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Abstract 

The multivariate cumulative sum (MCUSUM) and the multivariate exponentially weighted 

moving average (MEWMA) control charts are the two leading methods to monitor a mul­

tivariate process. This thesis focuses on the MEWMA control chart. Specifically, using the 

Markov chain method, we study in detail several aspects of the run length distribution both 

for the on- and off- target cases. Regarding the on-target run length analysis, we express the 

probability mass function of the run length distribution, the average run length (ARL), the 

variance of run length (V RL) and higher moments of the run length distribution in math­

ematically closed forms. In previous studies, with respect to the off-target performance for 

the MEWMA control chart, the process mean shift was usually assumed to take place at 

the beginning of the process. We extend the classical off-target case and introduce a gener­

alization of the probability mass function of the run length distribution, the ARL and the 

V RL. What Prabhu and Runger (1996) proposed can be derived from our new model. By 

evaluating the off-target ARL values for the MEWMA control chart, we determine the op­

timal smoothing parameters by using the partition method that provides an easy algorithm 

to find the optimal smoothing parameters and study how they respond as the process mean 

shift time changes. We compare the ARL performance of the MEWMA control chart with 

that of the multivariate Shewhart control chart to see whether the MEWMA chart is still 

effective in detecting a small mean shift as the process mean shift time changes. In order 

to apply the model to semiconductor manufacturing processes, we use a bivariate normal 

distribution to generate sample data and compare the MEWMA control chart with the 

multivariate Shewhart control chart to evaluate how the MEWMA control chart behaves 

when a delayed mean shift happens. We also apply the variation transmission model intro­

duced by Lawless et al. (1999) to the semiconductor manufacturing process and show an 
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extension of the model to make our application to semiconductor manufacturing processes 

more realistic. All the programming and calculations were done in R 

Key words: Multivariate Exponentially Weighted Moving Average Control Chart; Mul­

tivariate Shewhart Control Chart; Average Run Length; Markov Chain; Optimal Smoothing 

Parameter; Semiconductor Manufacturing. 
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Chapter 1 

Introduction 

1.1 Control charts and the mutivariate exponentially weighted 

moving average (MEWMA) 

A multivariate control chart is an important tool for monitoring and improvement of the 

quality of products. In recent years, the importance of multivariate control charts has 

increased because more quality features are measured in mass production than ever be­

fore. These quality measures often exhibit substantial cross-correlations. For example, 

in semiconductor manufacturing, manufacturers make semiconductor devices around the 

clock through hundreds of processes. In this case, it would be more efficient to maintain a 

multivariate control chart than several univariate control charts because it is possible that 

individual control charts might not detect an assignable cause when quality characteristics 

are dependent. Several multivariate quality control charts have been proposed to monitor 

the mean vector of quality characteristics. The three most common multivariate control 

charts are the multivariate cumulative sum (MCUSUM) control chart, the multivariate 

exponentially weighted moving average (MEWMA) control chart and the multivariate She­

whart control chart. The latter is also known as Hotelling's X2 control chart. As the number 
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of process variables grows, traditional multivariate control charts such as the multivariate 

Shewhart chart lose efficiency with respect to shift detection (Montgomery, 2005, pp. 486). 

The Shewhart control chart is poor at detecting small and moderate shifts in the mean 

vector. However, the MEWMA and the MCUSUM control charts are known to respond to 

small mean shifts very quickly. In this thesis, several aspects of the MEWMA control chart 

will be in detail studied. 

1.2 Average run length (ARL) 

The average run length (ARL) is a good tool to evaluate the performance of a statistical 

process control chart. The ARL is the average number of points that must be plotted before 

a point indicates an out-of-control condition (Montgomery, 2005, pp. 160). When a process 

control chart is set up, it is desirable that it produces a large ARL when the process is in-

control while smaller ARL values are preferred when the process is out-of-control (Pham, 

2006, pp. 337). A large in-control ARL reduces the false alarms while a small out-of-control 

ARL indicates quick detection of a change. Since evaluating ARL values is not elementary, 

let us consider the univariate Shewhart control chart for the purpose of illustrating how the 

ARL is calculated. In this case, it is well-known that the run length follows a geometric 

distribution. Thus, its expected value is 

ARL=~ 
p 

where p is the probability that any point exceeds the control limits. 

For instance, when the process is in-control with p = 0.005, then the in-control ARL 

(called ARLo) equals 0.605 = 200, which means that the control chart signals a false (out­

of-control) alarm on average every 200 plotted points even though the process is in-control. 

When the process is out-of-control, it is expected that more chart points will go out of 
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the control limits. Thus) the out-of-control ARL (called ARL1 ) will be smaller than ARLo. 

1.3 Semiconductor manufacturing 

Materials used in electronics are classified into three types in terms of conductivity: con­

ductors) insulators and semiconductors. Conductors are materials that can carry electrons 

easily thanks to the availability of free electrons such as copper and aluminum. Most metals 

are considered to be conductors. Insulators are materials that refuse to carry an electric 

current due to lack of free electorns such as glass and wood. Semiconductors are substances 

that are neither conductors nor insulators but they can have electrical properties by ap­

plying a certain voltage and doping impurity content (Bakshi and Godse) 2008) pp. 8). 

The two widely used simiconductor materials are silicon and germanium. Semicondutor 

devices are manufactured electronic components or integrated circuits by using semicon­

ductor materials. Nowadays) semiconductor devices are considered as the cornerstone of 

electronics because most of our modern conveniences such as computers) cell phones) digi­

tal cameras) medical diagnostic equipment and all kind of domestic electric appliances are 

made of semicoductors. The reason that semiconductors are important is that we can alter 

their conductivity. 

In semiconductor device fabrication) all the processing steps fall into one of the fol­

lowing categories: Deposition) ion-implantation) diffusion) photolithography and etching. 

Deposition is used to put down either a metal layer or an oxide (non-metal) layer on a 

wafer. Ion-implantation and diffusion are the operations that introduce dopants inside the 

wafer and grow a silicon oxide layer. Photolithography is the process that a light-sensitive 

material) called photoresist is applied in the wafer which is then exposed to ultraviolet light 

through an optical mask. Then the area of the photoresist exposed to light becomes soluble 

and is stripped off with solvents. Etching operation is used to create a circuit pattern that 

has been defined during the photolithography process by removing a thin film. 
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They form a process cycle and are employed on the wafer numerous times to make a 

semiconductor device. As a result, multiple layers are created and stacked directly on the 

wafer. Figures 1.1 and 1.2 are the cross-section of a semiconductor device. Specifically, 

Figure 1.2 is the cross-section of SRAM (Static Random Access Memory) which is taken 

by SEM (Scanning Electron Microscope). In this study, our focus is on the layer on which 

polysilicon gates (transistors) are patterned. In semiconductor manufacturing, the critical 

dimension (CD) of the gate width is the most critical parameter since the gate CD decides 

the overall speed of the integrated circuit and it has continued to shrink since the integrated 

circuit was introduced (Orshansky et al., 1999). The following website shows how quickly 

design rules for gate patterns have changed. Refer to http: / / en. wikipedia. org/wiki/ 

Semiconductor_device_fabrication at wikipedia. 

'>----'-----,---' 

SILICON SUBSTRATE 

Figure 1.1: Cross-section of a semiconductor device. 

The design rule of silicon chips was 10 p,m in 1971 but chipmakers are now making 32 nm 

devices. That is, today's transistors are more than 300 times smaller than the ones made 
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in 1971. Shrinkage in the gate width brings us difficulties to control it. Thus, a tighter 

control over the gate width has to be made to maximize process yield and throughput. 

Even a small amount of mean shift in the silicon gate width has to be detected. Therefore, 

the MEWMA control scheme which is very efficient at issuing a warning signal on a small 

amount of mean shift is the right choice and suitable for the semiconductor industry facing 

increasing quality demands. Figure 1.3 shows a finished product of semiconductor device. 

As an application of the MEWMA control chart, we construct a simple bivariate nor­

mal distribution model, apply it to semiconductor manufacturing operations and provide 

simulation results. The main reason for the application to a semiconductor manufacturing 

process is that semiconductor manufacturing operations need a control chart that provides 

a high sensitivity in detecting a small mean shift. 

Figure 1.2: Cross-section of SRAM taken by SEM. 

1.4 Propagation of variability in a process 

One of the main goals of statistical process control is to effectively reduce the variability 

in a process. In order to do that, it is important to identify at which stages variation is 
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Figure 1.3: 4Gb DDR DRAM chip. 

added substantially and how much variation is transmitted from previous stages. Lawless 

et al. (1999) introduced the variation transmission nl.Odel and showed how variation in key 

product characteristics could be built across the production stages. However, the model 

is constructed based on that only one machine runs at final stage. In this thesis, we will 

extend the model and apply it to semiconductor manufacturing. 

1.5 Thesis objectives and organization 

Prabhu and Runger (1996) developed a Markov chain algorithm to evaluate the perfor­

mance of the MEWMA control charts. The Markov chain algorithm provides an acceptable 

approximation for the average run length (ARL) of the MEWMA control chart. The on­

and off-target ARL values can be computed by using the algorithm. However, when the 

performance of the off-target case is evaluated, the off-target case has to be extended in 

terms of the process transition time since the past studies only cover the off-target case 

where the process mean shifts instantaneously to a new value once manufacturing oper­

ations start; that is, the mean shift was assumed to take place at the very beginning of 

the process (the zero-state case). In real life, the process goes out-of-control after staying 

in-control for a while from the beginning and the change sustains until human intervention 
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(the steady-state case). The process mean shift could take place at any time in process 

operation, not just at the beginning. For example, in the Markov chain model, when the 

process mean changes at transition time T, we consider a transition matrix Po until time 

T - 1 and a new transition matrix PI afterwards. 

The main objectives of this thesis are as follows: 

1. To calculate analytically and numerically the run length distribution and the average 

run length for the off-target case. 

2. To compare the MEWMA control with the multivariate Shewhart control chart for 

the off-target case. 

3. To identify optimal smoothing parameter values for the off-target case. 

4. To apply the MEWMA control chart to a bivariate semiconductor manufacturing 

process. 

5. To develop a model for variation propagation with application to the semiconductor 

manufacturing process. 

The study is arranged as follows. In Chapter 2, the general off-target case is discussed 

and we show derivations of the ARL and the variance for the general off-target case. Ad­

ditionally, the optimal smoothing parameter and the comparison of the MEWMA control 

chart and the multivariate Shewhart control chart are discussed for different values of tran­

sition time. In Chapter 3, a bivariate normal distribution model for the MEWMA control 

chart is applied to a semiconductor fabrication process and the method is illustrated with 

simulated data. An extension of the variation transmission model is introduced in Chapter 

4. Finally, Chapter 5 presents some conclusions. 
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Chapter 2 

Analysis of MEWMA control chart 

2.1 Overview of MEWMA control chart 

The conventional Shewhart-type control charts such as the T2 charts are pretty effective 

for detecting mean shifts. However, they are slow in reacting to small and moderate shifts 

in the process mean. In that regard, the MEWMA control chart was developed to pro­

vide more sensitivity to small mean shifts (Montgomery, 2005, pp. 504). Suppose that 

X t = (Xl, X 2 ,'" ,Xp)' is a p-dimensional random vector whose components are random 

variables at time t. Lowry et al. (1992) proposed a multivariate version of the univari­

ate exponentially weighted moving average (EWMA) control chart. As for the MEWMA 

control chart, it is defined by 

Zt = rXt + (1- r)Zt-l 

where, r is a smoothing parameter (0 < r :s; 1) and it is assumed that Zo 

MEWMA control chart issues a warning signal when 
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where H is a specified control limit and the covariance matrix, 2:zt is given as {r[l(~~~)?tl } 2:x. 

However, in this thesis we use the following asymptotic covariance matrix: 

2:zt = (_r_)2:x. 
2-r 

Note from Equation (2.1) that when we expand Zt recursively, we get 

Thus, Zt is a weighted average of the t quality measurements available with weights following 

a geometric form. However, in the literature the chart is known as exponentially weighted. 

An important special case of the MEWMA control chart is the case that r = 1 leads to 

Zt = X t and Qt = Xt'2:-;l X t . This is precisely the multivariate Shewhart control chart 

also known as the chi-squared control chart. Let us assume that 

E(X) = J-L = { J-Lo 
J-Ll 

when the process is on-target 

when the process is off-target 

and Var(X) = 2:x. 

Consider the following transfonnation and let the transformed variable be 2:x1
/

2 (X -

J-Lo), By the transformation, we obtain 

{ 

-1/2E( ) _ -1/2( ) _ 
( 

-1/2 ) _ 2:x X - J-Lo - 2:x J-Lo - J-Lo - 0 
E 2: x (X -J-Lo) -

2:X
1

/
2 E(X - J-Lo) = 2:X

1
/

2 (J-Ll - J-Lo) 

when the process is on-target 

when the process is off-target 

centrality parameter c is defined as follows. 

c = (J-L - J-Lo)'2:-;l(J-L - J-Lo). (2.3) 
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Then, the noncentrality parameter of the transformed variable ~i1/2(X - J.Lo) is 

c = (~i1/2(J.L - J.Lo) - 0)' (1)-1 (~i1/2(J.L - J.LO) - 0) 

= (J.L - J.LO)'~X1/2~X1/2(J.L - J.Lo) 

= (J.L - J.Lo)'~)l(J.L - J.Lo). 

The result is equivalent to the noncentrality parameter of X (Equation (2.3)). By this 

transformation, we can assume that X has mean zero and an identity covariance matrix 

since the performance of a MEWMA control chart is a function of J.L only through the 

noncentrality parameter (Lowry, 1992). Using that, Qt in Equation (2.2) can be rewritten 

as Qt = e;-r)IIZtW· Thus, Qt > H is equivalent to IIZtl1 > ..j 2:rH. That is, IIZtl1 > H' 

where H' = ..j 2:rH. In this thesis, we will use 

as the control chart statistic. 

