFA, we take two families in

Figure 2.6 and Figure 2.7 which are given in FeatuRSEB notation. Assume that

our model is the set model. The product family in Figure 2.6 can be written in

PFA as a = b . c . d. The product family in Figure 2.7 can be written in PFA as

22

b

2. Feature Modelling Techniques and Tools

a

c d

Figure 2.6: AND-Composition of a,b,c,d in FeatuRSEB

e

f 9 h

Figure 2.7: XOR-Decomposition of e,f,g,h in FeatuRSEB

e = f + 9 + h. To express that fact that p is a product family composed of a and

e. We write this as p = a . e.

We can express a in set notation as {{b, c, d}} and e as {{f}, {g}, {h}}. The

product family p is then {{b, c, d, f}, {b, c, d, g}, {b, c, d, h}}. For the product

family p, the number of products are three. The family p contains the prod

ucts {b, c, d, h}, {b, c, d, g}, and {b, c, d, f}. The commonality features in p are in

{b, c, d}. The family a is not a sub-family of p, but p refines a. In a similar way,

we can perform more complicated calculus, analysis, and inference on product

families.

To illustrate the refinement relation in the set-model, let !I be a fam

ily containing two products where !I = {{a, b, c}, {d, e, f} }. Moreover, let

h = {{a, b}, {e, f}, {g, h}}. We say that f1 refines f2 and we write f1 ~ h.

Intuitively, this indicates that every product in the family !I refines some of the

2. Feature Modelling Techniques and Tools 23

products in the family h. We prove this using the definition of the refinement

relation 2.2.4 as follows.

We need to show that

{:::=::} (By definition of refinement 2.2.4)

3(f3 I: f1:::; f2 . f3)

{:::=::} (using a :::; b ~ a + b = b)

3(f3 I: f1 + f2 . f3 = f2 . f3)

{:::=::} (set is = { { c}, { d} } and substituting with the sets corresponding

to fl and h)
{{ a, b, c}, {d, e, f}} + {{a, b}, {e, f}, {g, h}} . {{ c}, {d}} =

{{a,b},{e,f},{g,h}}· {{c},{d}}

{:::=::} (multiplying h and is)

{{a,b,c},{d,e,f}}+{{a,b,c},{c,e,f},{c,g,h},{a,b,d},{d,e,f},{d,g,h}} =

{{a,b,c},{c,e,f},{c,g,h},{a,b,d},{d,e,f},{d,g,h}}

{:::=::} (adding fl to h . is)

{{a,b,c},{c,e,f},{c,g,h},{a,b,d},{d,e,f},{d,g,h}} =

{{a,b,c},{c,e,f},{c,g,h},{a,b,d},{d,e,f},{d,g,h}}

true

To handle multiple occurrences of features, we can use the bag model. If we

want to have a product that is composed of b, c and d with 3 occurrences of b, we

write a = b.b.b.c.d. All other expressions used in the graphical FM techniques can

24 2. Feature Modelling Techniques and Tools

be expressed in PFA such requires, mutex and external features. In Appendix A,

we include a table for each FM technique that uses a new notation or a concept.

We invite the reader extend on this with a wide range of theory on PFA and

examples which are found in [HKM06, HKM08, HKM09].

PFA inherits all the mathematics of idempotent semirings and provides us

with a calculational power that can be applied to graphical feature models. It

also inherits all the mathematics of sets and bags or any models for PFA. With

this in hand, we can do all sorts of calculations and inferences using one that has

all-in-one capabilities. A feature model can be, for instance, simplified, factor

ized, and mathematically analysed. Moreover, feature models can be combined,

extracted, excluded, and validated. We conjecture that this should provide more

functionality that can be applied to feature models to extend their benefits.

2.3 Tools Supporting Feature Modelling

In the literature, there are several feature modelling and FM tech

niques tools. In [DSF07], we find an industry survey of the tools

and their evaluation. The survey covers the following tools: Cap

tain Feature [SouIO], Pure:: Variants [PurIO], Feature Plugin [AC04], SSEP

toolset [SSP+OO], DecisionKing [DGR07], DOORS T-REK [IBMIO], XFea

ture [XFeIO], FMP [CAK+05], FORM/ ASADAL [KSA +06], Gears [BigIO], Var

Mod [UniIO], and RequiLine [ReqIO]. We have also found other tools in the

literature like 001 [Kru93], DOME [HonlO] and CASE-FX [FAC07].

Most of these tools do not support the classical feature modelling techniques.

A few tools were built to support a single FM technique such as AmiEddi which

supports mainly GP. Most of the tools support feature modelling as a partial

functionality of the tool. An example of tools that are not fully dedicated to

2. Feature Modelling Techniques and Tools 25

feature modelling but support it a sub-functionality of a CASE tool is CASE

FX [FAC07]. The tools included in the survey above support FODA-like nota

tions with some tool-specific language and extensions. Although these tools share

some background, they do not produce equivalent feature models. They do not

support the conversion or the translation from one technique to another. If a

user lacks a feature modelling capability in one technique, the user has to switch

to another tool that supports it. In some cases, the tools add some extensions

and new concepts that are not part of the supported techniques or part of feature

modelling concepts like what we found in Pure:: Variants and RequiLine. The tool

001 has a set of utilities part of which is feature modelling. The feature models

are stored as 001 TMap as an extension to FODA notation. DOME uses UML

like notations. There are several attempts to enhance the way we handle feature

models and analyse them. Requiline uses an Oracle/SQL database Pure:: Variant

uses Prolog for the constraints.

In this work, we intend to take feature modelling a step further. We intend

to base the feature model techniques on a platform based on PFA. Our aim is to

make PFA as a bridge to translate from one technique to another. Moreover, PFA

will be used formal specification, analysis, inference, and generation of feature

models. In the next chapter, we explain how we implement PFA using Binary

Decision Diagrams.

26 2. Feature Modelling Techniques and Tools

Chapter 3

Product Family Algebra

Implementation Using BDDs

In Chapters 1 and 2, we introduced Feature Modelling, the graphical and the

non-graphical techniques, and their existing supporting tools. We introduced

Product Family Algebra and illustrated how PFA can extend the benefits of

Feature Modelling. In this chapter, we show how we implemented two models

of Product Family Algebra using Binary Decision Diagrams (BDDs). We first

introduce BDDs and present their main benefits. We then show how BDDs can

be used to implement PFA. We then explore some examples to show how our

implementation works.

3.1 Introduction to Binary Decision Diagrams

Binary Decision Diagrams are directed acyclic graphs (DAGs). They are compact,

yet efficient means of representing boolean functions. A BDD is a binary tree

where the nodes represent the boolean variables and the terminal nodes are either

o or 1. Each node has two child nodes, one is connected to by a low edge, and

27

28 3. Product Family Algebra Implementation Using BDDs

another is connected to by a high edge. We say that a node/variable is selected,

if we select the high edge, i.e. the boolean value is 1 and 0 otherwise.

If we take an example of a boolean function f /:',. X V -,y 1\ z, then we can

encode all the possible values of f in a truth table with all the possible values of

x, y and z. That can grow exponentially as the number of variables increase. We

can represent the same function in a compact graph, i.e. using a BDD. We can

then analyse the behaviour f and calculate the possible values using the graph

with no need to decompression. The BDD for the above function of f is given

in Figure 3.1. We present the high edges with solid lines and the low edges with

dotted lines. In this BDD, we see that the function f is true, if x is selected

alone. Also, it is true when we select not y and z at the same time.

Figure 3.1: The BDD of f .Q. x V -'y 1\ z

We are actually using Reduced Ordered Binary Decision Diagrams (ROB

DDs) [Bry92]. In ROBDDs, the nodes are always ordered. In addition, we re

move the redundancy of sub-graphs and edges when a node has its high and low

edges point to the same destination. In ROBDDs, the nodes are unique; no two

nodes have the same label in different levels. For simplicity, we call ROBDDs,

3. Product Family Algebra Implementation Using BDDs

BDDs.

29

We can also use BDDs to represent sets. Let S 6. {a, b, c, d} and let the

universe of discourse U 6. {a, b, c, d, e}. The set S can be represented using a

BDD by simply indicating those elements in the universe of discourse U from

which S is constructed belong to the set. Those which do not belong to S, do

not show in the BDD. The BDD in Figure 3.2 depicts the set S that contains the

elements a, b, c, d. We can read that as a, b, c, dES.

Figure 3.2: The BDD for the set S

In the literature, there are many known and useful algorithms on

BDDs [Bry86]. The algorithms provide efficient operations on boolean functions

with large number of variables. The algorithms include reductions, simplifica

tions, application of logical operations. on BDDs like and and or, restricting

BDDs by a value of a variable or a sub-BDD, checking for existence of a variable

or an expression in a BDD, and calculating how many satisfying paths are there

in a BDD. In addition to being compact, ROBDDs use far less space compared

to the space required by n variables in a truth table which will require 2n lines for

encoding all the possible permutations. BDDs are commonly used in digital cir-

30 3. Product Family Algebra Implementation Using BDDs

cuits and model checking and are emerging as solutions to many problems in other

areas. For more details on BDDs, their data structure, algorithms, efficiency and

applications, we refer the reader to [Ake78], [Lee59], [Bry86] and [Bry92].

3.2 Implementing Product Family Algebra us

ing BDDs

PFA is an idempotent commutative semiring (8, +, 0, " 1). To implement PFA

using BDDs, we need to encode 0, 1, + and· and hence the universe of discourse

8 in terms of BDDs and operations on BDDs.

We choose two models to implement PFA: the set-model and the bag-model.

More models can be implemented in a similar way. The set-model is used in the

case where duplication of features is not desired. We use the bag-model otherwise.

Representing features and products as BDDs in the set-model is straightforward.

However, the representation in the bag-model requires an extra effort. Bags can

not be directly encoded in ROBDDs. This is due to the properties of ordering and

the removal of duplications. We present how we implement PFA in the set-model

followed by the bag-model.

3.2.1 The Implementation of the Set-Model

The universe of discourse 8 in a set-model is interpreted as a set of sets. We

implement this as sets of BDDs (sets) to encode the product families. This means

that we implement two layers of sets: the family-level set, and the BDD-level sets

where each BDD represent a set of features.

When we adopt the set model, the 0 can be interpreted as the empty set at

the family-level. We implement it as the empty family-level set and we write 0

3. Product Family Algebra Implementation Using BDDs 31

in the set notation as {} or 0. The 1 is interpreted as the singleton family-level

set of the empty set where the empty set is represented by the empty BDD. The

empty BDD is given in Figure 3.3. We write the 1 in the set notation as {{}} or

{0}.

The . in the set-model is implemented as the set union between two families.

To perform the set union on two families A and B, we take every BDD from

A apply the logical operation or to it with every BDD from B. For the +
operation, it works on the family level. We implement the + as the set union

between product families.

Figure 3.3: The empty BDD

We illustrate our implementation of the set-model PFA with the following

example. Let A be a family with one product PI composed of the features b, c

and d and let B be a family with one product P2 composed of f, 9 and h. The

product PI is the set represented by the BDD of Figure 3.4 and the product in

P2 is represented by the set containing the BDD of Figure 3.5.

Figure 3.4: The BDD corresponding to PI

32 3. Product Family Algebra Implementation Using BDDs

Figure 3.5: The BDD corresponding to P2

Figure 3.6: The BDD corresponding to the product in X.

If X = A· B, then X is {(PI U P2)}. The product of the family A and the

family B is X and it has one product given in Figure 3.6. If on the other hand,

Y = A + B, then Y is the set union on the family-level sets, i.e. the sets of

BDDs. In this case, Y is the product family {PI, P2 }.

