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Abstract

The global routing problem is becoming more and more important in the

design of today's integrated circuits. A small chip may contain up to millions of

components and wires. Although global routing can be formulated as an integer

linear programming problem, it is hard to solve directly using currently available

solvers. We discuss a relaxation of the problem to a linear programming (LP)

formulation with a fractional solution. However, the relaxation yields an NP-hard

problem. In this thesis, we introduce three relaxations: the primal (Pc), the

Lagrange dual (Dc), and the unimodular (PI) formulation. At optimality, all three

problems have the same objective value. A new way to tackle the LP problem is

introduced: first solve the Dc and try to find Lagrange multipliers in order to build

the PI model, from which an integer solution can be obtained directly. An

implementation based on the discussed approaches was tested using IBM

benchmarks.
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Chapter 1 Introduction

Integrated Circuits (also known as ICs, microcircuits, or chips) play an important role

in today's manufacturing integrated circuit design. An integrated circuit may contain

thousands or millions of components and interconnecting wires. However, how to properly

layout these components for optimal circuit performance is still a problem of great interest in

industry. In general, such problems are called VLSI problems (very large scale integration

circuit design problems), and although they can be presented as linear programming

problems, they tend to be extremely complex and time-consuming. [1]

1.1 History of Ie

In the beginning of the 1960s, Small-Scale Integrated (SSI) circuits were produced,

usually containing no more than ten transistors. In the late 1960s, Medium-Scale Integrated

(MSI) circuits were produced, where the number of the transistors increased into the

hundreds. Although their production costs were higher than those of SSI devices, MSI

allowed more complex systems to be produced using smaller circuit boards, and less

assembly work. In the mid 1970s, the number of the transistors increased to the tens of

thousands, at which point it was coined as Large-Scale Integration (LSI). The final step in the

development process, starting in the 1980s and continuing until today, is referred to as "very

1
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large-scale integration" (VLSI). These circuits may contain transistors on the scale of

hundreds to several billions.

1.2 Physical Design

In general, digital Ie design can be divided into three parts. The first step is

Electronic System Level (ESL) design. In this step, the user's functional specifications are

created using a variety of languages and tools. Then in the next step, Register Transfer Level

(RTL) design, the user specifications will be converted into a register transfer level

description. The last step is Physical Design, which is used to determine the physical shape

of a circuit, location of the cells, and path of the nets in the circuits. Physical Design also

consists of three stages: floor planning, placement, and routing.

The first stage is floor planning. In this stage, we determine the size, shape and the

location for each small cell. In general, the circuit will be segmented into small rectangular

blocks. The second stage is placement. Since the entire block has been fixed in the floor

planning stage, a net is used to determine where each block needs to be connected. This net

is called a benchmark.

The last stage is routing. Since a larger percentage of the delay of circuits occurs in

the wires, routing is the most important stage in VLSI Design. This stage is performed in two

steps: global routing and detail routing. During global routing, a solution will be generated

from the benchmark. Then the detail routing will take the solution ftom the global routing

and route it physically. The aim of global routing is to find an optimal path without violating

2
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any of the circuit's physical constraints, i.e. the minimum length of the wires, routing of all

nets, and minimizing the overflow. The global routing problem is NP-hard [10]. Given its

size tens of thousands, it usually solved using heuristic algorithms.

3
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Chapter 2 Global routing

The goal of global routing is to generate an optimal solution for the circuit that

satisfies different objectives. The input of the global routing problem consists of a net-list

that indicates the interconnections between blocks and the position of each block. Usually the

global routing problem is presented as a graph problem. And there are three sub-problems in

the global routing problem: graph generation, tree generation and route generation [19].

2.1 Graph Generation

Let us begin with an introduction to graph theory. Usually a graph is represented by

drawing a dot for every vertex, and drawing an arc between two vertices if they are

connected by an edge. A directed graph G= (V, E) consists of a finite set of vertices V and a

finite set of edges (arcs) E. If an edge leads from u to v, then we record the edge e as u ~ v.

We also say that v is adjacent to u:

We also define an undirected graph G= (V, E) with V recording the set of the veliices

and E recording the set of the edges that need to be connected. Thus each edge in the

undirected graph is an unordered pair of vertices. So if (u, v) is an edge in G, then (v, u) is

also an edge in G.

4
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The global routing problem can be presented as an undirected graph G = (V, E). Figure 1

below explains the problem. In Figure 1, the left graph shows a typical routing area of the

circuit, and its overlaying graph is shown on the right side. After we obtain the overlaying

graph, we transfer the overlaying graph to a grid graph (left graph of Figure 2). Each vertex

represents a block while each edge represents the routing channel that the wires can be

placed.

Figure 1 A typical routing area and its overlaying graph

i
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"i!1!I'" "i!I

""
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Figure 2 Grid graph and the final graph
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In a real circuit, the channels are placed in several metal or poly silicon layers on top of the

transistors, which are made of silicon material. Thus each edge will have a limited number

of wires that can be placed on it. This limit is the capacity of the edge. Once we finish

building the final graph, we can record the circuit as G = (V, E).

There are two ways to represent a graph: an adjacency list or an adjacency matrix.

