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Abstract 

In this thesis an efficient approach to nonlinear non-Gaussian state estimation based 

on spline filtering is presented. The estimation of the conditional probability density 

of the unknown state can be ideally achieved through Bayes rule. However, the asso­

ciated computational requirements make it impossible to implement this online filter 

in practice. In the general particle filtering problem, estimation accuracy increases 

with the number of particles at the expense of increased computational load. In this 

thesis, B-Spline interpolation is used to represent the density of the state pdf through 

a low order continuous polynomial. The motivation is to reduce the computational 

load and to improve accuracy. The motion of spline control points and corresponding 

coefficients is achieved through implementation of the Fokker-Planck equation, which 

describes the propagation of state probability density function between measurement 

instants. The solution of the Fokker Planck equation is achieved by calculating the 

state transition probability matrix. The state transition matrix is calculated using 

Dirac Feynman approximation. This filter is applicable for a general state estimation 

problem as no assumptions are made about the underlying probability density. Fi­

nally, simulation results are presented to demonstrate the effectiveness of the proposed 

algorithm. 
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Chapter 1 

Introduction and Problem 

Statement 

1.1 Nonlinear Filtering Theory 

Most real life systems are nonlinear in nature. A nonlinear system is one in which 

the variables to be solved cannot be written as a combination of independent com­

ponents. Or it can be defined as a system in which the output of the system is not 

a linear function of the input of the system. Nonlinear systems are of interest to 

researchers because most natural systems are inherently nonlinear and dynamic.A 

dynamic system is one where the parameters of the system change with time as is 

observed in most natural systems. So it is usually very difficult to exactly predict the 

output of a real system based on knowledge of the input. The variable that is to be 

determined in any system can be described using its state. The state of a dynamic 

system completely defines it. It is defined as the minimal set of variables; the knowl­

edge of which at the present time instant, along-with the knowledge of the future 
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input applied for a time period, enables one to analyze the response of the system 

for the future time instant. The equations governing the dynamics of the state of a 

variable in a nonlinear system are usually not known exactly. For decades researchers 

have been trying to find methods to estimate the state of a variable in a nonlinear 

system based on measurements of system parameters. Since system parameters can­

not be directly measured they have to be estimated from observations made from a 

distance. Estimation is the process of inferring the value of a quantity of interest 

from indirect, inaccurate and uncertain observations. Tracking is the estimation of 

the state of a moving object based on remote measurements. Estimation provides a 

systematic approach to deal with the discrepancies in different measurements on the 

same object. 

Observability of a system is a concept that is useful to check whether the states of 

a system can be reconstructed or estimated by observation of the outputs and inputs 

of the system as described in (K. P. Mohandas, 2006). A linear system is observable in 

an interval [to, tIl if for any initial state x(to), knowing the input u(t) and the output 

y(t) over the same interval, it is possible to solve for any state x(t). This essentially 

means that it would be possible to find x(to) once u(t) and y(t) are known. If this 

property holds for any initial time to and any initial state x(to), the system is said to 

be completely observable. 

Nonlinear filtering is the process of estimation of the current state of a dynamic 

nonlinear system. There are a great variety of applications for state estimation in the 

real world, a few of which are listed below. 

• Tracking and Surveillance 

• Navigation of ships and aircrafts 
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., Control Systems 

- Making of Steel 

- Chemical, nuclear, manufacturing and industrial processes 

• Power systems to identify faults and leakages 

• Signal processing 

• Geophysical systems to estimate ground faults, earthquakes etc 

These and many other applications in the real world contribute to raise the signifi­

cance of nonlinear estimation. 

The problem of estimating the state of a linear system has been studied in depth by 

researchers over the years. Gauss made the following (philosophical) observations on 

the (physical) observations that could be made on the planetary motion as described 

11'1 (Bar-Shalom et al., 2001): 

• If the observations were absolutely correct, the parameters could be determined 

with perfect accuracy from a minimum number of observations (n observations 

for n parameters). 

• Then subsequent observations would confirm, but not correct, the values ob­

tained for the parameters. 

• But, since the observations are only approximations of the truth, we should 

combine more observations than the n1.inimum to determine more accurately 

the unknown quantities. 
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• Thus, starting with approximate knowledge, we can correct it with subsequent 

observations so as to satisfy all the observations in the most accurate manner 

possible. 

The above (philosophical) observations lead to the following implications: 

• A basic description (model) of the system is available with some unknown pa­

rameters to be estimated. 

• Redundant data are required to reduce the effect of measurement errors. 

• To satisfy all the observations in the most accurate manner possible, the resid­

uals (differences between the observed values and the values predicted from the 

estimates) should be as small as possible. 

• Inaccuracy of observations necessitates probabilistic modeling. 

• Combination of the initial knowledge and the subsequent observations leads to 

the recursive algorithm concept. 

Estimation theory provides a systematic approach to deal with the discrepancies 

in different measurements on the same object. Under the Gaussian assumption for 

the initial state and all the noises entering into the system, the Kalman filter is the 

optimal Minimum Mean Square Error state estimator. Various measures are used to 

gauge linear filter algorithms such as consistency, optimality and stability. For non 

gaussian random variables the Kalman filter algorithm is found to be the best linear 

estimator or the Linear Minimum Mean Square Error estimator (LMMSE). 

The problem of nonlinear estimation however is more complex. The concept of 

Information state was developed to be a function of the available information set (the 
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cumulative set of observations from the beginning to the cmrent time instant and the 

set of known inputs prior to the cmrent time instant) that completely summarizes 

the past of the system in a probabilistic sense. The conditional pdf p(tk, X!Y(tk-l)) of 

the state effectively can be called the information state of the system. The Extended 

Kalman Filter(EKF) was developed initially to estimate the state in nonlinear sys­

tems. It works on a principle of linearization of the nonlinearities of the system and 

uses the LMMSE estimation technique. The prediction step of filtering is achieved in 

the EKF using the Taylor series expansion of the nonlinear terms in the state around 

the latest estinlate with first order terms for the first order EKF and the second or­

der terms for the second order EKF respectively. The EKF differs from the Kalman 

filter in its covariance calculations, which are now no longer decoupled from the state 

estimate calculations and cannot be done off-line. However, the EKF was found to 

be unstable as the inherent approximations in it could lead to the divergence of the 

filtering algorithm (unbounded estimation errors). These errors occmred mainly due 

to the Taylor series expansions which were used in the EKF. The expansions lead 

to errors because the higher order terms which went neglected may not always have 

been negligible. Also the calculations of the covariance matrices are done using the 

estimated or predicted values of the state rather than the exact values. The Iter­

ated Extended Kalman filter was developed to improve accmacy and later on the 

Unscented Kalman Filter (UKF)was developed. Researchers have developed various 

filtering methods such as Particle filtering in an effort to solve the hmdles of nonlinear 

estimation. Some of them have been described in detail in Chapter 2. 
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1.2 Problem Statement 

The task addressed in this thesis is to estimate the state of a nonlinear system based 

on measurements of the system output. The two main steps involved in the process 

are the prediction step and the correction or update step. In the prediction step, the 

state of the target at a future time instant needs to be forecasted. The optimal state 

estimator needs to compute the conditional pdf of the state given all the information 

available at the present time instant tk: the prior information about the initial state, 

the intervening inputs and the measurements through time tk. The approach used in 

this thesis uses Transition probabilities of the state probability density function. Inte­

grating the Chapman-Kolmogorov equation or the prediction equation over the entire 

domain of the state probability density function is the difficulty faced in determining 

the predicted density. Continuous integration over the entire domain of the state pdf 

is practically impossible and numerical approximations are usually used. This raises 

the computational complexity of the problem exponentially with an increase in the 

number of dimensions of the state. The state probability density function is a con­

tinuous function but it is usually discretized in particle filtering methods in order to 

evaluate the Chapman-Kolmogorov prediction equation. The approach used in this 

thesis is to represent it using spline polynomials so as to get an accurate represen­

tation using fewer parameters. An attempt is made to strike a satisfactory balance 

between accuracy of the representation and the resulting computational complexity 

involved. The approach used for the correction or update step in this thesis involves 

the Bayes' equation. 