3. Product Family Algebra Implementation Using BDDs

3.2.2 The Implementation of the Bag-Model

33

If we adopt the bag-model, the implementation is similar to the set-model imple

mentation except for handling the duplications of features. ROBDDs do not allow

duplications of nodes. To handle the number of occurrences of a feature within

the BDD itself, we have devised occurrence levels that encode it. We encode this

number binary. For example, if we have a product with 3 features: x, y and z,

and the maximum number of occurrences of a feature is seven, then we need three

binary bits to encode it. Let the product family W have one product with three

x features and six z features and zero y features. Our product family contains a

product Pw represented by the BDD in Figure 3.7. The BDD representing this

bag describes the product in a way similar to that in the set model. However, we

encode the occurrences in the levels of nodes containing bl, b2 and b3. We read in

Figure 3.7 that, if x exists in this product, then we have to select bl and b2, but

not b3. This is the binary code 011 representing b3, b2 and bl respectively which

carries the occurrence of three for x. Similarly, for y to exist in this product, we

get the binary occurrence encoding to be 000 which is 0 occurrences. For z, we

get the binary occurrence of 110 which carries the number six.

In the bag model, we have a set of bags while in the set model, it is a set of

sets. The difference resides in the representation of products, where they are sets

in the set model and bags in the bag model. The 0 is the empty family or we

can say, the empty set on the family-level. On the other hand, the 1 is the set

of the empty bag (empty BDD in the bag model). The + is the set union on

the family-level sets just as it is in the set model. However, the . is different. In

the bag-model, the . takes into consideration the number of occurrences of the

features and hence, it sums the total number of occurrences. For example, if we

multiply U ~ {{(x, 3), (y, 0), (z, 6))}} with V where V ~ {{(y, I), (z, I))}. The

34 3. Product Family Algebra Implementation Using BDDs

result is the product family Z = {{(x, 3), (y, 1), (z, 7))}. This product family

contains one product Pz represented by the BDD given in Figure 3.8. We read

the number of occurrences of x, y, and z in Pz in a similar way as we did for Pw '

Figure 3.7: The BDD corresponding to Pw in W

We now handle a more delicate example; our familiar bicycle example. For

brevity, we use the set notation. We first illustrate how PFA works in this example

in the set model and then in the bag model. The basic features are in B P where

BF={handle_bar, handle_grip, shock_absorber, fork, hub_gears,

seat_tube, seat_stay, chain_stay, saddle, saddle_post, tire, spokes,

rim, hub, chain, chain_rings, pedal, crank}.

3. Product Family Algebra Implementation Using BDDs 35

....••

Figure 3.8: The BDD corresponding to Pz in Z

For the specification of the bicycle, we write in PFA:

front set handle bar. handle_grip. fork . (shock_absorber + 1)

gears_set hub_gears + derailleur_gears

brakes_set = front_brakes . rear_brakes

frame = top_tube . down_tube . seat_tube . seat_stay . chain_stay

saddle_set saddle. (saddle_post + 1)

wheels set tire spokes . rim hub

chain_set chain chain_rings

pedal_set pedal pedal. crank .crank

bicycle = front_set . gears_set . brakes set . frame .

chain set . pedal_set

36 3. Product Family Algebra Implementation Using BDDs

We now consider this specification in the set model. For the . in the

pedaLset, we get pedaLset = {{pedal, crank}}; a family of one product

composed of one pedal and one crank. We notice that multiple occur

rence of pedal and crank is neglected. This is because the set model does

not allow the duplication of features. For the +, we have the gears_set

and we get gears_set = { {derailleur _gear s }, {hub_gear s } }; a family of

two products representing two choices of gears. The fronLset family is

expressed in terms of ., + and l. For this specification, we get fronLset

{{handlebar, handle_grip, fork}, {handle_bar, handle_grip, fork, shock_absorber}}.

The fronLset is a family of two products to choose from, one with the

shock_absorber and one without. We express that a feature is optional using

the + and the l. For example, in the fronLset expression we have the

(shock_absorber + 1) composed with the other features using the· operation.

If we consider the bag model, we notice some differences in the results. For

the· in the pedaLset we get pedaLset = {{(pedal, 2), (crank, 2)}} with two

occurrences of the pedal and two occurrences of crank as the bag model allows

the duplications of features. For the +, it behaves similarly as in the set model

for the gears_set and the other specifications.

Using PFA, we can calculate the number of potential products of the bicycle

family. In both models, the number of potential products is eight. The difference

happens at the lower level and it does not affect the number of products in the

family level. The family bicycle in the bag model has eight products that we list

below:

{

{

(handle_bar, 1) , (handle_grip, 1) , (fork,1) , (derailleur_gears, 1) ,

(front_brakes, 1) , (rear_brakes, 1) , (top_tube,1) , (down_tube, 1) ,

3. Product Family Algebra Implementation Using BDDs 37

(seat_tube,1) , (seat_stay, 1), (chain_stay, 1) , (saddle, 1) ,

(tire,2) , (spokes,2) , (rim,2) , (hub,2) , (chain,l) ,

(chain_rings, 1) , (pedal,2) , (crank,2)

}

{

(handle_bar,l) , (handle_grip, 1) , (fork,l) , (derailleur_gears,l) ,

(front_brakes, 1) , (rear_brakes, 1) , (top_tube,l) , (down_tube, 1) ,

(seat_tube,1) , (seat_stay, 1), (chain_stay, 1) , (saddle, 1) ,

(saddle_post,1) , (tire,2) , (spokes,2), (rim,2), (hub,2),

(chain, 1) , (chain_rings, 1) , (pedal,2) , (crank,2)

}

{

(handle_bar, 1) , (handle_grip, 1) , (fork,l) , (hub_gears,l) ,

(front_brakes, 1) , (rear_brakes,l) , (top_tube, 1) , (down_tube, 1) ,

(seat_tube,1) , (seat_stay, 1) , (chain_stay,1), (saddle,1) ,

(tire,2) , (spokes,2) , (rim,2) , (hub,2) , (chain,l) ,

(chain_rings, 1) , (pedal,2) , (crank,2)

}

{

(handle_bar, 1) , (handle_grip, 1) , (fork,l) , (hub_gears, 1) ,

(front_brakes, 1) , (rear_brakes, 1) , (top_tube, 1) , (down_tube, 1) ,

(seat_tube,1) , (seat_stay,1), (chain_stay, 1) , (saddle, 1) ,

(saddle_post, 1) , (tire,2) , (spokes,2) , (rim,2) , (hub,2) ,

(chain,l) , (chain_rings, 1) , (pedal,2) , (crank,2)

38

}

{

3. Product Family Algebra Implementation Using BDDs

(handle_bar, 1) , (handle_grip, 1) , (shock_absorber, 1) , (fork,1) ,

(derailleur_gears,1) , (front_brakes, 1) , (rear_brakes, 1) ,

(top_tube, 1) , (down_tube, 1) , (seat_tube, 1) , (seat_stay, 1) ,

(chain_stay,1) , (saddle,1) , (tire,2) , (spokes,2) , (rim,2) , (hub, 2) ,

(chain, 1) , (chain_rings, 1) , (pedal,2) , (crank, 2)

}

{

(handle_bar,1) , (handle_grip, 1) , (shock_absorber, 1) , (fork,1) ,

(derailleur_gears, 1) , (front_brakes,1), (rear_brakes, 1) , (top_tube, 1)

(down_tube, 1) , (seat_tube,1), (seat_stay, 1) , (chain_stay, 1) ,

(saddle,1) , (saddle_post, 1) , (tire, 2) , (spokes, 2) , (rim,2) , (hub, 2)

(chain, 1) , (chain_rings, 1) , (pedal,2) , (crank, 2)

}

{

(handle_bar, 1) , (handle_grip, 1) , (shock_absorber, 1) , (fork,1) ,

(hub_gears, 1) , (front_brakes, 1) , (rear_brakes,1) , (top_tube, 1) ,

(down_tube, 1) , (seat_tube, 1) , (seat_stay, 1) , (chain_stay, 1) ,

(saddle, 1) , (tire,2) , (spokes,2) , (rim,2) , (hub,2)

(chain,1) , (chain_rings, 1) , (pedal,2) , (crank, 2)

}

{

3. Product Family Algebra Implementation Using BDDs 39

}

(handle_bar, 1) , (handle_grip, 1) , (shock_absorber, 1) , (fork,1) ,

(hub_gears, 1) , (front_brakes, 1) , (rear_brakes, 1) , (top_tube,1) ,

(down_tube, 1) , (seat_tube,1) , (seat_stay,1) , (chain_stay,1) ,

(saddle,1) , (saddle_post, 1) , (tire,2) , (spokes,2) , (rim,2) ,

(hub,2) , (chain,1) , (chain_rings, 1) , (pedal,2) , (crank,2)

}

We can also extract the commonality features in the bicycle family. All the

above products share the following features.

{

(handle_bar,1) , (handle_grip, 1) , (fork,1) , (front_brakes, 1) ,

(rear_brakes, 1) , (top_tube,1) , (down_tube, 1) , (seat_tube, 1) ,

(seat_stay, 1) , (chain_stay, 1) , (saddle, 1) , (tire,2) , (spokes,2) ,

(rim,2) , (hub,2) , (chain, 1) , (chain_rings, 1) , (pedal,2) , (crank, 2)

}

To the bicycle, we add three more features and we define new families.

We add a basic feature mirror, and we define two bicycles: hub_bicycle and

mirror _bicycle. The hub_bicycle is similar to bicycle but we explicitly specify

that it can only have the hub_gears. The mirror _bicycle is a hub_bicycle with

additional two mirrors - we are still in the bag model. We add one more basic

feature mirror to the the set B F and we append this specification to the above.

40

hub_bicycle

3. Product Family Algebra Implementation Using BDDs

front_set . hub_gears . brakes set . frame . saddle set

wheels_set . wheels_set

mirror_bicycle = hub_bicycle . mirror

chain_set . pedal_set

mirror

We can check whether hub_bicycle is a subfamily of the bicycle. We notice

that hub_bicycle is a family of four products.

{

}

{ handle_bar, handle_grip, fork, hub_gears, front_brakes, rear_brakes,

top_tube, down_tube, seat_tube, seat_stay, chain_stay, saddle, tire,

spokes, rim, hub, chain, chain_rings, pedal, crank

}

{ handle_bar, handle_grip, fork, hub_gears, front_brakes, rear_brakes,

top_tube, down_tube, seat_tube, seat_stay, chain_stay, saddle,

saddle_post, tire, spokes, rim, hub, chain, chain_rings, pedal, crank

}

{ handle_bar, handle_grip, shock_absorber, fork, hub_gears, front_brakes,

rear_brakes, top_tube, down_tube, seat_tube, seat_stay, chain_stay, sadd

tire, spokes, rim, hub, chain, chain_rings, pedal, crank

}

{ handle_bar, handle_grip, shock_absorber, fork, hub_gears, front_brakes,

rear_brakes, top_tube, down_tube, seat_tube, seat_stay, chain_stay, sadd

saddle_post, tire, spokes, rim, hub, chain, chain_rings, pedal, crank

}

3. Product Family Algebra Implementation Using BDDs 41

Comparing the products in the hub_bicycle family to the products in the

bicycle family, we see the first is a subfamily of the second. The mirror _bicycle

family is given as follows:

{

{ handle_bar, handle_grip, fork, hub_gears, front_brakes, rear_brakes,

top_tube, down_tube, seat_tube, seat_stay, chain_stay, saddle, tire,

spokes, rim, hub, chain, chain_rings, pedal, crank, mirror

}

{ handle_bar, handle_grip, fork, hub_gears, front_brakes, rear_brakes,

top_tube, down_tube, seat_tube, seat_stay, chain_stay, saddle,

saddle_post, tire, spokes, rim, hub, chain, chain_rings, pedal,

crank, mirror

}

{ handle_bar, handle_grip, shock_absorber, fork, hub_gears, front_brakes,

rear_brakes, top_tube, down_tube, seat_tube, seat_stay, chain_stay,

saddle, tire, spokes, rim, hub, chain, chain_rings, pedal, crank,

mirror

}

{ handle_bar, handle_grip, shock_absorber, fork, hub_gears, front_brakes,

rear_brakes, top_tube, down_tube, seat_tube, seat_stay, chain_stay,

saddle, saddle_post, tire, spokes, rim, hub, chain, chain_rings, pedal,

crank, mirror

42

}

}

3. Product Family Algebra Implementation Using BDDs

Again) we have four products in the mirror _bicycle family. We have just made

the bicycles more fancy with the mirrors. The mirror _bicycle is not a subfamily

of the bicycle and hub_bicycle families. However) the mirror _bicycle refines the

hub_bicycle and refines the bicylce families. This is because every element in

the the mirror _bicycle has the same features or more of some of the products

in hub_bicycle and the bicylce families. The hub_bicycle family also refines the

bicylce. This is because all the elements of the first has the same features or

more of some elements in the second.