An adjacency list is the representation of all edges or arcs in a graph as a list. Usually,

adjacency lists are unordered. An adjacency list that represents a graph G = (V, E) consists of

an array L, for each i E V, Lj is a list of all vertices j such that (i,j) E E.

An adjacency matrix is the representation of all edges or arcs in a graph as a matrix.

For a finite graph with n vertices, the adjacency matrix is a n x n matrix. Suppose we have V

= {I, 2, ... , n}, the non-diagonal entry aU in the adjacency matrix is the number of edges from

vertex i to vertex j, and the diagonal entry ajj is either once or twice the number of edges

(loops) from vertex i to itself. Typically, an undirected graph may use the former convention

of counting loops twice while a directed graph may use the latter convention.

An adjacency matrix requires 8 (IV12
) memory usage while an adjacency list requires

8(IVI+IEI) memory usage. Thus an adjacency matrix is suited for representing dense graphs

and an adjacency list is suited for representing sparse graphs. An example of different

representations is shown below.

6
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(a) A graph G
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o
o
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o
o
o

1

1

o
o

1

o
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o

(b) Adjacency list of (a) (c)) Adjacency matrix of (a)

Figure 3 Different representations ofa directed graph G

In the global routing problem, the graph generated from the circuit is an undirected

graph. From the benchmark, we will know the number and the location of the blocks on each

layer. We will also know for each layer how many blocks need to be connected. Thus, in the

next step, tree generation, we can generate the tree for each layer (net), and obtain the full

graph of the circuit.
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2.2 Tree Generation

A tree is an undirected simple graph in which any two vertices are connected by

exactly one simple path. The edges of a tree mayor may not be weighted. Thus a tree can

also be represented as an adjacency list or an adjacency matrix.

During tree generation, we need to generate a single tree that connects all the vertices

in each layer according to the requirements for routing. Some graph techniques can be used

to produce these trees.

2.2.1 Spanning tree

A spanning tree is a tree composed of all the vertices and some of the edges of G. A

minimum spanning tree is a spanning tree with minimum weight. There are two classic

minimum spanning tree algorithms, namely Prim's algorithm [17] and Kruskal's algorithm

[13]. These algorithms lUn in polynomial time and are greedy algorithms. In general, a

spanning tree can be built very fast [14], but sometimes it is not the optimum choice.

2.2.2 Minimum Steiner tree

We introduce here another tree called the mInImUm Steiner tree. The minimum

Steiner tree problem is very similar to the minimum spanning tree problem. In the Steiner

tree problem, we introduce extra intermediate vertices and edges to the graph in order to

reduce the total length of the tree. The extra intermediate vertices are called Steiner points or

Steiner vertices. A Steiner tree may not be unique. Figure 4 is used to show the difference

8
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between a spanning tree and a Steiner tree. The spanning tree is drawn with solid lines, while

the Steiner tree is drawn with dashed lines. The white points are the Steiner vertices.

--0--

Figure 4 A net shows a spanning tree and a Steiner tree.

A VLSI circuit may contains hundreds of thousands cells/blocks, and the general

minimum Steiner tree problem is NP-hard. The GeoSteiner Algorithm [20] is used to find the

Steiner tree with the minimum length. There are also some other algorithms for fmding the

minimum Steiner tree such as Mix-flute [5], and GOBLIN [8].

2.3 Route Generation

A VLSI circuit consists of several layers. If we only produce a single tree in each

layer during the tree generation, the whole net may not be a valid solution. For example,

imagine we have two layers in the circuit with six vertices in each layer. A figure below

shows two layers (in the real physical circuit, the left layer overlaps the right layer), while the

black points are the vertices that need to be connected. The capacity for each edge of the

circuit is one. Here, we only consider the 2D model.

9
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o--e
I I
I Ioue
I I

0--.

_--0
I I
I I_--e
I I

0--_
Figure 5 Two layers on a simple circuit example

If we generate the tree on the layers separately, the solution appears as in Figure 6.

The solid line is the tree for each layer. However, the bottom-most right edge of the circuit

appears twice, while the capacity for that edge is only one. Therefore, the solution is not

valid.

0--
I
I

0--
I

0--

--0
I

0--
Figure 6 One possible solution for the circuit ifgenerate the tree separately.

In the following example, two techniques are introduced: sequential [12][2][3] and

concurrent techniques [15][4].

10
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2.3.1 Sequential techniques:

At first, we order all the nets based on their importance, then each net is routed

separately based on the constraints from previous nets. Several global routing techniques

have been developed. Most techniques are based on maze search [9] or line search

approaches. However, these routers can only be used to produce two-terminal nets and

usually take a very long time to run. A shortest path algorithm can be used to route multi-

terminal nets [6][11], while reducing the running time. These techniques are called sequential

algorithms. Sequential routers can produce the solution directly without building the LP

problem, however, due to their sequential nature; the solution may not be optimal. If the

order of the nets is different, the solution may change drastically.

Using Figure 5 as an example:

If we generate the tree on the left layer of Figure 5 first, the solution of circuit will be

--00--
I
I

0--
I

0--
Figure 7 Solution ofthe circuit ifgenerate the tree on the left one first

11
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However, if we generate the tree on the right layer ofFigure 5 first, the optimal solution does

not exist.

