
A COMPARISON OF SCALABLE MULTI-THREADED STACK MECHANISMS

.,

A COMPARISON OF SCALABLE

MULTI-THREADED STACK

MECHANISMS

By

JOSHUA 1. MOORE-OLIVA, B.COMP.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree of

Master of Science

Department of Computing and Software

McMaster University

© Copyright by Joshua 1. Moore-Oliva, December 2010

MASTER OF SCIENCE (2010)

(Department of Computing and Software)

McMaster University

Hamilton, Ontario

TITLE: A Comparison of Scalable Multi-Threaded Stack Mechanisms

AUTHOR: Joshua I. Moore-Oliva, B.Comp. (University of Guelph)

SUPERVISOR: Dr. Emil Sekerinski

NUMBER OF PAGES: ix, 81

11

Abstract

The traditional "stack grows from the top, heap grows from the bottom" memory

layout allows a single-threaded process to make use of all available address space. This

layout is not ideal when multiple threads of execution need to share one address space,

for memory exhaustion is no longer signified by the heap meeting the stack. In the

commonly used multi-threaded memory layout where each thread has its "worst case"

stack memory exclusively reserved, a process may prematurely run out of memory

when one thread's stack collides with another's, even if there is unused address space

elsewhere. This problem is exacerbated as the number of threads in a process increases

since there is less stack space available per thread.

In this thesis, alternative stack mechanisms that attempt to alleviate this problem

are reviewed, and a new stack mechanism is put forward that utilizes the MMU

to detect stack overflow. An experimental compiler implementing a subset of the

C language is used to implement promising stack mechanisms, and a suite of test

programs are used to compare their performance and scalability under varying usage

patterns.

11l

Acknowledgements

I would like to thank my supervisor, Dr. Emil Sekerinski, for always being avail­

able with clear and unambiguous guidance. I would also like to thank Dr. William

Gardner and Dr. Mark Wineberg for giving me many candid insights into academic

life, both during my undergraduate degree at the University of Guelph, but also

during the eight months I spent there as a graduate student before transferring to

McMaster University. Last but not least, I would like to thank my long-time girlfriend

Alicia Gumtie, whose strengths complement my weaknesses, and whose patience was

neverending as I made my way through two schools and three sets of supervisors

during my graduate career.

IV

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

2 Related Work 3

2.1 Background 3
2.2 Single-Threaded Stack Mechanism Extensions 7
2.3 Stack Sharing 11

2.4 Cactus Stacks 13
2.5 Other 14
2.6 Overview. 16

3 Experimental Setup 19

3.1 Rejected Mechanisms 19
3.2 Technology Overview 20
3.3 C-- 21
3.4 Implemented Stack Mechanisms 23

3.5 Experiments . 56

4 Results 60

4.1 Summation 60
4.2 Unbalanced Binary Tree 67
4.3 "Real World" 72

5 Conclusions 79

v

6 Future Work 80

Bibliography 81

A Experiment Listings 84
A.l Simple Threads Library 84

A.2 Summation 93

A.3 Unbalanced Binary Tree 96

A.4 "Real World" 107

B Experiment Data 117
B.l Summation 117

B.2 Unbalanced Binary Tree 122

B.3 "Real World" 126

C Glossary of Acronyms 131

VI

List of Figures

2.1 Call Stack .. 4

2.2 Traditional Single-Threaded Memory Organization 5

2.3 Single-Threaded Memory Organization Extended to Multiple Threads 7

2.4 US Patent 7,477,829 Memory Organization. 9

2.5 US Patent 7,477,829 Dead Zones 10

2.6 Hybrid Stack Sharing. 11

2.7 Multi Task Stack Sharing .. 12

2.8 Capriccio Call Graph Analysis . 15

2.9 Live Variables Pinning Dead . . 16

2.10 Stack Implementation Overview 18

3.1 Per Procedure Heap Allocation Call Stack 25

3.2 Per Procedure Heap Allocation Stack Frame 26

3.3 Linked Stack Chunks 34

3.4 Stack Chunk for Look-Ahead Overflow Detection 35

3.5 Stack Chunk for MMU Overflow Detection. . . . 43

3.6 MMU Overflow Detection Extern Trampoline Pre-Call 46

3.7 MMU Overflow Detection Extern Trampoline Post-Call 47

3.8 Unbalanced Binary Tree 58

3.9 Real World 59

4.1 Summation Single-Threaded All 63

4.2 Summation Single-Threaded No Heap. 64

4.3 Summation Multi-Threaded Cores. . . 65

4.4 Summation Multi-Threaded Quantity . 66

4.5 Unbalanced Binary Tree Single-Threaded All . 68

4.6 Unbalanced Binary Tree Single-Threaded No Heap 69

vii

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

Unbalanced Binary Tree Multi-Threaded Cores ..

Unbalanced Binary Tree Multi-Threaded Quantity.

"Real World" Single-Threaded All. .

"Real World" Single-Threaded C--

"Real World" Multi-Threaded Cores

"Real World" Multi-Threaded Cores C--

"Real World" Multi-Threaded Quantity.

"Real World" Multi-Threaded Quantity C--

70

71

73

74

75

76

77

78

B.1 Summation Single Threaded gee. . . 117

B.2 Summation Single Threaded gee -02 117

B.3 Summation Single Threaded Heap. . 118

B.4 Summation Single Threaded Look-Ahead. 118

B.5 Summation Single Threaded MMU 118

B.6 Summation Single Threaded Traditional . 118

B.7 Summation Multi-Threaded gee -02 "Cores" 119

B.8 Summation Multi-Threaded Look-Ahead "Cores" 119

B.9 Summation Multi-Threaded MMU "Cores" . . . 119

B.10 Summation Multi-Threaded Traditional "Cores" . 120

B.11 Summation Multi-Threaded gee -02 "Quantity" . 120

B.12 Summation Multi-Threaded Look-Ahead "Quantity" 120

B.13 Summation Multi-Threaded MMU "Quantity" . . . 121

B.14 Summation Multi-Threaded Traditional "Quantity" 121

B.15 Unbalanced Binary Tree Single Threaded gee. . . 122

B.16 Unbalanced Binary Tree Single Threaded gee -02 . 122

B.17 Unbalanced Binary Tree Single Threaded Heap 122

B.18 Unbalanced Binary Tree Single Threaded Look-Ahead. 123

B.19 Unbalanced Binary Tree Single Threaded MMU . . . 123

B.20 Unbalanced Binary Tree Single Threaded Traditional . 123

B.21 Unbalanced Binary Tree Multi-Threaded gee "Cores" . 123

B.22 Unbalanced Binary Tree Multi-Threaded gee -02 "Cores" . 124

B.23 Unbalanced Binary Tree Multi-Threaded Look-Ahead "Cores" 124

B.24 Unbalanced Binary Tree Multi-Threaded MMU "Cores" 124

B.25 Unbalanced Binary Tree Multi-Threaded Traditional "Cores" . 125

B.26 Unbalanced Binary Tree Multi-Threaded Look-Ahead "Quantity" 125

Vlll

B.27 Unbalanced Binary Tree Multi-Threaded MMU "Quantity"

B.28 "Real World" Single Threaded gee

B.29 "Real World" Single Threaded Heap

B.30 "Real World" Single Threaded Look-Ahead.

B.31 "Real World" Single Threaded MMU ...

B.32 "Real World" Single Threaded Traditional

B.33 "Real World" Multi-Threaded gee "Cores"

B.34 "Real World" Multi-Threaded Look-Ahead "Cores"

B.35 "Real World" Multi-Threaded MMU "Cores"

B.36 "Real World" Multi-Threaded Traditional "Cores" .

B.37 "Real World" Multi-Threaded gee "Quantity" . . .

B.38 "Real World" Multi-Threaded Look-Ahead "Quantity"

B.39 "Real World" Multi-Threaded MMU "Quantity" ...

BAO "Real World" Multi-Threaded Traditional "Quantity"

IX

125

126

126

127

127

127

128

128

128

129

129

129

130

130

MSc Thesis - J. Moore-Oliva

Chapter 1

Introduction

McMaster - Computing and Software

The traditional call stack mechanism ~ where the stack and heap grow from oppo­

site sides - is an indispensable part of almost any program, yet it is often ignored. This

is because, until now, it has been an effective solution to the problem of bookkeeping

during program execution - it provides a good way to keep track of variable values

and program flow. A single-threaded process, executing in a system with an MMU

(Memory Management Unit), therefore has little reason to use anything but the tra­

ditional call stack mechanism. In fact, with virtual address space being so abundant,

many popular operating systems take the strategy of allocating a stack area "large

enough for anything" , and on overflow do not attempt to extend it downwards.

However, complications arise when multiple threads of execution need to share the

same address space, as they each require their own stack. Since there are multiple

stacks, the traditional call stack mechanism no longer applies. In the simple case,

where a program only uses a few threads (for example, one thread runs a program's

user interface and another thread performs longer computations in the background),

virtual address space is so abundant that allocating one fixed-size "large enough"

stack for each thread is a simple solution that works well enough to be a commonly

implemented technique in modern operating systems [22].

The recent trend for software development has been towards "more concurrency" .

There are two reasons for this: firstly, it allows for more natural modelling of sys­

tems, and secondly, it takes advantage of the hardware trend to increase performance

via parallelism with multi-core processors [6], [10]. This has led to the more com­

plex scenario: when concurrency is increased with the use of threads, the default

"large enough" call stack mechanism actually causes virtual address space to become

1

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

exhausted when otherwise more threads could be handled by the operating system,

especially on modern multi-core systems. This is the case even though the vast ma­

jority of the address space is unused! Reducing the stack size for each thread can

alleviate the issue [12], but at the expense of increasing the probability of running out

of stack space for legitimate use. Stack sizes can be manually specified on a per-thread

basis [22], but doing so requires programmer intervention and only slightly alleviates

the problem, as each thread's stack is sized according to the amount of memory it

requires at its point of highest usage (leading to situations where a program can "run

out" of stack space even if there is a large amount of stack space unused by other

threads).

The comparison of call stack mechanisms for highly concurrent multi-threaded

programs is the topic of this thesis, with the goal of discovering or identifying an

efficient multi-threaded call stack mechanism that works as well and as transparently

as the call stack mechanism for single-threaded processes. The need for an improved

call stack mechanism was highlighted during the development of Lime, a concurrent

object-oriented language that has been designed with formal verification and refine­

ment in mind. With Lime, in principle, every object can be concurrent. This can

easily lead to programs with hundreds of threads. An implementation of this language

by Xiao-Iei Cui during the course of his Master's Thesis confirmed that the call stack

mechanism was not scaling with the concurrency of the program. As the focus of his

research at the time was proof-of-feasibility, stack sizes were intentionally set low and

stack-gobbling features, most notably recursion, were disabled as a workaround [11].

2

MSc Thesis - J. Moore-Oliva

Chapter 2

Related Work

McMaster - Computing and Software

Modifying the traditional single-threaded "Stack grows from the top, heap grows

from the bottom" call stack mechanism for multi-threaded programs is not a new idea.

The goal of this chapter is to categorize and discuss existing and proposed multi­

threaded call stack mechanisms. Before that discussion takes place, this chapter

briefly discusses the existing single-threaded call stack mechanism for readers that

are not already familiar with it, and then explains the problems that multi-threading

poses.

2.1 Background

2.1.1 Single-Threaded Call Stack

Every procedure needs somewhere to store local variables. Additionally, when

a procedure A calls another procedure B, the current state for procedure A must

be preserved for when procedure B returns. This information must be stored in a

dynamic data structure and cannot be computed at compile time due to the following

popular language mechanics:

• Recursion - The number of times a procedure will call itself may be dependent

on input data.

• Dynamically bound methods - It is not always possible to determine the

call path a program will take, as the procedure that will actually be invoked

may not be visible (or even existent) at compile time.

3

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

• Variable length arrays - The length of an array that is a local variable for a

procedure may not be known at compile time.

• Interrupts - Upon receiving a signal, a programmer defined handler may be

invoked. The handler may call any number of procedures, and when they return,

the program must continue from its previous state.

The fact that a procedure will not return until all other procedures it called have

returned lends itself nicely to a stack, where each new procedure invocation is placed

on top of all existing procedure invocations. As such, single-threaded programs tend

to use the call stack structure depicted in Figure 2.1.

INACTIVE N 1
FRAME -

INACTIVE N 3{
FRAME -

INACTIVE N 2{
FRAME -

ACTIVE
FRAME N

2S.-STACK
ORIGIN

27
26
25
24
23
22
21
20
19
IS
17
16
15
14
13
12
11
10

9.-STACK
S POINTER
7 =9
6
5
4
3
2
1
o

stdcall

Figure 2.1: Call Stack http://en.wikipedia.org/wild/File:ProgramCallStack2.png

4

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

It is not by accident that Figure 2.1 shows the stack growing downwards. In a

single-threaded program, there is only one call stack. This has led to the following

memory organization where:

• The stack grows from high to low memory addresses.

• There is a dedicated region for code starting at a low memory address.

• The heap memory for a process grows from low to high memory addresses.

As can be seen in Figure 2.2, this memory organization allows for heap and stack

memory to utilize all available memory (heap fragmentation issues aside). When the

two memory regions meet, the program is out of memory.

stack

tI----t-------i ~
heap

code

Figure 2.2: Traditional Single-Threaded Memory Organization

In practice, memory mappings (such as those used for shared libraries) situated

between the heap and the stack will cause program faults before intersection of the

two regions. Due to this, operating systems such as Solaris, Linux and Windows limit

stack space to a fixed size that is "large enough" , and if the program attempts to use

more than the pre-allocated stack space, it is considered a program error [22, 19, 4].

5

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

2.1.2 Multi-Threading's Call Stack Problems

Before examining the problems that multi-threading introduces, it is a good idea

to first examine why the traditional call stack mechanism works so well for single­

threaded processes. Two important facts form the basis of its success:

• The MMU allows each process to use the entire address space as if it were the

only process running on the system. Physical memory is not reserved for the

process until it actually uses the space.

• For any single-threaded program, there is only one call stack required.

As such, the operating system can, by default, reserve a stack so large that it

is usually safe to assume that a properly-functioning program will not exhaust it.

Reserving such a large portion of memory does not cause any negative effects because:

• Virtual address space will not map to physical memory until the program ac­

tually uses the virtual address space.

• The operating system automatically maps the used virtual address regions to

physical memory that will not conflict with other processes.

Multi-threading significantly changes the rules. A multi-threaded program re­

quires one call stack per thread, all of which must exist within the same address

space. This means that the MMU cannot help with multiple threads as it does with

multiple processes. Most modern operating systems just create one "large" call stack

for each thread at the top of virtual address space. However, when there are a large

number of threads, this will cause the process to run out of virtual address space

before it is actually out of memory. Shrinking each process's stack space until each

thread's stack can fit may lead to one thread running out of stack space when there

is otherwise lots of unused stack space remaining, as can be seen in Figure 2.3. This

is especially likely to happen if thread stack usage patterns differ (e.g. one thread

makes heavy use of recursion). It is possible to manually set stack space on a thread­

by-thread basis (e.g. giving a heavy stack space using thread more stack space).

However, this both increases the burden on the programmer and decreases the flex­

ibility of the program (threads are locked into roles, not all threads have the ability

to temporarily use a large amount of stack space). This harkens back to the days

before the MMU when programmers used to manually give each process a certain

6

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

region of memory space. Such work is tedious and error-prone, and goes against the

productive trend of operating systems and languages automatically managing and

sharing system resources.

stack for thread 1

t
stack for thread 2

t

t
heap

code

Figure 2.3: Single-Threaded Memory Organization Extended to Multiple Threads

With the number of cores on chips increasing, parallelism being touted as the way

to increase performance in the future [23, 6, 10], and current operating system stack

mechanics being a bottleneck for the number of threads a process can run, it is clear

that the lowly call stack is in need of investigation.

2.2 Single-Threaded Stack Mechanism Extensions

This section discusses call stack mechanisms that are relatively trivial modifi­

cations of the traditional single-threaded call stack mechanism. All maintain each

thread's call stack as a contiguous region of memory.

Solaris [22] uses a multi-threaded call stack mechanism that is practically the

standard for modern operating systems. Each thread has its own stack space reserved

near the top of virtual address space. The size of the call stack can be set to a custom

value during thread creation. If no stack space size is specified, a large value (typically

7

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

2MB) will be used instead. Stack overflow is detected via the use of a "red zone",

which refers to the process of appending a page of memory without read or write

permissions to the end of a thread's stack space. This page will causes a memory

fault if accessed.

Oberon with active objects [12] can be viewed as a subset of the above call stack

mechanism specifically tailored to support a large number of small call stacks. It

does this by reserving the upper 2GB of virtual address space for small call stacks

that are each a maximum of 128KBytes, thereby supporting up to 16,384 call stacks

simultaneously.

Concurrent Oberon [18] uses a call stack that is a fixed size determined at thread

creation, but allocated on the heap. Overflow is detected before it occurs via a check

at the start of every procedure, and results in termination of the offending thread.