6 
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1.3 Contribution of the Thesis 

Many problems in science require estimation of the state of a system that changes 

over time using a sequence of noisy measurements made on the system. In this thesis, 

the state-space approach to modeling dynamic systems is used, and the focus will 

be on the continuous-discrete time formulation of the problem. Thus, a continuous 

differential equation is used to model the evolution of the states with time and the 

measurements are assumed to be available at discrete times as governed by a discrete 

titTle difference equation. For dynamic state estimation, the continuous-discrete-time 

approach is widespread and convenient. The state-space approach to time-series 

modeling focuses attention on the state vector of a system. The state vector contains 

all relevant information required to describe the system under investigation. For 

example, in tracking problems, this information could be related to the kinematic 

characteristics of the target. 

This thesis presents a multivariate spline filter as a solution to implementation 

problem for nonlinear Bayesian estimator. Generally, a good representation of the 

probabilities and likelihood functions is essential to the success of the filtering algo­

rithm in nonlinear estimation problems. A variety of numerical methods have been 

developed to address the problem, which include the Extended Kalman filter(EKF) 

(Bar-Shalom et al., 2001), unscented Kalman filter(UKF) (Julier and Uhlmann, 1997) 

and various Sequential Monte Carlo filters (Arulampalam et al., 2002) (Gordon et al., 

1993) (Damn, 2005). The idea of using discrete splines and spline filtering is dis­

cussed in (Ustuner and Ferrari, 1992). A varied implementation of the particle filter 

using log homotopy is discussed in (Daum and Huang, 2008). In particle filtering, 

the computational load increases exponentially with number of particles as described 
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in (Damn and Huang, 2003). A continuous-discrete state estimation problem is pre­

sented in this thesis. A multi-dimensional B-spline based approach is used to obtain 

a continuous representation of the probability density function over the target space. 

In the literature, methods to construct splines for representing a probability den­

sity are widely analyzed in various application areas as described in (Docenko and 

Berzins, 2003), (Zhang and Yue, 2004), (Lee et al., 1997), (Lin et al., 2004) and 

(Kimeldorf and Wahba, 1970). While working with clustered data, spline methods 

for representing the data can account for cluster correlation and are non-local as de­

scribed in (Kimeldorf and Wahba, 1970). Since the elements in the state vector are 

cross correlated, spline methods are used in this thesis to represent the probability 

density of the state as opposed to kernel methods. An approach using mono-splines to 

address the problem of nonlinear estimation using quadratures is presented in (Wang 

and Klein, 1976). This approach assumes that the process and measurement noises 

are zero mean Gaussian. In (Bucy and Youssef, 1974), another method is presented to 

obtain the nonlinear estimate of phase demodulation with a two dimensional phase 

process model as an alternative to the fourier filter. In (Yu and Deng, 2009), a 

method for solving nonlinear estimation problems using splines is presented in which 

the nonlinear function is converted to linear in a higher dimensional space. Spline 

based filtering for target tracking allows easy manipulation of the density functions 

since they are polynomials of finite order. For instance, it is a straightforward pro­

cess to find the target probability in any region in the state space by evaluating the 

integral of the spline representation over that region. 

However, to be of better practical use in estimation, it is essential to extend the 

univariate filter to a multi-dimensional one. This is achieved using tensor product 
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approach. Although the complexity of the tensor product approach increases expo­

nentially with dimension, complexity can be reduced by exploiting the structure of 

the linear system that needs to be solved to construct the spline polynomial. Once the 

target probability density function is represented by an equivalent B-spline represen­

tation, the prediction and update steps are implemented. For prediction, a practical 

implementation of the Fokker-Planck-Kolmogorov equation is used. In solving the 

Fokker-Planck-Kolmogorov equation no assumptions are made about the probability 

density of the state. The predicted pdf at each instant is used in the update step 

to find the final updated density of the state. The resulting multi-dimensional filter 

can be used in most of the common circumstances and the density could even be 

multi-modal. 
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Chapter 2 

Nonlinear Filtering Theory 

The problem of state estimation of nonlinear continuous time stochastic systems with 

discrete time measurell1.ents is of special interest in nonlinear state estimation. The 

optimal nonlinear filtering estimator or the Bayesian estimator is described below. 

2.1 Nonlinear Bayesian Filtering 

The general target dynamic model, which governs the evolution of the state sequence 

is assumed to be of a continuous discrete nature. This model is used because the sys­

tem state actually evolves continuously with time but measurements are only available 

at discrete time instants due to the physical limitations of sensors. The system state 

is assumed to evolve in continuous time according to 

X(t) = F[t,X(t)] + G(t,X(t))T]t (2.1) 

10 
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where X(t) = [Xl, X2,' .. ,xn]~ represents the state vector of the system_ at any time 

t, F[t, X(t)] is possibly a nonlinear function vector valued function of the state X(t), 

G(t, X(t)) is an n x m real matrix and 7Jt is a zero mean continuous time white process 

noise with intensity Q(t) and autocorrelation 

(2.2) 

The objective oftm'get tracking is to recursively estimate X(t) from the measurements 

obtained at discrete times as 

(2.3) 

where Z(tk) is the measurement at time instant tk , Hk is, in general, a nonlinear 

function and Wk is an i.i.d. measurement noise sequence of known statistics. 

In filtering, the main purpose is estimating the probability distribution of the state 

X(t) conditioned up to the current time step. This leads to the pdfp(X(tk)IZ(l : k)), 

which can be obtained probabilistically in two steps: prediction and update. It is 

assumed that the initial pdf p(X(O)IZ(O)) of the state vector is available. Suppose 

the prior pdf P(X(tk_I)IZ(l : k - 1)) at time t = k - 1 is available. Then the pdf 

associated with the predicted state can be obtained using the continuous system model 

(2.1) via Kolmogorov forward or Fokker-Planck equation as described in (Bar-Shalom 

et al., 2001). 

(2.4) 
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where p(X(t)) denotes the state density at time t and Z(l i) Z(l), ... ,Z(i) 

denotes the set of n1.easurements up to time i. 

