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Abstract

The multivariate cumulative sum (MCUSUM) and the multivariate exponentially weighted
moving average (MEWMA) control charts are the two leading methods to monitor a mul-
tivariate process. This thesis focuses on the MEWMA control chart. Specifically, using the
Markov chain method, we study in detail several aspects of the run length distribution both
for the on- and off- target cases. Regarding the on-target run length analysis, we express the
probability mass function of the run length distribution, the average run length (ARL), the
variance of run length (VRL) and higher moments of the run length distribution in math-
ematically closed forms. In previous studies, with respect to the off-target performance for
the MEWMA control chart, the process mean shift was usually assumed to take place at
the beginning of the process. We extend the classical off-target case and introduce a gener-
alization of the probability mass function of the run length distribution, the ARL and the
VRL. What Prabhu and Runger (1996) proposed can be derived from our new model. By
evaluating the off-target ARL values for the MEWMA control chart, we determine the op-
timal smoothing parameters by using the partition method that provides an easy algorithm
to find the optimal smoothing parameters and study how they respond as the process mean
shift time changes. We compare the ARL performance of the MEWMA control chart with
that of the multivariate Shewhart control chart to see whether the MEWMA chart is still
effective in detecting a small mean shift as the process mean shift time changes. In order
to apply the model to semiconductor manufacturing processes, we use a bivariate normal
distribution to generate sample data and compare the MEWMA control chart with the
multivariate Shewhart control chart to evaluate how the MEWMA control chart behaves
when a delayed mean shift happens. We also apply the variation transmission model intro-

duced by Lawless et al. (1999) to the semiconductor manufacturing process and show an

ii



extension of the model to make our application to semiconductor manufacturing processes

more realistic. All the programming and calculations were done in R

Key words: Multivariate Exponentiolly Weighted Moving Average Control Chart; Mul-
tivariate Shewhart Control Chart; Average Run Length; Markov Chain; Optimal Smoothing

Parameter; Semiconductor Manufacturing.
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Chapter 1

Introduction

1.1 Control charts and the mutivariate exponentially weighted

moving average (MEWMA)

A multivariate control chart is an important tool for monitoring and improvement of the
quality of products. In recent years, the importance of multivariate control charts has
increased because more quality features are measured in mass production than ever be-
fore. These quality measures often exhibit substantial cross-correlations. For example,
in semiconductor manufacturing, manufacturers make semiconductor devices around the
clock through hundreds of processes. In this case, it would be more efficient to maintain a
multivariate control chart than several univariate control charts because it is possible that
individual control charts might not detect an assignable cause when quality characteristics
are dependent. Several multivariate quality control charts have been proposed to monitor
the mean vector of quality characteristics. The three most common multivariate control
charts are the multivariate cumulative sum (MCUSUM) control chart, the multivariate
exponentially weighted moving average (MEWMA) control chart and the multivariate She-

whart control chart. The latter is also known as Hotelling’s x? control chart. As the number



of process variables grows, traditional multivariate control charts such as the multivariate
Shewhart chart lose efficiency with respect to shift detection (Montgomery, 2005, pp. 486).
The Shewhart control chart is poor at detecting small and moderate shifts in the mean
vector. However, the MEWMA and the MCUSUM control charts are known to respond to
small mean shifts very quickly. In this thesis, several aspects of the MEWMA control chart

will be in detail studied.

1.2 Average run length (ARL)

The average run length (ARL) is a good tool to evaluate the performance of a statistical
process control chart. The ARL is the average number of points that must be plotted before
a point indicates an out-of-control condition (Montgomery, 2005, pp. 160). When a process
control chart is set up, it is desirable that it produces a large ARL when the process is in-
control while smaller ARL values are preferred when the process is out-of-control (Pham,
2006, pp. 337). A large in-control ARL reduces the false alarms while a small out-of-control
ARL indicates quick detection of a change. Since evaluating ARL values is not elementary,
let us consider the univariate Shewhart control chart for the purpose of illustrating how the
ARL is calculated. In this case, it is well-known that the run length follows a geometric

distribution. Thus, its expected value is

ARL=—1—

p

where p is the probability that any point exceeds the control limits.

For instance, when the process is in-control with p = 0.005, then the in-control ARL
(called ARLg) equals ﬁ = 200, which means that the control chart signals a false (out-
of-control) alarm on average every 200 plotted points even though the process is in-control.

When the process is out-of-control, it is expected that more chart points will go out of



the control limits. Thus, the out-of-control ARL (called ARL,) will be smaller than ARLy.

1.3 Semiconductor manufacturing

Materials used in electronics are classified into three types in terms of conductivity: con-
ductors, insulators and semiconductors. Conductors are materials that can carry electrons
easily thanks to the availability of free electrons such as copper and aluminum. Most metals
are considered to be conductors. Insulators are materials that refuse to carry an electric
current due to lack of free electorns such as glass and wood. Semiconductors are substances
that are neither conductors nor insulators but they can have electrical properties by ap-
plying a certain voltage and doping impurity content (Bakshi and Godse, 2008, pp. 8).
The two widely used simiconductor materials are silicon and germanium. Semicondutor
devices are manufactured electronic components or integrated circuits by using semicon-
ductor materials. Nowadays, semiconductor devices are considered as the cornerstone of
electronics because most of our modern conveniences such as computers, cell phones, digi-
tal cameras, medical diagnostic equipment and all kind of domestic electric appliances are
made of semicoductors. The reason that semiconductors are important is that we can alter
their conductivity.

In semiconductor device fabrication, all the processing steps fall into one of the fol-
lowing categories: Deposition, ion-implantation, diffusion, photolithography and etching.
Deposition is used to put down either a metal layer or an oxide (non-metal) layer on a
wafer. Ion-implantation and diffusion are the operations that introduce dopants inside the
wafer and grow a silicon oxide layer. Photolithography is the process that a light-sensitive
material, called photoresist is applied in the wafer which is then exposed to ultraviolet light
through an optical mask. Then the area of the photoresist exposed to light becomes soluble
and is stripped off with solvents. Etching operation is used to create a circuit pattern that

has been defined during the photolithography process by removing a thin film.



They form a process cycle and are employed on the wafer numerous times to make a
semiconductor device. As a result, multiple layers are created and stacked directly on the
wafer. Figures 1.1 and 1.2 are the cross-section of a semiconductor device. Specifically,
Figure 1.2 is the cross-section of SRAM (Static Random Access Memory) which is taken
by SEM (Scanning Electron Microscope). In this study, our focus is on the layer on which
polysilicon gates (transistors) are patterned. In semiconductor manufacturing, the critical
dimension (CD) of the gate width is the most critical parameter since the gate CD decides
the overall speed of the integrated circuit and it has continued to shrink since the integrated
circuit was introduced (Orshansky et al., 1999). The following website shows how quickly
design rules for gate patterns have changed. Refer to http://en.wikipedia.org/wiki/

Semiconductor_device_fabrication at wikipedia.

I
r METAL 3 |
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| METAL 2 | METAL 2

ILD2

I:__—I : METAL 1 - 4; i M;TAL1 4i E

2’} TRANSISTOR TRANSISTOR |
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Figure 1.1: Cross-section of a semiconductor device.

The design rule of silicon chips was 10 gm in 1971 but chipmakers are now making 32 nm

devices. That is, today’s transistors are more than 300 times smaller than the ones made



in 1971. Shrinkage in the gate width brings us difficulties to control it. Thus, a tighter
control over the gate width has to be made to maximize process yield and throughput.
Even a small amount of mean shift in the silicon gate width has to be detected. Therefore,
the MEWMA control scheme which is very efficient at issuing a warning signal on a small
amount of mean shift is the right choice and suitable for the semiconductor industry facing
increasing quality demands. Figure 1.3 shows a finished product of semiconductor device.
As an application of the MEWMA control chart, we construct a simple bivariate nor-
mal distribution model, apply it to semiconductor manufacturing operations and provide
simulation results. The main reason for the application to a semiconductor manufacturing
process is that semiconductor manufacturing operations need a control chart that provides

a high sensitivity in detecting a small mean shift.

SDRAM Cell

UAJmm?
RB SKuU KeB,084a

Bitline Contact Capacitor Contact

Figure 1.2: Cross-section of SRAM taken by SEM.

1.4 Propagation of variability in a process

One of the main goals of statistical process control is to effectively reduce the variability

in a process. In order to do that, it is important to identify at which stages variation is



Figure 1.3: 4Gb DDR DRAM chip.

added substantially and how much variation is transmitted from previous stages. Lawless
et al. (1999) introduced the variation transmission model and showed how variation in key
product characteristics could be built across the production stages. However, the model
is constructed based on that only one machine runs at final stage. In this thesis, we will

extend the model and apply it to semiconductor manufacturing.

1.5 Thesis objectives and organization

Prabhu and Runger (1996) developed a Markov chain algorithm to evaluate the perfor-
mance of the MEWMA control charts. The Markov chain algorithm provides an acceptable
approximation for the average run length (ARL) of the MEWMA control chart. The on-
and off-target ARL values can be computed by using the algorithm. However, when the
performance of the off-target case is evaluated, the off-target case has to be extended in
terms of the process transition time since the past studies only cover the off-target case
where the process mean shifts instantaneously to a new value once manufacturing oper-
ations start; that is, the mean shift was assumed to take place at the very beginning of
the process (the zero-state case). In real life, the process goes out-of-control after staying

in-control for a while from the beginning and the change sustains until human intervention



(the steady-state case). The process mean shift could take place at any time in process
operation, not just at the beginning. For example, in the Markov chain model, when the
process mean changes at transition time 7, we consider a transition matrix Py until time
7 — 1 and a new transition matrix Py afterwards.

The main objectives of this thesis are as follows:

1. To calculate analytically and numerically the run length distribution and the average

run length for the off-target case.

2. To compare the MEWMA control with the multivariate Shewhart control chart for

the off-target case.
3. To identify optimal smoothing parameter values for the off-target case.

4. To apply the MEWMA control chart to a bivariate semiconductor manufacturing

process.

5. To develop a model for variation propagation with application to the semiconductor

manufacturing process.

The study is arranged as follows. In Chapter 2, the general off-target case is discussed
and we show derivations of the ARL and the variance for the general off-target case. Ad-
ditionally, the optimal smoothing parameter and the comparison of the MEWMA control
chart and the multivariate Shewhart control chart are discussed for different values of tran-
sition time. In Chapter 3, a bivariate normal distribution model for the MEWMA control
chart is applied to a semiconductor fabrication process and the method is illustrated with
simulated data. An extension of the variation transmission model is introduced in Chapter

4, Finally, Chapter 5 presents some conclusions.



Chapter 2

Analysis of MEWMA control chart

2.1 Overview of MEWMA control chart

The conventional Shewhart-type control charts such as the T2 charts are pretty effective
for detecting mean shifts. However, they are slow in reacting to small and moderate shifts
in the process mean. In that regard, the MEWMA control chart was developed to pro-
vide more sensitivity to small mean shifts (Montgomery, 2005, pp. 504). Suppose that
Xt = (X1, X2, -+, Xp) is a p—dimensional random vector whose components are random
variables at time t. Lowry et al. (1992) proposed a multivariate version of the univari-
ate exponentially weighted moving average (EWMA) control chart. As for the MEWMA

control chart, it is defined by
Zy=1rXs+ (1 - T’)Zt_l (2.1)

where, r is a smoothing parameter (0 < r < 1) and it is assumed that Zg = 0p. The

MEWMA control chart issues a warning signal when

Qi=2Z%5 Zy> H (2.2)



{12
where H is a specified control limit and the covariance matrix, 3z, is given as {ﬂl—(él_r—;)t]} Yx.

However, in this thesis we use the following asymptotic covariance matrix:

T
Xz = <2 — r)EX'

Note from Equation (2.1) that when we expand Z recursively, we get
Zi=rXp+r(1 =" Xeg +r(1—7)2Xp o+ +r(1l — 7)1 Xy 4+ (1 = 1)t Zy.

Thus, Z; is a weighted average of the ¢ quality measurements available with weights following
a geometric form. However, in the literature the chart is known as exponentially weighted.
An important special case of the MEWMA control chart is the case that r = 1 leads to

= X and Q; = X2 1Xt This is precisely the multivariate Shewhart control chart

also known as the chi-squared control chart. Let us assume that

Lo when the process is on-target
E(X)=p=
U1 when the process is off-target

and Var(X) =
Consider the following transformation and let the transformed variable be ¥ 5 e (X —

po). By the transformation, we obtain

E(Z 1/2(X Lo )) 1/2E(X Ho) = 2_1/2(M0 — o) =0 when the process is on-target
_1/ QE(X Ho) =Xy 1/2 (n1 — po) when the process is off-target

and Var(Z}l/Q(X ~ o)) = EMI/QE (2%1/2) 2_1/2 1/22%2(23(1/2), = I. The non-

centrality parameter c is defined as follows.

¢ = (1 — o) Tk (1 — o). (2.3)



Then, the noncentrality parameter of the transformed variable E;{l/ 2 (X — o) is

o= (3% (1 — po) = 0)' (D) (=32 (1 — o) - 0)
= (u — mo) Sx 551 — o)

= (1 — o)’ Ex (1 — po)-

The result is equivalent to the noncentrality parameter of X (Equation (2.3)). By this
transformation, we can assume that X has mean zero and an identity covariance matrix
since the performance of a MEWMA control chart is a function of p only through the
noncentrality parameter (Lowry, 1992). Using that, Q; in Equation (2.2) can be rewritten
as Q¢ = (£1)]|Z¢||?. Thus, Q; > H is equivalent to ||Z¢|| > /5°-H. That is, || Z|| > H’
where H' = , /57— H. In this thesis, we will use

@ = || Z4]|

as the control chart statistic.