2.2 The Markov chain approximation algorithm 

The main objective of statistical process control charts is to provide a way to detect process 

shifts as quickly as possible when the process is out-of-control. One way is through the 

average run length (ARL) of the control chart. Several attempts by using simulation have 

been made to determine on- and off-target average run length for multivariate control charts, 

such as MEWMA and multivariate cumulative sum (MCUSUM) control charts (Crosier, 

1988; Hawkins, 1992; Pignatiello and Runger, 1990; Woodall and Ncube, 1985). However, 

the simulation method has the downside that we have to go through a long and tiresome 

process to obtain an upper control limit and a large number of simulated process runs are 
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required to get an acceptable variance. Brooks and Evans (1972) used a Markov chain 

approximation for the ARL of a univariate CUSUM control chart and Lucas and Saccucci 

(1990) applied this method for the EWMA chart. Rigdon (1995a, 1995b) used integral 

equations to obtain ARL values for a MEWMA. Prabhu and Runger (1996) used the Markov 

chain model to determine the run length performance of a MEWMA control chart. There 

is a conceptual difference between the two approaches. To analyze a shift of the observed p 

dimensional mean vector (when the process becomes out-of-control), the Rigdon's method 

uses a change in the mean of two dependent random variables while the Markov chain 

approach uses a one-dimensional random variable and a p - 1 dimensional random vector. 

However, the main drawback of the Rigdon's integration equation is that the equation can 

not be applied for the off-target setting. In this section, we review the Markov chain model 

that Prabhu and Runger (1996) proposed for the MEWMA control chart, which is the 

foundation for this study. 

The control statistic qt is non-negative and large values of it are indicative of out-of­

control. Thus, an upper control limit (UCL) is used. In the Markov chain approach, the 

in-control range [0, UCL] is divided into subintervals which form the states of the chain. 

Let 

91 = width of the on-target states 

92 = width of the off-target states 

UCL = -JH x r/(2 - r) 

p = number of variables. 

2.2.1 On-target performance 

Figure 2.1 illustrates the states when the process is in-control. Dividing the range [0, UCL] 

into m1 + 1 subintervals, m1 of them have the same length 91 and one of them has the 
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length g~. Thus, 

(1/2)g 1 

• I 
0 
\ 

gl 2 +m191 = UCL 

2UCL 
gl = 2m1 + l' 

m1 
~ __________________ -JA~ __________________ ~ 
I 

gl 
• 

9 1 

• 
gl 

• 
9 1 

• 

y 
In-control range 

• 
UCL 

) 

Figure 2.1: A illustration of the Partitioning the Control Region of a MEWMA (On-Target). 

When the process is in-control (p, = 0) from the beginning, the on-target distribution 

of qt = IIZtl1 can be approximated by using a Markov chain. 

p(i,j) = P(qt in state jlqt-1 in state i) 

Let us denote 8(r) the p - dimensional sphere of radius r > O. Since Zt has a spherical 

distribution, the conditional distribution of Zt given IIZtl1 is the same as IIZtIIU, where U 

is the uniform random variable on the p - dimensional sphere with radius 1 (Eaton, 1983). 

Thus, given that qt-1 = gli, the distribution of Zt-l I (qt-1 = gli) follows ig1U, We get 

p( i, j) = P{ (j - O.5)gI/r < IIXt + (1 - r )ig1 U Irll < (j + O.5)gI/r} (2.4) 

where X t rv Np(O, I) and U rv 8(1). Assume that X t is independent of U. Then Equation 
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(2.4) can be rewritten as 

p(i,j) = J ... J f(u)P{(j - 0.5)gl/r < IIXt + (1 - r)iglU / r ll < (j + 0.5)gI/rIU = u }du. 

8(1) 

Conditioning on U = u, 

Hence, conditioning on U = u, 

IIXt + (1 - r)iglu/rI12 rv X2(p, c) where c is the non centrality parameter. 

The noncentrality parameter c can be calculated as follows. 

(
l-r ) (l-r ) (1-r)2 (1-r)2 (1-r)2 c = -r-ig1u' I -r-ig1u = -r-ig1 u'u = -r-ig1 IIul12 = -r-ig1 

where u represents any vector in the p - dimensional sphere of radius 1, that is Ilull = 1. 

Thus, 

J J { (j - 0.5)2g2 (j + 0.5?g21 } 
p(i,j) = ... f(u)P r2 1 < IIXt + (1 - r)ig1u/rI12 < r2 1 U = u du 

8(1) 

J ... J f(u)P{(j - 0.5)2gUr2 < X2(p, c) < (j + 0.5)2gUr2}du 

8(1) 

P{(j - 0.5)2gUr2 < X2(p, c) < (j + 0.5)2gUr2} J ... J f(u)du 

8(1) 

P{(j - 0.5)2gUr2 < X2(p, c) < (j + 0.5)2gUr2}. (since J ... J f(u)du = 1) 

8(1) 

Therefore, for i, j = 0,1,2, ... , ml, the probability of a transition from state i to state 
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j is denoted p( i, j) and defined as follows. 

if j # 0 

if j = 0 

where X2(p, c) is a noncentral chi-squared random variable with p degrees of freeedom, 

noncentrality parameter c = [(1 - r)igr/rj2 and gl = 2~~1. Using the transitional prob­

abilities, the (ml + 1) x (ml + 1) transition matrix Po of the transient states of the chain 

can be constructed. 

By using the above algorithm, the on-target average run length is given by 

ARLo = lim s'(I - PO)-11 (Prabhu and Runger, 1996) 
ml---->+OO 

(2.5) 

where s is the starting probability vector and 1 denotes a vector of Is of the dimension 

ml + 1. Derivation of Equation (2.5) is provided in section 2.3. 

2.2.2 Off-target performance (zero-state case) 

Figure 2.2 represents the two-dimensional range of (Ztl, IIZt211) with the axes ZI and "Z2". 

For the Markov chain approximation of Ztl, the number of states between -UCL and UCL 

is 2m2 + 1. States are 1, 2, ... , 2m2 + 1. Thus, the width of each state, g2 is 2~~i. For 

the Markov chain approximation of "Zdl, the number of states are ml + 1, labelled as 0, 

1 Tl 2UCL 
, ... mI· IUS, gl = 2ml+l. 

Suppose that the process is out-of-control (ILo changes to ILl) from the beginning and let 

fJ = "JLl". Then fJ = "JLl" = v'(JLl - O)'I(JLl - 0) = JILl'ILl which is the noncentrality 

parameter. Since the MEWMA is a function of the off-target mean (=ILl) only through 

the noncentrality parameter, we can assume that ILl = fJe where e is the p component unit 

vector e' = (1,0,0, ... ,0). Thus, Zt can be partitioned into a one-dimensional random 

variable Ztl with non zero mean fJ and p - 1 dimensional random vector Zt2 with zero 
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ix = m1 + 1 
iy =0 

Figure 2.2: States in the Markov Chain Used for the Off-Target Case of a MEWMA (Prabhu 
and Runger, 1996). 

mean, where 5 = (!.1,'~X-lp,)1/2. That is, qt = IIZtl1 = (Z£l +Zt2'Zt2)1/2. The transitional 

probability of Ztl from state ix to state jx, denoted by h(ix,jx) is used to analyze the 

off-target control component. For ix, jx = 1,2, ... ,2m2 + 1, 

h(ix,jx) = P(Ztl in state jxlZt-l in state ix) 

P[( -UCL + (jx - 1)g2 - (1 - r)Cix)/r - 5) < Xtl - 5 < (-UCL + jxg2 - (1 - r)CiJ/r - 5)] 

<I> ((-UCL + jxg2 - (1- r)ciJ/r - 5) - <I> ((-UCL + (jx -1)g2 - (1- r)CiJ/r - 5) 
where <I> is the cumulative standard normal distribution function and Ci x = -UCL + (ix - 0.5)g2' 

Let A denote the (2m2+1) x (2m2+1) transition matrix of Ztl. The transitional probability 

of II Zt211 from state iy to state jy, denoted by v( iy, jy) is used to analyze the on-target control 
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components. For iy,jy = 0,1,2, ... , ml, 

if jy i= 0 

if jy = 0 

where c = [(1 - r)iygI/rF. Let B denote the (mi + 1) x (mi + 1) transition matrix of 

II Zt211· Since Ztl is independent of Zt2, the transitional probability of the bivariate chain 

{Ztl, IIZt211} from state (ix, iy) to state (jx, jy) is 

Let PI be the transition matrix of the transient states of the bivariate chain. Using the 

condition (ix - (m2 + 1))2g~ + i~gf < UCL2 and calculating the Kronecker product of A 

and B (Lee, 2009), P l can be calculated. See Appendix A.l for the definition of Kronecker 

product and Appendix B.l for the R code for the Markov chain algorithm. 

As a result, the off-target average run length is given by 

ARLI = lim s'(I - P1)-Il. 
1nl,m2-->+OO 

(2.6) 

2.3 On-target run length analysis 

Assume that the process is operating on-target. Following Prabhu and Runger (1996), the 

Markov chain methods for the MEWMA control chart leads to 

P(N) n) = lim s'Ponl, n = 0,1,2, .,. 
ml-->+OO 

(2.7) 

where N is the run length of the scheme, that is the number of runs until the false signals 

for the first time. Here s is the starting probability vector. Po is the (ml + 1) x (ml + 1) 

transition matrix for the Markov chain, and 1 denotes a vector of Is of the dimension 
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ml + 1. It turns out that the convergence is quite fast with values of 10 to 15 for ml, giving 

satisfactory results. In this thesis, we used ml = 25. Then, the probability mass function 

for the run length N is 

f(n) = P(N = n) P(N > n -1) - P(N > n) 

s'pon-I(I - Po)1, n = 1,2, ... 

where Poo = I and I is the (ml + 1) x (ml + 1) identity matrix. The on-target run 

length distributions are provided in Figure 2.3. It is observed that the on-target run length 

distribution is skewed to the right (positively skewed). 

On-target run length distribution 

~~----------------'---A-RL~~-'= 

g 
.; 

8 

ARl=300 
ARl = 500 

.; ~---.---.----.---.----r 
100 200 300 

Run length 
lal 

400 500 

,§' 
:0 

'" .0 
f> 
a. 

~ 

~ 

8 
.; 

~ 

8 

On-target run length distribution 

- AAl=200 
ARL=300 
ARL=500 

.; ~---.---.----.---.----r 
100 200 300 

Run length 
Ibl 

400 500 

Figure 2.3: On-Target Run Length Distribution for MEWMA with ARLo = 200,300,500 
and (a) r = 0.1 and (b) r = 0.3. 

Let us consider the situation that the process is operating on-target and the process 

mean is /-L = /-La· Since Equation (2.7) is the survival function of N, we can use it to derive 
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E(N). Thus, the on-target average run length (ARLo) is 

00 

ARLo = E(N) = L nf(n) 
n=l 

1f(1) + 2f(2) + 3f(3) + 4f(4) + .,. 

[f(l) + f(2) + f(3) + f(4) + ... ] + [f(2) + f(3) + f(4) + ... ] + [f(3) + f(4) + ... ] + ... 
00 00 00 

L f(n) + L f(n) + L f(n) + .,. = P(N ~ 1) + P(N ~ 2) + P(N ~ 3) + ., . 
n=l n=2 n=3 

00 00 (00) ~ P( N ~ n) = ~ s' Po n-
1l = s' ~ Po n-l 1 = s' (I + Po + Po 2 + ... ) 1 

s'(I - PO)-ll. 

An alternative way to derive E(N) is presented in Appendix A.2.4.1. 

The variance of run length (=VRLo) when the process is operating on-target also can 

be derived as a closed form (See Appendix A.2.4.2). 

V RLo = Var(N) = E(N2) - [E(N)]2 

2s'Po(I - Po)-21 + s'(I - Po)-ll - [s'(I - Po)-11]2 

2s'Po(I - Po)-21 + s'(I - Po)-ll[l- s'(I - Po)-ll]. (2.8) 

2.3.1 Moments of on-target run length 

In the previous section, we derived the first and second moments of the distribution of run 

length. The higher moments also can be derived by the same approach. In particular, the 

third and fourth moments are used to measure skewness and kurtosis of the run length 

distribution respectively. The third moment of N is 

(See Appendix A.2.4.3). 
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Skewness is the degree of asymmetry of a distribution and it is the standardized 3rd central 

moment of run length N. It is defined as 

We compute 

E[(N - p,)3]. . . 
/1 = 3 ' where (J IS the standard deVIatIOn. 

(J 

E[(N - p,)3] = E(N3) - 3p,E(N2) + 2p,3 

8'[6· Po2(1 - PO)-3 + 6Po(1 - P O)-2 + (I - P o)-I]l 

3(8'(1 - Po)-11) [28'Po(1 - P o)-21 + 8'(1 - p o)-1 1] 

+ 2(8'(1 - PO)-1 1 )3. 

Thus, the skewness of the on-target run length distribution is 

/1 = {8'[6Po2(1 - PO)-3 + 6Po(I - P O)-2 + (I - Po)-l]l - [8'(1 - Po)-ll] 

[68' Po (I - Po)-21 + 38'(1 - Po)-11 - 2(8'(1 - Po)-11)2]} 

j(28'Po(1 - Po)-21 + 8'(1 - Po)-11[1 - 8'(1 _ PO)-1])3/2. 

The fourth moment of N is 

(See Appendix A.2.4.4). 

Kurtosis is a measure of the flatness of a distribution and it is the standardized 4th central 

moment of run length N. It is defined as 
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We compute 

E[(N - J-L)4] = E(N4) - 4 . J-LE(N3) + 6 . J-L2 E(N2) - 3 . J-L4 

J-L4 - J-L( 4 . J-L3 - 6 . J-LJ-L2 + 3 . J-L3) 

Thus, the kurtosis of the on-target run length distribution is 

Additionally, excess kurtosis is K, - 3 = 1'£4-f.L(~::~:~~+3'f.L3) - 3. All the moments de­

rived above can be verified numerically by using the probability mass function. For ex-

ample, given the condition that H = 12.7378, ARLo = 200, r = 0.1 and p = 4, E(N2
) = 

76,432.59, E(N3) = 43,757,943, and E(N4 ) = 33,401,107,743 are obtained respectively. 

Table 2.1 shows the approximation of the moments. 

m I:~-l nf(n) I:~=l n2 f(n) I:~=l n3 f(n) I:~-l n4 f(n) 
100 19.43 1,257.93 92,355.41 7,290,654.00 
500 147.33 37,242.22 11,769,166.00 4202406879.00 

1,000 193.39 68,358.97 33,581,291.00 20075724754.00 
5,000 200.00 76,432.59 43,757,942.00 33,401,104,540.00 
10,000 200.00 76,432.59 43,757,943.00 33,401,107,743.00 
20,000 200.00 76,432.59 43,757,943.00 33,401,107,743.00 

Table 2.1: Approximation of moments of on-target run length. 

2.4 Off-target run length analysis 

In section 2.3, we studied the on-target run length distribution. In this section, we will 

see the off-target run length distribution. As mentioned earlier, Prabhu and Runger (1997) 
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evaluated the off-target performance by assuming that the process was out-of-control at the 

beginning of operation (the zero-state case). The analysis in this thesis extends the above 

method to the steady-state case that is where it is possible for a delayed shift to take place; 

that is, it is not necessary to happen at the beginning. Thus, we will generalize the notion 

of the off-target case. 