The pdf associated with the update state is given by Bayes equation 

( ( )IZ( . k)) = p(Z(tk)IX(tk))p(X(tk)IZ(l : k - 1)) 
p X tk 1 . p(Z(tk)IZ(l: k _ 1)) (2.5) 

where the denominator 

is a normalization term. The normalization term depends on the likelihood function 

p(Z(tk)IX(tk)) defined by the measurement model (2.3). Over the years researchers 

have developed various practical implementations of the Fokker-Planck equation and 

some of those are discussed in the following sections. Various filtering methods have 

been developed by researchers over the years and a review of some of their work is 

presented here. 

2.2 Nonlinear Filter Representation via Spline Func-

tions 

One of the crucial factors responsible for success of a nonlinear filter is the accurate 

representation of the conditional probability density of the signal, given the observa­

tions. In (Bucy and Youssef, 1974), the one dimensional basis used is spline under 

tension and multidimensional basis is generated by a tensor product of the one di-

mensional basis. Under Spline generation, the spline basis is discussed, the compact 
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support of the spline basis will be 4 intervals which will be chosen equal, each piece 

satisfying this common differential locally over one interval. 

The spline coefficients of one dimensional basis Ci are then uniquely determined. 

The 2 dimensional basis is generated by tensor product of each one dimensional 

basis and spline coefficients Cij are determined by matrix inversion. The matrix 

involved is a kronecker product of two tridiagonal matrices each of which can be 

inverted explicitly. The next section of the paper is devoted to getting a closed form 

solution of the matrix inversion with generalized boundary conditions. The matrix can 

be separated and the matrix manipulation becomes a two vector manipulation. The 

nonlinear filter problem considered is that of two dimensional phase demodulation. 

The model used is the following 

where Xl is the phase, X2 the phase rate, !1 time step and Un a Gaussian noise 

sequence with zero mean and covariance !1q independent of initial state vector, which 

is gaussian zero mean with covariance r. The phase is observed by the following 

sensors: 

v; and v~ are i.i.d. Gaussian noise sequences zero mean and covariance f. In(x, y) 

• Ll d' L
' 1 d 't f I 2' 11 j 'th' 1 IS L.lle con IL.lOna ensl Y 0 X ,X gIVen a Z WI 1 J = ... n. 
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The update for the density is 

with 
1 2 . 

S ( ) _ (zn cos X + zn sm x ) 
nX -exp T 

K 

And the optimal estimate is given by 

where 

The density In(x, y) is represented using splines by 

M+3N+3 

In(x, y) = L L B i (x)C0B j (y) 
i=l i=l 

The estimate time and accuracy depends on matrix inversion and the convolution 

matrix. The closed form solution was found to be better than factorization using con-

tinuant fraction for matrix inversion. It was concluded in the discussed paper (Bucy 

and Youssef, 1974) that the spline filter was not as fast as the Fourier filter but was 

retained more accurate density information and was faster than the cyclic point mass 

filter. 

14 
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2.3 Nonlinear Estimation using Monospline 

Nonlinear estimation of state of a discrete time dynamical system is a recursive al­

gorithm arising from Bayes' Law. Numerical approaches include curve fitting the 

conditional density and quadrature approximation to the integration. The essential 

step in obtaining the conditional density of the state given the observations is inte­

gration. In (Wang and Klein, 1976) a method using quadrature formulae related to 

monosplines with optimal knots is used. The system is represented by 

and the measurement is represented by 

Noise sequences are assumed independent gaussian random vectors with zero 

mean. Assuming that initial state pdf is known, the conditional density function 

of the state given the observations can be computed by 

15 
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(2.7) 

and 

(2.8) 

where ¢ is filtering density, u is measurement density, T is transition density and p is 

prediction density. 

A mono spline is defined in the paper as follows. Let Sx be a spline of degree 

2m-1 with distinct knots Xl, X2, ,Xn in [-1 1] with k fold knots at -1 and 1 where 

0ikimin + 21<:. Then if a monomial of degree 2m, x2m / (2m)! is interpolated by Sx in 

[-1 1] the difference between the two functions becomes a mono spline 

Then quadrature formula is induced and when the knots of the monospline, at 

which the conditional density is discretized, are allowed to vary, a class of optimal 

quadrature formulas is obtained. The numerical solution for the mono spline with 

optimal knots is obtained by solving 2m+2n nonlinear algebraic equations and due 

to symmetry of mono spline the number of equations is halved. Then a modified 

Newton's iteration equation is used to solve for the optimal monospline. To maintain 

positivity of the discretized density function in the recursive equations only those 

quadrature formulas with k = 0 or 1 and all positive weights are useful for evolution 

of conditional densities. Increasing m increases the accuracy of the approximation 

but makes it more sensitive to truncation factor. The quality of the approximation 

depends on the degree of mono spline , number of knots and truncation factor and 

16 
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the approximation error is reduced by efficiently representing the density function 

in digital form. The parameters are computed a priori off line by simplifying the 

nonlinear equations specifying thenl. Thus an accurate iteration scheme is developed 

to obtain monospline with optimal knots. 

2.4 Spline Filter for Nonlinear/Non-Gaussian Bayesian 

Tracking 

Nonlinear estimation of state of a discrete time dynamical system implements a re­

cursive algorithm arising from Bayes' Law. A good representation of the probability 

densities and likelihood functions is an essential issue in the success of the filtering 

algorithm especially in nonlinear case. In this paper (Punithakumar and Kirubara­

jan, 2007), a spline based approach is used to give a continuous representation of the 

probability densities over the target state space. 

The state equation is given by 

where !k is a possibly nonlinear function of the state Xk-l and Vk is an i.i.d. process 

noise sequence of known statistics. 

The measurement equation is given by 

where hk is a possibly nonlinear function and Wk is an i.i.d. measurement noise 

17 
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sequence of known statistics. The purpose is to find p(Xk!Z1:k)' The first step is pre­

diction where the predicted density P(Xk!Z1:k-I) is found, and it is assumed the initial 

pdf p(xo!zo) is available. The predicted state is obtained from the prior pdf at time 

k-l using 

Chapman-Kolmogorov equation. 

(2.10) 

The updated pdf is calculated in the paper (Punithakumar and Kirubarajan, 2007) 

by 

( ! ) p(Zk!Xk)p(Xk!Z1:k-I) 
P Xk ZI:k = 

p(Zk!Z1:k-I) 
(2.11) 

And p(Zk!Z1:k-I) = J P(Zk!Xk)P(Xk!Z1:k-I)dxk 

B-splines are introduced and their properties are discussed namely positivity prop-

erty, knot insertion property and stable evaluation of B-splines. The integral of 

B-spline , construction of B-Spline and the Schoenberg-Whitney theorem regarding 

invertibility is also discussed. 