2.2 The Markov chain approximation algorithm

The main objective of statistical process control charts is to provide a way to detect process
shifts as quickly as possible when the process is out-of-control. One way is through the
average run length (ARL) of the control chart. Several attempts by using simulation have
been made to determine on- and off-target average run length for multivariate control charts,
such as MEWMA and multivariate cumulative sum (MCUSUM) control charts (Crosier,
1988; Hawkins, 1992; Pignatiello and Runger, 1990; Woodall and Ncube, 1985). However,
the simulation method has the downside that we have to go through a long and tiresome

process to obtain an upper control limit and a large number of simulated process runs are

10



required to get an acceptable variance. Brooks and Evans (1972) used a Markov chain
approximation for the ARL of a univariate CUSUM control chart and Lucas and Saccucci
(1990) applied this method for the EWMA chart. Rigdon (1995a, 1995b) used integral
equations to obtain ARL values for a MEWMA. Prabhu and Runger (1996) used the Markov
chain model to determine the run length performance of a MEWMA control chart. There
is a conceptual difference between the two approaches. To analyze a shift of the observed p
dimensional mean vector (when the process becomes out-of-control), the Rigdon’s method
uses a change in the mean of two dependent random variables while the Markov chain
approach uses a one-dimensional random variable and a p — 1 dimensional random vector.
However, the main drawback of the Rigdon’s integration equation is that the equation can
not be applied for the off-target setting. In this section, we review the Markov chain model
that Prabhu and Runger (1996) proposed for the MEWMA control chart, which is the
foundation for this study.

The control statistic q; is non-negative and large values of it are indicative of out-of-
control. Thus, an upper control limit (UCL) is used. In the Markov chain approach, the
in-control range [0, UCL] is divided into subintervals which form the states of the chain.
Let

g1 = width of the on-target states
go = width of the off-target states

UCL=+/Hxr/2—71)

p = number of variables.

2.2.1 On-target performance

Figure 2.1 illustrates the states when the process is in-control. Dividing the range [0, UCL)]

into my 4+ 1 subintervals, m, of them have the same length ¢; and one of them has the

11



length £-. Thus,

2
_ 2UCL
N o+ 1
m

(1/2)91l g | g g g g

In-control range

Figure 2.1: A illustration of the Partitioning the Control Region of a MEWMA (On-Target).

When the process is in-control (p = 0) from the beginning, the on-target distribution

of ¢ = ||Z¢|| can be approximated by using a Markov chain.

p(i,7) = P(q in state j|g—1 in state 7)

= P{(j—05)g <|[rXe+ (1 —7)Zs—]|| < (j +0.5)g1|gs—1 = g1i}

Let us denote S(r) the p - dimensional sphere of radius r > 0. Since Z; has a spherical
distribution, the conditional distribution of Z; given ||Zy|| is the same as || Z||U, where U
is the uniform random variable on the p - dimensional sphere with radius 1 (Eaton, 1983).

Thus, given that g1 = g1%, the distribution of Zz_1|(g:—1 = g11) follows igiU. We get

p(i,5) = P{(j — 0.5)q1/r < [|Xe + (1 —r)igiU/r|} < (j + 0.5)g1/7} (2.4)

where X3 ~ Np(0,I) and U ~ S(1). Assume that Xy is independent of U. Then Equation

12



(2.4) can be rewritten as

p(d,5) = / : '/f(u)P{(j =0.5)g1/r <|[Xe + (1 —r)igiu/r|| < (j +0.5)g1/r|U = u}du.
5(1)

Conditioning on U = u,
Xe+ (1= r)igiu/r ~ Np((1 = r)igiu/r, I).
Hence, conditioning on U = wu,
|1 Xt + (1 —r)igiu/r||2 ~ x*(p,c) where c is the noncentrality parameter.

The noncentrality parameter ¢ can be calculated as follows.

1—7 1—17. 1—7. N2, I—7r. N2, 1—7r. \2
c=( zgyu)I( zglu) = ( zgl> uwu = ( zgl) [|u]|? = ( zgl)
T T T T T

where u represents any vector in the p - dimensional sphere of radius 1, that is ||u|| = 1.
Thus,
- 0. 5 2 _ i +0.5)2g%
) / /f e R R e e
— [ [ F@P{G - 0826 < x0,0) < G-+ 05 )
5(1)
= P08 5" <xC(00) < G+ 05267} [+ [ fu)du
S5(1)
= P{(j —0.5)%2/r% < x*(p,c) < (§ +0.5)%¢}/r?}. (since / /f
5(1)
Therefore, for ¢,7 = 0,1,2,...,mi, the probability of a transition from state i to state
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7 is denoted p(%, 7) and defined as follows.

P{(j —0.5)%2¢2/r% < x%(p,c) < (§ + 0.5)%g%/r%} if 540
P{x*(p,c) < (0.5)*g7 /r*} if j =0

p(i,7) =

where x%(p,c) is a noncentral chi-squared random variable with p degrees of freeedom,

2UCL

noncentrality parameter ¢ = [(1 — r)ig;/r]? and g1 = S

Using the transitional prob-
abilities, the (m1 + 1) x (mq + 1) transition matrix Py of the transient states of the chain
can be constructed.

By using the above algorithm, the on-target average run length is given by
ARLy = linrJlr s'(I — Po)™'1 (Prabhu and Runger, 1996) (2.5)
m1—00

where s is the starting probability vector and 1 denotes a vector of 1s of the dimension

m1 + 1. Derivation of Equation (2.5) is provided in section 2.3.

2.2.2 Off-target performance (zero-state case)

Figure 2.2 represents the two-dimensional range of (Z4, || Zt2||) with the axes Z; and || Z||.
For the Markov chain approximation of Z;, the number of states between -UCL and UCL

is 2mg + 1. States are 1, 2, ..., 2mq + 1. Thus, the width of each state, g is 22722(}1. For

the Markov chain approximation of ||Zg]|, the number of states are my + 1, labelled as 0,

2UCL
2m1+1°

1, ...mj1. Thus, g1 =
Suppose that the process is out-of-control (pg changes to p1) from the beginning and let

§ = |Jp1]|- Then § = ||p1]| = +/(p1 — 0)'I(p1 — 0) = /1" p1 which is the noncentrality

parameter. Since the MEWMA is a function of the off-target mean (=u1) only through

the noncentrality parameter, we can assume that gy = fe where e is the p component unit
vector e = (1,0,0,...,0). Thus, Z; can be partitioned into a one-dimensional random

variable Zy with non zero mean § and p — 1 dimensional random vector Z;p with zero

14



221

. s o L uct

Z1

N

ma

-UCL ucL

State:
iXx=mq+1
iy=0

Figure 2.2: States in the Markov Chain Used for the Off-Target Case of a MEWMA (Prabhu
and Runger, 1996).

mean, where § = (/S x ! [,l,)l/ 2. That is, ¢, = ||Z¢|| = (Z2 + Zso' th)l/ 2, The transitional
probability of Z;; from state i, to state j;, denoted by h(iz,j.) is used to analyze the

off-target control component. For iz, 5, =1,2,...,2mg + 1,

h(iz,jz) = P(Zy in state jz|Z;—1 in state iz)
= P[(—UCL+ (jo —1)g2a— (1 —7)ci,)/r —0) < X — 6 < (—UCL + jzg2 — (1 —1r)es, ) /r — 6)]
= ©((~UCL+jogs — (1 = r)ei.)/r = ) = @((<UCL + (ju — 1)ga — (1 ~ )es,)/r — 6

where @ is the cumulative standard normal distribution function and ¢;, = -UCL + (iz — 0.5)g2.

Let A denote the (2mg+1) X (2mq+1) transition matrix of Z;;. The transitional probability

of || Z¢2|| from state %, to state jy, denoted by v(%y, jy) is used to analyze the on-target control

15



components. For 45,7, =0,1,2,...,m;,

P{(jy —0.5)%g3/r2 < x*(p—1,¢) < (jy + 0.5)%g}/r?}  ifj, #0

Wiy, Jy) =
() P{x*(p—1 0.5)%g%/r? if jy = 0
{x*(p—1,¢) < (0.5)°g1/r*} if jy

where ¢ = [(1 — 7)iyg1/r]?. Let B denote the (mj + 1) X (mq + 1) transition matrix of
|| Zt2]|- Since Zy is independent of Z;a, the transitional probability of the bivariate chain

{Z11,||Zs2||} from state (is, 4y) to state (jg, jy) is

p[(izaiy)a (Jm)Jy)] = h(imjm)v(";yajy)'

Let P; be the transition matrix of the transient states of the bivariate chain. Using the
condition (i — (ma + 1))%g3 + i2g? < UCL? and calculating the Kronecker product of A
and B (Lee, 2009), Py can be calculated. See Appendix A.l for the definition of Kronecker
product and Appendix B.1 for the R code for the Markov chain algorithm.

As a result, the off-target average run length is given by

ARL; = lim §(I—-P;) 1. (2.6)

mi,Ma—+00

2.3 On-target run length analysis

Assume that the process is operating on-target. Following Prabhu and Runger (1996), the

Markov chain methods for the MEWMA control chart leads to
P(N>n)= lim s§P"1,n=0,1,2,... (2.7)
mi1—+oco

where N is the run length of the scheme, that is the number of runs until the false signals
for the first time. Here s is the starting probability vector. Py is the (m; + 1) x (mq + 1)

transition matrix for the Markov chain, and 1 denotes a vector of 1s of the dimension
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ma+ 1. It turns out that the convergence is quite fast with values of 10 to 15 for my, giving
satisfactory results. In this thesis, we used m; = 25. Then, the probability mass function

for the run length N is

fln)=P(N=n) = P(N>n-1)—P(N >n)
= S,P()n_l]_ — S,P()nl

= P Y I - Py)l, n=12,...

where Pg® = I and I is the (m1 + 1) X (mq 4 1) identity matrix. The on-target run
length distributions are provided in Figure 2.3. Tt is observed that the on-target run length

distribution is skewed to the right (positively skewed).

On-target run length distribution On-target run length distribution
0 I
g 8
o — ARL=200 g1 — ARL=200
ARL =300 ARL = 300/
ARL =500 ARL =500/
=
S 3
< S
@
g 4 38
] 4
Zz s Z 3
g 3
£ £
b:] =4
& 8 & §
o o
8 g 1
=] o
I~ g
8 - g 4
< 1] T T ) T L L T T T T T
0 100 200 300 400 500 ] 100 200 300 400 500
Run length Run length
(@) (b)

Figure 2.3: On-Target Run Length Distribution for MEWMA with ARLy = 200, 300, 500
and (a) r = 0.1 and (b) r = 0.3.

Let us consider the situation that the process is operating on-target and the process

mean is g = pg. Since Equation (2.7) is the survival function of N, we can use it to derive
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E(N). Thus, the on-target average run length (ARLyg) is

oo

ARLo = E(N) = _nf(n)

n=1

= 1f(1)+2f(2)+3f(3) +4f(4) +

= [f(1)+f(2)+f(3)+f( )+ 1+ F@+ )+ O+ 1+ )+ +- ]+

= an)+zf<n>+zf = P(NZ1)+P(N22)+ PN 23)+

[oe)
= ZP(N >n) = Zs’PO“_ll =5 (ZPO"_1> 1=s'I+Py+P?+---)1
n=1

n=1 n=1

= §'(I—Py) 1.

An alternative way to derive E(N) is presented in Appendix A.2.4.1.
The variance of run length (=V RLg) when the process is operating on-target also can

be derived as a closed form (See Appendix A.2.4.2).

VRLy = Var(N) = E(N?) — [B(N)]?
= 25'Py(I — Py) 21+ 8" (I — Po) "1 — [¢/(I — Py)"11)?

= 25 Py(I — Po) 21 +s'(I — Po) '1[1 — &'(I — Py)11]. (2.8)

2.3.1 Moments of on-target run length

In the previous section, we derived the first and second moments of the distribution of run
length. The higher moments also can be derived by the same approach. In particular, the
third and fourth moments are used to measure skewness and kurtosis of the run length

distribution respectively. The third moment of N is

E(N®) = 65 Py*(I — Po) ™1+ 65’ Po(I — Po) 1+ &'(I ~ Po) ™1

(See Appendix A.2.4.3).
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Skewness is the degree of asymmetry of a distribution and it is the standardized 3rd central

moment of run length N. It is defined as

_ B[N — )]

5 , Where o is the standard deviation.
o

T
We compute

E[(N — p)®] = B(N®) — 3pE(N?) 4 244°
= &6 Py’ (I — Po) 2 +6Py(I — Po) >+ (I — Py)™ |1
— 3(s'(I — Po) '1)[26' Po(I — Po) 1+ &'(I — Py) 1]

+ 2(s'(T - Py)~11)°.
Thus, the skewness of the on-target run length distribution is

11 = {8"6P*(I — Po)™ + 6Py(I — Po) "+ (I — Po) |1 — [s'(1 — Py)™"1]
(65" Po(I — Po) ™21 +3s'(I — Pp) ™11 —2(s'(I — Py)'1)%]}

/(28" Po(I — Po) ™1+ 8'(I — Pp)'1[1 — s'(I — PO)—l])s/z_
The fourth moment of N is

E(N%) = 245’ Py3(I — Pp) ™1 + 365" Po®(I — Po) 314 148’ Po(I — Py) ™21 + s'(I — Pp)~'1

(See Appendix A.2.4.4).

Kurtosis is a measure of the flatness of a distribution and it is the standardized 4¢h central

moment of run length N. It is defined as

- BV —
0'4 '
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‘We compute

B[(N — )] = B(N") = 4- uBE(N®) + 6 - p’ B(N?) = 3 p*
= pa—p(4p3—6-pup+3-4°)
where, 4 = E(N4), uz = E(N3),and py = B(N?).

Thus, the kurtosis of the on-target run length distribution is

_pa—p(dps—6-pp+3-40)
K = 3 .
(2 — p?)

Additionally, excess kurtosis is k — 3 = #4=£ (4(5;:3'2‘)?“3'”3) — 3. All the moments de-
rived above can be verified numerically by using the probability mass function. For ex-
ample, given the condition that H = 12.7378, ARLy = 200,7 = 0.1 and p = 4, E(N?) =
76,432.59, E(N3) = 43,757,943, and E(N*) = 33,401,107, 743 are obtained respectively.

Table 2.1 shows the approximation of the moments.

m 21 (1) 1 7 f () et 7 f (1) et 1 f ()
100 19.43 1,257.93 92,355.41 7,290,654.00
500 147.33 37,242.22 11,769,166.00 | 4202406879.00

1,000 193.39 68,358.97 | 33,581,291.00 | 20075724754.00

5,000 200.00 76,432.59 | 43,757,942.00 | 33,401,104,540.00
10,000 200.00 76,432.59 | 43,757,943.00 | 33,401,107,743.00
20,000 200.00 76,432.59 | 43,757,943.00 | 33,401,107,743.00

Table 2.1: Approximation of moments of on-target run length.