0--
o

I

0--.

nO

I

On
Figure 8 After generating the tree on the right layer, the vertices on the left layer are
disconnected

2.3.2 Concurrent Algorithms:

Concurrent algorithms are another way to find an optimal solution of a VLSI

problem. At first, it will produce a lot of possible trees in each net, allowing us to formulate

the problem as an integer linear problem (ILP) with minimization or maximization under

some constraints. Although there are a lot of linear programming solvers that can be used to

solve the ILP problem, due to the size of the ILP problem, it is hard to obtain the integer

solution directly. In this thesis, we will introduce a Lagrangian relaxation technique to solve

the problem, and compare it with the classical techniques. Three different concurrent routers

are used to generate the tree: the congestion router, the subnet router and the mix-flute router.

12
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Chapter 3 Unimodularity in the LP
problem

In this chapter, we present some special cases of the LP problem which may help us

to solve the VLSI ILP problem.

3.1 Unimodular matrix

Definition 3.1.1

A unimodular matrix M is a square integer matrix with determinant +1 or -1.

The simplest example is the identity matrix I, since Det (I) =1.

Definition 3.1.2

A totally unimodular matrix IS a matrix for which every non-singular submatrix IS

unimodular.

From the definition, we also know that any totally unimodular matrix has only 0,+1 or -1

entries.

A small example shown below is totally unimodular:

13
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A=

~1

+1
o
o

~l 0
o ~1

+1 +1
o 0

o 0 +1
~1 0 0
o ~1 0

+1 +1 ~1

3.2 Total Dual Integrality

Consider the linear program defined as

Primal problem:

max cTx

s.t. Ax < b

Where A and b are rational and the dual problem may be written as:

Dual problem:

min bT Y

S.t. Ay=c

y>O

We will use the following definition:

14
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Definition 3.2.1 [ 7]

The system of inequalities by Ax:::; b is Total Dual Integral (TDI) if for all integral

vectors c, the dual program has an integral optimal solution whenever the optimal value is

finite.

It can then be shown that the primal problem also has an integral optimal solution for

all c, ifA is rational and b is integral.

Definition 3.2.2

A matrix A is totally unimodular if and only if the system {Ax:::; b, x2:0} is TDI for all

integral vectors b.

From definition 3.2,1 and 3.2.2, we can get the following corollary:

Corollary 3.2.3

If we have a primal LP problem in which c is an integer vector, and A is a totally unimodular

matrix, the primal LP problem will have an integer optimal solution.

Proof

Consider a totally unimodular matrix A, then the system {Ax:::; b, x2:0} is TDI from the

definition 3.2.2. Thus, the dual problem and the primal problem will have an integer optimal

solution.

15
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Chapter 4 Modeling

The routing technique we used in this paper is based on the ILP model. Some of the

most common notation used in the formulation is introduced.

n: Total number ofthe nets.

p: Total number of edges.

t: Total number oftrees.

Pd: Primal Discrete global routing formulation.

Pc: Primal Continuous relaxed global routing formulation.

Dc: Dual Continuous relaxed global routing formulation.

PI: Primal Lagrange of the partial Lagrange relaxation of the global Routing formulation.

DI: Dual Lagrange of the partial Lagrange dual relaxation of the global Routing formulation.

Pc-u: Primal Continuous relaxed global routing formulation with added upper bounds on

penalty.

Dc~u: Dual Continuous relaxed global routing formulation v/ith added upper bounds on

penalty.

16
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Pl-u: Primal Lagrange of the partial Lagrange relaxation of the global Routing formulation

with added upper bounds on penalty.

4.1 Modeling generation

Initially, we generate the set of trees for each net k, and the total number of trees is t.

Y j is used to record the status of tree j. It equals one when the tree is used and zero

otherwise. wj is the weight variable for tree j. Usually the weight is a combination of length,

the number of bends and congestion. au is a binary constant that is one if tree j passes

through edge i and zero otherwise.

The global routing problem is then formulated as:

mm (1)

S.t.: L y j =l k=1,2, ...,n (2)
YjENk

t

LaijYj ~ cap; i = 1,2, ... ,p (3)
j=l

Y j E {O,l}, j = 1,2, ...,t (4)

Our aim is to minimize the total wire length and the congestion of the circuit. The

constraints (2) ensure that for each net only one tree can be chosen. The constraints (3)

enforce that the number of trees passing through an edge does not exceed its capacity. In the

end, the solution ofthis model should be binary. We could rewrite Pd in matrix format:

17
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~ mIn wTy

S.t.: Hy = 1

Ay < Cap

y E {O,l}

w is the weight vector composed ofWj, H is a totally unimodular matrix from the

definition 3.1.2. A is a matrix such that each column represents a given tree and each row

represents the edges that have been used by that tree. Cap is the maximum capacity for each

edge.