While this method increases runtime overhead, it has the advantage of working on

systems that do not have an MMU. The call stack is garbage collected once the thread

terminates.

US patent 7,477,829 [27] attempts to address both heap contention and stack

space in its proposed memory layout, depicted in Figure 2.4. Each stack/heap block

is created from an initial base address, from which the thread and heap stack grow

in opposite directions. Unfortunately, the patent does not specify how the initial

base addresses are computed, but from Figure 2.4 it can be inferred that the base

addresses are intended to be spaced apart evenly. Doing so would require knowledge

of the maximum number of threads that the program would execute at one time.

Stack and heap overflow are detected via the use of "dead zones" (depicted in Figure

2.5) that are "... impossible to read from or to write to... In so doing there is

no chance of memory corruption between any of these thread heap/thread stack

combinations" [27]. While the patent does not go into further details, it is inferred

that these dead zones operate similarly to Solaris's red zones [22] by generating a

page fault or similar hardware interrupt upon access.

All of the above methods suffer from the limitation that stack space for one thread

cannot be shared with another, and each thread's stack space must always be large

enough to handle the worst case stack usage, or the program will terminate with an

error. This can lead to the situation where a program can prematurely "run out" of

stack space due to a single thread exceeding its allotted stack space, even if there is

plenty of unused stack space preallocated to other threads. These conditions also force

a trade-off between the maximum allowable stack space per thread and the number

8

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

of threads that can exist in a system at one time, which seems to run counter to the

spirit of resource-sharing mechanics that govern system memory and hard disk space.

It is my opinion that this trade-off is a vestige of the success of the MMU (which gives

the most assistance to processes that do not share address space) combined with the

fact that a single-threaded program only requires a single call stack.

Thread Heap lA

Thread Stack lA

Thread Heap 2A

Thread Stack 2A

Thread Heap 3A

Thread Stack 3A

Thread Heap 4A

Thread Stack 4A

Shared Heap

Data

Code

Figure 2.4: US Patent 7,477,829 Memory Organization [27]

9

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Thread Heap lA

Thread Stack lA

Thread Heap 2A

Thread Stack 2A

Thread Heap 3A

Thread Stack 3A

Figure 2.5: US Patent 7,477,829 Dead Zones [27]

10

MSc Thesis - J. Moore-Oliva

2.3 Stack Sharing

McMaster - Computing and Software

This section discusses those call stack mechanisms with the general strategy of

attempting to share stack space among many threads in some way, as opposed to the

traditional strategy of each thread having an exclusively reserved stack.

Hybrid Stack Sharing [28] creates a fixed number of stacks in memory, and at­

tempts to evenly distribute threads among them using a round-robin approach (see

Figure 2.6). On a context switch, if there is not an unused stack available, the used

portion of the exiting thread's stack will be copied to heap memory, and the new

thread's stack data will be copied in. Hybrid Stack Sharing makes no mention of

handling stack overflow, and the authors mentioned that they always kept the stack

size large enough that overflow would never occur, so it is assumed that there is no

mechanic for handling stack overflow. Hybrid Stack Sharing improves upon the stan­

dard multi-threaded stack handling approach [22, 19, 4] by introducing a constant

amount of memory fragmentation (there are a limited number of large stack areas

that take up address space).

Thread Stack Association Table
Thread Number Stack Index 0 Stack Index 1 Stack Index 2

thread 0 X
thread 1 X
thread 2 X
thread 3 X
thread 4 X
thread 5 X

Figure 2.6: Hybrid Stack Sharing [28]

Multi Task Stack Sharing [20] is a multi-threaded call stack mechanism designed

for embedded systems where address space is limited. Each thread begins with its

own call stack space, similar to the traditional mechanism employed by the Solaris

stack. Overflow is detected via a runtime check at the beginning of each procedure.

On overflow, a "page" is reserved at the end of another thread's stack and used for

the overflowing thread's stack. The system attempts to share overflow equally among

all thread stacks until there is no space left (see Figure 2.7). As such, this call stack

mechanism is able to share unused stack resources, and each thread's call stack can

be created smaller, reducing the amount of memory that needs to be dedicated to call

stacks. While this is an improvement over the standard multi-threaded stack handling

11

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

approach [22], total stack space is still a fixed size. Hence, the program can run out of

either stack or heap memory when there is still unused space remaining. Additionally,

the non-contiguous nature of the stack means that there is some fragmentation when

a stack frame cannot fit into the free space left at the end of a stack page, and a new

page must be used in another thread's stack area.

T1 stack T2 stack T3 stack

Stack Overflow
ptinterttpointer

Direction
of gro~th

i
!

Figure 2.7: Multi Task Stack Sharing [20]

A Meshed Stack [14] is a call stack mechanism where all threads place their stack

frames at the top of one central stack. When a stack frame is no longer valid, the frame

is marked as garbage. A special call stack garbage collection routine is run periodically

to compact the stack. This call stack mechanism inherits all the advantages of the

single-threaded call stack mechanism (no fragmentation, the ability to extend stack

and heap until they meet, and so on), at the expense of arbitrary program pausing

during stack compaction. Further analysis of this stack mechanism is impossible, as

the cited paper [14] gave only an overview referencing a thesis that was in preparation

for further details. The referenced thesis was never completed.

12

MSc Thesis - J. Moore-Oliva

2.4 Cactus Stacks

McMaster - Computing and Software

This section discusses those call stack mechanisms that attempt to use the cactus

stack data structure to link multiple non-contiguous regions of memory together into

a single call stack. A cactus stack is a tree data structure where child nodes point to

their parents. Note that a linked list can be considered a subset of the cactus stack.

Stackless Python [24] is an unfortunately misleading name, but the call stack

mechanism it uses is interesting nonetheless. Standard "Stackful" (as opposed to

"Stackless") Python uses a mechanism where the C call stack is intertwined with

the interpreter. Stackless Python moves all the data that was stored in the C call

stack into linked interpreter frames that also contain code. Moving stack data into

the interpreter has allowed for features such as continuations, which allows for saving

and resuming program state. The stack itself is little more than a linked list of stack

frames. This allows the stack to live within heap memory (pushing any fragmentation

issues to the heap allocator), and removes arbitrary limits on stack size. Invoking

a heap allocation for every procedure call has performance implications, but since

Python already does this to keep a frame object associated with every running piece of

code, moving the stack into a similar structure does not negatively affect performance.

Thread Segment Stacks [21] is a multi-threaded stack implementation for gcc [1].

To begin with, each thread gets its own contiguous stack space, just like the So­

laris's [22] traditional multi-threaded stack mechanism. Stack overflow is detected

via the use of inlined code around the call instructions for the prologue and epilogue

of procedures. When stack overflow is detected, a "linear extension" is performed if

possible, which attempts to map a new page of memory contiguously to the previous

virtual address. If a linear extension cannot be performed, a new stack segment is

allocated elsewhere, and a linked list is formed. This call stack mechanism removes

the false "out of stack space" errors that traditional multi-threaded stack manage­

ment faces, allowing for initial call stack sizes to be smaller. However, it does so at

the expense of runtime overhead for every procedure call (in the average case of no

stack extension, that overhead is reported as 5 + 3 additional instructions per proce­

dure call). There is also some memory fragmentation that will occur on a non-linear

extension when a stack frame cannot fit into the remaining space in a stack segment.

Capriccio [26] is a user-level thread package that uses a call stack mechanism that

can be viewed as a refinement of the mechanism used in Thread Segment Stacks [21].

The major change that Capriccio makes is that it analyzes the call graph of a program,

13

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

depicted in Figure 2.8, at compile time to combine many subroutines with small stack

sizes into one larger block, thereby reducing the number of prologue and epilogue

checks that need to be made during procedure calls. For example, two consecutive

function calls, X and Y, requiring 10 and 20 bytes of call stack space respectively,

would have only one prologue check before X for 30 bytes and one epilogue check

at the end of Y. Calls to external functions not call-graph analyzed are handled by

programmer annotations specifying minimum stack requirements for the function,

or just by a default "large enough" call stack chunk. When function pointers are

concerned, the compiler considers all possible functions that could match the function

pointer in question. Polymorphism, while not explicitly mentioned, could conceivably

be handled in a similar manner.

Capriccio, like Thread Segment Stacks, still suffers from a degree of call stack

memory fragmentation. However, Behren et al. [26] have analyzed the problem as

follows: "Internal wasted space" is defined as the space wasted at the end of a call

stack region when a new call stack region is linked. "External wasted space" is defined

as the unused (but possibly usable) space at the end of an active call stack region.

The introduction of function stack check combining introduces a trade-off between

internal wasted space and speed. The larger each call stack region, the less procedure

checks need to be made, but the probability of a stack chunk not fitting at the end of

a call stack region is increased. There is also a tradeoff between external wasted space

(an issue if there are many threads running) and internal wasted space. Large stack

chunks result in more external wasted space, but less frequent stack linking (resulting

in less internal wasted space). Capriccio's call stack mechanism removes false "out

of stack space" errors, minimizes overhead from inlined stack check code due to call

graph analysis, and provides tunable parameters to balance memory fragmentation

tradeoffs to application requirements.

2.5 Other

Event-based programming is a programming paradigm where a single thread of

execution is responsible for detecting, and then sequentially handling, events. Pro­

tothreads [13] is an event-based thread implementation that loosely emulates thread­

ing via the use of a state machine. Context switching is performed via stack rewind­

ing. This mechanism forces only one thread to run at any given time, and the use of

blocking system calls will cause the entire program to pause. As such, this threading

14

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

__} _Co

C •
~2 ~ C\ Main 1/

C ." S=O.5k ///

x~~~~• • •B D A
S=lk S=O.2k S=O.2k

Figure 2.8: An example of a call graph annotated with stack frame sizes. The edges
marked with Ci (i=O, ... ,3) are the checkpoints. [26]

library is not considered general purpose, and was developed specifically for embedded

systems.

In contrast to Protothreads, "Why Events Are A Bad Idea" [25] was published

arguing the superiority of threads over event-based systems. While I will avoid en­

tering this debate, the paper did note stacks as an issue for systems involving a large

number of threads, and offerred the following suggestions for call stack strategies in

multi-threaded systems:

• Development of mechanisms that allow for dynamic call stack growth.

• Use of compiler analysis to determine the stack requirements of functions and

identify areas of code that may require stack growth.

• Purge unnecessary state from the call stack before making anew function call.

This would require the compiler to arrange the stack in such a way that live

variables do not pin dead in the call stack when a function call is made. Fig­

ure 2.9 illustrates this concept: On the left, the live variables y and z pin the

dead variable x. On the right, moving the dead variable x to the bottom of the

stack allows the next procedure call to make use of x's storage.

15

MSc Thesis - J. Moore-Oliva

y

z

McMaster - Computing and Software

z
y

Figure 2.9: Live Variables Pinning Dead

2.6 Overview

This section contains a tabular overview of various features of the multi-threaded

stack mechanisms reviewed. Preceding the table is a legend explaining the columns'

meanings.

• Runtime Overhead - This refers to runtime overhead above what the traditional

single-threaded call stack mechanism would incur.

Constant No additional runtime overhead beyond initial setup.

Procedure call Additional runtime overhead with every procedure call.

Linear Procedure Call Grouping prevents additional runtime overhead with

every procedure call, but additional runtime overhead is still asymptoti­

cally linear with respect to procedure calls.

Context switch Additional runtime with every context switch.

Global Global routines need to be run periodically to maintain the call stack,

which result in program pausing.

• Memory Overhead - Additional call stack memory overhead above what the

traditional single-threaded call stack mechanism would incur.

Constant No additional memory overhead beyond initial setup.

Procedure call Additional memory overhead with every procedure call.

16

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

On Extension Constant memory overhead on stack extension.

• Premature Out-Of-Memory

No Memory organization theoretically allows for a process to use its entire

Virtual Address space before running out of memory.

Negligible Memory organization may result in fragmentation similar to heap

allocation, but conceptually the entire Virtual Address space can be used.

Thread/Heap Memory organization allows sharing of call stack space among

threads, but stack space is a fixed size and once that is used up, the

system will be "out of memory" even if there is remaining unused memory.

Similarly, if the heap runs out of space before the call stack does, any space

reserved for the call stack cannot be used by the heap.

Single Thread Memory Organization is such that each thread has a fixed

amount of call stack space, and if one thread exhausts its call stack space

it cannot use any other available memory in the system. Heap can prema­

turely run out of memory as in Thread/Heap.

17

I-'
00

I Approach 11 Runtime Overhead IMemory OverheadlPremature Out-Of-Memoryl

Solaris Constant Constant Single Thread
Oberon with active objects Constant Constant Single Thread

Concurrent Oberon Constant Constant Single Thread
US Patent 7,477,829 Constant Constant Single Thread

Hybrid Stack Sharing Context Switch Constant Single Thread
Multi Task Stack Sharing Procedure Call On Extension Thread/Heap

Meshed Stack Global Constant No
Stackless Python Procedure Call Procedure Call No

Thread Segment Stacks Procedure Call On Extension Negligible
Capriccio Linear Procedure Call On Extension Negligible

Protothreads Context Switch Constant No

Figure 2.10: Stack Implementation Overview

~
CJ)
o
r-3
p-'
(1)
r:tJ.....
r:tJ

c....,

~
o
~
SO
o
I--'

~.

~
o
~
~
M-

~

Q
o

~
~
~.

§
p...
CJ)
o
~

~
'""l
(1)

MSc Thesis - J. Moore-Oliva

Chapter 3

McMaster - Computing and Software

Experimental Setup

As stated in Section 1, the goal is to discover or identify an efficient multi-threaded

call stack mechanism that works as well and as transparently as the call stack mech­

anism for single-threaded processes. Therefore, any multi-threaded call stack mecha­

nism selected for analysis must be scalable. As such, each mechanism must have the

following characteristics:

• Compatible with concurrent multithreading (as opposed to user space threads

where only one thread may run at a time)

• The use of a central locking mechanism must be used sparingly, if at all. Oth­

erwise, scalability will suffer, especially if the locking is performed on a per

procedure call basis.

• Dynamic sharing of memory between thread call stacks. No allocating a fixed

amount memory to each thread at the start and saying "this will be enough" .

• Stack data must be referencable. It cannot move around. This decision was

made to maintain compatibility with existing system calls, as well as to avoid

the overhead and locking associated with moving stack data around.

3.1 Rejected Mechanisms

The following methods, reviewed in Section 2, did not meet the above criteria and

were not selected for experimentation.

19

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

All methods from Section 2.2 lacked dynamic sharing of memory between thread

call stacks. Each method had the common mechanism of assigning each thread an

exclusive, fixed size call stack.

Hybrid Stack Sharing [28], reviewed in Section 2.3, uses a fixed number of fixed

size call stacks for running threads. The context switching penalty of copying stack

data would be too expensive for a system running a large number of threads, which

requires fast and efficient context switching.

Multi Task Stack Sharing [20], reviewed in Section 2.3, was created for embedded

systems with a single processor. Extending the mechanism to allow for true multi­

threading would require synchronization for every procedure call to eliminate race

conditions between a thread using its call stack, and another thread allocating space

in that call stack.

Meshed Stack [14], reviewed in Section 2.3, would require moving of call stack

variable addresses. This disallows using stack variables as arguments to procedure

calls, especially system calls. Additionally, the overhead required (stopping all threads

to compact the call stack, or synchronization mechanisms) would harm scalability.

Finally, the thesis that was referenced for details on the workings of the Meshed Stack

was in preparation at the time of publishing [14], and it appears that the thesis was

never completed.

Protothreads [13], reviewed in Section 2.5, forces only one thread to run at any

given time.

3.2 Technology Overview

This section gives an overview of the technologies used in the following Sections.

3.2.1 Pthreads

In this document pthreads refers to the Native POSIX Threading Library or NPTL

(as opposed to the older LinuxThreads implementation) that is the standard Linux

implementation [8] of the IEEE POSIX standard [15]. "POSIX.1 specifies a set of

interfaces (functions, header files) for threaded programming commonly known as

POSIX threads, or Pthreads. A single process can contain multiple threads, all

of which are executing the same program. These threads share the same global

memory (data and heap segments), but each thread has its own stack (automatic

20

MSc Thesis - J. Moore-Oliva

variables)." [5].

3.2.2 Intel@ x86 Assembly

McMaster - Computing and Software

The assembly code detailed in Section 3.4 is Intel@ 32-bit x86 assembly code [17].

The basic architecture consists of eight 32-bit general purpose registers: EAX, EBX,

ECX, EDX, ESI, EDI, ESP and EBP. While all of these registers have some special

uses, by far the most specialized register is ESP, the stack pointer, whose value is

changed by the CALL and RET instructions. All other registers are used as general

purpose registers except where noted otherwise in Section 3.4.