2.4 Off-target run length analysis

In section 2.3, we studied the on-target run length distribution. In this section, we will

see the off-target run length distribution. As mentioned earlier, Prabhu and Runger (1997)
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evaluated the off-target performance by assuming that the process was out-of-control at the
beginning of operation (the zero-state case). The analysis in this thesis extends the above
method to the steady-state case that is where it is possible for a delayed shift to take place;
that is, it is not necessary to happen at the beginning. Thus, we will generalize the notion

of the off-target case.

Counsider the situation where the process goes off-target from p = pp to = p3 at the

time ¢t = 7 and the change sustains. Thus,

Ho, t=1,2,...,7—1,
IJ, =
Ui, t=71,74+1,....
Thus, the transition matrix P changes as well according to
P P(), t=1,2,...,7’—1,
Pl, t:’r,T—}-l,‘...
Now, let us consider the situation where the process mean stays in-control until t = 7—1
and it shifts out-of-control from ¢ = 7 on.
As a result, the survivor function of run length N becomes

s'Po"1, n=1,2,...,7—1,
fs(n)=P(N >n)=

sSPy P, =17 4+1,....

This leads to the following probability mass function for V.
Forn=1,2,...,7—1,

flny=P(N=n)=P(N>n—-1)—P(N >n)=sP" '1-sP"1

= §'Py" I - Py)1.
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For n =T,

f(n) :P(N:T) :P(N>T—1)—P(N>7—) :S/POT—ll_s/POT_lpll

= Py (I - Pl
Forn=7+1,74+2,743,...

fln)=P(N=n)=P(N>n—1)—P(N >n)=sP P71 s p-tpn7+1

= §P1PT(I - Py)l.

Note that the latter formula also applies to n = 7. Thus the probability mass function

of run length N is

s' Py (I — Py)1, ifn=1,2,...,7—1,
f(n)=P(N=n)= (2.9)
Py 1P T(I - Py, fn=7,7+1,....

Note that when 7 = oo or 7 = 1, then the probability mass function reduces to the following

forms.

sSP Y I - Py)l, ifr=o00
sP"i(I—-pP1, ifr=1

This result is consistent with what Prabhu and Runger (1996) proposed. Thus, Equation
(2.9) is the general form of the probability mass function of run length N. Using Equation
(2.9), the distribution of run length N can be plotted for different values of 7. Figures 2.4
and 2.5 show how the distribution of the off-target run length moves as 7 value changes
given the condition that ARLg = 200 and 500 respectively.

Figures 2.6 and 2.7 show the off-target run length distributions for the MEWMA when

the process mean has shifted at 7 = 50 and 7 = 100 for varying values of smoothing
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parameter r given that ARLy = 200 and 500 respectively. Notice that the distribution
shows a higher peak as a smaller smoothing parameter r is used.

Figures 2.8 and 2.9 show the off-target run length distributions for the MEWMA when
the process mean has shifted at 7 = 50 and 7 = 100 for different values of mean shift §
given the condition that ARLg = 200 and 500 respectively. Notice that the distribution

shows a higher peak as the amount of shift (¢) increases.
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Figure 2.4: Off-Target Run Length Distribution for MEWMA when Process Mean has
shifted by 6 = 0.5 with ARLg = 200, r = 0.1 and (a) p =2 and (b) p = 4.
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Figure 2.5: Off-Target Run Length Distribution for MEWMA when Process Mean has
shifted by ¢ = 0.5 with ARLy = 500, r = 0.1 and (a) p=2 and (b) p = 4.
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Figure 2.6: Off-Target Run Length Distribution for MEWMA when Process Mean has
shifted by 6 = 0.5 at 7 = 50 with ARLg = 200 and (a) p =2 and (b) p = 4.
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Figure 2.7: Off-Target Run Length Distribution for MEWMA when Process Mean has
shifted by § = 0.5 at 7 = 100 with ARLo = 500 and (a) p =2 and (b) p = 4.
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Figure 2.8: Off-Target Run Length Distribution for MEWMA when Process Mean has
shifted at 7 = 50 with ARLg = 200, r = 0.1 and (a) p =2 and (b) p = 4.
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Figure 2.9: Off-Target Run Length Distribution for MEWMA when Process Mean has
shifted at 7 = 100 with ARLg = 500, r = 0.1 and (a) p =2 and (b) p = 4.

Table 2.2 shows the computed values of the off-target average run length (ARL;) and

the probability of false alarm for various 7 values, where the probability of false alarm is

defined as

T—1
Probability of false alarm = Z f(n).

n=1

It also contains the effective average run length, ARL; — 7 which is the average number
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of runs needed to detect a change in the mean vector after it has occurred. Table 2.2 is

constructed given the condition that ARLy = 500,p =4,r = 0.1 and § = 0.5.

Table 2.2: Probability of false alarm, ARL; and effective ARL; for each transition point

().

7 | Probability of false alarm | ARL; | Effective ARL;
1 0 51.7425 50.7425
10 0.0024533 59.1293 49.1293
15 0.0094964 63.5308 48.5308
20 0.0185961 67.9431 47.9431
25 0.0282821 72.3270 47.3270
30 0.0380723 76.6711 46.6711
35 0.0478228 80.9726 45.9726
40 0.0574919 85.2307 45.2307
45 0.0670679 89.4456 44.4456
50 0.0765480 93.6180 43.6180
55 0.0859324 97.7478 42.7478
60 0.0952215 101.8356 41.8356
65 0.1044162 105.8819 40.8819
70 0.1135175 109.8871 39.8871
75 0.1225263 113.8516 38.8516
80 0.1314436 117.7758 37.7758
85 0.1402702 121.6602 36.6602
90 0.1490071 125.5050 35.5050
95 0.1576553 129.3108 34.3108
100 0.1662156 133.0779 33.0779

Furthermore, the off-target average run length ARL7 can be expressed as a closed form.

ARL; = E(N) = "nf(n) = z_:nf(n) + Y _nf(n)
n=1 n=1 n=t

7—1 [ore]
= Y ns'P" I - Po)1+ > ns' Py P T(I - Py)l
n=1

n=r1

7—1 o
= g { (Z nPonA) (I-Po)+ P (Z nPln_T> (- Pl)} 1

n=r

= {s'[I — Py I - Py) M1+ Py (I - Pl)_l}l (Appendix A.2.5.1). (2.10)
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Alternatively, we can derive the off-target average run length ARL; by using the law

of total probability . That is, E(N) can be written as follows.
E(N)=EBE(NIN <7)P(N <7)+ENIN > 7)P(N > 7).

We know that P(N > 7)=P(N >7—1)=8'Py" 1 and P(N <7)=1- 8Py '1.
The conditional distribution of N, given that N < 7 is defined as
f(n|N <71)= _Jfm) n=12,--- ,7—1 provided that P(N <7) >0
P(N < 1) Y

1
= ﬁPT—_lls'[I +(r—1)Py" — TPy | (I — Po)™*1  (See Appendix A.2.6).
_ &P,

Thus,

E(N|N <7T)P(N <71)= ST+ (t—=1)Py — 7Py I — Py) '1(1 - s'Py" 1)

1-— S,POT_l]_
= ST+ (t—1)Py — 1P (I - Pp) 1.

Now, the conditional distribution of N, given that N > 7 is defined as

f(n|N >71)= —P({\f(n>) j n=TT +1,--- provided that P(N > 7) > 0
=T
1
= TPT——ll"SI[POT_l(I —P) '+ (r—=1)Py" Y (See Appendix A.2.6).
s I

Thus,

E(N|N > 7)P(N > 1) = '[Pyt I — P1) 4 (1 = DRy Y18’ Py 1)

s'Py 11
= &Py 1(I—P) 4 (r— )Py YL
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Therefore,

ARI; = E(N) = E(N|N < 7)P(N < 1) 4+ E(N|N > 7)P(N > 1)
= S[I+(r-1)Py —7Py" I - P) "1+ &P ' I-P) '+ (r—1)P" 11
= I+ (- 1P —7mP " '+ (r— )Py I - P)|(I - Po) 1+ s'P" (I - P)™ 11

= S/[I - POT_I](I — P())_ll + S’POT_l(I — Pl)‘l]_.

We obtain the same result as Equation (2.10).

As a special case, Equation (2.10) reduces to the following forms.

s'(I - P11, ifr=1
ARL; =
s'(I — Py)™'1 = ARLg, if 7 = oo, since P® = 0.

Note that above results agree with past studies by Runger and Prabhu (1996). Hence,
Equation (2.10) is a generalization of of the on- and off-target ARL.
The off-target variance (VRL1) of N is

VRL; = Var(N) = E(N?) — [E(N))?
= S {Py2l — (7 — D)TPy" 2+ 2(1 —2)7Py" ' — (r — 1)(1 — 2)Po"|(I — Py) 2
+ P IRP(I - P) 4 2(r — )P - Pt r(r = DI+ [T - Py (I - Py) 7t
+ PTMI-P) T M [T - Py I - Po) "1+ 8P (I - Py)11)?

(See Appendix A.2.5.2).
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As a special case, when 7 = co,

VRL; = Var(N)
= 28'Py(I — Po) 21+ 8'(I — Po) "I — s'(I — Py)™!1]
= 28 Py(I — Py) 21+ 8'(I — Py)™ 11 — [s'(I — Pp)'1)?

= VRLy.

Note that the result is equivalent to the on-target variance (See Equation (2.8)).

when 7 =1,

VRL; = Var(N)
= §{P2I —2D)(I - Py) 24+ 2P (I-P) ?+I+(I—-P) ' -1}
— [F{I-P)I-Po)' +(I-P) ' —I}1]?

= 28P(I~P) 214+ T—P) 1~ [s'(I—P) 112

2.5 Comparison of MEWMA and Shewhart control chart

Suppose that X is a random variable and is the number of Bernoulli trials until the first
success is observed, supported on the set {1,2,3,...}. Then the probability mass function
of a geometric random variable X with success probability « is defined as
PX=z)=(1-a)*'a, =1,2,3,.... As we discussed earilier, the probability mass
function of the on-target run length and the average run length for the MEWMA control

chart are defined as

f(n)=P(N=n)=8I - P)P," 1, n=1,2,...

ARLg = E(N) = s'(I — Py)"'1 respectively.
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The mean, variance, skewness and excess kurtosis of a geometric distribution with proba-

bility « are given in Table 2.3.

Table 2.3: Mean, variance, skewness and excess kurtosis of geometric distribution.

Geometric distribution with probability «

Mean
1

(67

Variance

l-«
a2

Skewness
2—a
11—«

Excess kurtosis
2
[874
6 + 11—«

Comparing the two distributions (i.e., the geometric distribution and the distribution

of run length N) by matching the means leads to interesting results. For a given starting

vector s, a transition matrix Py and a control limit H, then determine the o such that

E(X) = ARLy. As a result, we have o = A}%Lo =

1
s (I—Pp)- 11"

Table 2.4: Comparison of MEWMA run length distribution and geometric distribution with

ARLg = 200.
p =4, ARLy = 200, prob = 0.005
r 0.1 0.5 0.7 0.99 1 geometric dist
Variance 36432.61 | 39284.82 | 39593.28 | 39799.74 | 39800 39800
Skewness 1.998662 | 1.999953 | 1.999969 | 1.999979 | 2.000006 2.000006
Excess Kurtosis | 5.994399 | 5.999810 | 5.999917 | 5.999963 | 6.000025 6.000025

Table 2.5: Comparison of MEWMA run length distribution and geometric distribution with

ARLqy = 500.
p =4, ARLgo = 500, prob = 0.002
T 0.1 0.5 0.7 0.99 1 geometric dist
Variance 239636.3 | 248085.6 | 248916.5 | 249499.2 | 249500 249500
Skewness 1.99973 | 1.999992 | 1.999996 | 2.000001 | 2.000001 2.000001
Excess Kurtosis | 5.998916 | 5.999968 | 5.999986 | 6.000004 | 6.000004 6.000004

Figures 2.10 and 2.11 illustrate that there is not much difference between the on-target

run length distribution of a MEWMA and a geometric distribution by matching the mean
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Figure 2.10: Comparison of on-target run length distribution with ARLg = 200 and geo-
metric distribution with prob = 0.005 and (a) p = 2 and (b) p = 4.
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Figure 2.11: Comparison of on-target run length distribution with ARLgy = 500 and geo-
metric distribution with prob = 0.002 and (a) p = 2 and (b) p = 4.

unless the smoothing parameter r is very small. It is also observed that as the smoothing
parameter r gets closer to 1, the on-target run length distribution for the MEWMA is
becoming the geometric distribution. That is, as r — 1, then Zy = (Xt — po) + (1 —
r)Zs—1 — Xt — o, which is the multivariate Shewhart control chart. On the other hand,
as r — 0, then Zy — Z;_j1, which means that all information used is past information.
Thus, when r is 1, the on-target run length distribution for the MEWMA is equivalent to

the geometric distribution. The variance, skewness and kurtosis of the two distributions are
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also computed in the Tables 2.4 and 2.5.
Now, let us consider the off-target distribution of the two control charts (i.e., the
MEWMA control chart and the Shewhart control chart) for a given smoothing parame-

ter 7 and ARLgy. The general form of the multivariate Shewhart statistic is defined as

T? = (X¢— po) 2 Xt — po), wheret=1,2,...

and follows a chi-square distribution with p degrees of freedom when the process is on-target
and X follows a multivariate normal distribution (Aparisi, 2004).

Since the on-target run length distribution for the Shewhart control chart follows a
geometric distribution, the off-target run length distribution for the Shewhart chart can be

constructed as follows.

g(n)_ pO(l_pO)n_17 77'21727"' aT_1>
(1 —po)™1pi(1 —p1)" 7, n=7r717+1,...

where pg is the probability that any point exceeds the control limits when the process is
in-control while p; is the the same probability when the process is out-of-control. Using the

probability mass function, the out-of-control ARL; when the mean shift takes place at 7 is

ARLy =) ng(n) = in(po(l —p0)" )+l —po)" 'mi(1 —p1)" 7

n=1 n=1 n=r
4+ -D-po) =71 —po)" ) r—1 1—-pg
- ) S (R
A+ =D —p)" = r(1—po) = (r = 1)1 —po— 1)1 —po)" ) N (1—po)™!
B Po j41
_ (= =-p)t+(r—-1Q —po)" ") + (1—po)™*

Po ”n
S ot Gl ) 0 B 10 AP P
Po yal

33



As a special case, ARL; reduces to the following forms.