During testing, we found most of the LP problems are infeasible. Usually, there are

several ways to resolve this. We could generate more trees in the routing generation step, add

an artificial variable vector to satisfy the condition on the capacity (in this case, overflow

may occur), or apply both. Here, we introduce a penalty vector z:

PI mIn wT y+mT z

S.t. : Hy=l

Ay<Cap+z (5)

y E {O,l}, (6)

z>O

m is the weight for the penalty z. After we add the penalty z, the model will always

have an optimal solution.

18
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4.2 Solve the Model

Most ILP problems can be solved directly using some solver. Typically, the size of

the VLSI ILP problem is extremely large; it cannot be solved directly like other small

problems. We introduce some models and will see how they can be used on based the solver

technology.

4.2.1 Relaxed Primal Problem (Pc):

We relax the binary constraints of Pf so that the feasible global ILP problem Pf is

relaxed as a LP problem Pc. Typically, the time for solving the LP problem will be less than

the time for solving ILP problem.

mIn wTy+mTz

S.t.: Hy=l

AysCap +z

O<y<l

o <z

(7)

(8)

(9)

(10)

In here, we assume all the values of m are the same. The total number of fractional

coordinates in the solution of Pc depends on the LP method that been used. Usually, interior

point method (IPM) will produce more fractional solutions than other methods. Then we can

proceed with rounding to find an integer solution. For our case, we can directly obtain an

integer solution using the structure of H.

19
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4.2.2 Lagrange Dual Problem (Dc):

The Lagrange dual problem Dc of Pc will have the following form:

Dc max -f.1Tl- vTCap - ATI (11)

s.t. : -HTf.1-ATv-AT :S;w, (12)

mT>vT>O, (13)

A>O, (14)

Note that the variable f-l is free. We get this form by writing out the Lagrange

formula of Pc. Then we can get the Dc by using the KKT (Karush-Kuhn-Tucker) conditions.

See for example: C. Roos [18], S. J. Wright[21] and Y. Ye [22] and references therein.

4.2.3 Unimodular Problem (PI)

We want to utilize the unimodularity of the part of the constraints of the original

relaxed problem, Pc, so that we could obtain the binary solution directly. The partial

Lagrange relaxation ofPc can be written as:

P, mm wTy+mTz +aT(Ay-Cap-z)

S.t.: Hy=l

O~y~l

20
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Since H is totally unimodular, if we know the value of z, m, and a , we could write

the solution directly without using a solver.

4.2.4 Partial Lagrange dual problem (D!)

According to Theorem 5.1, which is given in the next chapter, the optimal value of Pc

and the optimal value of the partial Lagrange dual of Pc will be the same. The partial

Lagrange dual Dl can be written as:

max g(a)

s.t. a ~ 0

(16)

g(a) is the optimal value of PI. Since the matrix is totally unimodular, this problem is a

unimodular optimization problem and a zero-one solution can be obtained by using the

simplex method.

21
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Chapter 5 Theorem and solving
technique

5.. 1 Theorem

We already built several models based on the Pc problem. Theorem 5.1.1 - 5.1.3 help

us find out the relationship between these models. We can use these theorems to solve the Pc

problem, and obtain an integer solution ofPc.

Theorem 5.1.1: The optimal objective value of Pc, Dc and DI are equal, i.e, we have

Proof

Any feasible solution of Pc is a feasible solution of DI, we will haveOPTpc ~ g(a) ,

for any a ~ O. So OPTpc ~ OPTD1

For any a =v, and any A ~ 0, since the feasible solution set of the problem PI is

contained in that ofDc. We have g(a) ~ OPTDc ' As a result, OPTD1 ~ OPTDc '

Since Pc is a linear programming problem, the strong duality theorem holds. We have

OPTpc =OPTDc =OPTD/ .0

Vlhen we solve the model Dl, the value of opt a \vill be determined. Vie could use a

to solve PI, which is a unimodular problem. And the solution from PI is binary for sure

according to Corollary 3.2.3.

22
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Theorem 5.1.2:

If (I-l*, v*, A,*) is an optimal solution of the dual problem Dc, a =v * is an optimal

solution ofpartial Lagrange dual problem Dl.

Proof

Assume (I-l* ,v*, A,*) is an optimal solution of the Dc. And (y*, z*) is the optimal

solution of Pc. We will have v *T (Ay* -cap- z) =O. Ifa =v*, with(y*,z*) , and we solve

PI, the objective value of g(v*) will reach its upper bound ofOPTPc • Thus, v * is an optimal

solution ofDl. D

Theorem 5.1.3:

If a =v * is an optimal solution of Dl, there exits (I-l*, v*, A,*) that is an optimal

solution of Dc.

Proof

Assume a * is the optimal solution of Dl, and (y*, z*) is the corresponding optimal

solution of the problem Pl. If (I-l*, v*, A,*) is an optimal dual solution of the linear problem PI

with a =a *,by the complementarily condition, we will have:

V *T (Hy *-1) = A, *T (y *-1) =0 I

Thus, the objective value of Dc will reach its upper bound OPTD/ . Therefore,

(I-l* ,a*, A,*) is an optimal solution of Dc. D
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5.2 Solution Technique

There are several ways to find a solution for the ILP model of the global routing

problem. Because of the size of the ILP problem, it is hard to get the binary solution directly

from the solver. Based on Theorem 5.1.1-5.1.3 that introduced before and the models that we

have, we propose a new way to solve the problem.