Spline filter is discussed in detail. The spline representation of the prior density 

The optimal prediction step involving state equation is approxil11.ated by assuming 

the density in the region outside the interval [tl(k - l)ts (k - 1)] to be zero and by 

decomposing the interval [tl(k - l)ts(k - 1)] into Ns cells {xLI: i = I, ... , Ns} and 

18 
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evaluating density at these points. The i th point is calculated by 

(2.12) 

Then spline interpolation for the predicted density is constructed using these 

-I points and the new interval is set to [i1 (k - 1) ... is (k - 1) 1 
I 

To update, the spline representation BZ,k(Xk) of the likelihood function is constructed 

over the new interval. The same knot sequence is used to reduce computational costs 

and the updated density is calculated by 

(2.13) 

The insignificant ends of the posterior density are relIlOved and a new interval is 

selected. The n'lean of the estimate Xk at time k is found as 

(2.14) 

The developed spline filter and Sample Importance Re-sampling (SIR) particle fil-

ter are compared in the paper (Punithakumar and Kirubarajan, 2007) by simulation 

for a one dimensional nonlinear estimation problem and it is found that the spline 

filter is computationally more expensive than the particle filter for same performance 

but it retains the probability density function and gives a more natural representation 

over the discrete approximation. Also finding the target probability over a region in 

spline filter is straight forward. 
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2.5 Spline Filter for Multidimensional Nonlinear /Non-

Gaussian Bayesian Tracking 

The univariate spline filter approach presented in (Punithakumar and Kirubarajan, 

2007) is extended to multi-dimensional spaces using tensor product approaches in 

(K.Punithakumar et al., 2008). The nonlinear estimation problem is and B-splines 

and their properties are the same as described in (Punithakumar and Kirubarajan, 

2007). Tensor product of two linear spaces of functions in abstract algebra is defined 

and bivariate B-spline is obtained as 

m n 

Bij(x, y) = L L Bi,h,s(x)Bj,k,t(y)aij 
i=l j=l 

The construction of spline polynomials involves solving set of equations and the 

construction of bivariate spline involves solving mn equations for mn unknowns. Tri-

angular factorization is used to reduce computational costs from (mn)3 to (m3+m2n+ 

nm2 + n3 ). The paper then describes the prediction and update steps of the optimal 

recursive Bayesian filtering using univariate spline representation of density and like-

lihood functions for single dimensional problem (Punithakum.ar and Kirubarajan, 

2007). 

The univariate spline filter is extended to multi-dimensional spaces using the ten-

sor product approach. The multi-dimensional spline representation of the density 

function is constructed using the univariate spline polynomials of each individual el-

ements of the state space Xk. To reduce computational requirements, the spline is 

constructed only over the region in which the target density is significant. The pre-

diction and update steps of the multi-dimensional spline filter are generalizations of 
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those of univariate spline filter. 

The multidimensional B-spline filter is illustrated by simulation on a two dimen­

sional example and the results are displayed. The spline filter retains the probability 

density information in a finite polynomial form and finding the target probability 

over a region in spline filter is straightforward. 

2.6 Spline Histogram Method for Reconstruction 

of PDF 

In (Docenko and Berzins, 2003) spline histogram method is used to estimate pdf of a 

one dimensional data set in automatic and optimal way. The spline histogram method 

is a non-parametric approach for reconstruction of probability density function un­

derlying statistical selection. Tensioned cubic splines are found to be suitable and the 

corresponding algorithm. has been called TCSplin. From. spectroscopic observations, 

the red-shifts of galaxies in clusters are obtained. 

Red-shift of the ith galaxy denoted by Zi and ordered in ascending order i.e. 

(Zi ::; Zi + 1). Next, a step-like Cumulative Distribution Function ( CD F) is constructed, 

obtained purely from observational data: 

FObs(CZ) = N(zj < z)/Ngal (2.15) 

where N(zj < z) is a number of galaxies with red-shift smaller than z, and Ngal 

is a total number of detected galaxies, c is the speed of light. The PDF f(x) by 

definition is the derivative of Fobs (CZ) in respect to cz. If CDF is constructed as shown 
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before then f(x) is a sum of Dirac o-functions. The points Zi with ordinates Fobs(CZi) 

are consequently connected by non-decreasing smooth analytical spline S (cz). Then 

analytically differentiated leading to the PDF estimate j(cz). Continuous PDF thus 

obtained matches the discrete distribution of the data points. Tensioned cubic splines 

(TCS) are defined such that the cubic polynomial spline length between two data 

points is minimal, and only the interpolating function and its first derivative are 

continuous in data points. When TCS derivative becomes negative non tensioned 

splines are used by increasing spline length. Close data points give unrealistic high 

pdf peaks, which are smoothed. Savitzky - Golay filters are used in the paper because 

noise is in the form of narrow high peaks in pdf. 

Integrated Square Error (ISE) function is used to define the optimal width such 

that noise is reduced but pdf is not over smoothed. 

ISE(}(cz)) = l
z
rnin CZmax (j(cz)) - f(cz)r d(cz) (2.16) 

is the true pdf and j (cz) is estimated pdf. For discrete filter P (h) is minimized for 

smoothing width h and can be easily calculated 

N 

P(h) = L,(j(CZi)2 - 2!(CZi) + 2C6h)) (2.17) 
i=l 

Statistical noise level is found using bootstrapping technique. Using the obtained 

spline histogram as a true PDF, the sam.e amount N of random numbers are generated 

and another smoothed spline histogram is computed. This is repeated and the average 

value of the simulated spline histograms and their scattering is calculated. 

The simulated distributions were compared statistically with the original values 

22 



M.A.Sc. Thesis - Donna Lynn Kocherry McMaster - Electrical Engineering 

and the average values agreed till 1 (J but the standard deviations are about 10% 

larger due to the smoothing effect. For Gaussian distributions the asymmetry and 

excess are significantly different from zero, although in non-Gaussian cases they are 

rather close to original values. 

The optimal smoothing size depends on the selection volume N in the following 

way: theoretically hoptaN-l/5 and empirically hoptaN-o.195 . 

The algorithm was implemented on two clusters of galaxies - Abell 2256 and 

3526 and clear structures were obtained demonstrating the quality of the algorithm. 

A direct implementation of the algorithm leads to a good estimate of the PDF of 

clusters of galaxies. However the dispersions of the group velocities are overestimated 

due to PDF smoothing and may be calculated from the original data. In principle the 

spline histograms may be expanded to higher dimensional cases but sampling noise 

increases. Signal to noise ratio depends on the distribution character. 

2.7 Nonlinear Filters with Particle Flow Induced 

by Log-Homotopy 

A new concept in particle filter is explored in (Daum and Huang, 2009) making it 

radically different and vastly superior to the classic particle filter. The computational 

complexity of the new filter is nlany orders of magnitude less than the classic particle 

filter with optimal estimation accuracy for problems of din18nsion 4 and above. Log­

homotopy is used to implement Bayes' rule with particle flow rather than a point­

wise multiplication of two functions. Thus the particles migrate smoothly avoiding 

particle collapse or degeneracy. Particles are well distributed to represent the prior 
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probability density of the state vector, but with a new measurem.ent, the likelihood 

of the measurement is not well represented by this set of particles (no particles near 

peak of the likelihood function). For higher dimensions particle collapse is a serious 

problem. 

Particle flow induced by log-homotopy solves this problem by smoothly transform­

ing the set of particles used to represent the prior density into a new set of particles 

that is good for representing the product of the prior and the likelihood (Bayes' rule). 

The arrows show the direction of flow and the length of arrow represents speed 

of flow of each particle. Un-normalized conditional probability density of the dimen­

sional state vector x is computed using Bayes' rule as follows 

where Zk is kth measurement, 

(2.18) 

probability density of measurement Zk at time tk conditioned 

onx. 

