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Abstract

The objective of this thesis is to investigate the potential of ensemble

meteorological forecasts (15 members for each day) in improving ensemble flow

prediction up to 14 days ahead. Large scale ensemble meteorological forecasts generated

by the National Centers for Environmental Prediction's (NCEP) Global Forecast System

(GFS) are used. The hydrologic model used in watershed analysis of the study area is

Hydrologiska Byrfms Vattenbalan-avdelning (HBV). The study area is located in the

Saguenay-Lac-Saint Jean watershed in northeastern Canada and comprises the Serpent

River and Chute-du-Diable basins and a reservoir in Chute-du-Diable.

The NCEP ensemble meteorological forecast data is initially used as input in the

hydrological model HBV to simulate ensemble reservoir inflows and the Serpent River

flows for 5 to 14 days ahead. The ensemble inflow and flow forecasts are compared with

the case where only observed historical data are used. The study results show that there is

a significant improvement in the model forecast performance when NCEP forecast data

are used. The improvement for 5 to 14 day forecasts is revealed by an approximately 20%

decrease in root mean square error (RMSE) for both reservoir inflow and river flow. A

decrease in the Brier score (BS) and rank probability score (RPS) indicates considerable

improvement and an increase in the correlation coefficient (r) and the Nash and Sutcliffe

coefficient (R2
) is shown for reservoir inflow and the Serpent River flow respectively,

indicating the advantage of using NCEP data. This improvement is also revealed by the

visual inspection of scatter plots, hydrographs of ensemble mean and ensemble members.

The hydrologic forecasts are also assessed on a seasonal basis indicating an improvement

in forecasting indicated by a 30% decrease in RMSE during the spring season, and a

decrease in BS and RPS values. For other seasons, specifically autumn and summer, the

use of the ensemble meteorological forecasts do not provide significant improvement

because of the poor skill of predicted precipitation. More accurate predictions of reservoir

inflow and river flow with adequate lead time will assist in improving relevant issues in

water resources management and planning.
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M.A.Sc. Thesis - Sadik Ahmed

Chapter 1: Introduction

1.1 Background

McMaster University-Civil Engineering

Hydrologic forecasts play a key role in water resources management and

planning. Accurate river flow forecasts are essential for management of extreme events

such as floods and droughts, optimal design of water storage and drainage networks,

hydropower generation, optimizing the use of water, as well as ensuring adequate supply

of water for irrigation and recreational uses and the maintenance of aquatic ecosystems.

Forecast of inflows into reservoirs used to generate hydropower results in improved

management of water resources, increases the benefit from power generation and reduces

the risks associated with spillway operation. Hydrologic forecasts contribute considerable

economic benefits by providing valuable support for decision making and by reducing

flood damages, providing greater efficiency in power generation as well as diminishing

environmental problems associated with hydraulic structures. The last few years have

seen an increasing demand emerging from the user community (e.g. hydro-power

producers, water authorities) to extend the forecast horizon in order to plan smooth

production planning and scheduling reservoir operation and implement plans for

downstream flood-prone areas effectively.

Considering the necessity of accurate stream flow forecasting, a great deal of

research has been devoted during the past few decades to the modeling and forecasting of

river flow dynamics. Such efforts have led to the formulation of different approaches

associated with different levels of uncertainty and the development of a large number of

models (Sivakumar et aI., 2002; Singh and Woolhiser, 2002). This wide variety of

hydrological rainfall-runoff models included complex physically-based distributed

models like the MIKE SHE (Johnson et aI., 2003; Jasper et aI., 2002; Feyen et aI., 2000;

Refsgaard et aI., 1997), HRCDHM (Carpenter et aI., 2006), SHE (Abbot et aI., 1986 a, b).
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These models provide a detailed description of physics involved in the watershed but

require a large amount of input data. On the other hand, lumped models like

TOPMODEL (Beven and Kirkby, 1979) or the Xinanjiang model (Zhao et aI., 1991; Gan

et aI., 1997) and semi-distributed models like the ARNO model (Todini, 1996) or HEC­

HMS (Feldman et aI., 1981) are modeling the (sub-) basin response, ignoring spatial

variability. Similarly, HBV (Bergstrom, 1991; Bergstrom et aI., 2002; Lindstrom et aI.,

1997), a semi-distributed conceptual model, is easier to apply than the physically based

distributed hydrological rainfall-runoff models, as the required amount of data and CPU

time are significantly lower.

Hydrologic model is the heart of hydrologic forecast and several recent studies

have demonstrated that there is a significant forecast improvement when meteorological

information, for instance quantitative precipitation and temperature forecasts of

numerical weather prediction systems are used as an input in the hydrologic model for

streamflow forecasting (Coulibaly, 2003; Werner et aI., 2004; Bartholmes and Todini,

2005). Moreover, over the last few years the operational and research streamflow

forecasting systems around the world are increasingly moving towards ensemble

prediction systems rather than deterministic/point streamflow forecasts due to the

increasing demand from the user community (Boucher et aI., 2009; Cloke and

Pappenberger, 2009). A deterministic forecast provides a single value per time step and

aims to implement a model that produces a point forecast that is as close as possible to

the observed outcome, and on the other hand ensemble forecasting is different from the

deterministic point of view by avoiding the assumption of existence of a perfect model

(Boucher et aI., 2009). Ensemble forecasting systems produce n members of forecasts for

each lead time instead of producing a single value for each time step, and focus on

issuing a type of forecast that accounts explicitly on the uncertainty inherent in the

forecasting system as a whole. The information provided by the ensemble forecasting

system informs the user about the uncertainty and allows the decision maker to determine

the probability of exceeding certain thresholds (Velazquez, 2009) as well as the

2
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assessment of the confidence intervals to be associated with the forecast. In hydrologic

modeling, uncertainty mainly originates from a) model error - model parameter error

(due to the use of non-optimal parameters) and model structure error ( relationships

among the variables characterizing the behavior of the systems), b) errors in

meteorological input (observed and forecasted meteorological variables) and hydrological

input ( flow data) (Coulibaly, 2003), c) others - data do not represent the required spatial

and temporal average, measurement errors, human reliability , truncation errors and

rounding errors etc (Beck, 1987).

In the context of hydrological forecasting, ensemble (n members) streamflow can

be obtained by a) providing a model n sets of equally likely initial conditions or

parameters b) running n different models in parallel and c) incorporating ensemble (n

members) meteorological forecasts into a hydrologic model (Boucher et aI., 2009). In this

study, a semi-distributed conceptual hydrologic model HBY is chosen to simulate

ensemble (15 members) river flow and reservoir inflow. Here the ensemble (15 members)

meteorological forecast data, generated by the National Centers for Environmental

Prediction's (NCEP) Global Forecast System (GFS), collected from the re-forecast

project of the Climate Diagnostic Center (CDC) are incorporated into the HBY model for

ensemble hydrologic simulation.

1.2 Research Objectives

Ensemble stream flow predictions obtained by forcing hydrologic models with

ensemble numerical meteorological forecasts are becoming more commonly used in

operational hydrologic forecasting application. In recent years, several hydrological

modeling studies for flow forecasting have been carried out on the Saguenay-Lac-Saint­

Jean Watershed located in Northern Quebec, Canada (Coulibaly, 2003; Coulibaly et aI.,

2001; Coulibaly et aI., 2000; Khan and Coulibaly, 2006; Liu, 2007). Liu 2007 reported

the potential ofNCEP meteorological forecasts for improved hydrologic simulation after

forecast range 5 in the study region; however in that study only deterministic flows are

simulated using downscaled meteorological forecasts and investigated in a deterministic
3
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manner. The specific objective of this study is to investigate the potential of ensemble

meteorological forecasts (15 members for each day) for improved ensemble flow

prediction for 5 to 14 days ahead. To achieve the objective, the following main activities

are carried out in this research: simulation of reservoir inflow and Serpent River flow

using the observed historical meteorological data, simulation of ensemble reservoir

inflow and Serpent River flow using NCEP GFS ensemble meteorological forecasts, and

the assessment of flow forecasts using conventional deterministic and probabilistic

measures as well as visual inspection of hydrographs and scatter plots.

1.3 Structure of the Thesis

Chapter 1 of this thesis describes the background, research objective and scope of

the thesis. This followed by Chapter 2 provides a description of the study area, collected

observed meteorological data at CDD and CDP, observed reservoir inflow and the

Serpent River flow data, and NCEP GFS I5-member ensemble meteorological forecasts.

Chapter 3 provides an overview of hydrologic models, a review of ensemble hydrologic

forecast studies, a brief description of the HBV hydrologic model, model calibration and

validation and finally an outline of the hydrologic forecast experiment. In Chapter 4, the

study results are presented and discussed and Chapter 5 provides the conclusions of this

study and recommendations for further research work.

4
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Chapter 2: Study Area and Data

2.1 Study Area

McMaster University-Civil Engineering

The two sub-basins selected for the ensemble hydrologic predictions, and the

assessments of the hydrologic predictions, are the Chute-du-Diable and the Serpent River

basin. Both basins are in the Saguenay-Lac-Saint Jean watershed located in northeastern

Canada (shown in Figure 1). The sub-basin Chute-du-Diable, which has an area of

approximately 9,700 krn2
, located in the eastern part of the Saguenay-Lac-Saint Jean

watershed is selected for reservoir inflow forecasts. This sub-basin contains a large

hydropower reservoir managed by the Aluminum Company of Canada (ALCAN) for

hydroelectric power production. The whole Chute-du-Diable sub-basin contributes to the

reservoir inflow (Coulibaly et ai., 2001). The Serpent River sub-basin, which has an area

of approximately 1,700 krn2 is located in the middle part of the watershed and was selected

for river flow forecasting. The main reason for choosing these particular basins is the

availability of reliable historical hydro-meteorological record for a long period. The average

annual precipitation in the study basins is about 950 rom and the mean daily temperature

ranges between +30°C and -40°C.

5
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Figure 1: Map showing the study area within the Saguenay -Lac-Saint-Jean watershed
(Coulibalyet aI., 2001)
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2.2 Data Collection

McMaster University-Civil Engineering

2.2.1 Observed Hydro-meteorological Data

The observed meteorological data used for this study are total daily precipitation

(total precipitation in form of liquid and snow, measured in mm), and daily maximum

and minimum temperatures (in 0e). The observed precipitation and temperature data for

twenty-three years, from 1979 to 2001, were obtained from two meteorological stations;

namely the Chute-des-Passes (CDP) meteorological station with latitude and longitude of

49.9°N and 71.25°W and Chute-du-Diable (CDD) meteorological station with latitude

and longitude of 48.75°N and 71.7°W respectively. Both Chute-des-Passes

meteorological station (station ill 7061541) and Chute-du-Diable meteorological station

(station ID 7061560) are shown in the study area map in Figure 1. The precipitation and

temperature data obtained from Chute-des-Passes meteorological station are used for the

Serpent River flow prediction and the precipitation and temperature data obtained from

both Chute-des-Passes meteorological station and Chute-du-Diable meteorological

station are used for Reservoir inflow prediction. For the Serpent River flow prediction,

the observed daily flow data for eleven years, from 1991 to 2001, were obtained from a

hydrometric station (station ID 062214) located at latitude and longitude of 49.41 oN and

71.22°W respectively. Twenty-three year (from 1979-2001) reservoir inflow in the

Chute-du-Diable catchment are used for reservOIr inflow prediction. The

hydrometeorological networks in the study sub-basins are maintained by the Aluminum

Company of Canada (ALCAN) for a long time and all the observed hydrometeorological

data used in this study were obtained from ALCAN company hydrometeorological

networks.

7
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2.2.2 NCEP Forecast Data

McMaster University-Civil Engineering

The meteorological forecast variables used in this research are accumulated

precipitation (apcp, in mm) and temperature at 2 meter above ground level (t2m, in °C)

collected from the re-forecast project fip server of the Climate Diagnostic Center (CDC)

at the Cooperative Institute for Research in Environmental Sciences (CIRES). The

CIRES is a joint Institute of the National Oceanic and Atmospheric Administration

(NOAA) and the University of Colorado at Boulder. The meteorological forecast

variables were generated by an unchanged version of the National Centers for

Environmental Prediction's Global Forecast System (NCEP GFS) model. This Global

Forecast System (GFS) model was formally known as the Medium Range Forecast (MRF)

model. IS-member ensemble forecasts (apcp and t2m) produced up to IS-days lead time for

every day from 1979 to 2001 are used as predictors in the hydrologic model. The approach

cunently used at NCEP to generate ensemble members is the "breeding method" (Toth and

Kalnay, 1997). The forecast model was run at T62 hOlizontal resolution and 28 sigmallevels

to generate IS-member ensemble forecast (Hagedorn et aI., 2007; Hamill and Whitaker

2007; Hamill and Whitaker 2006; Watson et aI., 2002). These ensemble forecasts are

initialized at 0000 UTC each day. The control run was initialized from a reanalysis data,

while initial conditions for the other 14 ensemble members were produced from 7 pairs of

bred modes (Whitaker et aI., 2006; Hamill et aI., 2004; Toth and Kalnay, 1997). The

model forecast variables are saved at an interval of 12 hours, so the ensemble forecasts

for near surface (2m AGL) temperature and accumulated precipitation are available from

the reforecast dataset for 0000 UTC and 1200 UTC (Wilks and Hamill, 2007). The re­

forecast data are available on global 144x 73 equally spaced latitude and longitude grid

points with a horizontal resolution of 2.5° in both in the latitude and longitude. In this

study, the forecast variables (apcp and t2m) obtained from grid point with latitude and

longitude of 500 N and 72.SoW, and grid point with latitude and longitude of 47.5°N and

72.5°W are used for ensemble hydrological prediction. The forecast variables (apcp and

t2m) obtained from grid point with latitude and longitude of SOON and 72.5°W are used

for the Serpent River flow prediction and forecast variables (apcp, t2m) from both grid
8
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I

~

points are used for reservoir inflow prediction. These grid points are chosen with the

intent of providing representative coverage of the study area as the grid point with

latitude and longitude of 500 N and 72.5°W is the closest grid point to the Chute-des­

Passes meteorological station and grid point with latitude and longitude of 47.5°N and

72.5°W is the closest grid pint to the Chute-du-Diable meteorological station. In Figure 2,

NCEP ensemble forecast grid points are shown in blue (where the black circled are

selected grid points) and the two meteorological stations are shown in red.