As we have seen) with the mathematics inherited from the idempotent commu

tative semiring and the mathematics of sets and bags) PFA can provide extensive

capabilities for specification) calculation) analysis and inference. We have imple

mented the above basic functionality illustrated in the bicycle example in our

tool Jory.

3.3 Conclusion

To handle large and critical software families and product lines) we have chosen

to implement the technique PFA based on BDDs. The PFA is a rigorous math

ematical technique which extends the benefits of the graphical FM techniques

with formalism needed for critical systems. With BDDs) we bring efficiency to

handling large systems. We use BDDs to implement two models for PFA) the

set model and the bag model. In the set model) a family is represented by a set

of sets and in the bag model) it is represented by set of bags. The upper level

set is the family-level set and the lower level sets are represented by BDDs as an

3. Product Family Algebra Implementation Using BDDs 43

aggregation of features. We have defined the operations of PFA as operations on

BDDs. More over, based on these operations and the mathematics of sets and

bags, we get a rich functionality.

44 3. Product Family Algebra Implementation Using BDDs

Chapter 4

System Design

In this chapter, we layout the system design. We first give the architectural

design then follow with the detailed design. We also present the major design

decisions, the capabilities, and some possible extensions to the proposed design.

The proposed design is for the system as we envision it at this point in time.

However, a layer of its implementation is intended to be the subject of future

work.

4.1 Architectural Design

We have designed our system in a layered architecture. The layered architecture

helps us maintain, modify, extend and replace the layers independently. Starting

from the top layer in Figure 4.1, we have the User Interface Layer, the Trans

lation Layer, the Term Evaluation Layer, the Concrete Models Layer, and the

BDD Layer. The shadowed boxes are subjects of future work.

The User Interface Layer enables the user to input the specification either in

PFA or as a graphical feature model. The user inputs the specification written in

45

46 4. System Design

User Interface Layer ~ .,.00 I
Translation Layer

~uturework I
FODA I FORM I FOPLE I FeatuRSEB I GP I PlOSS I ..

Term Evaluation Layer ~ Haskell I

Concrete Models Layer
~ C/CH I

Set Model I Bag Model I Ot~I:I' M9del~

1

BOD Layer I· . . v C/CH I

Figure 4.1: Architectural Design

the language of PFA in terms of features, products, and families. The interface

also enables the user to configure the system, set the environment and set the

preferences such as selecting one of the models of PFA.

The Translation Layer provides a means to translate from one FM techniques

to another such as from FODA to PLUSS. It also provides a way to translate

from PFA specification to a feature model in a technique like FeatuRSEB and

vice versa. This layer establishes the bridge of communication between PFA and

graphical FM techniques. It also converts from one graphical feature model to

another.

The Term Evaluation Layer takes the specification in PFA whether it

is supplied in PFA language or is generated by the translation layer from a

graphical model. This layer analyses and evaluates the terms in a specification

4. System Design 47

and generates a registry of the features, products, and families and it associates

them with their extracted classifications and description data.

The Concrete Models Layer handles the implemented models of PFA such as

the set model and the bag model or any other model that might be useful. The

registry from the above layer is used to generate the code in the user selected

concrete model in terms of BDD code.

The BDD Layer is the lowest layer where the BDD code - generated in

the above layer in the selected concrete model - is executed. This is where

the specification, the queries, and transactions take place and the results are

produced.

The layers communicate top down and down up. The specification is either

supplied or extracted from a feature model. It is then evaluated and a registry is

created. The concrete models are instantiated and the BDD code is generated.

The code executes and the results are pushed up towards the user interface.

This layered architecture takes into consideration the need for efficiency and

scalability. The layers can be plugged in, removed, and replaced whenever needed.

4.2 Detailed Design

In this section we give the detailed design of the tool. We take the order of the

layers from top to down and give an overview of every layer in terms of their

modules.

48 4. System Design

Figure 4.2: A Snapshot of the Interface of lory

4.2.1 The Interface Layer

The interface layer is written in Python. The interface has the main tab which is

the work area. The work area has a text editor for the input of the specification

that is used as well for showing the results. This tab also has a text control for the

name of the specification file, radio buttons for selecting the set model or the bag

model and setting the maximum number of occurrences a feature can have if the

bag model is selected. This tab also has a list box of the main functions that can

be applied on the product families such as size, list products, is sub-family and

refines. There is also a field to provide the parameters for the above operations.

Figure 4.2 is a snapshot of the interface of lory.

The interface also has another two tabs, both for the configuration of the

4. System Design 49

system environment. This enables the user to specify the default specification

file, the directories, the utility files and the result files.

4.2.2 The Translation Layer

The translation layer is for translating from one graphical feature modelling tech

nique to another. It is also used to translate from a graphical feature model in a

technique to a PFA specification and vice versa. This is designed to perform the

translation using syntax-directed translation [Pet71]. We propose that the graph

files are supplied in Graphvis Dot [LelO] format. We then map syntax to syntax

translation rules. This layer is currently not implemented.

4.2.3 The Term Evaluation Layer

This layer is written in Haskell. We put the modules into two groups. We call the

first group the Specification Analysis Group and it contains modules to process

the specification files and generate the register of features, products, and families.

We call the other the Evaluation Group and it contains the modules to evaluate

and assign the expressions in the register. The design of this layer is given in

Figure 4.3.

4.2.3.1 The Specification Analysis Group

• Module: SpecAnalysis.

Secret: It is an algorithm that reads a specification file with the extension

'.spec'.

Service: It calls LineSpecAnalysis, TermAnalysis, Infix2Prefix and

VariablcConstrain_Registration module. The major task is to take a

specification file and produce a register file with '.reg' extension. The reg-

51
.~

Q

§
-I-'>

~
C/)

~

o
l.O

A
/;;;;~f~~jf1t:Liil

,/ /:",l.O.idRet;1stef{) I

I // / (:~.'.~q.......)
I ! ,

:.~,~iilat~~~~I~~lUl
\ I !
\ L .. ··

,/ " .. .
PrepareFamllyFlle <

~'1;;;:i "'}\ 1/ j/

.........

