
COMPUTING REPETITIONS IN STRINGS: CURRENT

ALGORITHMS & THE COMBINATORICS OF FUTURE

ONES.

COMPUTING REPETITIONS IN STRINGS: CURRENT ALGORITHMS & THE

COMBINATORICS OF FUTURE ONES.

BY

EVGUENIA KOPYLOV, B.Sc.

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

AT

McMASTER UNIVERSITY

HAMILTON, ONTARIO, CANADA

DECEMBER 2010

© Copyright by Evguenia Kopylov, December 2010

All Rights Reserved

MASTER OF SCIENCE (2010)

(Computing & Software)

McMaster University

Hamilton, Ontario

TITLE: COMPUTING REPETITIONS IN STRINGS: CURRENT ALGO­

RITHMS & THE COMBINATORICS OF FUTURE ONES.

AUTHOR: Evguenia Kopylov

B.Sc., (Mathematical Science)

McMaster University, Hamilton, Canada

SUPERVISOR: Dr. William F. Smyth

NUMBER OF PAGES: xi, 47

ii

To my family.

Abstract

Repetition is the reality and seriousness of life.

- Boren Kierkegaard

The study of repetitions exhibits roots in many modern sciences - sinusoidal waves in physics (smooth

repetitive oscillations such as the electromagnetic spectrum), highly repetitive DNA in biology (tan­

dem repeats, satellite DNA), regularities of ciphertexts in cryptography and the periodicity of sounds

and sequences in music. A string on a given alphabet 2j provides the simplest common representa­

tion of this underlying property. A repetition defined on a string consists of two or more adjacent

identical substrings (e.g. abab or aaaa).

A particular problem regarding repetitions is to count the number of different repetitions in

a string. Conventional approaches execute in 8(nlogn) time (Crochemore, 1981; Apostolico and

Preparata, 1983; Main and Lorentz, 1984) and employ computationally heavy preprocessing. An

8(n) time algorithm introduced in 2000 (Kolpakov and Kucherov, 2000) prevailed over its slower

predecessors by succinctly encoding all repetitions as runs. A run is a maximally periodic (non­

extendible) substring. For example, the string abaabaabb encodes 3 runs - (aba?(ab), aa (twice) and

bb. The first of these identifies three repetitions - (aba)2, (baa? and (aab? In the early part of this

thesis, we survey current algorithms for computing all repetitions.

Brute force is the essential drawback of previous attempts for detecting repetitions, despite

evidence and proof that their occurrence in strings is sparse (Puglisi and Simpson, 2008). By

iv

establishing combinatorial constraints to predict the expected sparsity of runs, extant preprocessing

may be reformatted to exclude redundant computations. In (Fan et al., 2006), it was shown that if

two runs begin at the same position i, consequently no runs begin at some neighbouring position i+k.

This is the fundamental idea behind our combinatorial work, in which we provide well substantiated

conjectures, some of which are supported by proofs, implying that three neighbouring squares in a

string force a trivial breakdown of the substring beginning at position i into repetitions of a small

period.

v

Acknowledgements

I would like to express my uttermost gratitude to Dr. Bill Smyth for his assistance and support

throughout the duration of this thesis. The final results of this research could not have been done

as quickly and efficiently without his help. Koszonom!

I would also like to thank the members of my thesis advisory committee, Dr. Jeffery Zucker and Dr.

Frantisek Franek, for their helpful comments and suggestions.

Lastly, I am grateful for the kindness and support of all my colleagues and to McMaster University

for providing me with this opportunity.

vi

Notation and abbreviations

Notation. For convenience, let strings be represented in boldface (e.g. x = x[O ... n-l]) and their

lengths in italics (e.g. x =Ixl).

vii

Contents

Abstract

Acknowledgements

Notation and abbreviations

1 Introduction

1.1 Applications .

1.2 Historical Background

1.3 Contribution of This Thesis

1.3.1 Survey of algorithms for computing repetitions (Chapter 3)

1.3.2 Software to generate strings characterized by the NPL (Chapter 4)

1.3.3 Periodicity conjectures generated by software (Chapter 4)

1.3.4 The New 'Three Squares Lemma' (Chapter 5) .

2 Terminology and Data Structures

3 Algorithms for Computing Repetitions and Runs

3.1 Repetitions vs. Runs.

3.2 LZ-factorization.

3.2.1 CPSlb.

3.2.2 CPS2

3.2.3 CIS .

viii

iv

vi

vii

1

1

2

3

3

4

4

4

5

13

13

15

16

17

20

-l

3.3 Runs I: Detecting leftmost maximal periodicities

3.4 Runs II: On maximal repetitions in words . .

3.5 Combinatorial Approach to Computing Runs

4 Conjectures Related to Neighbouring Squares

4.1 New Software .

4.1.1 Time Complexity.

4.1.2 Space Complexity

4.2 Generated Conjectures . .

5 New Combinatorial Results Based on Conjectures

5.0.1 Subcases 1, 2, 5, 6, 8-10 .

5.0.2 Remaining Subcases and Other Mysteries

A

A.1 Runtime for LZ-factorization algorithms

A.2 Space for LZ-factorization algorithms.

A.3 Calculating Asymptotic Complexity .

ix

22

24

25

27

27

30

31

31

35

35

37

40

40

41

41

List· of Figures

2.1 The suffix tree of x = abaababa$.

2.2 SA, LCP and LPF arrays of x = abaababa$..

2.3 Execution of LZ77 on x = abaababa.

2.4 Three squares satisfying the NPL. .

3.1 The steps and main data structures used by each algorithm

3.2 Algorithm CPSlb. . .

3.3 Execution of CPSlb on x = abaababa$.

3.4 Algorithm CPS2.

3.5 Step (i) for the text x = abaababa.

3.6 Step (ii) for the text x = abaababa..

3.7 Given LPF for a string x, compute LZ.

3.8 Main's algorithm for computing all maximal leftmost runs.

3.9 Finding all leftmost runs using Main's algorithm for string x = abaabaabb..

3.10 Algorithm to find all runs in x (Smyth, 2003) .

4.1 Algorithm construcLx(S, C7, Ul, U2, k, w): UI E LUI_max, u2 E LU2_max

4.2 Function jorce_square(C7, Ul, U2, k, w) .

4.3 Generated string x for X = {UI = 2, U2 = 4, k = 1, w = 12}.

5.1 (a) Subcase 5

5.2 (b) Subcase 6

5.3 (c) Subcase 8

5.4 (d) Subcase 9

x

7

8

10

12

16

18

19

20

21

22

22

23

24

25

29

29

30

35

36

36

36

5.5 (e) Subcase 10

5.6 Sllbcase 3 . . .

xi

37

38

Chapter 1

Introduction

1.1 Applications

The Mozart Effect is a well-known phenomenon demonstrating the increase in mental performance

and development induced by simultaneously playing two or more sOlmd waves of certain frequencies

into your ear. The superposition of the multiple sinusoidal waves arranges the resulting sound to al­

ternate between loud and soft. Further studies to justify this anomaly have revealed that our brains

may be stimulated by certain external beat frequencies to improve creativity and enhance memory

(Bennet and Bennet, 2008). For example, (3-waves (13-26 Hz) are best for sustaining alertness and

increased analytical capabilities whereas B-waves (4-8 Hz) induce deep relaxation and have been

shown to provide the best learning state (The Monroe Institute, 1985). In a recent study, the two

waves were superimposed to create an optimal relaxed alertness state (Bullard, 2003). These results

have spurred the development of multiple specialized software in brainwave synchronization and are

excellent examples of how repetitions are applied to music and neuroscience, by means of frequencies.

Specifically, a melody such as "Mozart's Sonata for Two Pianos in D" can be encoded into a text

string by means of pitch intervals between notes or as a set of MIDI instructions (Crawford et al.,

1998; Cambouropoulos et al., 1999). By studying the repetitions of various pitch classes found in

this sonata, scientists can establish the sequence of fundamental frequencies responsible for increased

brain performance.

1

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

On a slightly larger scale, repetitions are frequently observed in DNA sequences. Collectively,

tandem, interspersed and single copy nucleotide repeats account for nearly half of the mammalian

genome. This characteristic poses the greatest challenge in de novo genome assembly. Next Gen­

eration DNA sequencing techniques rely on the process of fragmenting the original DNA strands

into a large collection of short sequences and then reconstructing a copy of the original chromo­

some via concatenation. Given the high degree of repetitive DNA, the difficulty rests in avoiding

mis-assemblies associated with expansions, repeat collapses and sequence rearrangements (Schatz

et ai., 2008). Modern assembly algorithms adopt a variety of graph manipulation methods, which

are generally memory intensive and computationally difficult (NP-hard) (Pop, 2009). Studying rep­

etitions is essential for limiting sequencing errors and deriving alternative methods for whole-genome

assembly.

1.2 Historical Background

The computation of repetitions in strings has been a popular area of research since the early 1980's,

with substantial focus on captming the behavioural properties of periodicities. Early investigations

into finding all unique repetitions in a string have yielded O(nlogn) time algorithms (Crochemore,

1981; Apostolico and Preparata, 1983; Main and Lorentz, 1984). In 1989, repetitions were captmed

in a more compact form with the introduction of a run (Main, 1989). This novel idea, accompanied

by earlier efforts, gave rise to an 8(n) time algorithm for calculating all repetitions (Kolpakov

and Kucherov, 2000). The structme of this algorithm consists of a chain of complementary string

manipulation techniques, beginning with the suffix array construction and the LZ-factorization,

followed by the computation of all left-most runs and lastly the amalgam of these constituents to

determine all runs. The linearity of this algorithm depends directly on the linearity of each of its

components. Given the encoding of all repetitions as runs, the maximum number p(x) of runs in

any string was shown to be

(1.1)

2

M.Sc. Thesis - Evguenia Kopylov

where k1 , k2 are positive universal constants.

McMaster - Computing & Software

Although the size of the constants k1 , k2 could not be inferred from the proof, computational

evidence provided by Kolpakov & Kucherov supports the conjecture that the number of runs pen) is

always less than or equal to the length of the input string, i.e. pen) ::::; n. The latest proven bounds

(Simpson, 2010; !lie et al., 2008) are 0.944575712n < pen) ::::; 1.029n.