First, we will solve the primal problem Pc. There are two situations that can occur

when Pc is solved:

1) An optimal binary solution is found.

2) An optimal fractional solution is found.

Here we discuss different approaches according to those two situations.

5.2.1 Optimal binary solution:

The primal relaxed problem Pc can have multiple optimal solutions by using different

methods. If we do get the binary solution, we do not need any further calculations. Usually,

IPMs may get more fractional solutions than dual simplex or primal simplex.

5.2.2 Optimal fractional solution:

Most of the times, we get a fractional solution from Pc. However, what we need is a

binary solution. Figure 9 shows the classical technology to solve the VLSI problem. After we
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obtain the fractional solution, we could round the solution to zero or one by using the

condition of H.

Fractional
solution

_~:~:~~]~~~;~:~r _iiiiii.~[~~:~n;]"

Figure 9 Directly solve Pc and round to obtain a binary solution.

Binary
solution

According to Theorems 5.1.1, 5.1.2 and 5.1.3, the method can be applied. We could

find the optimal Lagrange multiplier v * by solving Dc. Then let a =v *, and solve Pl. From

chapter 3, we know that the solution of PI will be an integer array. In the end, there still

Figure 10 shows the flow chart of the unimodular technology

Figure 10 Unimodularity solver
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Chapter 6 Testing and conclusions

6.1 Testing Detail

We tested our techniques by solving four sample circuits. The four circuits were

chosen from the IBM-Place 2.0 benchmarks suite and the placement results were generated

by server Dragon that used at the University of Calgary.

Three routers were used during this testing: Congestion, Mix-flute, and Subnet. Each

router has its own objective function in order to satisfy some characteristics of the circuits.

Thus, the coefficients ofthe objective function are different.

Cplex is the main solver during the test. Three LP methods were used to solve the

problem: Primal simplex, Dual simplex, and interior point method (IPM).

The tests were performed on the server Dantzig, 8 * AMD Opteron 885, with 64GB

RAM.

6.2 Data results and conclusions

During the experiments, three different methods were used to solve the LP problem,

Pc and Dc. Due to the unimodularity of the PI, we could directly write out the solution if we

knew the value of the Lagrange multiplier from Dc.
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Problem name
Method

Pc Dc

I-DD Dual simplex Dual simplex

2-PP Primal simplex Primal simplex

3-II IPM IPM

Table 1 Different LP Methods used to solve Pc and Dc

6.2.1 Compare for the overflow

The number of overflows is defined as Ay - Cap. Since the original problem Pd is

infeasible, overflow may occur on some edges. If the value in the Ax-Cap is larger than zero,

it indicates that overflow occurred.

Table 2 shown below shows the amount of overflow obtained by using the Mix-flute

router with different solving methods. The value of weight is the value m in the model Pc.

For results generated using the subnet router and the congestion router, refer to Appendix A.

. number of overflow in Pl-number of overflow in Pc 1000 1.
% of Increase = X 70

number of overflow in Pc
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Mix-
flute weight 1 mix flute weight 100 mix flute

number number number number
of of of of
overflow overflow overflow overflow
(Pc)(inte (PI) %of (Pc)(inte (PI)

filenam ger (integer mcreas ger (integer %of
e method solution) solution) e solution) solution) mcrease

ibmOl D 578 750 29.76% 455 768 68.79%

P 565 771 36.46% 457 768 68.05%

I 616 623 1.14% 537 545 1.49%

ibm02 D 813 1063 30.75% 789 1091 38.28%

P 802 1069 33.29% 775 1080 39.35%

I 882 889 0.79% 868 875 0.81%
120.58

ibm03 D 311 686 % 321 716 123.05%
127.49

P 291 662 % 307 719 134.20%

I 348 357 2.59% 368 383 4.08%

ibm04 D 638 1271 99.22% 625 1269 103.04%

P 662 1277 92.90% 606 1284 111.88%

I 775 793 2.32% 764 765 0.13%

Table 2 Amount ofoverflow by using Mix-flute with difftrent solving techniques.

From Table 2, it seems that the classical technology is better. The classical

technology gets fewer overflows than the unimodularity method. And it shows the same

result when we use the subnet router or the congestion router. Another thing we noticed was

that when the weight of z increased, the number of the overflow decreased.
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6.2.2 Compare for the objective value

Table 3 shows the objective value of Pc and PI when using the mix-flute router. This

table shows that the objective value is almost the same. This is consistent with the theorem

5.1.1. Appendix A contains the objective value using the congestion router.

. obj value in Pl-obj value in Pc
Percentage Increase between PI and Pc = X 100%

obj value in Pc

weight 1 mix flute weight 100 mix flute
obj obj
value in percentag value in percentag

obj value in PI(integ e mcrease obj value in Pl(integ e increase
Pc(integer er in two Pc(integer er in two

filena meth number) number) model number) number) model
me od

26670 26863 0.72% 27461 27870 1.49%
ibmOl D

26667 26865 0.74% 27468 27850 1.39%
P

26643 26660 0.06% 27395 27397 0.01%
I

82428 82486 0.07% 83009 83170 0.19%
ibm02 D

82421 82496 0.09% 83008 83167 0.19%
P

82424 82426 0.00% 82980 82978 0.00%
I

73927 74008 0.11% 74553 74885 0.45%
ibm03 D

73924 74012 0.12% 74566 74908 0.46%
P

73911 73910 0.00% 74516 74533 0.02%
I

99659 99775 0.12% 100325 100687 0.36%
ibm04 D

99664 99760 0.10% 100328 100655 0.33%
P

99654 99640 -0.01% 100277 100298 0.02%
I

Table 3 Object value ofPI and Pc by using the Mix-jlute router
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6.2.3 Comparing the number of fractional elements