:.:.t:~·~~~f..~:~.~iJ
~:na!,r.,P. 1

[~~~.~~~~·.~s~~.~-~~.~e~.~~~~,~~~J;
~~~~~~~~t) I !::~~~~~;~: i 
i~~.e.~~.:_~.~~~.I.!. i i~.~!!X.~~,~.~.~.~.l .... 

.................................... :7:~~~.I.~~~.~~.~., 
pre·par~ReglS·re·;:w.~~eW 1-' .w ••• 

prp.pal·eReg:!.s.te~·Ur)e~(lm:!.l.y( l 
i.;.n;;mov+Sp;!ce(1 

l"~~P.~:~~J.l .. 

................ :t.................. r.=:J .................. , 
.. :::~:~,~.~~.~~~~~:::::j ...... ·)o,L~.~ .. ~.~.~~~.i 
I:~:~~r( 1 . 

i:;:~~~~: I i 

I:~:~i~~~ () I 
1:~~;~~~~~~~rSI) i 
j·QP(! ' 
: ... pl.sU 

1:~~~~~xl4e( J 

, .. t~!"tl() 
.. ter~'(\ 

l~!:::.~~:..~.~~:..:.iJ ..... 
\Iif? 

il~iiiJi;;i~~;~!~~:r... .............. "1';~f~~2;;!~~~ 
+getCol.u:!IIl(l 
... 9~tRe9.:.sterl..l~Coo"'(' 
.. g~tRe9!.star1...:.MDes.c:() 
+getReglsterliooE>cpr(1 

... \I .......... ".01'V1II"s(l 

... ~tOperat::.on!) 
"'getR!!}htTer.at) 
... ge:tvarso 
.,..!.5G~Unl!Ter::l!) 
"'lsOli1.ySas:!.C'Ftlatcre() 

I 

·····~::~~~~~~~!~~~~9···] 
t~l;·C:;n·;·t·ra·;;t·if ····· .. ··"1 

i~~~~~;:·~ I 1 

j"isL.rttersil ! 
i .. 1sl..ettersNutlbel"s(); 

!~~.~~:rsl) ....... J 
1"'9~tRe9lster!.il'leTYPe(l "q<I\'ti~pte[) 
j .. UII!;'!O 
',,,"name(} 
"'::;etRcqist<:r' .. !.IlE'(OCh:( l ; 
.. setP.eg!.stP.rL::i.MOes.c:O i 
1+'S1?tReg15terL!.~FaExpr~ I i 
l:~!.~~.~.~~.~!!:':~.~!.:tI?~.u ..... i 

j .. .c:ontair.sCodl!(l 
j"'createReqlster() 
i ... (!eleteP.~1'St",r() 
i-eKlstsInFl8915ter() 
i"iietAt.,1ne(l 
i·SetFlrstI..1IW( 1 

i:~~j~~~~~~~~;~~i I i 

l;;';;.;;'%.;.;;.~~t~ ....... ..1 

=.~~.~'::~~~"() ..... w_,,~ .. 

Figure 4.3: The Term Evaluation Layer 



4. System Design 51 

ister file contains all the basic features, products and families. 

• Module: LineSpecAnalysis. 

Secret: It is an algorithm that handles a specification line. 

Service: This module handles a specification line from the specification 

file. It returns the specification line type if it is a specification of a feature, 

a product or a family. It also returns the right and the left terms of the 

line. 

• Module: TermAnalysis. 

Secret: It is an algorithm that handles terms. 

Service: This module analyses the terms returned from the 

LineSpecAnalysis module. It breaks the terms into ground terms (i.e. 

terms without variables), variables, and operations. The returned values 

are required for creating the register. 

• Module: Register. 

Secret: It is a data structure. 

Service: This module has the operations on registers: creating, deleting, 

searching, looping through, reading and setting a register and returning 

register lines. 

• Module: RegisterLine. 

Secret: It is a data structure. 

Service: It contains the operations on register lines. It gets and sets the 

line code, description, expression, and the type. The code stands for the 

name for the feature, product or the family expressed in the register line. 

The expression is in PFA expression. The description is the user free text 

to describe the code and the type specifies if the line is for a feature, a 



52 4. System Design 

family or a constraint. 

• Module: Variable_ConstrainLRegisteration. 

Secret: It is a data structure (a tuple). 

Service: This module handles the variables in a register line and prepares 

a line for a basic feature, a family, or a constraint. 

• Module: Infix2Prefix. 

Secret: It is an algorithm that converts infix to prefix notation. 

Service: This module converts a PFA expression from the user supplied 

infix notation to a prefix notation. 

4.2.3.2 The Evaluation Group 

• Module: Eval. 

Secret: It is an algorithm. 

Service: This module evaluates the ground terms which are 0 and 1. 

• Module: ExtendedAssign. 

Secret: This is an algorithm to evaluate expressions. 

Service: This module evaluate the expressions composed of variables and 

ground terms. 

• Module: Assign. 

Secret: It is an algorithm to evaluate variables of basic features. 

Service: This module evaluate variables which are basic features. 

• Module: GeneralEvaluation. 

Secret: It is an algorithm to manage the evaluation modules. 

Service: This module controls the evaluation and assignment modules. 



4. System Design 53 

There are also other modules in this layer to generate the configuration files, 

the registry files for basic features and for families. There is also a module 

to control the overall specification analysis process and another to control the 

evaluation process. 

4.2.4 The Concrete Models Layer 

This layer contains a module for sets, a module for bags, and a module to convert 

from sets to bags and vice versa. More modules can be written to accommodate 

any future desired concrete model for PFA. The modules of this layer are given 

in Figure 4.4 

• Module: Set. 

Secret: It is a data structure. 

Service: This module implements BDDs as sets. It also provides set oper

ations such as setComplement, setEnumerate, insert, setIntersection, and 

setUnion. 

• Module: Bag. 

Secret: It is a data structure. 

Service: This module implements BDDs as bags. It also provides bag 

operations such as bagComplement, bagEnumerate, insert, bagIntersection, 

bagUnion, getOccurrence, and setOccurrence. 

• Module: Set2Bag. 

Secret: It is an algorithm to convert from set to bag and vice versa. 

Service: This module converts sets to bags and bags to sets. 



54 

4.2.5 The BDD Layer 

4. System Design 

This layer is implemented using two libraries written in C/C++. The Buddy 

library by J0rn Lind-Nielsen [LN10] for BDDs and the STL library [SGIlO] for 

sets. We use the first one to implement PFA in terms of BDDs with a module for 

sets and another for bags. The other one is used to implement the family-level 

sets. These are the containers that represent the families of BDDs. For the design 

of this layer, see Figure 4.4. 

r~~~~~~~'M~d'~i'~~i~'~"""""""""""""""" ...................................................... ; ....... , 
i 

~ Set SetBag Bag ~ 
, 

+setComp lement (J +set2bag() +bagComp lement (J 

~ +set Enumerate ( ) +bag2set() +bagEnumerate ( ) 
+setInsert [J +baglnsert() 
+setIntersectlon (J +baglntersectlon( ) 
+setIsEmpty (J +bagIs Empty () 
+setIs1'lember() +baglsl1ember( ) 
+setRemove () +bagRemove ( ) 
+setunlonll +bagUnlon[J 
+SetXor( ) +getOcc( ) 
+existslnSet( ) +setOcc() 

+bagEqua ls () 

'}::·;;.·;'·.;.££t~: 
, ................................................................. 

BDD Layer 

n 

I 
i 

Configureation rc
++ 

STL library I Queries I 
-+model ProductFamilyAlgebra 
+number-_of_vars L- ~ InciudeFiles ~ BaslcFeatures I +oc-c bitslze +Family 

+ctot{) 
+plus( ) I Familiesl +isEqual() 
+1sSubFamHy(J 

In +115 tCommonality () 

II Buddy BOO Package I .f.UstProducts () 
+pol<erSet ( 1 
+rankBdd{) 
+refines() 
+size( ) 
+lessBdd() 

1................................. ....... _.... ........... _.... ... _ ......... . 
Main 

+ZEROBOO 
+ONEBOD 

+InitiaUzatons( ) 

Figure 4.4: Concrete Models' Layer and the BDD Layer 

• Module: ProductFamilyAlgebra. 

Secret: It is a data structure. 



4. System Design 55 

Service: This is the core module in this layer. We implement the the data 

type family using the C++ STL library and we implement the operations 

" +, and the operations that the user frequently need to perform on fami

lies. Due to the importance of this module, we dedicate Section 4.2.5.1 for 

discussing its design. 

• Module: Queries. 

Secret: It is a data structure. 

Service: This file contains the queries required by the user to be performed 

on the user selected families. 

• Module: BasicFeatures. 

Secret: It is a data structure. 

Service: This file contains the list of basic features. It is used to generate 

BDD code of the specification basic features. 

• Module: Families. 

Secret: It is a data structure. 

Service: This file contains the list of families. The file is used generate the 

BDD code for the specified products and families. 

4.2.5.1 ProductFamilyAlgebra Module 

This module has the following access programs. 

• Access Program: DOT. 

Service: Depending on the model selected; set or bag, the function takes 

two families and applies the· operation on them. It multiplies every BDD 

in the first family with every BDD in the second. If the model is the set 



56 4. System Design 

model, it calls the set union from the set module, otherwise, it calls the bag 

union from the bag module in the concrete layer. 

• Access Program: PLUS. 

Service: This function applies the + on two families. The is the the set 

union operates on the family-level sets. We implement this set union using 

the STL Set library. 

• Access Program: isEqual. 

Service: This function returns true if the compared two families are equal. 

• Access Program: isSubFamily. 

Service: This function returns true if the first family is a subfamily of 

the second. It implements the ordering relation:::; that we presented in 

section 2.2.1. 

• Access Program: refines. 

Service: This function returns true if the first family refines the second. 

It implements the refinement relation ~ that we presented in section 2.2.1. 

• Access Program: listProducts. 

Service: This function returns a list of products in a family. 

• Access Program: list Commonality. 

Service: This function returns a list of features that are common in all the 

products in a family. The list is obtained by getting the common factors of 

the given family features. 

• Access Program: powerSet. 

Service: This function takes a family and generates the power set based 

on the features in the given family. 



4. System Design 57 

• Access Program: rankBDD. 

Service: This function ranks the given BDD. It takes a BDD and it returns 

its rank as an array to represent the existence of the variables or their 

number of occurrences for sets or bags respectively. Unique BDDs have 

unique ranks. 

• Access Program: size. 

Service: This function takes a family and returns the size which is the 

number of products it contains. 

• Access Program: lessBbdd. 

Service: This is a comparator function. It is used with the rankBDD 

function to order the BDDs in the families (family-level sets). 

Adopting the principle of the separation of concerns in our design and the 

implementation, makes the code simple unit that are easy to maintain. Every 

unit of code is once service and it becomes easy to manage, modify, validate and 

test. Here are some code snippets of the PFA module. 

The DOT function code: 

FAMILY DOT (FAMILY const &f1, FAMILY const &f2) 

{ 

bdd bdd_result; 

FAMILY family_result; 

FAMILY::iterator iF1,iF2; 

if (f1. empty 0 

else 

{ 

f2.empty() ) return family_result; 

for (iF1 = f1.begin(); iF1 != f1.end(); iF1++ ) 

for (iF2 = f2.begin(); iF2 != f2.end(); iF2++ ) 



58 

} 

4. System Design 

{ 

if (model ==0) family_result.insert(setUnion(*iF1,*iF2)); 

else family_result.insert(bagUnion(*iF1,*iF2)); 

} 

return family_result; 

} 

return family_result; 

The PLUS function: 

FAMILY PLUS(FAMILY const &f1, FAMILY const &f2) 

{ 

} 

FAMILY: :iterator iF1, iF2; 

FAMILY family_result; 

set_union(f1.begin(), f1.end(), f2.begin(), f2.end(), 

inserter(family_result, family_result.end()), less_bdd()); 

return family_result; 

The listProducts function: 

void listProducts(FAMILY prod) 

{ 

FAMILY: :iterator iF1; 

cout « "[ " « endl; 

for (iF1 

{ 

prod.begin(); iF1 != prod.end(); iF1++ ) 

if (model==O) setEnumerate(*iF1); 

else bagEnumerate(*iF1); 

} 



4. System Design 

cout « "J" « endl; 

} 

The powerSet function: 

FAMILY powerSet(FAMILY f) 

{ 

FAMILY head, tail, emptySet; 

FAMILY::iterator iCurr, iF1; 

tail = f; 

emptySet.insert(bddfalse); 

if (f.empty()==true) return f; 

else 

{ 

} 

iCurr = tail.begin(); 

head.insert(*iCurr); 

tail.erase(iCurr); 

59 

return PLUS(emptySet,PLUS(head,PLUS(powerSet(tail),DOT(head,powerSet(tail»»); 

} 

The isSubFamily function: 

bool isSubFamily(FAMILY f1, FAMILY f2) 

{ 

bool found = false; 

if (isEqualInternal(PLUS(f1,f2),f2» found = true; 

} 

if (found == true) 

else 

cout « "is SubFamily? Yes." « endl; 

cout « "is SubFamily? No." « endl; 



60 4. System Design 

4.3 Major Decisions, Capabilities, and Future 

Extensions 

One of our aims is to make the tool platform-independent. We also consider 

that the tool handles large and critical specifications efficiently and accurately. 