. .
52.5 ._. _. _. _. _. _.•. -. _. _. _. _. - .•-. _. _. -.-. _. -•. -.-. _. _. _. _..-. _. _. -.-. _. -. _. -. _. _. _.-

· .
Chufe-des-Passes I

I I.. ..
50 ._. _. _. _. _. _.•. _. _._. _. _. - .,_. _. _. _. _. _.E!>.-.•-. _. _. ~. _. _. _. _. _.-. _. _. _. _. _.-

•Chute-du-Diable.
I I I· . .

47.5 ._. _. _. _. _. _.+. _. _. ---. _. -.~_._. _. _. _. _.@. _. _. _. _. _.+. _. _. -.-. _. _.~ _. -.-. _. _.-

· .
45 ._. -.-. _. _. _.•. _. _. _. _._. - .•-. _. _. _. _. _. -•. _. _. _. _. _._ .•. _. _._. _. _. -. -.-. _. _. _.-

-77.5 -75 -72.5

Longitude

-70 -67.5

Figure 2: NCEP-GFS ensemble meteorological forecasts grid points (Liu, 2007)
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The ensemble meteorological forecast variables collected from the reforecast

project ftp server of the Climate Diagnostic Center (CDC) are in netCDF (network

Common Data Format) file format. Figure 3 presents a 3-D description of the NCEP

ensemble meteorological data. It illustrates that each sheet contains the data for each

forecast range and contains IS-member time series data for each forecast range, and there

are 15 forecast ranges for each variable (Liu, 2007).

~ Forecasted value for each member~

151492 ..... 81

h------------,
Forecast Ir---'------------------------------,
range I

Date
722816
722817

1
t---

Date (1 sl Column) + members

Figure 3: Description of 3-D ensemble meteorological data (courtesy Dr. Evora)

10
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_.
1

2.2.3 Evaluation of NCEP Ensemble Forecasts

In this section, Figures 4, 5, 6 and 7 represent observed daily mean temperature

and NCEP temperature forecasts (all 15 member ensembles, ensemble mean, and upper

and lower limit of 95% confidence interval). Figures 4 and 5 present observed mean

temperature at CDD metrological station and NCEP temperature forecasts at grid point

with latitude and longitude of 47.5°N and n.5°W for the entire year and spring season

of one year (2001). Figures 6 and 7 present observed mean temperature at CDP

metrological station and NCEP temperature forecasts at grid point with latitude and

longitude of 500 N and 72.5°W for the entire year and spring season of one year (2001).

Figures 4 and 6 show that NCEP temperature forecasts are good over the entire year as

the observed temperatures are close to the ensemble means and lie in the confidence

intervals on most days. The high skill of NCEP temperature in the spring season can also

be seen in Figures 5 and 7. These Figures also show that snow melting temperature starts

at the beginning of April. The calculated correlation coefficient (r) shown in Tables 1 and

2 also revealed the high skill of NCEP forecasted temperature for the study basins. The

correlation coefficients and root mean square error were calculated between two variables

- observed temperature or precipitation (at CDD or CDP meteorological station) and

NCEP forecasted temperature or precipitation (at 47.5°N, n.5°W and 50oN, 72.5°W). It

can be seen from Table 1 that for temperature, correlation coefficient is 0.92 for 5 day

ahead forecasts and 0.83 for 14 day ahead forecasts at CDD, and it lies between 0.92 and

0.83 for other forecast ranges. It can also be seen from Table 2 that for temperature,

correlation coefficient is 0.93 for 5 day ahead forecasts and 0.84 for 14 day ahead

forecasts at CDP, and it lie between 0.93 and 0.84 for other forecast ranges. Table 1 and 2

also show that in case of temperature forecasts both the RMSE and r decrease with the

increase of forecast lead time. This fundamental pattern was not found in case of

precipitation forecasts as shown by RMSE and r in Tables 1 and 2. The poor skill of

NCEP precipitation forecasts was revealed by very low correlation coefficient (for

example, less than 0.2 for 5 days ahead) as shown in Tables 1 and 2. Figures 8, 9 and
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others (Figures Al through A6 in Appendix) represent observed precipitation and NCEP

precipitation forecasts (mean of 15 member ensembles, and upper limit of 95%

confidence interval). The poor skill of NCEP precipitation forecasts are shown in these

Figures as the observed precipitation has very poor agreement with NCEP ensemble

mean and maximum values.

Clark and Hay (2004) reported that in the snowmelt dominated river basins when

surface hydrology is strongly forced by temperature; the high skill in predictions of

temperature translates into high skill in prediction of streamflows. They also reported that

in a basin where streamflows are controlled by variation in temperature, difficulties in

providing accurate precipitation forecasts are less important. Moreover, the study

reported that overall skill of techniques of model output statistics (MOS) based

precipitation forecasts is slightly lower than the raw NCEP precipitation forecasts.

Moreover, an extensive investigation is required to find out an appropriate downscaling

method to downscale precipitation forecasts. Khan and Coulibaly (2006) reported that the

snowmelt runoff is responsible for high flows in the spring season as well as up to 40%

of the annual flow volume in the study region. Considering the above mentioned facts,

this study aimed to improve hydrologic prediction up to 14 day ahead using the raw

NCEP meteorological forecasts.
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Figure 4: Plots ofNCEP temperature forecasts (5 day ahead) and observed mean
temperature at CDD for year 200 I(limits show 95% confidence interval)
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Figure 5: Plots ofNCEP temperature forecasts (5 day ahead) and observed mean
temperature at CDD for spring 200 I(limits show 95% confidence interval)
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Figure 6: Plots ofNCEP temperature forecasts (5 day ahead) and observed mean
temperature at CDP for year 2001(limits show 95% confidence interval)
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Figure 7: Plots of NCEP temperature forecasts (5 day ahead) and observed mean
temperature at CDP for spring 2001(limits show 95% confidence interval)
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at CDD for the summer season (limit shows 95% confidence interval)
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Figure 9: Plots ofNCEP precipitation forecasts (5 day ahead) and observed precipitation
at CDD for the autumn season (limit shows 95% confidence interval)
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Table 1: Meteorological model performance statistics (RMSE, r) for member 1 at CDD
(1997-2001)

Forecasting lags
Variable - Tmean Variable - Precipitation

RMSE(°C) r RMSE(mm) r
5-day-ahead 5.03 0.92 7.66 0.13
6-day-ahead 5.60 0.90 7.78 0.09
7-day-ahead 5.88 0.89 7.84 0.02
8-day-ahead 6.17 0.87 7.92 0.02
9-day-ahead 6.50 0.86 8.00 0.02

10-day-ahead 6.67 0.85 7.96 0.02
I1-day-ahead 6.89 0.84 7.90 0.01
12-day-ahead 7.04 0.84 7.94 0.05
13-day-ahead 7.16 0.83 8.14 0.04
14-day-ahead 7.16 0.83 8.15 -0.02

Table 2: Meteorological model performance statistics (RMSE, r) for member 1 at CDP
(1997-2001)

Forecasting lags
Variable - Tmean Variable - Precipitation

RMSE(OC) r RMSE(mm) r
5-day-ahead 4.78 0.93 7.27 0.16
6-day-ahead 5.35 0.91 7.24 0.17
7-day-ahead 5.59 0.90 7.52 0.08
8-day-ahead 5.99 0.88 7.54 0.03
9-day-ahead 6.31 0.87 7.86 0.04

10-day-ahead 6.47 0.86 7.66 0.06
11-day-ahead 6.50 0.86 7.67 0.04
12-day-ahead 6.68 0.85 7.48 0.08
13-day-ahead 6.92 0.84 7.99 0.03
14-day-ahead 6.89 0.84 7.75 0.02
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Chapter 3: Hydrologic Forecasts

3.1 Overview of Hydrologic Models

McMaster University-Civil Engineering

A mathematical model describes a system of assumption, equations and

procedures intended to describe the perfonnance of a prototype system. Hydrological

models are mathematical fonnulations of a particular phase in the hydrological cycle

which attempts to describe the actual physical process of the hydrologic cycle so as to

simulate actual hydrologic events such as the transfonnation of a series of rainfall inputs

to the resulting streamflow. Now-a-days, hydrologic models have become crucial to

water resources assessment, development and management. They are employed in a wide

spectrum of areas ranging from watershed management to engineering design. They are

used in varied purposes, such as analyzing the quantity and quality of streamflow,

reservoir system operations, groundwater development and protection, surface water and

groundwater conjunctive use management, water distribution systems, water use and

water resources management activities (Wurbs 1998). Over the past few decades, a large

number of models have been developed for different purposes and with different

philosophical concepts. In the following section the fundamentals of the physically-based

distributed model, lumped conceptual model and black box model are discussed.

Physically-based distributed models are very useful to our understanding of

physical process involved in the hydrological process such as river flow. The physically

based models are specially designed based on the underlying physical mechanism and the

equations involved in the physics of the hydrological processes. The lumped models treat

a whole catchment, or a significant portion of it, as if it was homogeneous in character

and subject to unifonn rainfall. Physically based distributed models provide a detailed

representation of the physical characteristics (topography, soil conditions, land cover,

etc.) of the watershed. These models feature the capability to incorporate the entire
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physiographic and hydrological variability of a study area by accounting for

heterogeneities throughout the watershed (Sharma 2009). These models divide the

catchment area into a large number of small grid systems, simulate each separately, and

combine them to obtain catchment response. So, the distributed model deals with

heterogeneities over a catchment more logically than lumped models. Fully distributed

physically based models are very data intensive as they require large amounts of high

quality physical, geographical and meteorological data to ensure accurate results

(Cranmer et. aI, 2001). Moreover the computations in the distributed model are usually

too time-consuming for engineering applications. The enormous data requirements and

computational time prevent the extensive use of the fully distributed model. On the other

hand the conventional lumped models are less data intensive, less complex, relatively

easy to use and the required input data are available for most of the applications.

The most recent advances in fully distributed hydrologic modeling were noted to

have been the employment of Geographic Information Systems (GIS), and remotely

sensed data to accurately account for the spatial variability in largely heterogeneous

watersheds (Singh and Woolhiser, 2002). In the fully distributed models, mass,

momentum and energy are calculated directly from the governing partial differential

equations which are solved using numerical methods (Sharma, 2009). On the other hand,

conceptual models are based on simplified representations of the hydrologic processes in

a watershed and are normally run with point values of precipitation and temperature as

the primary input (Liden & Haden, 2000). The idea with conceptual modelling is to

consider the catchment as a system whose components are precipitation,

evapotranspiration, storage and runoff. The water balance equation for a catchment

model can be written as

P - ET ±i1S = Q (1)

where P is total precipitation on the catchment, ET is the evapotranspiration, i1S is the

change in water storage, and Q the runoff from the catchment (Liden & Haden, 2000).

The relationship between these variables is simple in conceptual models (Liden &
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Harlen, 2000). The algorithms are usually simplified by the use of empirical relations in

order to speed the solution and in order to cope with the point to point variations in the

hydrologic processes within the catchment. Hydrologic models can be used for

continuous and event-based simulations. Continuous models are capable of generating

outflow hydrographs over a long period of time, and use finite time periods in the

computation and the computed flows are discrete points in time. Event-based models are

designed to simulate a single event such as the hydrograph of a single storm. Most event

models were developed specially to design urban drainage systems and other small

projects. Continuous models are useful for simulation of long flow records for use in

design, evaluating the impact of changes in a catchment on streamflow and forecasting of

streamflow.

The black-box models are designed to identify the connection between the input

and the output without going into the analysis of the physical mechanisms involved in the

hydrological process and are also capable of representing the complex non-linear river

flow process, by relating the inputs and outputs of the underlying system (Sivakumar, et

al.,2002).