When we add the penalty inside the model Pd, the weight of the penalty may also

affect the solution. Table 4 shows what happens when we increase the value of weight. The

number of fractional elements in the solution of Pc also changed. Table 5 shows the size for

each problem.

weight weight weight
weight 1 100 weight 100 weight 100
mix flute mix flute 1 cong cong 1 subnet subnet

# of #of #of # of # of #of
fraction fraction fraction fraction fraction fraction

filename method

ibmOl D 253 629 4 513 4 3198

P 87 537 4 511 1079 1845

I 3655 3865 16 796 32 718

ibm02 D 469 603 1 632 0 132

P 270 502 0 339 438 392

I 9062 9436 17 537 2 279

ibm03 D 959 1525 0 1108 893 1546

P 836 1461 0 1102 0 4743

I 9221 10430 16 1403 12 1024

ibm04 D 1105 1340 3990 1129 4024 1156

P 690 1236 0 1132 29 768

I 14855 16398 28 1516 12 976

Table 4 Number offractional elements in the Pc
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number of rows in H number of rows in A
number of columns
inA

ibmOl 3006 4822 25149

ibm02 5358 6283 36331
ibm03 5121 6735 42398
ibm04 7431 9356 59977

Table 5 Size o/the model

Most of the testing data results show that when the value of the weight increases, the

number of fractions in the solution also increases, though a few data sets show a decrease,

e.g. ibm02 using the subnet router and the primal simplex method. Some other improvements

can also be applied to the model. e.g. in model Pc, the weight ofm is an array, by default, all

the weight of z is the same. If we use different values of m according to the weight of the

edges in one model, the result may change significantly. However, there currently is no

theory that indicates how to find a better value.

6.2.4 Comparing the running times

The running time for the classical solving technology is the running time of solving

Pc plus the running time of the rounding solution. The running time for the new technology

is the sum of the running times for Dc and Pl. Due to the unimodularity of PI, the running

time for solving PI is negligible. Table 6 shows the running time for each method with Mix-

flute router.
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Mix-flute weight 1 mix flute weight 100 mix flute

running running runnmg running
time in pc time in Dc time in pc time in Dc

filename method

ibm01 D 0.7 1.15 1.93 4.47

P 1.94 8.56 6.48 18.29

I 19.14 22.86 22.5 30

ibm02 D 2.06 3.5 4.21 10.44

P 7.17 88.97 13.6 137.99

I 59.22 77.99 100.15 112.25

ibm03 D 44.06 47.57 103.7 227.04

P 102.81 392.03 531.35 724.41

I 358.59 376.06 502.59 511.26

ibm04 D 28.51 49.32 56.8 152.45

P 116.79 641.09 303.38 992.65

I 453.92 583.15 586.82 662.91

Table 6 Running times for different methods using the mix-jlute router

From the times shown, the running time by using unimodular technology is larger

than the time by using the classical technology. There are two other tables which record the

data result from the subnet and congestion routers in Appendix A.
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Overall, it seems that the unimodularity technology does not play well in solving the

VLSI problem. However, there are some possible improvements, which will be discussed

next.
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Chapter 7 Further Testing

7.1 Upper bound discussion

lfz is unbounded from above, Pc will always have an optimal solution. If we bound z

from above by DB, the set of solutions will reduce, and the Lagrange dual problem will also

be changed. However, theorems 5.1.1-5.1.3 will still hold this. We need further testing to

determine what will happen ifDB decrease.

After we add the upper bound of penalty z in the Pc model, the new model Pc-u can

be written as:

p -u
c mm

S.t.: By =1

Ay < Cap +z

O<ysl

o szsUB

Suppose DB is an array. The value of DB should be large enough to maintain the

feasibility of the model.

The new model Dc-u and the model Pl-u will be:

Dc -u: max _JlTl-yTcap - ATl _yTUB

s.t.: -HTp-ATv-,.t<w,

yT _ yT < mT,

Y,A,y>O,
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And

Pz -u: mIn wT y +mT z +aT (Ay-cap-z)

S.t.: Hy = 1

O<y<l

O<z<UB

7.2 Testing process

At the beginning of the experiment, we solve the LP problem (Pc) when the upper

bound of z is infinite using the dual simplex method, and record the value of array z and the

solution y. There are five methods that are used to change the upper bound of penalty z.

Method one: Find the maximum value in the array z and record it as MaxOfZ, then calculate

Ay - Cap. Ay- Cap is an array that represents the overflow status of each edge.