This contributed to the motivation of selecting Python for the interface, Haskell 

for the evaluation layer, and C/C++ for the concrete and the BDD layers. We 

have also used efficient, yet freely available libraries: Buddy for BDDs and C++ 

STL for the family-level sets, and Parsec [UtrlO] for parsing. 

We choose the Buddy library as it is freely available and is one of libraries 

for BDDs that is efficient and provides the core BDD algorithms. According 

to [RZS09], the Buddy library shown to be one of the most efficient librarys 

compared with the other available librarys. Buddy handles 50,000 nodes per one 

megabyte of memory and if there is no memory limits, it can handle up to 232 

nodes efficiently and a decision is made in polynomial time with respect to the 

number of variables used in a BDD [Gee03]. 

We choose the C++ STL (Standard Template Library); a free library pub

lished by SGI. It provides a set of classes, containers, iterators and algorithms 

that work with user-defined data structures. We use the STL Set class to 

implement the family-level sets that contain BDDs. We have defined an ordering 

relation to maximize the efficiency of building, comparing, and handling the 

sets of sets or the sets for bags. The ordering relation is based on the rankBDD 

function that we ranks BDDs uniquely and it is introduced in Section 4.2.5.1. 

Haskell is a powerful pure functional programming language which provides 



4. System Design 61 

rich functionality of string manipulations and processing. We chose Haskell to 

write the term evaluation layer for the analysis and the evaluation of the specifi

cation files. We also used the industry-strength Parsec library for implementing 

the conversion of infix to prefix notation. This is needed for converting from 

the infix notation of the user specification to the prefix notation that is used for 

writing the BDD code. 

Python is a multi-paradigm language (functional, object-oriented and 

imperative) providing a rich library for graphical user interfaces. We used it to 

build the user interface layer and the communication channel between the layers. 

In the future, it can be used to build another editor for graph feature models to 

be based on the Graphviz Dot language. 

We have designed the tool for change; to handle future capabilities and ex

tensions. There are many plausible extensions that can be done easily with the 

current design and implementation. For example, we can facilitate the PFA lan

guage with macros such as writing opt[x] in the specification, instead of writing 

(1 + x) for a feature x. The macros can also include constraints like x requires 

y in f or x excludes y in f where x and yare features and f is a family. The 

conversion from PFA specifications to the graphical FM techniques and from one 

FM technique to another is also a useful extension. We propose that this is done 

via adopting the Graphviz Dot language to input graphs. The conversion can be 

done via the syntax-based translation. The Dot files for the graphical feature 

models can also be translated in the same way to PFA specification. 

The tool incorporating the conversion from and to PFA specifications can 

be used to customise the visualization of the feature models instantaneously 

with the facility of searching, highlighting, zooming in and zooming out and 



62 4. System Design 

sub-graphing feature models. This also enables the tool to use the visual editor 

to manage the merging or splitting feature models. 



Chapter 5 

Testing and Validation 

This chapter is a report on the testing and the validation of Jory. We first 

address the testing techniques applied. We give an overview of each technique, its 

objective, and a summary of the results obtained. We follow then with validation 

and different walk-through validation examples and summarize the results. 

5.1 Testing Techniques Adopted 

We have adopted four testing techniques to test our tool J ory. We adopted unit 

testing, integration testing, parallel testing, and acceptance testing. 

5.1.1 Unit Testing 

In the unit testing, we tested every function of the system. The objective is 

to verify that each function supplied with the input behaved as desired and 

produced correct results. We have various input ranges including extreme limits. 

Each unit was tested individually independently and the discovered errors were 

corrected. We have started with the primitive functions, those that do not 

require other functions that we wrote. Gradually, we tested those functions that 

63 



64 5. Testing and Validation 

require other functions that are already tested. For example, in the lower layers 

of the systems, we tested the functions in the set module and the bag module 

then we tested the functions that require them in the Product Family Algebra 

module. We followed this approach in all the layers starting from primitive 

independent functions to those which call other functions in each module and in 

each layer. 

5.1.2 Integration Testing 

The integration testing took place after the unit testing. The objective is 

to assess whether the modules collaborate together as required. We have 

integrated the layers gradually from the bottom up. We started testing the 

BDD Layer integrated with the Concrete Models Layer. We have tested the 

two layers together and once they worked well, we integrated them with the 

Term Evaluation Layer. We continued in this way until all the layers integrated 

and tested to work as desired. We have conducted tests where we verify the 

communication between layers top down and down up is successful. We have 

traced the communication channels between the layers. We have tested the same 

specification files fed to the top layer at each integration stage, and monitored 

the behaviour of the system. The specification at each stage was having a 

different format as it is a BDD code at the lower levels, a registry at the Concrete 

Layer and a specification file in PFA language at the interface level. At every 

integration stage, we tested the system and moved to the next stage as the 

current one worked correctly until overall integration was completed. 



5. Testing and Validation 

5.1.3 Parallel Testing 

65 

We have also conducted parallel testing. We have tested Jory with the prototype 

tool written previously in Haskell in [HKM06]. The objective was to verify 

whether Jory produces correct results and to compare the performance. The 

previous tool was built using Haskell and the families were implemented as 

lists of lists. We have made redundant executions of the same examples on 

both tools and we had the same results. For example) we have executed the 

Employee Self Service example on both. The number of products in the family 

employee_self _service given by both tools was 432 products. We have compared 

the basic functions available in both tools such as the size) the listing of products) 

listing the commonality features in a family) checking refinement and checking 

whether a family is a subfamily of another. We find that Jory however) preceded 

the prototype tool in the speed of execution. This is clearly observable when 

we handle larger specification files such as the Robot example found in Section 

5 of [HKM06]. It involves 23 basic features. In the set model) Jory takes about 

15 seconds to show the size of the environmentaLvision while it takes about 

six hours for the prototype tool to get the same result. For the same family in 

the bag model with the maximum number of occurrences set to seven) it takes 

about an hour to show the number of products while it takes about 48 hours for 

the prototype to do so. Jory showed faster execution. We present specification 

of the Robot example in Section 5.2. 

5.1.4 Acceptance Testing 

The acceptance testing was carried out to verify that the system meets the user 

requirements. We thank Qinglei Zhang who took the time and tested the system 



66 5. Testing and Validation 

thoroughly using various examples. She used examples that vary in size and 

nature. The examples were tested in the set and the bag models. The examples 

assessed the basic functionalities of the tool and the provided services via the 

interface. We have made modifications and corrections to the system as some 

bugs were discovered. 

5.2 Validation Examples 

We have validated the system through examples that differ in the number of basic 

features and in their composition. In this section, we present three examples that 

we have mentioned above and show how the tool handles feature modelling. The 

examples are the Employee Self Service which is well-suited for the set model and 

the Robot which is well-suited for the bag model. 

5.2.1 The Employee Self Service 

This is the specification file for the Employee Self Service example adopted 

from [HKM06]. This is a specification of human resource employee self services 

system. A basic feature in the specification is preceded with the keyword "bP' 

then its description follows. We use" %" to separate the label of a feature or a 

product family from its description. We then give the specification of products 

and families based on the basic features. 

5.2.1.1 Specification 

bf personal_info % personal info 

bf personal_info_flexibility % personal info flexibility 

bf basic_personal_tasks % basic personal tasks 

bf update_personal_info % update personal info 



5. Testing and Validation 

bf employment_history % employment history 

bf hr_policies % hr policies 

bf time_management % time management 

bf absence_management % absence management 

bf absence_information % absence information 

bf absence_calendar % absence calendar 

bf holiday_entitlement % holiday entitlement 

bf holiday_adminitration % holiday administraton 

bf expense_tasks % expense tasks 

bf payroll_administration % payroll adminsistration 

bf benefit_display % benefit display 

67 

bf multi_benefit_programs % multi-benefit programs 

internet_intranet_enable_ess= personal_info. personal_info_flexibility 

% internet intranet enabled ess 

ess_basic_personal_tasks= basic_personal_tasks . update_personal_info 

. employment_history . hr_policies 

% ess basic personal tasks 

ess_time_and_attendance tasks= ( 1 + time_management ) 

( 1 + absence_management ) 

( 1 + absence_information 

( 1 + absence_calendar ) ) 

( 1 + holiday_entitlement 

( 1 + holiday_adminitration ) ) 

% ess time and attendance tasks 

ess_payroll_and_benefits_tasks= ( 1 + payroll_administration ) 

( 1 + ( benefit_display 

+ multi_benefit_programs )) 



68 5. Testing and Validation 

% ess payroll and benifits tasks 

employee_self_service= internet_intranet_enable_ess 

ess_basic_personal_tasks 

ess_time_and_attendance_tasks 

( 1 + expense_tasks ) 

ess_payroll_and_benefits_tasks 

% employee self service whole system 

Looking at employee_self_service, we see that it is composed of inter

neLintraneLenable_ess, ess_basic_personaLtasks, ess_time_and_attendance_tasks, 

an optional expense_tasks, and ess_payrolLand_benefits_tasks. 

5.2.1.2 Results 

The specification is written in a file with ".spec" extension. We load this 

file into the tool, we choose the set model and we execute the size opera

tion on the family ess_time_and_attendance_tasks. We get the size 36. The 

size of the family ess_payrolLand_benefits_tasks is 6 products and the size of 

employee_self _service is 432 products. We use the operation listProducts of the 

ess_payrolLand_benefits_tasks, we get: 

[ 

{ } 

{ multi_benefit_prograrns 

{ benefit_display} 

{ payroll_administration 

{ payroll_administration, 

{ payroll_administration, 

] 

} 

} 

multi_benefit_prograrns } 

benefit_display } 



5. Testing and Validation 69 

For example, we also can show the commonality in a family, 

employee_self _service. The tool returns the following. 

[ 

{ personal_info, personal_info_flexibility, basic_personal_tasks, 

update_personal_info, employment_history, hr_policies 

} 

] 

We also can check whether two families are equal, one is a subfamily of 

another, or whether one refines another. For the refinement, we check if 

employee_self _service refines ess_payrolLand_benefits_tasks and it shows that 