3.3 C--

The stack mechanisms outlined in Section 3.4 require instruction sequences for

procedure calls that cannot always rely on a contiguous stack frame. Two existing

open source compiler frameworks, gcc [1] and LLVM [2] were evaluated for modifica­

tion, and discarded, for the following reasons:

• Existing public interfaces to modify the instruction sequences for procedure calls

were limited to modifications that still relied on a contiguous stack frame. It

would have required deep understanding of the software to modify the instruc­

tion calling sequence.

• It was unknown if some optimizations relied on a contiguous stack frame.

Given the above analysis, it was decided to build a C-like compiler from scratch

to save time and avoid unforeseen complications resulting from modifying an existing

complicated codebase without full understanding of its workings. This C-like language

is an almost perfect subset of the C language and was given the unoriginal name of

C--.

3.3.1 C-- Implementation Overview

The C-- compiler has no preprocessor, and accepts only one source file as input.

The C-- compiler emits 32-bit x86 instructions compatible with the open source as­

sembler NASM [3]. All interfacing with existing C standard library routines relies on

NASM's global and extern commands. Unlike the standard cdec1 calling convention

21

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

which requires procedures to preserve the values of EBX, ESI, EDI and EBP, C-­

assumes that any procedure call can trash any register (except where a register is

specially reserved by a stack mechanism).

3.3.2 Omitted C Language Features

Following is a list of C language features that C-- does not implement. These

features were not omitted for any particular reason, merely that they were not needed

for the experimentation and hence not implemented.

• Dynamic allocation of memory on the stack (stalloc).

• Variable array declaration on the stack.

• Variable declarations cannot have initializers. Initialization of variables must

be a separate statement following the variable declaration.

• Structs cannot be assigned with the a={x,y,z} syntax. Struct members can

only be set individually with the. or - > operators.

• Strings do not implement all escape sequences. Only \n, \r, \t, \ \, and \" are

implemented.

• Function pointers. A pointer to a function can be accessed by using the function

name (type is int), but a function cannot be called from a pointer.

• Compound assignment operators.

• Increment and decrement operators.

• Ternary operator.

• Wide string literals.

C language keywords that C-- does not implement: auto, const, enum, goto, long,

register, signed, static, switch, typedef, union, unsigned, volatile.

Data types that C-- supports: int, char, double, struct, void. Pointer variations

(such as char *, void ** etc) are supported.

22

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

3.3.3 C-- Additions

The C-- compiler is a multi-pass compiler, and as such there is no need for forward

declarations of any kind. For example, in C-- the C code in Listing 3.1 does not require

the forward declaration at line 1.

y) {

o) {

Listing 3.1: Forward Declaration in C

iut y);

x = x - 1;

b (x);

}

}

iut b(iut

if (y >
y = y - 1;

a(y);

iut a(iut x) {

if (x > 0) {

1 iut b(

2

3

4

5

6

7

8 }
9

10

11

12
13

14

15 }

C-- has introduced a macro, stacksizeof(procedure), which like the C macro

sizeof(type) returns the stack size for a given procedure.

3.4 Implemented Stack Mechanisms

3.4.1 Traditional Fixed-Size Stack

This section describes an implementation of the traditional fixed-size call stack

mechanism, outlined in Section 2.2. This call stack mechanism does not meet the

criteria outlined in Section 3. While I compare all implemented stack mechanisms

against the traditional stack mechanism implemented in gcc with various levels of

optimizations, the traditional stack mechanism is reimplemented in the C-- compiler

to provide a comparison independant of variations in optimizations and code quality

not directly related to the stack mechanism being evaluated.

23

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Caller Instructions

The caller routines for this stack mechanism implement gcc's standard calling

convention [7]. The caller is responsible for pushing arguments to the stack, as well

as cleaning the stack on procedure exit.

Listing 3.2: Traditional Fixed-Size Stack Caller Instructions

argn

callee_name

ESP, a r g s- s i z e

PUSH

CALL

ADD

1 PUSH argl

2

3

4

5

Callee Instructions

The callee is responsible for ensuring that the stack pointer has the same value

on return from the procedure as it did on entry. This is accomplished by initially

extending the stack by the amount of stack space required by the procedure (S), and

then ensuring that every RET instruction is prefixed by an instruction to decrease

the stack by S.

Listing 3.3: Traditional Fixed-Size Stack Callee Instructions

ADD ESP, S

RET

1 callee_name: SUB ESP, S

2

3

4

#Body of procedure

3.4.2 Per Procedure Heap Allocation

The call stack for a program is structured as a linked list, as shown in Figure 3.l.

Each procedure invocation has its own stack frame, just large enough to hold the

stack information depicted in Figure 3.2. Each thread of execution has a dedicated

thread stack, which is used during stack overflow (the call stack for the thread is full,

so a separate stack region is required for operations such as allocating a new stack

chunk) and underflow. The EBP register is reserved for holding the address of the

thread stack.

24

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Procedure A

Procedure B

Procedure C

Figure 3.1: Per Procedure Heap Allocation Call Stack

Caller Instructions

The caller is responsible for creating and cleaning up a stack frame just large

enough for the procedure.

Listing 3.4: Per Procedure Heap Allocation Caller Instructions

1 MOV EAX, ESP

2 MOV ESP, EBP

3 PUSH dword CALLEEJ3TACKJ3IZE + 4

4 CALL srAMEXDVERFIDWBANDLER

5 PUSH argl

6

7 PUSH argn

8 CALL callee_name

9 SUB ESP, CALLEEJ3TACK_SIZE - 4 - argumentsize

10 CALL srAMEX.UNDERFLOWBANDLER

Annotations

Line 1 STAMEX_OVERFLOW_HANDLER requires that EAX contain the value of

the caller's ESP during overflow. Additionally, since ESP might change before

arguments are pushed to the stack at Line 5, EAX is used as a base pointer for

accessing data in the caller's stack frame.

25

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

ARGUMENTS

RETURN ADDRESS

STACK DATA

PREVIOUS ESP

Figure 3.2: Per Procedure Heap Allocation Stack Frame

Line 2 STAMEX_OVERFLOW.lIANDLER will use the thread stack

Line 3 As shown in Figure 3.2, the stack frame needs to hold the previous ESP, so

CALLEE_STACK_SlZE + 4 is used

Line 4 When the overflow handler returns, ESP will be set to the top of the stack

frame shown in Figure 3.2

Line 9 Align ESP to be 8 bytes away from the end of the stack frame, so there is

enough room to store ElP without overwriting previous ESP

Line 10 On return, ESP will be restored to the value it contained in line 1 and the

stack frame for CalleeJlame will be freed

Callee Instructions

The callee is responsible for ensuring that the stack pointer has the same value

on return from the procedure as it did on entry. This is accomplished by initially

26

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

extending the stack by the amount of local stack space (stack space excluding ar­

guments and return address) required by the procedure (S), and then ensuring that

every RET instruction is prefixed by an instruction to decrease the stack by S.

Listing 3.5: Per Procedure Heap Allocation Callee Instructions

1 callee_name: SUB ESP, S

2 #Body of procedure

3 ADD ESP, S

4 RET

Thread Trampoline

When pthreads calls a function pointer as an entry point for a new thread, it

expects that function to honour the cdecl calling convention. As outlined in Sec­

tion 3.3.1, this is not the case. Additionally, the environment outlined in the start

of this section must be set up. All this is accomplished with a trampoline procedure

whose address is passed as the startJoutine argument to pthread_create.

This pthreads compatible trampoline must accept one void * pointer as its argu­

ment. It receives a pointer to a struct of the following definition:

Listing 3.6: Per Procedure Heap Allocation Thread Trampoline Struct Definition

struct STAIVIEX-CALLBACK {

void * arg;

in t fp;

int fpStackSize;

};

The members of the struct are detailed below:

void * arg The argument being passed from the user procedure creating the thread

int fp The function pointer referring to the procedure that will serve as the entry

point for the thread

int fpStackSize The required stack size for fp. This is generated by the compiler

via the use of the C-- stacksizeof macro

The instructions for the thread trampoline follow:

27

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Listing 3.7: Per Procedure Heap Allocation Thread Trampoline Instructions

1 PUSH EBX

2 PUSH ESI

3 PUSH EDI

4 PUSH EBP

5

6 MaV ESI, [ESP + 20]

7

8 PUSH dword THREAD...8TACK...8IZE

9 CALL malloc

10 ADD EAX, THREAD...8TACK...8IZE

11 MaV EBP, EAX
12 ADD ESP, 4

13

14 MaV EBX, [ESI]

15 MaV EDI, [ESI + 4]

16 PUSH ESI

17 MaV ESI, [ESI + 8]

18 ADD ESI, 8

19 CALL free

20 ADD ESP, 4

21

22 MaV EAX, ESP

23 MaV ESP, EBP

24 PUSH ESI

25 CALL STAIvJEXDVERFIDWBANDLER

26

27 PUSH ESI

28 PUSH EBX

29 CALL EDI

30 MaV ESI, [ESP + 4]

31

32 SUB ESP, ESI

33 ADD ESP, 16

34

28

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

/ / Store RET

4

EBX

EAX / / Store RET

THREADBTACKBIZE

EBP

EDI

ESI

EBX

RET

POP

POP

POP

POP

MOV EBX,

SUB EBP,

PUSH EBP

CALL free

ADD ESP,

MOV EAX,

35 CALL STAJ\IIElCUNDERFIDWBANDLER

36

37

38

39

40
41
42

43

44
45

46

47
48

49

Annotations

Lines 1-4 Store non-volatile registers to be compatible with the cdecl calling con­

vention

Line 6 Store the pointer to struct STAMEX_CALLBACK in the ESI register for

later use

Lines 8-12 Allocate memory for the thread stack and store the top of the stack in

the EBP register

Line 14 Store the member arg of struct STAMEX_CALLBACK in the EBX register

Line 15 Store the member fp of struct STAMEX_CALLBACK in the EDI register

Line 16 Store the address of struct STAMEX_CALLBACK on the stack in prepa­

ration for the memory to be freed

Line 17 Store the member fpStackSize of struct STAMEX_CALLBACK in ESI

Line 18 In addition to storing previous ESP as shown in Figure 3.2, the trampoline

routine also needs to store the stack size of the entry procedure. Unlike caller

29

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

instructions detailed in Section 3.4.2 where the stack size for the callee can be

hardcoded, this thread trampoline is calling a function pointer. Therefore, the

stack frame for the callee will be CALLEE_STACK_SlZE + 8 instead of the

regular CALLEE_STACK_SlZE + 4 depicted in Figure 3.2

Line 19 The memory for struct STAMEX_CALLBACK can now be freed as the

registers EBX, EDl and ESl now store all the struct members

Lines 22-25 Use the overflow routine as detailed in Section 3.4.2 to set up the stack

frame for the callee

Line 27 Store the SIze of the

STAMEX_OVERFLOW_HANDLER

Line 28 Push the callee's argument

Line 29 Call the callee

stack frame allocated by

Line 30 Restore the size of the callee's stack frame to the ESl register

Lines 32-33 Align ESP to be 8 bytes away from the end of the stack frame, so there

is enough room to store ElP without overwriting previous ESP

Line 35 Call STAMEX_UNDERFLOWJIANDLER with the same semantics as de­

tailed in Section 3.4.2

Line 37 Store the return value in the non-volatile register EBX

Line 38 Store the start of the memory region that was returned by malloc for the

thread stack in EBP

Lines 39-40 Free the memory that was allocated at line 9

Line 42 Restore the EAX register which holds the return value of the callee

Lines 44-47 Restore the non-volatile registers to be compatible with the cdec1 calling

convention

30

ESP, EAX

EAX,EDX

[EBP - 8]

MOV [EAX], EDX

ADD EAX, [EBP - 4]

PUSH dword [EBP - 4]

CALL malloc

ADD ESP, 4

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Stack Overflow

The stack overflow procedure is responsible for setting up the stack frame shown

in Figure 3.2 for a given stack frame size.

Listing 3.8: Per Procedure Heap Allocation Thread Stack Overflow

1 PUSH ECX

2 PUSH EAX

3

4

5

6

7

8 POP EDX

9 POP ECX

10

11

12
13

14 MOV

15 MOV

16 JMP

Annotations

Line 1 Store the volatile register ECX on the stack so it is not modified by the

malloc call on Line 5

Line 2 Store the caller's ESP on the thread stack. This procedure ensures that all

registers except for EDX retain their original values at the end of this call

Line 4-5 Allocate a stack frame of the requested size

Line 8 Retreive the caller's ESP into EDX

Line 9 Restore the volatile register ECX

Line 11 Store the caller's ESP at the end of the callee's stack frame

31

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Line 12 Store the top of the stack frame in EAX

Line 14 Set ESP to the top of the callee's stack frame

Line 15 Restore EAX to its initial value

Line 16 Return from this overflow procedure. However, the return address is stored

on the thread stack, and ESP is already set to the value it should have after

this procedure, so the JMP instruction is used instead of RET

Stack Underflow

The stack underflow procedure is responsible for restoring the ESP register to the

previous ESP value stored in, and freeing, the stack frame shown in Figure 3.2. The

stack underflow procedure expects ESP to be 4 bytes into the stack frame memory

region that was allocated at Line 5 in Listing 3.8, with previous ESP at [ESP-4] and

the return address for this procedure to be at [ESP].

Listing 3.9: Per Procedure Heap Allocation Thread Stack Underflow

1 MaV EBX, EAX

2 MOV ESI, [ESP - 4]

3 MaV EDI, [ESP]

4

5 SUB ESP, 4

6 MaV [EBP-4], ESP

7 MaV ESP, EBP

8 SUB ESP, 4

9 CALL free

10

11 MaV EAX, EBX

12 MaV ESP, ESI

13 JMP EDI

Annotations

Line 1 Store the return value of the callee into the non-volatile register EBX

Line 2 Store the caller's ESP into the non-volatile ESI register

32

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Line 3 Store the return address for this procedure into the non-volatile EDI register

Line 4 Store the start of the memory region that was allocated at Line 5 in Listing

3.8 into the ESP register

Line 5 Store the value of ESP at the top of the thread stack

Line 6 Set the current stack to the thread stack

Line 7 Adjust the current stack as if the instruction at Line 5 were a PUSH instruc­

tion

Line 8 Free the callee's thread stack

Line 10 Restore EAX

Line 11 Restore ESP to the caller's ESP

Line 12 Return from this underflow procedure. As the return address is stored in

the EDI register, and ESP is already set to the value it should have after this

procedure, the JMP instruction is used instead of RET

3.4.3 Linked Stack Chunks with Look-Ahead Overflow De­

tection

The call stack for a program is structured as a linked list of stack chunks. Unlike

Per Procedure Heap Allocation where each procedure has a region of memory dynam­

ically allocated by calling malloc [9] containing just one stack frame (see Figure 3.1),

this mechanism employs the use of stack chunks which may contain many different

stack frames, as depicted in Figure 3.3. When a procedure call would cause a stack

chunk to overflow, a new stack chunk as depicted in Figure 3.4 is created and linked.

The EBP register is reserved for maintaining a pointer to the book keeping informa­

tion at the top of the current stack chunk. The stack overflow detection mechanism

is an implementation of Capriccio's [26] call stack mechanism outlined in Section 2.4.

Caller Instructions

The instructions detailed here are those generated when the procedure call is a

checkpoint. When the procedure call is not a checkpoint, the caller instructions are

identical to those detailed in Section 3.4.1.

33

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Procedure A
Procedure B
Procedure C

Procedure D
Procedure E

Figure 3.3: Linked Stack Chunks

Listing 3.10: Look-Ahead Overflow Detection Caller Instructions

1 MOV EAX, ESP

2 MOV EDX, ESP

3 ADD EDX, (STACK_CHUNKljIZE

4 - LONGEST..PATH(callee_name) - 16)

5 CMP EDX, EBP

6 JGE .L1

7 CALL STAMEXDVERFWWBANDLER

8 .L1: PUSH arg1

9

10 PUSH argn

11 CALL callee_name

12 ADD ESP, argLsize

13 CMP EBP, ESP

14 JNE L2

15 CALL STAMEX.DNDERFWWBANDLER

16 .L2:

Annotations

Line 1 STAMEX_OVERFLOWJIANDLER requires that EAX contain the value of

the callers ESP during overflow. Additionally, since ESP might change before

arguments are pushed to the stack at Line 7, EAX is used as a base pointer for

accessing data in the caller's stack frame

Line 2 Copy ESP into EDX in preparation for checking if stack overflow will occur

34

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

PREVIOUS ESP

PREVIOUS ESP

THREAD STACK
IESP --

STACK FRAMES

Figure 3.4: Stack Chunk for Look-Ahead Overflow Detection

Line 3 LONGEST_PATH(callee..name) is the maximum stack size that this check­

point is reserving. The value 16 is used to adjust for previous EBP, previous

ESP and the thread stack shown in Figure 3.4, as well as ensure that there are 4

bytes for the value of ElP during calls to STAMEX_OVERFLOW_HANDLER

or STAMEX_UNDERFLOW_HANDLER

Lines 5-6 If overflow would occur, fall through to Line 6 and create a new stack

chunk. Otherwise, jump to Line 7 and start pushing arguments

Lines 13-14 If stack underflow would occur, fall through to Line 15 and return to the

previous stack chunk. Otherwise, jump to Line 16 and continue with execution

of the caller

35

MSc Thesis - J. Moore-Oliva

Callee Instructions

McMaster - Computing and Software

The callee is responsible for ensuring that the stack pointer has the same value

on return from the procedure as it did on entry. This is accomplished by initially

extending the stack by the amount of stack space required by the procedure (S), and

then ensuring that every RET instruction is prefixed by an instruction to decrease

the stack by S.