Consider the situation where the process goes off-target from p, = /-Lo to P, = /-Ll at the 

time t = 7 and the change sustains. Thus, 

t = 1,2, ... ,7- 1, 

t = 7,7+ 1, .... 

Thus, the transition matrix P changes as well according to 

t=1,2, ... ,7-1, 

t = 7,7+ 1, .... 

Now, let us consider the situation where the process mean stays in-control until t = 7-1 

and it shifts out-of-control from t = 7 on. 

As a result, the survivor function of run length N becomes 

{ 

s'ponl, 
fs(n) = P(N > n) = 

s'R T-1 P n-T+11 o 1 , 

n = 1,2, ... ,7 - 1, 

n=7,7+1, .... 

This leads to the following probability mass function for N. 

For n = 1,2, ... ,7 - 1, 

f(n) = P(N = n) = P(N > n - 1) - P(N > n) = s'pon-1 1 - s'ponl 

s' p on-1(I - Po)l. 
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For n = T, 

f(n) = P(N = T) = P(N > T -1) - P(N > T) = s'PoT- 1l- s'PO
T- 1p 1l 

s'PoT-1(I - PI)l. 

For n = T + 1, T + 2, T + 3, ... 

Note that the latter formula also applies to n = T. Thus the probability mass function 

of run length N is 

f(n) ~ P(N ~ n) ~ { s'Pon-1(I - Po)l, 

s' PoT- 1 PI n-T(I - PI )l, 

if n = 1,2, ... , T - 1, 
(2.9) 

if n = T, T + 1, .... 

Note that when T = 00 or T = 1, then the probability mass function reduces to the following 

forms. 

{ 

s' Pon-1(I - Po)l, 
f(n) = P(N = n) = 

s' PI n-l(I - PI )l, 

ifT=oo 

if T = 1. 

This result is consistent with what Prabhu and Runger (1996) proposed. Thus, Equation 

(2.9) is the general form of the probability mass function of run length N. Using Equation 

(2.9), the distribution of run length N can be plotted for different values of T. Figures 2.4 

and 2.5 show how the distribution of the off-target run length moves as T value changes 

given the condition that ARLo = 200 and 500 respectively. 

Figures 2.6 and 2.7 show the off-target run length distributions for the MEWMA when 

the process mean has shifted at T = 50 and T = 100 for varying values of smoothing 
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parameter r given that ARLo = 200 and 500 respectively. Notice that the distribution 

shows a higher peak as a smaller smoothing parameter r is used. 

Figures 2.8 and 2.9 show the off-target run length distributions for the MEWMA when 

the process mean has shifted at T = 50 and T = 100 for different values of mean shift 8 

given the condition that ARLo = 200 and 500 respectively. Notice that the distribution 

shows a higher peak as the amount of shift (8) increases. 
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Figure 2.4: Off-Target Run Length Distribution for MEWMA when Process Mean has 
shifted by fJ = 0.5 with ARLo = 200, r = 0.1 and (a) p = 2 and (b) p = 4. 
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Figure 2.5: Off-Target Run Length Distribution for MEWMA when Process Mean has 
shifted by fJ = 0.5 with ARLo = 500, r = 0.1 and (a) p = 2 and (b) p = 4. 
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Figure 2.6: Off-Target Run Length Distribution for MEWMA when Process Mean has 
shifted by 8 = 0.5 at T = 50 with ARLo = 200 and (a) p = 2 and (b) p = 4. 
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Figure 2.7: Off-Target Run Length Distribution for MEWMA when Process Mean has 
shifted by 8 = 0.5 at T = 100 with ARLo = 500 and (a) p = 2 and (b) p = 4. 
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Figure 2.9: Off-Target Run Length Distribution for MEWMA when Process Mean has 
shifted at T = 100 with ARLo = 500, r = 0.1 and (a) p = 2 and (b) p = 4. 

Table 2.2 shows the computed values of the off-target average run length (ARL1 ) and 

the probability of false alarm for various T values, where the probability of false alarm is 

defined as 
T-l 

Probability of false alarm = L f(n). 
n=l 

It also contains the effective average run length, ARLI - T which is the average number 
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of runs needed to detect a change in the mean vector after it has occurred. Table 2.2 is 

constructed given the condition that ARLo = 500,p = 4, r = 0.1 and 0 = 0.5. 

Table 2.2: Probability of false alarm, ARL1 and effective ARL1 for each transition point 
(7). 

7 Probability of false alarm ARL1 Effective ARL1 
1 0 51.7425 50.7425 
10 0.0024533 59.1293 49.1293 
15 0.0094964 63.5308 48.5308 
20 0.0185961 67.9431 47.9431 
25 0.0282821 72.3270 47.3270 
30 0.0380723 76.6711 46.6711 
35 0.0478228 80.9726 45.9726 
40 0.0574919 85.2307 45.2307 
45 0.0670679 89.4456 44.4456 
50 0.0765480 93.6180 43.6180 
55 0.0859324 97.7478 42.7478 
60 0.0952215 101.8356 41.8356 
65 0.1044162 105.8819 40.8819 
70 0.1135175 109.8871 39.8871 
75 0.1225263 113.8516 38.8516 
80 0.1314436 117.7758 37.7758 
85 0.1402702 121.6602 36.6602 
90 0.1490071 125.5050 35.5050 
95 0.1576553 129.3108 34.3108 
100 0.1662156 133.0779 33.0779 

Furthermore, the off-target average run length ARL1 can be expressed as a closed form. 

00 T-1 00 

ARL1 = E(N) = :L nf(n) = :L nf(n) + :L nf(n) 
n=l n=l n=T 

T-1 00 

:L ns'Pon - 1(1 - Po)l + :L ns'Po
T- 1 PI n-T(l - PI )l 

n=l n=T 

s' { (~nponl) (1 - Po) + POT
-
1 (~nPi n-T) (1 - Pi)} 1 

{s'[l - PoT-1](1 - Po)-11 + POT-1 (1 - P I )-l}l (Appendix A.2.5.1). (2.10) 
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Alternatively, we can derive the off-target average run length ARL1 by using the law 

of total probability. That is, E(N) can be written as follows. 

E(N) = E(NIN < T)P(N < T) + E(NIN ::::: T)P(N ::::: T). 

We know that P(N::::: T) = P(N > T -1) = s'PoT- 11 and P(N < T) = 1- s'PoT- l l. 

The conditional distribution of N, given that N < T is defined as 

f(n) 
f(nlN < T) = P(N < T) n = 1,2,'" ,T -1 provided that P(N < T) > 0 

1 
--------O-l-s'[I + (T -l)PoT - TPOT- 1J(I - Po)-11 (See Appendix A.2.6). 
1- s'PO

T
- 1 

Thus, 

E(NIN < T)P(N < T) = ,I T-1 s'[I + (T -l)PoT - TPoT- 1J(I - Po)-11(1- s'PoT- 11) 
1- s Po 1 

s'[I + (T - l)Po
T - TPO

T- 1J(I - PO)-ll. 

Now, the conditional distribution of N, given that N ::::: T is defined as 

f(n) 
f(nIN::::: T) = P(N::::: T) n = T, T + 1"" provided that P(N ::::: T) > 0 

1 s'[R T-1(I _ P )-1 + (T - l)R T-
1J (See Appendix A.2.6). 

s'PoT - 11 0 1 0 

Thus, 

E(NIN::::: T)P(N::::: T) = s'P
o
1T- 11 s'[PoT- 1(I - P1 )-1 + (T -1)POT-1Jl(s'POT-11) 

s'[PoT- 1(I - P1 )-1 + (T - 1)POT- 1Jl. 
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Therefore, 

ARLI = E(N) = E(NIN < T)P(N < T) + E(NIN ~ T)P(N ~ T) 

s'[I + (T - l)PoT - TPOT-1J(I - Po)-ll + S'[PoT-1(I - P1)-1 + (T - 1)POT
-

1Jl 

s'[I + (T -l)Po
T - TPO

T- 1 + (T -1)PO
T- 1(I - Po)J(I - Po)-ll + S'PoT-1(I - P1)-11 

s'[I - PoT-lJ(I - Po)-ll + s' PoT-1(I - Pl)-ll. 

We obtain the same result as Equation (2.10). 

As a special case, Equation (2.10) reduces to the following forms. 

if T = 00, since poo = O. 

Note that above results agree with past studies by Runger and Prabhu (1996). Hence, 

Equation (2.10) is a generalization of of the on- and off-target ARL. 

The off-target variance (V RL1 ) of N is 

VRL1 = Var(N) = E(N2) - [E(NW 

s'{Po[2I - (T -1)TPoT-2 + 2(T - 2)TPOT- 1 - (T -l)(T - 2)PoTJ(I - PO)-2 

+ POT-l [2P1(I - Pl)-2 + 2(T - l)Pl(I - P1)-1 + T(T - l)IJ + [I - PoT-1](I - PO)-l 

+ POT-l (I - P1)-1 }l- {s'[I - PoT-1](I - Po)-ll + s'PoT-1(I - P 1)-11}2 

(See Appendix A.2.5.2). 
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As a special case) when T = 00) 

VRL1 = Var(N) 

28' Po(1 - Po)-21 + 8'(1 - Po)-11[1 - 8'(1 - Po)-ll] 

28' Po (1 - Po)-21 + 8'(1 - Po)-ll- [8'(1 - Po)-11]2 

VRLo. 

Note that the result is equivalent to the on-target variance (See Equation (2.8)). 

when T = 1) 

VRL1 = Var(N) 

8' {Po (21 - 21)(1 - PO)-2 + 2P1 (1 - Pl)-2 + 1 + (1 - Pl)-l - 1}1 

[8' {(1 - Po)(1 - PO)-l + (1 - P1)-1 - I}lF 

2s'P1 (1 - P1 )-21 + s'(1 - P 1)-11- [s'(1 - P 1)-1112. 

2.5 Comparison of MEWMA and Shewhart control chart 

Suppose that X is a random variable and is the number of Bernoulli trials until the first 

success is observed) supported on the set {1) 2) 3) ... }. Then the probability mass function 

of a geometric random variable X with success probability a is defined as 

P(X = x) = (1- ay-1a) x = 1) 2) 3) .... As we discussed earilier) the probability mass 

function of the on-target run length and the average run length for the MEWMA control 

chart are defined as 

f(n) = P(N = n) = 8'(1 - Po)Po
n - 1 l) n = 1) 2) ... 

ARLo = E(N) = 8'(1 - Po)-ll respectively. 
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The mean, variance, skewness and excess kurtosis of a geometric distribution with proba-

bility a are given in Table 2.3. 

Table 2.3: Mean, variance, skewness and excess kurtosis of geometric distribution. 

Geometric distribution with probability a 
Mean Variance Skewness Excess kurtosis 

1. I-a 2-a 6 a
2 

a ~ ~ + I-a 

Comparing the two distributions (i.e., the geometric distribution and the distribution 

of run length N) by matching the means leads to interesting results. For a given starting 

vector s, a transition matrix Po and a control limit H, then determine the a such that 

E(X) = ARLo· As a result, we have a = A1Lo = sl(I-i>o) 11· 

Table 2.4: Comparison of MEWMA run length distribution and geometric distribution with 
ARLo = 200 

p = 4, ARLo = 200,prob = 0.005 
r 0.1 0.5 0.7 0.99 1 geometric dist 

Variance 36432.61 39284.82 39593.28 39799.74 39800 39800 
Skewness 1.998662 1.999953 1.999969 1.999979 2.000006 2.000006 

Excess Kurtosis 5.994399 5.999810 5.999917 5.999963 6.000025 6.000025 

Table 2.5: Comparison of MEWMA run length distribution and geometric distribution with 
ARLo = 500 

p = 4, ARLo = 500,prob = 0.002 
r 0.1 0.5 0.7 0.99 1 geometric dist 

Variance 239636.3 248085.6 248916.5 249499.2 249500 249500 
Skewness 1.99973 1.999992 1.999996 2.000001 2.000001 2.000001 

Excess Kurtosis 5.998916 5.999968 5.999986 6.000004 6.000004 6.000004 

Figures 2.10 and 2.11 illustrate that there is not much difference between the on-target 

run length distribution of a MEWMA and a geometric distribution by matching the mean 
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Figure 2.10: Comparison of on-target run length distribution with ARLo = 200 and geo­
metric distribution with prob = 0.005 and (a) p = 2 and (b) p = 4. 
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Figure 2.11: Comparison of on-target run length distribution with ARLo = 500 and geo­
metric distribution with prob = 0.002 and (a) p = 2 and (b) p = 4. 

unless the smoothing parameter r is very small. It is also observed that as the smoothing 

parameter r gets closer to 1, the on-target run length distribution for the MEWMA is 

becoming the geometric distribution. That is, as r -t 1, then Zt = r(Xt - MO) + (1 -

r)Zt-l -t X t - Mo, which is the multivariate Shewhart control chart. On the other hand, 

as r -t 0, then Zt -t Zt-l, which means that all information used is past information. 

Thus, when r is 1, the on-target run length distribution for the MEWMA is equivalent to 

the geometric distribution. The variance, skewness and kurtosis of the two distributions are 
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also computed in the Tables 2.4 and 2.5. 

Now, let us consider the off-target distribution of the two control charts (i.e., the 

MEWMA control chart and the Shewhart control chart) for a given smoothing pat'ame­

ter r and ARLo. The general form of the multivariate Shewhart statistic is defined as 

and follows a chi-square distribution with P degrees of freedom when the process is on-target 

and X follows a multivariate normal distribution (Aparisi, 2004). 