it does. 

For this case, we do not have any feature duplication. This makes the results 

in the bag model identical to those that we got in the set model except for the 

way they are displayed. The bag model output includes the cardinality of 1 for 

every feature that exists in a product in a family. We switch to the bag model and 

we set the maximum number of occurrences for a feature to three. We display 

the result for listProducts of the family ess_payrolLand_benefits_tasks and it is: 

[ 

{ 

} 

{ 

(multi_benefit_programs,1) 

} 

{ 



70 

(benefit_display, 1) 

} 

{ 

(payroll_administration, 1) 

} 

{ 

5. Testing and Validation 

(payroll_administration,1) , (multi_benefit_programs,1) 

} 

] 

{ 

(payroll_administration, 1) , (benefit_display, 1) 

} 

We execute the other operations on the families in the bag model and get 

similar results to those we get in the set model. 

5.2.2 The Robot Example 

The specification file for the Robot example which is adopted from [HKM06], is 

given as follows. This specification has multiple occurrences and hence we need 

the bag model to handle it. We follow the same manner in starting with defining 

the basic features of a robot and we follow with products and families. 

5.2.2.1 Specification 

bf treads % Moves around on treads 

bf wheels % Moves around on wheels 

bf legs % Moves around on legs 



5. Testing and Validation 

bf turn % Able to turn an angle from initial heading 

bf move_forward % Able to move forward 

bf move_backward % Able to move backward 

bf stay_idle % Able to stay inactive 

bf limited_speed % Robot limited to low speed of locomotion 

bf extended_speed % Robot can perform high speed locomotion 

71 

bf basic_control % Robot is equipped with basic control (only on and off) 

bf digital_control % Robot is equipped with digital valued indication of 

locomotion speed and direction 

bf small_platform % Small-size platform robot 

bf medium_platform % Medium-size platform robot 

bf large_platform % Large-size platform robot 

bf c_s_pneumatic % Pneumatic collision sensor 

bf c_s_mechanical % Mechanical collision sensor 

bf c s combination % Collision sensor is a combination of mechanical and 

pneumatic 

bf sur_finder % Small Ultrasonic Range Finder 

bf lcur_finder % Low-cost Ultrasonic Ranger 

bf chpu_finder % Compact High Permormance Ultrasonic Ranger 

bf v_s_color_vision % Sensor capable of determinging the color of objects 

in the robot's environment 

bf black_white_vision % Black and white environmental vision system 

bf primary_color_vision % Primary colors environmental vision sytem 

basic_means_of_locomotion= treads+wheels+legs % Basic means of locomotion 

speed_of_locomotion= limited_speed+extended_speed % Speed of locomotion 

locomotion_ctrl_sys= basic_control+digital_control % Locomotion Control 

System 



72 5. Testing and Validation 

c_sensor= c_s_pneumatic + c_s_mechanical + c_s_combination % C Sensor 

rng_finder=sur_finder+lcur_finder+chpu_finder % Range Finder 

platform_size_sensor=small_platform.(1+c_sensor) . (1+c_sensor) 

· (1+c_sensor) + medium_platform. (1+c_sensor) 

· (1+c_sensor).(1+c_sensor). (1+c_sensor) 

+large_platform. (1+c_sensor) . (1+c_sensor) 

· (1+c_sensor). (1+c_sensor). (1+c_sensor) 

% Platform size sensor 

platform_size_finder=small_platform. (1+rng_finder)+medium_platform 

· (1+rng_finder).(1+rng_finder)+large_platform 

· (1+rng_finder). (1+rng_finder). (1+rng_finder) 

% Platform Size Finder 

basic_platform=basic_means_of_locomotion.turn.move_forward.move_backward 

. stay_idle. (1+speed_of_locomotion) . (1+locomotion_ctrl_sys) 

. (1+platform_size_sensor) % Basic Platform 

enhanced_obstacle_detection=basic_platform.c_sensor. (1+platform_size_finder 

% Enhanced Obstacle Detection 

environmental vision=enhanced_obstacle detection.v s color vision 

5.2.2.2 Results 

. (1+black_white_vision) . (1+primary_color_vision) 

% Environmental Vision 

We select the model to be the set model. In this specification, we a have du

plications of features like the case of platJorm_size_sensor. A smalLplatJorm 

can have one, two, or three csensors composed with other types of sensors. 

As we select the set model, the duplication is ignored. We listProducts of the 



5. Testing and Validation 73 

platform_size_sensor and we give the result in Appendix B. 

We notice, that we have only one sensor of each type of sensors regardless of 

the duplications in the specification. This shows differently when we select the 

bag model, and we set the maximum occurrences to five. We choose the number 

five because we do not have an occurrence of a feature in the specification that is 

more than five. For the same family, platform_size_sensor, in the bag model and 

setting the maximum number of occurrence to five, we get in the listing given in 

Appendix B. 

We observe that the bag model preserved the duplications of features. De

pending on the size of the platform, the total number of sensors can be either 

three, four, or five regardless of their types. 

In the two models, we checked whether the smalLplatform is a subfamily of 

the platform_size_sensor and it is both cases. However, the csensor is not a 

subfamily of platform_size_sensor as it does not stand by itself in that family 

regardless of the model selected. 

When we listCommonality of the family basic_platform in the set model, we 

get: 

[ 

{ turn, move_forward, move_backward, stay_idle } 

] 

On the other hand, the listCommanlity of this family in the bag model gives: 

[ 

{ 

(turn,1) , (move_forward, 1) , (move_backward, 1) , (stay_idle, 1) 

} 

] 



74 5. Testing and Validation 

5.2.3 Other Validation Remarks 

We have experimented with all the provided services that the tool supports on the 

above two examples and many others inducing the Bicycle example that we used 

for illustration in Section 3.2.2. The examples varied in the size of the number 

of features, and the maximum occurrences of features. Some examples were 

written to be suitable for the set model and others for the bag model. We have 

written specifications of examples having families identical in the composition 

but different in the order we write their features in a specification line. We 

sometimes write two families in two expressions, one with duplications of features 

and without and verify if they are equal in a set model and we found that they 

are. 

Through these walk-through examples and the others that we experimented 

with, we find that the tool was a useful aid to the process of feature modelling. 



Chapter 6 

Conclusion and Future Work 

We have accomplished this work to fulfil the need for a tool that supports Fea

ture Modelling formally and precisely, and provides a means for specification, 

calculus, analysis and inference on product families. We have given the design of 

lory which takes into consideration bringing together the benefits of the graphi

cal and the non-graphical FM techniques. We have also implemented the tool to 

be a platform independent, scalable and extendible. 

In order to bring up our design and implement the tool, we needed to get 

a good understanding of the concepts of product families and feature modelling. 

We also needed to have a close look at the FM techniques, the graphical and the 

non-graphical and understand their benefits, capabilities and limitations, and 

compare them and see their similarities and differences. We also needed to know 

what tools are there to support feature modelling, how they are used and what 

sort of support they provide. 

We have chosen PFA as the kernel for implementing our tool since PFA is 

based on mathematics and provides a formal way to handle feature models. In 

addition to PFA's ability to handle feature models mathematically, it can work 

as a communication bridge between the graphical feature models that facilitate 

75 



76 6. Conclusion and Future Work 

the translation from one notation to another and from a graphical feature model 

to a specification in PFA. This makes lory, once completed, a tool that serves 

and connects the groups that use feature modelling. 

We have taken into consideration the need to handle large and critical systems. 

For that reason, we looked into a solution and we decided to build the tool based 

on BDDs. The BDDs are able to handle large number of features efficiently. We 

have also chosen Haskell for evaluating and processing the user specifications. We 

have also advised to use the syntax-based translation to enable users who prefer 

the graphical FM techniques to translate from one technique to another or from 

any technique to PFA and vice versa. 

In all the parts of the thesis, we have taken into consideration the importance 

of giving an insight to the reader by giving tangible examples; examples that can 

be used on the tool. The examples are mainly put for illustrating the concepts, 

the way we perform feature modelling, and for highlighting the capabilities of the 

tool. In the remaining, we show our contribution and point to future work. 

6.1 Contribution 

The main contribution of our work is to provide the design and the implemen

tation of four layers (among five layers) of a tool for feature modelling based on 

mathematics. The design and the implementation aim to bring together the ben

efits of all the feature models and extend them with formal and mathematical 

capabilities for specification, calculus, analysis, and inference. 

The design is tailored in a layered architecture for the layers to be managed, 

enhanced or replaced independently. This puts into consideration the importance 

of making the tool platform-independent, adopt the best technologies and extend 

the tool with future concepts in feature modelling. 



6. Conclusion and Future Work 77 

We have implemented PFA based on BDDs to provide efficient handling of 

large and critical systems. We have implemented two useful models which are 

the set and the bag models using BDDs. We use BDDs to encode the sets or 

the bags of features and we aggregate them as sets of sets or sets of bags. Using 

BDDs) we have built the basic operations in PFA) built the essential functions in 

sets and bags from which we constructed some more utility functions. 

The design also incorporates a layer for translation. We proposed the syntax

based translation where the user provides the specification either in PFA or in 

Graphviz Dot language to be translated from one desired format to another, be 

it in PFA or a graphical notation. 

The proposed design of the tool envisions future useful capabilities and ex

tensions as we see it at this point of time. We have implemented most of the 

layers and the main parts of the tool. We have implemented the BDD layer, the 

set and the bag models in the concrete models layer, the term evaluation layer, 

and the user interface layer. The implementation of further concrete models and 

the proposed translation layer are subjects of future work. 

The tool as it is designed and implemented, provides a powerful and precise 

means for handling feature models formally. 

6.2 Future Work 

The proposed tool is built to scale and extend. It is built to incorporate many 

needed utilities to facilitate feature modelling in practice. The tool can be ex

tended in many ways. In the following, we give some plausible future work 

extensions of the tool. 

The syntax-based translation technique is very useful. It can be implemented 

by writing down the syntax of every graphical FM technique in Graphviz Dot 



78 6. Conclusion and Future Work 

language. It can be obtained from the tables we provide in Appendix A. The 

syntax of PFA is also required. YACC or any similar library can be utilized to 

perform the translation. 

It will be useful if the user can write the specification in some macro language 

terms. This would make the specification shorter. For example, instead of writing 

(1 + x) to express that x is optional, we can write opt(x). Macros can be also 

written for other expressions like the constraints. 

Constraints are taken into consideration in the implementation, however, they 

are not implemented yet. This is part of the the future work. The constraints 