Listing 3.11: Look-Ahead Overflow Detection Callee Instructions

ADD ESP, S

RET

1 callee_name: SUB ESP, S

2

3

4

Thread Trampoline

#Body of procedure

The purpose of this thread trampoline is the same as the one explained in Sec­

tion 3.4.2.

Listing 3.12: Look-Ahead Overflow Detection Thread Trampoline Struct Definition

s t l' U c t STAMEXCALIBACK {

void * arg;

in t fp;

};

Notice that unlike the thread trampolines in Sections 3.4.2 and 3.4.4, there is no

fpStackSize member. This is because this stack mechanism uses a fixed size stack

chunk, and does not allow any checkpoint that would exceed the size of the fixed

size stack chunk. Since this trampoline is setting up a new stack chunk, no overflow

detection check that would require knowledge of the size of the checkpoint need be

performed. The members of the struct are detailed below:

void * arg The argument being passed from the user procedure creating the thread

int fp The function pointer referring to the procedure that will serve as the entry

point for the thread

The instructions for the thread trampoline follow:

36

MSe Thesis - J. Moore-Oliva McMaster - Computing and Software

Listing 3.13: Look-Ahead Overflow Detection Thread Trampoline Instructions

1 PUSH EBX

2 PUSH ESI

3 PUSH EDI

4 PUSH EBP

5

6 MOV ESI, [ESP + 20]

7

8 PUSH STACK_CHUNKJ3IZE

9 CALL malIoe

10 MOV EBX, EAX

11

12 MOV dword [ESP], THREADJ3TACKJ3IZE

13 CALL malloe

14 MOV [ESP], EAX

15 ADD EAX, THREADJ3TACKJ3IZE

16

17 MOV [EBX + STACK_CHUNKJ3IZE - 4], EBP

18 MOV [EBX + STACK_CHUNKJ3IZE - 8], ESP

19 MOV [EBX + STACK_CHUNKJ3IZE - 12], EAX

20

21 ADD EBX, STACK_CHUNKJ3IZE - 12

22 MOV EBP, EBX

23 MOV ESP, EBX

24

25 PUSH dword [ESI]

26
27 PUSH ESI

28 MOV ESI, [ESI + 4]

29 CALL free

30 ADD ESP, 4

31

32 CALL ESI

33

34 CALL STAMEXIJNDERFWWBANDLER

37

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

35

36 MOV ESI, EAX

37

38 CALL free

39 ADD ESP, 4

40

41 MOV EAX, ESI

42

43 POP EBP

44 POP EDI

45 POP ESI

46 POP EBX

47

48 RET

Annotations

Lines 1-4 Store volatile registers to be compatible with the cdecl calling convention

Line 6 Store the pointer to struct STAMEX_CALLBACK in the ESI register for

later use

Lines 8-10 Allocate the initial stack chunk, and store it in EBX

Lines 12-14 Allocate the thread stack, and store its address on the stack

Line 15 Store the top of the thread stack in the EAX register

Line 17 Store previous EBP as depicted in Figure 3.4

Line 18 Store previous ESP as depicted in Figure 3.4

Line 19 Store a pointer to the thread stack as depicted in Figure 3.4

Lines 21-22 Calculate and store the pointer to the stack chunk's book keeping in­

formation in EBP

Line 23 Initialize ESP to the top of the stack chunk

Line 25 Push the callee's argument to the stack chunk

38

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Line 27 Store the address of struct STAMEX_CALLBACK on the stack in prepa­

ration for the memory to be freed

Line 28 Store the member fp of struct STAMEX_CALLBACK in the ESI register

Line 29 Free the memory associated with struct STAMEX_CALLBACK

Line 32 Call the callee

Line 34 Call STAMEX_UNDERFLOW_HANDLER which will cleanup the stack

chunk and restore the EBP and ESP registers

Line 36 Store the return value in the non-volatile register ESI

Line 38 Free the stack chunk pointer which was stored on the stack at Line 14

Line 41 Restore the EAX register which holds the return value of the callee

Lines 43-46 Restore the non-volatile registers to be compatible with the cdecl calling

convention

Stack Overflow

The stack overflow procedure is responsible for setting up the stack chunk depicted

in Figure 3.4.

Listing 3.14: Look-Ahead Overflow Detection Stack Overflow Instructions

1 MOVEDX, ESP

2 MOV ESP, [EEP]

3

4 PUSH EAX

5 PUSH ECX

6 PUSH EDX

7

8 PUSH STACK_CHUNKBIZE

9 CALL maUoc

10 ADD ESP, 4

11

12 MOV [EAX + STACK_CHUNKBIZE - 4], EBP

39

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

13

14 MOV EDX, ESP

15 ADD EDX, 12

16 MOV [EAX + STACK_CHUNK...8IZE - 12], EDX

17
18 POP EDX

19 MOV EBP, EDX

20 ADD EDX, 4

21 MOV [EAX + STACK_CHUNK...8IZE - 8], EDX

22

23 MOV EDX, EAX

24 POP ECX

25 POP EAX

26

27 MOV ESP, EDX

28 ADD ESP, STACK_CHUNK...8IZE - 12

29
30 MOV EDX, EBP

31 MOV EBP, ESP

32 JMP [EDX]

Annotations

Line 2 Use the thread stack for creating a new stack chunk

Lines 4-6 Store volatile registers, as caller does not protect registers on stack over­

flow

Lines 8-10 Allocate a new stack chunk

Line 12 Store previous EBP as depicted in Figure 3.4

Lines 14-16 Store thread stack as depicted in Figure 3.4

Lines 18-19 Restore ESP as it was on entry to this procedure, and make a copy in

EBP

40

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Line 20 Calling this procedure pushed the return address to the stack - store the

value of ESP before STAMEX_OVERFLOWJIANDLER was called in EDX

Line 21 Store previous ESP as depicted in Figure 3.4

Lines 23-25 EAX now contains the new stack pointer value - back it up and restore

the volatile registers ECX and EAX

Lines 27-28 Set ESP to point to the top of the available stack chunk, right after the

book keeping information depicted in Figure 3.4

Lines 30-32 Set EBP to point to the top of the available stack chunk, right after the

book keeping information depicted in Figure 3.4, and return from this overflow

procedure. The return address is not stored on the active stack, and ESP

is already set to the value it should have after this procedure, so the JMP

instruction is used instead of RET

Stack Underflow

The stack underflow procedure is responsible for restoring the previous stack chunk

and freeing the existing stack chunk shown in Figure 3.4.

Listing 3.15: Look-Ahead Underflow Detection Stack Overflow Instructions

1 MOV ESI, [ESP]

2 MOV ESP, [EEP]

3

4 MOV EBX, [EEP + 8]

5 MOV EDI, [EBP + 4]

6

7 SUB EBP, (STACK_CHUNKBIZE - 12)
8 PUSH EBP

9 MOV EBP, EEX

10 MOV EBX, EAX

11 CALL free

12 MOV ESP, EDI

13 MOV EAX, EEX

14 JMP ESI

41

MSc Thesis - J. Moore-Oliva

Annotations

McMaster - Computing and Software

Line 1 Store the return address for this procedure in the non-volatile register ESI

Line 2 Use the thread stack for the underflow operation

Line 4 Store previous EBP depicted in Figure 3.4 in the non-volatile register EBX

Line 5 Store previous ESP depicted in Figure 3.4 in the non-volatile register EDI

Line 7 Store the start of the stack chunk's memory area in EBP

Line 8 Store the address of the stack chunk to free on the stack

Line 9 Restore EBP to the previous EBP value

Line 10 Store the return value of the last called user procedure in the non-volatile

register EBX before calling free so that it is not lost

Line 11 Free the stack chunk that was pushed at Line 8

Line 12 Restore ESP to the previous ESP value

Line 13 Restore the return value of the last called user procedure

Line 14 Return from this underflow procedure. The return address is not stored on

the active stack, and ESP is already set to the value it should have after this

procedure, so JMP is used instead of RET

3.4.4 Linked Stack Chunks with MMU Overflow Detection

The call stack for a program is structured as a linked list of stack chunks, as

depicted in Figure 3.3. On overflow, a new stack chunk as depicted in Figure 3.5 is

created. The caller sequence is modified to ensure that the deepest region of memory

that the callee will use is accessed first. If the accessed memory is beyond the available

stack space, it will touch the guard page (a region of memory with no read or write

access) and trigger the SIGSEGV signal. All SIGSEGV's are trapped and the signal

handler performs stack extension for the thread from which the signal was raised.

The C-- compiler assumes that the stack frame for a procedure is always smaller than

the guard page.

42

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Underflow is not explicitly detected. On creation of a new stack chunk the return

address for the first procedure in the stack chunk is replaced with the address of the

stack underflow procedure, and the return address is stored at the top of the stack

chunk ('PROC A' and 'PROC A RETURN ADDR' in Figure 3.5). All other proce­

dures in the stack chunk store their actual return address in the stack frame ('PROC

B' in Figure 3.3). When the first procedure in the stack chunk returns, execution will

continue with the underflow procedure, which will clean up the current stack chunk,

reactivate the previous stack chunk, and continue with program execution.

«
uo
c:::
a..

ca
u
o
c:::
a..

u
u
o
c:::
a..

PREVIOUS STACK CHUNK

PROC A RETURN ADDR

ARGUMENTS

LOCAL VARS

UNDERFLOW ADDRESS

ARGUMENTS

LOCAL VARS

RETURN ADDRESS

ARGUMENTS

LOCAL VARS

RETURN ADDRESS

GUARD PAGE

Figure 3.5: Stack Chunk for MMU Overflow Detection

43

MSc Thesis - J. Moore-Oliva

Caller Instructions

McMaster - Computing and Software

As shown in Figure 3.5, the layout for a procedure differs from the C standard

layout in that the return address is at the end of the stack instead of right after the

arguments. As such, the caller instructions detailed in this section are only for calling

other C-- procedures that adhere to this layout. In order to call external C functions

that adhere to the C standard layout, a trampoline routine (detailed later in this

section) is required.

To test if the existing stack chunk is able to hold the next procedure call, the

return address is stored in the EDX register and an attempt is made to write that

return address to the stack. If the write fails, a SIGSEGV is generated and the

signal handler will create the new stack chunk, store the return address at the top of

the stack chunk and place the address of the stack underflow procedure in the EDX

register. On return of the signal handler, control continues with the instruction that

caused the signal (the instruction that attempts to write the return address) and

the address of the stack underflow procedure will be written in place of the return

address.

Listing 3.16: MMU Overflow Detection Caller Instructions

PUSH argn

JMP callee_name

1

2

3

4

5

6

7

8 return_label:

Annotations

MOV

MOV

MOV

PUSH

EAX, ESP

EDX, return_label

[ESP - CALLEKBTACKBIZE] ,

argl

EDX

Line 1 The signal handler requires that EAX contain the value of the caller's ESP

during overflow. Additionally, since ESP might change before arguments are

pushed to the stack at Line 4, EAX is used as a base pointer for accessing data

in the caller's stack frame

Line 2 Store the return address in the EDX register

44

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Line 3 Attempt to write the return address to the stack. This instruction may be

called again if it causes a SIGSEGV

Line 7 Since the return address was already written at Line 3, use JMP instead of

CALL to begin execution of the callee

Callee Instructions

The callee is responsible for ensuring that the entire stack frame, including argu­

ments, is clean before returning. This deviation from the standard C calling conven­

tion is required to handle the case when the return address is the stack underflow

address, as the stack underflow procedure requires the stack pointer to be at the top

of the stack upon entry.

Listing 3.17: MMU Overflow Detection Callee Instructions

1 callee_name:

2

3

4

Annotations

SUB ESP, LOCALljTACKljIZE

... #Body of procedure

ADD ESP, COMPLETEljTACKljIZE

JMP [ESP - COMPLETEljTACKljIZEj

Line 1 The caller will have moved the stack pointer down by args....size during argu­

ment PUSH. Move the stack pointer to the end of the stack frame

Line 3 Move the stack pointer to the top of the stack before returning

Line 4 Since the stack pointer was moved at Line 3 and is no longer pointing at the

return address (and should not be moved any further), the RET instruction is

not applicable. Continue program execution at the return address using a JMP

instruction

Extern Call

When calling a procedure that uses the C standard calling convention, the caller

sets up the stack frame depicted in Figure 3.6 after ensuring that there is enough stack

space for the external procedure. The extern trampoline then stores ARGS SIZE in a

non-volatile register and calls the external procedure call overwriting ARGS SIZE and

45

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

EXTERN FUNCTION PTR as depicted in Figure 3.7. After the external procedure

call has returned, the extern trampoline returns ensuring the conditions described

in Section 3.4.4 are met. Without this extern trampoline the C standard calling

convention would return with the stack pointer not at the top of the callee's stack

frame, but rather underneath the callee's arguments.

RETURN ADDRESS

ARGUMENTS

rESP}
ARGS SIZE

EXTERN FUNCTION PTR

Figure 3.6: MMU Overflow Detection Extern Trampoline Pre-Call

PUSH argn

MOV [ESP - 4], a r g s _S 1 Z e

MOV [ESP - 8], exterlLfunction_ptr

JMP extenLtrampoline

Listing 3.18: MMU Overflow Detection Extern Caller Instructions

MOV EAX, ESP

MOV EDX, return_label

CMP [ESP - EXTERNBIZE] , EAX

PUSH EDX

PUSH arg1

1

2

3

4

5

6

7

8

9

10
11 returlLlabel:

Annotations

46

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

RETURN ADDRESS

ARGUMENTS

TRAMPOLINE RET ADDR

LOCAL VARS

Figure 3.7: MMU Overflow Detection Extern Trampoline Post-Call

Line 1 The signal handler requires that EAX contain the value of the callers ESP

during overflow. Additionally, since ESP might change before arguments are

pushed to the stack at Line 4, EAX is used as a base pointer for accessing data

in the caller's stack frame

Line 2 Store the return address in the EDX register

Line 3 Since the exact stack size of the external procedure is not known (and may be

variable), a constant EXTERN_SIZE is used as a "large enough" stack size. A

CMP instruction is used to access the memory without modifying the contents

of any registers or memory. Should the access be invalid, a SIGSEGV will be

generated and a stack extension will occur, and this instruction will be executed

again

Line 4 Store the return address (which may be the actual return address or the

address ofthe stack underflow procedure) in the location depicted in Figure 3.6

Lines 5-7 Push the extern procedure's arguments to the stack

Line 8 Store the total size of the arguments from Lines 5-7 on the stack without

modifying the stack pointer, as depicted in Figure 3.6

47

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Line 9 Store the address of the external procedure on the stack without modifying

the stack pointer, as depicted in Figure 3.6

Line 10 Begin execution of the external trampoline procedure. Use a JMP instead

of a CALL instruction since the return address is already stored on the stack

and the stack pointer should not be modified

Listing 3.19: MMU Overflow Detection Extern Thampoline Instructions

1 MOV EBP, [ESP - 4]

2 CALL [ESP - 8]

3 ADD ESP, EBP

4 RET

Annotations

Line 1 Store ARGS SIZE in the non-volatile register EBP

Line 2 Call the external procedure, overwriting ARGS SIZE and EXTERN FUNC­

TION PTR, transitioning from Figure 3.6 to Figure 3.7

Line 3 The external procedure has returned - move the stack pointer to the top of

the stack frame, just under RETURN ADDRESS depicted in Figure 3.7

Line 4 Return from this trampoline, either directly to the caller or to the stack

underflow procedure

Thread Trampoline

The purpose of this thread trampoline is the same as the one explained in Sec­

tion 3.4.2.