Since the on-target run length distribution for the Shewhart control chart follows a 

geometric distribution, the off-target run length distribution for the Shewhart chart can be 

constructed as follows. 

gin) ~ { po(1 - po)n-l, 

(1- POf- 1pl(1- Pl)n-T, 

n = 1,2,··· , T - 1, 

n= T,T+ 1, ... 

where Po is the probability that any point exceeds the control limits when the process is 

in-control while PI is the the same probability when the process is out-of-control. Using the 

probability mass function, the out-of-control ARLI when the mean shift takes place at T is 

00 T-l 00 

ARLI = L ng(n) = L n(po(l- po)n-l) + L n(l- POf-1pl(1 - Plt-T 

n=l n=l n=T 

(1 + (T -1)(1- pof - T(l- POf-l) ( )T-l ( 1-PI) --'----------------'- + 1 - Po T + --
Po PI 

(1 + (T -1)(1- pof - T(l- Pof-1 - (T -1)(1- Po -1)(1- POf-l) (1- pof-1 

--'------------------------------------------------------~+~--~--
Po PI 

(1 - T(l - pof-1 + (T - 1)(1- pof-1) (1- PO)T-l 
--'---~--~-~--~---~~+~~~-

Po PI 
(1 - (1 - pof-1 ) (1 - pof-1 

--'----------'-- + , T = 1,2, .... 
Po PI 
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As a special case, ARLI reduces to the following forms. 

if T = 00 

ifT=1. 

which is equivalent to the mean of the geometric distribution with probability Po and PI 

respectively. Additionally, the off-target V RLI when the mean shift occurs at time T is 

VRL I = Var(N) = E[N(N -1)] + E(N) - E(N)2 

Po2(1 - po) [2 - (T - l)T(l- poy-2 + 2(T - 2)T(1 - poy-I - (T - l)(T - 2)(1- pon 

+(1 - poy-I[2(1 - PI)P12 + 2(T -1)(1 - PI)Pl l + T(T - 1)] 

+ [(1 - (1 - poy-I )pOI + (1 - POy-Ipl l ] [1 - ((1 - (1 - poy-l )pOI + (1 - poy-lpll)]. 

As a special case, 

ifT=oo 

if T = 1 

which is equivalent to the variance of the geometric distribution with probability Po and PI 

respectively. 

Now, let us compare the performance of the MEWMA control chart with that of the 

multivariate Shewhart control chart when the mean shift happens. For example, we pick 

r = 0.1 (since 0.1 is the value most often used) and determine the MEWMA control limit 

that satisfies ARLo = 200. Then consider the geometric distribution matching with the 

same mean ARLo = 200. This is the geometric distribution with parameter Po = A1L o = 

0.005. Determine the control limit for the Shewhart control chart with ARLo = 200. Notice 

that the noncentrality parameter of the multivariate Shewhart control chart is defined as 

c = (p, - p,o)'L,)/(p, - P,o) while the noncentrality of the MEWMA is defined as 5 = 

((p, - p,o)'L,Jl(p, - P,O))1/2. That is c = 52. 
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Figures 2.12 - 2.14 show the comparison of the out-of-control ARLI values for the two 

distributions for different values for 6 and different values of T. It is well known that the 

MEWMA control chart is effective in detecting small shifts when the shift happens at T =1 

(Lowryet al., 1992). Just as in the case T = 1, the MEWMA control chart outperforms the 

Shewhart control chart as T increases until the mean shift 6 is 1.5. However, when the large 

mean shift takes place (i.e., 6 is greater than 1.5), the Shewhart control chart is as good as 

the MEWMA at detecting large shifts in the mean or performs slightly better. Additionally, 

as T increases (i.e., the mean shift is delayed more steps), the MEWMA control chart loses 

its sensitivity to a small mean shift. 

MEWMA vo Shewhan ch3J1, ARLo-20D, 6 .0.5 

50 100 

t 
(a) 

150 200 

MEWMA YO Shewha.rt ChOlft, ARL0-200, 0 .. 1.0 

50 100 

t 
(h) 

150 200 

Figure 2.12: Off-Target ARL Comparision of MEWMA and Shewhart with ARLo = 200 
(a) 6 = 0.5 and (b) 6 = 1.0. 
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50 100 150 200 

(b) 

Figure 2.13: Off-Target ARL Comparision of MEWMA and Shewhart with ARLo 200 
(a) 0 = 1.5 and (b) 0 = 2.0. 

MEWMA VB Shewhan chan, ARL0=200, 3 = 2.5 
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MEWMA vs Shewhan chan, ARL0=200, 3 = 3.0 

50 100 

• 
(b) 

150 

I" MEWMA 1 • Shewhart 
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Figure 2.14: Off-Target ARL Comparision of MEWMA and Shewhart with ARLo 200 
(a) 0 = 2.5 and (b) 0 = 3.0. 
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2.6 Analysis of optimal smoothing parameter r 

When a shift has taken place in the process mean, it is very important to detect the 

occurrence of the change as early as possible. In the MEWMA control charts, smaller 

values of r are more effective in detecting small shifts in the mean (Lowryet al., 1992). 

Thus, for a given ARLo, we need to find the smoothing parameter that is associated with 

the smallest ARL1. First, let us consider the case that the process goes off-target at the 

beginning of operation (T = 1). Tables C.5 - C.7 in Appendix C present optimum MEWMA 

control charts for various shifts (0) and in-control values of ARLo (from 200 to 1,000). The 

smoothing parameter corresponding to a minimum ARLI for a given ARLo can be obtained 

by using the Markov chain algorithm and the partition method (The R code is provided in 

Appendix B.4). 

The partition method generates a combination of a smoothing parameter r and a control 

limit H satisfying a given ARLo and find the optimal smoothing parameter. The basic idea 

of the method is as follows. For a fixed smoothing parameter r, the method inspects 

the middle point of a lower control limit H10w and a upper control limit Hup such that 

ARLH10w :s; ARLo and ARLHup 2: ARLo. Once Hmid, the middle point of two control 

limits is obtained, ARL can be calculated by using the Markov chain algorithm. If the 

difference of ARLo and the newly computed ARL is less than a very small number (i.e., 

E < 10-3
), the smoothing parameter r and the control limit Hmid is a pair that can satisfy 

the given ARLo. Otherwise, keep doing the previous procedures until a sought pair is found. 

If this task is carried out until the method covers a whole range of smoothing parameter r 

(0 < r :s; 1), a number of combinations of rand H can be obtained. With the combinations 

obtained, ARLI values can be calculated for a given shift o. Then, the smoothing parameter 

r for which ARLI is the smallest can be identified. 

Now we are interested in how the optimal value of r behaves as transition point T 

changes. Figures 2.15 and 2.16 show that the optimal values of r increases as T increases in 
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each case. It is observed that the optimal parameter T changes more slowly when the ARLo 

value gets bigger or p increases. That is, when we have smaller ARLo and p, the change of 

transition time gives a huge impact on deciding the optimal smoothing parameter T. For 

instance, when we have ARLo = 500 and p = 10, the smoothing parameter changes very 

little (from 0.10 to 0.13) as T changes from 1 to 200 while it changes from 0.14 to 0.26 in 

case we have ARLo = 200 and p = 2. Notice that the usual practice is to pick the optimal 

value for T = 1. However, this is unrealistic since most process starts operating well for a 

while and later on out-of-control slippage occurs. 
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Figure 2.15: Comparison of optimal smoothing parameter as T increases with (a) p = 2 and 
(b) p = 4. 
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Figure 2.16: Comparison of optimal smoothing parameter as T increases with (a) p = 6 and 
(b) p = 10. 
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Chapter 3 

Application to semiconductor 

manufacturing 

Silicon (1) Poly Silicon deposition (2) Photo resist coating (3) 

PR pattern is formed (5) Etching (6) 
PR Stripping I washing 

and circuit pattem is formed (7) 

Exposure and 
dsvelopment (4) 

Measurement of PR pattern: DI CD Measurement of Circuit pattern: FI CD 

Figure 3.1: Semiconductor fabrication process. 

Figure 3.1 illustrates the process steps involved in patterning of the transistor gate. A 

polysilicon layer is formed on a silicon wafer (2). The wafer is coated with a photoresist 

which is sensitive to ultraviolet light (3). A mask pattern is exposed and the photoresist 

is developed (4 and 5). By using gases in a plasma through the resist pattern and re-
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moving unwanted areas of film (etching), a circuit pattern is made (6 and 7) (Quirk and 

Serda, 2000). Among a number of semiconductor manufacturing processes, the patterning 

of polisilicon gates has been the most important and challenging process in semiconductor 

manufacturing since it defines the success of semiconductor manufacturing. The linewidth 

of a gate transistor before etching is called the developed inspection critical dimension (DI 

CD) and it is called the final inspection critical dimension (FI CD) after etching (Joung et 

al., 2004). As mentioned before, the tighter control for the DI CD and FI CD is required 

since the degree of integration on a chip increases. Notice that since optical lenses are 

used in photolithography, it is impossible to have the best focus over the entire wafer area 

because silicon wafers have rough surfaces and they also have bow and warpage. Therefore, 

in this study, we assume that we have the best focus in the central area of a wafer, which 

is normally happening in semiconductor manufacturing. Additionally, we do not expect 

any process particles to happen. Then we do a simple simulation to see how the MEWMA 

control chart performs. 

Suppose X = (Xl, X 2 )' is a 2 x 1 random vector representing the DI CD (Xl) and 

the FI CD (X2). The quality characteristic Xl (DI CD) is normally distributed with mean 

ItDI and standard deviation O-DI, where both ItDI and O-DI are known and correspond to 

in-control production (Greer et al., 2003). Moreover, the statistical model between the final 

inspection critical dimensioin (FI CD) and the developed inspection critical dimension (DI 

CD) is X 2 = a + j3X 1 + E, where E is a random variable representing noise or environmental 

factor affecting FI CD and E rv N(O, 0-;). Thus, the random vector, X can be expressed as 

X = (Xl, X 2 )' = (DI CD, FI CD)' = (Xl, a + j3XI + E)'. Suppose that o-E < O-DI and E is 

independent of Xl. 

The mean and variance of X 2 and the covariance between Xl and X 2 can be calculated 
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as follows. 

E(X2) = E(a + (3XI + E) = a + (3E(XI) + E(E) = a + (3f-LDI 

Var(X2) = Var(a + (3XI + E) = (32Var(XI) + Var(E) = (32ubI + U;. 

The covariance between X I and X 2 is 

= COV(XI' a) + COV(XI' (3XI) + COV(XI' E) 

= 0 + (3Var(XI) + 0 = (3ubI' (since Xl is independent of E) 

Therefore, the random vector, X is distributed as a bivariate normal distribution as follows. 

X rv N (fLO, :Ex), where :Ex = ( ~bI 
uDI,FI 

UbI,FI) d (f-LDI) an fLo = . 
2 UF1 f-LFI 

Furthermore, the covariance matrix, :Ex is 

Let n be the sample size. In semiconductor manufacturing, normally several wafers 

are selected from a run to measure DI CD and FI CD at regular time intervals when the 

process is thought to be in-control. For the purpose of simulation, we assume that five 

wafers are selected from a run (n = 5) and the mean of five measurements is used. We also 

make use of experimental results from the U.S patent (7,541,286 B2) suggesting parameters 

values a = -0.03 and (3 = 0.98. Suppose that Xl is distributed as N(130, 14.78) and E is 

distributed as N(O, 1), then the distribution of the sample mean X is 
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__ I;1=lXj (_ (130.00) __ (2.956 2.897)) X - r--J N J-to - , Ex - . 
5 127.37 2.897 3.100 

Figures 3.2 - 3.5 show the results of simulation to compare the performance of the 

MEWMA chart and the multivariate Shewhart control chart with the condition that the 

on-target ARL = 200 with p = 2 and r = 0.1. The control limits for a MEWMA and a 

multivariate Shewhart control chart are 8.66 and 10.6 respectively. That is, the multivariate 

Shewhart control chart issues an out-of-control signal when Tl = (Xt - J-to )'I;J/ (Xt - J-to) > 

10.6, whereas the MEWMA chart procedure signals when Zt'I;Zl Zt > 8.66, where I;Zt = 

2:'r I; x' Suppose that the process is initially in-control and a shift in the mean happens 

at T = 20. When a small shift happens, it is observed that the MEWMA chart is superior 

to the multivariate Shewhart control chart. Otherwise, both control charts perform well. 

For example, when 0 = 0.5 (Figure 3.2), the MEWMA issued a signal at 53th run while no 

indication of an out-of-control condition was observed for the multivariate Shewhart control 

chart. When 0 = 1.0 (Figure 3.3), an out-of-control signal was generated at 30th run for 

the MEWMA while the multivariate Shewhart chart detected the shift at 43th run. 

Now, when a relatively big shift happens (0 = 2.0 and 3.0), both control chart issued 

a out-of-signal as quickly as possible (Figures 3.4 and 3.5). The above simulation results 

show good agreement with previously obtained results in Chapter 2 section 5. 
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Figure 3.2: Comparision MEWMA and Hotelling control chart with 0 = 0.5 (a) MEWMA 
control chart and (b) Hotelling control chart. 
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Figure 3.3: Comparision MEWMA and Hotelling control chart with 0 = 1.0 (a) MEWMA 
control chart and (b) Hotelling control chart. 
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Figure 3.4: Comparision MEWMA and Hotelling control chart with 8 = 2.0 (a) MEWMA 
control chart and (b) Hotelling control chart. 
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Figure 3.5: Comparision MEWMA and Hotelling control chart with 8 = 3.0 (a) MEWMA 
control chart and (b) Hotelling control chart. 
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Chapter 4 

Propagation of variability 

4.1 Introduction 

So far, we have discussed a shift in the mean for the process monitoring. Additionally, 

throughout the manufacturing processes, it is also important to know which stage con-

tributes most to variation. In terms of analysis of variation transmission in manufacturing 

processes, Lawless et al. (1999) discussed methodology for understanding how variation is 

added and transmitted across the manufacturing process. Let us assume we have discrete 

manufacturing stages as follows. 

Input . .. --0- 0"""' 

Stage 1 Stage 2 Stage K 

Figure 4.1: Manufacturing processes. 

Let X be a quality characteristic of the output and X k be the measurement at stage k. 

We have a target value for the quality characteristic but there is variation in the product. 

That is, there is variation in the quality characteristic, X. As the measurement of interest 

X passes through the above processes, each step makes a contribution to the variance of 

X. The objective of this chapter is to understand the amount of variation attributable to 
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different stages of a manufacturing process and to introduce an extension of the variation 

transmission model suggested by Lawless et al. (1999) by llsing a simple linear regression 

model. 

4.2 Variation transmission model 

Figure 4.2 illustrates how the variation transmission model is applied to semiconductor 

manufacturing. For simplicity, we use two steppers and one etcher. Y1 denotes the DI CD 

while Y2 denotes the FI CD. The random variable Y2 is a linear function of an independent 

variable Y1 such that 

(4.1) 

where ex and (3 are parameters and the random variable e rv N(O,lT~). We assume that the 

Stepper #1 

Measurement #1 
(= DI CD = Y I ) 

'. -,1 

Stepper #2 

-- Etcher 

---

Figure 4.2: Photo and etch stages in a gate patterning process in model I. 