LZ-factorization was initially introduced in 1976, its methods commonly applicable in lossless

data compression (Lempel and Ziv, 1976). Applying this compression technique to compute reg­

ularities in strings requires the factorization of the entire string. In a recent paper (Puglisi and

Simpson, 2008), it was demonstrated that repetitions in strings are sparse. More notably, the ex­

pected value pen) ::::; OAn for long words (0" = 2) and pen) ::::; 0.05n for English text (0" ::::: 24). These

results encouraged further research in establishing combinatorial constraints to predict the expected

sparsity of runs. In (Fan et al., 2006), it was shown that if two runs begin at the same position i,

then necessarily no other instance of a neighbouring run may exist, suggesting pen) :f In. It may

be conjectured that the next step to showing pen) ::::; n is to establish restrictions on the number of

runs that can occur near a position in a string at which one or two runs already exist, and this is

the main focus of our contribution.

1.3 Contribution of This Thesis

1.3.1 Survey of algorithms for computing repetitions (Chapter 3)

We will begin by reviewing the fundamentals of existing algorithms which compute repetitions

in strings. This analysis will provide the reader with an understanding of strategies historically

employed to address this problem and justify our combinatorial approach.

3

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

1.3.2 Software to generate strings characterized by the NPL (Chapter 4)

The New Periodicity Lemma (NPL) (Fan et al., 2006) states that if two squares with certain proper­

ties begin at the same position i in a string, then there cannot exist another square of certain periods

at certain positions i +k. By relaxing the condition which restricts the existence of the neighbouring

third square, we can begin to examine the periodicities and behavioural patterns associated with

such a formation. There turn out to be a total of 14 possibilities for the layout of a string satisfying

the existence of three squares, differing in the distance k and the lengths of the third square. The

software presented here generates thousands of examples of such strings and is the foundation for

the periodicity conjectures outlined in Chapter 4.

1.3.3 Periodicity conjectures generated by software (Chapter 4)

In this chapter, we present conjectures on the periodicity of a string satisfying the NPL for all 14

cases. As it happens, 7 of the 14 cases yield a fully repetitive string, whereas the remaining 7 cases

vary in their output - based on data gathered from extensive computer analysis, 90% of the time the

generated string is fully repetitive and the J;emaining 10% it consists of runs of a smaller substring.

1.3.4 The New 'Three Squares Lemma' (Chapter 5)

In this chapter, we present a new lemma for capturing the combinatorial breakdown for 7 of the 14

possible cases. The complete proofs of this lemma are provided in the forthcoming paper (Kopylov

and Smyth, 2010).

4

Chapter 2

Terminology and Data Structures

Axel Thue (1863 - 1922) was a Norwegian mathematician and is commonly recognized as the pioneer

in the theory of combinatorics on words (Berstel et al., 2009). A series of his papers, (Thue, 1906,

1910, 1912, 1914), covered the earliest documented research on repetitions in strings and associated

periodical properties. An alphabet, defined by"E of size (Y, is a collection of letters. A finite string,

defined by x of length x = n, is a sequence of characters drawn from "E and can be equivalently

represented as x[O . .. n - 1]; for n = 1, x is the empty string denoted as E. The set of all strings

over the alphabet is denoted by Li*. Let u, v, w E Li* and x = uvw, then v is a substring of x

(v =1= E) where u = x[O ... i -1], v = x[i ... j -1] and W = x[j ... n-l] for some 0::; i < j::; n-l.

Here u is a prefix of x (proper prefix if v = W = E) and W is a suffix of x (proper suffix if

u = v = E). If x has both a prefix u and a suffix u, then x is said to have a border u. For example,

the Fibonacci string

x =abaababa (2.1)

has two borders: b1 = a and b2 = aba, where b2 is the longest border of x. If x is a concatenation

of r ::::: 1 copies of a nonempty string u, we write x = u T
• For r > 1, we say x is a repetition; for

r = 2, we say x is a square; for r = 3, we say x is a cube. For example, the string (2.1) encodes

four squares - (aba)2, (ab)2, (ba)2 and a2. Throughout this thesis, we will assume that x = u T is

a nontrivial repetition, meaning that u itself is not a repetition. If x = u T u', where u' is a prefix

5

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

-j

of u (possibly empty), we say that x has period u. 'vVe say x is primitive if and only if its only

period is x itself (i.e. x = u). It is easy to show that x has period u if and only if x has a border of

length x - u (Smyth, 2003).

Elementary components, letters or symbols, constitute the structure of a string. A prefix and a

suffix are definitions for which the order of elements in a string is preserved. Fast implementations

of many important string operations depend on fundamental data structures such as the suffix tree

and suffix array. The following material relating to suffix trees, suffix arrays, LCP, LPF and LZ­

factorization data structures closely follows that of (Al-Hafeedh et al., 2010).

A suffix tree is a data structure used to lexicographically store all suffixes of a string. It can

be computed in O(n log 0") time (Weiner, 1973; McCreight, 1976), where 0" E O(n) or in Sen) time

(Farach, 1997) if the alphabet size is known, though not practical for long strings. It is conventional

to append the special character $ to a string before constructing its suffix tree, where $ is less than

any letter in I;. This ensures that preorder traversal of the suffix tree yields the suffixes nodes in

lexicographical order.' Figure 2.1 shows the suffix tree for the string x = abaababa$. Note that in

the suffix tree, the leaf nodes store the starting position of each suffix of x, and the inner nodes hold

the lengths of the longest common prefix of all suffixes (leaf nodes) in the subtree.

A suffix array (SA) is a simplified alternative to a suffix tree, providing full-text indexing for a

string without attending to its structural properties. Since the suffixes in a tree are in lexicograph­

ical order, traversing and listing only the leaf node values will result in a suffix array. However,

this approach is computationally inefficient and more practical Sen) time algorithms have been de­

vised in (Karkkainen and Sanders, 2003; Ko and Aluru, 2003; Nong et al., 2009). Faster and more

lightweight (using less space) methods have also been introduced in (Manzini and Ferragina, 2004;

Maniscalco and Puglisi, 2006; Puglisi et al., 2007).

A Longest Common Prefix (LCP) array is a data structure often supplementing the suffix array

in string operations. The speedup and space efficiency of most LZ algorithms depend on both arrays

6

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

/057:.

"'(l~~

~t£?:"f:; :5l~l'1 6~J'l;b9 ~
~ 0;>1'if}

!'2""1

a

Figure 2.1: The suffix tree of x = abaababa$.

to comput~ the LZ-factorization. The LCP array is constructed by storing the lengths of the longest

common prefixes (lcp) between successive suffixes of SA, or

LCP[i] = lcp(x [SAri - 1] . " n], x [SAri] ... n]) for 1 < i :::; n.

For example, given two successive suffixes

x[SA[3] ... 8] = x[5 . .. 8] = aba$,

x[SA[4] ... 8] = x[O ... 8] = abaababa$

from Figure 2.2, their longest common prefix is aba of length LCP[4] = 3. Provided x and SA,

LCP can be computed in 8(n) time (Kasai et al., 2001; Ma=ini, 2004; Puglisi and Turpin, 2008;

Karkkainen et ai., 2009).

A Longest Previous Factor (LPF) array is defined as follows (Crochemore et ai., 2008). For

any positioni E x, LPF[i] gives the length of the longest factor of x starting at position i that

occurs previously in x. Formally, if xli] denotes the ith letter of x and x[i ... j] is the factor

x[i]x[i + 1] ... x[j], then

7

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

LPF[i] = max Wlw[i . . , i + l- 1] is a factor of w[O . .. it - 2]} U {O})

Applications of LPF can be seen in LZ-factorization and finding all repetitions in a string, using

linear time and independent of the alphabet size (Crochemore and Ilie, 2008). The SA, LCP and

LPF for the string x = abaababa$ are given in Figure 2.2.

-l

i SAri]
o 8
1 7
2 2
3 5
4 0
5 3
6 6
7 1
8 4

x [SA[i] ..n]
$
a$
aababa$
aba$
abaababa$
ababa$
ba$
baababa$
baba$

LCP[i]
o
o
1
1
3
3
o
2
2

LPF[i]
o
o
1
3
2
3
2
1
o

Figure 2.2: SA, LCP and LPF arrays of x = abaababa$.

The collection of algorithms which compute repetitions directly execute in O(nlogn) time and

most use some form of suffix trees or suffix arrays. In (Crochemore, 1981), it was shown that

Fibonacci strings of length n contain 8(nlogn) repetitions, thus showing that these algorithms are

asymptotically optimal. In 1989, Main proposed the idea to compactly encode all repetitions as

"runs" and then provided a 8(n) algorithm, starting from the suffix tree, for computing all maximal

leftmost repetitions in a string (Main, 1989).

Definition 2.0.1 (run; maximal periodicity; leftmost (Main, 1989; Fan et al., 2006)). A run or

'tnaxi'tnal periodicity is a substring in x of the form pmq = X [i ... i +mp +q - 1] with m 2 2, q

a proper prefix of p, and no repetition of period p begins at position i-I of x or ends at position

i +mp + q. If pmq occurs more than once in x, then the first time it occurs is called the left'tnost

occurrence.

Main's algorithm depends on the construction of a suffix tree and the LZ-factorization of a string

x. Initially introduced by Ziv and Lempel in 1977 (Lempel and Ziv, 1977), this method is the

primary idea behind lossless text compression and it works by effectively decomposing a string x

into a set of substrings by means of repeating occurrences. The key phrase "repeating occurrences"

is what makes LZ suitable for computating various regularities in strings, such as runs.

8

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

Definition 2.0.2 (LZ-factorization (Smyth, 2003)). A decomposition x = Wl W2 ••• Wk is an

LZ - factorization if and only if each Wj, j E 1 ... k, is

(a) a letter that does not occur in Wl W2 ••• Wj-l; or otherwise

(b) the substring of greatest length that occurs at least once in Wl W2 ••• Wj-l'

For example, the Fibonacci string x = abaababa has the LZ-factorization x = a.b.a.aba.ba.

LZ77 is based on a sliding window compression algorithm and constitutes the framework behind

text compression software such as zip, gzip, and Stacker. The algorithm consists of:

(1) A sliding window of length N, where often N = 4096 or 8192 (search buffer);

(2) A long prefix that has already been factored;

(3) A short unfactored suffix F of approximately 18 letters (look-ahead buffer).