Listing 3.20: MMU Overflow Detection Thread Thampoline Struct Definition

s t r u c t STAMEX...CALLBACK {

void * arg;

in t fp;

int fpStackSize;

};

The members of the struct are detailed below:

48

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

void * arg The argument being passed from the user procedure creating the thread

int fp The function pointer referring to the procedure that will serve as the entry

point for the thread

int fpStackSize The required stack size for fp. This is generated by the compiler

via the use of the C-- stacksizeof macro

The instructions for the thread trampoline follow:

PUSH dword [EBP]

PUSH dword [EBP+8]

CALL STAMELSETUP.BIGNAL.BTACK

ADD ESP, 8

MOV EAX, ESP

SUB EAX, [ESP-4]

ADD EAX, 4

MOV dword [EAX] , return_label

JMP EBP

MOV EBP, EAX

CALL STAMEXTEARDOWN.BIGNALBTACK

PUSH EBP

MOV EBP, [EBP+4]

CALL free

MOV EBP, [ESP+20]

Listing 3.21: MMU Overflow Detection Thread Trampoline Instructions

PUSH EBX

PUSH ESI

PUSH EDI

PUSH EBP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 ret u rlL1abe 1 :

26

49

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

27
28

29

30

31

32

33

MOV EAX, EBP

POP EBP

POP EDI

POP ESI

POP EBX

RET

Annotations

Lines 1-4 Store volatile registers to be compatible with the cdecl calling convention

Line 6 Set up the stack that the signal handler will use

Line 8 Store the pointer for struct STAMEX_CALLBACK in the non-volatile regis­

ter EBP

Line 10 Store the member arg of struct STAMEX_CALLBACK to the stack

Line 11 Store the member fpStackSize of struct STAMEX_CALLBACK to the stack

Line 13 Store the address for struct STAMEX_CALLBACK to the stack in prepa­

ration for freeing the memory

Line 14 Store the member fp of struct STAMEX_CALLBACK in the non-volatile

register EBP

Line 15 Free the memory associated with struct STAMEX_CALLBACK

Line 17 Align ESP directly under arg on the stack, in preparation for calling fp

Lines 19-22 Store the return address at the end of the callee's stack frame (as de­

picted in Figure 3.5) without moving ESP from it's current position

Line 24 Call the thread entry routine which was stored in the EBP register at Line

14

Line 25 After the thread entry routine is finished, store the return value in the non

volatile register EBP

Line 26 Clean up the signal stack that was set up at Line 6

50

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Line 27 Store the return value for this function

Lines 28-32 Restore the volatile registers

Signal Stack Setup

A C function used by the thread trampoline that uses sigaltstack to set up a

thread's signal stack.

Listing 3.22: MMU Overflow Detection Signal Stack Setup

1 void STAMEX...8ETUP...8IGNAL...8TACK () {

2 stack_t s;

3 s. ss-sp = malloc (SIGSTKSZ);

4 s. ss_size = SIGSTKSZ;

5 s. ss_flags = 0;

6 if (sigaltstack(&s, NULL) < 0)

7 perror (" sigaltstack ()");

8 }

Signal Stack Teardown

A C function used by the thread trampoline to clean up a thread's signal stack.

Listing 3.23: MMU Overflow Detection Signal Stack Teardown

free(s.ss_sp);

s. ss_flags = SS_DISABLE;

i f (s i gal t s t a c k (NULL, &s) < 0)

perror (" sigaltstack ()");

1 void STAMEXTEARDOWN...8IGNAL...8TACK () {

2

3

4

5

6

7

8

9

10 }

51

stack = STAMEXJ3TACK..ALLOC(

ut->uc_mcontext. gregs [REG-.EDX]

, ut->uc_mcontext. gregs [REG-ESP]);

ut->uc_mcontext. gregs [REG-.EDX]

= (int)&STAMEXJJNDERFIDWBANDLER;

ut->uc_mcontext. gregs [REG-ESP] = (int) stack;

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Stack Overflow

The stack overflow procedure is invoked when the SIGSEGV signal is generated,

and is responsible for setting up and activating the stack chunk depicted in Figure

3.5.

Listing 3.24: MMU Overflow Detection Stack Overflow

1 void STAMEXDVERFIDWBANDLER(int signum

2 siginfo_t * siginfo

3 void * ucontext) {

4 ucontext _t * ut (ucon texLt *) ucontext ;

5 void * stack;

6

7

8

9

10
11

12

13

14 }

Annotations

Line 7 Set up the stack chunk depicted in Figure 3.5

Line 11 Store the address of the stack underflow procedure in the EDX register. On

return from this procedure, the caller will write the contents of EDX register

into the return address location as depicted in 'PROC A' of Figure 3.5

Line 13 Store the address of the new stack chunk in ESP

Stack Chunk Allocation

This stack allocation procedure allocates the stack depicted in Figure 3.5.

Listing 3.25: MMU Overflow Detection Stack Chunk Allocation

1 void * STAMEXJ3TACKALLOC(int prevResume

52

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

2 , int prevESP) {

3 void * stack;

4

5 if (posix_memalign (&stack, STAMEX-.PAGEJ3IZE

6 STAMEXJ3TACKJ3IZE

7 + STAMEX-.PAGEJ3IZE

8) != 0) {

9 fprintf(stderr, "Failed~to~allocate~stack\n");

10 }
11

12 if (mprotect (stack, STAMEX-.PAGEJ3IZE

13 , PROT-.NONE) != 0) {

14 perror ("Failed ~to~set~up~guard~page~for~stack\n");

15 }
16

17 *((int *)(stack + STAMEXJ3TACKJ3IZE + STAMEX-.PAGEJ3IZE

18 - sizeof (int))) = prevESP;

19 *((int *)(stack + STAMEXJ3TACKJ3IZE + STAMEX-.PAGEJ3IZE

20 - sizeof(int)*2)) = prevResume;

21

22 return stack + STAMEXJ3TACKJ3IZE + STAMEX-.PAGEJ3IZE

23 - s i z e 0 f (int) * 2 ;

24 }

Annotations

Line 5 Allocate a memory aligned stack chunk with a guard page

Line 12 Disallow any memory access to the guard page of the stack, ensuring that

any attempt at memory access will cause a SIGSEGV

Line 17 Store 'PREVIOUS STACK CHUNK' depicted in Figure 3.5

Line 19 Store the return address for the caller (depicted as 'PROC A RETURN

ADDR' in Figure 3.5)

53

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Line 22 Return the address of the top of the stack, right after the book keeping

information 'PREVIOUS STACK CHUNK' and 'PROC A RETURN ADDR'

depicted in Figure 3.5

Stack Underflow

The stack underflow procedure is responsible for restoring the previous stack chunk

and freeing the existing stack chunk shown in Figure 3.5. This procedure is not called,

but rather jumped to when the first procedure in a stack chunk returns.

Listing 3.26: MMU Overflow Detection Stack Underflow

MOV EAX, EBP

PUSH EAX

CALL STAMEXBTACKFREE

MOV EBX, ESP

MOV ESP, [EBX + 8]

JMP [EBX + 4]

CALL STAMEXDETBIGNAL...8TACK

MOV EDX, ESP

MOV ESP, EAX

MOVEAX, EDX

[EAX - 4]

[EAX - 8]

ADD EAX, 8

PUSH dword

PUSH dword

1 MOV EBP, EAX

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

Annotations

Line 1 Store the return value of the procedure at the top of the stack chunk in the

non-volatile register EBP

54

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Lines 3-6 Use the signal stack as the stack space when cleaning up the

existing stack chunk. Store the stack chunk's pointer in EAX. The

STAMEX_GET_SIGNAL_STACK procedure is detailed in Listing 3.28

Line 8 Store the top of the stack chunk in the EAX register, moving past the book

keeping information 'PREVIOUS STACK CHUNK' and 'PROC A RETURN

ADDR' depicted in Figure 3.5

Line 9 Store 'PREVIOUS STACK CHUNK' depicted in Figure 3.5 to the stack

Line 10 Store 'PROC A RETURN ADDR' depicted in Figure 3.5 to the stack

Lines 12-13 Free the stack chunk. The STAMEX_STACK_FREE procedure is de­

tailed in Listing 3.27

Line 15 Restore the return value of the returning procedure

Lines 17-18 Set ESP to the previous stack chunk, and store the temporary working

stack in EBX

Line 19 Continue execution with the caller of the procedure that triggered this stack

underflow

Listing 3.27: MMU Overflow Detection Stack Chunk Free

!= 0) {

guard page \n");

if (mprotect (stack, STAMEX-PAGEBIZE

, PROT.READ I PROT_WRITE)

fprin tf (stderr, "Failed to disable

free(stack);

}

1 void STAMEX.STACK-FREE(void * stack) {

2 stack = stack - STAMEXBTACKBIZE - STAMEX-PAGEBIZE;

3

4

5

6

7

8

9

10 }

55

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Annotations

Line 2 Store the start of the stack's memory address in the stack variable

Line 4 Remove the memory protection from the guard page

Line 8 Free the stack chunk

Listing 3.28: MMU Overflow Detection Get Signal Stack

1 void * STAMEX-GETBIGNALBTACK() {
2 void * ret;

3 stack_t s',
4

5 if (s i g alt st ack (NULL, &s) < 0) {
6 perror ("sigaltstack 0") ;

7 }
8

9 ret = s. ss-sp ;

10 ret + s.ss_size;

11

12 return ret;

13 }

Annotations

Line 5 Retrieve the start of the signal stack's memory

Lines 9-10 Store the top of the signal stack in the ret variable

Line 12 Return the top of the signal stack

3.5 Experiments

Three C-- programs were used to compare the stack mechanisms detailed in Sec­

tion 3.4. The full listings for these C-- programs are in Appendix A. All of these C-­

programs can be compiled with gcc using the command line arguments "-DNULL=O

-Dstacksizeof(x)=O" .

All experiments were run on the following machine:

56

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

CPU Intel Core i7 940. Contains 4 cores, with each core containing Hyper-Threading

Technology.

Memory 3GB of DDR 3 memory

Operating System 32-bit Gentoo Linux using gcc version 4.3.4

Each experiment has a single-threaded and multi-threaded version. Each multi­

threaded version has two variations: The "cores" variation tests one to eight threads

to test scalability over four individual cores, as well as Intel's@ Hyper-Threading

Technology ("Hyper-Threading Technology delivers two logical processors that can

execute different tasks simultaneously using shared hardware resources" [16]). A

"quantity" variation tests scalability across a number of threads which greatly exceeds

available cores in the system. For the Linked Stack Chunk experiments (detailed in

Sections 3.4.3 and 3.4.4), the stack chunk size was 8 pages or 32 kilobytes, excluding

the space for the guard page if applicable.

3.5.1 Summation

This program sums the numbers from 1 to n recursively, as shown in Listing 3.29.

Listing 3.29: Summation Snippet

1 int summation (int n) {
2 int ret;

3

4 if (n = 0) {
5 return O·,
6 }
7

8 ret = n + summation (n- 1) ;

9

10 return ret;

11 }

This experiment aims to magnify the procedure calling overhead of the various

stack implementations by calling a heavily recursive procedure that contains a mini­

mum of computation. In the multi-threaded version of this experiment, each thread

sums the numbers from 1 to (n div numbeLoLthreads). The "cores" variation was

57

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

run with 1, 2, 3, 4, 5, 6, 7 and 8 threads, and the "quantity" variation was run with

8, 32, 64, 128, 256, 512 and 1024 threads.

3.5.2 Unbalanced Binary Tree

This experiment is an implementation of a simple binary tree. The tree itself is a

balanced binary tree of integers that is 20 levels deep, and an unbalanced branch of 1

million integers as depicted in Figure 3.8. 70% of the time the program will search for

a random integer contained within the 20 level deep balanced portion of the binary

tree. 30% of the time the program will search for the maximum value in the binary

tree, triggering a spike in stack usage.

Figure 3.8: Unbalanced Binary Tree

This experiment aims to test performance of the various stack mechanisms in an

environment that traditional stack mechanisms have difficulty performing under: a

large number of highly variable sized stacks. The multi-threaded version of this ex­

periment keeps the work per thread constant (100 searches) as the number of threads

increase. The "cores" variation was run with 1, 2, 3, 4, 5, 6, 7 and 8 threads, and the

"quantity" variation was run with 8, 16, 32 and 64 threads.

3.5.3 "Real World"

The goal of this thesis is to discover a stack mechanism that works as well as the

existing stack mechanism for existing programs, but also allows for usage patterns

58

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

that are difficult for the traditional stack mechanism. As the C-- compiler is prim­

itive, it was difficult to find existing C code that would compile without significant

modification. Instead, a simple set of functions with the call graph depicted in Figure

3.9 was written.

a .. b » c »d

j j
b e

Figure 3.9: Real World

Every procedure performed work in the form of a simple for loop that incremented

an integer, as shown in Listing 3.30. In an attempt to mirror common program

behaviour, non-recursive calls did more work (10,000,000 units) than recursive calls

(10,000 units). The amount of recursion was limited to a relatively shallow 100

recursive calls. The single-threaded version of this experiment altered the overall

number of times the procedure a was called, while the multi-threaded version of this

experiment kept the overall iterations at 10, but increased the number of threads that

were run keeping the work per thread constant. The "cores" variation was run with

1, 2, 3, 4, 5, 6, 7 and 8 threads, and the "quantity" variation was run with 8, 32, 64,

128, 256 and 512 threads.

1 for

2

3 }

Listing 3.30: Real World Snippet

(i = 0; i < units; i = i + 1) {

x = x + 1;

59

MSc Thesis - J. Moore-Oliva

Chapter 4

Results

McMaster - Computing and Software

All figures in this section use a legend with shortened versions of the stack mech­

anism names given in Section 3.4. The shortened versions follow:

Heap Per Procedure Heap Allocation, Section 3.4.2.

Look-Ahead Linked Stack Chunks with Look-Ahead Overflow Detection, Sec­

tion 3.4.3.

MMU Linked Stack Chunks with MMU Overflow Detection, Section 3.4.4.

Traditional Traditional Fixed-Size Stack, Section 3.4.1.

Per Procedure Heap Allocation (Section 3.4.2) was not compatible with the

pthreads library, and was therefore not included in any of the multi-threaded tests.

All data points in the following figures are averages over 30 runs of the experiment.

The confidence limits for a 95% confidence interval were so small that they were nearly

indistinguishable when added to the following figures. Appendix B contains the raw

data for the tests along with confidence values.

4.1 Summation

4.1.1 Single-Threaded

As can be seen in Figure 4.1, the overhead from a dynamic memory allocation call

(malloc) for every procedure with the Heap mechanism is very significant. Viewing

the same results on a smaller scale omitting the Heap mechanism in Figure 4.2 allows

60

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

for better analysis of the remaining methods. Comparing Traditional to gcc and

gcc -02 shows that C-- 's code generation in terms of performance for this simple

procedure is somewhere between non-optimized gcc and optimized gcc. Using the

Traditional mechanism as the performance baseline (the traditional fixed-size stack

implemented in C--), Look-Ahead does not appear to add any significant overhead.

The MMU mechanism outperforms the Traditional mechanism. The only plausible

explanation so far theorized for this is that the use of JMP instruction for procedure

calls is cheaper than the use of the CALL instl'uction for this usage pattern.

The stack mechanism implemented with gcc only experimented summing up to 50

million. On the larger sums, gcc ran out of stack space even with the stack size set to

unlimited via bash's builtin shell command ulimit. All the stack mechanisms imple­

mented in C-- and gcc -02 were able to optimize stack usage such that summations

of up to 100 million were possible.

4.1.2 Multi-Threaded "Cores"

Performance scaled mostly linearly up to four cores in the test machine for the

Traditional and Look-Ahead mechanisms, with the overhead from the Look-Ahead

mechanisms visible in Figure 4.3. While scalability for these two mechanisms was

not perfectly linear, it did follow the general trend shown by gcc -02. As noted in

Section 4.1.1 gcc stack space utilization was not as efficient as C-- or gcc -02, and

was omitted from this test rather than run the test on a smaller scale.

The MMU mechanism, while starting out with better performance than the Tra­

ditional or Look-Ahead mechanisms demonstrated the worst scalability, and even­

tually the worst performance, as the number of threads exceeded the number of

available cores. It appears this is due to the demultiplexing mechanism implemented

in pthreads - a signal is only delivered to a process, and the search for the process's

thread id is a linear search as can be seen in the source code for the pthreads library in

Listing 4.1. However, further research would be required to gain a conclusive answer.

Listing 4.1: pthreadJ1nd-self

pthread_descr __ pthread_find_self (void)

{
char * sp = CURRENTBTACKFRAJ\IlE;

pthread_handle h;

61

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

/* __ pthread_handles [OJ 1,S the initial thread)

__ pthread_handles [1} 1,S the manager threads

handled specially in thread_self ()) so start

at 2 */
h = __ pthread _handles + 2;

ifdef -STACK_GROWS_UP

while (! (sp >= (char *) h->ILdescr

&& sp < h->h_descr ->p_guardaddr)) h++;

else

while (! (sp <= (char *) h->ILdescr

&& sp >= h->ILbottom)) h++;

endif
return h->h_descr;

}

4.1.3 Multi-Threaded "Quantity"

Trends observed in Section 4.1.2 were magnified in this experiment as can be

seen in Figure 4.4. The Look-Ahead mechanism demonstrated worse performance

compared to the Traditional mechanism, and the MMU mechanism continued to

show the worst scalability of all the tested methods. All methods showed initial

degradation in scalability that appeared to level off around 500 threads.

62

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

a

\ \I
\ II
\q
1 \.

\\I a
\ \\ N

\\\
IiI

\\\,

a
a
a.,....

I
a
a

\

.,....