There are a large number of hydrological models in current use in different

countries and the models are used for different purposes. Singh and Woolhiser, 2002

reported that complex physically-based distributed models like the System Hydrologique

Europeen SHE (Abbot et al., 1986 a, b) and conceptual model TOPMODEL (Beven and

Kirkby, 1979) are standard for hydrologic analysis in many European countries; a

physically-based semi-distributed event based runoff model Hydrologic Engineering

Center-Hydrologic Modeling System (HEC-HMS) (Feldman, 1981) is widely used for

the design of drainage systems, quantifying the effect of land-use change on flooding, etc.

and a lumped continuous model National Weather Service-River Forecast System

(NWS-RFS) (Houge et al., 2000) is the standard model for flood forecasting in the United

States; a semi-distributed continuous flow simulation model Waterloo Flood System

(WATFLOOD) (Kouwen, 2010; Kouwen et al., 1993) and lumped parameter continuous
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simulation University of British Columbia (UBC) model (Quick and Pipes, 1977) are

popular in Canada for hydrologic simulation and a semi-distributed continuous

streamflow simulation model HBV (Seibert, 1997; Bergstrom, 1991, Bergstrom et aI.,

2002, Lindstrom et aI., 1997) is widely used for flood forecasting in Scandinavian

countries. Recently black-box model artificial neural network (ANNs) have been used

for modeling many of the nonlinear hydrologic processes such as rainfall-runoff,

streamflow, ground water management, water quality simulation and precipitation

(Gavindaraju, 2000). Gavindaraju, 2000 reported that Half et aI., 1993 designed a three­

layer feedforward ANN for rainfall-runoff modeling using rainfall hyetographs as inputs

and hydrographs recorded by the U.S. Geological Survey (USGS) at Bellvue,

Washington, as output; Karunanithi et aI., 1994 studied ANN performance for river flow

prediction at an ungauged location on the Huron River in Michigan using the data from

USGS stream gauging stations located 30km upstream and 20km downstream of the

prediction point; Kuligoski and Barros, 1998 used ANN approach for precipitation

forecast based on upper atmospheric wind direction and antecedent precipitation data

from a raingauge network.

'Although hydrological models have been around for quite some time, there is yet

to be one exclusive model that can stand apart from the rest and be declared best at

modeling all aspects of the hydrologic system' (Sharma, 2009). In this study, a semi­

distributed conceptual model HBV is chosen to simulate river flow and reservoir inflow.

The motivations for choosing this particular model are:

(a) snow routing component; Khan and Coulibaly, 2006 reported that snowmelt

runoff is responsible for high flows in the spring season as well as up to 40% of the

annual flow volume in the study region;

(b) the model was used in previous studies in the same study area and showed a

good performance;
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(c) Liu (2007) revealed the potential of the conceptual semi-distributed HBV

model for improved flow forecasting in the study area when meteorological forecasts are

included in the models; and

(d) computational time that is required for ensemble flow simulation is less than

many distributed and black-box models.

3.2 Ensemble Hydrologic Forecast: Review

In the recent years, the operational and research in streamflow forecasting systems

around the world have significantly moved towards ensemble prediction systems instead

of a single deterministic forecast because of the increasing demand from the user

community (Boucher et aI., 2009; Cloke and Pappenberger, 2009). In response to the

increasing demand from the users community for a better anticipation of hydrological

events, the use of ensemble forecasts in hydrology is emerging as a key research area

within the scientific community (Regimbeau et aI., 2007).The development of ensemble

hydrologic prediction systems has started in the late 1990s and the research is ongoing

(Dietrich et aI., 2008). There are different ways to produce ensemble hydrologic forecasts

(Boucher et aI., 2009), one approach is to use meteorological forecasts, for instance

quantitative precipitation and temperature forecasts from numerical weather prediction

systems as the input for the hydrological rainfall-runoff models to gain an ensemble of

streamflow forecasts (Renner et aI., 2009). In this study, the ensemble (1S-member)

meteorological forecast (precipitation and temperature) data, generated by the National

Centers for Environmental Prediction's (NCEP) Global Forecast System (GFS), collected

from the reforecast project of Climate Diagnostic Center (CDC) are used as the input for

a semi-distributed conceptual Hydrologic model HBV to produce ensemble reservoir

inflows and the Serpent River flow forecasts. Therefore in the following sections, some

findings from previous studies on ensemble hydrologic forecasts using numerical

meteorological forecasts are reported.
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Clark and Hey (2004) investigated the value of the National Center for

Environmental Prediction's (NCEP) medium range forecast (MRF) modeling system

output for the prediction of streamflow. The U.S. Geological Survey's Precipitation­

Runoff Modelling System (PRMS) was used for hydrologic simulation. Streamflow

forecasts using MRF output were generated for four basins in the United States - three

snowmelt dominated basins (Animas River, Colorado; East Fork of the Carson River,

Nevada and Cle Elum River, Washington) and one rainfall dominated basin (Alapaha

River, Georgia). Model output statistics (MOS) technique was used to downscale the

NCEP forecasts to improve the forecasts of precipitation and temperature to station

location. However, the authors pointed out the fact that the overall accuracy of MOS­

based precipitation forecasts is slightly lower than the raw NCEP forecasts. Streamflow

forecasts produced using the downscaled MRF output as inputs were compared with

those using station observations. Using RPSS, the study results revealed that increase in

skill from MOS-based forecasts are most pronounced during the peak snowmelt season in

the three snowmelt-dominated river basins, when streamflows are strongly forced by

temperature, and the high skill in predictions of temperature translates into high skill in

predictions of streamflow. In contrast, there was no improvement in predictions of

streamflow in the rainfall-dominated basin. They decided that further improvement of

streamflow would require more accurate local scale meteorological forecasts, more

accurate specification of basin initial conditions and model simulation of streamflow.

Roulin and Vannitsem (2005) investigated the performance of an ensemble

streamflow prediction system that uses 50 member precipitation forecasts from the

Ensemble Prediction System (EPS) of the European Centre for Medium-Range Weather

Forecasts (ECMWF) and the study mainly evaluated the ability of the system for high

flow forecasting for medium-range (9 days) lead time. Two main river basins (the Demer

catchment in the River ScheIdt basin and Ourthe catchment in the River Meuse basin) in

Belgium were chosen as case studies. The Integrated Runoff Model F. Bultot (IRMB)

was used for hydrologic simulation. The ensemble hydrologic forecasts were compared
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with climatology and a reference forecast based on historical records. Using the Brier

score and the root mean square error, the study has revealed that the skill of ensemble

hydrologic prediction is much better than the one based on historical precipitation inputs.

For example, in case of Demer catchment, BSS showed about 10% improvement in

summer and about 50% improvement in winter for high flow (80 percentile value) for 9

day ahead forecast when climatology was used as reference; and when historical record

based streamflow prediction (HSP) was used as reference, there was about 5%

improvement in summer and about 35% improvement in winter for high flow shown by

BSS. The study results also revealed that in both basins the skill of the streamflow and

precipitation forecasts in the winter is greater than in summer; and the skill of streamflow

remains positive in the winter for the whole sreamflow forecast lead time. This study also

investigated the impact of increased EPS model resolution for streamflow forecasts and

revealed that skill is due to forecast resolution. They also suggested that further

improvement can be achieved through processing EPS forecasts to remove biases and

recovering space-time variability of precipitation.

Velazquez et al. (2009) evaluated short range 20 member ensemble hydrologic

predictions for short range (1-3 days) relying on the 20 member ensemble meteorological

forecasts from Environment Canada's Meteorological ensemble prediction system. A

spatially distributed hydrological model Hydrotel was used for hydrologic simulation.

The study basins are located in the province of Quebec, Canada. The ensemble

hydrologic forecasts were compared with deterministic forecasts that use output of the

Global Environmental Multiscale Model (GEM). Results, based on a single rain storm,

revealed that for all twelve watersheds and for prediction horizons, the ensemble

hydrologic forecasts are better than its deterministic counterpart, moreover superiority is

more remarkable for longer prediction horizon. They recommended that the results might

be generalized through an extended simulation period, a selection of hydrologic models

and use of high resolution meteorological input when available.
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Renner et al. (2009) studied the performance of ensemble hydrologic forecasts for

various river stations on the Rhine and its tributaries (for catchment area ranging from

4,000km2 to 160,000km2
) up to nine days forecast horizon. A semi-distributed conceptual

hydrologic model HBV was used for ensemble hydrologic simulation. Two

meteorological ensemble forecasts were used as inputs in the hydrologic model to

produce ensemble hydrologic forecasts: 1) forecasts from the Ensemble Prediction

System of the European Centre for Medium-Range Weather Forecasts (ECMWF -EPS)

(ensemble size 50, grid size 80 km, since February 2006: 50km) and 2) forecasts from the

Consortium for Small-Scale Modeling based on a local area model (COSMO-LEPS)

(ensemble size 16, grid size 10 km). The flow forecasts derived using the ECMWF -EPS

forecasts were compared with the climatology using RPS, and the results show that

ECMWF -EPS based forecasts has a positive skill over climatology for lead times up to

nine days. The study also revealed that the skill increased with increasing size of the

catchment area and deteriorates faster in smaller basins with increasing lead time. When

RPSS were calculated for COSMO-LEPS flow forecasts, rather than using climatology

the ECMWF-EPS flow forecasts were used as reference. The comparison of the flow

forecasts using ECMWF-EPS and COSMO-LEPS demonstrated the clear improved

performance of the higher resolution COSMO-LEPS based forecasts. The authors

concluded that there is a need for downscaling ensemble weather prediction products to a

more representative scale for sub-basins in the hydrologic model.

Roulin (2007) analysed a hydrologic ensemble prediction system based on the 50

member forecasts from the Ensemble Prediction System (EPS) of the European Centre

for Medium-Range Weather Forecasts (ECMWF) for two Belgian catchments with

contrasted hydrological cycle. The Integrated Runoff Model F. Bultot (IRMB) was used

for hydrologic simulation. The ensemble forecasts were compared with deterministic

forecasts based on either the archives of the ECMWF operational deterministic runs or

the mean of EPS ensembles or the control run of EPS. The skill of the ensemble forecasts

was assessed with Brier Skill Score and the value of the system was assessed with a cost-
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loss decision model. The BSS values show positive skill (20% improvement) of ensemble

hydrologic prediction up to 9 day ahead, whereas skill of deterministic forecasts using

ECMWF operational diminishes on 7 day ahead. The study demonstrated the positive

skill of the ensemble hydrologic forecasts as the author concluded: 'The hydrological

ensemble predictions have greater skills than deterministic one' (Roulin, 2007).

In addition to the above-mentioned studies, some studies carried out in the study

region for hydrologic predictions using meteorological forecast variables are mentioned

in the following sections. It is notable that these studies only investigated the single

deterministic hydrologic forecasts obtained using meteorological predictions as input in

the hydrologic model, however the information and knowledge gained from these studies

may support the findings of this study.

Liu (2007) investigated the use of meteorological forecasts from the National

Center for Environmental Prediction (NCEP) medium range forecast (MRF) modeling

system for forecasting streamflow. This study used the ensemble meteorological forecast

variables for downscaling precipitation and temperature at two meteorological stations in

the Saguenay watershed in the northeastern Canada. The hydrological models HBV and

Bayesian neural networks BNN were used for hydrologic forecasts up to 14 day ahead.

Downscaled meteorological forecasts were used to produce deterministic forecasts, and

these deterministic forecasts were compared with other deterministic forecasts where no

downscaled data are used. The study results revealed that when TLFN downscaled data

were included in HBV model, the RMSE decreases by about 10-20% for 6 to 14 day

ahead reservoir flow forecasting; and the models have good performance (R2> 0.7) up to

6 day for entire year. The study results also revealed that the HBV model performs better

when downscaled meteorological data are included, but Bayesian Neural Network (BNN)

does not show significant improvement, and the performance of the models are more

pronounced in the spring season.

Coulibaly (2003) assessed the usefulness of meteorological predictions on real

time spring flow forecasting. The short range (up to 7 days) numerical weather
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predictions provided by the Canadian Regional Forecast System based on a regional

finite-element (RFE) model were used as input in the hydrologic model for deterministic

reservoir inflow forecasts in the spring season. A conceptual hydrologic model PREVIS

and a data driven model artificial neural network (ANN) were used for hydrologic

simulation. The study results revealed that using both models, there is a relative

improvement of the model efficiency in flow forecasting for all forecast horizons when

meteorological forecasts are used properly. The study also reported that the model's

efficiency is good (Nash and Sutcliffe coefficient, R2 > 0.8) up to 3 days ahead for

reservoir inflow forecasting. The study also revealed that even meteorological predictions

with large errors can produce improved flow forecasts. The author recommended the use

of multiple models and appropriate approach for using meteorological predictions for

improving real time spring flow forecasting.

3.3 HBV Hydrologic Model

The HBV model (Bergstrom, 1991) which includes conceptual numerical

descriptions of hydrological processes at the catchment scale is best characterized as a

semi-distributed conceptual hydrologic model. The model was named after the

abbreviation of Hydrologiska Byrans Vattenbalan-avdelning (Hydrological Bureau

Waterbalance-section). The HBV model was developed at the Swedish Meteorological

and Hydrological Institute (SMHI) and its first application dates back to the early 1970s

(Lindstorm et aI., 1997). Since then different versions of HBV have been applied in some

45 countries with different climate conditions and in different catchments with varying

size from small research basin to the continental scale (Sorman et aI., 2009).

Originally the model was developed for runoff simulation and hydrological

forecasting, but the scope of the applications has increased rapidly (Bergstrom et aI.,

2002). Over the time the changes in the model structure have been made, but the basic

modeling philosophy has been unchanged (Lindstorm et aI., 1997). The model was

initially designed as a very simple lumped hydrological model and has gradually become
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more distributed. The model is best characterized as a semi-distributed hydrologic model

because a catchment can be divided into a number of sub-basins and an area elevation

distribution and a crude classification ofland use (forest, open areas and lakes) are made.