1/po, ifr=00
ARL; = /po

1/p1, ifr=1.

which is equivalent to the mean of the geometric distribution with probability pg and p1

respectively. Additionally, the off-target V RL; when the mean shift occurs at time 7 is

VRL; = Var(N) = E[N(N — 1)] + E(N) — E(N)?
= py (1 =po)[2 — (1 — )7(1 —p0)™ > +2(r = 2)7(1 — po)™ " — (7 = 1)(7 = 2)(1 —po)"]
+(1 = po) 21 = pr)py 2+ 2(m = (L = p1)py "t +7(7 — 1))

+H[(1 = =po) o + (L —po) "o 1 - (1= (T =po) H)pg" + (1 —p0) o )]
As a special case,

(1-po)/p, ifT=00
(1 —pl)/p%, fr=1

VRL) =

which is equivalent to the variance of the geometric distribution with probability pg and p;
respectively.

Now, let us compare the performance of the MEWMA control chart with that of the
multivariate Shewhart control chart when the mean shift happens. For example, we pick
r = 0.1 (since 0.1 is the value most often used) and determine the MEWMA control limit
that satisfies ARLg = 200. Then consider the geometric distribution matching with the
same mean ARLg = 200. This is the geometric distribution with parameter pg = ﬁLo =
0.005. Determine the control limit for the Shewhart control chart with ARLg = 200. Notice
that the noncentrality parameter of the multivariate Shewhart control chart is defined as
¢ = (1 — 1o)'T% (1t — po) while the noncentrality of the MEWMA is defined as § =

(1 — po)' 2% (1 — p0))'/2. That is ¢ = §2.
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Figures 2.12 — 2.14 show the comparison of the out-of-control ARL, values for the two
distributions for different values for § and different values of . It is well known that the
MEWMA control chart is effective in detecting small shifts when the shift happens at 7 =1
(Lowry et al., 1992). Just as in the case 7 = 1, the MEWMA control chart outperforms the
Shewhart control chart as 7 increases until the mean shift ¢ is 1.5. However, when the large
mean shift takes place (i.e., 0 is greater than 1.5), the Shewhart control chart is as good as
the MEWMA at detecting large shifts in the mean or performs slightly better. Additionally,
as T increases (i.e., the mean shift is delayed more steps), the MEWMA control chart loses

its sensitivity to a small mean shift.

MEWMA vs Shewhart chant, ARLO=200, 5 = 0.5 MEWMA vs Shewhart chart, ARL0=200,8 = 1.0
o | ./r.’rk W |
g g
£ £
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Figure 2.12: Off-Target ARL Comparision of MEWMA and Shewhart with ARLg = 200
(a) 6 =0.5 and (b) § = 1.0.
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Figure 2.13: Off-Target ARL Comparision of MEWMA and Shewhart with ARLg = 200
(a) d =1.5 and (b) 6 = 2.0.
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Figure 2.14: Off-Target ARL Comparision of MEWMA and Shewhart with ARLy = 200
(a) 6 = 2.5 and (b) 6 = 3.0.
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2.6 Analysis of optimal smoothing parameter r

When a shift has taken place in the process mean, it is very important to detect the
occurrence of the change as early as possible. In the MEWMA control charts, smaller
values of r are more effective in detecting small shifts in the mean (Lowry et al., 1992).
Thus, for a given ARLg, we need to find the smoothing parameter that is associated with
the smallest ARL;. First, let us consider the case that the process goes off-target at the
beginning of operation (7 = 1). Tables C.5 - C.7 in Appendix C present optimum MEWMA
control charts for various shifts (¢) and in-control values of ARLq (from 200 to 1,000). The
smoothing parameter corresponding to a minimum ARL; for a given ARLg can be obtained
by using the Markov chain algorithm and the partition method (The R code is provided in
Appendix B.4).

The partition method generates a combination of a smoothing parameter r and a control
limit H satisfying a given ARLg and find the optimal smoothing parameter. The basic idea
of the method is as follows. For a fixed smoothing parameter r, the method inspects
the middle point of a lower control limit Hjy, and a upper control limit H,, such that
ARLp,,, < ARLy and ARLy,, > ARLg. Once Hypg, the middle point of two control
limits is obtained, ARL can be calculated by using the Markov chain algorithm. If the
difference of ARLg and the newly computed ARL is less than a very small number (i.e.,
€ < 1073), the smoothing parameter r and the control limit H,,;q is a pair that can satisfy
the given ARLg. Otherwise, keep doing the previous procedures until a sought pair is found.
If this task is carried out until the method covers a whole range of smoothing parameter r
(0 < r £ 1), a number of combinations of r and H can be obtained. With the combinations
obtained, ARL; values can be calculated for a given shift §. Then, the smoothing parameter
r for which ARL; is the smallest can be identified.

Now we are interested in how the optimal value of r behaves as transition point 7

changes. Figures 2.15 and 2.16 show that the optimal values of r increases as T increases in
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each case. It is observed that the optimal parameter r changes more slowly when the AR
value gets bigger or p increases. That is, when we have smaller ARLy and p, the change of
transition time gives a huge impact on deciding the optimal smoothing parameter r. For
instance, when we have ARLy = 500 and p = 10, the smoothing parameter changes very
little (from 0.10 to 0.13) as 7 changes from 1 to 200 while it changes from 0.14 to 0.26 in
case we have ARLy = 200 and p = 2. Notice that the usual practice is to pick the optimal
value for 7 = 1. However, this is unrealistic since most process starts operating well for a

while and later on out-of-control slippage occurs.
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Chapter 3

Application to semiconductor

manufacturing
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Figure 3.1: Semiconductor fabrication process.

Figure 3.1 illustrates the process steps involved in patterning of the transistor gate. A
polysilicon layer is formed on a silicon wafer (2). The wafer is coated with a photoresist
which is sensitive to ultraviolet light (3). A mask pattern is exposed and the photoresist

is developed (4 and 5). By using gases in a plasma through the resist pattern and re-
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moving unwanted areas of film (etching), a circuit pattern is made (6 and 7) (Quirk and
Serda, 2000). Among a number of semiconductor manufacturing processes, the patterning
of polisilicon gates has been the most important and challenging process in semiconductor
manufacturing since it defines the success of semiconductor manufacturing. The linewidth
of a gate transistor before etching is called the developed inspection critical dimension (DI
CD) and it is called the final inspection critical dimension (FI CD) after etching (Joung et
al., 2004). As mentioned before, the tighter control for the DI CD and FI CD is required
since the degree of integration on a chip increases. Notice that since optical lenses are
used in photolithography, it is impossible to have the best focus over the entire wafer area
because silicon wafers have rough surfaces and they also have bow and warpage. Therefore,
in this study, we assume that we have the best focus in the central area of a wafer, which
is normally happening in semiconductor manufacturing. Additionally, we do not expect
any process particles to happen. Then we do a simple simulation to see how the MEWMA
control chart performs.

Suppose X = (Xi, X2) is a 2 x 1 random vector representing the DI CD (X;) and
the FI CD (X3). The quality characteristic Xy (DI CD) is normally distributed with mean
upr and standard deviation opy, where both ppy and opr are known and correspond to
in-control production (Greer et al., 2003). Moreover, the statistical model between the final
inspection critical dimensioin (FI CD) and the developed inspection critical dimension (DI
CD) is Xy = a+ X1+ ¢, where € is a random variable representing noise or environmental
factor affecting FI CD and € ~ N(0,02). Thus, the random vector, X can be expressed as
X = (X1, X3) = (DI CD, FI CD)' = (X1, + X1 +¢€)'. Suppose that oc < opr and € is
independent of Xj.

The mean and variance of X5 and the covariance between X; and X5 can be calculated
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as follows.

E(Xy)=E(a+pX1+e)=a+BE(X1)+ E(e) = a+ Bupr

Var(Xy) = Var(a+ BX; +€) = f2Var(X)) + Var(e) = f2o%; + o2
The covariance between X1 and X5 is

0%,.5, = 01 = Cov(X1, X3) = Cov(X1, 0+ BX1 +¢)
= Cov(X1, @) + Cov(X1, BX1) + Cov(X1,€)

=04 BVar(X;) + 0= Po%;. (since Xy is independent of ¢)

Therefore, the random vector, X is distributed as a bivariate normal distribution as follows.

2 2
o o KDr
DI DIFI
XNN(“O,Zx),WheI'e Yx = and po =
2 2
Oprrr  9F1 KFI
Furthermore, the covariance matrix, X x is
2 2
9pr Bopr

Yx =
,BJ%I ,820%1 + o2
Let n be the sample size. In semiconductor manufacturing, normally several wafers
are selected from a run to measure DI CD and FI CD at regular time intervals when the
process is thought to be in-control. For the purpose of simulation, we assume that five
wafers are selected from a run (n = 5) and the mean of five measurements is used. We also
make use of experimental results from the U.S patent (7,541,286 B2) suggesting parameters
values & = —0.03 and 8 = 0.98. Suppose that X; is distributed as N(130,14.78) and € is

distributed as N(0,1), then the distribution of the sample mean X is
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_ E?lej 130.00 2.956 2.897
X =" N po= B = .
127.37 2.897 3.100

Figures 3.2 - 3.5 show the results of simulation to compare the performance of the
MEWMA chart and the multivariate Shewhart control chart with the condition that the
on-target ARL = 200 with p = 2 and » = 0.1. The control limits for a MEWMA and a
multivariate Shewhart control chart are 8.66 and 10.6 respectively. That is, the multivariate
Shewhart control chart issues an out-of-control signal when T2 = (X¢— o)’ E}cl (X¢—po) >
10.6, whereas the MEWMA chart procedure signals when Z;' ZEIZt > 8.66, where Xz, =
5= x. Suppose that the process is initially in-control and a shift in the mean happens
at 7 = 20. When a small shift happens, it is observed that the MEWMA chart is superior
to the multivariate Shewhart control chart. Otherwise, both control charts perform well.
For example, when § = 0.5 (Figure 3.2), the MEWMA issued a signal at 53th run while no
indication of an out-of-control condition was observed for the multivariate Shewhart control
chart. When 6 = 1.0 (Figure 3.3), an out-of-control signal was generated at 30th run for
the MEWMA while the multivariate Shewhart chart detected the shift at 43th run.

Now, when a relatively big shift happens (§ = 2.0 and 3.0), both control chart issued
a out-of-signal as quickly as possible (Figures 3.4 and 3.5). The above simulation results

show good agreement with previously obtained results in Chapter 2 section 5.
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Figure 3.2: Comparision MEWMA and Hotelling control chart with 6 = 0.5 (a) MEWMA
control chart and (b) Hotelling control chart.
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Figure 3.3: Comparision MEWMA and Hotelling control chart with 6 = 1.0 (a) MEWMA
control chart and (b) Hotelling control chart.
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Figure 3.4: Comparision MEWMA and Hotelling control chart with § = 2.0 (a) MEWMA
control chart and (b) Hotelling control chart.
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Figure 3.5: Comparision MEWMA and Hotelling control chart with § = 3.0 (a) MEWMA
control chart and (b) Hotelling control chart.
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Chapter 4

Propagation of variability

4.1 Introduction

So far, we have discussed a shift in the mean for the process monitoring. Additionally,
throughout the manufacturing processes, it is also important to know which stage con-
tributes most to variation. In terms of analysis of variation transmission in manufacturing
processes, Lawless et al. (1999) discussed methodology for understanding how variation is
added and transmitted across the manufacturing process. Let us assume we have discrete

manufacturing stages as follows.

Input Output

Stage 1 Stage 2 Stage K

Figure 4.1: Manufacturing processes.

Let X be a quality characteristic of the output and X3 be the measurement at stage k.
We have a target value for the quality characteristic but there is variation in the product.
That is, there is variation in the quality characteristic, X. As the measurement of interest
X passes through the above processes, each step makes a contribution to the variance of

X. The objective of this chapter is to understand the amount of variation attributable to
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different stages of a manufacturing process and to introduce an extension of the variation
transmission model suggested by Lawless et al. (1999) by using a simple linear regression

model.

4.2 Variation transmission model

Figure 4.2 illustrates how the variation transmission model is applied to semiconductor
manufacturing. For simplicity, we use two steppers and one etcher. Y7 denotes the DI CD
while Y5 denotes the FI CD. The random variable Y5 is a linear function of an independent
variable Y; such that

Yo=a+pY1+e (4.1)

where « and f§ are parameters and the random variable e ~ N (0, 0124). We assume that the

I E%E:?Ee's“ T

Stepper #1 S~ .

Tl - _-a:':g
Measurement #1 T &75:—9_1: Wik Measurement #2
=5 .

— (=DICD =Yy o, T " (=FICD=Yy)

- Etcher
E .Qy-.; ,—”‘
é | PPross
N (-
i1

s |
Stepper #2

Figure 4.2: Photo and etch stages in a gate patterning process in model 1.

DI CD is measured right after photo processing as Y7 while the FI CD is measured after

etching process as Y3. By defining o2 = Var(Y;), we can obtain from Equation (4.1)

9 422, 2
oy = 01 + 04
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where 3202 is the variance transmitted through the etcher and ¢% is the variance added by
the etching process. Let us define Y1; = Y7|Z; = j where Z; is a random variable such that
Z1 = j if a wafer is processed by a stepper j. u1 and o2 are the mean and variance of the

first measurement Y7 and it can be expressed as

2
1
=g > (4.2)
i=1
1< 1<
=3 > ot + 5 > (g — m)? (4.3)
j=1 j=1

where p1; = E(Y1]|Z1 = j) and a%j = Var(Y1|Z1 = j) (See section A.2.1 in Appendix).