\
a
co

a
co

\
(j)
c

.Q

<;> I,
E,,
:J,

\
Cf)

\ a

\ '=:t

\

a
a
a
N

a
aa
(V)

a
a
a
'=:t

a
a
a
L{)

a
a
a
co

a
a
a
t--

a
a
a
co

a
a
a
Cl)

(sw) aW!l

Figure 4.1: Summation Single-Threaded All

63

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

0
0

\
......

\

I
\

1
0,,

\
co

\

\ 0
<0

Ul

\ c
.Q

~ \ r I
E
:J
en

\

0
'<t

+ tt
:::J"Orntl N

2: m6 OJq
2:~:e tl
~aJ OJo
01-

...J

0 0 0 0 0 0 0
0 0 0 0 0 0 0
'<t N 0 co <0 '<t N......

(sw) eW!l

Figure 4.2: Summation Single-Threaded No Heap

64

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

o
o
CD.....

en
""0
rn
~
..c
I-

C\l

(sw) aWl!

Figure 4.3: Summation Multi-Threaded Cores

65

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

0

t I 0
0

I ..-

I
I

:::J"O(ijN I
I::2: lil c:O IQ) 0 I I::2:..c::;::O I« 0- 0 I~ -g OJ

o IOI- I
....J I

I

I 0
I 0
I CO
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

I
0I

I 0I COI
I
I
I
I (Jj
I "0I lil

~ ~
..c:

/ l-

I
/

/ 0
0

/ '<t

/

/
/

I
I

/.,.
I
I

0I
I 0
I NI
I
I

t
~

0 0 0 00 0 0
f'... N

(SW) aW!l

Figure 4.4: Summation Multi-Threaded Quantity

66

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

4.2 Unbalanced Binary Tree

4.2.1 Single-Threaded

As can be seen in Figure 4.5, the overhead from a malloc call for every procedure

with the Heap mechanism continues to be very significant. Viewing the same results

on a smaller scale omitting the Heap mechanism in Figure 4.6 allows for better analysis

of the remaining methods. The trends observed in Section 4.1.1 continue to hold,

which is not surprising given that this experiment is very similar (a heavily recursive

procedure dominates the runtime for this test).

4.2.2 Multi-Threaded "Cores"

The Look-Ahead mechanism scaled identically to the Traditional mechanism, with

overhead clearly visible in Figure 4.7. The MMU mechanism continued to show the

poorest scaling (as discussed in Section 4.1.2), with the unexplained valley for 6 and

7 threads.

4.2.3 Multi-Threaded "Quantity"

None of the Traditional stack mechanisms were tested in this experiment, as the

high concurrency combined with the tendency for threads to spike in their stack

usage meant that a fixed size stack mechanism would not be able to share memory

efficiently enough to run this experiment. As such, only the MMU and Look-Ahead

mechanisms are visible in Figure 4.8. In this test, the MMU mechanism continued

to show the poorest scaling (as discussed in Section 4.1.2), while the Look-Ahead

mechanism continued to scale in a linear fashion.

67

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

o
o
o
'<t...-

o
o
o
N...-

o
o
o
o...-

o
o
o
00

't'.
\ i \
\ \ \
\ \ \'\ . \\ \

\ \
\ \ \
\\ \ \• I

i \
\ \ \

\ \ \
'\ \ \\ I

\\ \ \.\ \
\ \
\ \

\ \ \

\ \\
\ \ \

\ \
\ l•• I

\ \ \

\. \\ \ \
. i i

\ \ 1\1\.\i~

'\ \ \\
\\ \\
. i "
\ \ \\
\\ \\

\ II

\\
I "
\. \\
i. H

\~
\'- \\

\\ \\
r- \\
rT~' ;
~~i

\.
\
\.'-,
\.
\

o
o
o...-

o
o
00

oo
CD

o
o
'<t

o
o
N

o

(J)
Q)

..c
~
ro
Q)

Cf)

(sw) aW!l

Figure 4.5: Unbalanced Binary Tree Single-Threaded All

68

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Ul
Q)
..ce
III
Q)

Cf)

oo
00

o
o
<D

o
o
N

o
o
'<:t

o
o
o......

o
o
o......

o
o
o
N

o
o
o
C")

\
\ \
\ \

\ \
\\\\ \\

\

\ \
\ \ \

\ \ \
\\ \ \
\ \ \

\ \

\\ \ \
\ \

\ \ \
\ \ \

\ \
,11\ ~'d,
\ \ \\

\ \ \ \

\\\\ \\
\, \ \\

\ \ \ \
\\ \ \
\\ ' \
\\ \ \
'\ \ \

'.\ \ "
\ \\

"\ \ \'. \ \ I

\ ,',\\ \\, \\
\\ \\
\\ \
Il~+
\\ \\ \

\~
~;"~o
oo

o
o
'<:t

o
o
o
l!)

<1>1: i
! !