DI CD is measured right after photo processing as Y1 while the FI CD is measured after 

etching process as Y2. By defining IT'f = Var(Yi), we can obtain from Equation (4.1) 
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where rPO"r is the variance transmitted through the etcher and 0"1 is the variance added by 

the etching process. Let us define Y1j = Yi IZ1 = j where Zl is a random variable such that 

Zl = j if a wafer is processed by a stepper j. fl.1 and O"r are the mean and variance of the 

first measurement Y1 and it can be expressed as 

(4.2) 

(4.3) 

where fl.1j = E(Y1IZ1 = j) and O"rj = Var(Y1IZ1 = j) (See section A.2.1 in Appendix). 

In addition, using Equations (4.2) and (4.3), the mean and variance of Y2 (=FI CD) are 

1 2 

fl.2 = E(Y2) = 0: + ,8(2 ~ fl.1j) 
J=l 

2 2 

Var(Y2) = ,82(~ LO"rj + ~ L(fl.1j - fl.1)2) + ~ 
j=l j=l J Variance added 

v 
Variance transmitted 

In this simple case, the variance added by the etch operation is determined completely by 

one etcher. The downside of this model is that possibly the etcher will be overloaded since 

it is the only machine running. Since many etchers and steppers are involved for mass 

production in semiconductor manufacturing, the model can be extended with the addition 

of etchers. Intuitively, it would be more complicated if more etchers were involved in the 

etching process. For simplicity, we have two steppers and two etchers (See Figure 4.3). 

Let us define Y2jk = Y2 1(Zl = j, Z2 = k) and Z2 is a random variable such that Z2 = k 

if a wafer is etched by etcher k. Thus, Y2jk is the measurement of polysilicon gate line 

width (FI CD) processed by stepper j and etcher k (j = 1,2; k = 1,2). Since we have four 

possible combinations of steppers and etchers working in a pair, we can think of four linear 

equations as follows. 
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-----------------------~ 

-----------------------~ 

Stepper #2 

Etcher #1 

Measurement #2 
1-----. (= FI CD = Y2) 

Figure 4.3: Photo and etch stages in a gate patterning process in model II. 

Let us assume that 

Y211 = Y2!(Zl = 1, Z2 = 1) = al + IhYll + el, where el rv N(O, (J~1) 

Y212 = Y2!(Zl = 1, Z2 = 2) = a2 + ,62Yll + e2, where e2 rv N(O, (J~2) 

Y221 = Y2!(Zl = 2, Z2 = 1) = a3 + ,63Y12 + el, where e3 rv N(O, (J~J 

Y222 = Y2!(Zl = 2, Z2 = 2) = a4 + ,64Y12 + e2, where e4 rv N(O, (J~2) 

where ai and ,6i are parameters, i = 1,2,3,4 and (JA2 is the variance added by etcher k, 
k 

k = 1,2. The expected value of Y2jk from each combination is 

/-L211 = E(Y211 ) = E[Y2!(Zl = 1, Z2 = 1)] = al + ,6l/-Lll 

/-L212 = E(Y21J = E[Y2!(Zl = 1, Z2 = 2)] = a2 + ,62/-Lll 

/-L221 = E(Y221 ) = E[Y2!(Zl = 2, Z2 = 1)] = a3 + ,63/-L12 

/-L222 = E(Y222 ) = E[Y2!(Zl = 2, Z2 = 2)] = a4 + ,64/-L12' 
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The variance of Y2 jk from each combination is 

aL = Var(Y211) = Var[Y2I(Zl = 1, Z2 = 1)] = f3ra rl + a~l 

a~12 = Var(Y212 ) = Var[Y21(Zl = 1, Z2 = 2)] = f3~ail + a~2 

a~21 = Var(Y221 ) = Var[Y21(Zl = 2, Z2 = 1)] = f3gar2 + a~l 

a~22 = Var(Y222 ) = Var[Y21(Zl = 2,Z2 = 2)] = f31 ar2 + a~2· 

We assume that workload is evenly distributed through the combinations mentioned 

above and each stepper (etcher) is independent of the others, respectively. Thus, the ex-

pected value of Y2 (FI CD) is 

1 4 
E(Y2) = 4: (L CYi + f.1.l1(f3l + 132) + j.t12(f33 + 134)) = f.1.2 (See section A.2.2 in Appendix). 

i=l 

Thus, the variance of Y2 is 

2 

= 1 { ail (f3r + f3~) + ai2 (f3g + 131) + 2 L a~k + (CYl + f3lf.1.l1? + (CY2 + f32f.1.1l? + (CY3 + f33f.1.l2)2 
k=l 

+( CY4 + f34f.1.l2) 2 
} - 116 (( CYl + CY2 + CY3 + CY4) + f.1.1l (131 + 132) + f.1.l2(f33 + 134)) 2 

(See section A.2.2 in Appendix). 

Furthermore, we can compute the overall variance added by the etching operation as well. 

The overall variance added by the etching operation can be obtained by subtracting the 
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variance transmitted through the etching operation. 

O"i = Var(Y2) - f320"r 
2 

= ~ { dl (f3r + f3i) + O"r2 (f3j + f3l) + 2 .L O"ik + (CYI + f31J.Ln)2 + (CY2 + f32/-Ln)2 + (CY3 + f33J.L12)2 
k=l 

+(CY4 + f34J.L12) 2 } - 116 ((CYI + CY2 + CY3 + CY4) + /-L11(f31 + f32) + J.L12(f33 + f34)) 
2 - f320"r 

2 

where O"r = ~ (.L O"rj + (/-Llj - J.Ll)2) . 
j=l 

The result shows that the variance of the random variable 1'2 becomes more complicated 

and cumbersome as the number of etchers in operation increases. 

As a special case, if a stepper is paired with a specific etcher (for instance, stepper #1(2) 

only works with etcher #1(2)), more simplified model can be constructed (See Figure 4.4). 

Denote that Y2k is the measurement of line width (FI CD) processed by etcher k (k = 1,2). 

Suppose that 

Y2l = Y21Z2 = 1 = CYI + f3lYn + el, where el rv N(O, O"i l ) 

Y22 = Y21Z2 = 2 = CY2 + f32Y12 + e2, where e2 rv N(O, O"i2 ) 

where CYi and f3i are parameters, i = 1,2 and O"i
k 

is the variance added by etcher k, k = 1,2. 

We see that 

/-L2l = E(Y2IZ2 = 1) = CYI + f3l/-Ll1 

J.L22 = E(Y2IZ2 = 2) = CY2 + f32J.L12 

O"il = Var(Y2IZ 2 = 1) = f3rO"rl + O"i l 

O"i2 = Var(Y2IZ 2 = 2) = f3iO"r2 +O"i2 • 
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Slepper#l 

Measurement #1 
(= 01 CO = y,) 

r ~-"j 
~I:'" l 
~~:·i· --------- ---------------~ 
;-, . 

Slepper#2 

Eicher #1 

.~' -----:; 
~-' '''" 
~' -w---,.": '". 

3" ,_ -

'Eicher#2 

Measurement #2 
1--- (=FICO= Y2) 

Figure 4.4: Photo and etch stages in a gate patterning process in model III. 

If the workload is processed at equal proportion, E(Y2 ), Var(Y2) and O"~ are 

E(Y
2

) = CYI + CY2 + f31/-Lll + f32/-L12 
2 

Var(Y
2

) = 2:~=1 f3~O"fk + 2:~=1 O"~k + 2:~=1 (CYk + f3k/-Llk)2 
2 

{2:~=1 (CYk + f3k/-Llk) }2 
4 

2 2:~=1 f3~O"fk + 2:~=1 O"~k + 2:~=1 (CYk + f3k/-Llk)2 
O"A = 

2 
2 

2 1 (" 2 2) where 0"1 ="2 ~ O"lj + (f.-Llj - /-Ll) . 

j=l 

4.3 Numerical example 

(4.4) 

The following is a simple numerical example for the second case introduced in the previous 

section. Suppose that we have 

Y11(Zl = 1) = Yll rv N(130.2, 14.5) 

YiI(Zl = 2) = Y12 rv N(129.8, 15.0) 
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and each stepper has capability of processing 1,000 wafers on a daily basis and move them 

to a specific etcher and one measurement is captured from each wafer. We use the following 

straight line equations to estimate parameters CYl,CY2,/h and (h in equation. 

Y2l = &1 + i3lYll 

fh2 = &2 + f32Y12. 

For the purpose of simulation, we use the following equations but we pretend not to know 

them. 

Y2l = -0.02 + 0.97Yil + el, where el rv N(O, 1.5) 

Y22 = -0.03 + 0.98Y12 + e2, where e2 rv N(O, 1.2). 

Let us denote that Yljk is the measurement of Yl from stepper j for wafer k and Y 2jk is the 

measurement of Y2 from etcher j for wafer k (k = 1,2, ... ,1000; j = 1,2). 
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Here are the estimates for parameters. 

1000 

&r1 = 2:)Yllk - Yll)2/1000 = 15.6328 
k=l 

1000 

&r2 = L(Y12k - Y12)2/1000 = 15.1519 
k=l 

2 1000 

&r = L L (Y1jk - Y1)2/2000 = 15.4634 
j=l k=l 

2 1000 

&~ = L L (Y2jk - Y2)2/2000 = 16.3839 
j=l k=l 

{ 

1000 1000 1000 } {1000 1000 2 } 

731 = 1000 E YllkY21k - E Yllk E Y21k / 1000 E yr1k - (E Yllk) = 0.9692 

a1 = Y21 - IhYll = 0.0422 

{ 

1000 1000 1000 } {1000 1000 2 } 

/h = 1000 E Y12kY22k - ~ Y12k E Y22k / 1000 E yr2k - (E Y12k) = 0.9960 

a2 = Y22 - /hY12 = -2.1300 

(4.5) 

{ 

2 1000 2 1000 2 1000 } { 2 1000 2 1000 2} 
73 = 2000 f; ~ YljkY2jk - f; E Y1jk f; ~ Y2jk / 2000 f; E yrjk - (f; E Y1jk) 

= 0.9711. 

Now, by using Equation (4.4) and replacing the parameters by the estimates calculated 

above, we obtain the estimate of Var(Y2) = 16.3622, which provides good agreement with 

the result (4.5). The estimate of variation transmitted (fJ2&r) is 14.5825 and the estimate 

of variation added (&~) by etching operation is 1. 7798. Thus, in our numerical example, 

the variance added by etching operation accounts for about 11 % of the total variance of Y2 . 

It is observed that most contribution comes from Y1 (DI CD). 
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Chapter 5 

Conclusions 

The multivariate exponentially weighted moving average (MEWMA) control chart is an 

extension of the well-known univariate EWMA chart applicable where product quality is 

characterized by two or more variables. It contains the well-known Shewhart chi-squared 

chart as a particular case. Several aspects of the run length distribution not studied before 

are discussed in detail in this thesis. The methods are applied to the problem of monitoring 

a semiconductor manufacturing process where bivariate quality is measured. The thesis 

also discusses methods to model and quantify variability built in a manufacturing process. 

The previous study for the MEWMA by Runger and Prabhu (1997) was concentrated 

on two areas: the on-target run length analysis and the off-target run length analysis. For 

the on-target analysis, we derive the probability mass function, the second, third and fourth 

moment of the run length distribution as closed forms respectively. When the off-target 

case was analyzed before, it was assumed that the process mean shift happened at the 

beginning of the operation (the zero-state case). We introduce a general off-target form 

such that the mean shift can happen at any time, including the beginning of the operation 

(the steady-state case). Here is a generalization of the probability mass function of the run 
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length distribution for the MEWMA control chart. 

if n = 1, 2, ... ,T - 1, 

if n = T, T + 1, .... 

where Po is an in-control transition matrix and PI is an out-of-control transition matrix. 

With the general probability mass function, more derivations are made and all the results 

are consistent with those of past studies. 

The MEWMA scheme is well-known for detecting a small shift and a good way to 

improve the ability to detect a small shift is to find an optimum smoothing parameter. In 

the general off-target case (T ~ 1), the smoothing parameter shows the optimum parameter 

value increases as transition time (T) increases. Moreover, as either the in-control average 

run length (ARLo) or the number of variables (p) increases, the optimum parameter value 

increases slowly to the change of transition time T. 

When a small shift happens at the beginning (T = 1), the MEWMA control chart is 

very effective in detecting the change. Our interest is how the control chart behaves in case 

that a process change happens at a different transition time. Even though the transition 

time changes, just as in the previous case, the MEWMA control chart still outperforms the 

multivariate Shewhart control chart in performance when the shift is small. Otherwise both 

control charts perform well. 

As an application, we suggest a bivariate normal distribution model for the MEWMA 

control chart and apply the model to the main semiconductor manufacturing processes. 

Since the critical dimension of polysilicon gate has been continued to shrink, the impact of 

environment errors can not be negligible any more and the tighter control over the DI CD 

and FI CD is required. The model is defined as follows. 

x = (Xl, a + j3XI + E)' rv N(po, ~x), where Po is the process mean in control. 
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The variation transmission model suggested by Lawless et al. (1999) is based on that 

products processed by a multiple of machines, move from one operation to the next stage and 

are processed by a machine. Since semiconductor manufacturing is composed of hundreds of 

processes, it is more realistic to consider the case that products are processed by a multiple 

of machines from one stage to another. We suggest an extension for the original variation 

transmission model. By using the extended model, the total variance transmitted can be 

calculated. 
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Appendix A 

Derivations 

A.I Kronecker product 

Let A be an n x p matrix and B be an m x q matrix . The mn x pq matrix 

A0B= 
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A.2 Derivations 

A.2.1 Derivation of the mean and variance in the transmission model I 

Let f-L1j = E(EIZI = j) and <Trj = Var(Y1IZ1 = j) where j = 1,2. Given that the stepper 

j is in operation, f-L1j and <Trj are the expected value and variance of the measurement Y1 

respectively. Since each stepper processes the parts at equal proportion, it is assumed that 

P(Zl = 1) = P(Zl = 2) = ~. The expected value of Y1 is 

2 1 2 

E(Y1) = L {E(EIZ1 = j)P(Zl = j)} = 2: LE(EIZ1 = j) 
j=l j=l 

1 
since P(Zl = j) = 2' 

2 

Thus, E(Y1) = (1/2) L f-L1j = f-L1· 

j=l 

The conditional expectation of Yl is 

Thus, the second moment of Y1 can be expressed as follows. 