In addition, using Equations (4.2) and (4.3), the mean and variance of Y5 (=FI CD) are

po = E(Y) = ( ZMU)

2
1 2 1 2 2
Var(Yz) = (52_:013‘ + EZ(MU — p1) >+ oA
N — — ~_, Variance added

TV
Variance transmitted

In this simple case, the variance added by the etch operation is determined completely by
one etcher. The downside of this model is that possibly the etcher will be overloaded since
it is the only machine running. Since many etchers and steppers are involved for mass
production in semiconductor manufacturing, the model can be extended with the addition
of etchers. Intuitively, it would be more complicated if more etchers were involved in the
etching process. For simplicity, we have two steppers and two etchers (See Figure 4.3).
Let us define Y5, = Yo|(Z1 = 4, Z2 = k) and Z3 is a random variable such that Z; = k
if a wafer is etched by etcher k. Thus, Y5, is the measurement of polysilicon gate line
width (FI CD) processed by stepper j and etcher k (j = 1,2;k = 1,2). Since we have four
possible combinations of steppers and etchers working in a pair, we can think of four linear

equations as follows.
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Figure 4.3: Photo and etch stages in a gate patterning process in model II.

Let us assume that

Yo, =¥|(Zi=1,Zs =1) = a1 + f1Y11 + e1, where e; ~ N(O,oil)
Yo, = Yo|(Z1 = 1,23 = 2) = ag + (2Y11 + eg, where ez ~ N(0, 01242)
Yaou, = Yo|(Z1 = 2,22 = 1) = a3 + fsY12 + ey, where ez ~ N(0,0%,)

Yo, = Yo|(Z1 = 2,29 = 2) = ag + (4Y12 + €2, where €4 ~ N(O,aiz)

where «; and (; are parameters, i = 1,2,3,4 and 0124;; is the variance added by etcher £,

k =1,2. The expected value of Y3, from each combination is

poyn = E(Yay,) = EY2|(Z1 =1,Z2 =1)] = oq + Prpn
pas = E(Yay,) = BYa|(Z1 = 1,73 = 2)] = ag + fopns
pay = E(Yay,) = EY2|(Z1 = 2,22 = 1)] = a3 + B3p12

K299 = E(Y222) = E[Y2,(Zl =2,Z9= 2)] = a4 + Bajir2-
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The variance of Ygik from each combination is

agu =Var(Ys,) =Var[Ya|(Z1=1,Z2 =1)] = 18%0%1 + 01241
0%12 = Va’r(l{?lz) = Va'T[Y2((Z1 =1,29= 2)] = ﬁ%U%I + 0-1242
0321 =Var(Ya,) =VarlYa|(Z1 =2,Z,=1)] = :832.0%2 + 01241

0-%22 = Va’T(S‘/:?QZ) = Var[}é'(zl = 27Z2 = 2)] = ﬁzo-%Z + 0—1242‘

We assume that workload is evenly distributed through the combinations mentioned
above and each stepper (etcher) is independent of the others, respectively. Thus, the ex-
pected value of Yy (FI CD) is

4

(Z a; + p (B + B2) + (B + ,34)) = p2  (See section A.2.2 in Appendix).
i=1

E(Ys) =

e

Thus, the variance of Y3 is

Var(Yz) = B(Y3) — [E(Y2)]”

2
1
= Z{Ufl (B +53) + 012(B5 + B) + 2 o, + (a1 + Prpas)? + (a2 + Bapn)® + (03 + Papiaz)”
k=1
1

+(as + ﬁ4ﬂ12)2} — E((Oq + ag + a3 + aq) + p11(B1 + B2) + pa2(63 + ﬂ4))2

(See section A.2.2 in Appendix).

Furthermore, we can compute the overall variance added by the etching operation as well.

The overall variance added by the etching operation can be obtained by subtracting the
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variance transmitted through the etching operation.

o = Var(Yz) — f%07
2

= i{‘f%l(ﬁ% +05) + 01285 + %) + 2203419 + (c1 + Bip11)? + (oo + Bopa1)? + (a3 + Bapi12)?
k=1
+(aa + ﬂ4#12)2} - 1_16 (a1 + g + a3 + cua) + pa1(Br + B2) + pa2(Bs + Ba))* — 0%

2
1
where 02 = E(Za%j + (p15 — M1)2)-
=1

The result shows that the variance of the random variable Y5 becomes more complicated
and cumbersome as the number of etchers in operation increases.

As a special case, if a stepper is paired with a specific etcher (for instance, stepper #1(2)
only works with etcher #1(2)), more simplified model can be constructed (See Figure 4.4).
Denote that Yy, is the measurement of line width (FI CD) processed by etcher &k (k = 1,2).

Suppose that

Yor =Y5|Z9 = 1= o1 + f1Y11 + €1, where e; ~ N(0, 01241)

Yoo = Y3|Z9 = 2 = ag + (2Y12 + ea, where  eg ~ N(0, 01242)

where o; and §; are parameters, ¢ = 1,2 and aik is the variance added by etcher k, £ = 1, 2.

‘We see that

pa1 = E(Y2|Zo = 1) = a1 + frpnn
poz = E(Y2|Zy = 2) = ag + Papus
o5 = Var(Ya|Zy = 1) = fio7) + 0,241

03y = Var(Ya|Z = 2) = 3075 + 04,
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étcher #1

Stepper #1
Measurement #1 Measurement #2
— (=DICD=Yy) - > (=FICD=Y,)

5‘}_:.: ________________________ > M'q:iiﬁ'],:g

! .
Slepper #2 Eicher #2

Figure 4.4: Photo and etch stages in a gate patterning process in model III.
If the workload is processed at equal proportion, E(Yz), Var(Yz) and o are

a1+ ag + Brpn + Bapiz

B(Yy) = 2
Var(Vy) = S bt Brote + S UA2k + > i (@ + Brra)?
e (o 4-i- Briik) (4.4)
ok = Sa1 Blod A3 UA2k + i (on + Brpsag)? {Zz:l(aklj ﬁkﬂlk)}2 _ g2
where o = ( Zalj + (1 — p1) )
=1

4.3 Numerical example

The following is a simple numerical example for the second case introduced in the previous

section. Suppose that we have

Yil(Z: = 1) = Y31 ~ N(130.2, 14.5)

Yi|(Z1 = 2) = Yip ~ N(129.8,15.0)
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and each stepper has capability of processing 1,000 wafers on a daily basis and move them
to a specific etcher and one measurement is captured from each wafer. We use the following

straight line equations to estimate parameters oy, as, 31 and G2 in equation.

Yo = a1 + Py

oo = G + Bayra.

For the purpose of simulation, we use the following equations but we pretend not to know

them.

Yo = —0.02+ 0.97Y11 + €1, where e; ~ N(O, 1.5)

Yos = —0.03 + 0.98Y12 + e, where eg ~ N(0,1.2).

Let us denote that Yy is the measurement of Y1 from stepper j for wafer k and Yajy, is the

measurement of Y from etcher j for wafer & (k=1,2,---,1000;7 = 1,2).
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Here are the estimates for parameters.

1000
o0 = Y (y11x — §11)%/1000 = 15.6328
k=1
1000
6% = > (y12k — §12)*/1000 = 15.1519
k=1
2 1000
57 = > (yije — §1)*/2000 = 15.4634
§=1 k=1
2 1000
53 => ) (ya5x — 72)*/2000 = 16.3839 (4.5)
=1 k=1
N 1000 1000 1000 1000 1000 9
pL= {1000 Z Y11kY21k — Z Y11k Z y2lk} / {1000 Z Yie — (Z yllk) } = 0.9692
k=1 k=1 k=1 k=1 k=1

&1 = fo1 — P11 = 0.0422

R 1000 1000 1000 1000 1000 )
B2 = {1000 Z Y12kY22k — Z Y12k Z yz%} / {1000 E Yoo — ( Z y12k> } = 0.9960
k=1 k=1

k=1 k=1 k=1
8y = G2z — Bagira = —2.1300
R 21000 21000 2 1000 2 1000 2 1000 )
B=12000) " yuause— D D> Yk D, D Usjk / 2000 "> i — (Z > yljk)
=1 k=1 j=lk=1  j=1k=1 j=1 k=1 =1 k=1
= 0.9711.

Now, by using Equation (4.4) and replacing the parameters by the estimates calculated
above, we obtain the estimate of Var(Ys) = 16.3622, which provides good agreement with
the result (4.5). The estimate of variation transmitted (§%5%) is 14.5825 and the estimate
of variation added (6%) by etching operation is 1.7798. Thus, in our numerical example,
the variance added by etching operation accounts for about 11% of the total variance of Y5.

It is observed that most contribution comes from Y7 (DI CD).
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Chapter 5

Conclusions

The multivariate exponentially weighted moving average (MEWMA) control chart is an
extension of the well-known univariate EWMA chart applicable where product quality is
characterized by two or more variables. It contains the well-known Shewhart chi-squared
chart as a particular case. Several aspects of the run length distribution not studied before
are discussed in detail in this thesis. The methods are applied to the problem of monitoring
a semiconductor manufacturing process where bivariate quality is measured. The thesis
also discusses methods to model and quantify variability built in a manufacturing process.

The previous study for the MEWMA by Runger and Prabhu (1997) was concentrated
on two areas: the on-target run length analysis and the off-target run length analysis. For
the on-target analysis, we derive the probability mass function, the second, third and fourth
moment of the run length distribution as closed forms respectively. When the off-target
case was analyzed before, it was assumed that the process mean shift happened at the
beginning of the operation (the zero-state case). We introduce a general off-target form
such that the mean shift can happen at any time, including the beginning of the operation

(the steady-state case). Here is a generalization of the probability mass function of the run
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length distribution for the MEWMA control chart.

s'Py" (I - Py)1 ifn=1,2,...,7—1

b

f(n) = P(N =n) =

SP P (I-P)1  ifn=T,74+1,....
where Ppy is an in-control transition matrix and P is an out-of-control transition matrix.
With the general probability mass function, more derivations are made and all the results
are consistent with those of past studies.

The MEWMA scheme is well-known for detecting a small shift and a good way to
improve the ability to detect a small shift is to find an optimum smoothing parameter. In
the general off-target case (7 > 1), the smoothing parameter shows the optimum parameter
value increases as transition time (7) increases. Moreover, as either the in-control average
run length (ARLg) or the number of variables (p) increases, the optimum parameter value
increases slowly to the change of transition time 7.

When a small shift happens at the beginning (7 = 1), the MEWMA control chart is
very effective in detecting the change. Our interest is how the control chart behaves in case
that a process change happens at a different transition time. Even though the transition
time changes, just as in the previous case, the MEWMA control chart still outperforms the
multivariate Shewhart control chart in performance when the shift is small. Otherwise both
control charts perform well.

As an application, we suggest a bivariate normal distribution model for the MEWMA
control chart and apply the model to the main semiconductor manufacturing processes.
Since the critical dimension of polysilicon gate has been continued to shrink, the impact of
environment errors can not be negligible any more and the tighter control over the DI CD

and FI CD is required. The model is defined as follows.

X =(X,a+pX1+¢€) ~ N(No, 2X>, where pg is the process mean in control.
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The variation transmission model suggested by Lawless et al. (1999) is based on that
products processed by a multiple of machines, move from one operation to the next stage and
are processed by a machine. Since semiconductor manufacturing is composed of hundreds of
processes, it is more realistic to consider the case that products are processed by a multiple
of machines from one stage to another. We suggest an extension for the original variation
transmission model. By using the extended model, the total variance transmitted can be

calculated.
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Appendix A

Derivations

A.1 Kronecker product

Let A be an n X p matrix and B be an m X ¢ matrix . The mn X pg matrix

a11B -+ a1,B

az,lB AR %3 B
A®B = P

aun,lB e an,pB

is called the Kronecker product of A and B.

1 3 1 2
For example, let A = and B =

4 2 5 3 4

2 4 12 3 6
6 8

w

4 9 12
AR B=

4 8

[\]

4 5 10
12 16 6 8 15 20
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A.2 Derivations

A.2.1 Derivation of the mean and variance in the transmission model 1

Let p1; = E(Y1|Z1 = j) and a%j = Var(Y1|Z1 = j) where j = 1,2. Given that the stepper
J is in operation, yi; and U%j are the expected value and variance of the measurement Y;

respectively. Since each stepper processes the parts at equal proportion, it is assumed that

P(Zy =1) = P(Z; = 2) = 5. The expected value of Y7 is

2 2
B() = Y {B(WZ = )P(Z = )} = § 3 B(¥ilz = 5)
j=1 j=1
since P(Z1 =j) = 1
2
Thus, B(Y1) = (1/2) Y pu; = . (A1)
j=1

The conditional expectation of Y72 is
BE(Y!|21 = j) = Var(Yi|Z1 = §) + [B(Y1|Z, = J)I* = of; + ;.
Thus, the second moment of Y3 can be expressed as follows.

2
BE(Y?) =) {B(Y}?|1Z = j)P(Z1 = )}
Jj=1

I
[M]e

2
. 1
{(Ulj + :“%j)P(Zl =5} = 5 Z Ulg +/~013

2
Z Hij-

1

<.
Il

I
DO | =
Mw
L\le—t

o,
I
—

Thus, for the variance of Y1, 03 = Var(Y1) = E(Y?) — [E(Y1)]? ZUIJ + = Z/“blg ua.
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Since it is known that
2 2
Z(lﬂj —m)? = Z(/j'%j — 2p1p15 + )
— o

2 2 2
= > pd—2m Y g+ 2t = i — 2 (2m) + 208

i1
2 2
= > -2 = ul - 2]
pu =
we obtain
1 1< 1<
2
52 k=2 =5 ) s — =5 (my — m)?
j=1 j=1 j=1

Hence, the variance of Y; is

of = Var(1) = B(Y) — [E()]?

2 2
1 1
=3 > ol + 3 > (g — p)*.
j=1 j=1

A.2.2 Derivation of the mean and variance in the transmission model I1

2
E(Ya)=> > {EYa|Z1 = j, %y = k)P(Z1 = j)P(Z2 = k| Z1 = j)}.
j=1k=1
For simplicity, we assume that P(Z; = j)P(Z; = k|Z1 = j) = 1 where j,k = 1,2. Thus,

we obtain

E(Y,) =

»-lkl'—‘
”Mw

2
Z (YalZ1 =3, Z2 = k)
1 k=1

% (Z a; + p1(Br + B2) + pa(Bs + ﬁ4)> = pa.

i=1
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The conditional expectation of Y7 is
E(YS|% = j, Za = k) = Var(Ya|Z1 = j, Z2 = k) + [BE(Ya| Z1 = j, Z2 = k)|* = 03, + 113,

Thus, the second moment of Y3 is

2

E(Yy) ZZ{E(Yz |Z1 = j, Za = k)P(Z1 = j)P(Z2 = k| Z1 = j)}
j=1k=1

2
Z{ 0% + (2, )*P(Z1 = ) P(Zy = k|21 = §)}
k=1

2 2
DD (0%, +3,)
j=1k=1

Il
o,
—

=

2

= ‘}4‘{0%1(,3% + 63) + 01563 + B7) + 220% + (1 + Brp1)® + (o2 + Popr)® + (03 + Bapinz)’
k=1

+ (04 + Pap12)*}.