o
o
o
<D

(sw) eW!l

Figure 4.6: Unbalanced Binary Tree Single-Threaded No Heap

69

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

I
o
o
N

r--

I
co

\

\
LO

(/J

j
""0
(\J

e!
..c
I-

'<t

\
\
\
\,

\
~~~

\
!
\

\

\

\,,
!

\
~

\

\

o
o
co

o
o
o

\

o
o
N......

\
<\>

\
\
\

\
\ ;

\ ';

~.
\

'\
,\, '\

, \
. \

"\
\
\

\
~ ~

\
\ \
<\> -<I

. !

\
\

\
\ .
1 i
\ ~
/~ .j;

o 0
o 0
co '<t...... ......

(sw) aW!l

Figure 4.7: Unbalanced Binary Tree Multi-Threaded Cores

70



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

o
<0

o
l!"l

o
N

o
o
o
'<t
r-

o
o
o
N
r-

o
o
o
o

o
r-

o

(sw) aW!l

Figure 4.8: Unbalanced Binary Tree Multi-Threaded Quantity

71



MSc Thesis - J. Moore-Oliva

4.3 "Real World"

4.3.1 Single-Threaded

McMaster - Computing and Software

Due to the simplistic nature of the "work" in this experiment (a simple for loop

increments an integer, as discussed in Section 3.5.3), gcc -02 could not be tested as

it folded the loop into a constant amount of work. As can be seen in Figure 4.9,

the non-optimized gcc performed worse than all the C-- stack mechanisms. Omitting

non-optimized gcc in Figure 4.10, all mechanisms perform equally well, even including

the Heap mechanism which performed poorly in the above experiments. This appears

to indicate that in existing "real world" usage, the overhead from all of these stack

mechanisms is insignificant.

4.3.2 Multi-Threaded "Cores"

Figures 4.11 and 4.12 show linear scaling across the 4 cores in the test system.

Non-optimized gcc continues to perform worse than all the C-- mechanisms, but all

implemented C-- stack mechanisms continue to perform equally well.

4.3.3 Multi-Threaded "Quantity"

Figures 4.13 and 4.14 show linear scaling, with non-optimized gcc performing

worse than all the C-- mechanisms, but all implemented C-- stack mechanisms con­

tinue to perform equally well.

72



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

o
o
o.,....

o
- 0

CD

o
- 0

00

o
o
o
o
N

\

\
\

\
\
iL~

o
o
o
o

"""

I

o
o
o
o
CD

I

o
o
o
o
00

oo
o
o
o.,....

I-

'\'

\
\
\
~

\
~

\

\
x., ~i~ - S!
'\ Il#il"

\\.,\\ ~\
\

~ ~I!!S - ~
\\ \

\ \
\ \
~, !\k~"\ k!1~

\ \

\ \
\\

L- ...l.' L- ...l-I L-I ...l-,----iliJ~;~O
;l'di
oo

o
o
o
N.,....

(sw) aW!l

Figure 4,9: "Real World" Single-Threaded All

73



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

I

o 0
o 0
o 0
l() 0
(V) (V)

o
o
o......

o- g

0- 0
co

en
c
0

:;::;
rn
L..

~

0
- 0

"<t

o
- ~

\
\

I I I I 8eo
"'Oi0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
l() 0 l() 0 l()
N N ...... ......

(sw) eW!l

Figure 4.10: "Real World" Single-Threaded C--

74



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

N

1
i

r:J"
~t~o 0 0

000
<0 '<t N

~

\
~

!
<i>

i,
I

I
I

<l> tI
:::J"Olii U

2 l1lC U
Q) 0 OJ i2..c .- I«~

I,"0
~ I1lo ..... Iof- I
-l

1
v

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 co <0 '<t N 0 co
N .,... .,... .,... .,... .,...

(sw) eW!l

Figure 4.11: "Real World" Multi-Threaded Cores

75



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

co

N

o
l{)

"
o
o

"
o
l{)
(0

oo
(0

o
l{)
l{)

o
o
C')

(sw) aW!l

Figure 4.12: "Real World" Multi-Threaded Cores C--

76



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

i3)iJ

\
\

\
\

\
r,')n

E~
\
\

\
\

o
o
LO

o
o
"'"

o
o
C'?

o
o
N

o
o
o
o
N.,....

o
o
o
o
o.,....

o
o
o
o
co

o
o
o
o
co

o
o
o
o
"'"

o
o
o
o
N

\
\

o

oo.,....

(sw) aW!l

Figure 4.13: "Real World" Multi-Threaded Quantity

77



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

o
- ~

o- g

o
- ~

o
- f6

IIII

I-

f-

'it!{t I

-'\
\1>.

'\,\,
-\\

\
\

\\
~J

\
\\

\
\
\

\
\

\
\

o
o.,....

o
o
o
LO

I

o
o
o
o

€l~\

\
\

\\
\

~tl]
'\

'~%J

I i'l
o
o
o
LO.,....

o
o
o
o
N

o
o
o
LO
N

I

o
o
o
o
C'?

I

o
o
o
LO
C'?

I

:::>"O(ii
~rocw 0
~.r:..­
«~,"0
..:.::roo ....
01­

...J

o 0o 0o 0
LO 0
"<t "<t

(sw) eW!l

Figure 4.14: "Real World" Multi-Threaded Quantity C--

78



MSc Thesis - J. Moore-Oliva

Chapter 5

Conclusions

McMaster - Computing and Software

In single-threaded applications, the MMU mechanism appears to show the best

performance out of all the non-traditional stack mechanisms. However, the MMU

mechanism does not scale well for reasons discussed in Section 4.1.2, and the tradi­

tional stack mechanism is already adequate for existing single-threaded applications.

During heavily recursive usage patterns the Look-Ahead mechanism shows the best

scalability, but demonstrates a fixed amount of overhead due to the fact that the

call graph optimizations are of no use in a recursive call pattern. In existing "real

world" usage patterns, the overhead from all the stack mechanisms appears to be

insignificant. However, such "real world" usage patterns may very well exist due to

the fact that heavy recursion in multi-threaded programs is problematic for the rea­

sons discussed in Section 2.1.2. All else being equal in "real world" usage patterns,

the Look-Ahead mechanism is suggested as the best replacement for the Traditional

stack mechanism in multi-threaded applications for its scalability even during heavily

recursive usage patterns that a dynamic stack mechanism allows.

79



MSc Thesis - J. Moore-Oliva

Chapter 6

Future Work

McMaster - Computing and Software

As discussed in Section 4.1.2, the MMU mechanism displayed poor scalability for

what was surmised to be the linear de-multiplexing of signals implemented in the

pthreads library. The MMU mechanism has the potential to outperform the Look­

Ahead mechanism assuming that using hardware to detect overflow should be faster

than explicit conditional checks, especially during heavily recursive usage patterns

where call graph optimizations cannot reduce the number of conditional checks. Fur­

ther investigation with focus on a new threading library, and possibly some operating

system kernel routines would be required to determine the source of the observed

scalability issues.

It should also be noted that the C-- compiler has very little in the way of op­

timizations, and does not implement the full C language. Implementing the most

promising stack mechanisms into an existing professional compiler framework such as

LLVM would allow for better comparisons of more complex real world programs, and

assuming that the experiments continued to show similar runtime performance for

the dynamic stack mechanisms, these dynamic stack mechanisms could be utilized in

real world applications.

80



MSc Thesis - J. Moore-Oliva

Bibliography

McMaster - Computing and Software

[1] "GNU Compiler Collection." http: / / gcc .gnu. org.

[2] "The LLVM Compiler Infrastructure." http://llvm. org.

[3] "The Netwide Assembler." http://www.nasm.us.

[4] "pthread_attr-setstacksize man page, The Linux man-pages project," Novem-

ber 2008. http://www.kernel.org/doc/man-pages/online/pages/man3/

pthread_attr_setstacksize.3.html.

[5] "pthreads man page, The LimlX man-pages project," November 2008.

http://www.kernel.org/doc/man-pages/online/pages/man7/pthreads.7.html.

[6] "Frequently Asked Questions: Intel@ Multi-Core Processor Architec-

ture," October 2010. http://software . intel. com/en-us/articles/

frequently-asked-questions-intel-multi-core-processor-architecture/.

[7] "GCC's Stdcall Calling Convention," October 2010. http://gcc .gnu. org

/onlinedocs/gnat_ugn_unw/Stdcall-Calling-Convention.htmI.

[8] "GNU C Library," November 2010. http://www.gnu.org/software/libc/.

[9] "malloc man page, The LimlX man-pages project," October 2010.

http://www.kernel.org/doc/man-pages/online/pages/man3/malloc.3.html.

[10] AMD@, "Multi-Core Processors ~ The Next Evolution in Comput-

ing," November 2010. http://www.amd.com/us/Documents/33211Aj1ulti

-Core_WP_en. pdf.

[11] X.-L. Cui, "An Experimental Implementation of Action-Based Concurrency,"

Master's thesis, McMaster University, Hamilton, January 2009.

81



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

[12] A. R. Disteli and P. Reali, "Combining Oberon with Active Objects," in Pro­

ceedings of the Joint Modular Languages Conference on Modular Programming

Languages, pp. 221-235, Springer-Verlag New York, 1997.

[13] A. Dunkels and O. Schmidt, "Protothreads : Lightweight Stackless Threads in

C," Technical Report, Swedish Institute of Computer Science, March 2005.

[14] G. Hogen and R. Loogen, "A New Stack Technique for the Management of

Runtime Structures in Distributed Implementations." Informatik-Berichte 93-3,

RWTH Aachen, 1993.

[15] IEEE, "IEEE Standard 1003.1c-1995 thread extensions." IEEE 1995, ISBN 1­

55937-375-X.

[16] Intel@, "Intel Technology Journal, Volume 06, Issue 01, Hyper Threading Tech­

nology," Technical Report, February 2002.

[17] Intel@, "Intel@ 64 and IA-32 Architectures Software Developer's Manual," June

2009.

[18] S. Lalis and B. A. Sanders, "Adding Concurrency to the Oberon System," in Pro­

ceedings of the International Conference on Programming Languages and System

Architectures, pp. 328-344, Springer-Verlag New York, 1994.

[19] Microsoft@, "Windows Development," November 2010.

rnicrosoft.com/en-us/library/rns686774(v=VS.85) .aspx.

http://rnsdn.

[20] B. Middha, M. Simpson, and R. Barua, "MTSS: Multi Task Stack Sharing

for Embedded Systems," in Proceedings of the 2005 International Conference

on Compilers, Architectures and Synthesis for Embedded Systems, pp. 191-201,

ACM New York, 2005.

[21] M. Pizka, "Thread Segment Stacks," in Proceedings of International Conference

on Parallel and Distributed Processing Techniques and Applications, June 1999.

[22] Sun Microsystems@, "Multithreaded Programming Guide, Solaris," Technical

Report, September 2008.

[23] H. Sutter and J. Larus, "Software and the Concurrency Revolution," Queue,

vol. 3, pp. 54-62, September 2005.

82



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

[24] C. Tismer, "Continuations and Stackless Python Or "How to change a Paradigm

of an existing Program" ," in Proceedings of the 8th International Python Con­

ference, January 2000.

[25] R. von Behren, J. Condit, and E. Brewer, "Why Events Are A Bad Idea (for

high-concurrency servers)," in Proceedings of the 9th Conference on Hot Topics

in Operating Systems - Volume 9, pp. 19-24, USENIX Association, 2003.

[26] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer, "Capriccio:

Scalable Threads for Internet Services," in Proceedings of the Nineteenth ACM

Symposium on Operating Systems Principles, pp. 268-281, ACM New York, 2003.

[27] M. F. Wilding and D. A. Wood, "Heap and Stack Layout for Multithreaded

Processes in a Processing System." Patent, November 2008. US 7447829.

[28] K.-F. Wong and B. Dageville, "Supporting Thousands of Threads Using a Hybrid

Stack Sharing Scheme," in Proceedings of the 1994 ACM Symposium on Applied

Computing, pp. 493-498, ACM New York, 1994.

83



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Appendix A

Experiment Listings

A.I Simple Threads Library

Each thread implementation from Section 3.4 has a different thread library. Each

thread library is a simple wrapper around pthreads with a different thread entry

routine for each thread implementation. These thread libraries are compiled with

gcc in order to interface with all the system header files, using an interface that

is compatible with C--. Note that since Per Procedure Heap Allocation was not

compatible with pthreads, there is no thread library for that stack implementation.

A.I.! Traditional Fixed-Size Stack

void * arg;

int fp;

struct STAJ\!lEX-CAILBACK {

int sthread_create ( void * arg, int fp

extern void * STAIvIEX-CALLBACILTRAMPOLINE( void * arg );

Listing A. 1: 'Ifaditional Fixed-Size Stack Thread Library

1 #include <pthread. h>

2 #include <stdlib .h>

3

4

5

6

7

8

9 };

10
11

84



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

if ( fpStackSize > 0 ) {

if ( pthread_attr_setstacksize(

&attr, fpStackSize ) != 0 ) {

perror ( "pthread_attr _setstacksize \n" );

exit (1) ; increased

) );

) );

) {

) {

&tid

&attr

STAJ:v:I::E)CCALLBACKTRAMPOLlNE

, sc );

, int fpStackSize

}

pthread_attLdestroy ( &attr );

return tid;

if ( pthread_attLinit ( &attr ) != 0

perror( "pthread_attr_init\n" );

exit(l);

sc->arg = arg;

sc->fp = fp;

pthread_create (

}

pthread_t tid;

pthread_attLt attr;

struct STAJ:v:I::E)CCALLBACK * sc =
malloc ( sizeof( struct STAJ:v:I::E)CCALLBACK

}

void * sthread_mutex_create () {

ptluead_mutex_t * m

= malloc ( sizeof ( pthread_mu tex_t

12

13

14
15

16
17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33
34

35

36

37

38

39

40

41 }
42

43

44
45

46

85



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

pthread_mutex_init ( m, NULL );

return m;

int sthread_j oin ( int id l void ** retval ) {

return pthread_join ( id, retval );

void sthread_mutex_lllliock ( void * m ) {

pthread_mutex_unlock ( (pthread_mutex_t *)m );

void sthread_mutex_lock ( void * m ) {

pthread_mutex_lock ( (pthread_mutex_t *)m );

void sthread_mu tex_destroy ( void

pthread_m u tex_destroy ( m );

free( m );

void sthread_exit ( void * val) {

pthread_exit( val );

47
48

49

50 }

51
52

53

54

55 }

56

57

58

59 }

60
61
62

63 }
64

65

66

67 }

68

69
70

71 }

A.1.2 Linked Stack Chunks with Look-Ahead Overflow De­

tection

Listing A.2: Linked Stack Chunks with Look-Ahead Overflow Detection Thread Li­

brary

1 #include <pthread. h>

2 #include <signal. h>

3 #include <stdlib .h>

4 #include <stdio. h>

86



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

extern void * STAMEXDALLBACKTRAMPOLINE( void * arg );

extern int STAMEX-PAGEl3IZE;

st ruct STAMEXDALIBACK {

) {

&tid

&attr

ST.Al\t1E)CCALLBACKTRAMPOLINE

if ( pthread_attLinit ( &attr ) != 0

perror( "pthread_attr_init\n" );

exit(I);

if ( pthread_attr _setstacksize (

&attr, STAMEX-PAGEl3IZE * 4 ) != 0 ) {

perror ( "pthread_attr _setstacksize \n" );

exit(I);

sc->arg = arg;

sc->fp = fp;

pthread_create (

}

}

pthread_t tid;

s t rue t ST.Al\t1E)CCALIBACK * s c =

maUoc ( sizeof ( struct ST.Al\t1E)CCALIBACK) );

pthread_attr_t attr;

int stacksize;

void * arg;

int fp;

int sthread_create ( void * arg, int fp

, int fpStackSize ) {

#include "sthread. h"

5

6

7

8

9

10
11

12
13

14 };
15

16

17
18
19
20

21
22
23
24

25

26

27

28
29

30

31

32

33
34

35

36

37

38

39

87



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

) );

* m ) {

, sc );

pthread_mutex_init ( m, NULL );

pthread_attr _destroy ( &attr );

return m;

return tid;

void sthread_mutex_unlock ( void * m ) {

pthread_mu tex_lllllock ( (pthread_mu tex_t *)m );

void sthread_mu tex_lock ( void * m ) {

pthread_mu tex_lock ( (pthread_mutex_t *)m );

int sthread_join ( int id, void ** retval ) {

return pthread_join ( id, retval );

void sthread_mu tex_destroy ( void

pthread_mutex_destroy ( m );

free( m );

void * sthread_mutex_create () {

pthread_mutex_t * m

= malloc ( sizeof( pthread_mutex_t

void sthread_exit ( void * val) {

pthread_exit( val );

40

41
42

43

44

45 }

46

47
48

49 }

50

51

52

53 }

54

55

56

57

58

59

60
61

62 }

63

64

65

66

67 }

68

69

70

71 }

72

73

74

88



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

75 }

A.1.3 Linked Stack Chunks with MMU Overflow Detection

void * arg );

) {

void * ST.AIvJ:E)CCAILBACICTRAMPOLINE(

int STAMEXYAGE...8IZE;

in t STAMEX...8TACK...sIZE;

if ( pthread_attr _init ( &attr ) != 0

perror( "pthread_attr_init\n" );

exit(l);

}

pthread_t tid;

s t rue t ST.AIvJ:E)CCALIBACK * s c =
malloc ( sizeof ( struct ST.AIvJ:E)CCAILBACK ) );

pthread_attLt attr;

int stacksize;

void * arg;

int fp;

int fpStackSize;

int sthread_create ( void * arg) int fp

) int fpStackSize ) {

Listing A.3: Linked Stack Chunks with MMU Overflow Detection Thread Library

1 #include <pthread. h>

2 #include <signal. h>

3 #include <stdlib .h>

4 #include <stdio. h>

5

6 #include "sthread. h"

7

8 extern

9 extern

10 extern

11

12 struct ST.AIvJ:E)CCAILBACK {

13

14

15

16 };
17

18

19
20

21

22

23

24

25
26

27

28

29

30

89



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

void * sthread_mutex_create () {

= fpStackSize;

&tid

&attr

STAMEXDALLBACICrRAMPOLINE

, sc );

pthread_attr_setstacksize(

&attr, STAMEX-.PAGE...8IZE

+ STAMEX...8TACK...8IZE ) != 0 ) {

penor ( "pthread_attr _setstacksize \n" );

exi t ( 1) ;

pthread_attLdestroy ( &attr );

if(

if ( pthread_attLsetguardsize (

&attr, STAMEX-.PAGE...8IZE ) != 0 ) {

penor ( "pthread_attr _setguardsize \n" );

exi t ( 1 ) ;

}

return tid;

sc->arg = arg;

sc->fp = fp;

sc->fpStackSize

pthread_create (

}

int sthread_j oin ( int id, void ** retval ) {

return pthread_join( id, retval );

void sthread_exit( void * val) {

pthread_exit ( val );

31
32

33
34

35

36

37

38

39

40

41
42

43

44

45

46

47
48

49

50

51
52

53

54

55 }

56

57

58

59 }

60
61

62

63 }

64

65

90



MSe Thesis - J. Moore-Oliva McMaster - Computing and Software

pthread_mutex_init ( m, NULL );

pthread_mutex_t * m

= malIoe ( sizeof( pthread_mutex_t ) );

return m;

void sthread_mutex_unloek ( void * m ) {

pthread_mutex_unloek ( (pthread_mutex_t *)m );

void sthread_mutex_Ioek ( void * m ) {

pthread_mutex_Ioek ( (pthread_mutex_t *)m );

void sthread_m u tex_destroy ( void

pthread_mutex_destroy ( m );

free( m );

66

67

68

69

70

71

72 }

73

74
75

76

77 }

78

79

80

81 }

82

83

84

85 }

A.l.4 GCC

In order to be able to use a single source file with gee and C--, a simple thread

library wrapper was created for gee.

Listing A.4: GCC Thread Library

<pthread . h>

<stdlib .h>

if ( pthread_attLinit ( &attr ) != 0 ) {

perror( "pthread_attLinit\n" );

sthread_ereate ( void * arg, int fp, int fpStaekSize ) {

pthread_t tid;

pthread_attLt attr;

int

1 #include

2 #include

3

4

5

6

7

8

9

91



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

) );

* m ) {

exit(l);

}

pthread_mutex_init ( m, NULL );

pthread_attr _destroy ( &attr );

if ( fpStackSize > 0 ) {

if ( pthread_attr_setstacksize(

&attr, fpStackSize ) != 0 ) {

perror ( "pthread_attr _setstacksize \n" );

exit (1);

pthread_create( &tid

&attr

, fp

, arg );

}

return m;

return tid;

}

void sthread_mu tex_destroy ( void

pthread_m u tex_destroy ( m );

free( m );

void * sthread_mutex_create () {

pthread_mutex_t * m

= maUoc ( sizeof( pthread_mutex_t

10

11

12

13

14
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 }
30

31

32

33

34

35

36

37

38 }

39

40

41
42

43 }

44

92



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

int sthread_j oin ( int id, void ** retval ) {

return pthread_join ( id, retval );

void sthread_m utex_unlock ( void * m ) {

pthread_mutex_unlock ( (pthread_mutex_t *)m );

void sthread_mu tex_Iock ( void * m ) {

pthread_mutex_Iock ( (pthread_mutex_t *)m );

45 void sthread_exit ( void * val) {

46 p t h rea d _ex it ( val );

47 }

48

49

50

51 }

52

53

54

55 }

56

57

58

59 }

A.2 Summation

The following listings are for the experiments detailed in Section 3.5.1.

A.2.1 Single Threaded

if(n=O){

in t summation ( in t n ) {

int ret;

}

extern

return 0;

Listing A.5: Single Threaded Summation

int atoi( char * nptr );

void fr ee ( void * ptr );

void * malloc( int size );

int printf ( char * fmt, ... );

extern

extern

1 extern

2

3

4

5

6

7

8

9

10

11

93



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

12

13 ret = n + summation ( n - 1 ) ;

14

15 return ret;

16 }
17

18 int main( int argc, char ** argv ) {
19 int arg;

20 int * tids ;

21 void * ret;

22

23 if ( argc <= 1 ) {
24 printf ( " Usage : ~<number> \n" ) ;

25 return l',
26 }
27

28 arg = atoi ( argv [1] ) ;

29

30 printf( "Data: ~o/dLo/crl\n"

31 , arg / 1000000, summation ( arg ) ) ;

32

33 return O·,
34 }

A.2.2 Multi-Threaded

Listing A.6: Multi-Threaded Summation

1 extern int atoi( char * nptr );

2 extern void free ( void * ptr );

3 extern void * malloc ( int size );

4 extern int printf( char * fmt, );

5 extern int sthread_create ( void * arg, int fp