The model is usually run on the daily values of precipitation, temperature and

estimates of potential evopotranspiration. Flow observations are required to calibrate and

validate the model. For most of the application the model is run on a daily time step, but

it is possible to use shorter time steps. The evaporation values used are usually monthly

averaged, but it is possible to use daily values. The potential evapotranspiration can be

calculated using air temperature. The model consists of routines for snow accumulation

and melt, soil moisture accounting, runoff generation and a routing procedure. A

schematic structure of the HBV model for one sub-basin is shown in the Figure 10. The

snowmelt routine of the HBV model is a degree-day approach. It is based on air

temperature, with a water holding capacity of snow which delays runoff. The routine is

described as:

Snowmelt = CFMAX (T-TT) (2)

where the variable T is the temperature in the elevation zone and CFMAX is the melting

factor, TT is a threshold temperature below which precipitation is assumed to be snow.

Another snow routine parameter DTTM is a value to be added to TT to give the threshold

temperature for snow. The snow accumulation and melt routine can be ignored in the

model when it is used in a catchment without snow. Glacier melting will occur in glacier

zones and follows the same type of fonnula as used in the snow melting but with a

different degree-day factor. The soil moisture routine of the HBV model is the main part

controlling runoff fonnation, accounts for soil field capacity and change in soil moisture

storage due to rainfall/snowmelt and evaptranspiration.. The routine is described as:

!1QI!1P = (SM/FC)P (3)

where the ratio !1QI!1P is often called the runoff coefficient, FC is the maximum soil

moisture storage in the model, SM is the soil moisture storage and ~ is an empirical
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parameter that controls the contribution to the runoff response routine and increases in

the soil moisture storage. This routine is also based on another parameter LP, value of

soil moisture above which evapotranspiration reaches its potential level. So it is

fundamental that the contribution to runoff from rain and snowmelt is small at dry

condition of soil and large when the soil is wet. Also the actual evapotranspiration

decrease with the decrease of moisture content in the soil. In the response routing, excess

water from the soil moisture zone transforms to runoff. The response function of the

model consists of two reservoir - one upper non linear, one lower linear, and one

transform function. The outflow from the upper reservoir and lower reservoir is described

by the following functions respectively:

Qo = k.UZ(l+u) (4)

QI = k4.LZ (5)

where Qo = reservoir outflow upper reservOIr (mm), UZ = reservOIr content upper

reservoir (mm), k = recession coefficient upper reservoir, QI = reservoir outflow lower

reservoir (mm), LZ = reservoir content lower reservoir (mm), k4 = recession coefficient

lower reservoir, a is measure of non-linearity. Finally, the runoff is computed by adding

the contribution from upper and lower reservoir. Then the generated runoff is routed

through a transformation function in order to get a proper shape of the hydrograph at the

outlet of the subbasin.
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Figure 10: Schematic structure of the HBV model for one sub-basin (SMHI 2006)
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3.4 Model Calibration and Validation

McMaster University-Civil Engineering

Being a conceptual model, the parameters of the HBV model need to be calibrated

in order to provide model output that closely resembles observed data. According to the

recommendation of the HBV manual, while calibrating the evaluation of the results is

mainly done in three different ways - calculating the explained variance R2
, visually

inspecting and comparing the simulated and observed hydrographs, and assessing the

accumulated difference between the simulated and observed flow.

The HBV manual (SMHI, 2006) also recommends using 75% of the total data for

calibration and 25% for validation. For the study basins, observed meteorological data

and NCEP meteorological forecasts are available for the period 1979 to 2001, but the

observed flow data at hydrometric station (station ID 062214) with latitude and longitude

of 49.41 ON and 71.22°W respectively are available for the period 1991 to 2001.

Therefore, for the Serpent River flow simulation, the first 8 years data (from 1991 to

1998) were used to calibrate the hydrologic model and the last 3 years of data (from 1999

to 2001) were used to validate the model. In the case of the reservoir inflow simulation, a

total of23 years (from 1979 to 2001) are available, of which the first 18 years (from 1979

to 1996) were used for model calibration and the last 5 years (from 1997 to 2001) for

model validation. In cases where only the observed meteorological data were used for

hydrologic simulation, the model parameters used by Liu, 2007 are used in this study.

When using NCEP ensemble (lS-member) meteorological forecasts variables for

ensemble (lS-member) flow simulation, the model is calibrated for the first members for

each forecast range ( 5 to 14 days ahead), and the parameters obtained for the first

member are used for the other 14 members to simulate flows for each forecast range. In

all cases, the calibrated models were used to simulate the reservoir inflow and the Serpent

River flow for validation period.
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3.5 Hydrologic Simulation
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The calibrated HBV models are used to simulate the river flows for the Serpent

River and reservoir inflows in Chute-du-Diable sub-basin for forecast ranges of 5-day to

14-day ahead. Recent studies revealed that the hydrologic model performance for flow

forecasts mostly deteriorate after 5 days ahead (Liu, 2007). This is why this study aimed

to improve hydrologic forecasts using meteorological forecasts for forecast range of 5­

day to 14-day ahead. Both the Serpent River flows and reservoir inflows are simulated on

a daily time step for two cases: 1) using observed historical meteorological data (without

NCEP meteorological forecasts); and 2) using NCEP ensemble meteorological forecasts.

Case 1 is used as reference forecast to assess the skill of the ensemble hydrologic forecast

when NCEP ensemble meteorological forecasts are used. In case 1, a single deterministic

hydrologic forecast is performed; while in case 2, an ensemble of 15 deterministic

hydrologic forecasts is achieved.
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Chapter 4: Results and Discussion

4.1 Forecasts Assessment Measures
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In this section a number of scalar verification measures used for assessment of

deterministic and probabilistic forecasts systems are discussed. In addition" scatter plots,

hydrographs and ensemble plots are presented in sections 4.3 and 4.5.

The traditional model verification measures, i.e., root mean square error (RMSE)

and correlation coefficient (r), and Nash and Sutcliffe coefficient (R2
) (Nash and

Sutcliffe, 1970), are used for evaluation of model performance/forecasts. The root mean

square error and correlation coefficient are commonly used to assess any deterministic

forecast, and can be also used to verify ensemble forecasts by assessing the ensemble

mean (deterministic) (Brown, 2010). Root mean square error incorporates the random

errors and biases in its calculations and shows global goodness of fit, and thus provides a

general illustration of the overall accuracy of the prediction. The lower the value of

RMSE, the better the model performance and forecast. The correlation coefficient

measures the variability and it ranges from -1 (perfect negative correlation) to +1 (perfect

positive correlation), and 0 means no correlation. The Nash and Sutcliffe coefficient is

the variance around the mean explained by the model. The optimum value of the Nash

and Sutcliffe coefficient is one (1), and a value less than 0.7 represents poor performance

(Coulibaly et aI., 2000).

The equations used to calculate root mean square error (RMSE) and correlation

coefficient (r), Nash and Sutcliffe coefficient (R2
) are as follows:

(6)
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(7)

(8)

where, Y; is the observed streamflow at time step i, Y; is forecasted streamflow at time

step i, Ymeall is the mean of observed streamflow, Y;lleall is the mean of the model

simulated streamflow, and N is the number of data points.

Probabilistic verification methods have been used in the assessment of

meteorological and climate forecasts (Murphy et aI., 1989; Wilks 2000; Hartmann et aI.,

2002), however they have not been widely used in the field of hydrology (Franz et aI.,

2003). Two probabilistic verification measures, namely the Brier skill score (BSS) and

the rank probability skill score (RPSS) are used in this study to assess the quality of

reservoir inflow forecasts and the Serpent River flow forecasts. The Brier skill score

(BSS) and the rank probability skill score (RPSS) are based on the Brier score (BS) and

the rank probability score (RPS) respectively.

The most commonly used scalar measure for probability forecasts is the Brier

score (Brier 1950), which is essentially the mean-square error of probabilistic forecasts. It

is usually used for dichotomous predictands (Wilks, 1995). This score can be applied to

continuous-valued forecast (Renner et aI., 2009), in this case continuous valued forecasts

have been converted into a binary event using a threshold filter which can either be

exceeded or not (Renner et aI., 2009; Roulin, 2007). Theis et ai. (2005) also used this

score for assessing deterministic forecasts by using a threshold filter. In this study for
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comparison purpose and consistency, the means (i.e. mean for the entire year, spring,

summer, autumn and winter) of the observed flow are considered as BS thresholds. The

Brier score BS is calculated by the following equation:

(9)

where n represents the number of days, k is the number of the n forecast/event pair, Yk is

the forecast probability and Ok is the observed probability (occurrence and nonoccurrence

of the event being forecast). Yk is derived by the relative frequency of the ensemble

members exceeding the chosen threshold. The observations Ok are translated similar to

the forecasts, i.e. the observation Ok = 1 if the event occurs (if the threshold is exceeded)

and Ok = 0 if the event does not occur. The Brier score ranges between 0 and 1 because

the observation and probability forecasts are bounded by 0 and 1. It is negatively oriented

with a perfect forecast exhibiting BS=O and less accurate forecasts receive higher Brier

score. In order to provide information on the accuracy of the forecasts relative to

reference forecasts, Brier skill score (BSS) is computed as:

BS -BS
BSS = ref *100

BSref

(10)

In this study, Brier scores calculated for the forecasts without usmg NCEP

meteorological forecasts are used as reference forecasts. So, the calculated Brier skill

score (BSS) represents the percentage improvement of streamflow forecasts (when NCEP

meteorological forecasts are used) over the reference forecasts.

The ranked probability score (RPS) (Wilks, 1995) is a generalization of the Brier

score to the multi-category (Mullen et. al., 2000). The RPS is calculated by the following

equation:

j

RPS = 2)Ym-Om)2
111=1
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where, Ym is the cumulative probability of the forecast for category m and Om is the

cumulative probability of the observation for category m. For a group of n forecasts, the

RPS is the average (RPS) of the n RPSs:

.,
j

1 II

RPS=-I RPSk
n k=\ (12)

It is notable that the RPS values shown in Table 13 through Table 22 are the average of n

RPSs (RPS). The RPS is calculated in the same procedure followed by Clark and Hay,

2004 and Gangopadhyay et aI., 2004: At first, the observed time series data are used to

differentiate 10 possible categories U) (i.e. the minimum value to the 10th percentile, the

10th percentile to the 20th percentile, the 20th percentile to the 30th percentile up to the 90th

percentile to the maximum value). These categories are determined separately for the

entire year, the spring, the summer, the autumn and the winter season. Then, the number

of ensemble members forecast in each category is determined (out of 15 members) and

their cumulative probabilities are calculated for each forecast-observation pair. Next, in

the same way, the observation's cumulative probabilities are calculated. Here, all

categories below the observation's position are assigned '0', and all categories equal to

and above the observation's position are assigned' 1'. Then, the RPS is computed as the

squared difference between cumulative probabilities of the observed and forecast and the

summation of squared differences over all categories. RPS is zero for a perfect forecast

and positive otherwise (Weigel et aI., 2006). The quality of forecasts is difficult to assess

based on RPS alone (Franz et aI., 2003); therefore, ranked probability skill score (RPSS)

is calculated in order to provide information on the accuracy of the forecasts relative to

reference forecasts:

RPSS = RPSre! - RPS *100
RPSre!
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In this study, RPSs calculated for the hydrologic forecasts without using NCEP

meteorological forecasts are used as reference forecasts. So, the calculated RPSSs

represent the percentage improvement of streamflow forecasts (when NCEP

meteorological forecasts are used) over the reference forecasts.

4.2 Model Performance Assessment with Deterministic Measures

4.2.1 Reservoir Inflow Forecasting

The reservoir inflows were simulated for two cases 1) using observed historical

meteorological data (without NCEP meteorological forecasts); and 2) using NCEP

ensemble meteorological forecasts. The model performance statistics root mean square

error (RMSE) and correlation coefficient (r), Nash and Sutcliffe coefficient (R2
) were

calculated for the validation period (1997-2001) to evaluate model performance.

Table 3 presents the three model performance statistics for 5 to 14 days ahead

forecasting for the entire year. It is shown in Table 3 that in both cases without NCEP

meteorological forecasts and with meteorological forecasts, the model performance

deteriorate with the increase of forecast lead time as the RMSE increase and rand R2

decrease with the increase of lead time. Lower RMSE and higher rand R2 values are

indicative of better forecasts. It can be seen from Table 3 that when NCEP

meteorological forecasts are not included in the model, performance of the model is not

satisfactory even on the 5 day ahead as the R2 value is 0.69, which is less than 0.7. When

NCEP meteorological forecasts are used for reservoir inflow simulation, the R2 value for

5 day ahead increased significantly from 0.69 to 0.81. It can also be seen from Table 3

that when meteorological forecasts are used, the model performs well up to 8 day ahead

with a R2 value 0.72. When meteorological forecasts are used, the correlation coefficient

(r) increased from 0.85 to 0.91 for 5 day ahead and from 0.66 to 0.80 for 14 day ahead,

increases of r in other forecast range is significant as forecast range 5 and 14 days ahead,

which shows a clear improvement. Table 3 also shows that the RMSE increased from 113
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m3/sec for 5 day ahead to 158 m3/sec for 14 day ahead when meteorological forecast data

are not used, and increased from 89 m3/sec for 5 day ahead to 123 m3/sec for 14 day

ahead when meteorological forecast data are used. It can also be seen from Table 3 that

there is on average a 20% decrease in RMSE when meteorological forecast data are used

in the model for reservoir inflow forecasting. So all the model verification measures show

that there is a significant improvement in reservoir inflow forecasting when NCEP

numerical meteorological forecast variables (accumulated precipitation and mean

temperature) are used in the HBV model.