A.2.3 Identities

Identity 1. For every positive integer a,
I+P+P ... P =(I-PYI-P)'=1-P)YI-P9. (A.2)
Proof.

(I+P+P*+...+ P2+ P I)YI-P)
— (I+P+P2+___+Pa—2+Pa—l) (I+P+P2 _|_Pa2 Pa—1+Pa)

- I-P~

Thus, (I + P+ P*+ ...+ P24 P\ (I - P) =TI - P“

Multiplying on the right on both sides by (I — P)™! yields
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(I+P+P*4...+ P21 P =(T-PYI-P)L

Identity 2. For every positive integer a,

I+2P+3P%+.. 44 P! = [I+(aP—(a+1)I)PY(I-P)~% = (I-P) ?[I+(aP—(a+1)I)PC.
(A.3)

Proof.

[I+2P +3P2+4P3+ ...+ (a—2)P* 3 + (a—1)P* 2+ aP* (I - P)?

= [I+2P+3P>+4P%+ ...+ (a—2)P* 3 + (a — 1)P* 2+ aP* Y|(I — 2P + P?)

= IT+2P+3P?4+4P%+... 4 aP* ! — (2P 4+ 4P? + 6P3 +--- 4+ 2(a— 1)P* ! 4 2aP%)
+P24 2P+ + (a—2)P* 1 + (a — 1) P* 4 aP*H!

= I—2P%+ (a—1)P®+aP""!

= I—(a+1)P*4apP*

= I+[aP—(a+ )IP"

Thus, [I +2P +3P24+4P3 + ...+ aP* (I — P)2 =1 + [aP — (a+ 1)I] P"
Multiplying on the right both sides by (I — P)~2 yields
IT+2P +3P? +4P3 ...+ aP* ' =[I+ (aP — (a+ 1)I)P%|(I — P)~2
Similarly, we can show that

I+2P+3P?+4P3+ ... +aP* ' = (I - P)?[I + (aP — (a+1)I)P°].
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Identity 3. For every positive integer a,

(2'1)I+(3'2)P+(4~3)P2+...+a(a_1)Pa—2
= [2I —a(a+1)P* ! +2(a—1)(a+1)P* - ala— 1)PH(T — P)73

= (I-P)?2l—a(a+1)P* 4+ 2(a—1)(a+1)P*—a(a—1)P*M]. (A4)
Proof.

[(2- DI+ (3-2)P+(4-3)P?+ .- +a(a—1)P*?|(I - P)?
= [(2-)I+(3-2)P+ (4-3)P?+---4a(a—1)P*?|(I - 3P + 3P? — P?)

= 2T —a(a+1)P* ! +2(a—1)(a+ 1)P* — a(a — 1) P (A5)

Multiplying by (I — P)~3 on the right-hand side of both sides yields
2- DI+ (3-2)P+ (4-3)P?>+---+ala—1)P*2

=[2I —a(a+1)P* ! +2(a—1)(a+ 1)P® — a(a— 1) P*H|(I — P) 3,
Similarly, we can show that

2- DI+ (3-2)P+(4-3)P?+ .- +a(a—1)P*2

=T -P)32I —a(a+1)P* 14+ 2(a—1)(a+1)P* - a(a — 1) P*].

Identity 4. For every positive integer a,

B-2-D)I+(4-3-2)P+(5-4-3)P® 4. +ala—1)(a—2)P*3
= [(3-2-1DI—(a—1Dala+1)P* 2+ 3(a—2)a(a+1)Po 1
—3(a—2)(a—1)(a+1)P*+ (a—2)(a — 1)aP* (I - P)™
= (I-P) @B -2-1)I~(a—1ala+1)P*2+3(a—2)ala+1)P*1

—3(a—2)(a — 1)(a+ 1)P%+ (a — 2)(a — 1)aP*"]. (A.6)
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Proof.

(32 D)I+(4-3-2P+(5-4-3)P>+ .- +a(a—1)(a—2)P* 3
x(I-P)*"=[3-2-D)I+(4-3-2)P+(5-4-3)P?+ ...+ a(a—1)(a—2)P*?
x(I —4P +6P? — 4P3 + P*)

= (3-2-DI—(a—1ala+1)P" 2 +3(a — 2)a(a + 1) P

—3(a—2)(a—1)(a+1)P*+ (a—2(a — 1)aP*,
Multiplying by (I — P)~* on the right both sides yields

(3-2- )+ (4-3-2)P+(5-4-3)P*+...+a(a—1)(a—2)P*3
= [(3-2- DI —(a—Dala+1)P 24 3(a—2a(a+1)P*!

—3(a—2)(a—1)(a+1)P*+ (a — 2(a — 1)aP* (I - P) ™
Similarly, we can show that

(3-2.)I+(4-3-2)P+(5-4-3)P*+ ... +a(a—1)(a—2)P*?
= (I-P)Y@B-2-1)I - (a—1ala+1)P* 2 +3(a—2)ala+1)P*!

—3(a—2)(a—1)(a+1)P*+ (a — 2(a — 1)aP*™].
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Identity 5. For every positive integer a,

(4-3-2. DI+ (5-4-3-2)P+(6-5-4-3)P?* ... +a(a—1)(a—2)(a—3)P**
= [(4-3-2- DI —(a—2)(a—Da(a+1)P* 3 +4(a — 3)(a — 1)afa+ 1) P2
—6(a —3)(a —2)a(a+ 1)P* ! +4(a - 3)(a —2)(a + 1) P*
—(a—3)(a—2)(a - DaP*) (I - P)5
= (I-P)5[4-3-2-DI —(a—2)(a—Da(a+1)P* >+ 4(a — 3)(a — 1)a(a+ 1) P*2
—6(a — 3)(a —2)a(a+1)P* ! +4(a - 3)(a —2)(a+ 1)P*

—(a—3)(a—2)(a — 1)aP*1]. (A7)
Proof.

[(4-83-2- DI+ (5-4-3-2)P+(6-5-4-3)P?>+ ...+ a(a—1)(a—2)(a—3)P*
X(I-P®=[4-3-2-1)I+(5-4-3-2)P+(6-5-4-3)P?>+---+a(a—1)(a—2)(a—3)P*4
x(I —5P +10P% —10P3 + 5P* — P?)

= (4-3-2-DI—(a—2)(a—1a(a+1)P* 3 +4(a—3)(a—1)a(a+1)P* 2
—6(a —3)(a — 2)a(a+1)P* ! +4(a —3)(a — 2)(a + 1) P°

—(a —3)(a —2)(a — 1)aP*.
Multiplying by (I — P)~® on the right both sides yields

(4-3-2-DI1+(5-4-3-2)P+(6-5-4-3)P2+ ...+ a(a—1)(a—2)(a—3)P*
= [(4-3-2- DI —(a—2)(a—Da(a+1)P* 3 + 4(a — 3)(a — 1a(a + 1) P*2
—6(a — 3)(a — 2)a(a +1)P* 1 +4(a — 3)(a — 2)(a + 1) P°

—(a—3)(a—2)(a—1aP* (I - P)75.
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Similarly, we can show that

(4-3.2. 1)I4+(5-4-3-2)P+(6-5-4-3)P*+---+a(a—1)(a—2)(a—3)P**
= (I-P)°[(4-3-2- 1)~ (a—2)(a—1a(a+1)P* 3+ 4(a - 3)(a — 1)a(a + 1)P*?

—6(a —3)(a —2)a(a + 1)P* ' + 4(a — 3)(a — 2)(a + 1) P* — (a — 3)(a — 2)(a — 1)aP*].

Since the matrix P is made up of transient states, P* — 0 as a — oo (Karen, S.

and Taylor, H. M., 1975, pp. 77). Taking the limit in Identities (1-5) yields the following

identities.
[o0)
I+P+P+...=) P"'=(I-P)" (A.8)
n=1
o0
I+2P+3P*+...=) nP"'=(I-P)> (A.9)
n=1
oo
@ DI+(3-2)P+(4-3)P°+.-=> n(n—1)P"?=2(I-P)> (A.10)
n=2

(3-2-)I+(4-3-2)P+(5-4-3)P*+... = in(n—l)(n—2)Pn_3 =6(I—P) ™. (A.11)

n=3

(4-3-2.1)I+(5-4-3-2) P+(6-5-4-3) P? .- - = in(n—l)(n—2}(n—3)P”_4 = 24(I-P)°.

n=4

(A.12)

A.2.4 moments (on-target case)

Let N be a random variable and let k be a positive integer. Then the kth moment of N is

defined as E(NF), if E(N*) exists and is finite.
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A.2.4.1 The first moment

The first moment of random variable IV is defined as follows.

o0 oo
E(N)=> nf(n)=)_s'P" (I - Py)1
n=1 n=1
oo
s’ (Z nPOn_l) (I — P())l.
n=1
By equation (A.9)
o>
> nP"l =T+2P) + 3P+ = (I — Pp)?
n=1
E(N)=s"(I-Po)*(I-Po)l=5(I-Pp)~!

A.2.4.2 The second moment
For the second moment, F(N?), compute E[N(N — 1)].
oo oo
EIN(N-1)]=) nn—1)f(n) =Y n(n—1)s'P" (I — Py)1
n=1 n=1
[ee}
= & (Z n(n — 1)P0”_1> (I — Py)1.
n=1

By equation (A.10)

00 0 00
Zn(n - 1)P0na1 = Z n(n — 1)P0n~1 = Po Z n(n — 1)P0n_2
n=1 n=2 n=2

= Pp-2(I — Pp) > =2Py(I — Py)3

Thus,

E[N(N —1)] = s/ QPo(I — Po) (I — Py)1 = 25" Po(I — Pp) 1.
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Therefore, the second moment, E(N?) is
EB(N?) =28'Py(I — Py) 214 E(N) = 28’ Po(I — Py) 21 + s'(I — Py)'1.

A.2.4.3 The third moment

For the third moment, E(N3), consider E[N(N — 1)(N — 2)].

oo x

EIN(N-1)(N-2)] =) n(n—1)(n—2)f(n) = >_n(n—1)(n—2)s'P" (I — Py)1

n=2 n=2

= s (i n{n—1)(n — 2)P0"_1> (I — Py)1.

=2

By equation (A.11)

Z n{n —1)(n—2)Py" ! = E n(n—1)(n—2)Py" ! = Py? Z n(n—1){n —2)Py" 3
n=2 n=3 =3

= P’ 6(I - Py)t=6P%(I — Py)™™.
Thus,
E[N(N —1)(N —2)] = ' (6Py*(I — Po) ™) (I — Po)1 = 65’ Po*(I — Pp) 1.
Therefore, the third moment, E(N?) is

E(N3) = 65’ Py*(I — Py) %1 4 3E(N?) — 2E(N)
= 68'Po*(I — Po) 1+ 3(28'Po(I — Po) 21+ 8'(I — Pp)™'1) — 28'(I — Pp) 1

= 658" Po’(I — Py) ™31 4 65’ Po(I — Pp) ™21 + s'(I — Py)7'1.
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A.2.4.4 The fourth moment

For the fourth moment, E(N?), consider E[N(N — 1)(N — 2)(N — 3)].

o<

E[N(N = 1)(N =2)(N =3)] = Y _n(n—1)(n—2)(n— 3)f(n)

n=3

[o20]
= Y n(n—1)(n—2)(n-3)s'P" (I - Py)1
n=3

= (in(n—l n—2)(n—3)Py"~ )(I—Po)l.

n=3

By equation (A.12)

2 =1 =2(n =P =) n(n—1)(n—2)(n— )P
n=3 n—d
= P03§: (n—1)(n—2)(n—3)Py"~ 4 — P,3. 24(I—P0)~5=24P03(I—P0)_5
n=4

(A.13)

Thus,

E[N(N —1)(N — 2)(N = 3)] = &’ (24Po*(I — Pp)™°) (I — Py)1 = 248’ Po*(I — Py) 1.

Therefore, the fourth moment, E(N4) is

E(N*) = 245" Py*(I — Po) ™1 + 6E(N3) — 11E(N?) + 6E(N)
= 245’ Po3(I — Po)™*1 +6 (68’ Po?(I — Pp) ™31 + 68’ Po(I — Po) 21+ &' (I — Pp)'1)
—11 (28’ Po(I — Po) 21+ 8'(I — Po) 1) + 65'(I — Py)~'1

= 245" Pp*(I — Py) ™41 + 365’ Py (I — Py) %1+ 148’ Po(I — Py) 21 + §'(I — Pp) 1.
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A.2.5 Moments (off-target case)

A.2.5.1 ‘The first moment

[es} T—1 [o%)
E(N)=> nf(n)=> nfi(n)+> nfa(n)
n=1 n=1 n=T1

= Zns Po™ (I - Pol—I—Zns o™ Py T(I - Pr)1

n=rt
7—1
= { (Z nPy"™" 1) (I — Py)+ Py ! (Z nP"" T) I— Pl)} 1.
n=1 n=rt
Using Identity 2 (A.3), we get
7—1
> Pyt =T+ 2Py + 3P + -+ (1 — 1)Py" 2
n=1

= I+ (r-1)P" —7P" ) (I Pp)™?