In particle filters Bayes' rule is implemented by point-wise multiplication of two 

functions leading to degeneracy. The fundamental idea used in this paper is to create a 

differential equation to implement Bayes' rule, and induce a flow of particles analogous 

to the natural flow in time induced by the Fokker-Planck equation. Because Bayes' 
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rule operates at discrete points in time a scalar valued parameter).. varying from 0 to 

1 is inserted at each discrete n1.easurement time as synthetic time to create homotopy. 

f = gh (2.19) 

where g is the prior density of the d dimensional state vector and h is the density of 

the measurement. 

Define homotopy function as 

log(j),) = log(g) + )"log(h) (2.20) 

The partial differential equation is created by differentiating with respect to ).. as 

o log(h) = 1 (h) 
0).. og (2.21) 

Finally the induced particle flow is simplified as 

dx = -1 (h) (OlOg(h))T / IIOIog(h) 112 
d)" og ox ox (2.22) 

for nonzero gradient and dx / d)" = 0 otherwise. 

So the induced flow of particles is in the gradient direction of the log-homotopy, 

with speed proportional to log (h) and the flow stops when the gradient is zero. By 

integrating ODEs we log (f) is obtained i.e. a good set of particles to represent 
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g*h effectively solving the particle degeneracy issue. Thus a gradient flow in the log­

homotopy is obtained, similar to diffusion sampling Monte Carlo 111ethods, which uses 

a gradient flow of the log-density. But log-homotopy is not a Monte Carlo method; 

rather it is completely deterministic and does not use any random numbers. 

2.8 Nonlinear Estimation for a Class of Systems 

The paper (Charalambous and Socratous, 2006) contains nonlinear estimation prob­

lems for a class of models and employs relative entropy to describe the uncertainty 

classes. Two types of uncertainty models are considered. 

• Uncertainty Models on Conditional Distributions or otherwise known Stochastic 

Kernels 

• Uncertainty Models on Joint Distributions 

This approach leads to minimax techniques, in which the worst case estimate of the 

uncertain measure subject to the uncertainty description is sought. A measurable 

space (0" F) is considered on which the unobserved Random Variable (RV.), X and 

the observed Yare defined: 

(2.23) 

Thus X is the space of the unobserved RV., and Y is the space of the observed RV. 

The relation between the unobserved RV. X and the observed RV. Y is defined via 

a probabilistic mapping ~L: X x LY ~ [0,1]. which is a probability measure on L 

y for every x E X and is X measurable for every FEY. This is called a stochastic 
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kernel or transition probability. X is estimated as a function of Y by introducing a 

payoff and then minimizing it. 

J( CD*) = injiJ!EXad r l(x, CD(y) )dPx,Y(x, y). 
JXXY 

(2.24) 

The true kernel is unknown so the estimation problem is formulated as a minimax 

problem 

(2.25) 

and solved using Lagrangians. 

Two other alternatives are discussed using different constraints. Uncertainty on 

the joint distribution is handled in a similar fashion. This payoff function is consid-

ered 

J4 (CD) = r l(x, CD(y))dQx,y(x, y) 
JXXY 

(2.26) 

where Qx,y is the uncertain joint measure, Px,Y(x, y) is the nominal system model 

and the true model belongs to an uncertainty set described by C(PX,Y) defined as 

{Cx,yfNI(X x Y);H(Qx,yIPx,y)::; R} (2.27) 

where Rf(O, 00) and H is relative entropy between P and Q. The estimation problem 

is formulated as a mini-max problem defined by 

(2.28) 
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and is solved using Lagrangians. 

Some properties associated with the estimate are discussed and some applications 

are illustrated. Thus the concept of entropy is linked successfully with nonlinear 

estimation. 

2.9 Cubature Kalman Filters 

A new nonlinear filter for high dimensional state estimation is developed called the 

cubature kalman filter in (Arasaratnam and Haykin, 2009). A nonlinear filtering 

problem can be solved sub optimally in two ways - locally by assuming a fixed prior 

posterior distribution and globally using point mass methods etc. Cubature Kalman 

filter uses a local approach. The predictive density and the filter likelihood density are 

assumed Gaussian leading to a Gaussian posterior density. So the Bayesian solution 

reduces to computation of means and covariances in time and measurement update 

equations. In the time update the Bayesian filter computes the predicted mean and 

covariance and in measurement update the predicted measurement, the updated state 

and associated covariances are found using Kalman filter approach. The heart of the 

Bayesian filter involves computing Gaussian weighted integrals whose integrands are 

all of the form nonlinear function Gaussian density. 

Numerical integration methods to compute multi-dimensional weighted integrals 

are discussed. An integral of this form I (j) = J D f (x )w (x) dx consisting of function 

f and weight w is solved. A set of points Xi and weights Wi are found to approximate 

the integral as a sumn1.ation. The gauss-hermite quadrature rule is used to find 

the gaussian weighted integral for integrals of dimension < 5 . For higher dimension 

integrals, non product rules like randomized Monte Carlo methods, quasi-Monte Carlo 
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methods, lattice rules and sparse grids are used, which choose points directly from 

the domain of integration. A non product cubature rule is derived whose complexity 

increases linearly with n. The higher degree cubature rule yields a lTlOre accurate 

solution but the solution is more tedious. The symmetry of the system is made use 

of to simplify the process. 

The cubature Kalman filter is discussed in detail in this paper. An integral of 

Cartesian form 

1(1) = ( f(x)exp(-xTx)dx JRn 
is solved by transforming to a spherical radial integration form and then using a third 

degree spherical radial rule. The variable is changed from Cartesian vector x to radius 

r and direction y to get the following integral 

1(1) = 100 

{ f(ry)rn
-

1 exp( -r2 )da(y)dr 
o JUn 

The spherical and radial integrals are numerically computed by spherical cubature 

and gaussian quadrature rules. These are defined and a spherical-radial cubature rule 

is given 

Proofs are presented for the above equations in (Arasaratnam and Haykin, 2009). 

Higher degree cubature rules are avoided as the third degree gives a sufficient approx-

imation and higher degrees may make matters worse due to extremely high computa-

tion costs. Also third degree exhibits efficient and robust computation. Use of higher 

degree rules may sabotage the performance of the CKF 
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2.9.1 Square - Root Cubature Kalman Filter 

The square root extension of the CKF is developed while preserving the symmetry and 

positive definiteness of the error covariance matrix. Positive definiteness may be lost 

by matrix square-rooting, matrix inversion, matrix squared-form amplifying round off 

errors and subtraction of the two positive definite matrices present in the covariance 

update. The square-root version of the CKF or Square-root Cubature Kalman Filter 

(SCKF) was developed. The SCKF propagates square-root factors of the predictive 

and posterior error covariances. Hence, matrix square-rooting operations are avoided. 

In addition, the SCKF preserves symmetry and positive (semi)definiteness of the 

covariance, improves numerical accuracy and has doubled-order precision. 

The SCKF is developed using the least-squares method for the Kalman gain and 

matrix triangular factorizations or triangularizations (e.g., the QR decomposition) for 

covariance updates thus avoiding matrix inversion and square-rooting respectively. 