The hydrologic model forecasts were also investigated on a seasonal basis. The

simulated reservoir inflows from the entire year were divided into four seasons - Spring

(March to May), Summer (June to August), Autumn (September to November) and

Winter (December to February). The model performance statistics were then calculated

for each season. The model performance statistics for Spring, Summer, Autumn and

Winter are presented in Tables 4, 5, 6 and 7 respectively. Table 4 shows that when

meteorological forecasts are not used, the models do not perform well after 5 day ahead

for the spring season, and the model performance deteriorates significantly with the

increase of forecast lead time (as example from 5 day ahead forecasts to 14 ahead

forecasts the r decreased from 0.87 to 0.64 and R2 decreased from 0.74 to 0.35). It can

also be seen from the Table 4 that when meteorological forecasts are used, the model

performs well up to 13 day ahead with a R2 value 0.71. Table 4 also shows that when

meteorological forecasts are used, the correlation coefficient (r) increased from 0.87 to

0.96 for 5 day ahead and from 0.64 to 0.83 for 14 day ahead, increases of r in other

forecast range is significant as forecast range 5 and 14 day ahead, this shows a clear

improvement in the spring season. Moreover, when meteorological forecasts are used, the

RMSE decreased from 171 m3/sec to 98 m3/sec and from 261 m3/sec to 189 m3/sec for 5

day ahead and 14 day ahead respectively. The calculated decrease in RMSE shows that

there is on average a 30% decrease when NCEP meteorological forecast variables are

used. This decrease in RMSE for the spring season is much higher than the decrease
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(20%) in RMSE for the entire year. Tables 5, 6 and 7 show that the model's performance

is very poor for summer, autumn and winter, which is revealed by the low values of Nash

and Sutcliffe coefficient (R2
). Khan and Coulibaly, 2006 reported that the snowmelt

runoff is responsible for high flows in the spring season as well as up to 40% of the

annual flow volume in the study region. Close examination of Tables 4, 5, 6 and 7

indicates that the improvement of reservoir flow forecast in the spring season is much

better than all other seasons, and there is also deterioration in forecast quality in other

seasons when NCEP forecasts are used. The reason of this improvement in the spring

season is that the good temperature forecasts (shown in section 2.2.3) by the NCEP up to

14 day ahead which influence the snowmelt dominated spring flow in the study region.
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Table 3: Comparison of reservoir inflow forecasts from 5 to 14 day ahead for the entire
year

'RMSE (m Is)

Forecasting Without meteorological With meteorological Decrease
lags forecasts forecasts III

RMSE

*RMSE r R2 RMSE r R2 (%)

5-day-ahead 113.16 0.85 0.69 88.80 0.91 0.81 22
6-day-ahead 125.50 0.81 0.62 104.49 0.86 0.74 17
7-day-ahead 130.81 0.78 0.59 105.71 0.86 0.73 19
8-day-ahead 132.74 0.78 0.57 107.98 0.85 0.72 19
9-day-ahead 133.90 0.77 0.57 113.23 0.84 0.69 15

10-day-ahead 141.61 0.74 0.52 119.36 0.82 0.66 16
11-day-ahead 147.35 0.71 0.48 114.58 0.83 0.68 22
12-day-ahead 149.79 0.70 0.46 118.48 0.82 0.66 21
13-day-ahead 153.91 0.67 0.43 117.90 0.82 0.66 23
14-day-ahead 158.90 0.66 0.39 122.52 0.80 0.64 23

:I< .j

Table 4: Comparison of reservoir inflow forecasts from 5 to 14 day ahead for spring
season

Forecasting Without meteorological With meteorological Decrease
lags forecasts forecasts III

R2 R2 RMSE
RMSE r RMSE r (%)

5-day-ahead 171.47 0.87 0.74 97.77 0.96 0.92 43
6-day-ahead 205.47 0.81 0.62 142.01 0.91 0.82 31
7-day-ahead 216.57 0.79 0.57 134.48 0.92 0.84 38
8-day-ahead 222.58 0.77 0.55 145.28 0.90 0.81 35
9-day-ahead 221.88 0.77 0.55 162.19 0.88 0.77 27

10-day-ahead 240.35 0.72 0.46 169.29 0.87 0.75 30
11-day-ahead 251.40 0.68 0.41 165.85 0.87 0.76 34
12-day-ahead 256.00 0.67 0.38 179.99 0.85 0.71 30
13-day-ahead 261.77 0.66 0.35 180.07 0.85 0.71 31
14-day-ahead 261.11 0.64 0.35 189.17 0.83 0.68 28
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Table 5: Comparison of reservoir inflow forecasts from 5 to 14 day ahead for summer
season

Forecasting Without meteorological With meteorological Decrease
lags forecasts forecasts In

R2 R2 RMSE
RMSE r RMSE r (%)

5-day-ahead 104.94 0.46 0.06 104.37 0.49 0.17 1
6-day-ahead 102.01 0.44 0.09 103.08 0.45 0.19 -1
7-day-ahead 102.51 0.42 0.05 113.02 0.39 0.03 -10
8-day-ahead 101.52 0.41 0.06 110.89 0.40 0.06 -9
9-day-ahead 102.07 0.39 0.04 109.88 0.46 0.08 -8

10-day-ahead 100.93 0.41 0.07 119.30 0.39 -0.08 -18
I1-day-ahead 103.78 0.39 0.02 109.03 0.45 0.10 -5
12-day-ahead 105.81 0.33 -0.02 103.25 0.47 0.19 2
13-day-ahead 110.85 0.26 -0.11 105.20 0.45 0.16 5
14-day-ahead 121.90 0.19 -0.34 105.49 0.43 0.15 13

Table 6: Comparison of reservoir inflow forecasts from 5 to 14 day ahead for autumn
season

Forecasting Without meteorological With meteorological Decrease
lags forecasts forecasts In

RMSE R2 RMSE R2 RMSE
r r (%)

5-day-ahead 91.81 0.67 0.11 94.50 0.47 0.06 -3
6-day-ahead 88.24 0.63 0.18 102.54 0.41 -0.11 -16
7-day-ahead 91.90 0.59 0.11 108.00 0.26 -0.23 -18
8-day-ahead 89.24 0.57 0.16 105.84 0.36 -0.18 -19
9-day-ahead 93.96 0.54 0.08 104.04 0.30 -0.14 -11

10-day-ahead 95.37 0.52 0.05 108.31 0.31 -0.23 -14
II-day-ahead 97.43 0.50 0.01 104.25 0.31 -0.14 -7
12-day-ahead 98.41 0.48 0.00 102.35 0.39 -0.10 -4
13-day-ahead 102.54 0.46 -0.08 99.28 0.46 -0.04 3
14-day-ahead 116.84 0.44 -0.40 103.42 0.39 -0.12 11
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Table 7: Comparison of reservoir inflow forecasts from 5 to 14 day ahead for winter
season

Forecasting Without meteorological With meteorological Decrease
lags forecasts forecasts In

R2 R2 RMSE
RMSE r RMSE r (%)

5-day-ahead 46.02 0.68 -0.13 45.31 0.72 0.23 2
6-day-ahead 47.30 0.66 -0.29 46.77 0.73 0.18 1
7-day-ahead 46.88 0.64 -0.45 44.73 0.74 0.25 5
8-day-ahead 47.53 0.61 -0.62 42.81 0.79 0.31 10
9-day-ahead 53.33 0.59 -1.18 42.96 0.78 0.31 19

10-day-ahead 52.01 0.58 -1.23 45.85 0.79 0.21 12
I1-day-ahead 53.73 0.56 -1.59 44.87 0.77 0.25 16
12-day-ahead 52.92 0.55 -1.59 48.48 0.65 0.12 8
13-day-ahead 53.63 0.52 -1.83 44.43 0.72 0.26 17
14-day-ahead 61.30 0.49 -2.90 46.22 0.73 0.20 25
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4.2.2 Serpent River Flow Forecasting
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The Serpent River flows were also simulated for two cases: 1) using observed

histolica1 meteorological data (without NCEP meteorological forecasts) and 2) using

NCEP ensemble meteorological forecasts. The model performance statistics root mean

square error (RMSE) and correlation coefficient (r), Nash and Sutcliffe coefficient (R2
)

were calculated for the validation peliod (1999-2001) to evaluate the model performance.

The three model performance statistics for 5 to 14-day ahead forecasting for the

Serpent River flow for entire year are presented in Table 8. Table 8 shows that in both

cases without NCEP meteorological forecasts and with NCEP meteorological forecasts,

the model performance deteliorated with the increase of forecast lead time as the RMSE

increase and rand R2 decrease with the increase of lead time. It is fundamental that better

forecasts exhibit lower RMSE and higher rand R2
. Table 8 also shows that when

meteorological forecasts are not included in the model, it does not perform well even on

the 5 day ahead as the R2 value 0.60, which is less than 0.70. When NCEP meteorological

forecasts are used for the Serpent River flow simulation, the R2 value for 5 day ahead

increased significantly from 0.60 to 0.73. It is also shown in Table 8 that when NCEP

meteorological forecasts are used, the model perfonns well up to 7 days ahead with R2

value 0.71, which is greater than 0.70. When meteorological forecasts are used, the

correlation coefficient (r) increased from 0.82 to 0.87 for 5 day ahead and from 0.64 to

0.76 for 14 day ahead, increases of r in other forecast range are as significant as that in

forecast range 5 and 14 day ahead; this shows a clear improvement. It can also be seen

from Table 8 that the RMSE increased from 28.71 m3/sec for 5 day ahead to 37.86 m3/sec

for 14 day ahead when meteorological forecast data are not used, it increased from 23.43

m3/sec for 5 day ahead to 30.70 m3/sec for 14 day ahead when meteorological data are

used. Table 8 shows that there is on average about a 19% decrease in RMSE when

meteorological forecast data are used in the model for the Serpent River flow forecasting.

Therefore, all of the model velification measures show that there is a significant

improvement in the Serpent River flow forecasting when NCEP numelica1
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meteorological forecast variables (accumulated precipitation and mean temperature) are

used in the HBV model.

The hydrologic model forecasts were also investigated on a seasonal basis.

Similar to reservoir inflow forecasting, the simulated Serpent River flows from the entire

year were divided into four seasons - Spring (March to May), Summer (June to August),

Autumn (September to November) and Winter (December to February). Then the model

performance statistics were calculated for each season. The model performance statistics

for Spring, Summer, Autumn and Winter are presented in Tables 9, 10, 11 and 12

respectively. It can be seen from Table 9 that when NCEP meteorological forecasts are

not used, the models do not perform well even 5 days ahead for the spring season, and the

model performance deteriorates significantly with the increase of forecast lead time (as

example from 5 day ahead forecasts to 14 ahead forecasts the r decreased from 0.84 to

0.63 and R2 decreased from 0.66 to 0.29). Table 9 also shows that when meteorological

forecasts are used, the model performs well up to 10 day ahead with an R2 value 0.72. It

is also shown in Table 9 that when meteorological forecasts are used, the correlation

coefficient (r) increased from 0.84 to 0.93 for 5 day ahead and from 0.63 to 0.80 for 14

day ahead; increases of r in other forecast range is as significant as forecast range 5 and

14 day ahead; which shows a clear improvement in the spring season. Moreover, when

meteorological forecasts are used, RMSE decreased from 44.64 m3/sec to 28.79 m3/sec

and from 63.25 m3/sec to 48.18 m3/sec for 5 day ahead and 14 day ahead respectively.

The calculated decrease in RMSE shows that there is on average about a 30% decrease

when meteorological forecast variables are used. This decrease in RMSE for the spring

season is much higher than the decrease (19%) in RMSE for the entire year. Tables 10,

11 and 12 show that the model perfonnance is very poor for summer, autumn and winter

revealed by the very small Nash and Sutcliffe coefficient (R2
) values. Close examination

of Tables 9, 10, 11 and 12 indicates that improvement of the Serpent River flow forecast

in the spring season is much better than all other seasons and there is a deterioration in

forecast quality in other seasons when NCEP forecasts are used. The reason for this
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improvement In the spnng season is that the spring flow of the Serpent River is

dominated by snow melt, which is influenced predominantly by the temperature

variations; and temperature forecasts by the National Centers for Environmental

Prediction's (NCEP) Global Forecast System up to 14 day ahead are good.
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Table 8: Comparison of Serpent River flow forecasts from 5 to 14 day ahead for the
entire year

'RMSE (m Is)

Forecasting Without meteorological With meteorological Decrease
lags forecasts forecasts In

RMSE

RMSE r R2 RMSE r R2 (%)

5-day-ahead 28.71 0.82 0.60 23.43 0.87 0.73 18
6-day-ahead 31.11 0.78 0.53 24.09 0.86 0.72 23
7-day-ahead 31.95 0.77 0.51 24.59 0.86 0.71 23
8-day-ahead 33.62 0.73 0.45 25.94 0.84 0.67 23
9-day-ahead 35.05 0.70 0.41 26.75 0.82 0.65 24

10-day-ahead 35.00 0.70 0.41 28.82 0.80 0.60 18
11-day-ahead 35.50 0.69 0.39 30.58 0.77 0.55 14
12-day-ahead 35.78 0.69 0.38 31.28 0.75 0.53 13
13-day-ahead 37.45 0.65 0.32 31.10 0.75 0.53 17
14-day-ahead 37.86 0.64 0.31 30.70 0.76 0.54 19

* _3

-
I

Table 9: Comparison of Serpent River flow forecasts from 5 to 14 day ahead for spring
season