2 

E(Yl) = L {E(y1
2IZ1 = j)P(Zl = j)} 

j=l 

2 2 

L {(<Trj + f-Lrj)p(Zl = j)} = ~ L(<Trj + f-Lrj) 
j=l j=l 

1 2 1 2 

2: L <Trj + 2 L f-Lrj' 
j=l j=l 

(A.l) 

1 2 1 2 
Thus, for the variance of Y1 , <Tr = Var(Y1) = E(yn - [E(Y1)]2 = 2 ?= <Trj + 2 L f-Lrj - f-Lr· 

J=l J=l 
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Since it is known that 

2 2 

2)/-Llj - /-Ll)2 = 2)/-Lrj - 2/-Ll/-Llj + /-Lr) 
j=l j=l 

2 2 2 

L /-Lrj - 2/-Ll L /-Llj + 2/-Lr = L /-Lrj - 2/-Ll (2/-Ll) + 2/-Lr 
j=l j=l j=l 

2 2 

L /-Lrj - 4/-Lr + 2/-Lr = I.: /-Lrj - 2/-Lr 
j=l j=l 

we obtain 
222 

I", 2 2 I", 2 2 I", 2 2" 6/-Llj - 2/-Ll = 2" 6/-Llj - /-Ll = 2" 6(/-Llj - /-Ll) . 
j=l j=l j=l 

Hence, the variance of Y1 is 

A.2.2 Derivation of the mean and variance in the transmission model II 

2 2 

E(Y2) = L L {E(Y2!Zl = j, Z2 = k)P(Zl = j)P(Z2 = k!Zl = j)}. 
j=l k=l 

For simplicity, we assume that P(ZI = j)P(Z2 = k!Zl = j) = i where j, k = 1,2. Thus, 

we obtain 

122 

E(Y2) = "4:?= L E(Y2!Zl = j, Z2 = k) 
J=lk=l 

~ (t, "i + i'11 (/3, + fl2) + i' 12 (fl3 + fl')) ~ /V2. 
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The conditional expectation of y 22 is 

Thus, the second moment of Y2 is 

2 2 

E(Y22) = L.2.:)E(Y22IZ1 = j, Z2 = k)P(ZI = j)P(Z2 = klZI = j)} 
j=lk=l 

2 2 

L L {(CTijk + (f.l2jk )2 P(ZI = j)P(Z2 = klZI = j)} 
j=lk=l 
1 2 2 

4 L L(CTijk + f.l~jk) 
j=lk=l 

2 

~{CTil(,6r + ,6i) + CTi2(,6~ + ,6~) + 2 LCTt + (al + ,61f.ln)2 + (a2 + ,62f.ln)2 + (a3 + ,63f.l12)2 
k=l 

A.2.3 Identities 

Identity 1. For every positive integer a, 

1+ P + p2 + ... pa-l = (I - pa)(1 _ p)-l = (I _ P)-I(1 _ pa). (A.2) 

Proof· 

(I + p + p2 + ... + pa-2 + pa-I)(1 _ P) 

(I + p + p2 + ... + pa-2 + pa-l) _ (I + p + p2 + ... + pa-2 + pa-l + pa) 

Thus, (I + p + p2 + ... + pa-2 + pa-I)(1 _ P) = 1- pa. 

Multiplying on the right on both sides by (I - p)-l yields 
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(I + p + p2 + ... + pa-2 + pa-I) = (I _ pa)(I _ p)-I. 

Identity 2. For every positive integer aJ 

I+2P+3p2+. +apa-I = [I+(aP-(a+l)I)pa](I-p)-2 = (I-P)-2[I+(aP-(a+l)I)pa]. 

(A.3) 

Proof. 

[I + 2P + 3P2 + 4p3 + ... + (a - 2)pa-3 + (a - 1)pa-2 + apa-l](I _ p)-2 

[I + 2P + 3P2 + 4p3 + ... + (a - 2)pa-3 + (a - 1)pa-2 + apa-I](I - 2P + p2) 

I + 2P + 3P2 + 4p3 + ... + apa-I - (2P + 4p2 + 6p3 + ... + 2(a _l)pa-I + 2apa) 

+p2 + 2p3 + ... + (a _ 2)pa-1 + (a _ l)pa + apa+1 

I - 2apa + (a _l)pa + apa+1 

I - (a + l)pa + apa+1 

I + raP - (a + l)I]pa. 

Thus, [I + 2P + 3P2 + 4p3 + ... + apa-l](I - p? = I + raP - (a + l)I]pa. 

Multiplying on the right both sides by (I - p)-2 yields 

I + 2P + 3P2 + 4p3 + ... + apa-l = [I + (aP - (a + l)I)pa](I _ p)-2. 

Similarly, we can show that 

I + 2P + 3P2 + 4p3 + ... + apa-I = (I - P)-2[I + (aP - (a + l)I)pa]. 
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Identity 3. For every positive integer a, 

(2·1)1 + (3· 2)P + (4· 3)p2 + ... + a(a _1)pa- 2 

[21 - a(a + 1)pa- 1 + 2(a - l)(a + l)pa - a(a - l)pa+1](1 _ p)-3 

(I - P)-3[21 - a(a + 1)pa- 1 + 2(a - l)(a + l)pa - a(a - l)pa+1]. (A.4) 

Proof· 

[(2·1)1 + (3· 2)P + (4· 3)p2 + ... + a(a _1)pa- 2](1 _ p)3 

= [(2·1)1 + (3· 2)P + (4· 3)p2 + ... + a(a - 1)pa- 2](1 - 3P + 3P2 _ p 3) 

21 - a(a + 1)pa- 1 + 2(a - l)(a + l)pa - a(a - l)pa+l. 

Multiplying by (I - p)-3 on the right-hand side of both sides yields 

(2·1)1 + (3 . 2)P + (4· 3)P2 + ... + a(a - 1)pa- 2 

= [21 - a(a + 1)pa- 1 + 2(a - l)(a + l)pa - a(a - l)pa+1](1 _ p)-3. 

Similarly, we can show that 

(2·1)1 + (3 . 2)P + (4· 3)p2 + ... + a(a - 1)pa- 2 

= (I - P)-3[21 - a(a + 1)pa- 1 + 2(a - l)(a + l)pa - a(a - l)pa+1]. 

Identity 4. For every positive integer a, 

(3·2 ·1)1 + (4·3· 2)P + (5·4. 3)P2 + ... + a(a - l)(a - 2)pa- 3 

[(3·2·1)1 - (a - l)a(a + 1)pa- 2 + 3(a - 2)a(a + 1)pa- 1 

-3(a - 2)(a -l)(a + l)pa + (a - 2)(a - l)apa+1](1 _ p)-4 

(I - P)-4[(3 ·2·1)1 - (a - l)a(a + 1)pa- 2 + 3(a - 2)a(a + 1)pa- 1 

-3(a - 2)(a - l)(a + l)pa + (a - 2)(a - l)apa+1]. 
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Proof· 

[(3·2·1)1 + (4·3· 2)P + (5 . 4· 3)p2 + ... + a(a - l)(a - 2)pa- 3
] 

x(1 - p)4 = [(3.2.1)1 + (4·3· 2)P + (5·4· 3)p2 + ... + a(a - l)(a - 2)pa- 3] 

x(1 - 4P + 6P2 _ 4p3 + p4) 

(3·2·1)1 - (a - l)a(a + 1)pa- 2 + 3(a - 2)a(a + 1)pa- 1 

-3(a - 2)(a - l)(a + l)pa + (a - 2(a - l)apa+1. 

Multiplying by (I - p)-4 on the right both sides yields 

(3·2 ·1)1 + (4·3· 2)P + (5·4· 3)P2 + ... + a(a - l)(a - 2)pa- 3 

[(3·2·1)1 - (a - l)a(a + 1)pa- 2 + 3(a - 2)a(a + 1)pa- 1 

-3(a - 2)(a - l)(a + l)pa + (a - 2(a - l)apa+1] (I _ p)-4. 

Similarly, we can show that 

(3·2·1)1 + (4·3· 2)P + (5·4· 3)P2 + ... + a(a - l)(a - 2)pa- 3 

(I - P)-4[(3 . 2 . 1)1 - (a - l)a(a + 1)pa- 2 + 3(a - 2)a(a + 1)pa- 1 

-3(a - 2)(a - l)(a + l)pa + (a - 2(a - l)apa+1]. 
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Identity 5. For every positive integer aJ 

(4·3·2 ·1)1 + (5·4·3· 2)P + (6·5·4. 3)p2 + ... + a(a - l)(a - 2)(a - 3)pa- 4 

= [(4·3·2·1)1 - (a - 2)(a - l)a(a + 1)pa- 3 + 4(a - 3)(a - l)a(a + 1)pa- 2 

-6(a - 3)(a - 2)a(a + 1)pa- 1 + 4(a - 3)(a - 2)(a + l)pa 

-(a - 3)(a - 2)(a - l)apa+1](I _ p)-5 

- (I - P)-5[(4 ·3·2·1)1 - (a - 2)(a - l)a(a + 1)pa- 3 + 4(a - 3)(a - l)a(a + 1)pa- 2 

Proof. 

-6(a - 3)(a - 2)a(a + 1)pa- 1 + 4(a - 3)(a - 2)(a + l)pa 

-(a - 3)(a - 2)(a - l)apa+1]. (A.7) 

[(4·3·2·1)1 + (5 ·4·3· 2)P + (6 . 5 ·4· 3)P2 + ... + a(a - l)(a - 2)(a - 3)pa- 4] 

x(1 - p)5 = [(4.3·2·1)1 + (5 . 4·3· 2)P + (6 . 5 ·4· 3)P2 + ... + a(a - l)(a - 2)(a - 3)pa- 4] 

x(1 - 5P + 10P2 -10P3 + 5P4 _ p 5) 

(4·3·2·1)1 - (a - 2)(a - l)a(a + 1)pa- 3 + 4(a - 3)(a -l)a(a + 1)pa- 2 

-6(a - 3)(a - 2)a(a + 1)pa- 1 + 4(a - 3)(a - 2)(a + l)pa 

-(a - 3)(a - 2)(a - l)apa+1. 

Multiplying by (I - p)-5 on the right both sides yields 

(4·3·2·1)1 + (5·4·3· 2)P + (6·5·4· 3)P2 + ... + a(a - l)(a - 2)(a - 3)pa- 4 

= [(4·3·2·1)1 - (a - 2)(a - l)a(a + 1)pa- 3 + 4(a - 3)(a - l)a(a + 1)pa- 2 

-6(a - 3)(a - 2)a(a + 1)pa- 1 + 4(a - 3)(a - 2)(a + l)pa 

-(a - 3)(a - 2)(a - l)apa+1] (I _ p)-5. 
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Similarly, we can show that 

(4·3·2· l)I + (5 ·4·3· 2)P + (6 . 5 ·4· 3)p2 + ... + a(a - l)(a - 2)(a - 3)pa- 4 

(I - P)-5[(4. 3·2· l)I - (a - 2)(a - l)a(a + 1)pa- 3 + 4(a - 3)(a - l)a(a + 1)pa- 2 

-6(a - 3)(a - 2)a(a + 1)pa- 1 + 4(a - 3)(a - 2)(a + l)pa - (a - 3)(a - 2)(a - l)apa+l]. 

Since the matrix P is made up of transient states, pa -----t 0 as a -----t 00 (Karen, S. 

and Taylor, H. M., 1975, pp. 77). Taking the limit in Identities (1-5) yields the following 

identities. 
00 

I+p+p2+ ... = L pn- 1 = (I_p)-l. (A.8) 
n=l 

00 

I + 2P + 3P2 + ... = L npn-l = (I _ p)-2. (A.9) 
n=l 

00 

(2. l)I + (3· 2)P + (4· 3)p2 + ... = L n(n _1)pn-2 = 2(I _ p)-3. (A.10) 
n=2 

00 

(3·2·1)I +(4·3.2)P+(5·4·3)P2+ ... = Ln(n-1)(n-2)pn-3 = 6(I _p)-4. (A.ll) 
n=3 

00 

(4·3·2·1)I +(5·4·3·2)P+(6·5·4·3)p2+ ... = L n(n-1)(n-2)(n-3)pn-4 = 24(I _p)-5. 
n=4 

(A.12) 

A.2.4 moments (on-target case) 

Let N be a random variable and let k be a positive integer. Then the kth moment of N is 

defined as E(Nk ), if E(Nk ) exists and is finite. 
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A.2.4.1 The first moment 

The first moment of random variable N is defined as follows. 

00 00 

E(N) = L nf(n) = L s' pon~l(1 - Po)1 
n=l n=l 

s' (t, nPon- 1
) (I - Poll. 

By equation (A.9) 

00 

L nPon~l = 1+ 2Po + 3P0
2 + ... = (I - PO)~2 

n=l 

A.2.4.2 The second moment 

For the second moment, E(N2
), compute E[N(N - 1)]. 

00 00 

E[N(N - 1)] = L n(n -l)f(n) = L n(n - l)s'pon~l(1 - Po)1 
n=l n=l 

s' (t, n(n - 1)Pon
-

1
) (I -]b)1. 

By equation (A.10) 

00 00 00 

L n(n _l)Pon~l = L n(n _l)Pon~l = Po L n(n -1)Pon~2 
n=l n=2 n=2 

Thus, 

E[N(N - 1)] = s'(2Po(1 - Po)~3)(1 - Po)1 = 2s' Po (I - PO)~21. 
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Therefore, the second moment, E(N2 ) is 

A.2.4.3 The third moment 

For the third moment, E(N3 ), consider E[N(N - I)(N - 2)]. 

00 00 

E[N(N - I)(N - 2)] = L n(n - I)(n - 2)f(n) = L n(n - I)(n - 2)8'PO
n

-
1(1 - Po)1 

n=2 n=2 

s' (t, n(n - 1 )(n - 2)Pon
-

1
) (I - Poll. 

By equation (A.II) 

00 00 00 

L n(n - I)(n - 2)Pon
-

1 = L n(n - I)(n - 2)Pon
-

1 = P02 L n(n -I)(n - 2)Pon - 3 

n=2 n=3 n=3 

Thus, 

Therefore, the third moment, E(N3 ) is 

E(N3 ) = 68' Po2(1 - Po)-31 + 3E(N2 ) - 2E(N) 

68' Po2(1 - P o)-31 + 3 (28' Po(1 - Po)-21 + 8'(1 - P o)-ll) - 28'(1 - P o)-ll 

68'Po2(1 - P o)-31 + 68'Po(1 - P o)-21 + 8'(1 - P O)-l1. 
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A.2.4.4 The fourth moment 

Fur the fourth moment, E(N4), consider E[N(N - l)(N - 2)(N - 3)]. 