Suppose the algorithm has generated the first j -1 factors, such that x = WlW2 ••• Wj-l' The

next factor Wj is the longest prefix of F that matches an earlier substring within the window. When

a new factor Wj has been determined, the sliding window moves from left-to-right by Wj positions.

Figure 2.3 illustrates this method on the string x = abaababa for the steps factoring W4 to W5 with

N = 3 and F= 3.

LZ78 (Lempel and Ziv, 1978) was introduced a year later, using an explicit dictionmy technique

and followed by a series of variants (LZC, LZT, LZFG) with applications in Graphics Interchange

Format (GIF) image compression and the UNIX compression program compress.

9

~

sliding window N = 3

M.Sc. Thesis - Evguenia Kopylov

(i) look-ahead buffer F = 3
~

McMaster - Computing & Software

JII =a
I

J11
2
= b

JII
j
= a

J11
4
= aba

(ii)

JII=a
I

J11
2
= b

JII
j
= a

J11
4
= aba

JIIs= ba

Figure 2.3: Execution of LZ77 on x = abaababa.

The standard of the factorization can be presented in multiple ways. In (Lempel and Ziv, 1977),

the factorization is recorded as an array of three variables (POS, LEN, A), where

POS: the location of a previous occurrence of Wj in x or the location of Wj if no previous occurrence

exists;

LEN: the length (possibly zero) of the matching previous occurrence;

A : the "letter of mismatch": for j < k, A = X[lWlW2 ... Wj-l! +LEN +1], while for j = k, A = $,

an arbitrary sentinel.

For the string x = abaababa, assuming indexing begins at i

factorization is:

LZ(x) = OOa, lOb, 03a, 12a.

o and N,F x, the LZ77

Most importantly, the applications of LZ-factorization can be found in lossless text compression,

computing repetitions (Crochemore, 1986), maximal periodicities (Kolpakov and Kucherov, 1999;

Abouelhoda et al., 2004; Chen et al., 2007b, 2008; Ilie et al., 2008; Crochemore et al., 2008) and

sequence alignments (Crochemore et al., 2002).

10

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

In (Kolpakov and Kucherov, 1998, 2000), it was shown that the number of runs in any string is

linear in the length of the string. Along side this proof, Kolpakov and Kucherov extended Main's

algorithm to include all maximal rightmost repetitions, hence computing all repetitions in time 8(x).

However, well begun is half done, and though the algorithm is linear in theory, its techniques are

brute force and indifferent to any combinatorial reasoning.. In (Fan et al., 2006), it was speculated

that establishing restrictions on the number of runs (squares) that can occur near a position in a

string at which one or two runs already exist is the next step to reducing the so far established

bounds to the "runs" conjecture 0.944575712n < p(n) :s; 1.029n. The following lemma presents the

first combinatorial property directed to occurrences of neighbouring squares in a string:

Lemma 2.0.3 ("The Periodicity Lemma" (Fine and Wilf, 1965)). Let p and q be two periods of x

= x[l . .. n], and let d = gcd(p, q). If p + q :s; n + d, then d is also a period of x.

However, this lemma provides no information about occurrences of runs in x and forces no

restrictions on the positions of possible periodic substrings. The following 'three squares lemma'

provides such information.

Lemma 2.0.4 ("Three Squares Lemma" (Crochemore and Rytter, 1995)). Suppose u is not a

repetition, and suppose w =1= u j for any j ::::: 1. If u 2 is a prefix of w 2 , in turn a proper prefix of v 2 ,

then w :s; v - u.

This lemma examines the combinatorial consequence of having three squares beginning at the

same position. The New Periodicity Lemma (NPL) in (Fan et al., 2006), is a generalization of this

result. In this thesis we extend the results of (Fan et al., 2006) and make them more precise. Prior

to introducing the details of NPL, let us consider the following definitions:

Definition 2.0.5 (irreducible). A square u 2 is said to be irreducible if u is not a repetition.

Definition 2.0.6 (regular). A square u 2 is said to be regular if no prefix of u 2 is a square.

Lemma 2.0.7 ("The New Periodicity Lemma" (Fan et al., 2006)). If x has regular prefix u 2 and

irreducible prefix v 2 , u < v < 2u, then for every k EO ... v - u - 1 and every w E w - u +1 ... v-I,

w =1= u, x[k + 1 ... k + 2w] is not a square.

11

M.Sc. Thesis - Evguenia Kopylov

UI 8 UI

W(l)

McMaster - Computing & Software

~UIIUI
w(2)

....------ x[k+1. .. k+2w]

Figure 2.4: Three squares satisfying the NPL.

Without loss of generality, we may suppose that 3u/2 < v < 2u, v - u < w < v and w =I- u. (The

case for which u < v ::; 3u/2 was studied in (Kopylov and Smyth, 2010)). It is shown in (Fan et al.,

2006) that if U is regular (and U is irreducible), then the substring v2 must have the structure

(2.2)

where u = 2UI +U2 and v = 3UI + 2U2.

It is shown in (Kopylov and Smyth, 2010) that (2.2) also holds whenever 3u/2 < v < 2u, where

it is necessary only to make the natural assumption that u 2 and v2 are irreducible - that is, ex-

pressed in terms of the generator of least length. The analysis of the three neighbouring squares is

distributed amongst 14 possible cases, differing in the range for k and the end positions of W(l) and

W(2). Note that k + w 2 can extend past v 2. The proof for each of the 14 cases shows the existence

of a square in a prefix of U which is forced by the presence of w 2 , hence contradicting the regularity

of u 2 and concluding that if u 2 is not regular then the square prefix must exist.

The material in the NPL paper was shortly followed by a question addressing whether the

existence of w 2 forces U to be a repetition, and hence the entire string. The approach to examine

this query was to construct strings satisfying each of the cases by relaxing the regularity condition

of u and varying the lengths of UI, U2, k and w. These experiments have ultimately aided us in

formulating conjectures for the combinatorial behaviour in strings within all 14 cases.

12

Chapter 3

Algorithms for Computing

Repetitions and Runs

3.1 Repetitions vs. Runs

In this chapter, we will begin by briefly summarizing the original algorithms for directly computing

all repetitions in a string, collectively executing in O(n log n) time. Since it was altogether shown in

(Crochemore, 1981; Crochemore and Rytter, 1995) that the maximum number of a repetitions in a

string of length n is O(nlogn) (using Fibonacci words), these methods are asymptotically optimal.

Next, we will discuss how the emergence of two linear time algorithms (Runs I, II) for finding all

runs in a string allowed for indirect computation of all the repetitions in 8(n) time. The following

list shows the steps taken by both algorithms to compute all runs:

(1) Compute LZ-factorization of x

-4 8(n) time, provided a 8(n) ST/SA construction algorithm is used.

(2) Runs I (Main, 1989): Find all leftmost runs in x using LZ

-4 8(n) time.

(3) Runs II (Kolpakov and Kucherov, 1998): Find all runs in x (using the leftmost ones)

13

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

--4 Proven to be executable in 8(n) time; however the proof depends solely on the fact that

the maximum number of runs pen) E O(n).

The LZ-factorization of a string conforms to a sequential, multi-step process. Over time, emer­

gence of full and succinct (compressed) data structures such as the SA, Enhanced Suffix Array (SA

plus an "lcp-interval tree" (Abouelhoda et al., 2004)), LPF and BWT (Burrows-Wheeler transform)

arrays has significantly improved the space and time complexities as studied in (AI-Hafeedh et al.,

2010); however the complete procedure remains computationally demanding. Figure 3.1 presents

the collection of cmrent algorithms and their implemented data structures, applicable on any given

string x. Prior to examining the details of Runs I and II, we will present the leading LZ-factorization

methods available to date. In conclusion to the chapter, we will propose a new combinatorial ap­

proach to finding all runs by studying t~e expected breakdown of a string when two squares begin

at the same position and a third one occurs nearby.

During the latter part of the 20th century, the first algorithm to compute all repetitions in a

string was presented by (Crochemore, 1981). This method applied Hopcroft's O(nlogn) algorithm

for minimizing finite state automata (Hopcroft, 1971) to form equivalence relations through sequen­

tial refinement of the string's indices. Shortly after, an alternate off-line approach was given in

(Apostolico and Preparata, 1983) with the application of suffix tree properties and a "leaf tree"

data structure. Lastly, (Main and Lorentz, 1984) introduced a recursive, divide-and-conquer algo­

rithm based on a linear procedure for finding all new repetitions formed through the concatenation

of two strings. Though the difference of approach in all three cases is striking, all invariably yield

an optimal time of O(nlogn). As noted in the first paragraph of this chapter, it was shown by

Crochemore that Fibonacci strings of length n contain 8(nlogn) repetitions.

The solution to reduce the processing time appeared in (Main, 1989), by compactly encoding all

repetitions as runs. Main's algorithm uses the LZ-fadorization to compute all leftmost occurrences

of distinct runs· in a string. Kolpakov and Kucherov later showed that the number of runs in any

string is linear in the length of the string. However, since the constant of proportionality was not

defined from their proof and can therefore be arbitrarily large, the "linearity" of the algorithm

14

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

depends entirely upon p(n) E O(n), as shown in Theorem 3.1.1 from (Kolpakov and Kucherov,

1998). By modifying Main's algorithm, they were able to compute all runs from the leftmost ones

in time proportional to all runs.

Theorem 3.1.1. Let p(n) be the maximum number of runs that can occur in any string of length n

on any alphabet. Then there exist positive constants k1 and k2 independent of n such that for every

integer n ~ I,

(3.1)

As previously noted, the size of k1 and k2 could not be derived from the proof; however compu­

tational evidence provided in (Kolpakov and Kucherov, 1998), suggests the following:

1. p(n) ::::; nj

2. 0::::; p(n + 1) - p(n) ::::; 2;

Up to now, conjecture (1) has attracted the most attention, with proven bounds (Simpson, 2010j

!lie et al., 2008) 0.944575712n < p(n) ::::; 1.029n.

3.2 LZ-factorization

Both Main's algorithm for computing runs and the later one provided by Kolpakov and Kucherov

entail the LZ-factorization of the input string. The leading challenge remains in improving the run­

times and memory storage of algorithms responsible for carrying out LZ-factorization, given that

current methods depend upon complex data structures, whose computation accounts for 80% or

more of the overall runtime, and are essentially brute force.