Forecasting Without meteorological With meteorological Decrease
lags forecasts forecasts In

RMSE

RMSE r R2 RMSE r R2 (%)

5-day-ahead 44.64 0.84 0.66 28.79 0.93 0.86 36
6-day-ahead 50.09 0.80 0.58 31.66 0.91 0.84 37
7-day-ahead 51.02 0.80 0.56 27.85 0.93 0.87 45
8-day-ahead 55.38 0.76 0.48 31.63 0.92 0.84 43
9-day-ahead 58.99 0.72 0.40 37.49 0.88 0.77 36

10-day-ahead 58.34 0.73 0.41 41.12 0.86 0.72 30
11-day-ahead 59.22 0.71 0.39 47.18 0.81 0.63 20
12-day-ahead 59.30 0.69 0.39 50.01 0.78 0.59 16
13-day-ahead 62.84 0.65 0.31 50.24 0.78 0.58 20
14-day-ahead 63.25 0.63 0.29 48.18 0.80 0.62 24
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Table 10: Comparison of Serpent River flow forecasts from 5 to 14 day ahead for
summer season

Forecasting Without meteorological With meteorological Decrease
lags forecasts forecasts In

RMSE

RMSE r R2 RMSE r R2 (%)

5-day-ahead 20.83 0.53 0.17 22.68 0.41 0.05 -9
6-day-ahead 20.67 0.52 0.16 20.86 0.46 0.19 -1
7-day-ahead 21.53 0.48 0.06 24.87 0.25 -0.15 -16
8-day-ahead 20.72 0.49 0.13 25.16 0.24 -0.17 -21
9-day-ahead 20.48 0.50 0.15 21.25 0.44 0.16 -4

10-day-ahead 21.08 0.47 0.10 23.04 0.34 0.02 -9
II-day-ahead 21.58 0.45 0.07 21.75 0.39 0.12 -1
12-day-ahead 22.47 0.40 0.00 21.29 0.45 0.16 5
13-day-ahead 23.14 0.37 -0.06 21.65 0.42 0.13 6
14-day-ahead 23.65 0.34 -0.11 21.87 0.40 0.11 8

Table 11: Comparison of Serpent River flow forecasts from 5 to 14 day ahead for autumn
season

Forecasting Without meteorological With meteorological Decrease
lags forecasts forecasts In

RMSE

RMSE r R2 RMSE r R2 (%)

5-day-ahead 21.84 0.58 0.24 22.49 0.50 0.22 -3
6-day-ahead 23.20 0.51 0.14 23.51 0.57 0.15 -1
7-day-ahead 24.57 0.46 0.03 26.45 0.40 -0.08 -8
8-day-ahead 24.69 0.43 0.01 27.04 0.36 -0.13 -10
9-day-ahead 24.93 0.41 -0.02 26.51 0.25 -0.08 -6

10-day-ahead 25.15 0.40 -0.05 27.90 0.19 -0.20 -11
II-day-ahead 25.63 0.38 -0.09 27.13 0.21 -0.13 -6
12-day-ahead 26.25 0.34 -0.15 25.47 0.27 0.00 3
13-day-ahead 26.68 0.30 -0.19 24.36 0.45 0.09 9
14-day-ahead 27.64 0.25 -0.28 25.49 0.44 0.00 8
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Table 12: Comparison of Serpent River flow forecasts from 5 to 14 day ahead for winter
season

Forecasting Without meteorological With meteorological Decrease
lags forecasts forecasts In

RMSE

RMSE r R2 RMSE r R2 (%)

5-day-ahead 19.54 0.43 -3.58 18.50 0.29 -2.85 5
6-day-ahead 19.52 0.42 -3.53 18.09 0.34 -2.68 7
7-day-ahead 19.93 0.37 -3.69 17.93 0.36 -2.61 10
8-day-ahead 19.94 0.36 -3.65 17.91 0.39 -2.61 10
9-day-ahead 19.26 0.38 -3.29 17.16 0.45 -2.31 11

10-day-ahead 19.92 0.34 -3.54 17.68 0.48 -2.51 11
11-day-ahead 19.71 0.34 -3.38 17.08 0.41 -2.28 13
12-day-ahead 19.69 0.35 -3.30 17.19 0.37 -2.32 13
13-day-ahead 19.67 0.36 -3.21 16.29 0.45 -1.98 17
14-day-ahead 19.58 0.36 -3.10 17.45 0.45 -2.42 11
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4.3 Visual Inspection of Ensemble Mean

The scatter plot is the familiar and probably the simplest tool for visual inspection

of simulated and observed data. It is simply a collection of points plotted on a graph

whose ordinate and abscissa are the values of each member of the data pair. It allows

examining features like trends in data, clustering of one or both variables, changes in one

variable as a function of the other and extraordinary points or outliers. The ordinate and

abscissa are plotted on the same scale, in which case perfection is represented by any

point on the 45 degree line which is usually drawn to facilitate interpretation of the

scatter plot. In this section scatter plots and hydrographs are presented for both reservoir

flow forecasts and the Serpent River flow forecasts for 5 day ahead, 8 day ahead, 11 day

ahead and 14 day ahead for the entire year. It is notable that in the case of flow

forecasting using NCEP meteorological forecasts, the plots represent the mean of the

ensemble (15 member) flow forecasts.

4.3.1 Reservoir Inflow Forecasting

The scatter plots for 5 day ahead, 8 day ahead, 11 day ahead and 14 day ahead for

the entire year are presented in Figures 11, 13, 15 and 17 for reservoir inflow forecasts

without meteorological forecasts and Figures 12, 14, 16 and 18 for reservoir inflow

forecasts with NCEP metrological forecasts. These plots present all the data for the

validation period (from 1997 to 2001). Figures 11 and 12 reveal that data are more

clustered along the 45 degree line in case of using NCEP meteorological forecasts. For

example, for observed reservoir inflow 900 m3/sec, the simulated flows in Figure 11 are

scattered between about 350 m3/sec and 1500 m3/sec and the simulated flows in Figure

12 are scattered between about 600 m3/sec and 1050 m3/sec. The scatter plots in Figures

11 and 12 reveal that there is an improvement in the reservoir inflow forecasts for 5 day

ahead when NCEP meteorological forecasts are used in the hydrologic model. The

overall examination of Figures 13, 14, 15, 16, 17 and 18 show a similar phenomenon for

forecast ranges of 8, 11 and 14 day ahead. The scatter plots also show that in both cases
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without meteorological forecasts and with meteorological forecasts the data are more

dispersed from the 45 degree line with increased forecast range. It can be seen from the

plots that when the model underestimates the high flows, underestimations of flows are

lower when the NCEP meteorological forecasts are used than without meteorological

forecasts. For example, for observed reservoir inflow 1200 m3/sec, the simulated flows in

Figure 17 are scattered between about 300 m3/sec and 800 m3/sec and the simulated flows

in Figure 18 are scattered between about 600 m3/sec and 900 m3/sec.

The hydrographs for reservoir flow forecasts for 5, 8, 11 and 14 day ahead for the

entire year are presented in Figures 19, 20, 21 and 22 respectively. For better

visualization, hydrographs are shown for 3 years (1999-2001) out of 5 years (1997-2001)

of the validation period. In the hydrographs, the green line, red line and blue line

represent the flow forecasts (mean of 15 members) with NCEP meteorological forecasts,

flow forecasts without NCEP forecasts and the observed flows respectively. An overall

examination of the hydrographs shows that simulated flow series using NCEP

meteorological forecasts are better than those without using NCEP meteorological

forecasts in the spring season. For 5 day ahead forecasting, peak flows in May 2000 and

May 2001 were underestimated slightly when using NCEP meteorological forecasts and

this underestimation is higher when NCEP meteorological forecasts are not used. It can

be seen from Figure 19 that in May 1999, the peak flow is underestimated when using

NCEP meteorological forecasts and overestimated when NCEP meteorological forecasts

are not used. In all the spring seasons, the agreement between the forecasted flows using

NCEP meteorological forecasts and the observed flows in both rising limb and the falling

limb of the hydrographs are more accurate than that in case of flow forecasts without

NCEP meteorological forecasts. This phenomenon can be also seen for other forecast

ranges (8, 11 and 14 day ahead) as shown in Figures 20, 21 and 22.
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5 day ahead
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Figure 11: Scatter plot for reservoir inflows without meteorological forecasts (5 day
ahead)
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Figure 12: Scatter plot for reservoir inflows with meteorological forecasts (5 day ahead)
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8 day ahead
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Figure 13: Scatter plot for reservoir inflows without meteorological forecasts (8 day
ahead)
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Figure 14: Scatter plot for reservoir inflows with meteorological forecasts (8 day ahead)
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11 day ahead

900

600

1800 ...,---------------..

1500 -+------------.-,.----1
'iii
;;;--
oS 1200
3o
l;:

.=
"lJ
QI..
~
:J
E
Vi

300

o
o 300 600 900 1200 1500 1800

Observed inflow (m3/s)

Figure 15: Scatter plot for reservoir inflows without meteorological forecasts (llday ahead)
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Figure 16: Scatter plot for reservoir inflows with meteorological forecasts (11 day ahead)
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Figure 17: Scatter plot for reservoir inflows without meteorological forecasts (14 day

ahead)
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Figure 18: Scatter plot for reservoir inflows with meteorological forecasts (14 day ahead)
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Figure 19: Hydrographs for 5 day ahead reservoir inflows for entire year
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Figure 20: Hydrographs for 8 day ahead reservoir inflows for entire year
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Figure 21: Hydrographs for 11 day ahead reservoir inflows for entire year
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Figure 22: Hydrographs for 14 day ahead reservoir inflows for entire year

55



M.A.Sc. Thesis - Sadik Ahmed

4.3.2 Serpent River Flow Forecasting

McMaster University-Civil Engineering

The scatter plots for 5, 8, 11 and 14 day ahead for the entire year are presented in

Figures 23, 25, 27 and 29 for the Serpent River flow forecasts without meteorological

forecasts and Figures 24, 26, 28 and 30 for the Serpent River flow forecasts with

metrological forecasts. These plots present all of the data for the validation period (from

1999 to 2001). Figures 23 and 24 show that the data are more clustered along the 45

degree line in Figure 24 than that in the Figure 23. For example, for an observed Serpent

River flow 150 m3/sec, the simulated flows in Figure 23 are scattered between about 50

m3/sec and 200 m3/sec and the simulated flows in Figure 24 are scattered between about

50 m3/sec and 150 m3/sec. The scatter plots in Figure 23 and Figure 24 reveal that there is

an improvement in the Serpent River flow forecasts for 5 day ahead when NCEP

meteorological forecasts are used in the hydrologic model. The overall examination of

Figures 25 & 26, Figures 27 & 28 and Figures 29 & 30 show a similar phenomenon for

forecast ranges of 8, 11 and 14 day ahead. The scatter plots also show that in both cases

without meteorological forecasts and with meteorological forecasts the data are more

dispersed from the 45 degree line with an increase of forecast range. It can be seen from

the plots that when the model underestimates the high flows, underestimations of flows

are lower when the NCEP meteorological forecasts are used than those without

meteorological forecasts. For example, for observed river flow 300 m3/sec, the simulated

flows in Figure 29 is about 150 m3/sec and the simulated flows in Figure 30 is about 175

m3/sec.

The hydrographs for river flow forecasts for 5 day ahead, 8 day ahead, 11 day

ahead and 14 day ahead for the entire year are shown in Figures 31, 32, 33 and 34

respectively. The hydrographs are presented for the entire validation period (1999-2001).

In the hydrographs, the green line, red line and blue line represent the flow forecasts

(mean of 15 members) with NCEP meteorological forecasts, flow forecasts without

NCEP forecasts and the observed Serpent River flows respectively. An overall

examination of the hydrographs shows that simulated flow series using NCEP
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meteorological forecasts are better than that without usmg NCEP meteorological

forecasts in the spring season. For 5 day ahead forecasting, peak flows in the spring 1999

are underestimated slightly when using NCEP meteorological forecasts and this

underestimation is higher when NCEP meteorological forecasts are not used. It can be

seen from Figure 31 that in the spring 2000, the peak flow is underestimated in both cases

and in spring 2001 peak flow as well as flows in the rising and falling limb are captured

very well when NCEP meteorological forecasts are used. In all the spring seasons, the

agreement between the forecasted flows using NCEP meteorological forecasts and the

observed flows in both the rising limb and the falling limb are much better than those in

the case of flow forecasts without NCEP meteorological forecasts. This phenomenon can

be also seen for other forecast ranges (8, 11 and 14 day ahead) as shown in Figures 32, 33

and 34.
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Figure 23: Scatter plot for Serpent River flow without meteorological forecasts (5day
ahead)
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Figure 24: Scatter plot for Serpent River flow with meteorological forecasts (5 day ahead)
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8 day ahead
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Figure 25: Scatter plot for Serpent River flow without meteorological forecasts (8 day
ahead)
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Figure 26: Scatter plot for Serpent River flow with meteorological forecasts (8 day ahead)
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11 day ahead
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Figure 27: Scatter plot for Serpent River flow without meteorological forecasts (11day
ahead)
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Figure 28: Scatter plot for Serpent River flow with meteorological forecasts (11 day ahead)
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14 day ahead
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Figure 29: Scatter plot for Serpent River flow without meteorological forecasts (l4day
ahead)
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Figure 30: Scatter plot for Serpent River flow with meteorological forecasts (14 day ahead)
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Figure 31: Hydrographs for 5 day ahead Serpent River flows for entire year
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Figure 32: Hydrographs for 8 day ahead Serpent River flows for entire year
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Figure 33: Hydrographs for 11 day ahead Serpent River flows for entire year
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Figure 34: Hydrographs for 14 day ahead Serpent River flows for entire year
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4.4 Model Performance Assessment with Probabilistic Measures

4.4.1 Reservoir Inflow Forecasting

The Brier skill score (BSS) and rank probability skill score (RPSS) as well as

Brier score (BS) and rank probability score (RPS) were calculated for the entire year and

four seasons - Spring (March to May), Summer (June to August), Autumn (September to

November) and Winter (December to February). These scores were calculated for all data

in the validation period (1997-2001). The calculated scores for the entire year, the spring,

the summer, the autumn and the winter seasons are presented in Tables 13, 14, 15, 16 and

17 respectively. As mentioned in section 4.1, the calculated BS and RPSS represent the

percentage improvement of streamflow forecasts (when NCEP meteorological forecasts

are used) over the reference forecasts and here the reservoir inflow forecasts without

NCEP meteorological are used as reference forecasts. In Table 13, both the calculated

BSS and RPSS skill score show that there is a significant improvement (BSS on average

20.1 % and RPSS 21.6%, calculated from the BSS and RPSS in Table 13) in the reservoir

inflow forecasting when NCEP numerical meteorological forecasts variables

(accumulated precipitation and mean temperature) are used in the HBV model. In Table

14, both the calculated BSS and RPSS values show that the improvement is higher (BSS

on average 51.8% and RPSS 37%) in the spring season than that in the entire year.