00 

E[N(N - l)(N - 2)(N - 3)] = 2: n(n - l)(n - 2)(n - 3)f(n) 
n=3 

00 

= 2: n(n - l)(n - 2)(n - 3)s'Po
n- 1(I - Po)1 

n=3 

8' (t, n(n -l)(n - 2)(n - 3)1'on-1) (I - Poll. 

By equation (A.12) 

00 00 

2: n(n - l)(n - 2)(n - 3)Po
n- 1 = 2: n(n - l)(n - 2)(n - 3)Po

n- 1 

n=3 n=4 
00 

n=4 
(A.13) 

Thus, 

Therefore, the fourth moment, E(N4) is 

E(N4) = 24s'Po3(I - Po)-41 + 6E(N3) - 11E(N2) + 6E(N) 

24s'P03(I - p o)-41 + 6 (6s'P0
2(I - Po)-31 + 6s'Po(I - Po)-21 + s'(I - Po)-11) 

-11 (2s'Po(I - Po)-21 + s'(I - Po)-11) + 6s'(I - Po)-11 

24s'P0
3(I - p o)-41 + 36s'P02(I - Po)-31 + 14s'Po(I - Po)-21 + s'(I - PO)-ll. 
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A.2.5 Moments (off-target case) 

A.2.5.1 The first moment 

00 T-1 00 

E(N) = 2:= nf(n) = 2:= nh(n) + 2:= nh(n) 
n=l n=l n=T 

T-1 00 

2..:ns'Pon-1(I - Po)1 + Lns'PoT-1Pi n-T(I - Pi)1 
n=l n=T 

Using Identity 2 (A.3), we get 

T-1 
2:= nPo

n- 1 = I + 2Po + 3Po
2 + ... + (7 - 1)Po

T- 2 

n=l 

Using equations (A.8) - (A. g) we also get 

00 00 00 

n=T n=T n=T 
(I + 2Pi + 3P1

2 + ... ) + (7 - 1) (I + Pi + P2 + ... ) 

(I - P1)-2 + (7 - l)(I - P1)-1. 
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Thus, 

E(N) = s'{[I + (T -l)Po
T - TPOT-I](I - Po)-2(I - Po) 

+PoT-I[(I - PI )-2 + (T -1)(1 - PI)-I](I - PI)}l 

s'{[I + (T -l)Po
T - TPOT-I](I - PO)-I + PoT-I[(I - PI)-I + (T -1)]}1 

s' {[I + TPO
T - POT - TPO

T- I](I - PO)-I + POT-I (I - PI)-I + (T - l)PO
T- I}l 

s'{[l - POT - TPOT-I(l - Po)](l - PO)-I + POT-I (1 - PI)-I + TPo
T- 1 - PoT-I}l 

s'{(l - PoT)(l - PO)-I- TPOT- I + POT-I (I - PI)-I +TPO
T- I - PoT-I}l 

s'{(l - PoT)(l - PO)-I - PO
T- I + PoT-I(l - PI)-I}l 

s'{(l - PoT)(l - PO)-I - PO
T- I + PoT-I(l - PI)-I}l 

s'(l - Po)-Il- s'PoT(l - Po)-Il- s'PoT-ll + s'PoT-I(l - PI)-Il 

s'(l - Po)-Il- s'PoT(l - Po)-Il- s'PoT-I(l - Po)(l - Po)-Il + s'PoT-I(l - PI)-Il 

s'[l - POT - POT-I (I - Po)] (1 - Po)-Il + s'PoT-I(l - PI)-Il 

s'[l - POT - POT- I + POT] (1 - Po)-Il + s'PoT-I(l - PI)-Il 

s'[l - PoT-I](l - Po)-Il + s'PoT-I(l - PI)-Il. 

A.2.5.2 The second moment 

00 T-I 00 

E[N(N - 1)] = L n(n - l)f(n) = L n(n - l)f(n) + L n(n - l)f(n) 
n=1 n=1 n=T 

T-I 00 

L n(n - l)s'Pon- l (l - Po)l + L n(n - l)s'PO
T- I PI n-T(l - PI)l 

n=1 n=T 
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Using Identity 3 (A.4), we get 

T-I 

L n(n -l)Pon -
I = (2· l)Po + (3· 2)P0

2 + (4· 3)P0
3 + ... + (T -l)(T - 2)PO

T
-

2 

n=l 

Po [(2 ·1)1 + (3· 2)Po + (4· 3)P0
2 + ... + (T - l)(T - 2)POT

-
3] 

= Po [(2 ·1)1 + (3 . 2)Po + (4· 3)P0
2 + ... + (T - l)(T - 2)PO

T
-

3] 

Po [21 - (T - 1)TPoT - 2 + 2(T - 2)TPOT -
I - (T - l)(T - 2)PoT ](1 - PO)-3. 

While using the identities in equations (A.8) - (A.10), we get 

00 00 

00 

L[(n - T + l)(n - T) + (n - T + l)(T - 1) + (T -l)(n - T) + (T - 1)2]PI n-T 

n=T 
00 

L[(n - T + l)(n - T) + (n - T)(T - 1) + T - 1 + (T - l)(n - T) + T2 - 2T + l]PI n-T 

n=T 
00 

L[(n - T + l)(n - T) + 2(n - T)(T - 1) + T(T - l)]PI n-T 

n=T 
00 00 00 

n=T n=T n=T 

= (1·0)1 + (2· l)PI + (3 . 2)P1
2 + (4· 3)P13 + (5· 4)P1

4 + ... 

+2(T -1)[0·1 + PI + 2PI2 + 3PI
3 + ... ] + T(T -1)[1 + PI + PI2 + P13 ... ] 

PI [(2 ·1) + (3· 2)PI + (4. 3)P12 + ... ] + 2(T - 1)PI [1 + 2PI + 3P1
2] 

+T(T -1)[1 + PI + PI
2 + ... ] 

2PI (1 - PI )-3 + 2(T -1)PI(1 - PI)-2 + T(T -1)(1 - PI)-I. 
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Thus, 

E[N(N -1)] = s'{Po[21 - (T -1)TP;-2 + 2(T - 2)TPO
T- 1 - (T -l)(T - 2)PO

T](I - PO)-2 

+PoT-l[2PI(1 - PI)-2 + 2(T - l)PI (1 - P I )-l + T(T -1)1]}1. 

Hence, 

E(N2) = s'{Po[21 - (T -1)TP;-2 + 2(T - 2)TPo
T- I - (T -l)(T - 2)PO

T
] (I - PO)-2 

+PO
T- 1[2PI (I - PI)-2 + 2(T - l)PI (1 - P I )-l + T(T - 1)1] + [I - POT-I] (I - PO)-l 

+Po
T- 1 (1 - P 1 )-1}1. 

A.2.6 Conditional probability mass function and conditional expection 

The conditional distribution of N, given that N < T is defined as 

f(n) 
f(nlN < T) = P(N < T) 

s'Po
n- 1(1 - Po)1 

1- s'Po
T

-
11 

n = 1,2, ... , T - 1. 

The conditional expectation of N, given that N < T is defined as 

T-l T-l 'R n-l(1 R)1 
E(NIN < T) = L nf(nlN < T) = L n so, ~-1 0 

n=l n=l 1 - s Po 1 

,1 T-1 ~ ns'Po
n- 1(1 - Po)1 = ,1 T-l s' (~npon-l) (I - Po)1 

1 - s Po 1 n=l 1 - s Po 1 n=l 

1- S'~OT-11 s'{1 + 2Po + 3P0
2 + ... + (T -1)Po

T
-

2
}(1 - Po)1 

1 
, T-l s'{I+((T-1)Po-T1)PoT-l}(I-Po)-11. (A.15) 

l-sPo 1 

Additionally, the conditional distribution of N, given that N :::::: T is defined as 

f(n) 
f(nlN :::::: T) = P(N:::::: T) 

S'POT- l PIn- T(1 - PI)1 

s'Po
T

-
11 

73 
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The conditional expectation of N, given that N ~ 7 is defined as 

1 00 1 (00) -----:-------,,-- '"""' ns'R T-1 P n-T(I - P )1 = s'R T-1 '"""' nP n-T (I - P )1 
s'RT-11~ 0 1 1 s'R T- 11 0 ~ 1 1 

o n=T 0 n=T 

s'Po1T_11s'POT-1{7I + (7 + 1)PI + (7 + 2)PI2 +···}(I - P I )1 

1 
s'POT_11s'POT-1{(I - PI)-2 + (7 -1)(1 - P)-l}(I - P I )1 

1 s'{R T-1(I _ P )-1 + (7 _ 1)R T-1}1. (A.16) 
s'PoT - 11 0 1 0 
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Appendix B 

Programming (R- code) 

B.l Markov chain algorithm for the calculation of ARL 

ARL_Calculator<-function(r,h,d,p){ 

# r is a smoothing parameter 

# h is a control limit 

# d is a mean shift 

# p is the number of variables 

# S is a starting vector 

UCL<-sqrt(h*r/(2-r)) 

m1<-25 

m2<-25 

g1<-2*UCL/(2*m1+1) 

g2<-2*UCL/(2*m2+1) 

H<-matrix(data=NA,nrow=2*m1+1,ncol=2*m1+1) 

#[Defining an identity matrix and a vector of 1s] 
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z<-(2*m1+1)*(m2+1) 

n1<-c(z) 

I <- matrix(O,nrow=n1,ncol=n1) 

I[row(I)==col(I)]<-1 

one<- matrix(1,nrow=z,ncol=1) 

#[Transition Matrix of Wt1] 

range1<-2*m1+1 # range1 is the number of states of Wt1 

for (i in 1:range1){ 

c_i<- -UCL+(i-O.5)*g1 

for (j in 1:range1){ 

up<-(-UCL+j*g1-(1-r)*c_i)/r-delta 

down<-(-UCL+(j-1)*g1-(1-r)*c_i)/r-delta 

H[i,j] <-pnorm(up,mean=O,sd=1)-pnorm(down,mean=O,sd=1) 

} 

} 

#[Transition Matrix of Wt2] 

range2<-m2+1 # range2 is the number of states of Wt2 

V<-matrix(data=NA,nrow=range2,ncol=range2) 

for (i in O:m2){ 

c<-((1-r)*i*g2/r)~2 

for (j in O:m2){ 

if (j==O) { 

V[i+1,1]<-pchisq((O.5*(g2)/r)~2, df=p-1,ncp=c) 

} 

else { 

up<-((j+O.5)*g2/r)~2 
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down<-((j-0.5)*g2/r)~2 

V[i+1,j+1] <-pchisq(up,df=p-1,ncp=c)-pchisq(down,df=p-1 ,ncp=c) 

} 

} 

} 

E<- kronecker(H,V) # Operating kronecker product 

#[Finding transient statesJ 

counter<-1 

for (alpha in 1:range1){ 

for (beta in 0:rn2){ 

if ((alpha-(rn1+1))~2*g1~2+(beta*g2)~2 >= UCL~2){ 

E [, counterJ <-0 

E[counter,] <-0 

} 

counter<-counter+1 

} 

} 

ternp<-solve(I-E) 

ternp%*%one 

S<- rnatrix(0,nrow=z,ncol=1) 

start<-rn1*(rn2+1)+1 

S [start, 1J <-1 

ARL<-t(S)%*% ternp%*%one 

ARL 

} 
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B.2 On-target run length distribution 

#On-target run length distribution 

OT_Dist<-function(x) { 

RL<-x 

Sfunc <-NULL 

Pfunc<-NULL 

Tmatrix<-I 

range<-RL+1 

for (i in 1:range){ 

Sfunc[i]<-t(S)%*% Tmatrix %*%one 

Tmatrix <- Tmatrix %*%E # E is an on-target transition matrix 

} 

for (i in 1 :n){ 

Pfunc[i]<-Sfunc[i]- Sfunc[i+1] #f(N) 

} 

peN > n-1) - peN > n) 

plot(spline(seq(1,RL,by=i),Pfunc,n=200),type="1",col="blue",ylab="probability" 

,xlab="run length") 

} 

B.3 Off-target run length distribution 

#Off-target run length distribution 

Off_Dist<-function(x,t){ 

RL<-x 

tau<-t # tau is a mean shift time 

range1<-tau-1 

Sfunc<-NULL 
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Pfunc <-NULL 

TmatrixO<-I 

Tmatrix1<-Q # Q is a off-target transition matrix 

Tmatrix2<-I 

range2<-RL+1 

for (i in 1:range1){ 

Tmatrix2<- Tmatrix2%*%E 

} 

for (i in 1:range2){ 

if (i <=tau) { 

Sfunc[i]<-t(S)%*% TmatrixO%*%one 

TmatrixO<- TmatrixO%*%E 

} 

else 

{ Sfunc[i]<-t(S)%*% Tmatrix2%*%Tmatrix1%*%one 

Tmatrix1<- Tmatrix1%*%Q} 

} 

for (i in 1: RL){ 

Pfunc[i]<- Sfunc[i]- Sfunc[i+1] #f(N) 

} 

peN > n-1) - peN > n) 

plot(spline(seq(i,RL,by=1) ,Pfunc,n=200) ,type="l",col="b lue",ylab="probability", 

xlab="run length") 

} 
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B.4 The partition method 

# The partition method 

# The following code is constructed 

# based on the condition that in-control ARL 

delta<-1. 5 

p<-4 

h_max<-30 # Initial upper control limit value 

h_min<-0.01 # Initial lower control limit value 

h_tem<-O 

ARL_tem<-O 

ARL_0<-200 # In-control ARL value 

epsilon<-0.01 # Degree of precision 

k<-1 

200, P 4 

R_opt<-O # Initialization of smoothing parameter 

ARL<-NULL 

H<-NULL 

ARL_opt<-ARL_O 

ARLLopt<-O 

for (i in 1:100){ 

r<-i/100 

h_tem<-(h_max + h_min)/2 

ARL_tem<-ARL_Calculator(r,h_tem,O,p) 

while(abs(ARL_O-ARL_tem» epsilon) 

{ 

if (ARL_tem > ARL_O) 
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{ 

h_rnax<-h tern 

h_tem<-(h_max + h_min)/2 

ARL_tem<- ARL_Calculator(r,h_tem,O,p) 

} 

else 

{ 

h_min<-h_tem 

h_tem<-(h_max + h_rnin)/2 

ARL_tem<- ARL_Calculator(r,h_tem,O,p) 

} 

} 

ARL[k] <-ARL_Calculator(r,h_tem,delta,p) 

if(ARL_opt > ARL[k]) #If-statement to find the optimal smoothing parameter 

{ 

ARL_opt<-ARL[k] 