For i E [l,p], if (Ay- Cap)i >0, the new UB[i] is set to MaxOfZ. Otherwise, we set the new

UB[i] to 0.

Thus if we were to obtain, for example, z = [3.1, 2.3, 1,0,6.5, 7] and overflow = [1, 0, 2, 0,

0, 1]; the new UB will be [7, 0, 7, 0, 0, 7].

Method two: Find the maximum value in the array z and record it as MaxOfZ, then calculate

Ay- Cap.
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For i E [1,p], if (Ay- Cap)i >0, the new UB[i] is set to MaxOfZ-1. Otherwise, we set the new

VB[i] to 0.

Thus if we were to obtain z = [3.1, 2.3, 1,0,6.5, 7] and overflow = [1, 0,2,0,0, 1]; the new

VB will be [6, 0, 6, 0, 0, 6].

Method three: Let new VB = floor (z),

Thus ifwe obtain z = [3.1,2.3, 1,0,6.5, 7], the new VB will be [3,2, 1,0,6, 7].

Method four: Let new VB = floor (z) -1,

Thus ifwe obtain z = [3.1, 2.3, 1,0,6.5, 7] , the new VB will be [2, 1,0,0,5,6].

Method five: Find the maximum value in the array z and record it as MaxOfZ,

For i E [1,p], if floor (zD = MaxOfZ, the new VB[i] is set to floor( MaxOfZ) - 1. Otherwise,

we set the new VB[i] to floor (Zi).

Thus if we obtain z = [3.1, 2.3, 1,0,6.5, 7], the new VB will be [3,2, 1,0,6,6].

After the new VB has been obtained, the new Dc-u model can be solved using IPM.

The Pl-u model is also a unimodular optimization model. We can then obtain the integer

solution directly.

7.3 Testing Result

The table in this chapter are used to show the number of overflow with different

upper bounds for penalty z. The entire primal and dual problems were solved using IPM. The
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testing router is mix-flute. The LP problem used for the testing is a little different from

chapter 6, since we did some improvements on the router.

Infbounds Method1 Method2 Method3 Method4 Method5

ibmOI 465 519 519 INFEASIBLE INFEASIBLE INFEASIBLE

ibm02 772 829 829 INFEASIBLE INFEASIBLE INFEASIBLE

ibm03 300 351 351 INFEASIBLE INFEASIBLE INFEASIBLE

ibm04 634 702 702 INFEASIBLE INFEASIBLE INFEASIBLE

Table 7 Amount ofoverflow with different upper bounds ofz

Infbounds Method1 Method2 Method3 Method4 Method5

ibmOI 1433 1532 1532 INFEASIBLE INFEASIBLE INFEASIBLE

ibm02 3655 3790 3790 INFEASIBLE INFEASIBLE INFEASIBLE

ibm03 529 659 659 INFEASIBLE INFEASIBLE INFEASIBLE

ibm04 2178 2317 2317 INFEASIBLE INFEASIBLE INFEASIBLE

Table 8 Total overflow for the entire circuit with different upper bounds ofz

Table 8 shows the sum of the overflow for the entire circuit with different upper

bounds ofz.

From Table 7 and Table 8, we can notice that the infinity upper bounds on z play

better than other bounds.
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Intbounds Method1 Method2 Method3 Method4 MethodS

ibm01 17 16 16 INFEASIBLE INFEASIBLE INFEASIBLE

ibm02 22 21 21 INFEASIBLE INFEASIBLE INFEASIBLE

ibm03 10 10 10 INFEASIBLE INFEASIBLE INFEASIBLE

ibm04 20 18 18 INFEASIBLE INFEASIBLE INFEASIBLE

Table 9 The maximum amount ofoverflow on the edges with different upper bounds ofz

Table 9 shows the maximum amount of overflow with different upper bounds on z.

Here, method one and method two present a better solution than others.

We continue to try find a better upper bound on z, but much progress still needs to be

made.
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Chapter 8 Future work

According to the testing results obtained, the unimodular methodology does not show

any particular advantage at this moment compared to the classical methodology. The running

time and the overflow did increase when we used the unimodular methodology. We continue

searching for a way to improve the results. There are several potential avenues that may be

explored, but more time is needed for testing and gathering the results.

8.1 The weight of the penalty

.When solving the model Pc, we used an array m (weight). In the prevIOUS

experiments, we set all values in m to be the same. However, the weight of z could be

different, which also changes the obtained solution. If we can find a better way for

determining a suitable value of m, it may improve the unimodular methodology. One

promising idea is to give different weights according to the weights of the edges in the

circuit. However, more testing and analysis are needed.

8.2 Lagrange multipliers

According to the definition Of the primal and dual LP problems, the Lagrange

multipliers are part ofthe solution to the dual problem. When Cplex solves the LP problem, it

will also compute the dual solution simultaneously. Thus we do not need to generate the Dc
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model and solve it again. We only need to find the dual solution by solving the Pc problem

and indicate which part of the dual solution could be used to generate the PI problem. Thus,

the running time for both technologies will be the same.

8.3 Preprocessing methodology.

Since the size of Pc and Dc is extremely large, if we could apply some preprocessing

steps prior to solving it, we may be able to reduce the running time.