Table 13 also shows that for the entire year, the model performance deteriorates with the

increase of forecast lead time as the BS and RPS values increase when the NCEP

forecasts are not used, but there is no consistent deterioration when using NCEP

meteorological forecasts. The reason may be the poor NCEP precipitation forecast with

no significant change in variability after a forecast range 5 day ahead. The same

phenomenon was found (as shown in Tables 15 and 16) for the summer and autumn

season when the flow is dominated by rainfall. On the other hand, Table 14 presents the

forecasts skill for the temperature influenced snowmelt dominated flows in the spring
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season which shows that in both cases without meteorological forecasts and with

meteorological forecasts, the model performance deteriorates with the increase of

forecast lead time as both the BS and RPS increase. It can be seen from Table 14 that the

BS increased from 0.1 02 for 5 day ahead to 0.217 for 14 day ahead when NCEP

meteorological forecast data are not used, it increased from 0.049 for 5 day ahead to

0.083 for 14 day ahead when meteorological data are used; the RPS increased from 1.152

for 5 day ahead to 1.496 for 14 day ahead when NCEP meteorological forecast data are

not used, it increased from 0.761 for 5 day ahead to 0.973 for 14 day ahead when

meteorological data are used. The spring flows are influenced predominantly by the

temperature, thus show a consistent deterioration with the increase of forecast lead time

when NCEP meteorological data are used. In Table 15 the calculated BSS and RPSS

show that there is also a significant improvement in reservoir flow forecasting in the

summer season when NCEP meteorological forecasts are used. However, a close

examination of Tables 14 and 15 shows that when NCEP meteorological forecasts are

used, the reservoir inflow forecasts in the spring season are more accurate than in the

summer season (as example for 5 day ahead forecast, BS and RPS are 0.049 and 0.761

respectively in the spring season and those score are 0.245 and 1.58 respectively in the

summer season). Similarly, an examination of Tables 14, 16 and 17 shows that when

NCEP meteorological forecasts are used, the reservoir inflow forecasts in the spring

season are more accurate than that in the autumn and winter seasons (for example for 5

day ahead forecast, BS and RPS are 0.049 and 0.761 respectively in the spring season and

those score are 0.242 and 1.706 respectively in the autumn season and 0.246 and 2.498 in

the winter season). Table 16 also shows that there is deterioration in forecasts quality in

the autumn for some forecast ranges when NCEP meteorological forecasts are used. In

the winter (as shown in Table 17) the improvement is much less than that in the spring

season. Finally, it can be concluded that the quality of reservoir inflow forecasts in the

spring season are more accurate than other seasons and the improvement of forecasts

quality over the reference forecasts is significant in the spring season.

65



M.A.Sc. Thesis - Sadik Ahmed McMaster University-Civil Engineering

..
I

Table 13: Skill score for reservoir inflow forecasts from 5 to 14 day ahead for the entire
year

Forecasting Without meteorological With meteorological Skill Score
lags forecasts forecasts (%)

BSS RPSS
BS RPS BS RPS

5-day-ahead 0.164 1.198 0.139 0.975 15 19
6-day-ahead 0.171 1.229 0.154 1.070 10 13
7-day-ahead 0.187 1.282 0.166 1.088 11 15
8-day-ahead 0.183 1.271 0.163 1.037 11 18
9-day-ahead 0.198 1.329 0.160 1.042 20 22

10-day-ahead 0.203 1.354 0.177 1.095 13 19
11-day-ahead 0.210 1.369 0.161 1.043 24 24
12-day-ahead 0.216 1.410 0.156 1.019 28 28
13-day-ahead 0.233 1.458 0.159 1.034 32 29
14-day-ahead 0.256 1.503 0.161 1.060 37 29

Table 14: Skill score for reservoir inflow forecasts from 5 to 14 day ahead for spring
season

Forecasting Without meteorological With meteorological Skill Score
lags forecasts forecasts (%)

BSS RPSS
BS RPS BS RPS

5-day-ahead 0.102 1.152 0.049 0.761 52 34
6-day-ahead 0.115 1.270 0.070 0.797 39 37
7-day-ahead 0.133 1.307 0.070 0.804 47 38
8-day-ahead 0.141 1.280 0.071 0.796 50 38
9-day-ahead 0.165 1.287 0.088 0.891 47 31

10-day-ahead 0.167 1.404 0.085 0.888 49 37
11-day-ahead 0.185 1.430 0.084 0.879 55 39
12-day-ahead 0.200 1.465 0.083 0.855 59 42
13-day-ahead 0.224 1.548 0.093 0.939 58 39
14-day-ahead 0.217 1.496 0.083 0.973 62 35
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Table 15: Skill score for reservoir inflow forecasts from 5 to 14 day ahead for summer
season

Forecasting Without meteorological With meteorological Skill Score
lags forecasts forecasts (%)

BSS RPSS
BS RPS BS RPS

5-day-ahead 0.328 2.083 0.245 1.580 25 24
6-day-ahead 0.324 2.078 0.219 1.583 32 24
7-day-ahead 0.333 2.172 0.226 1.706 32 21
8-day-ahead 0.335 2.204 0.217 1.645 35 25
9-day-ahead 0.354 2.350 0.213 1.586 40 32

10-day-ahead 0.346 2.374 0.245 1.705 29 28
II-day-ahead 0.348 2.441 0.222 1.604 36 34
12-day-ahead 0.370 2.557 0.202 1.512 45 41
13-day-ahead 0.389 2.652 0.217 1.570 44 41
14-day-ahead 0.441 2.780 0.210 1.552 52 44

Table 16: Skill score for reservoir inflow forecasts from 5 to 14 day ahead for autumn
season

Forecasting Without meteorological With meteorological Skill Score
lags forecasts forecasts (%)

BSS RPSS
BS RPS BS RPS

5-day-ahead 0.211 1.774 0.242 1.706 -15 4
6-day-ahead 0.228 1.813 0.275 2.000 -21 -10
7-day-ahead 0.263 1.954 0.314 2.086 -19 -7
8-day-ahead 0.224 1.930 0.312 2.029 -39 -5
9-day-ahead 0.254 2.057 0.302 1.959 -19 5

10-day-ahead 0.276 2.109 0.320 2.060 -16 2
II-day-ahead 0.302 2.172 0.284 1.888 6 13
12-day-ahead 0.296 2.161 0.275 1.831 7 15
13-day-ahead 0.317 2.224 0.269 1.816 15 18
14-day-ahead 0.352 2.361 0.290 1.917 18 19
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Table 17: Skill score for reservoir inflow forecasts from 5 to 14 day ahead for winter
season

Forecasting Without meteorological With meteorological Skill Score
lags forecasts forecasts (%)

BSS RPSS
BS RPS BS RPS

5-day-ahead 0.270 2.613 0.246 2.498 9 4
6-day-ahead 0.298 2.754 0.250 2.571 16 7
7-day-ahead 0.285 2.776 0.237 2.442 17 12
8-day-ahead 0.304 2.754 0.220 2.236 28 19
9-day-ahead 0.311 2.887 0.231 2.221 26 23

10-day-ahead 0.315 2.983 0.226 2.282 28 23
II-day-ahead 0.274 2.843 0.222 2.162 19 24
12-day-ahead 0.278 2.898 0.239 2.224 14 23
13-day-ahead 0.276 2.748 0.229 2.136 17 22
14-day-ahead 0.263 2.715 0.233 2.286 11 16
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4.4.2 Serpent River Flow Forecasting

The Brier skill score (BSS) and rank probability skill score (RPSS) as well as

Brier score (BS) and rank probability score (RPS) were calculated for the entire year and

four seasons - Spring (March to May), Summer (June to August), Autumn (September to

November) and Winter (December to February). These scores were calculated for all data

of the validation period (1999-2001) of the Serpent River flow forecasts. Tables 18, 19,

20, 21 and 22 present the calculated scores for the entire year, the spring, the summer, the

autumn and the winter seasons respectively. As mentioned earlier, the calculated BS and

RPSS represent the percentage improvement of streamflow forecasts (when NCEP

meteorological forecasts are used) over the reference forecasts and here the reference

forecasts are the Serpent River flow forecasts without NCEP meteorological forecasts. In

Table 18, both the calculated BSS and RPSS skill score show that there is a significant

improvement (BSS on average 20.7% and RPSS 17.7%, calculated from the BSS and

RPSS in Table 18) in the Serpent River flow forecasting when NCEP numerical

meteorological forecasts variables (accumulated precipitation and mean temperature) are

used. In Table 19, both the calculated BSS and RPSS values show that the improvement

is higher (BSS on average 34.2% and RPSS 28.2%) in the spring season than in the

entire year. Table 18 also shows that the model performance deteriorates with the

increase of forecast lead time as the BS and RPS values increase when the NCEP

forecasts are not used, but there is no consistent deterioration when using NCEP

meteorological forecasts. The reason might be the poor NCEP precipitation forecast with

no significant change in variability after forecast range 5 day ahead. The same

phenomenon is found (as shown in Tables 20 and 19) for the summer and autumn season

when the flow is dominated by rainfall. On the other hand, Table 19 presents the

forecasts skill for the temperature-influenced, snowmelt-dominated flows in the spring

for both cases without meteorological forecasts and with meteorological forecasts, which

shows in both cases the model performance deteriorated with the increase of forecast lead

time as the BS increase. It can be seen from Table 19 that the BS increased from 0.109
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for 5 day ahead to 0.217 for 14 day ahead when NCEP meteorological forecast data are

not used, it increased from 0.063 for 5 day ahead to 0.114 for 14 day ahead when

meteorological data are used. The spring flows are influenced predominantly by the

temperature, and shows a consistent deterioration with the increase of forecast lead time

when NCEP meteorological data are used. In Table 20 the calculated BSS and RPSS

show that there is also a significant improvement in the Serpent River flow forecasting in

the summer season when NCEP meteorological forecasts are used. However, an

examination of Tables 19 and 20 shows that when NCEP meteorological forecasts are

used, the Serpent River flow forecasts in the spring season are much better than that in

the summer season (as example for 5 day ahead forecast, BS and RPS are 0.063 and

1.238 respectively in the spring season and those score are 0.226 and 1.577 respectively

in the summer season). Similarly, an examination of Tables 19, 21 and 22 shows that

when NCEP meteorological forecasts are used, the Serpent River flow forecasts in the

spring season are much better than in the autumn and winter seasons (for example for 5

day ahead forecast, BS and RPS are 0.063 and 1.238 respectively in the spring season and

those score are 0.157 and 1.611 respectively in the autumn season and 0.36 and 3.764 in

the winter season). Similar to the reservoir flow forecasts, Table 21 also shows that there

is a deterioration in forecast quality in the autumn for some forecast ranges when NCEP

meteorological forecasts are used. It can be seen from Table 22 that the improvement

over the reference forecasts is insignificant in the winter season. Finally, similar

conclusion to the reservoir flow forecasts can be drawn for the Serpent River flow

forecasting that the quality of forecasts in the spring season are much better than other

seasons, and the improvement of forecast quality over the reference forecasts is

significant in the spring season.
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Table 18: Skill score for Serpent River flow forecasts from 5 to 14 day ahead for the
entire year

Forecasting Without meteorological With meteorological Skill Score
lags forecasts forecasts (%)

BSS RPSS
BS RPS BS RPS

5-day-ahead 0.134 1.598 0.120 1.398 11 12
6-day-ahead 0.143 1.648 0.128 1.483 11 10
7-day-ahead 0.167 1.759 0.145 1.528 13 13
8-day-ahead 0.172 1.776 0.158 1.532 8 14
9-day-ahead 0.182 1.814 0.152 1.486 16 18

10-day-ahead 0.192 1.891 0.152 1.568 21 17
11-day-ahead 0.204 1.924 0.153 1.521 25 21
12-day-ahead 0.218 1.963 0.156 1.511 28 23
13-day-ahead 0.229 1.959 0.146 1.465 36 25
14-day-ahead 0.233 1.974 0.144 1.503 38 24