Albeit the LZ outputs differ slightly for some of the algorithms illustrated in Figure 3.1, for

general purposes such as the computation of regularities, they are comparable. Explicit details of

the experimental results comparing time and space requirements for these methods are given in

15

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

LZ77 KK AKO CPSl CPS2 CPS3 Cl Cls&cn os

,---L..---, ,---L..---, ,---L..---, ,---4----, cb ,--4----, ,--4----,

i
._.....t..... _. ,--4----, ,---L..---,

! LCP !
- ·T •• ~_._~ ~_._~

!

LZ

Figure 3.1: The steps and main data structures used by each algorithm

(AI-Hafeedh et al., 2010). Nevertheless, it was found that all algorithms listed in Figure 3.1 were

not greatly different, as shown in Figures A.1 and A.2 of the Appendix. The algorithms denoted

as CPSlb and CIS outperformed their adversaries on files which were not highly periodic, with

asymptotic worst-case times 8(n) and requiring as little as 1.5n space. Note that CPSJb and

CIS implement full data structures (SA, LCP and LPF) unlike CPS2, which uses a succinct data

structure (SA and range minimum queries, discussed further in the chapter). Therefore, though the

running time for CPS2 is proportionately slower, the storage space is also much less. Algorithms

CPSlb, CPS2 and CIS are the three representatives that we provide some description of in this

thesis. Likewise, algorithms CPS3 and as implement succinct data structures. Mainly, as stores

the SA in a compressed form and uses rank/select operations (Lee and Park, 2007) and range

minimum queries (see sec. on CPS2) to access and update array entries; whereas CPS3 uses a QSA

structure (Franek et al., 2003) and q-grams (Ukkonen, 1992) to compute LZ.

3.2.1 CPS1b

A collection of fast and space efficient algorithms known as CPSla, CPSlb and CPSlc, was intro­

duced in (Chen et al., 2007b) to compute the LZ-factorization of a string. The pseudocode in Figure

3.2 is a modified version of the paper's original, specifically edited to exemplify the functionality of

CPSlb. The algorithm begins by assigning three pointers i l ,i2 ,i3 to positions in the SA such that

0:::; i l < i 2 < i 3 :::; n. The scheme behind CPSlb and its close variants is based upon the following

two observations:

16

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

(i) if LCP[il] < LCP[il +1], then two or more repeating substrings with the same LCP have begun

in x. Meaning, the suffixes j = SA[il] and j' = SA[h + 1] have a unique longest common

prefix of length LCP[il + 1] such that Vk E [1, il - 1] there does not exist a position SAlk]

sharing this prefix.

(ii) if LCP[i2] > LCP[i2 +1], then two or more repeating substrings with the same LCP have ended

in x. Meaning, the suffixes j = SA[i2 - 1] and j' = SA[i2] have a unique longest common

prefix of length LCP[i2] such that Vk E [i2 + 1, n + 1] there does not exist a position SAlk]

sharing this prefix.

Firstly, a left-to-right traversal of the SA is performed to locate the next position i2 < i3 such

that LCP[i2] > LCP[i3] (lines 3-4). Secondly, a stack S is used to backtrack from i2 to the first

position h < i 2 such that LCP[i l] < LCP[i2] (lines 8-12), at each step setting the larger position

in POS corresponding to equal LCP to point leftwards to the smaller one (lines 18-23), until the

LCP value for position h popped from S falls below LCP[i2]. After processing each collection of

repeating substrings, the pointers il, i2 and i 3 are reset for the next stage to check whether other

sequences of pairs (POS, LEN) may exist at this position (lines 14-17).

In CPSlb, the storage for SA and LCP is reduced by n words (compared to CPSla) because it is

dynamically reused for specifying the location and contents of POS. In total, the space requirement

for CPSlb is 3.25n words plus stack. The output of the LZ-factorization is in the form (POS, LEN),

which is duly applicable for computing lossless text compression as well as runs.

Figure 3.3 shows an example of how algorithm CPSlb is executed on the string x = abaababa$.

3.2.2 CPS2

A year later, two new methods CPS2 and CPS3 (Chen et al., 2008) joined the family of CPS al­

gorithms. This new addition favoured space over time using a succinct algorithm, with asymptotic

worst-case times O(nlogn) and O(n2
) in contrast to the linear CPSl algorithms, but conversely

requiring significantly less storage space, 1.25n - 1.5n words respectively. An important difference

17

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

Using SAx and LCPx , compute LEN[O ... n - 1].
Compute POSx by in-place compactification of SAx and LCPx
into SAx; e.g. POS[SA[i]] = LCP[i].

(1) ilf-0;i2 f-l;i3f-2
(2) while i3 :s; n do

Identify the next position i2 < i3 with LCP[i2J.> LCP[i3].
(3) while LCP[i2] :s; LCP[i3] do
(4) pusheS, il)
(5) it f- i2; i2 f- i3; i3 f- i3 + 1
(6) Pl f- SA[il];P2 f- SA[i2]; h f- LCP[i2]
(7) assign(pl,P2,POS)
(8) while LCP[il] f- l2 do
(9) i 2 f- i l

(10) i l f- popeS)
(11) Pl f- SA[il]
(12) assign(pl,P2,POS)
(13) SA[il] = P2

Reset pointers for the next stage.
(14) if i l > 1 then
(15) i2 f- il; i l f- popeS)
(16) else
(17) i2 f- i3; i3 f- i3+ 1

(18) procedure assign(pl' P2, POS)
(19) if (Pl < P2) then
(20) SA[i2] f- P2; LCP[i2] f- Pl; LEN[P2] = h
(21) P2 f- Pl
(22) else
(23) SA[i2] f- Pl; LCP[i2] f- P2; LEN[Pl] =l2

Figure 3.2: Algorithm CPSlb.

between algorithms CPSlb and CPS2 is that the former outputs a (POS, LEN) pair for every posi-

tion in the string x, whereas the latter only returns information about the positions where factors

truly exist.

Rather than constructing both the SA and LCP, the algorithm CPS2 (Figure 3.4) uses only the

SA and a data structure RMQSA for answering range minimum queries on SA (Bender and Farach­

Colton, 2000; Harel and Tarjan, 1984). RMQSA (lb, rb) provides the index of the minimum value

among {SA[lb], SA[lb + 1], ... , SA[rb]} in constant time and D(n) space (Chen et al., 2007a), and

SA[RMQSA (lb, rb)] uses this index to compute the minimum SA[lb . .. rb] (line 12). In the function

lzfactor, this minimum value is repeatedly computed on the range lb ... rb, which narrows if a

18

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

SA 8 7 2 5 0 6 1 4 (Initialize)

LCP 0 0 1 3 3 0 2 2 -I i, =0; i
2
= I; i,=2

i i i
31 Z

SA 8 7 6 4 SA[5] = 3; LCP[5] = 0; LEN[3] = 3

LCP 0 0 0 2 2 -I
SA[4] = 5; LCP[4] = 0; LEN[5] = 3
SA[3] =0

-j

i
1

i
z

i
3

SA[3] = 2; LCP[3] = 0; LEN[2] = 1
SA[2] = 7; LCP[2] = 0; LEN[7] = 1
SA[l] =0

i
1

i i
z 3

SA 8 0 7 2 SA[8] = 4; LCP[8] = I; LEN[4] = 2

LCP 0 0 0 0 SA[7] = 6; LCP[7] = 1; LEN[6] = 2
SA[6] = 1

i
1

i
z

i
3

SA[6] = 1; LCP[6] = 1; LEN[l] = 0
SA[I] = 8; LCP[I] = 0; LEN[8] = 0
SA[O] =0

i
1

i
z

i
3

u ____ uunu
n

-- n ___ u __ u __ nn_nn ____un_an_n_nnn

SA 0

LCP 0

8

o
7

o
2

o
5

o
3

o
6

1

4 (Finalize)
POS[SA[i]] = LCP[i]

Figure 3.3: Execution of CPSlb on x = abaababa$.

19

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

SA[lb . .. rb] begins at some position p < i in x, until the longest substring beginning at position i

matches a previous position in x (line 15). The range lb . .. rb is calculated by the function refine

in O(logn) time (line 11).

(1) output (1,1)
(2) i ~ 2
(3) while i :S n do
(4) (POS,LEN) ~ lZfactor(x,SA,i)
(5) output (paS, LEN)
(6) i ~ i+LEN

Using SAx and RMQSA compute the position
and length of the LZ factor beginning at i in x.

(7) function lzfactor(x, SA,i)
(8) match ~ i
(9) lb ~ Ijrb ~ n;j ~i
(10 repeat
(11) (lb, rb) ~ refine(lb, rb, j - i, x[j])
(12) min~ SA[RMQSA(lb,rb)]
(13) if min < i then
(14) match ~ minj j ~ j + 1
(15) until min?:: i or j > n
(16) return (match,j - i)

Figure 3.4: Algorithm CPS2.

3.2.3 CIS

The GIS algorithm is similar to GPSlb in using full data structures, SA and LCPj however, it differs

by computing the LPF array first and then LZ. The worst-case run time of this algorithm is 8(n)

and the basic idea includes computing LPF[SA[j]] for j E [0, n - 1] immediately by means of cases

(i) and (ii) defined below. To facilitate a clear understanding of this method, the SA and LCP

values (Figure 2.2) for the string x = abaababa are represented graphically in Figures 3.5 and 3.6.

The vertices are labeled with SA values; listed vertically in ascending order corresponding to their

starting position in the string and horizontally in their original order of occurrence. The solid edges

connecting any two vertices represent their associative LCP values. The dashed edges represent a

new connection resulting from the qualifying case (i) or (ii). A similar example can be found in

20

M.Sc. Thesis - Evguenia Kopylov

(Crochemore et al., 2008).

McMaster - Computing & Software

(i) ifSA[j] > max(SA[j-1],SA[j+1]) (peak in the graph), then LPF[SA[j]] =max(LCP[j],LCP[j+

1]). Referring to Figure 3.5, for j = 4, the value LPF[SA[4]] = LPF[5] = max(LCP[4], LCP[5]) =

3 (maximum of the labels of the 2 adjacent edges). Since SA[4] = 5, the vertex labeled 5

can be removed from the graph. An edge between vertices 0 and 3 is created, labeled by

min(LCP[4], LCP[5]) = 3 (minimum of the two labels).