R_opt<-r 

} 

H[k] <-h_tem 

k=k+l 

h_rnax<-30 

h_rnin<-O.Ol 

h_tem<-O 

} 

R_opt 

ARL_opt 
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Appendix C 

Tables 
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00 w 

T= 

r 
H 

ARLmin 

T= 

r 
H 

ARLmin 

T= 

r 
H 

ARLmin 

T= 

r 
H 

ARLmin 

1 
0.14 
9.160 
9.986 

1 
0.14 

10.091 
10.953 

1 
0.13 

10.647 
11.639 

1 
0.12 

11.047 
12.173 

Table C.1: Optimal MEWMA Control Charts for T (1 :::; T :::; 200), p = 2. 
p = 2,6" = 1, ARLo = 200.00 

20 40 60 80 100 120 140 160 180 200 
0.16 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 
9.347 9.502 9.570 9.632 9.690 9.744 9.793 9.839 9.882 9.922 

27.477 44.307 59.464 73.126 85.447 96.560 106.586 115.635 123.801 131.173 

P = 2,6" = 1, ARLo = 300.00 
20 40 60 80 100 120 140 160 180 200 

0.15 0.15 0.16 0.17 0.18 0.19 0.19 0.20 0.21 0.21 
10.184 10.184 10.267 10.343 10.413 10.476 10.476 10.535 10.588 10.588 
28.840 46.675 63.324 78.863 93.371 106.917 119.568 131.384 142.420 152.730 

P = 2,6" = 1, ARLo = 400.00 
20 40 60 80 100 120 140 160 180 200 

0.13 0.14 0.15 0.15 0.16 0.17 0.17 0.18 0.18 0.19 
10.647 10.745 10.834 10.834 10.914 10.986 10.986 11.052 11.052 11.113 
29.715 48.086 65.532 82.098 97.834 112.786 126.987 140.484 153.307 165.494 

P = 2,6" = 1, ARLo = 500.00 
20 40 60 80 100 120 140 160 180 200 

0.12 0.13 0.14 0.14 0.15 0.15 0.16 0.16 0.17 0.17 
11.047 11.153 11.249 11.249 11.334 11.334 11.412 11.412 11.482 11.482 
30.371 49.061 67.001 84.212 100.734 116.591 131.814 146.425 160.457 173.922 



00 ,.,.. 

T= 

r 
H 

ARLmin 

T= 

r 
H 

ARLmin 

T= 

r 
H 

ARLmin 

T= 

r 
H 

ARLmin 

1 
0.13 

13.203 
12.061 

1 
0.12 

14.156 
13.197 

1 
0.11 

14.777 
14.002 

1 
0.11 

15.361 
14.637 

Table C.2: Optimal MEWMA Control Charts for T (1 :::; T:::; 200), p = 4. 
p = 4,5 = 1, ARLo = 200.00 

20 40 60 80 100 120 140 160 180 200 
0.14 0.15 0.16 0.18 0.19 0.19 0.20 0.21 0.22 0.23 

13.324 13.433 13.532 13.703 13.778 13.778 13.846 13.909 13.967 14.021 
29.304 46.078 61.167 74.751 86.985 98.010 107.949 116.910 124.995 132.290 

p = 4,5 = 1, ARLo = 300.00 
20 40 60 80 100 120 140 160 180 200 

0.12 0.13 0.14 0.15 0.15 0.16 0.17 0.17 0.18 0.18 
14.156 14.282 14.395 14.495 14.495 14.586 14.669 14.669 14.744 14.744 
30.834 48.652 65.263 80.758 95.213 108.707 121.292 133.046 144.019 154.267 

P = 4,5= 1, ARLo = 400.00 
20 40 60 80 100 120 140 160 180 200 

0.11 0.12 0.13 0.13 0.14 0.14 0.15 0.15 0.16 0.16 
14.777 14.913 15.032 15.032 15.139 15.139 15.234 15.234 15.320 15.320 
31.837 50.193 67.619 84.153 99.856 114.776 128.928 142.379 155.157 167.293 

P = 4,5 = 1, ARLo = 500.00 
20 40 60 80 100 120 140 160 180 200 

0.11 0.11 0.12 0.12 0.13 0.13 0.13 0.14 0.14 0.15 
15.361 15.361 15.491 15.491 15.606 15.606 15.606 15.708 15.708 15.800 
32.585 51.262 69.188 86.379 102.879 118.706 133.902 148.477 162.471 175.906 I 



00 
01 

T= 

r 
H 

ARLmin 

T= 

r 
H 

ARLmin 

T= 

r 
H 

ARLmin 

T= 

r 
H 

ARLmin 

1 
0.12 

16.635 
13.581 

1 
0.11 

17.683 
14.855 

1 
0.10 

18.356 
15.755 

1 
0.10 

19.001 
16.456 

Table C.3: Optimal MEWMA Control Charts for T (1 :S T :S 200), p = 6. 
p = 6,0 = 1, ARLo = 200.00 

20 40 60 80 100 120 140 160 180 200 
0.12 0.14 0.15 0.16 0.17 0.18 0.19 0.19 0.20 0.21 

16.635 16.914 17.032 17.138 17.234 17.321 17.401 17.401 17.474 17.541 
30.617 47.356 62.394 75.919 88.093 99.058 108.935 117.834 125.857 133.092 

p = 6,0 = 1, ARLo = 300.00 
20 40 60 80 100 120 140 160 180 200 

0.11 0.12 0.13 0.13 0.14 0.15 0.15 0.16 0.16 0.17 
17.683 17.836 17.970 17.970 18.091 18.198 18.198 18.295 18.295 18.382 
32.284 50.085 66.674 82.134 96.548 109.999 122.545 134.255 145.184 155.389 

p = 6,5 = 1, ARLo = 400.00 
20 40 60 80 100 120 140 160 180 200 

0.10 0.11 0.11 0.12 0.12 0.13 0.13 0.14 0.14 0.15 
18.356 18.520 18.520 18.664 18.664 18.791 18.791 18.904 18.904 19.005 
33.380 51.726 69.136 85.650 101.333 116.211 130.346 143.762 156.507 168.614 

p = 6,5 = 1, ARLo = 500.00 
20 40 60 80 100 120 140 160 180 200 

0.10 0.10 0.11 0.11 0.11 0.12 0.12 0.13 0.13 0.13 
19.001 19.001 19.158 19.158 19.158 19.296 19.296 19.417 19.417 19.417 
34.200 52.865 70.787 87.961 104.448 120.254 135.424 149.984 163.948 177.355 
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H 
ARLmin 

T= 
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H 
ARLmin 

T= 
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H 
ARLmin 

T= 
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H 
ARLmin 

1 
0.11 

22.881 
15.949 

1 
0.10 

24.084 
17.457 

1 
0.09 

24.844 
18.515 

1 
0.09 
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Table C.4: Optimal MEWMA Control Charts for T (1 :S T :S 200), p = 10. 
p = 10,0 = 1, ARLo = 200.00 

20 40 60 80 100 120 140 160 180 200 
0.11 0.12 0.13 0.14 0.15 0.16 0.16 0.17 0.18 0.18 

22.881 23.069 23.234 23.381 23.512 23.630 23.630 23.737 23.833 23.833 
32.616 49.300 64.266 77.704 89.784 100.655 110.437 119.240 127.170 134.314 

p = 10,0= 1, ARLo = 300.00 
20 40 60 80 100 120 140 160 180 200 

0.10 0.10 0.11 0.12 0.12 0.13 0.13 0.14 0.14 0.15 
24.084 24.084 24.278 24.447 24.447 24.596 24.596 24.728 24.728 24.846 
34.524 52.290 68.834 84.247 98.609 111.992 124.478 136.116 146.978 157.109 

p = 10,0= 1, ARLo = 400.00 
20 40 60 80 100 120 140 160 180 200 

0.09 0.09 0.10 0.10 0.11 0.11 0.12 0.12 0.13 0.13 
24.844 24.844 25.054 25.054 25.234 25.234 25.392 25.392 25.530 25.530 
35.771 54.097 71.477 87.974 103.606 118.452 132.535 145.904 158.605 170.649 

p = 10,0= 1, ARLo = 500.00 
20 40 60 80 100 120 140 160 180 200 

0.09 0.09 0.09 0.10 0.10 0.10 0.11 0.11 0.11 0.12 
25.589 25.589 25.589 25.788 25.788 25.788 25.959 25.959 25.959 26.108 
36.723 55.354 73.257 90.423 106.873 122.662 137.795 152.311 166.246 179.613 
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0.05 

7.3813 
26.7482 

0.14 
9.1602 
9.9857 

0.25 
9.8824 
5.4381 

0.38 
10.2466 
3.5265 

0.53 
10.4333 
2.5152 

0.68 
10.5147 
1.8812 

Table C.5: Optimal MEWMA Control Chart, p = 2, r = 1. 
Condition: p = 2, ml = m2 = 25, r = 1 

300 400 500 600 700 800 900 1000 
0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 

8.3930 9.1058 9.2427 9.6975 10.0801 10.4102 10.7003 10.9589 
30.3318 33.0044 35.0648 36.7685 38.2371 39.5312 40.6910 41.7433 

0.13 0.12 0.12 0.12 0.11 0.11 0.11 0.11 
9.9887 10.5367 11.0468 11.4612 11.6952 11.9983 12.2647 12.5023 
10.9458 11.6374 12.1734 12.6198 12.9915 13.3169 13.6073 13.8697 

0.24 0.22 0.22 0.21 0.20 0.20 0.20 0.19 
10.7268 11.2672 11.7522 12.1029 12.3901 12.6793 12.9338 13.1133 
5.8736 6.1842 6.4261 6.6237 6.7923 6.9370 7.0660 7.1814 

0.35 0.34 0.32 0.32 0.31 0.30 0.30 0.30 
11.0450 11.6313 12.0602 12.4436 12.7466 13.0056 13.2528 13.4736 
3.7737 3.9496 4.0863 4.1981 4.2927 4.3751 4.4475 4.5128 

0.49 0.47 0.45 0.44 0.43 0.42 0.41 0.41 
11.2332 11.8071 12.2477 12.6132 12.9206 13.1854 13.4176 13.6341 
2.6842 2.8021 2.8923 2.9656 3.0271 3.0802 3.1269 3.1688 

0.65 0.63 0.61 0.59 0.58 0.57 0.56 0.5 
11.3238 11.8984 12.3426 12.7042 13.0125 13.2789 13.5135 13.7230 
2.0064 2.0962 2.1656 2.2221 2.2696 2.3104 2.3461 2.3779 
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200 
0.05 

11.2683 
32.4380 

0.13 
13.2030 
12.0608 

0.22 
13.9672 
6.5072 

0.33 
14.3900 
4.1790 

0.45 
14.6098 
2.9739 

0.61 
14.7408 
2.2343 

Table C.6: Optimal MEWMA Control Chart, p = 4, T = 1. 
Condition: p = 4, ml = m2 = 25, T = 1 

300 400 500 600 700 800 900 1000 
0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 

11.9742 12.8373 13.4946 14.0240 14.4667 14.2589 14.6039 14.9105 
36.9214 40.0895 42.6254 44.7534 46.5966 48.1545 49.4744 50.6670 

0.12 0.11 0.11 0.10 0.10 0.10 0.09 0.09 
14.1561 14.7776 15.3613 15.6894 16.0888 16.4322 16.5786 16.8494 
13.1970 14.0026 14.6367 15.1436 15.5777 15.9584 16.2920 16.5843 

0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.17 
14.9324 15.5921 16.0856 16.5332 16.8515 17.1768 17.4021 17.6579 
7.0104 7.3673 7.6436 7.8705 8.0599 8.2255 8.3715 8.5006 

0.31 0.30 0.29 0.28 0.28 0.27 0.27 0.26 
15.3181 15.9808 16.4855 16.8908 17.2546 17.5420 17.8186 18.0381 
4.4617 4.6620 4.8172 4.9439 5.0512 5.1434 5.2252 5.2980 

0.42 0.41 0.39 0.38 0.38 0.37 0.37 0.36 
15.5253 16.1841 16.6766 17.0855 17.4413 17.7356 18.0061 18.2347 
3.1563 3.2842 3.3827 3.4632 3.5311 3.5898 3.6419 3.6881 

0.57 0.55 0.52 0.51 0.50 0.49 0.48 0.47 
15.6532 16.3008 16.7933 17.2023 17.5464 17.8431 18.1036 18.3356 
2.3749 2.4720 2.5453 2.6041 2.6532 2.6953 2.7319 2.7645 
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Table C.7: Optimal MEWMA Control Chart, p = 10, T = 1. 
Condition: p = 10, ml = m2 = 25, T = 1 

200 300 400 500 600 700 800 
0.04 0.04 0.04 0.03 0.03 0.03 0.03 

20.0880 21.7696 22.9044 22.9779 23.6952 24.2893 24.7957 
42.6234 48.8044 53.4589 56.8531 59.6636 62.0885 64.2288 

0.11 0.10 0.09 0.09 0.08 0.08 0.08 
22.8809 24.0840 24.8443 25.5895 25.9643 26.4705 26.9039 
15.9489 17.4573 18.5150 19.3374 20.0059 20.5562 21.0384 

0.19 0.17 0.16 0.16 0.15 0.15 0.15 
23.9212 25.0468 25.8607 26.5520 27.0199 27.4886 27.8909 
8.5373 9.1846 9.6393 9.9870 10.2713 10.5084 10.7159 

0.28 0.26 0.25 0.24 0.23 0.23 0.23 
24.4532 25.6059 26.4251 27.0403 27.5348 27.9834 28.3690 
5.4302 5.7870 6.0369 6.2291 6.3858 6.5164 6.6306 

0.38 0.35 0.34 0.33 0.32 0.32 0.31 
24.7488 25.8805 26.6942 27.3136 27.8117 28.2476 28.6026 
3.8214 4.0470 4.2054 4.3275 4.4270 4.5103 4.5823 

0.48 0.45 0.43 0.42 0.41 0.41 0.40 
24.9031 26.0392 26.8349 27.4522 27.9508 28.3788 28.7374 
2.8821 3.0363 3.1440 3.2268 3.2944 3.3513 3.4006 

900 1000 
0.03 0.03 

25.2364 25.6260 
66.1493 67.8949 

0.08 0.08 
27.2824 27.6182 
21.4680 21.8561 

0.14 0.14 
28.1530 28.4681 
10.8970 11.0565 

0.22 0.22 
28.6664 28.9681 
6.7293 6.8180 

0.31 0.30 
28.9324 29.2058 
4.6455 4.7021 

0.40 0.39 
29.0510 29.3401 

3.441 3.4829 
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