Table 19: Skill score for Serpent River flow forecasts from 5 to 14 day ahead for spring
season

Forecasting Without meteorological With meteorological Skill Score
lags forecasts forecasts (%)

BSS RPSS
BS RPS BS RPS

5-day-ahead 0.109 1.583 0.063 1.238 42 22
6-day-ahead 0.120 1.663 0.095 1.318 21 21
7-day-ahead 0.149 1.717 0.077 1.156 48 33
8-day-ahead 0.167 1.743 0.096 1.093 43 37
9-day-ahead 0.192 1.786 0.113 1.175 41 34

10-day-ahead 0.149 1.815 0.102 1.301 31 28
11-day-ahead 0.156 1.790 0.129 1.276 17 29
12-day-ahead 0.178 1.725 0.132 1.288 26 25
13-day-ahead 0.192 1.775 0.143 1.346 26 24
14-day-ahead 0.217 1.772 0.114 1.260 47 29
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Table 20: Skill score for Serpent River flow forecasts from 5 to 14 day ahead for summer
season

Forecasting Without meteorological With meteorological Skill Score
lags forecasts forecasts (%)

BSS RPSS
BS RPS BS RPS

5-day-ahead 0.250 1.975 0.226 1.577 10 20
6-day-ahead 0.257 1.996 0.192 1.451 25 27
7-day-ahead 0.308 2.279 0.224 1.746 27 23
8-day-ahead 0.286 2.120 0.247 1.756 14 17
9-day-ahead 0.293 2.152 0.200 1.412 32 34

10-day-ahead 0.312 2.217 0.211 1.561 32 30
11-day-ahead 0.322 2.322 0.195 1.535 40 34
12-day-ahead 0.333 2.402 0.219 1.535 34 36
13-day-ahead 0.360 2.412 0.206 1.494 43 38
14-day-ahead 0.381 2.442 0.223 1.486 41 39

Table 21: Skill score for Serpent River flow forecasts from 5 to 14 day ahead for autumn
season

Forecasting Without meteorological With meteorological Skill Score
lags forecasts forecasts (%)

BSS RPSS
BS RPS BS RPS

5-day-ahead 0.178 1.681 0.157 1.611 12 4
6-day-ahead 0.192 1.815 0.207 1.633 -8 10
7-day-ahead 0.225 1.902 0.241 1.785 -7 6
8-day-ahead 0.236 1.986 0.274 1.859 -16 6
9-day-ahead 0.254 2.033 0.263 1.840 -4 9

10-day-ahead 0.257 2.091 0.259 1.875 -1 10
11-day-ahead 0.275 2.236 0.246 1.683 11 25
12-day-ahead 0.290 2.384 0.231 1.608 20 33
13-day-ahead 0.315 2.424 0.211 1.494 33 38
14-day-ahead 0.319 2.493 0.232 1.666 27 33
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Table 22: Skill score for Serpent River flow forecasts from 5 to 14 day ahead for winter
season

Forecasting Without meteorological With meteorological Skill Score
lags forecasts forecasts (%)

BSS RPSS
BS RPS BS RPS

5-day-ahead 0.370 3.917 0.360 3.764 3 4
6-day-ahead 0.370 3.924 0.364 3.770 2 4
7-day-ahead 0.370 3.880 0.354 3.728 4 4
8-day-ahead 0.391 3.924 0.375 3.870 4 1
9-day-ahead 0.399 3.942 0.371 3.779 7 4

10-day-ahead 0.391 3.960 0.387 3.875 1 2
II-day-ahead 0.391 3.964 0.374 3.743 4 6
12-day-ahead 0.395 3.953 0.379 3.749 4 5
13-day-ahead 0.402 3.993 0.353 3.510 12 12
14-day-ahead 0.409 4.000 0.379 3.789 7 5
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In this section, hydrographs represent all 15 member ensembles, ensemble mean,

observed flow and upper limit and the lower limit of ensembles for 5 day ahead forecasts.

The hydrographs from the entire year of flows and spring flows of one year (2001) for the

reservoir inflows are presented in Figures 35 and 36 respectively. The hydrographs from

the entire year flows and spring flows of one year (2001) for the Serpent River flows are

presented in Figures 37 and 38 respectively. The objective of this visual inspection of

ensembles is to highlight the fact that the performance of the models is improved in the

spnng season more than other seasons and to reveal the reason behind this better

performance. Figure 35 shows a very good agreement between the pattern of the

forecasted ensemble reservoir inflows and observed inflows in the spring season both in

capturing the flows in the rising limb and the falling limb as well as in the peak flow. No

such agreement is found in the reservoir flow forecasting for other seasons. Figure 35

also revealed that all the peak flows in the summer months lie out of the upper limit

(indicating the 95% confidence interval); peak flow of the summer month of July is

highly underestimated. Although the ensemble spread in the autumn is little smaller than

that in the summer, all the peak flows in the autumn season are highly underestimated.

The reservoir flows in the winter month of December lies between the limits, but the

ensemble spread is higher than other seasons; moreover the flows in the other winter

months are always underestimated. In can also be seen from all the hydrographs that

there is a significant overestimation of flow in the beginning of the spring and this

overestimation is due to early snowmelt. The reason for this early snowmelt is the

overestimation and fluctuation ofNCEP forecasted temperature (shown in Figures 4, 5, 6

and 7) in the winter. As mentioned earlier, the snowmelt runoff is responsible for high

flows in the spring season as well as up to 40% of the annual flow volume in the study

region. It is also shown in Section 2.2.3 that NCEP temperature forecasts exhibit high

skill over the year. Figure 35 also shows that the flow in the spring season started to

increase at the beginning of April. Here the flow in the spring season is dominated by
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snowmelt, which is influenced predominantly by the temperature variation. This also

confirms the findings of Clark and Hay (2004) that in the snowmelt dominated River

basins when streamflows are strongly forced by temperature; the high skill in prediction

of temperature translates into high skill in prediction of streamflow. On the other hand

precipitation forecasts are poor compared to temperature forecasts as shown in Section

2.2.3 and Appendix. This is why the temperature-influenced snowmelt dominated spring

flow forecasts are much better than rainfall-dominated flows in the summer and the

autumn.

Similar to reservoir inflow forecasting, Figures 37 and 38 show very good

agreement between the pattern of the forecasted ensemble Serpent River flows and

observed flows in the spring season both in capturing the flows in the rising limb and the

falling limb as well as peak flow. No such agreement is found in the Serpent River flow

forecasting for other seasons. Figure 37 also revealed that all the peak flows in the

summer months lie out of the upper limit indicating the 95% confidence interval; peak

flows of the summer months are highly underestimated, showing the poor performance of

the model using NCEP data for flow forecasting in summer. The peak flows in the

autumn season are also highly underestimated. The Serpent River flows in the winter

month of December lies between the limits, but the ensemble spread is higher than other

seasons; moreover the flows in the other winter months are underestimated. The reason

for better flow forecasts in the spring season for the Serpent River is same as forecasts for

reservoir inflows.
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Figure 35: Ensemble reservoir inflow simulation for 5 day ahead for one year (limits
show 95% confidence interval)
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Figure 36: Ensemble reservoir inflow simulation for 5 day ahead for spring season (limits
show 95% confidence interval)
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Figure 37: Ensemble Serpent River flow simulation for 5 day ahead for one year (limits
show 95% confidence interval)
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Figure 38: Ensemble Serpent River flow simulation for 5 day ahead for spring season
(limits show 95% confidence interval)
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Chapter 5: Conclusions and Recommendations

The study results revealed that there is a significant improvement in both reservoir

inflow and the Serpent River flow forecasting when raw NCEP meteorological forecasts

are used. A number of verification measures were used for assessing the ensemble

hydrologic forecast skill.

The quality of hydrologic forecasts was initially assessed for the entire year. The

results show that for both reservoir inflow and the Serpent River flow forecasts the model

performance deteriorate with the increase of forecast lead time as the RMSE increases

and rand R2 decrease with the increase of lead time. More accurate forecast always

indicates lower RMSE and higher rand R2
. When NCEP meteorological forecasts are

used, the model performs well up to 8 day ahead and 7 day ahead for reservoir inflow

forecasting and the Serpent River flow forecasting respectively. In the case where

observed data are used instead ofNCEP meteorological forecasts, the model performance

is poor even on 5 day ahead for both reservoir inflow forecasting and the Serpent River

flow forecasting. The increase of correlation coefficient (r) in all forecast ranges is

significant, which shows a clear improvement. When NCEP meteorological forecasts are

used, root mean square error (RMSE) also decreases on average 19.7% for reservoir

inflow forecasting and 19.2% for the Serpent River flow forecasting. When comparing

the models by scatter plots, it can be found that the data are more clustered along the 45

degree line in the case where NCEP meteorological forecasts are used for all forecast

ranges for both reservoir inflows forecasting and the Serpent River flow forecasting. The

hydrographs also show the improvement in both reservoir inflow forecasting and the

Serpent River flow forecasting. The calculated probabilistic verification measures also

show that there is about on average a 20% improvement in both reservoir inflow

forecasting and the Serpent River flow forecasting for entire year flows as the average

BSS and RPSS values are 20.1 % and 21.6% respectively for reservoir inflow forecasting

and 20.7% and 17.7% respectively for the Serpent River flow forecasting.
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The hydrologic model forecasts are also investigated on seasonal basis and all the

verification measure show that the forecast quality is much better in the spring season.

When NCEP meteorological forecasts are used, the model performs well up to 13 day

ahead for reservoir inflows forecasting. The calculated RMSE for spring flows also

decreases on average by 32.7 %, which is 19.7% for entire year flows for reservoir inflow

forecasting. The hydrographs of ensemble mean show that in all the spring seasons, the

agreement between the forecasted reservoir inflows using NCEP meteorological forecasts

and the observed inflows in both rising limb and the falling limb of the hydrograph are

much better than that in case of inflow forecasts without NCEP meteorological forecasts.

The calculated RPSS values show that the ensemble reservoir inflow forecasting

improves on average by 37%, which is 21.6% for the entire year flows. The ensemble

plots also show that the model give better forecasts in the spring season than other

seasons as the reservoir inflows in the snow melting months are well captured in both

rising limb and the falling limb of hydrographs as well as peak flows. The model

performance in the Serpent River flow forecasting is quit close to that of the reservoir

inflow forecasting. The reason of this improvement in the spring season is that the spring

flow in the study basins is dominated by the snowmelt, which is influenced

predominantly by the temperature variations; accurate temperature forecasts by the

National Centers for Environmental Prediction (NCEP) Global Forecast System up to 14

day ahead translates into high skill in predictions of streamflow in the spring season.

Because the peak flows in spring season are particularly important for scheduling

reservoir operation, and responsible for flooding in the study region, therefore, spring

peak flow forecasting using the raw NCEP meteorological forecasts could be a good

alternative approach for obtaining more accurate flow forecasts up to 8 day-ahead.

Although the forecasting models show significant improvement in the spring flow

forecasting, further investigation is required to improve the flow forecasting in the

periods when the flows are dominated by precipitation. Further improvement in

forecasting may be achieved by incorporating downscaled ensemble NCEP

meteorological forecasts into hydrologic model and using another hydrologic model other

thanHBV.
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Figure AI: Plots ofNCEP precipitation forecasts (5 day ahead) and observed
precipitation at CDD for the spring season (limit shows 95% confidence interval)
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Figure A2: Plots ofNCEP precipitation forecasts (5 day ahead) and observed
precipitation at CDD for the winter season (limit shows 95% confidence interval)

89



M.A.Sc. Thesis - Sadik Ahmed . McMaster University-Civil Engineering

• Mean of Ensemble • Upper Limit • Observed

01/05/200101/04/2001

10 +--------lr.t-r---:+t-r.-HHttHlltt--rtt--t-I-;--IH+t-t+.-H-1-ttt.t-r+tt-ttH­

o .J1LiLL...~oJJJJUJ.l!WJJIlIlIWUJ.IJ,LLLl1ltlJ

01/03/2001

70 -r---------------------------­

60 +---------------------------

E 50 +---------------------------
.§.
g 40 +----------------------,-----­
',p
.~ 30 +-----------------lr----t-------:---t------.-----­
Q.

'g 20 +-----------+l---+Hh----+--l---+---f--I-r--4--.--rH-HI-...
Q.

Figure A3: Plots ofNCEP precipitation forecasts (5 day ahead) and observed
precipitation at CDP for the spring season (limit shows 95% confidence interval)

01/08/200101/07/2001

• Mean of Ensemble • Upper Limit • Observed

10

o
01/06/2001

70

60 +---------------------------

E 50 +---------------------------
.§.
g 40 +------+--------,----------r--------­
',p
.~ 30 -I----+---71-1-------f-+-f--fl--------++--I-i/-------H­
Q.

'uf! 20 -I-;--rlt--t-lH+--f-Tt.--t-t+-i+t+it------;-/------lftt--Ht--t-+----t---J-tt
Q.

Figure A4: Plots ofNCEP precipitation forecasts (5 day ahead) and observed
precipitation at CDP for the summer season (limit shows 95% confidence interval)
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Figure A5: Plots ofNCEP precipitation forecasts (5 day ahead) and observed
precipitation at CDP for the autumn season (limit shows 95% confidence interval)
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Figure A6: Plots ofNCEP precipitation forecasts (5 day ahead) and observed
precipitation at CDP for the winter season (limit shows 95% confidence interval)
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