7

6

5

4

3

2

1

o

Figure 3.5: Step (i) for the text x = abaababa.

(ii) if SA[j-1] < SA[j] < SA[j+1] and LCP[j] 2 LCP[j+1] (SA values increasing and LCP values

decreasing), then LPF[SA[j]] = LCP[j] since nothing larger than LCP[j] can be obtained from

LCP[j + 1]. Assume the graph in Figure 3.5 was modified by calculations in (i) to form the

graph in Figure 3.6. For j = 5, the value LPF[SA[5]] = LPF[3] = 3. Then as before, since

SA[5] = 3, the vertex 3 can be removed from the graph and the vertices 0 and 6 connected by

an edge labeled 0 = LCP[j + 1] = LCP[6].

CIS applies the appropriate case from above with a left-to-right scan of the SA and stacks entries

i = SA[j] that do not immediately yield an LPF value. With at most 2V2rL single integer entries,

the worst-case space requirement is 3n+2V2rL words (Al-Hafeedh et al., 2010). After the LPF array

is constructed, a simple algorithm in Figure 3.7 given by (Crochemore and Ilie, 2008) computes LZ.

21

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

I
18
I
17
i
16
I
is
I14 .

13
12
~
I 1

10
I

8
o

_...-

/'0

/J
W

...­.-_ ..-

3

4

2

Figure 3.6: Step (ii) for the text x = abaababa.

LZ(O] +- OJ i +- 0
while LZ(i] < n do

LZ(i + 1] +- LZ(i] + max (1, LPF[LZ(iJ])
i+-i+1

return LZ

Figure 3.7: Given LPF for a string x, compute LZ.

3.3 Runs I: Detecting leftmost maximal periodicities

The idea to use LZ-factorization, initially noticed in (Crochemore, 1984), was elaborated in (Main,

1989) to compute all leftmost occurrences of runs in a string in e(n) time. Originally, the fac­

torization could be computed using McCreight's linear-time (for a fixed finite alphabet) suffix tree

construction algorithm (McCreight, 1976). However, as demonstrated in the previous section, mod-

ern algorithms can use suffix arrays and succinct data structures to consume less storage space and

output faster results.

Main used LZ-factorization as the principle to introduce two new properties for leftmost period-

icities,

Theorem 3.3.1. Let x be a string with LZ-factorization x = Wi ... Wk, and let r be a periodicity

of x, with the leftmost occurrence of r at xli ... j], and with Xj E Wh for some h :::; k. Then,

(1) Xi occurs before Wh, and

22

M.Sc. Thesis - Evguenia Kopylov

(2) if we let r = r LrR for some prefix r R of Wh,

McMaster - Computing & Software

These properties capture the necessary conditions in calculating all maximal leftmost periodici-

ties, as presented in the following algorithm taken from (Smyth, 2003; Main, 1989),

- Compute LZ-factorization x = Wl ... Wk

(1) j (- 0
(2) for h (- 2 to k do
(3) - Compute the maximum-length prefix r L

(4) - of a run ending in Wh in x (Theorem 3.3.1)
(5) j (- j +Wh-l
(6) l (- min(j, 2Wh-l + Wh)
(7) rL (- x[j -l ... j -1]
(8) - Compute all leftmost runs in x, ending in Wh

(9) calcruns(rL, Wh)

Figure 3.8: Main's algorithm for computing all maximal leftmost runs.

It is important to note that this algorithm does not exclusively output only maximal leftmost

periodicities - runs which are not maximal or leftmost may also be found. Computation of LZ-

factorization, and the immediate 3 steps following the for loop are linear in time. The function

calcruns is derived from an algorithm specific to repetitions (Main and Lorentz, 1984) which

finds all new squares appearing in a concatenation of two strings and executes in time O(rL + Wh).

However, since rL < 2Wh-l +Wh,

k k

2n:S 2:)2Wh-l + Wh +Wh) = L 2(Wh-l +Wh) < 4n.
h=2 h=2

(3.2)

Altogether, the time complexity of the algorithm in Figure 4.1 is 8(n), given a linear time LZ

construction algorithm is used.

Figure 3.9 gives an example of Main's algorithm executed on the string x = abaabaabb with

LZ(x) = a.b.a.abaab.b. A similar example is provided in Main's paper.

23

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

h j 2Wh-1 +2h l TL TLWh calcruns(TL' Wh)
2 0 3 1 x[O .. . 0] = a a.b 0
3 1 3 2 x[O .. . 1] = ab ab.a 0
4 2 7 3 x[0 ... 2]=aba aba.abaab (aba)2 ab, (baa)2b, (aab)2,a2

5 7 11 8 x [0 ... 7] = abaabaab abaabaab.b b2

Figure 3.9: Finding all leftmost runs using Main's algorithm for string x = abaabaabb.

3.4 Runs II: On maximal repetitions in words

Less than a decade after Main suggested his linear time algorithm to compute all leftmost distinct

maximal repetitions in a string, (Kolpakov and Kucherov, 1998) published a slightly modified linear

algorithm to compute all runs. The strategy was to notice that all the runs can be recovered from

the leftmost ones using basic string manipulation techniques. For every factor Wh in the LZ factor-

ization WIW2 ... Wk of x, they stored its start position ih and the start position i~ of some previous

copy (zero if no previous copy exists). These positions are stored in two arrays I = I[1..k + 1] and

I' = I' [1..k], computed using the suffix tree as a byproduct of the original LZ computation.

In the algorithm, every leftmost run is stored as a pair (i, j), corresponding to the run's initial

and final positions in x. Throughout the computation, an array OCCURS[O ... n - 1] is formed that

stores pointers to linked lists of positions jiI, ji2, ... , jiri' These positions represent the final posi-

tions of leftmost runs initially occurring at position i in x. The next step perfonns bucket sort on the

pairs (i, j), and puts them in an increasing order based on the end position j. The array OCCURS is

then updated by traversing through the sorted list, and matching the corresponding initial positions

i with those values of j it points to. This method maintains the invariant jil < ji2 < ... < jiri and

more importantly, performs in linear time (since the number of runs has been proven to be linearly

bounded).

The last step involves finding an instance of Wh at some position I'[h] < I[h] and shifting all of

the maximal repetitions, ending inside Wh, ih - i~ steps to the right. Given that OCCURS[i] holds

the start positions of the runs in increasing order of length, the overall 'shifting' process is linear in

time.

24

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

Given the arrays f[O . .. k] and f'[O k - 1] that describe the
LZ-factorization WI W2 ... Wk of x[O n - 1], and given lists
OCCURS[O . .. n - 1] that specify in increasing order of length
all leftmost runs that occur at each position i, this
algorithm updates the lists to include all runs in x.

(1) for h f-- 2 to k do
(2) if f'[h] > 0 then
(3) 0 f-- f[h] - f'[h] - the offset of Wh from its copy
(4) for if-- I[h] to f[h + 1] -1 do
(5) Vj E list(OCCURS[i - 0))
(6) - a maximal rightmost run must begin and end in Wh

(7) if (j + 0) - i < f[h + 1] - i then
(8) insert list(OCCURS[i)) f-- j +0

Figure 3.10: Algorithm to find all runs in x (Smyth, 2003).

3.5 Combinatorial Approach to Computing Runs

It is apparent that although the 'runs computing' algorithms presented in this chapter are 8(n) in

time, their collective procedures are essentially brute force, and do not embody any combinatorial

properties such as the expected sparsity of runs. Roughly speaking, the time to complete the sum of

the first n natural numbers using brute force can be costly, yet immediate with a few simple combina­

torial arguments. Possible future approaches to computing runs may perhaps perform a left-to-right

traversal of a string, taking into account the repetitions (squares) existing at every position. Then,

if there exists a setup of 3 neighbouring squares as studied in this thesis, we can combinatorially

compute the number of repetitions they include and skip the length of the breakdown to continue

processing the next part of the string. Current methods perform preprocessing on every letter of

the string and thus are computationally intensive in practice.

The forthcoming chapters of this thesis are devoted to our study of combinatorial effects arising

from having three squares occur at neighbouring positions in a string. The conditions posed for such

a layout are provided by Lemma 2.0.7. Given this structural environment, we describe the possible

layout of a string x using 14 subcases and then go on to present software which generates strings

corresponding to each subcase. Using the results of this software, along with those provided by an

accompanying conjecture verification code, we produce conjectures on the combinatorial behaviour

25

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

in all of the 14 subcases that arise. Proofs to seven of the 14 subcases are to be published in (Kopylov

and Smyth, 2010). In all of the proved cases, the assumed existence of three neighbouring squares

forces a trival repetition of small period. In the remaining cases, the conjectured breakdowns are of

a highly periodic form.

26

-l

Chapter 4

Conjectures Related to

Neighbouring Squares

4.1 New Software

In this section we will describe the algorithm used to generate strings for which two squares, u 2

and v 2 , begin at the same position i and a third square w 2 occurs nearby at position i + k. We do

not assume any conditions on u 2 or v 2 such as regular or irreducible. Strings with this property

are important to study because if we can determine their breakdown combinatorially, rather than

by explicitly searching through the string for runs, this will open the possibility for an O(n) time

algorithm for finding all runs in a string without the heavy preprocessing as required in Runs I

and II. We will then proceed by stating conjectures which calculate the periodicity of these strings

without the need for brute force analyses and present proofs to some of them. The exact conditions

posed on these three squares are given in Lemma 2.0.7 and the resulting structure displayed in (2.2).

As shown in (Fan et al., 2006), such a layout is possible under 14 well defined subcases represented

in Table 4.1, and every satisfying string generated by the algorithm wiH belong to one of these

subcases. The following material follows along that of (Kopylov and Smyth, 2010).

The function construct-x in Figure 4.1 outlines the main algorithm of the program. The body

27

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

-t

Table 4.1: The 14 subcases identified in Fan et al. (2006), slightly modified, for tlll'ee neighbouring
squares u, v, w (with v-u < w < v, w =I- u).