Using equations (A.8) — (A.9) we also get

o0 oo o0
MNP =) (n—r+ )P+ Y (r— 1P
n=T7 n=t n=7

= (I+2P1+3P*+ - )+(r—-1D){I+Pi+Py+--")

= I-P) 2+ -1D){IT-P)!
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Thus,

EWN)=8{[I+ (1 —-1)Py" — Py |(I — Po) (I — Pp)
P I -P) 2+ (r - 1) - P) I - P}
= S{I+(T-DP" —7P" (I - Po) '+ P [(I-P) 4+ (r—D)}1
= {[I+7P — Py —TP " NI -P) l+ P10 -P) '+ (r—- DR 111
= S{I-P — Py (I -Po)|I—-Pp) L+ Py Y(I - P) ' +7P 1t — Py 111
= S{(I-P"YI-P) ' —7P '+ P {I - Py '+ 7P ' - Py 11
= S{I-P"YI-Po) ' - P '+ P I -P) '}
= S{I-P"I—-P) '-P '+ P I-P) '}
= SI-P) MN—sP(I-Pp) " 1—-6Py 11+sP 1(I—-P) 11
= S(I-P) M1—6P(I—-Py) 1Py I —-P)I—-Py) l1+sP"{(I-P) M1
= JI-P — Py (I - P)|I-P) 1+&P 1 (I-P) 11
= §[I-Py" — Py L+ Py|(I - Py) '1+s' Py Y(I—P1)™'1

= S[I-P" I-P) '1+sP I -P) 1.
Therefore, E(N) = s'[I ~ Py" (I — Py) 11+ s'Py" (I — P;)7'1. (A.14)

A.2.5.2 The second moment

co 7—1 o)
EIN(N-1)] =) nn—1)f(n) =Y nn—-1)fn)+ > nn—1)f(n)
n=1 n=1 n=r

—1 [e%9)
= Y nn-1)sP" (I —-P)l+ ) n(n—1)s'P" 'P" (I - Py)1

<

3

n=r

- T7—1 e
— s { (Z n(n — 1)Po"‘1> (I-Po)+P"" (Z n(n—1)P"(I - P1)> } L.

n=r
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Using Identity 3 (A.4), we get

Ti:n(n ~ DR =2-D)P+(3-2)P 4+ (4-3)P’° + -+ (r— 1)(7 - 2)Py" 2
= 13_0[(2 DI+ (3-2)Py+ (4-3)Pp 4+ (1= 1)(r — 2) Py %]
= Po[2- DI+ (3-2)Po+(4-3)Po” + -+ (1= 1)(7 = 2) Py ]

= P2l — (1 —1)7Py" 24+ 2(1 —2)7Py™ L — (7 — 1)(1 = 2) Py"]|(I — Pp) 2.

While using the identities in equations (A.8) - (A.10), we get

o0 oo
nn—1DP" "= n—74+1+r—1)(n—-1—7+14+7-1)P""

= Y ln—1+D)n—7)+ -7+ 1)(r -1+ (r—D(n—-1)+ (-1 )P""

= DY ln—1+Dn—1)+ (-1t —D+7r—1+FT-Dn—-71)+7°—2r +1|P,""

n=r

= Y ln—r+D)n—7)+2(n—7)(r—1)+7(r = 1)|P""

= > (n—T+D)n-T)P"T+2r 1) (n—T)P" T +1(r—1) ) P"T

= (1-OI+2- )P+ 3 -2P%2+4-3)P2+(5- Pt + -

+2(r —D)[0- T+ Py +2P 2+ 3P 3 + - |+ 7(r = DI+ P+ P2+ P2 ]
= P2 D)+ @ 2)Pi+(4-3)P%+ -] +2(r — 1)Pi[I + 2P + 3P,

+r(r = DI+ PL+ Pi® + -]

= 2P (I-P) 34 2(r—1)P(I-P) 2 +7(r—1)(I - P)~ L.
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Thus,

E[N(N —1)] = s'{Po[2 — (1 — V)P 2 4+ 2(r — 2)rPy™ ! — (+ — 1)(r — 2)Py"|(I — Pp)~2

+Py" 2P (I - P1) 24 2(r — 1)Py(I — P +7(r — D)I]}1.
Hence,

E(N?) = s'"{Po[2] — (1 — 1)7Py 24+ 2(1 = 2)7Po" ' — (7 = 1)(7 — 2) Py"|(I — Pp)™?
+P 2P (I~ P)?+2(r = )P(I— P) '+ r(r = DI+ [I — Py" (I — Po)™!

+Py (1 - P) 7M.

A.2.6 Conditional probability mass function and conditional expection

The conditional distribution of N, given that N < 7 is defined as

f(n) S,POnul(I — Po)l
f(nl < T) P(N < 7_) 1 _ S,POT_ll n 1 7T
The conditional expectation of N, given that N < 7 is defined as
= o SPY(I- Po)l
E(N|IN <T1)= Z_:nf(n]N <7T)= Zn TP 1
n=1 n=1
1 —1 1 T7—1
= —— N P I -P))l=—F——& Py (I — Py)1
1—.S'P0T_11n§1 0" 0) 1—5’P07_11'S nZ::ln 0 ( )
1 ; 2 -2
= —— I+ 2Py + 3Py + - — Py I— Pyl
1 — SIPOT—lls { 0 0 + (T ) 0 }( 0)
1
= ————{I+((r=DP—tI)Py" '} (I - Pp)"'1. (A.15)
1—6'Py™ 1

Additionally, the conditional distribution of NV, given that N > 7 is defined as

f(n) _ S'POT_lpln_T(I — Pl)l
(N > T) S,POT_ll

f(nlsz):P n=7,7+1,...
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The conditional expectation of N, given that N > 7 is defined as

° s POT 1Pn T(I Pl)]_
E(N|IN>71)= N >
I 27) = Yng(oi > 1) = 3o n R
= #Zns lp" (I - Pyl = —I—S’POT_1 inPln_T (I-P)1
' PyT 1 — IPO'r—ll o
= —1 — sSSPy HrI+ (r 4+ 1D)P 4+ (1 +2)P 2+ }(I — Py)1
SlPOT 1
= =8P (I~ P)* + (- )T - Py }(I - Pi)1
S/POT 1
1 -1 -1 -1
= gprs BT - BT (- DR (A.16)
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Appendix B
Programming (R- code)

B.1 Markov chain algorithm for the calculation of ARL

ARL_Calculator<-function(r,h,d,p){
# r is a smoothing parameter

# h is a control limit

# d is a mean shift

# p is the number of variables

# S i1s a starting vector

UCL<-sqrt (h*r/(2-1))
mi<-25

m2<-25

g1<-2%UCL/ (2*m1+1)
g2<-2%UCL/ (2*m2+1)

H<-matrix(data=NA,nrow=2+mi+1,ncol=2*mi+1)

#[Defining an identity matrix and a vector of 1s]
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z<~(2*xm1+1) * (m2+1)

ni<-c(z)

I <- matrix(0,nrow=nl,ncol=nl)
I[row(I)==col(I)]<-1

one<—- matrix(1l,nrow=z,ncol=1)

#[Transition Matrix of Wt1l]

rangel<-2+#ml+1 # rangel is the number of states of Wtl
for (i in 1:rangel)q{

c_i<- ~UCL+(i-0.5)*gl

for (j in 1:rangel){
up<-(-UCL+j*gl-(1-r)*c_i)/r~delta
down<-(~UCL+(j-1)*gl-(1-r)*c_1i)/r-delta
H[i,jl<-pnorm(up,mean=0,sd=1)-pnorm(down,mean=0,sd=1)
}

+

#[Transition Matrix of Wt2]

range2<-m2+1 # range2 is the number of states of Wt2
V<-matrix(data=NA,nrow=range2,ncol=range2)

for (i in 0:m2){

c<=((1-1)*i*g2/r)"2

for (j in 0:m2){

if (§j==0) {

V[i+1,1]1<-pchisq((0.5%(g2)/r) "2, df=p-1,ncp=c)

b

else {

up<-((j+0.5)*g2/r)"2

76



down<-((j-0.5)*g2/r) "2
V[i+1,j+11<-pchisq(up,df=p-1,ncp=c)-pchisq(down,df=p-1,ncp=c)
}

}

+

E<- kronecker(H,V) # Operating kronecker product

#[Finding transient states]
counter<-1

for (alpha in l:rangel){
for (beta in 0:m2){

if ((alpha-(mi+1))"2%g1~2+(beta*g2) "2 >= UCL"2){
E[,counter]<-0
E[counter,1<-0

}

counter<-counter+i

}

}

temp<-solve(I-E)

temp¥%*Yone

S<- matrix(0,nrow=z,ncol=1)
start<-ml*(m2+1)+1
S[start,1]<-1

ARL<-t (8)%+% templ*%one
ARL

¥
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B.2 On-target run length distribution

#0n-target run length distribution

0T_Dist<-function(x){

RL<-x

Sfunc <-NULL

Pfunc<-NULL

Tmatrix<-I

range<-RL+1

for (i in 1:range){

Sfunc[i]<-t(8)%*% Tmatrix %*Yone

Tmatrix <- Tmatrix %*/,E # E is an on-target transition matrix
}

for (i in 1:n){

Pfunc[i]<-Sfunc[i]- Sfunc[i+1] #f(N) = P(N > n-1) - P(N > n)
}

plot (spline(seq(i,RL,by=1) ,Pfunc,n=200),type="1",col="blue",ylab="probability"
,xlab="run length")

¥

B.3 Off-target run length distribution

#0ff-target run length distribution
0ff_Dist<-function(x,t){

RL<-x

tau<-t # tau is a mean shift time
rangel<-tau-1

Sfunc<-NULL
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Pfunc <-NULL

Tmatrix0<-I

Tmatrixl<-Q # Q is a off-target tramsition matrix
Tmatrix2<-I

range2<-RL+1

for (i in 1i:rangel){

Tmatrix2<- Tmatrix2%*%E

}

for (i in 1:range2){

if (i <=tau){

Sfunc [i]<-t (8)%*% TmatrixO%*%one

Tmatrix0<- Tmatrix0%*%E

}

else

{ Sfunc[i]l<-t(8S)/*% Tmatrix2%*)Tmatrixiy*%one
Tmatrixl<- Tmatrix1%*%Q}

}

for (i in 1:RL){

Pfunc[i]l<- Sfunc[i]- Sfunc[i+1] #£f(N) = P(N > n-1) - P(N > n)
}
plot(spline(seq(1,RL,by=1),Pfunc,n=200),type="1",col="blue",ylab="probability",
xlab="run length")

¥
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B.4 The partition method

# The partition method

# The following code is constructed

# based on the condition that in-control ARL = 200, p
delta<-1.5

p<-4

h_max<-30 # Initial upper control limit value
h_min<-0.01 # Initial lower control limit value
h_tem<-0

ARL_tem<-0

ARL_0<-200 # In-control ARL value

epsilon<-0.01 # Degree of precision

k<-1

R_opt<-0 # Initialization of smoothing parameter
ARL<-NULL

H<-NULL

ARL_opt<-ARL_O

ARL1_opt<-0

for (i in 1:100){

r<-i/100

h_tem<-(h_max + h_min)/2

ARL_tem<-ARL_Calculator(r,h_tem,0,p)

while(abs (ARL_O-ARL_tem)> epsilon)

{

if (ARL_tem > ARL_0)
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{

h_max<-h_tem

h_tem<-(h_max + h_min)/2

ARL_tem<- ARL_Calculator(r,h_tem,0,p)
}

else

{

h_min<-h_tem

h_tem<-(h_max + h_min)/2

ARL_tem<- ARL_Calculator(r,h_tem,0,p)
}

}
ARL[k]<-ARL_Calculator(r,h_tem,delta,p)
if (ARL_opt > ARL[k]) #If-statement to find the optimal smoothing parameter
{

ARL_opt<-ARL [k]

R_opt<-r

}

H[k]<-h_tem

k=k+1

h_max<-30

h_min<-0.01

h_tem<-0

}

R_opt

ARL_opt
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Appendix C

Tables
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Table C.1: Optimal MEWMA Control Charts for 7 (1 < 7 < 200), p = 2.

p=2,0=1,ARLo = 200.00

e 1 20 40 60 80 100 120 140 160 180 200

r 014 | 016 | 018 | 019 | 020 | o021 0.22 0.23 0.24 0.25 0.26

33 9.160 | 9.347 | 9502 | 9.570 | 9.632 | 9.690 | 9.744 | 9.793 | 9.839 | 9.882 | 9.922

ARLmin | 9.986 | 27.477 | 44.307 | 59.464 | 73.126 | 85.447 | 96.560 | 106.586 | 115.635 | 123.801 | 131.173
p=206=1,ARLo = 300.00

T = 1 20 40 60 80 100 120 140 160 180 200

r 014 | 0.15 | 015 | 016 | 0.1r | 018 0.19 0.19 0.20 0.21 0.21

H 10.091 | 10.184 | 10.184 | 10.267 | 10.343 | 10.413 | 10.476 | 10.476 | 10.535 | 10.588 | 10.58%

ARLmin | 10.953 | 28.840 | 46.675 | 63.324 | 78.863 | 93.371 | 106.917 | 119.568 | 131.384 | 142.420 | 152.730
p=2,0=1,ARLo = 400.00

- 1 20 40 60 80 100 120 140 160 180 200

r 013 | 0.13 | 014 | 0.15 | 015 | 016 0.17 0.17 0.18 0.18 0.19

H 10.647 | 10.647 | 10.745 | 10.834 | 10.834 | 10.914 | 10.986 | 10.986 | 11.052 | 11.052 | 11.113

ARLmin | 11.639 | 29.715 | 48.086 | 65.532 | 82.098 | 97.834 | 112.786 | 126.987 | 140.484 | 153.307 | 165.494
p=20=1,ARLo = 500.00

T = 1 20 40 60 80 100 120 140 160 180 200

r 012 | 0.12 | 013 | 014 | 0.14 | 015 0.15 0.16 0.16 0.17 0.17

H 11.047 | 11.047 | 11.153 | 11.249 | 11.249 | 11.334 | 11.334 | 11.412 | 11.412 | 11.482 | 11.482

ARLmim | 12.173 | 30.371 | 49.061 | 67.001 | 84.212 | 100.734 | 116.591 | 131.814 | 146.425 | 160.457 | 173.922
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Table C.2: Optimal MEWMA Control Charts for 7 (1 < 7 < 200), p = 4.

p=4,6 =1, ARLy = 200.00

7= 1 20 40 60 80 100 120 140 160 180 200

r 013 | 0.14 | 0.15 | 0.16 | 0.18 | 0.19 0.19 0.20 0.21 0.22 0.23

H 13.203 | 13.324 | 13.433 | 13.532 | 13.703 | 13.778 | 13.778 | 13.846 | 13.909 | 13.967 | 14.021

ARLpn | 12.061 | 29.304 | 46.078 | 61.167 | 74.751 | 86.985 | 98.010 | 107.949 | 116.910 | 124.995 | 132.290
p=4,0=1,ARLg = 300.00