include requires, execludes and implies. 

There is also the extension of merging specifications together in one specifica

tion. This specification can be written in separate files in PFA or extracted from 

a graphical notation in Graphviz Dot language. 

The tool can be extended with a graphical editor to load or create graph

ical feature models directly. The graphical editor can be used for the input, 

modification, and for connecting with the translation layer directly to produce 

a corresponding PFA specification file. The graphical editor can be useful also 

for viewing the feature models as whole or partially. It can be used to highlights 

certain parts of the feature model or the specification, zoom in, zoom out, search, 

calculate and analyse. 

These above extensions give a broad vision of how the design and the im

plementation of the tool establishes a solid ground for a formal, precise and 

productive feature modelling tool. This is a wide-perspective extensible platform 

for handling product families. 



Appendix A 

FM Techniques Notations and 

their corresponding PFA 

Expressions 

This is to illustrate the FM techniques notations and give the corresponding PFA 

terms. This should give the reader an insight with an example for each graph 

notation side by side with PFA expression. We illustrate FODA in A.1, FORM 

in A.2, Riebisch's Technique in A.5, FeatuRSEB in A.3,van Gurp's Technique 

in AA, and PLUSS in A.6. We avoid the repetition of notations when possible, 

as it is understood from our discussion of the evolution of FM techniques and the 

details given in Section 2.1. 

79 



80 A. FM Tecbniques Notations and tbeir corresponding PFA Expressions 

In Table A.7, we summarize the FM graph notations and give their corre

sponding PFA terms. 



A. FM Tecbniques Notations and tbeir corresponding PFA Expressions 81 

Table A.l: FODA elements and the corresponding PFA expressions 

Expression 

a consists of b,c 

and d 

a is an XOR of b, 

c and d 

textual con-

straint: in a 

product a) b 

requires c 

textual con-

straint: a mutex 

b 

optional 

Graph 
a 

/I~ 
bed 

a 

~ 
bed 

in text 

in text 

Notes 

AND-

composition 

XOR-

decomposition 

:similar to AND-

composition 

with a line 

crossing the 

edges. 

in PFA terms 

a = b.c.d 

a=b+c+d 

in a product a, b ~ c 

b always requires 

the feature c. 

in a product a, b.c ~ a 
b cannot coexist 

with c 

circle. a = (b + 1).c.d 

The feature b is 

optional. 



82 A. FM Techniques Notations and their corresponding PFA Expressions 

Table A.2: FORM elements and the corresponding PFA terms 

Expression Graph Notes in PFA terms 

a is composed oj ~ AND- a = b.c.d 

b,c and d composition 

a is an XOR of b, ~ XOR- a=b+c+d 

c and d decomposition 

b is an optional ~ a blank circle. a = (b + I).c.d 

feature The feature a is 

optional. 



A. FM Techniques Notations and their corresponding PFA Expressions 83 

Table A.3: FeatuRSEB elements and the corresponding PFA terms 

Expression Graph: Notes in PFA Terms 

a is either b, c or A OR- a=b+c+d+ bed 

d decomposition (b· c) + (b . d) + 

(c . d) + (b . c . d) 

a is an XOR of b, ~ XOR- a=b+c+d b c d 

C and d composition 
a 

graphical con-
,cqu:Vl\ 

bed in a, b always re- b~m 

straint: III a quires m 

product a, b 

reqmres m 
a 

graphical con-
m:Vl\ 

bed in a, b cannot co- b.m~O 

straint: in exists with m 

a product a, 

mutex b : 



84 A. FM Tecbniques Notations and tbeir corresponding PFA Expressions 

Table A.4: van Gurp elements and the corresponding PFA terms 

Expression Graph Notes in PFA Terms 

Binding Times solid-line 1 ~ c. d or 

boxes a - c.d. The 

reconciliation is: 
a a' 

1 --+ c. d /\ 1 -----+ 

aa' 
b =? 1 ~ b.c.d 

where, a' is an-

other view of the 

product. 

External line 1 
a' 

-----+ b where 

tures boxes 

a.a' is an XOR of ,_.~ blank triangle 

b,c and d 

a.a' is an OR of ,--,~ black triangle 

band c 

a' is the external 

view of a' 

a.a' - b + c + 

d /\ b.c ~ 0/\ 
a a' a 

b.d ~ O/\c.d --+ 

o 

a.a' = b+ c+ d/\ 

,(a.a' ~ 1) 



A. FM Techniques Notations and their corresponding PFA Expressions 85 

Table A.5: Riebisch elements and the corresponding PFA terms 

Expression Graph Notes in PFA Terms 

Mandatory Fea-~ the edge end a = b.c.(d + 1) 

ture describes which 

node is manda-

tory; a and b 

are. 

Optional Fea-~ the edge end a = b.c.(d + 1) 

ture describes which 

node is optional; 

dis. 



86 A. FM Techniques Notations and their corresponding PFA Expressions 

Table A.6: PLUSS elements and the corresponding PFA terms 

Expression Graph Notes in PFA Terms 

I a I 

Mandatory Fea- b ~c black circle: cis. a = (b + l).c 

ture 

Optional Fea-
A 

blank circle: b is. a = (b + l).c b C 

ture 
a 

ffi 
Single 

b 5 d 
a circled S a=b+c+d c 

Adapter: XOR-

decomposition 
a 

Multiple m c a circled M a=b+c+d+ 

Adapter: OR- (b· c) + (b· d) + 

decomposition (c . d) + (b . c . d) 



Table A.7: Feature Modelling Notations and the Corresponding PFA Terms 
Expression FODA FORM FOPLE FeatuRSEE GP van Gurp Riebisch PLUSS in PFA 

Term 

Feature . 0 0 a a a a a a 

Mandatory I c6 c6 I 1/ II I , & mul-l! in a prod-

tiplicities uct p, p = 

a 

Optional / c6 c6 i Ii Ii ii, & mul-l/ in a prod-

tiplicities uct p, p = 

a+l 

AND -"~, ~ ~ b1"d "~ ' . ,~, UML Mul- ,~, a = b.c.d 

Composed- tiplicities 

of 

XOR - Al- b1\ ""~ "'-~ rtf b~d rl--, 
UML Mul-~ a = b+c+d " , " . 

ternative tiplicities 

OR - not sup- not sup- not sup-
rh ., , b1'd rh ., , UML Mul-~ a=b+c+ 

Choice ported ported ported tiplicities d+(b·c)+ 

(b·d) +(c· 

d)+(b·c·d) 

Requires textual textual textual A __ "':" ___ 11 textual 
~ __ ~ ___ b 

~ __ ~ _ __ b 
~ __ ":..-___ II in a prod-

uct p, a 1:. 

b 

Excludes textual textual textual • __ "'_-___ b textual ~ __ '::'" ___ II • __ "t-__ .... b ~ __ '::",, ___ b in a prod-

uct p, 

a.b 1:. 0 

~ 

~ 
~ 
B-
~ ...... 
.0 
>::: 
b'l 
~ 
c:-t
~ 
c:-t-

§' 
CJ:l 

§ 
0... 

g. 
(1) 
~. 

(J 
o 
~ 
(1) 

.gj 
§ 
0... 
~. 

~ 
~ 

~ 
] 
§' 
CJ:l 

00 
-.:I 



88 A. FM Techniques Notations and their corresponding PFA Expressions 



Appendix B 

Robot Example Results 

The listing of listProducts of the platJorm_size_sensor in the set model. 

{ large_platform } 

{ large_platform, c_s_combination } 

{ large_platform, c_s_mechanical } 

{ large_platform, c_s_mechanical, c s combination 

{ large_platform, c_s_pneumatic } 

{ large_platform, c_s_pneumatic, c_s_combination } 

{ large_platform, c_s_pneumatic, c_s_mechanical } 

{ large_platform, c_s_pneumatic, c_s_mechanical, 

{ medium_platform } 

{ medium_platform, c_s_combination } 

{ medium_platform, c_s_mechanical } 

c 

} 

s 

{ medium_platform, c_s_mechanical, c s combination} 

{ medium_platform, c_s_pneumatic } 

{ medium_platform, c_s_pneumatic, c_s_combination } 

{ medium_platform, c_s_pneumatic, c_s_mechanical } 

combination } 

{ medium_platform, c_s_pneumatic, c_s_mechanical, c s combination} 

89 



90 B. Robot Example Results 

{ small_platform } 

{ small_platform, c_s_combination } 

{ small_platform, c_s_mechanical } 

{ small_platform, c_s_mechanical, c_s_combination 

{ small_platform, c_s_pneumatic } 

} 

{ small_platform, c_s_pneumatic, c_s_combination } 

{ small_platform, c_s_pneumatic, c_s_mechanical } 

{ small_platform, c_s_pneumatic, c_s_mechanical, c_s_combination 

] 

} 

Listings of listProducts of the platjorm_size_sensor in the bag model: 

[ 

{ 

(large_platform, 1) 

} 

{ 

(large_platform, 1) , (c_s_combination,l) 

} 

{ 

(large_platform, 1) , (c_s_combination,2) 

} 

{ 

(large_platform, 1) , (c_s_combination,3) 

} 

{ 

(large_platform, 1) , (c_s_combination,4) 

} 

{ 



B. Robot Example Results 

(large_platform, 1) , (c_s_combination,5) 

} 

{ 

(large_platform, 1) , (c_s_mechanical,1) 

} 

{ 

(large_platform, 1) , (c_s_mechanical,1) , (c_s_combination,1) 

} 

{ 

(large_platform, 1) , (c_s_mechanical,1) , (c_s_combination,2) 

} 

{ 

(large_platform, 1) , (c_s_mechanical,1) , (c_s_combination,3) 

} 

{ 

(large_platform, 1) , (c_s_mechanical,1) , (c_s_combination,4) 

} 

{ 

(large_platform, 1) , (c_s_mechanical,2) 

} 

{ 

(large_platform, 1) , (c_s_mechanical,2) , (c_s_combination,1) 

} 

{ 

(large_platform, 1) , (c_s_mechanical,2) , (c_s_combination,2) 

} 

{ 

91 



92 

} 

{ 

(large_platform, 1) , (c_s_mechanical,3) 

} 

{ 

B. Robot Example Results 

(large_platform, 1) , (c_s_mechanical,3) , (c_s_combination,l) 

} 

{ 

(large_platform, 1) , (c_s_mechanical,3) , (c_s_combination,2) 

} 

{ 

(large_platform, 1) , (c_s_mechanical,4) 

} 

{ 

} 

{ 

(large_platform, 1) , (c_s_mechanical,5) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,l) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,l) , (c_s_combination,l) 

} 

{ 

(large_platform,l) , (c_s_pneumatic,l) , (c_s_combination,2) 

} 



B. Robot Example Results 

{ 

(large_platform, 1) , (c_s_pneumatic,l) , (c_s_combination,3) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,l) , (c_s_combination,4) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,l) , (c_s_mechanical,l) 

} 

{ 

93 

(large_platform, 1) , (c_s_pneumatic,l) , (c_s_mechanical,l) , (c_s_combination,l) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,l) , (c_s_mechanical,l) , (c_s_combination,2) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,l) , (c_s_mechanical,l) , (c_s_combination,3) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,l) , (c_s_mechanical,2) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,l) , (c_s_mechanical,2) , (c_s_combination,l) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,l) , (c_s_mechanical,2) , (c_s_combination,2) 

} 

{ 



94 B. Robot Example Results 

(large_platform, 1) , (c_s_pneumatic,1) , (c_s_mechanical,3) 

} 

{ 

(large_platform,1) , (c_s_pneumatic,1) , (c_s_mechanical,3) , (c_s_combination, 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,1) , (c_s_mechanical,4) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,2) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,2) , (c_s_combination,1) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,2) , (c_s_combination,2) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,2) , (c_s_combination,3) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,2) , (c_s_mechanical,1) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,2) , (c_s_mechanical,1) , (c_s_combination,: 

} 

{ 



B. Robot Example Results 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,2) , (c_s_mechanical,2) 

} 

{ 

95 

(large_platform, 1) , (c_s_pneumatic,2) , (c_s_mechanical,2) , (c_s_combination,l) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,2) , (c_s_mechanical,3) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,3) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,3) , (c_s_combination,l) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,3) , (c_s_combination,2) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,3) , (c_s_mechanical,l) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,3) , (c_s_mechanical,l) , (c_s_combination,l) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,3) , (c_s_mechanical,2) 

} 



96 

{ 

(large_platform, 1) , (c_s_pneumatic,4) 

} 

{ 

B. Robot Example Results 

(large_platform, 1) , (c_s_pneumatic,4) , (c_s_combination,1) 

} 

{ 

(large_platform, 1) , (c_s_pneumatic,4) , (c_s_mechanical,1) 

} 

{ 

(large_platform,1) , (c_s_pneumatic,5) 

} 

{ 

(medium_platform, 1) 

} 

{ 

(medium_platform,1) , (c_s_combination,1) 

} 

{ 

(medium_platform, 1) , (c_s_combination,2) 

} 

{ 

(medium_platform, 1) , (c_s_combination,3) 

} 

{ 

(medium_platform, 1) , (c_s_combination,4) 

} 

{ 



B. Robot Example Results 

(medium_platform, 1) , (c_s_mechanical,1) 

} 

{ 

(medium_platform, 1) , (c_s_mechanical,1) , (c_s_combination,1) 

} 

{ 

(medium_platform, 1) , (c_s_mechanical,1) , (c_s_combination,2) 

} 

{ 

(medium_platform, 1) , (c_s_mechanical,1) , (c_s_combination,3) 

} 

{ 

(medium_platform, 1) , Cc_s_mechanical,2) 

} 

{ 

(medium_platform, 1) , (c_s_mechanical,2) , (c_s_combination,1) 

} 

{ 

(medium_platform, 1) , (c_s_mechanical,2) , (c_s_combination,2) 

} 

{ 

(medium_platform, 1) , (c_s_mechanical,3) 

} 

{ 

(medium_platform, 1) , Cc_s_mechanical,3) , (c_s_combination,1) 

} 

{ 

97 



98 

} 

{ 