Subcase Special
S k k+w k+2w Conditions
1 o~ k ~ Ul k+w~u k+2w ~ U+Ul k 2: U2
2 o~ k ~ Ul k+w~u k+2w ~ U+Ul k < U2
3 o~ k ~ Ul k+w~u k +2w > U+Ul -

4 o~ k ~ Ul U < k+w ~ U+Ul - -

5 o~ k ~ Ul U+Ul < k+w ~ v - -
6 o~ k ~ Ul V < k+w < 2u - -

7 Ul < k < Ul +U2 k+w ~ U+Ul k+2w ~ 2u -

8 Ul < k < Ul +U2 k +w ~ U+Ul k+2w> 2u -

9 Ul < k < Ul +U2 U+Ul < k+w ~ v - w<u
10 Ul < k < Ul +U2 k+w ~v k +2w ~ u+v w>u
11 Ul < k < Ul +U2 k+w ~v u+v < k+2w ~ 2V-U2 -

12 Ul < k < Ul +U2 k+w ~v 2V-U2 < k+2w -

13 Ul < k < Ul +U2 V < k+w ~ 2u - -

14 Ul < k < Ul +U2 2u < k +w < 2u +u2-1 - -

is structured as four nested for loops which when given two values Ul_max and u2_max, iterate

over all instances of U = 2Ul + U2, V = 3Ul + 2U2, k and w such that for every Ul E 1 ... Ul_max,

U2 E 1 ... u2_max, k EO ... ul + u2 - 1, w E Ul +U2 + 1 ... v-I, w =I- U (lines 1-5). As each string

is generated, the method compute_subcase trivially sorts it into the appropriate subcase S.

Initially the maximum alphabet size of x is 0"0 = Ul +U2, since by (2.2) u, v and ware assembled

from substrings Ul and U2. Let u* = UlU2 and let the initial alphabet "Eo = {I, 2, ... , u*} with

ul=1,2, ... ,Ul and U2=Ul+1,Ul+2, ... ,u*.

To determine the alphabet size 0", we introduce the existence of w 2 by applying the condition

x[k + 1 ... k +w] = x[k +w + 1 . .. k + 2w], (4.1)

where at each position i E l..w in w such that x[k + i] = U*[jl] for some jl E l..u*, and such that

28

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

x[k +w +i] = u*[jz] for some jz E Lu*,l we require that the letter U*(j1] equal the letter u* [jz]. If

these letters are not already equal, then in every copy of Ul or Uz in x, we replace the numerically

larger of the two by the smaller, updating the alphabet at each step as follows:

(4.2)

where initially ~ = ~o. After all w such pairs of positions have been considered, the letters remain­

ing in I; are exactly those that occur in x: u = I~I. TIns is true because given Wmin = U1 + Uz + 1,

then 2Wm in = U + U1 + 2 and hence Vk E {O ... U1 + U1 - 1} W Z must span all U1 + Uz characters in

the alphabet. Figures 4.1 and 4.2 outline these calculations and Figure 4.3 gives an example of an

output string with characteristics X = {U1 = 2,uz = 4,k = 1,w = 12}.

- For every subcase (U1, Uz, k, w) determined by U1_max, uz_max,
- compute subcase identifier 8, maximum alphabet u and Ul, U2

1. for U1 ~ 1 to U1-max do
2. for Uz ~ 1 to uz_max do
3. for k ~ 0 to U1 + Uz -1 do
4. for w ~ U1 + Uz + 1 to v-1 do
5. if w =/= 2U1 + Uz then
6. u ~ U1 +uz
7. Ul = 1,2, ... , U1; U2 = U1 + 1, U1 + 2, ... , u*
8. (U,Ul,U2) ~ jorce_square(u,ul,U2,k,w)
9. 8 ~ compute_subcase - from Table 4.1
10. return (8, u, Ul, U2, k, w)

Figure 4.1: Algorithm construcLE(8,u,Ul,U2,k,w): U1 E LU1_max, Uz E Luz_max

function jorce_square(u, Ul, U2, k, w)
- For given values k and w, apply condition (4.1) to
- recompute U,Ul,U2 in x = U1U2U1U1U2U1U2U1U1U2

1. wlim ~ min(k + w, x-w) - possibly k + 2w > x
2. for i ~ k + 1 to wlim do
3. if xli] =/= xli +w] then
4. u~u-1

5. replace all occurrences of max(x[i],x[i + w]) in x
with min(x[i],x[i + w])

6. return (u, Ul, U2)

Figure 4.2: Function jorce_square(u, Ul, U2, k, w)

1In subcases 13 and 14 it may happen that k +w + i > 2vj for such values of i, therefore, no such j2 exists.

29

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

v1 · ·..• • • 1

I..· · ~ ··· ·..· ·..·i

B cdef ~I cdef B cdef I~I cdef I
1 · · · · · ·1\ · · 1

W(l) W(2)

cr =u +u = 6.o I 2

(i) ~ cdef I~ cdef ~I cdef I~I cdef I
Since b *fand b = min(b,±) -- replace all occurrences offwith b; cr = 6 ~ 1 = 5.

(ii) ~ Cdeb~ cdeb I~I cdeb~ cdeb I
Since c*a and a = minec,a) -- replace all occurrences of c with a; cr = 5 - 1 = 4.

(iii) ~ adeb I~ adeb I~I adeb~ adeb I
Since d*band b = mined,b) -- replace all occurrences ofd with b; cr = 4 - 1 = 3.

(iv) ~ abebl~ abeb I~abeb~ abeb I
Since e*a and a = minee,a) -- replace all occurrences ofe with a; cr = 3 - 1 = 2.

(v) ~I abab~ abab I~ abab~ abab

Since b = b, and all the remaining letters of w2 match as well; cr = 2.

Because 0:5 k:5 u
l

and w(l) ends in U
2
(2) - This string belongs to subcase S= 5.

Figure 4.3: Generated string x for X = {Ul = 2, Uz = 4, k = 1, w = 12}.

This software is the first of its kind and was created foremost to aid in generating conjectures,

hence improving its runtime or storage space is not of immediate importance. However, we will

briefly touch upon both for a clearer understanding of the implementation scheme.

4.1.1 Time Complexity

Over all k and w, the time is O(wuZ(2v - 3)) for each choice of Ul and Uz.

Hence, the time over all values of Ul and Uz is

30

(4.3)

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

The complete details of these calculations are provided in the Appendix under 'Calculating

Asymptotic Complexity'.

4.1.2 Space Complexity

The algorithm creates and processes one string at a time, deleting all of its information except the

statistics required for Table 4.2 prior to generating a new string. Therefore, most of the implemen­

tation can be done in 0 (x) bytes of space.

4.2 Generated Conjectures

Algorithm construct-x was executed for Ul_max = u2_max = 30, yielding a total of 1,415,925

strings spread over the 14 cases as shown in Table 4.2. In this table,

* column 2 gives the number of strings generated for Subcase S;

* O'max is the maximum over all maximum alphabet sizes 0' computed for any string generated

for Subcase Sj

* d = gCd(Ul' U2, w) and columns 4 and 5 count the number of generated strings for which 0'

equals or exceeds d, respectively;

* column 6 gives the number of generated strings for which the alphabet resulting from function

force_square consists of consecutive integers 1,2, .. . ,0'.

* column 7 gives the number of generated strings for which there exists a gap in the alphabet,

for example a string x with ~ = {I, 2, 4} is defined on a gapped alphabet.

A computer-based analysis of the generated strings counted in Table 4.2 yields a collection of

conjectures, summarized in Table 4.3. We have discovered that whenever 0' = d, x breaks down into

a repetition of period d. If a > d, the string is not fully repetitive but does ShOVI a highly periodic

behaviour. For Subcases 3,4,7, the breakdown depends on parameters

s = gcd(u - w, W - Ul); Q = Lu/sJ; ry = Lv/sJ; E = (Ul +U2)/S;

31

(4.4)

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

- -

1 2 3 4 5 6 7
S # strings (J"max #(J"=d #(J">d # ~={1,2, ... ,(J"} # gaps
1 7840 7 7840 0 7840 0
2 8960 10 8960 0 8960 0
3 131100 29 118305 12795 131100 0
4 283620 30 276799 6821 278132 5488
5 227505 30 227505 0 227505 0
6 121800 15 121800 0 121800 0
7 47250 27 44548 2702 44860 2390
8 51640 15 51640 0 51640 0
9 90335 15 90335 0 90335 0

10 64050 10 64050 0 64050 0
11 54000 15 51707 2293 54000 0
12 16800 15 15612 1188 16800 0
13 201405 30 197860 3545 201405 0
14 109620 15 108770 850 108831 789

Table 4.2: Statistics for 1,415,925 strings generated using Ul max = U2 max = 30

while for Subcases 11-14, it depends on

t = v - w; f3 = L2u/tJ - 1. (4..5)

Table 4.3: Overview of Conjectures
Subcases S Conditions Breakdown of x/v'!.

1,2,5,6,8-10 (Vx,(J" = d) x = d(x/dj

3,4,7 (J"=d x = d(x/d)

(J">d x = sas [l . .. Ul mod S]SIs[l . .. Ul mod S]SE

11-14 (J"=d x = d(x/d)

(J">d v 2 = (t.Bt[1..t mod Ul])2

The conjectures for subcases 1,2,5,6,8-10 in Table 4.3 have been proven correct in (Kopylov

and Smyth, 2010) and the resulting lemma stated in Chapter 5. The proofs of these subcases were

primarily carried out by Bill Smyth, however Tim Paterson and I have participated in supplementing

them with ideas and corrections. Since it is known that for subcases 1,2,5,6,8-10 x is a repetition of

period d = gcd(Ul, U2, w), then (J" ! d or otherwise such a repetition may not always exist. Moreover,

32

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

since a repetition of period d can always be represented using d distinct letters, it follows that (j I- d.

In other words, (j = d isa condition necessary for periodicity d. The first clues to the source of

this statement were found by string analyses and are shown in columns 4 and 5 of Table 4.2, where

all generated strings for these cases have (j = d. However, this condition is not fully sufficient for

Subcases 3, 4, 7, 11-14, and the complete conjectures are dependent on further parameters. Note

that according to the experiments done so far, about 96% of the generated strings x yield (j = d

and so reduce to x = d(x/d). Furthermore, out of 1,415,925 strings only 8667 (about 0.6%) have a

prefix of length (j in which some letter is necessarily duplicated, for example the string

(4.6)

in subcase 4. These are combinatorial remarks which have yet to be pursued. Below are a few

examples of strings from each collection of subcases in Table 4.3.