The Unscented Kalman filter and the CKF are compared. They share a common 

property, both the UKF and the CKF use a weighted set of symmetric points. But 

the sigma point set built into UKF has some limitations over CKF namely numerical 

inaccuracy, unavailability of a square-root solution and filter instability. Overall the 

CKF is found to be more accurate and principled in mathem.atical terms than the 

sigma point approach. The CKF is applied to two nonlinear estimation problems 

and simulated results are displayed. The general conclusion drawn is that CKF 

outperform.8 UKF, CDKF etc. and is a new and improved algorithmic addition to 

nonlinear filtering. 
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2.10 Spline Filter 

As a result of reviewing the papers described in the previous sections it can be con­

cluded that using spline polynomials for representing likelihood functions and density 

functions is ideal. Spline is preferred because it retains probability and gives a more 

natural representation than discrete approximations like particle filter. Also finding 

target probability over a region in spline filter is straight-forward. The optimum 

nonlinear filter derived using Bayes' theorem and Chapman-Kolmogorov equation is 

nearly impossible to implement owing to the necessity for storing the entire pdf and 

iterative integrations, but the spline filter can be a very accurate approximation. The 

prediction step in paper (Punithakumar and Kirubarajan, 2007) can be used with 

slight modification. The step of splitting into cells the interval of prior density may 

perhaps be avoided and son1.e other alternative may be attempted. I think that the 

knot sequence used to construct the spline interpolation of the likelihood function in 

the update stage of the spline filter must be updated. After developing the nonlinear 

filter for single dimension it can then be extended to multiple dimensions by tensor 

products concept similar to paper (K.Punithakumar et al., 2008). 

Another option would be to use the splitting concept in the prediction stage but 

to use the concept of log homotopy or particle flow as described in paper (Daum 

and Huang, 2009). By developing a transformation for the spline coefficients so as 

to represent the product of two functions greater accuracy may perhaps be achieved 

without an excessive increase in the computation costs. With more research and 

knowledge of splines, the spline filter can be further optimized and can be the best 

near optimal nonlinear filter with regard to accuracy, computation costs, accuracy 

and better representation of density function. 
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2.11 Particle filtering 

Particle filters are a novel class of nonlinear filters introduced about a decade before 

(Gordon et al., 1993). There are a wide variety of particle filters. The basic working 

principle of most particle filters can be described as following: 

1 • Possible system state sequences (particles) are simulated using importance sam-
I 

pling and resampling. 

• At time k, the particles already include state sequences up to time k - 1. A 

proposition of the system state at time k is added to each of them. 

• The particles are weighted based on how well the new states fit the new obser-

vation. 

• The particles are resampled according to the weights ----+ Particles with high 

weights are multiplied, particles with low weights may disappear. 

• A discrete representation of the filtering distribution is formed using the parti-

cles, a state estimate can be obtained from this. 

Particle filters approximate the complete non-Gaussian probability density of the 

state vector conditioned on the measurements. Multidimensional integration is ap-

proximated using Monte Carlo sampling, which is the hallmark of particle filters. The 

key issue in nonlinear filters of any kind is "the curse of dimensionality", a phrase 

coined by Richard Bellman over forty years ago to describe the exponential growth 

of computational complexity as a function of the dimension of the state vector X. 

The computational complexity of the Kalman filter grows as the cube of dimension 

but for the general nonlinear problems using filters that achieve optimal accuracy, 
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the computational complexity grows exponentially in dimension. A detailed analysis 

of the computational complexity of particle filters for a given estimation accmacy is 

given in (Daum, 2005). For low dimensional problems, well designed particle filters 

achieve optimal estimation accmacy with a computational complexity roughly the 

same as a EKF or Extended Kalman Filter. But in general for high dimensional 

problems the computational complexity of particle filters is enormous. 
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Chapter 3 

Spline in Estimation 

3.1 B-Splines 

This section briefly introduces B-Splines and their properties. The reader is referred 

to (Boor, 2001) and (Prautzsch et al., 2002) for a detailed background on splines. 

The spline interpolation in B-form is given by (Boor, 2001) 

where 

n 

B(x) = LBj,p,t(x)aj 
j=l 

(3.1) 

(3.2) 

is the J th B-spline of order p for the given knot sequence t. The notation [tj, ... , tj+p]g 

stands for the divided difference of order p of g at the sites t j , ... , tj+p and (x)+ = 

max{ x, O} stands for the truncation function. The placeholder notation is used to 
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indicate that the k th divided difference of the function (t - x )~+ 1 of the two variables 

t and x is to be taken by fixing x and considering it as a function of t alone. 

From definition, the first order B-spline is given by 

{

I if tj ::; x ::; tj+1 
B J· 1 t = , , 

o otherwise 
(3.3) 

Starting from the first order, the higher order B-splines can be constructed using 

the recurrence relation 

(3.4) 

with 

(3.5) 

3.1.1 Positivity Property of B-Splines 

The B-spline Bj,p,t is made up of at most p nontrivial polynomial pieces and vanishes 

outside the interval [tj , . .. ,tHp] and is positive on the interior ofthat interval (Boor, 

2001) i.e., 

(3.6) 

while 

(3.7) 

With the positivity property of B-splines and having (Xi 2': 0 for all i, the positivity 

of spline representation of probability and likelihood functions are ensured. 
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3.1.2 Integral of B-splines 

The integral of B-spline, for t1 ::; X ::; ts, is given by 

3.1.3 Construction of B-splines 

The basis sequence of B-splines Bj for j = 1, ... ,n are linearly independent (Boor, 

2001). Thus the space defined by the span of the B-spline basis functions Bj's is 

n-dimensional. If the strictly increasing sequence t = Tl, T2, ... ,Tn of data sites is 

given, then for a given function g, the spline f D. "L7=1 cxjBj agrees with g at T, if 

n 

LcxjBj(Ti) = g(Ti) 
j=l 

for i = 1, ... , n (3.9) 

This is a linear system of n equations with n unknown CXi'S with coefficient matrix 

(Bj (Ti)), the spline collocation matrix. 

3.1.4 Multidimensional Spline 

The spline definition given above can be generalized to estimate multidimensional 

state vectors using the tensor product approach (K.Punithakumar et al., 2008) (Boor, 

2001). A tensor product of two linear spaces of functions in abstract algebra is defined 

as follows: 

Let U and V be linear space of functions defined on real sets X and Y, respectively. 
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Then for each U E U and v E V, the function 

w(x, y) t;, u(x)v(y) (x, Y)EX X Y (3.10) 

is called the tensor product of u with v an denoted by u ® v. 

Further, the set of all finite linear combinations of functions on X x Y of the form 

u ® v is called the tensor product of U with V and is given by 

Using this approach, a bivariate B-spline is obtained as 

m n 

Bij(X, y) = L L Bi,h,s(x)Bj,k,t(y)aij 
i=l j=l 

(3.11) 

(3.12) 

This concept can be extended to any finite dimensional space and thus provides a 

mechanism. to construct multidimensional B-splines. 