T = 1 20 40 60 80 100 120 140 160 180 200

r 012 | 012 | 013 | 0.14 | 015 | 0.15 0.16 0.17 0.17 0.18 0.18

H 14.156 | 14.156 | 14.282 | 14.395 | 14.495 | 14.495 | 14.586 | 14.669 | 14.669 | 14.744 | 14.744

ARLmimn | 13.197 | 30.834 | 48.652 | 65.263 | 80.758 | 95.213 | 108.707 | 121.292 | 133.046 | 144.019 | 154.267
p=4,0=1,ARL, = 400.00

T = 1 20 40 60 80 100 120 140 160 180 200

r 011 | 011 | 012 | 013 | 0.13 | 014 0.14 0.15 0.15 0.16 0.16

H 14.777 | 14.777 | 14.913 | 15.032 | 15.032 | 15.139 | 15.139 | 15.234 | 15.234 | 15.320 | 15.320

ARLin | 14.002 | 31.837 | 50.193 | 67.610 | 84.153 | 99.856 | 114.776 | 128.928 | 142.379 | 155.157 | 167.293
p=40=1,ARLy = 500.00

T = 1 20 40 60 80 100 120 140 160 180 200

r 011 | 011 | 011 | 012 | 012 | 013 0.13 0.13 0.14 0.14 0.15

H 15.361 | 15.361 | 15.361 | 15.401 | 15.491 | 15.606 | 15.606 | 15.606 | 15.708 | 15.708 | 15.800

ARLin | 14.637 | 32.585 | 51.262 | 69.188 | 86.379 | 102.879 | 118.706 | 133.902 | 148.477 | 162.471 | 175.906
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Table C.3: Optimal MEWMA Control Charts for 7 (1 < 7 < 200), p = 6.

p=6,0=1,ARLo = 200.00

7= 1 20 40 60 80 100 120 140 160 180 200

r 012 | 0.12 | 014 | 015 | 0.16 | 017 0.18 0.19 0.19 0.20 0.21

" 16.635 | 16.635 | 16.914 | 17.032 | 17.138 | 17.234 | 17.321 | 17.401 | 17.401 | 17.474 | 17.541

ARL i | 13.581 | 30.617 | 47.356 | 62.394 | 75.010 | 88.093 | 99.058 | 108.935 | 117.834 | 125.857 | 133.002
p=6,6=1,ARL, = 300.00

T = 1 20 40 60 80 100 120 140 160 180 200

r 011 | 011 | 012 | 0.13 | 0.13 | 014 0.15 0.15 0.16 0.16 0.17

I3 17.683 | 17.683 | 17.836 | 17.970 | 17.970 | 18.091 | 18.198 | 18.198 | 18.295 | 18.295 | 18.382

ARLmin | 14.855 | 32.284 | 50.085 | 66.674 | 82.134 | 96.548 | 109.999 | 122.545 | 134.255 | 145.184 | 155.389
p=6,0=1, ARLo = 400.00

= 1 20 40 60 80 100 120 140 160 180 200

r 010 | 0.10 | 011 | 011 | 012 | 012 0.13 0.13 0.14 0.14 0.15

" 18.356 | 18.356 | 18.520 | 18.520 | 18.664 | 18.664 | 18.791 | 18.791 | 18.004 | 18.004 | 19.005

ARL... | 15.755 | 33.380 | 51.726 | 69.136 | 85.650 | 101.333 | 116.211 | 130.346 | 143.762 | 156.507 | 168.614
p=6,0=1,ARLo — 500.00

- 1 20 40 60 80 100 120 140 160 180 200

r 0.0 | 0.10 | 0.10 | 01l | 011 | 011l 0.12 0.12 0.13 0.13 0.13

H | 19.001 | 19.001 | 19.001 | 19.158 | 19.158 | 19.158 | 19.296 | 19.296 | 10.417 | 19.417 | 19.417

ARLmin | 16.456 | 34.200 | 52.865 | 70.787 | 87.961 | 104.448 | 120.254 | 135.424 | 149.984 | 163.948 | 177.355
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Table C.4: Optimal MEWMA Control Charts for 7 (1 < 7 < 200), p = 10.

p=10,6 =1, ARLg = 200.00

7= 1 20 40 60 80 100 120 140 160 180 200

r 011 | 011 | 012 | 013 | 0.14 | 015 0.16 0.16 0.17 | 0.18 0.18

H | 22.831 | 22.881 | 23.069 | 23.234 | 23.381 | 23.512 | 23.630 | 23.630 | 23.737 | 23.833 | 23.833

ARLpn | 15.949 | 32.616 | 49.300 | 64.266 | 77.704 | 89.784 | 100.655 | 110.437 | 119.240 | 127.170 | 134.314
p=10,0 =1, ARLo = 300.00

T = 1 20 40 60 80 100 120 140 160 180 200

r 010 | 0.0 | 010 | 011 | 012 | 012 0.13 0.13 0.14 0.14 0.15

H | 24.084 | 24.084 | 24.084 | 24.278 | 24.447 | 24.447 | 24.596 | 24.506 | 24.728 | 24.728 | 24.846

ARLpn | 17457 | 34.524 | 52.290 | 68.834 | 84.247 | 98.609 | 111.992 | 124.478 | 136.116 | 146.978 | 157.109
p=10,0 =1, ARLo = 400.00

T = 1 20 40 60 80 100 120 140 160 180 200

r 009 | 009 | 009 | 0.10 | 0.10 | 011 0.11 0.12 0.12 0.13 0.13

H | 24.844 | 24.844 | 24.844 | 25.054 | 25.054 | 25234 | 25234 | 25.392 | 25.392 | 25.530 | 25.530

ARLin | 18515 | 35.771 | 54.007 | 71.477 | 87.974 | 103.606 | 118.452 | 132.535 | 145.904 | 158.605 | 170.649
p=10,6 =1, ARL, = 500.00

7= 1 20 40 60 80 100 120 140 160 180 200

r 009 | 009 | 009 | 009 | 010 | 0.10 0.10 0.11 0.11 0.11 0.12

H | 25.580 | 25.580 | 25.580 | 25.589 | 25.788 | 25.788 | 25.788 | 25.959 | 25.959 | 25.959 | 26.108

ARLmn | 19.337 | 36.723 | 55.354 | 73.257 | 90.423 | 106.873 | 122.662 | 137.795 | 152.311 | 166.246 | 179.613
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Table C.5: Optimal MEWMA Control Chart, p=2, 7 = 1.

Condition: p=2,m; =mo =25,7=1

o ARLy 200 300 400 500 600 700 800 900 1000

r 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04
0.5 H 7.3813 | 8.3930 | 9.1058 | 9.2427 | 9.6975 | 10.0801 | 10.4102 | 10.7003 | 10.9589
ARLyp,;n | 26.7482 | 30.3318 | 33.0044 | 35.0648 | 36.7685 | 38.2371 | 39.5312 | 40.6910 | 41.7433

T 0.14 0.13 0.12 0.12 0.12 0.11 0.11 0.11 0.11
1 H 9.1602 | 9.9887 | 10.5367 | 11.0468 | 11.4612 | 11.6952 | 11.9983 | 12.2647 | 12.5023
| ARLpmin | 9.9857 | 10.9458 | 11.6374 | 12.1734 | 12.6198 | 12.9915 | 13.3169 | 13.6073 | 13.8697

T 0.25 0.24 0.22 0.22 0.21 0.20 0.20 0.20 0.19
1.5 H 9.8824 | 10.7268 | 11.2672 | 11.7522 | 12.1029 | 12.3901 | 12.6793 | 12.9338 | 13.1133
ARLp;n | 54381 | 5.8736 | 6.1842 | 6.4261 | 6.6237 | 6.7923 | 6.9370 | 7.0660 | 7.1814

T 0.38 0.35 0.34 0.32 0.32 0.31 0.30 0.30 0.30
2 H 10.2466 | 11.0450 | 11.6313 | 12.0602 | 12.4436 | 12.7466 | 13.0056 | 13.2528 | 13.4736
ARLpn | 3.5265 | 3.7737 | 3.9496 | 4.0863 | 4.1981 | 4.2927 | 4.3751 | 4.4475 | 4.5128

r 0.53 0.49 0.47 0.45 0.44 0.43 0.42 0.41 0.41
2.5 H 10.4333 | 11.2332 | 11.8071 | 12.2477 | 12.6132 | 12.9206 | 13.1854 | 13.4176 | 13.6341
ARLpn | 25152 | 2.6842 | 2.8021 | 2.8923 | 2.9656 | 3.0271 | 3.0802 | 3.1269 | 3.1688

r 0.68 0.65 0.63 0.61 0.59 0.58 0.57 0.56 0.5
3 H 10.5147 | 11.3238 | 11.8984 | 12.3426 | 12.7042 | 13.0125 | 13.2789 | 13.5135 | 13.7230
ARLpyn | 1.8812 | 2.0064 | 2.0962 | 2.1656 | 2.2221 | 2.2696 | 2.3104 | 2.3461 | 2.3779
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Table C.6: Optimal MEWMA Control Chart, p =4, 7 = 1.

Condition: p=4,m; =mg=25,7=1

0 ARLy 200 300 400 500 600 700 800 900 1000

T 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03
0.5 H 11.2683 | 11.9742 | 12.8373 | 13.4946 | 14.0240 | 14.4667 | 14.2589 | 14.6039 | 14.9105
ARLpn | 32.4380 | 36.9214 | 40.0895 | 42.6254 | 44.7534 | 46.5966 | 48.1545 | 49.4744 | 50.6670

r 0.13 0.12 0.11 0.11 0.10 0.10 0.10 0.09 0.09
1 H 13.2030 | 14.1561 | 14.7776 | 15.3613 | 15.6894 | 16.0888 | 16.4322 | 16.5786 | 16.8494
ARLpyn | 12.0608 | 13.1970 | 14.0026 | 14.6367 | 15.1436 | 15.5777 | 15.9584 | 16.2920 | 16.5843

r 0.22 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.17
1.5 H 13.9672 | 14.9324 | 15.5921 | 16.0856 | 16.5332 | 16.8515 | 17.1768 | 17.4021 | 17.6579
ARLpn | 6.5072 | 7.0104 | 7.3673 | 7.6436 | 7.8705 | 8.0599 | 8.2255 | 8.3715 | 8.5006

T 0.33 0.31 0.30 0.29 0.28 0.28 0.27 0.27 0.26
2 H 14.3900 | 15.3181 | 15.9808 | 16.4855 | 16.8908 | 17.2546 | 17.5420 | 17.8186 | 18.0381
ARLpin | 41790 | 4.4617 | 4.6620 | 4.8172 | 4.9439 | 5.0512 | 5.1434 | 5.2252 | 5.2980

T 0.45 0.42 0.41 0.39 0.38 0.38 0.37 0.37 0.36
2.5 H 14.6098 | 15.5253 | 16.1841 | 16.6766 | 17.0855 | 17.4413 | 17.7356 | 18.0061 | 18.2347
ARLpin | 29739 | 3.1563 | 3.2842 | 3.3827 | 3.4632 | 3.5311 | 3.5898 | 3.6419 | 3.6881

T 0.61 0.57 0.55 0.52 0.51 0.50 0.49 0.48 0.47
3 H 14.7408 | 15.6532 | 16.3008 | 16.7933 | 17.2023 | 17.5464 | 17.8431 | 18.1036 | 18.3356
ARLpin | 2.2343 | 2.3749 | 2.4720 | 2.5453 | 2.6041 | 2.6532 | 2.6953 | 2.7319 | 2.7645
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Table C.7: Optimal MEWMA Control Chart, p = 10, 7 = 1.

Condition: p=10,m1 =mgo=25,7=1

0 ARLy 200 300 400 500 600 700 800 900 1000

r 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03
0.5 H 20.0880 | 21.7696 | 22.9044 | 22.9779 | 23.6952 | 24.2893 | 24.7957 | 25.2364 | 25.6260
ARLpin, | 42.6234 | 48.8044 | 53.4589 | 56.8531 | 59.6636 | 62.0885 | 64.2288 | 66.1493 | 67.8949

r 0.11 0.10 0.09 0.09 0.08 0.08 0.08 0.08 0.08
1 H 22.8809 | 24.0840 | 24.8443 | 25.5895 | 25.9643 | 26.4705 | 26.9039 | 27.2824 | 27.6182
ARLp;n | 15.9489 | 17.4573 | 18.5150 | 19.3374 | 20.0059 | 20.5562 | 21.0384 | 21.4680 | 21.8561

r 0.19 0.17 0.16 0.16 0.15 0.15 0.15 0.14 0.14
1.5 H 23.9212 | 25.0468 | 25.8607 | 26.5520 | 27.0199 | 27.4886 | 27.8909 | 28.1530 | 28.4681
ARLpmyn | 8.5373 | 9.1846 | 9.6393 | 9.9870 | 10.2713 | 10.5084 | 10.7159 | 10.8970 | 11.0565

T 0.28 0.26 0.25 0.24 0.23 0.23 0.23 0.22 0.22
2 H 24.4532 | 25.6059 | 26.4251 | 27.0403 | 27.5348 | 27.9834 | 28.3690 | 28.6664 | 28.9681
ARLpy | 54302 | 5.7870 | 6.0369 | 6.2291 | 6.3858 | 6.5164 | 6.6306 | 6.7293 | 6.8180

T 0.38 0.35 0.34 0.33 0.32 0.32 0.31 0.31 0.30
2.5 H 24.7488 | 25.8805 | 26.6942 | 27.3136 | 27.8117 | 28.2476 | 28.6026 | 28.9324 | 29.2058
ARLpn | 3.8214 | 4.0470 | 4.2054 | 4.3275 | 4.4270 | 4.5103 | 4.5823 | 4.6455 | 4.7021

r 0.48 0.45 0.43 0.42 0.41 0.41 0.40 0.40 0.39
3 H 24.9031 | 26.0392 | 26.8349 | 27.4522 | 27.9508 | 28.3788 | 28.7374 | 29.0510 | 29.3401
ARLpin | 2.8821 | 3.0363 | 3.1440 | 3.2268 | 3.2944 | 3.3513 | 3.4006 3.441 3.4829
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