Example 1: X = {Ul = 12, U2 = 8, k = 10, w = 36, d = 4} - subcase 5

Based on the conjecture in Table 4.3, the string x with these characteristics must bnmk down into

x = d(x/d). Then it follows that d = gcd(Ul, U2, w) = gcd(12, 8, 36) = 4. Therefore, x is arepetition

of 4 distinct characters, x/d = 104/4 = 26 times. Providing these conditions to the software as

input, it generates the string x = (abcd)26. D

Example 2: X = {Ul = 4,U2 = 2;k = 4,w = 7,d = I} - subcase 4

In this example, we will demonstrate how the string (4.6) is determined using the parameters (4.4).

Firstly U = 10, v = 16 and x = 32. Next,

S = gcd(3, 3) = 3;
10 16

a = L3 J = 3; I = L3 J = 5;
6

E= - =2
3

and s[l ... Ul mod s] = s[l .. . 1]. Based on the conjecture in Table 4.3, the string x with these

characteristics must break down into

x = sas[l ... Ul mod S]SI s[l . .. Ul mod S]SE.

33

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

From our calculated parameters, x is formed through multiple runs of the substring s, Or

(4.7)

The software generated string is (4.6) and our combinatorially generated string is (4.7). Other than

precisely knowing the alphabet 2 of x, these two strings are equivalent in their structure. 0

Example 3: X = {Ul = 11,U2 = 8,k = l3,w = 34,d = I} - subcase 11

Firstly U = 30, v = 49 and x = 98. Next,

t = v - w = 49 - 34 = 15; {3 = l~~J -1 = 3

and t[l ... t mod Ul] = t[l ... 4]. Based on the conjecture in Table 4.3, the string x with these

characteristics must break down into the form

x = (tJ3 t[1..t mod Ul])2.

From our calculated parameters, x is formed through multiple runs of the substring t, or

x = t 3t[1 ... 4]t3t[1 ... 4J with t = 15

The software generated string is

x = (abbbabbbabbbabb) 3abbb(abbbabbbabbbabb)3abbb

(4.8)

(4.9)

In this case, the substring t consists of runs itself; however the exact combinatorial form has yet to

be deduced. 0

2Determining the definite sequence of letters in a: is a question for further research and is discussed in Chapter 5.

34

-j

Chapter 5

New Combinatorial Results Based

on Conjectures

5.0.1 Subcases 1, 2, 5, 6, 8-10

Our main result is the following Lemma 5.0.1 which confirms the conjectures for seven of the 14

subcases identified in Table 4.3. The detailed proofs may be found in (Kopylov and Smyth, 2010).

Recall from the discussion at the end of Chapter 2 that in this lemma the regularity condition on

u 2 is no longer required. We suppose of course that all squares are irreducible.

LeIllIlla 5.0.1 (Figures 5.1-5.5, Subcases 5, 6, 8, 9 & 10). If

(a) 0:::; k :::; Ul and U +Ul < k +w :::; v, or

v
U

~
Ul Ul

~
Ul EI Ul S'=w(1) W(2)

Figure 5.1: (a) Subcase 5

35

M.Sc. Thesis - Evguenia Kopylov

(b) 0:::; k :::; Ul and v < k + w :::; 2u, or

McMaster - Computing & Software

-j

v
U

tifE Ul Ul I~ Ul EJ Ul

w(l) W(2)

Figure 5.2: (b) Subcase 6

(c) Ul < k < Ul + U2 and U < k +w :::; U +Ul and 2u < k + 2w, or

• v
• U

Ul

~
Ul Ul EJ Ul EJEk W(l) W(2)

Figure 5.3: (c) Subcase 8

(d) Ul < k < Ul + U2 and U +Ul < k +w :::; v and w < U, or

• v
• U

Ul T Ul Ul Ii'" I Ul E
k w(1) W(2)

Figure 5.4: (d) Subcase 9

36

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

(e) Ul < k < Ul +U2 and k + w :S v and k + 2w :S U+ v and w > u,

• v
• U

Ul T Ul Ul SJ Ul a Ul

k W(l) W(2) ,-

Figure 5.5: (e) Subcase 10

thenv2 is a repetition ojperiodgcd(ullu2,w).

This lemma captures precisely the combinatorial consequence of having three squares occurring

at neighbouring positions in a string. It provides restrictions on the possible periodic substrings

and gives definite information about the occurrences of repetitions in x - both properties not fully

considered by Lemmas 2.0.3 and 2.0.4. Interestingly, though the combinatorial result for each of the

7 subcases is the same, the strategic approach for each proof varies significantly.

5.0.2 Remaining Subcases and Other Mysteries

The unproved conjectures for subcases 3,4,7,11-14 in Table 4.3 provide guidance for future research.

Perhaps for all remaining cases, the assumption for which (J' = d should be dealt with first because of

the simple repetitive breakdown it exhibits. However, proving the conjectures with (J' > d will allow

for the number runs to be easily computed, as demonstrated in 4.8, rather than directly searched

for in a string.

37

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

-j

Further combinatorial mysteries arising from our research are the following:

* What is the upper bound on the alphabet size (J? By observation, it appears that (J <

* Does (J = gCd(Ul, U2, w) imply that x is a repetition of period d? If so, can this fact be used

to simplify proofs?

* Let x be a string generated by the function force_square. If it includes a maximum letter

greater than alphabet size (J, does it follow that (J > gcd(ul, U2, w)?

* What is the combinatorial breakdown for subcases 13-14 where (J > d and k + 2w > v2 ?

* How do we determine the sequence of symbols in substrings sand t for subcases where (J > d?

Along with Tim Paterson, we have started to examine Subcase 3, illustrated in Figure 5.6.

_-------v-------~__---u:::;:::====::;.. _
~u, u,E
~_--'- w_(_2)__T

Figure 5.6: Subcase 3

For strings with (J > d, evidence shows that the substring s forming the conjectured breakdown

x = sas [l .. . Ul mod s]s1's[l ... Ul mod S]SE

may be recovered by using information on its length s and the parameter

l = Ul mod s

conjectured to represent the length of its longest border.

38

(5.1)

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

The following example illustrates how to recover the substring s, and thus the entire string x,

for subcase 3 using the conjectured parameters (4.4) and (5.1):

Exmnple 4: X = {Ul = 4, U2 = 2, k = 2, w = 7, d = 1} - subcase 3

Firstly U = 10, v = 16 and x = 32. Next,

s = gcd(3, 3) = 3;
6

E= - = 2;
3

l = 4 mod 3 = 1

and s[l ... Ul mod s] = s[l ... 1].

Based on the conjecture in Table 4.3, the string x with characteristics X must break down into the

form

x = sas[l ... Ul mod s]s'Ys[l ... Ul mod S]SE.

From our calculated parameters, x is formed through multiple runs of the substring s, or

(5.2)

Next, since s = 3 and the longest border l = 1, then the only possibility for its sequence of letters

is s = aba. Therefore, the resulting string x must be:

(5.3)

Agreeably, the software generated string is

Computer analysis has shown that the paramater (5.1) consistently matches the length of the

longest border of s for all strings in subcase 3. Proving that l indeed represents the length of the

longest border of s is the first step to confirming the sequence of letters in s. Moreover, an obvious

question arises whether there is a connection between l and the length of the tail s[l . .. Ul mod s]

in (5.2).

Further work relating to the three squares research will be periodically updated on the website

http://www.cas.mcmaster.ca/-bill/cv.shtml.

39

Appendix A

A.I Runtime for LZ-factorization algorithms

Table A.1: Runtime in microseconds per input symbol for various LZ factorization algorithms.
String AKO CPSl-2 CPSl-3b CIl CI2 CIS CIl CPS2 CPS3 OS
fibo36 1.91 1.51 1.56 0.51 1.51 1.63 1.54 0.52 0.17 3.85
fsslO 1.86 1.48 1.58 0.52 1.48 1.48 1.53 0.52 0.16 4.11
rand2 0.84 0.48 0.56 0.43 0.47 0.47 0.51 1.88 0.33 5.69
rand21 0.64 0.51 0.59 0.53 0.49 0.48 0.52 2.83 0.66 13.86
chr22 0.84 0.54 0:65 0.56 0.51 0.60 0.55 2.96 1.10 10.20
chr19 0.90 0.59 0.72 0.60 0.57 0.56 0.60 3.30 2.57 9.89
prot-a 0.76 0.57 0.66 0.59 0.47 0.55 0.58 2.73 3.10 13.65
bible 0.60 0.40 0.48 0.35 0.39 0.45 0.42 1.33 22.19 6.09
howto 0.78 0.55 0.68 0.47 0.53 0.62 0.56 1.88 - 10.79
mozilla 0.59 0.45 0.60 0.59 0.44 0.51 0.47 1.72 - 14.16

40

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

A.2 Space for LZ-factorization algorithms

Table A.2: Peak memory usage in words per input symbol for the LZ factorization algorithms.
String AKO CPSl-2 CPSl-3b CIl CI2 CIS CIl CPS2 CPS3 OS
fibo36 23.31 4.05 3.05 3.25 3.00 3.00 3.00 1.44 1.39 1.15
fss10 23.08 3.94 2.93 3.25 3.00 3.00 3.00 1.44 1.42 1.27
rand2 22.81 3.52 2.52 3.25 3.00 3.00 3.00 1.44 1.50 1.15
rand21 10.26 3.86 2.86 3.25 3.00 3.00 3.00 1.44 1.38 1.15
chr22 16.64 3.65 2.65 3.25 3.00 3.00 3.00 1.44 1.41 1.20
chr19 16.85 3.65 2.65 3.25 3.00 3.00 3.00 1.44 1.34 1.22
prot-a 12.11 3.82 2.82 3.25 3.00 3.00 3.00 1.44 1.31 1.16
bible 14.27 3.72 2.27 3.25 3.00 3.00 3.00 1.44 1.32 1.16
howto 14.73 3.73 2.25 3.25 3.00 3.00 3.00 1.44 - 1.22
mozilla 10.52 3.95 2.95 3.25 3.00 3.00 3.00 1.44 - 1.26

A.3 Calculating Asymptotic Complexity

We begin with,

41

(A.1)

M.Sc. Thesis - Evguenia KopyloY

Then,

3Ul+ZU2-1

2: O(xw)
W=Ul+U 2+1

Next,

Ul+U2-1

2: O(wu(2v - 3))
k=O

And finally,

McMaster - Computing & Software

O(XW(3Ul + 2uz -1- Ul - Uz -1 + 1))

O(XW(2Ul +Uz - 1))

O(xw(u - 1))

O(w(3u + uz)(u -1)) smce x = 3u + Uz

O(w(3uZ
- 3u + u *Uz - uz))

O(w(3uZ + (uz - 3)u)

O(w(3(2ul +uz? + (uz - 3)(2ul + uz)))

O(w(3(4ui + 4U1UZ + u~) + 2U1UZ + u~ - 3u))

O(w(12ui + 14ulUZ + 4u~ - 3u))

O(w(2(6ui + 7U1UZ + 2u~) - 3u))

O(w(2(3ul + 2uz) (2Ul + uz) - 3u))

O(w(2vu - 3u))

O(wu(2v - 3))

O(wu(2v - 3)(Ul + Uz -1 + 1))

O(wu(2v - 3)(Ul + uz))

O(wu(2v - 3) (u - Ul)) since u = 2Ul + Uz

Ul_max U2_max

2: (2: O(wuZ(2v-3))) = o(ul_max*uz_max*wuZ(2v-3))
ul=l u2=1

42

Bibliography

Abouelhoda, M., Kurtz, S., and Ohlebusch, E. (2004). Replacing suffix trees with enhanced suffix

arrays. Theoretical Computer Science, 2, 53-86.