The construction of spline polynomials involve solving set of linear equations 

(Boor, 2001) and, the construction of bivariate spline given in (3.12) require solving 

mn equations for mn unknowns. The straight-forward solution by gaussian elimina­

tion thus requires order of (mn)3 operations. However by constructing a triangular 

factorization of the linear system, the computational cost would be reduced to the 

order of (m3 + m 2n + mn2 + n3). The multidimensional spline representation of the 

state density function is constructed using tensor product of univariate spline poly-

nomials of each individual elements of the state space Xk. In order to reduce the 

computational requirements , the spline is constructed only over the region in which 
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the target density is significant. 
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Chapter 4 

The Theory 

This section describes the prediction and update steps of the optimal recursive Bayesian 

filtering using spline representation of density and likelihood functions as described 

in (Punithakumar and Kirubarajan, 2007) and (K.Punithakumar et al., 2008). 

4.0.5 Current working Approach 

Initially the measurements of the actual data or the truth are available. The sys­

ten'! being considered is a single dimensional nonlinear system with continuous state 

equation as 

x(t) = f(x(t)) + v(t) (4.1) 

where x(t), f(x(t)), v(t) E Rn with covariance Qij = fiv6ij and a discrete measurement 

equation given by 

(4.2) 

where y(t) E Rmxl, h E Rmxl and the noise process w(t) is assumed to be a white 

nOIse process. It is assumed that p(y( tk) Jx( t k)) is known. To define the transition 
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probability matrix a wide range of possible values of the state variable X is selected. 

The probabilities of state transition between the various possible states are calculated 

using Dirac Feynman approximation as discussed in (Balaji, 2010b) and (Balaji, 

2010a). Transition probabilities are represented as a Probability transition matrix P, 

where P = [Pij] and 

Pij '" Pr[X(t + 1) = jIX(t) = i] (4.3) 

each row sum must be 1. 

Suppose the initial probability density is represented by the prior O"o(x). Then 

the evolution of the states is represented by the Fokker Planck- Kolmogorov forward 

equation. 

State estimation consists of mainly two parts - Prediction step and Correction or 

Update step 

Prediction step 

The probability of state X taking value x' at time t is represented as p( t, x'). Let 

t" > t' and let the prior density be represented by p(t', x'). The predicted density at 

time t" is obtained as 

p(t", x') = J P(t", x"lt', x')p(t', x')dnx' (4.4) 

The equation described above is realized by representing the probability density and 

the Transition probability matrix as spline polynomials. In particle filter methodology 
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it can be approximated numerically as follows: 

p(tk' xIY(tk-l)) = L P(tk, xltk - 1 , X')p(tk-l' X'Y(tk-l)) ( 4.5) 
Xl 

where Y(tk-l) = All the measurements till time instant tk- 1 

This product can be achieved using matrix multiplication in cases where the range of 

values that the state variable X can take are predefined and limited. 

However, in reality the range cannot be predefined so easily. A good represen-

tation of the probability densities is an essential issue in the success of the filtering 

algorithm especially in the case of nonlinear filtering since the probability densities 

could be multi-modal. For an accurate and efficient representation, the state density 

is represented using B-Splines. In the existing particle filter approach, the accuracy 

of the prediction depends on the number of particles being used. The probability dis-

tribution is approximated using a large number of particles and a point-wise matrix 

multiplication is used to achieve equation (4.4) as shown in (Balaji, 2010a). By using 

spline polynomials it is hoped that the state density can be represented accurately 

using a minimal number of spline control points. Hence to implement equation (4.4), 

it is required to multiply a two dimensional spline representing Transition Probability 

matrix with a One- dimensional spline representing the prior state density and the 

result needs to be a one dimensional spline representing predicted state density. 

Imposing pdf property to spline 

When state density is represented using spline polynomials, the values of the probabil­

ity density must be kept positive. vVhen the derivative ofthe density spline %tp[X(t)] 

is found, it has certain negative values corresponding to the points where the slope 
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is negative. However, when the prior density is added to it, the negative part of the 

density should be canceled to leave a positive predicted state density. The predicted 

pdf n:mst always be positive for every value of X. Thus, a condition is imposed to 

ensure that the spline representation predicted in the problem must be positive for 

every value of X. 

Moving Spline Points 

The domain of the state space having a significant mass of the pdf should be identified 

for implementing the Prediction step effectively. However, if the limits of the domain 

are set too narrow then the evolved pdf may have significant mass outside the selected 

domain. If the limits of the domain are set too wide then the associated computational 

complexity increases without a significant improvement in accuracy. The limits of 

the domain have to be optimally chosen keeping aforementioned problems in mind. 

However, the state pdf evolves in time and hence the limits of the state variable 

domain need to be recursively evaluated for each propagation time instant to represent 

the state density more accurately. 

4.0.6 Update Step 

The spline representation of predicted density Bklk-1(X(tk)) is available and the up­

date step involves solving (2.5). This can be done by constructing the spline rep­

resentation BZ,k(X(tk)) of the likelihood function p(Z(tk)IX(tk)) over the interval 

[t~ (k - 1), ... , t~ (k - 1)]. The same knot sequence is used to construct the spline 

interpolation of the likelihood function in order to reduce the computational cost of 

multiplying Bklk-1(Xk) and BZ,k(Xk). The spline interpolation of the update density 
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is then calculated as 

(4.6) 

The spline function for the updated posterior density Bklk(X(tk)) is now available. 

However, in many cases it is possible to remove the insignificant end portion of the 

posterior density with lower target probability. This is done by finding the integral 

value of Bklk(X(tk)) over interval [t~+i(k -1) t~+i+l(k -1)] for each i starting from 

1 until the first value exceeds a threshold value. The procedure is repeated for 

[t~_i(k -1) t~_i+l(k -1)] for each i starting from 1 and these intervals are removed. 

The new interval is set to [t1(k) ... ts(k)]. 

4.0.7 Finding Estimate 

The mean of the state estimate X(tk) at time step t = k is calculated by 

(4.7) 

Finding the higher moments is also straightforward with spline filter approach. 

4.0.8 Initialization 

The spline filter is initialized by constructing the spline interpolation BOlo of the pdf 

p(X(O) I Z(O)) of initial target state. The initial state probability density function 

is available as a set of data points, which consist of value of the state variable and 

corresponding probability density values. Suppose the initial probability density of 

the state vector is available as a set of data points. 
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Figure 4.1: Gaussian sample Values 

A B-spline interpolation can be fitted smoothly to the available data as shown in 

the figure below. 

The values ofthe Spline polynomials (denoted as + signs on the graph), evaluated 

at the knots (the X coordinates corresponding to the + signs) are the same as the 

values of the probability density function of the state vector at those knot points. 

44 



M.A.Sc. Thesis - Donna Lynn Kocherry McMaster - Electrical Engineering 

OA.------.--------.-------,----.--------c=----,------,----,----,-----. 

0.35 

0.3 

0.25 

~ 0.2 

0.15 

0.1 

0.05 

o 2 3 4 5 
X 

6 7 8 

Figure 4.2: The initial probability density function 
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Chapter 5 

Simulations and Results 

5.1 SPLINE FILTER 

5.1.1 Simulation 

The simulation is explained in detail here. In this simulation, single dimensional 

tracking problem with the following state model is considered. 

x(t) = 1.2cos(3x(t)) + v(t) (5.1) 

where x(t), f(x(t)), v(t)ERn with covariance Qij = nv6ij . The prediction step requires 

the solution of the Fokker Planck forward equation and is achieved through numerical 

approximation as described in (Balaji, 2010b) as follows: 

X, 

where Y(tk-I) = All the measurements till time instant tk-I. 
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To proceed with the prediction step the transition probability matrix) P has to be 

calculated. The Transition Probability matrix can be found using the Dirac Feynman 

algorithm described in detail in (Balaji) 2010b). 