} 

{ 

} 

{ 

} 

{ 

} 

{ 

} 

{ 

} 

{ 

} 

{ 

} 

{ 

B. Robot Example Results 

(medium_platform, 1) , (c_s_pneumatic,1) , (c_s_mechanical,2) , (c_S_Combination! 

} 



B. Robot Example Results 

{ 

(medium_platform, 1) , (c_s_pneumatic,l) , (c_s_mechanical,3) 

} 

{ 

(medium_platform, 1) , (c_s_pneumatic,2) 

} 

{ 

(medium_platform, 1) , (c_s_pneumatic,2) , (c_s_combination,l) 

} 

{ 

(medium_platform, 1) , (c_s_pneumatic,2) , (c_s_combination,2) 

} 

{ 

(medium_platform, 1) , (c_s_pneumatic,2) , (c_s_mechanical,l) 

} 

{ 

99 

(medium_platform, 1) , (c_s_pneumatic,2) , (c_s_mechanical,l) , (c_s_combination,l) 

} 

{ 

(medium_platform, 1) , (c_s_pneumatic,2) , (c_s_mechanical,2) 

} 

{ 

(medium_platform, 1) , (c_s_pneumatic,3) 

} 

{ 

(medium_platform, 1) , (c_s_pneumatic,3) , (c_s_combination,l) 

} 

{ 



100 B. Robot Example Results 

(medium_platform, 1) , (c_s_pneumatic,3) , (c_s_mechanical,l) 

} 

{ 

(medium_platform, 1) , (c_s_pneumatic,4) 

} 

{ 

(small_platform, 1) 

} 

{ 

(small_platform, 1) , (c_s_combination,l) 

} 

{ 

(small_platform, 1) , (c_s_combination,2) 

} 

{ 

(small_platform, 1) , (c_s_combination,3) 

} 

{ 

(small_platform,l) , (c_s_mechanical,l) 

} 

{ 

(small_platform, 1) , (c_s_mechanical,l) , (c_s_combination,l) 

} 

{ 

} 

{ 



B. Robot Example Results 

} 

{ 

(small_platform, 1) , (c_s_mechanical,2) , (c_s_combination,l) 

} 

{ 

(small_platform, 1) , (c_s_mechanical,3) 

} 

{ 

(small_platform, 1) , (c_s_pneumatic,l) 

} 

{ 

(small_platform, 1) , (c_s_pneumatic,l) , (c_s_combination,l) 

} 

{ 

(small_platform, 1) , (c_s_pneumatic,l) , (c_s_combination,2) 

} 

{ 

(small_platform, 1) , (c_s_pneumatic,l) , (c_s_mechanical,l) 

} 

{ 

101 

(small_platform, 1) , (c_s_pneumatic,l) , (c_s_mechanical,l) , (c_s_combination,l) 

} 

{ 

(small_platform, 1) , (c_s_pneumatic,l) , (c_s_mechanical,2) 

} 

{ 

(small_platform, 1) , (c_s_pneumatic,2) 

} 



102 

{ 

B. Robot Example Results 

] 

(small_platform, 1) , (c_s_pneumatic,2) , (c_s_combination,1) 

} 

{ 

(small_platform,1) , (c_s_pneumatic,2) , (c_s_mechanical,1) 

} 

{ 

(small_platform,1) , (c_s_pneumatic,3) 

} 



Bibliography 

[AC04] 

[Ake78] 

[Bat05] 

[Big10] 

[Bry86] 

[Bry92] 

Michal Antkiewicz and Krzysztof Czarnecki. Featureplugin: feature 

modeling plug-in for eclipse. In Michael G. Burke, editor, Proceedings 

of the 2004 OOPSLA workshop on eclipse technology eXchange, pages 

67-72, New York, NY, USA, 2004. ACM. 

S. B. Akers. Binary decision diagrams. IEEE Transactions on Com

puters, 27(6):509 - 516, 1978. 

Don Batory. Feature models, grammars, and propositional formulas. 

In Lecture Notes in Computer Science, Lecture Notes in Computer 

Science, pages 7-20. Springer Berlin/Heidelberg, 2005. 

BigLever Software Inc. Gears. http://www.biglever.com/. 2010. 

(Last accessed on January 14, 2010). 

Randal E. Bryant. Graph-based algorithms for Boolean function ma

nipulation. IEEE Transactions on Computers, C-35:677-691, 1986. 

Randal E. Bryant. Symbolic boolean manipulation with ordered bi

nary decision diagrams. Technical report, Pittsburgh, PA, USA, 1992. 

[CAK+05] Krzysztof Czarnecki, Michal Antkiewicz, Chang Hwan Peter Kim, 

Sean Lau, and Krzysztof Pietroszek. fmp and fmp2rsm: eclipse plug

ins for modeling features using model templates. In OOPSLA '05: 

103 



104 BIBLIOGRAPHY 

Companion to the 20th annual ACM SIGPLAN conference on Object

oriented programming, systems, languages, and applications, pages 

200-201, New York, NY, 2005. ACM Press. 

[CRE05] Krzysztof Czarnecki, Simon ReIsen, and Ulrich W. Eisenecker. For

malizing cardinality-based feature models and their specialization. 

Software Process: Improvement and Practice, 10(1):7-29, 2005. 

[Cza98] Krzysztof Czarnecki. Generative Programming, Principles and Tech

niques of Software Engineering Based on Automated Configuration 

and Fragment-Based Component Models. PhD thesis, Technical Uni

versity of Ilmenau, October 1998. 

[DGR07] Deepak Dhungana, Paul Grnbacher, and Rick Rabiser. Decisionk

ing: A flexible and extensible tool for integrated variability modeling. 

In 1st International Workshop on Variability Modelling of Software-

intensive Systems, pages 119-128, 2007. 

[DKDK02] A. Van Deursen, P. Klint, Arie Deursen, and Paul Klint. Domain

specific language design requires feature descriptions. Technical re

port, 2002. 

[DS06] 

[DSF07] 

Olfa Djebbi and Camille Salinesi. Criteria for comparing require

ments variability modeling notations for product lines. In Proceedings 

of the Fourth Internationa Workshop on Comparative Evaluation in 

Requirements Engineering (CERE '06), pages 20 - 35, Washington, 

DC, September 2006. IEEE Computer Society. 

Olfa Djebbi, Camille Salinesi, and Gauthier Fanmuy. Industry sur

vey of product lines management tools: Requirements, qualities and 



BIBLIOGRAPHY 105 

[EBB] 

[FAC07] 

[Gee03] 

open issues. 15th IEEE International Requirements Engineering Con

ference (RE 2007), pages 301-306, 2007. 

Magnus Eriksson, Jiirgen Barstler, and Kjell Borg. The PLUSS ap

proach - domain modeling with features, use cases and use case real

izations. In Software Product Lines - 9th International Conference, 

SPLC 2005, Proceedings, volume 3714 of Lecture Notes in Computer 

Science, pages 33-44. 

Alain Forget, Dave Arnold, and Sonia Chiasson. Case-fx: feature 

modeling support in an 00 case tool. In OOPSLA 'OJ: Companion to 

the 22nd ACM SIGPLAN conference on Object-oriented programming 

systems and applications companion, pages 803-804, New York, NY, 

USA, 2007. ACM. 

Geert Janssen. A consumer report on bdd packages. In SECCI '03: 

Proceedings of the 16th symposium on Integrated circuits and systems 

design, page 217, Washington, DC, USA, 2003. IEEE Computer So

ciety. 

[Gen10] Generative Programming. AmiEddi Tool. http://www.generative

programming.org/, 2010. (Last accessed on November 26, 2009). 

[GFd98] Martin L. Griss, John Favaro, and Massimo d'Alessandro. Integrating 

Feature Modeling with the RSEB. In Proceedings of the 5th Interna

tional Conference on Software Reuse, pages 76-85, Washington, DC, 

USA, 1998. IEEE Computer Society. 

[HKM06] Peter Hafner, Ridha Khedri, and Bernhard Moller. Feature Algebra. 

In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, PM 



106 BIBLIOGRAPHY 

2006: Formal Methods, volume 4085 of Lecture Notes in Computer 

Science series, pages 300-315, 14th International Symposium on For

mal Methods, McMaster University, Hamilton, Ontario, Canada, Au

gust 21 - 27 2006. Springer. 

[HKM08] Peter Hofner, Ridha Khedri, and Bernhard Moller. Algebraic view 

reconciliation. In 6th IEEE International Conferences on Software 

Engineering and Formal Methods, pages 85-94. Cape Town, South 

Africa, November 10-14, 2008. 

[HKM09] Peter Hafner, Ridha Khedri, and Bernhard Moller. An Algebra of 

Product Families. Software and Systems Modeling, 2009. 

[HM85] 

[Honl0] 

[IBMI0] 

M. C. B. Hennesy and R. Milner. Algebraic laws for nondeterminism 

and concurrency. Journal of the ACM, 32(1):137-161, 1985. 

Honeywell. DoME. http://www.htc.honeywell.com/dome, 2010. 

(Last accessed January 14, 2010). 

IBM. DOORS T-REK. 

01. ibm. coml software I awdtools I doors I prod uctline I, 
accessed February 23, 2010. 

http://www-

2010. Last 

[KCH+90] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature

Oriented Domain Analysis (FODA) Feasibility Study. Technical Re

port CMU ISEI-90-TR-21, Software Engineering Institute, Carnegie 

Mellon University, November 1990. 

[KDn06] Timo Kakola and Juan C. Duenas. Software Product Lines - Research 

Issues in Engineering and Management. Springer, 2006. 



BIBLIOGRAPHY 107 

[KKL +] Kyo Chul Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, 

and Moonhang Huh. FORM: A feature-oriented reuse method with 

domain-specific reference architectures. Annals of Software Engineer

ing, 5:143~168. 

[KLD02] Kyo C. Kang, Jaejoon Lee, and Patrick Donohoe. Feature-Oriented 

Product Line Engineering. IEEE Software, 19(4):58~65, July/August 

2002. 

[Kot05] Koteswar Rao Kollu. Evaluating The PLUSS Domain Modeling Ap

proach by Modeling the Arcade Game Maker Product Line. Master's 

thesis, Vmea University, SE-901 87 UMEA, SWEDEN, 21 June 2005. 

[Kru93] R. Krut. Integrating 001 tool support into the feature-oriented do

main analysis methodology. Technical report, Software Engineering 

Institute, Carnegie Mellon University, May 1993. 

[KSA +06] Kyo C. Kang, Minseok Seo, Miyoung Ahn, Yeop Chang, Hyejung 

Kim, and Kyungseok Kim. Asadal: a tool system for co-development 

of software and test environment based on product line engineering. 

Proceedings of the 28th international conference on Software engi

neering, pages 783~ 786, 2006. 

[LC10] 

[Lee59] 

AT and T Research Labs and Contributors. Graphviz: A graph vi

sualization software. http://www.graphviz.org/, 2010. Last accessed 

on Feb 2, 2010. 

C. Y. Lee. Representation of switching circuits by binary-decision 

programs. Bell System Technical Journal, 38:985~999, July 1959. 



108 

[LN10] 

[Pet71] 

[Pur10] 

BIBLIOGRAPHY 

J0rn Lind-Nielsen. Buddy BDD Library. 

http://sourceforge.net/projects/buddy/, 2010. (Last accessed 

on Feb 2, 2010). 

S. R. Petrick. On the use of syntax-based translators for symbolic and 

algebraic manipulation. In SYMSA C '71: Proceedings of the second 

ACM symposium on Symbolic and algebraic manipulation, pages 224-

237, New York, NY, USA, 1971. ACM Press. 

Pure Systems. Pure::Variants. http://www.pure

systems.com/3.0.html, 2010. (Last accessed on November 26, 

2009). 

[RBSP02] Matthias Riebisch, Kai Bollert, Detlef Streitferdt, and Ilka Philip

pow. Extending Feature Diagrams with UML Multiplicities. 6th 

Conference on Integrated Design f3 Process Technology (IDPT 2002), 

Pasadena, California, USA, 2002. 

[Req10] 

[Rob03] 

[RZS09] 

RequiLine. RequiLine Tool. http://www-lufgi3.informatik.rwth

aachen.de/TOOLS/requiline/, 2010. (Last accessed on November 26, 

2009). 

Silva Robak. Feature Modeling Notations for System Families. In 

International Workshop on Software Variability Management (SVM), 

pages 58-62, Portland, Oregon, 2003. 

Andrei Rimsa, Luis E. Zarate, and Mark A. Song. Evaluation of 

different bdd libraries to extract concepts in fca - perspectives and 

limitations. In ICCS '09: Proceedings of the 9th International Con

ference on Computational Science, pages 367-376, Berlin, Heidelberg, 

2009. Springer-Verlag. 



BIBLIOGRAPHY 109 

[SGllO] SGI. C++ STL library. http://www.sgi.com/tech/stlf. 2010. (Last 

accessed on Feb 2, 2010). 

[SHTB07] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, 

and Yves Bontemps. Generic semantics of feature diagrams. Com

puter Networks, 51(2):456-479, 2007. 

[Sou10] Source Forge. CaptainFeature 

http://sourceforge. net / projects / captainfeature / , 2010. 

accessed on November 26, 2009). 

Tool. 

(Last 

[SSP+OO] Douglas Stuart, Wonhee Sull, Steve Pruitt, Deborah Cobb, Fred 

Waskiewicz, and T. W. Cook. The SSEP toolset for product line 

development: an xml-based, architecture-centric approach. In Pro

ceedings of the first conference on Software product lines.' experience 

and research directions, pages 413-435, Norwell, MA, USA, 2000. 

Kluwer Academic Publishers. 

[Str04] Detlef Streitferdt. Family-oriented requirements engineering. PhD 

thesis, Technical University Ilmenau, 2004. 

[Uni10] University of Duisburg-Essen. VarMod. http://www.sse.uni

due.de/wms/en/index.php?go=139, 2010. (Last accessed on January 

14, 2010). 

[UtrlO] Utrecht University. Parsec Library, 2010. (Last accessed on Feb 2, 

2010). 

[vdML04] Thomas von cler MaBen and Horst Lichter. Requiline: A requirements 

engineering tool for software product lines. In Software Product-



110 BIBLIOGRAPHY 

Family Engineering, Volume 3014/2004, pages 168-180. Springer 

Berlin / Heidelberg, 2004. 

[vGBS01] J. van Gurp, J. Bosch, and M. Svahnberg. On the Notion of Vari-

[XFe10] 

ability in Software Product Lines. In Proceedings of the Working 

IEEE/IFIP Conference on Software Architecture, page 45, Washing

ton, DC, 2001. IEEE Computer Society. 

XFeature. XFeature. http://www.pnp-software.com/XFeature/ , 

2010. (Last accessed on November 26, 2009). 

104?3 i6 