Al-Hafeedh, A., Crochemore, M., Ilie, L., Kopylov, J., Smyth, W., Tischler, G., and Yusufu, M.

(2010). A Comparison of Lempel-Ziv LZ77 Factorization Algorithms. ACM'Computing Surveys,

O.

Apostolico, A. and Preparata, F. (1983). Optimal off-line detection of repetitions in a string. Theoret.

Comput. Sci., 22, 297-315.

Bender, M. and Farach-Colton, M. (2000). The LCA problem revisited. Latin American Theoretical

Informatics, pages 88-94.

Bennet, A. and Bennet, D. (2008). The human knowledge system: music and brain coherence.

VINE: The journal of information and knowledge management systems, 38, 277-295.

Berstel, J., Lauve, A., Reutenauer, C., and Saliola, F. (2009). Combinatorics on Words, volume 27.

American Mathematical Society.

Bullard, B. (2003). Metamusic: Music for inner space. Hemi-Sync Journal, XXI, i-v.

Cambouropoulos, E., Crochemore, M., Iliopoulos, C. S., Mouchard, L., and Pinzon, Y. J. (1999). Al-

gorithms for Computing Approximate Repetitions in Musical Sequences. In International Journal

of Computer Mathematics, pages 129-144.

Chen, B., Paterson, M., and Zhang, G. (2007a). A new succinct representation of rmq-information

and improvements on the enhanced suffix array. LNCS, 4614, 459-470.

43

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

Chen, G., Puglisi, S. J., and Smyth, W. (2007b). Fast and practical algorithms for computing all

runs in a string. LNCS, 4580, 307-315.

Chen, G., Puglisi, S. J., and Smyth, W. (2008). Lempel-Ziv factorization using less time & space.

Mathematics in Computer Science, 1(4), 605-623.

Crawford, T., Iliopoulos, C. S., and Raman, R. (1998). String matching techniques for musical

similarity and melodic recognition. Computing in Musicology, 11, 73-100.

Crochemore, M. (1981). An optimal algorithm for computing the repetitions in a word. Inform.

Process. Lett., 12, 244-250.

Crochemore, M. (1984). Linear searching for a square in a word. Bull. EATCS, 24, 66-72.

Crochemore, M. (1986). Transducers and repetitions. TCS, 45(1), 63-86.

Crochemore, M. and Ilie, L. (2008). Computing Longest Previous Factor in linear time and appli­

cations. Information Processing Letters, 106(2), 75-80.

Crochemore, M. and Rytter, W. (1995). Squares, cubes, and time-space efficient string searching.

Algorithmica, 13(5), 405-425.

Crochemore, M., Landau, G. M., and Ziv-Ukelson, M. (2002). A sub-quadratic sequence alignment

algorithm for unrestricted cost matrices. pages679-688. Proc. 12th ACM-SIAM Symp. Discrete

Algs.

Crochemore, M., Ilie, L., and Smyth, W. (2008). A simple algorithm for computing the Lempel-Ziv

factorization. pages 482-488. Proc. 18th Data Compression Conference (DDC'08).

Fan, K., Smyth, W., Puglisi, S., and Thrpin, A. (2006). A New Periodicity Lemma. SIAM. J.

Discrete Math, 20, 656-668.

Farach, rvL (1997). Optimal suffIx tree construction vvith large alphabets. pages 137-143.

Fine, N. and Wilf, H. (1965). Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc.,

16, 109-114.

44

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

Franek, F., Holub, J., Smyth, W., and Xiao, X. (2003). Computing quasi suffix arrays. J. Automata,

Languages fj Combinatorics, 8(4), 593-606.

Harel, D. and Tarjan, R. (1984). Fast algorithms for finding nearest common ancestors. SIAM J.

Computing, 13(2), 338-355.

Hopcroft, J. (1971). An nlogn algorithm for minimizing states in a finite automaton. Theory of

Machines and Computations, Academic Press, pages 189-196.

Hie, L., Crochemore, M., and Tinta, L. (2008). Towards a solution to the 'runs' conjecture. Lecture

Notes in Computer Science, 5029, 290-302.

Karkkainen, J. and Sanders, P. (2003). Simple linear work suffix array construction. LNCS, 2719,

943-955.

Karkkiiinen, J., Manzini, G., and Puglisi, S. J. (2009). Permuted longest-common-prefix array.

LNCS, 5577,181-192.

Kasai, T., Lee, G., Arimura, H., Arikawa, S., and Park, K. (2001). Linear-time longest-common­

prefix computation in suffix arrays and its applications. LNCS, 2089, 181-192.

Ko, P. and Aluru, S. (2003). Space efficient linear time construction of suffix arrays. LNCS, 2676,

200-210.

Kolpakov, R. and Kucherov, G. (1998). Maximal Repetitions in Words, or How to Find All Squares

in Linear Time. Rapport Interne LORIA 98-R-227, Laboratoire Lorrain de Recherche en Infor­

matique et ses Applications.

Kolpakov, R. and Kucherov, G. (1999). Finding maximal repetitions in a word in linear time. pages

596-604. Proc. 40th Annual IEEE Symp. Found. Computer Science.

Kolpakov, R. and Kucherov, G. (2000). On maximal repetitions in words. J. Discrete Algorithms,

1,159-186.

Kopylov, E. and Smyth, W. (2010). The Three Squares Lemma Revisited. J. Discrete Algorithms

(accepted subject to revision).

45

M. Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

-1

Lee, S. and Park, K. (2007). Dynamic rank-select structures with applications to run-length encoded

texts. LNCS, 4580, 95-106.

Lempel, A. and Ziv, J. (1976). On the complexity of finite sequences. IEEE Trans. Informative

Theory, 22, 75-81.

Lempel, A. and Ziv, J. (1977). A universal algorithm for sequential data compression. IEEE Trans.

Informative Theory, 23, 337-343.

Lempel, A. and Ziv, J. (1978). Compression of individual sequences via variable-rate coding. IEEE

Trans. Informative Theory, 24, 530-536.

Main, M. (1989). Detecting leftmost maximal periodicities. Discrete Appl. Math., 25, 145-153.

Main, M. and Lorentz, R. (1984). An O(n log n) algorithm for finding all repetitions in a string. J.

Algorithms, 5, 422-432.

Maniscalco, M. and Puglisi, S. J. (2006). Faster lightweight suffix array construction. pages 16-29.

Proc. 17th AWOCA.

Manzini, G. (2004). Two space saving tricks for linear time LCP computation. LNCS, 3111,

372-383.

Manzini, G. and Ferragina, P. (2004). Engineering a lightweight suffix array construction algorithm.

Algorithmica~ 40, 33-50.

McCreight, E. (1976). A space-economical suffix tree construction algorithm. J. ACM, 23,262-272.

Nong, G., Zhang, S., and Chan, W. H. (2009). Linear time suffix array construction using D-critical

substrings. LNCS, 5577, 54-67.

Pop, M. (2009). Genome assembly reborn: recent computational challenges. Briefings in Bioinfor-

matics, 10(4), 354-366.

Puglisi, S. and Simpson, J. (2008). The expected number of runs in a word. Australasian Journal

of Combinatorics, 42, 45-54.

46

M.Sc. Thesis - Evguenia Kopylov McMaster - Computing & Software

Puglisi, S. J. and Turpin, A. (2008). Space-time tradeoffs for longest-common-prefix array compu­

tation. pages 124-135. Proc. 19th ISAAC.

Puglisi, S. J., Smyth, W., and Turpin], A. (2007). A taxonomy of suffix array construction algorithms.

ACM Computing Surveys, 39(4), 1-31.

Schatz, M. C., Phillippy, A. M., and Pop, M. (2008). Genome assembly forensics: finding the elusive

mis-assembly. Genome Biology, 9(3).

Simpson, J. (2010). Modified Padovan words and the maximum number of runs in a word. Aus­

tralasian Journal of Combinatorics, 46, 129-145.

Smyth, W. F. (2003). Computing Patterns in Strings. Pearson Education Limited.

The Monroe Institute (1985). Achieving optimal learning states. Breakthrough.

Thue, A. (1906). -ober unendliche Ziechernreihen. Kra. Vidensk. Selsk. Skrifter. 1. Mat.-Nat. Kl.,

(7).

Thue, A. (1910). Die Lasung eines Spezialfalles eines generellen logischen Problems. Kra. Vidensk.

Selsk. Skrifter. 1. Mat.-Nat. Kl., (8).

Thue, A. (1912). -ober die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Kra. Vidensk.

Selsk. Skrifter. 1. Mat.-Nat. Kl., (10).

Thue, A. (1914). Probleme libel' Veranderungen von Zeichenreihen nach gegebenen Regeln. Kra.

Vidensk. Selsk. Skrifter. 1. Mat.-Nat. Kl., (7).

Ukkonen, E. (1992). Approximate string-matching with q-grams and maximal matches. Theoretical

Computer Science, 92(1), 191-211.

Weiner, P. (1973). Linear pattern matching algorithms. In 14th Annual IEEE Symp. Switching &

Automata Theory, pages 1-11.

47