Above all, we still need a lot of work on this unimodular methodology. Hopefully, we can

improve the method and make it more effective in the future.
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Appendix A

weight 1 cong weight 100 cong
number number
of of

number of overflo number of overflo
overflow w (PI) %of overflow w(Pl) %of

metho (Pc)(intege (integer mcreas (Pc)(intege (integer mcreas
filename d r solution) solution) e r solution) solution) e

ibmOl D 747 752 0.67% 522 691 32.38%

P 747 782 4.69% 522 667 27.78%

I 744 746 0.27% 549 549 0.00%

ibm02 D 1110 1114 0.36% 838 967 15.39%

P 1110 1117 0.63% 838 968 15.51%

I 1111 1113 0.18% 844 872 3.32%

ibm03 D 739 746 0.95% 290 527 81.72%

P 739 751 1.62% 288 502 74.31%

I 739 739 0.00% 314 353 12.42%

ibm04 D 1057 1061 0.38% 591 838 41.79%

P 1057 1076 1.80% 594 888 49.49%

I 1057 1059 0.19% 620 648 4.52%

Table 10 Overflow by using congestion router

41



Master Thesis - Min Jing Jessie Liu McMaster - CES

weight 1 subnet weight 100 subnet
number number
of of

number of overflow number of overflow
overflow (PI) overflow (PI)
(Pc)(integer (integer %of (Pc)(integer (integer %of

filename method solution) solution) Increase solution) solution) Increase
ibmOI D 743 757 1.88% 541 673 24.40%

P 743 757 1.88% 535 677 26.54%
I 745 745 0.00% 536 544 1.49%

ibm02 D 1073 1078 0.47% 855 949 10.99%
P 1073 1080 0.65% 855 940 9.94%
I 1073 1073 0.00% 844 855 1.30%

ibm03 D 685 687 0.29% 294 458 55.78%
P 685 711 3.80% 294 496 68.71%
I 685 685 0.00% 302 391 29.47%

ibm04 D 1053 1058 0.47% 618 842 36.25%
P 1053 1066 1.23% 616 843 36.85%
I 1053 1054 0.09% 635 681 7.24%

Table 11 Overflow by using the subnet router

42



Master Thesis - Min Jing Jessie Liu McMaster - CES

Congest
IOn weight 1 cong weight 100 cong

percenta obj value obj value percent
obj value obj value ge III III age
III III Illcrease Pc(intege Pl(intege Illcreas

filenam metho Pc(integer Pl(integer in two r r e in two
e d number) number) model number) number) model

ibm01 D 39036.81 39018.92 -0.05% 31408.01 30193.64 -3.87%

P 39036.81 39026.64 -0.03% 31355.08 30424.73 -2.97%

I 39035.56 39033.77 0.00% 31595.83 31613.27 0.06%

ibm02 D -422530 -422525 0.00% -459375 -460644 0.28%

P -422530 -422526 0.00% -459375 -462335 0.64%

I -422529 -422529 0.00% -459389 -458503 -0.19%

ibm03 D 320977.2 320982.5 0.00% 277126.8 275046.3 -0.75%

P 320977.2 320993.2 0.00% 277055.9 274233.9 -1.02%

I 320977.2 320977.2 0.00% 277244.7 278863.6 0.58%

ibm04 D 35740.08 35729.74 -0.03% -18208.3 -21446.7 17.79%

P 35740.08 35735.63 -0.01% -18733.5 -22541.6 20.33%

I 35740.98 35739.41 0.00% -18443.3 -17945.2 -2.70%

Table 12 Object value ofPI and Pc by using the congestion router
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weight 1
congestion cong weight 100 cong

running time running time running time running time
mpc in Dc mpc in Dc

filename method

ibmOI D 0.58 0.96 1.58 3.77

P 1.4 2.55 5.84 26.29
I 13.79 22.46 22.99 32.61

ibm02 D 0.87 2.04 2.18 4.91
P 2.68 3.94 8.34 30.05
I 54.28 68.98 69.13 87.94

ibm03 D 0.99 1.69 34.36 118.28
P 7.32 13.14 190.35 1040.88
I 272.88 314.21 458.92 399.45

ibm04 D 1.51 3.46 43.95 104.23
P 7.9 14.8 220.65 1404.91
I 322.92 408.67 566.19 504.95

Table 13 Running times/or using the congestion router (in seconds)
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Subnet weight 1 subnet weight 100 subnet

running time running time running time running time

filename method
III pc in Dc III pc in Dc

ibmOl D 0.17 0.3 0.39 0.58

P 0.39 . 0.46 0.9 2.72

I 4.57 18.56 7.84 20.58

ibm02 D 0.56 0.85 1.01 1.47
p 1.13 1.25 2.93 8.31

I 29.06 45.64 41.26 55.43

ibm03 D 0.57 0.74 11.08 19.48

P 2.04 1.37 51.91 190.02

I 128.15 686.98 243 1089.93

ibm04 D 0.8 1.41 11.56 16.5

P 2.48 2.24 41.9 238.68

I 198.05 252.75 301.93 367.48

Table 14 Running times for using the subnet router (in seconds)
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