Initially a range is fixed for possible X values as -1.5 ~ X ~ 1.5 with the values 

being uniformly distributed and having 0.01 increments between successive values. 

Next the Transition Probability matrix is calculated. It is assumed that the times t' 

and til are such that til > t'. The One step pre-point Dirac Feynman approximation 

as described in (Balaji) 2010a) for additive noise is 

P(t") x" It') x') 
1 til - t' n (x~' - x~) 

V(2II(t" - t'))n det g(t') exp (- 2 ij; [ (t;' - t') fi(X') t')] 

( 
II , ) 

-1( ')[ Xj - Xj f ( , ')]) gij t (til _ t') - j x ) t . (5.3) 

For multiplicative noise it is 

P(t" x"lt' x') = 1 exp [_(til _ t')L(r,O) (t x' x" (x" - x'))] 
) ) V(2II(t" - t'))n det g(t') ) ) ) (til - t') 

(5.4) 
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where the Lagrangian L(r,O) (t, x', x", ~~;; =:,'}) is given by 

( " ') L(r,O) (t x' x" x - x ) 
, , , (t" - t') 

1 n ((x" - x') ) 
- '"' i i _ f.( I + r(x" - x') t') 
2.~ (t" _ t') t x , 

2,)=1 

C~, e'a(x', t!)Qab(t')e;b(x', t')) -1 

( 
(x'j - xj) f (' (" ') I)) 
(t" _ t') - j x + r x - x , t 

n 8f 
+r L 8x

i 
(x' + r(x" - x'), t) 

i=1 2 

(5.5) 

9ij(t) = La,b=1Peeia(t)Qab(t)ebj(t) and r E [01] specifies the discretization of the 

stochastic system as x(r)(t) = x(t - !:It) + r(x(t) - x(t - !:It)). For this problem the 

noise is additive and equation(5.3) is used to find the transition probability matrix. 

A symmetric discretization is chosen and the value of r is fixed at 0.5. The transition 

probability values are calculated for every combination of states is found. The prob­

ability of state transition from Y = x(t = jj)to X = x(t = ii) for a x(r)(t) = X1r, 

ax = 0.3 and dt = t" - t' = 0.01 is found to be 

P(jj, ii) 

The Transition probability matrix does not change with time and so it is calculated 

only once in the beginning prior to processing the measurements. The transition 

probability matrix for this system is found to be a 301 x 301 matrix. The probability 

density vector is represented using a one-dimensional B-spline. This is done using the 

'spaps' command in Matlab. In order to execute the product in (5.2), the Transition 
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probability matrix is represented as a set of One dimensional Splines. This is necessary 

as it is not possible to directly multiply the transition probability matrix, represented 

by a 2-dimensional spline, with the probability density vector, represented by a 1-

dimensional spline. This product is required to implement equation(5.2). 

The i th column of the Transition probability matrix represents the probability 

of evolving from all the various states to the i th state. The prior distribution spline 

is multiplied by each column of the Transition Probability matrix to obtain a spline 

representing the probability of the state variable assuming the value corresponding 

to the respective row of the transition probability matrix. Each resulting spline is 

integrated to obtain a single value for each probability. The resulting probabilities are 

used to recreate the density spline to obtain the predicted density spline. Essentially 

a sort of numerical approximation has been used and the product in (4.4) is achieved 

using (5.2). The probability of the state variable assuming each value among the 

range of possible values is calculated as a number and the density spline is recreated 

for each iteration of the prediction and update loop. A continuous representation 

for the density vector and a discretized version of the Transition probability matrix 

is obtained. Recreating the spline at each prediction step is not optimal and an 

alternative must be found. 

5.2 Results 

The results of this simulation are compared with the results of numerical algorithm 

as discussed in (Balaji, 2010a) and are presented below. The spline filtering method 

provides a result having the slightly better accuracy than the numerical method. The 

RMSE values are calculated for multiple runs of the code and are found to be 0.0224 
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for the spline filter and 0.0583 for the numerical method. However, the time taken is 

slightly more for the Spline filter. This is mainly due to the necessity to recreate the 

spline at each prediction instant. 
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Figure 5.1: The probability density at the final instant of Spline filter and numerical 
filter 
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Figure 5.2: Comparing the truth and the calculated results 
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Chapter 6 

Summary 

6.1 Conclusion 

The problem being considered in this thesis is the estimation of the state of a nonlinear 

system based on measmements of the system output. The optimal Bayesian estimator 

cannot be implemented in practice because the futme state of the system can be 

predicted only by considering the entire domain of the state while implementing the 

Chapll1.an-Kolmogorov equation. The task of integrating over the continuous state 

domain is virtually impossible due to huge space requirements. So the problem of this 

huge integration is handled in this thesis by representing the state pdf using spline 

polynomials. The initial state density or 'the prior' is represented using B splines. 

The transition probabilities to be used in the Chapman-Kolmogorov equation are 

calculated from the information available from the system model. Feynman Path 

integral inspired methods are used for the transition probability calculations. The 

Chapman Kolmogorov equation was illlplemented using a spline based method by 

representing the transition probability matrix using splines. This method simplifies 
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the representation of the state density through the use of splines. The state density 

is a continuous function and it is represented as a continuous function itself using 

splines. This increases the accuracy and reduces the residuals. Also calculation of 

the moments of the final state density is easy and simple with splines. This new 

method can be used as an alternative to particle filtering methods. It can be used in 

various fields of nonlinear estimation such as tracking, navigation, estimation of faults 

in fields related to power systems and many more. It is a generalized method and 

can be used for non gaussian filtering since it does not assume that the state density 

is gaussian. Spline based filtering for target tracking allows easy manipulation of 

the density functions since they are polynomials of finite order. For instance, it is a 

straightforward process to find the target probability in any region in the state space 

by evaluating the integral of the spline representation over that region. 

6.2 Future work and improvements possible 

In this thesis nonlinear state estimation using splines is considered. Currently, the 

implementation of the Chapman-Kolmogorov equation involves a reconstruction of 

the spline polynomial representing the state density. Note that this reconstruc­

tion issue is not a theoretical limitation but merely an implementation related issue. 

Matlab@ currently does not support multiplication of multivariate splines. Further 

research can be extended in that area to resolve this issue. Additionally, without 

further improvements to the theory of the tracking algorithm, there is valid scope for 

extension to multi-variable nonlinear state estimation. Extension to multi-variable 

state estimation can be done using multivariate splines, which can be constructed 

using the tensor product approach. Although the complexity of the tensor product 
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approach increases exponentially with dimension, complexity can be reduced by ex-

ploiting the structure of the linear system that needs to be solved to construct the 

spline polynomial. The resulting multi-dimensional filter can be used in Inost of the 

I common circumstances and the density could even be multi-modal. , 
I 

-I 
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