6 , int fpStackSize );

7 extern int sthread_join ( int tid, void ** retval );

8

94



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

(int)arg );

void * arg ) {

return 0;

if ( argc != 3 && argc != 4 ) {

prin tf ( "Usage: ~<numthreads>~<summation>~"

"[stacksize]" );

return 1;

if(n=O){

ret = n + summation( n - 1 );

}

numthreads = atoi ( argv [1] );

arg = atoi( argv[2] );

}

main ( int argc, char ** argv ) {

int 1;

int arg;

int numthreads;

int stacksize;

int * tids;

void * ret;

return (void *) ret;

return ret;

int

void * thread_entry (

int ret;

ret = summation (

9 int summation ( int n ) {

10 int ret;

11

12

13

14

15
16

17
18

19 }
20

21

22

23

24

25

26 }
27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

95



44

45

46

47
48

49

50

51
52

53

54

55

56

57

58

59

60

61

62

63

64

65

66 }

A.3

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

if ( argc = 3 ) {

stacksize stacksizeof (thread_entry);

} else {

stacksize = atoi( argv[3] );

}
tids = malloc ( numthreads * sizeof (int) );

for ( i = 0; i < numthreads; i = i + 1 ) {

tids [i] = sthread_create (

(void *) arg, thread_en try

, stacksize );

}

for ( i = 0; i < numthreads; i = i + 1 ) {

sthread_j oin ( tids [i] , &ret );

}

printf( "Data:~o/<rl\n", numthreads );

free( tids );

return 0;

Unbalanced Binary Tree

1 extern

2 extern

3 extern

4 extern

The following listings are for the experiments detailed in Section 3.5.2.

A.3.1 Single Threaded

Listing A.7: Single Threaded Unbalanced Binary Tree

double atof( char * s );

int atoi ( char * s );

void free ( void * ptr );

void * malloc( int size );

96



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

) ;

left ;

right;

sizeof ( struct ubLnode ) );

ret = malloc ( sizeof( struct ubt ) );

if ( 1 <= r ) {

ret = malloc (

m= (1+r)/2;

ret->value = m;

ret->left = ubLcreate_node_balanced ( 1, m-1 );

ret ->righ t = u bt_create_no de_balanced ( m+1, r );

ret = NULL;

int value;

return ret;

}

s t r u ctubt * u b t _crea t e _b a 1an c e d ( int max: ) {

struct ubt * ret;

extern int printf( char * fmt,

extern int r and_r ( int * seed ) ;

struct ubt {
struct ubLnode * root;

};

struct ubt_node * ubLcreate_node_balanced (

in t 1, in t r ) {

struct ubt_node * ret;

int m;

struct ubt_node {

struct ubLnode *
struct ubLnode *

5

6

7

8

9

10

11

12

13

14

15
16 };
17

18

19

20

21
22

23

24

25

26

27

28

29

30
31

32

33

34 }

35

36

37

38

39

97



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

) {

return;

printf( "end~free\n" );

printf( "mid~free\n" );

ret = p->root;

free( p );

ubLnode_free ( n->left );

ubLnode_free ( n->right );

free( n );

ret ->root = u bLcreate_node_balanced ( 0, max );

}

return ret;

}

struct ubLnode * ubLnode_max ( struct ubt * p ) {

struct ubLnode * ret;

void ubLfree ( struct ubt * p

printf( "start~free\n" );

if ( p->root != NULL ) {
ubt_node_free ( p->root );

void ubLnode_free ( struct ubLnode * n ) {

if ( n = NULL ) {

40
41
42

43

44 }
45

46

47
48
49

50

51
52

53

54

55 }

56

57

58

59

60

61

62

63

64

65

66

67

68 }

69

70

71

72

73

74

98



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

** argv ) {main ( int argc, char

int balanced_size;

int unbalanced_size;

int searches;

return ret;

}

return ret;

if ( val < n->value ) {

ret = ubLnode_search ( n->left, val );

} else {

ret = ubLnode_search ( n->right, val );

if ( val = n->value ) {

ret = 1;

} else

if ( n = NULL ) {

ret = 0;

} else

while ( ret ->righ t != NULL ) {

ret = ret->right;

}

int

int ubLsearch ( struct ubt * p, int val ) {

return ubLnode_search ( p->root, val );

int ubLnode_search ( struct ubt_node * n, int val ) {

int ret;

75

76

77

78

79

80 }
81
82

83
84

85
86
87

88

89

90
91
92

93

94
95

96

97

98

99

100 }
101
102

103

104 }
105

106
107

108
109

99



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

max = max->righ t ;

t ubLcreate_balanced ( balanced_size );

}

2147483647;

128191227;

balanced_size = atoi( argv[l] );

unbalanced_size = atoi ( argv [2] );

percenLspike = atof( argv[3] );

searches atoi( argv[4] );

rand_max

randseed

for ( i = 0; i < unbalanced_size; i = i + 1 ) {

max->righ t = malloc ( sizeof ( struct ubt_node ) );

max->right->value = i + balanced_size + 1;

max->right->left = NULL;

max->right->righ t = NULL;

if ( argc != 5 ) {

pr in tf ( "Usage: ~<balanced~ size >~<unbalanced~ size >~"

"<percenLspike >~<searches>\n" );

return 1;

}

double r;

double rand_max;

int randseed;

int i;

double percenLspike;

struct ubt * t;

struct ubLnode * max;

110
111

112
113

114
115

116
117
118
119
120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135
136

137

138

139

140

141

142

143

144

100



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

ubLsearch( t, (int)r );

printf( "Data:~o/cd\n", searches );

} else {

r rand_r( &randseed );

r r / rand_max * bal anced _size;

if ( r < percenLspike ) {

ubLsearch ( t, balanced_size

+ unbalanced_size );

1 + 1 ) {

}

ubLfree( t );

Multi-Threaded

return 0;

}

for ( i = 0; i < searches; 1

r rand_r( &randseed );

r r / rand_max;

145

146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161
162

163
164
165 }

A.3.2

Listing A.8: Multi-Threaded Unbalanced Binary Tree

1 extern int atoi( char * s ) ;

2 extern double atof( char * s ) ;

3 extern void free ( void * ptr ) ;

4 extern void * malloc ( int Size ) ;

5 extern int printf( char * fmt, ) ;

6 extern int rand_r ( int * seed ) ;

7 extern int sthread_create ( void * arg, int fp

8 , int fpStackSize ) ;

9 extern int sthread_join( int tid, void ** retval ) ;

10

101



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

struct ubt_node * root;

struct ubt * ubLcreate_balanced ( int max ) {

sizeof( struct ubt_node ) );

left ;

righ t ;

ret->value = m;

ret->left = ubLcreate_node_balanced ( 1) In-I );

ret->right = ubLcreate_node_balanced ( m+l, r );

if ( 1 <= r ) {

ret = malloc (

m= (1+r)/2;

ret = NULL;

}

return ret;

int value;

struct ubLnode * ubLcreate_node_balanced (

int 1, int r ) {

struct ubt_node * ret;

int m;

struct ubLnode {

struct ubLnode *
struct ubt_node *

struct ubt {

struct ubt * t;

11 int balanced_size;

12 double percenLspike;

13 int unbalanced_size;

14
15
16
17
18

19 };
20

21

22

23

24

25 };
26

27

28

29

30

31
32

33
34

35

36

37

38

39

40

41
42

43 }

44
45

102



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

return;

ret = p->root;

free( p );

free( n );

ubLfree ( struct ubt * p ) {

if ( p->root != NULL ) {

ubt_node_free ( p->root );

ubLnode_free ( n->left );

u bLnode_free ( n->righ t );

ret = malloc ( sizeof ( struct ubt ) );

}

while ( ret->right != NULL ) {

ret = ret->right;

ret->root = ubLcreate_node_balanced ( 0, max );

struct ubt * ret;

return ret;

}

struct ubt_node * ubLnode_max ( struct ubt * p ) {

struct ubt_node * ret;

void

void ubLnode_free ( struct ubLnode * n ) {

if (n=NULL) {

46

47
48

49

50

51
52

53 }

54

55

56

57

58

59

60

61
62

63

64 }

65

66

67

68
69

70

71

72 }

73

74
75

76

77
78

79

80

103



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

thread_entry ( void * arg ) {

int i;

int randseed;

double r;
double rand_max;

int searches;

return ret;

if ( val < n->value ) {

ret = ubt_node_search ( n->left , val );

} else {

ret = ubt_node_search ( n->right, val );

if (n=NULL) {
ret = 0;

} else

if ( val = n->value ) {

ret = 1;

} else

return ret;

}

}

int

int ubLsearch ( struct ubt * p, int val ) {

return ubLnode_search ( p->root, val );

int ubLnode_search ( struct ubt_node * n, int val ) {

int ret;

81
82

83

84 }

85

86
87

88
89

90

91
92

93

94

95

96

97

98

99

100
101
102
103

104 }
105

106
107

108 }
109

110
111
112

113
114
115

104



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

}
}

ubLsearch( t, (int)r );

}

1 + 1 ) {

2147483647;

128191227;

(int) arg;

for ( 1 = 0; i < searches; i

r rand_r ( &randseed );

r r / rand_max;

} else {

r rand_r( &randseed );

r = r / rand_max * balanced_size;

if ( argc != 6 && argc != 7 ) {

p r in tf ( "Usage: ~<balanced~ size >~<unbalanced~size >"

"<percent _spike >~<searches>~<threads>"

"~[stacksize]\n" );

return 1;

if ( r < percenLspike ) {

ubLsearch ( t, balanced_size

+ unbalanced_size );

rand_max

randseed

searches

main ( int argc, char ** argv ) {

int searches;

int stacksize;

int threads;

int * tids;

int 1;

struct ubLnode * max;

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135 }

136

137 int

138

139

140

141

142

143

144

145

146

147

148

149

150

105



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

151

152 balanced_size = atoi ( argv [1] );

153 unbalanced_size = atoi ( argv [2] );

154 percent_spike = atof ( argv [3] );

155 searches = atoi( argv[4] );

156 threads atoi( argv[5] );

157

158 printf ( "balanced_size~o/cd\n" 1 balanced_size );

159 printf ( "unbalanced_size~o/cd\n" 1 unbalanced_size );

160 printf( "percent_spike~%lf\n"1 percenLspike );

161 printf ( "searches ~o/cd\n" 1 searches );

162 printf( "threads~o/cd\n", threads );

163

164

165 if ( argc = 6 ) {

166 printf ( "Using~stacksizeof\n" );

167 stacksize = stacksizeof (thread_entry);

168 } else {

169 printf( "Using~given~stack~size\n" );

170 s t a c k s i z e = at 0 i ( ar gv [6 ] );

171 }
172
173 printf( "stacksize~o/cd\n", stacksize );

174

175 tids = malloc ( threads * sizeof(int) );

176

177 t = u b t _ere ate _b a1an ce d ( b a 1an c e d _s i z e );

178

179 max = ubt_node_max ( t );

180

181 for ( i = 0; i < unbalanced_size; i = i + 1 ) {

182 max->righ t = malloc ( sizeof ( struct ubLnode ) );

183 max->right->value = i + balanced_size + 1;

184 max->right->left = NULL;

185 max->right->right = NULL;

106



186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207 }

A.4

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

max = max->right ;

}

for ( i = 0; i < threads; i = i + 1 ) {

tids[i] = sthread_create( (void *)searches

, thread_entry

, stacksize );

}

for ( i = 0; i < threads; i = i + 1 ) {

sthread_j oin ( tids [i], NULL );

}

ubLfree( t );

free( tids );

printf( "Data:~o/crl\n", threads);

return 0;

"Real World"

The following listings are for the experiments detailed in Section 3.5.3.

A.4.1 Single Threaded

overalLiterations;

recursive_count;

int

int

1 extern int

2 extern int

3

4

5

Listing A.9: Single Threaded "Real World"

p r in tf ( char * fmt, ... );

at 0 i ( char * s );

107



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

6 iut wo r k_p er _non_recursi ve_call ;

7 iut work_peLrecursive_call;

arg = c ( arg );

recursive_count );

) {

) {

work_per _non_recursive_call;

0; i < end; i = i + 1 ) {

arg + 1;

b ( arg );

arg

work_per_nolLrecursive_call ;

(i 0; i < end; i = i + 1 ) {

arg arg + 1;

return arg;

arg

end

for (

arg = f ( arg,

}

}

b( int arg

int 1;

int end;

return arg;

end

for

a( iut arg

iut 1;

iut end;

int c( int arg) {

int i;

8

9 iut

10

11

12

13

14

15

16

17
18

19

20

21

22

23 }
24

25 iut

26

27

28

29

30

31
32

33

34

35

36

37 }

38

39

40

108



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

) {

d ( arg );

work_per_nolLrecursive_call ;

(1 0; i < end; i = i + 1 ) {

arg arg + 1;

work_per_non_recursive_call ;

(i 0; i < end; i = i + 1 ) {

arg arg + 1;

= work_peLnon_recursive_call;

(i 0; i < end; i = i + 1 ) {

arg = arg + 1;

}

end

for

arg = e ( arg );

}

return arg;

arg

end

for

return arg;

d( int arg

int 1;

int end;

end

for

int end;

}

int e( int arg ) {

int 1;

int end;

41
42

43

44
45

46

47
48

49

50

51
52

53 }
54

55 int

56

57

58

59

60

61

62

63

64

65 }

66

67

68
69

70

71

72

73

74
75

109



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

) {

atoi ( argv [1] );

argc, char ** argv ) {

work_per _recursive_call ;

(1 0; i < end; i = i + 1

arg arg + 1;

return

overalLiterations

if ( argc != 5 ) {

printf ( "Usage: ~<overalLiterations>~"

"<recursi ve_coun t >~"

"<work_per _non_recursive_call >~"

"<work_peLrecursive_call >\n" );

1;

if ( count <= 0 ) {

return arg;

}

count = count - 1;

}

return f ( arg, count );

}

main ( int

int 1;

int end;

int arg;

end

for

return arg;

int f ( int arg, int count ) {

int i;

int end;

76

77 }
78

79

80
81
82

83
84

85
86
87

88

89
90
91
92
93
94

95 }
96
97 int

98
99

100
101
102

103
104
105
106

107
108

109
110

110



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

111

112
113
114
115
116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132 }

A.4.2

recursive_count = atoi ( argv [2] );

work_per_non_recursive_call = atoi ( argv [3] );

work_peLrecursive_call = atoi ( argv [4] );

printf( "overalLiterations: ~o/cd\n"

, overalLiterations );

printf ( "recursive_count: ~o/cd\n", recursive_count );

printf ( "work_per _non_recursive_call: ~o/cd\n"

, work_peLnon_recursive_call );

printf ( "work_per _recursive_call : ~o/cd\n"

, worlcpeLrecursive_call );

arg 0;

end overalLiterations;

for (1 0; i < end; 1 = + 1 ) {

arg a ( arg );

}

printf( "Data:~o/cd\n", overalLiterations );

return 0;

Multi-Threaded

Listing A.lO: Multi-Threaded "Real World"

1 extern int atoi ( char * s );

2 extern void free ( void * ptr );

3 extern void * malloc( int size );

4 extern int printf( char * fmt, );

5 extern int sthread_create ( void * arg, int fp

6 , int fpStackSize );

7 extern int sthread_j oin ( int tid, void ** retval );

8

9 int overalLiterations;

111



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

arg = c ( arg );

recursive_count;

work_per _non_recursive_call;

work_per_recursive_call ;

arg = f ( arg, recursive_count );

) {

) {

b( arg );

= work_per_non_recursive_call;

(i 0; i < end; i = i + 1 ) {

arg = arg + 1;

= work_per_non_recursive_call;

(i 0; i < end; i = i + 1 ) {

arg = arg + 1;

end

for

return arg;

arg

returu arg;

end

for

}

b( iut arg

int 1;

int end;

a( iut arg

iut 1;

iut end;

}

10 iut

11 iut
12 iut

13

14 iut
15

16

17

18

19

20

21

22

23

24

25

26

27

28 }

29

30 iut

31

32

33

34

35

36

37

38

39

40

41

42 }

43

44 iut c( iut arg ) {

112



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

45

46

47
48

49

50

51
52

53

54

55

56

57

58 }
59
60 int

61

62

63

64

65

66

67

68

69

70 }

71

72 int

73

74
75

76

77
78

79

int i;

int end;

end = work_peLnon_recursive_call;

for (i 0; i < end; i = i + 1 ) {

arg = arg + 1;

}

arg d( arg );

arg = e( arg );

return arg;

d ( int arg ) {

int i;

int end;

end = work_per_non_recursive_call;

for (i 0; i < end; i = i + 1 ) {

arg = arg + 1;

}

return arg;

e ( int arg ) {

int 1;

int end;

end = work_peLnolLrecursive_call;

for (i 0; i < end; i = i + 1 ) {

arg = arg + 1;

}

113



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

80

81 return arg;

82 }
83

84 int f ( int arg, int count ) {
85 int i .,
86 int end;

87

88 if ( count <= 0 ) {
89 return arg;

90 }
91

92 count = count - l',
93

94 end = work_peLrecursive_call;

95 for ( 1 o· 1 < end; 1 - i + 1 ) {,
96 arg = arg + l',
97 }
98

99 return f ( arg, count ) ;

100 }
101

102 void * thread_entry ( void * targ ) {
103 int arg;

104 int end;

105 int 1 .,
106

107 arg O·,
108 end overalLiterations;

109 for ( 1 o· 1 < end; 1 - + 1 ) {,
110 arg a( arg ) ;

111 }
112

113 return (void *) ar g ;

114 }

114



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

atoi ( argv [6] );

115
116
117

118
119
120
121
122
123
124

125
126
127

128
129
130
131
132
133
134
135
136
137
138
139

140
141

142
143
144

145
146
147

148
149

int main ( int argc, char ** argv ) {

int end;

int i;

void * ret;

int stacksize;

int threads;

int * tids;

if ( argc != 6 && argc != 7 ) {

p r in tf ( "Usage: ~<threads>~<overalLi t er a tions >~"

"<recursive_coun t >~"

"<wor k_p er _non_recursi ve _call >~"

"<wor k_p er _r ecursi ve _call >~"

"[stacksize]\n" );

return 1;

}

threads = atoi ( argv [1] );

o v era ILit era t ion s = at 0 i ( argv [2] );

recursive_count = atoi ( argv [3] );

work_per _nolLrecursive_call = atoi ( argv [4] );

work_peLrecursive_call = atoi ( argv [5] );

if ( argc = 6 ) {

stacksize stacksizeof (thread_entry);

} else {

stacksize

}

printf ( "threads: ~o/cd\n", threads );

p r in t f ( "0 v era ILit era t ion s : ~o/cd \ n"

, overalLiterations );

p r i n tf ( "r e cur s iv e _c 0 un t : ~o/cd \ n", r e cur s i v e _c 0 un t );

printf ( "work_per _nolLrecursive_call : ~%:l\n"

115



150

151
152
153
154
155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

174 }

MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

, work_per_non_recursive_ca11 );

p r i n tf ( "w 0 r k _per _r e cur s i v e _call : ~o/cd \ n"

, work_per_recursive_ca11 );

tids = maUoc ( threads * sizeof (int) );

for ( i = 0; i < threads; i = i + 1 ) {

tids [i] = sthread_create( NULL, thread_entry

, stacksize );

printf( "main:~created~o/cd\n", tids [i] );

}

for ( i = 0; i < threads; i = i + 1 ) {

sthread_j oin ( tids [i], &ret );

p r i n tf ( "Joined ~ thread ~o/cd~with ~ r et ~ v alue ~o/cd\n"

, tids[i]' ret );

}

free( tids );

p rin tf ( "Data: ~o/cd\n", threads );

return 0;

116



MSc Thesis - J. Moore~Oliva McMaster - Computing and Software

Appendix B

Experiment Data

This section contains raw data for all experiments with a 95% confidence interval.

B.l Summation

Sum (Millions) Mean Time (ms) Variance
1 20.500 1.021
5 105.533 1.147

10 211.867 1.558
30 638.700 5.969
50 1065.300 6.918

Figure B.1: Summation Single Threaded gcc

Sum (Millions) Mean Time (ms) Variance
1 1.000 0.000
5 4.000 0.000

10 7.000 0.000
30 21.000 0.000
50 34.000 0.000
70 48.000 0.000

100 68.033 0.367

Figure B.2: Summation Single Threaded gcc -02

117



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Sum (Millions) Mean Time (ms) Variance
1 82.000 1.395
5 407.900 3.471

10 817.100 9.568
30 2450.333 21.894
50 4084.167 30.973
70 5716.067 45.797

100 8160.633 48.272

Figure B.3: Summation Single Threaded Heap

Sum (Millions) Mean Time (ms) Variance
1 13.933 0.509
5 67.167 0.761

10 133.600 1.131
30 400.367 3.051
50 666.800 3.181
70 935.200 9.031

100 1334.667 9.939

Figure B.4: Summation Single Threaded Look-Ahead

Sum (Millions) Mean Time (ms) Variance
1 8.000 0.000
5 40.000 0.000

10 80.000 0.000
30 239.567 1.141
50 399.700 1.505
70 560.067 2.037

100 800.433 3.363

Figure B.5: Summation Single Threaded MMU

Sum (Millions) Mean Time (ms) Variance
1 10.567 2.921
5 63.900 2.905

10 130.700 2.696
30 395.933 3.116
50 662.500 3.239
70 929.033 3.633

100 1327.633 3.313

Figure B.6: Summation Single Threaded Traditional

118



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Threads Mean Time (ms) Variance
1 144.033 0.367
2 72.500 1.021
3 49.433 3.641
4 39.667 3.886
5 35.100 8.409
6 37.633 18.298
7 40.600 13.602
8 38.467 4.466

Figure B.7: Summation Multi-Threaded gcc -02 "Cores"

Threads Mean Time (ms) Variance
1 1402.667 11.349
2 746.467 4.075
3 538.600 3.056
4 442.700 4.779
5 448.400 14.464
6 414.567 7.850
7 393.800 11.520
8 385.133 43.065

Figure B.8: Summation Multi-Threaded Look-Ahead "Cores"

Threads Mean Time (ms) Variance
1 810.200 3.267
2 540.600 6.185
3 485.700 10.494
4 498.733 11.848
5 540.767 39.278
6 525.733 62.863
7 533.433 28.533
8 544.800 15.129

Figure B.9: Summation Multi-Threaded MMU "Cores"

119



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Threads Mean Time (ms) Variance
1 1345.500 4.177
2 691.767 3.899
3 472.700 3.659
4 363.133 2.569
5 322.033 7.219
6 282.333 16.364
7 259.900 9.554
8 241.633 13.499

Figure B.10: Summation Multi-Threaded Traditional "Cores"

Threads Mean Time (ms) Variance
8 39.133 7.357

16 35.333 8.441
32 33.667 4.576
64 32.533 2.970

128 33.533 1.019
256 33.167 3.296
512 34.933 2.932

1024 42.267 2.105

Figure B.11: Summation Multi-Threaded gcc -02 "Quantity"

Threads Mean Time (ms) Variance
8 387.133 52.292

16 430.700 19.265
32 479.133 14.456
64 503.433 16.111

128 511.167 13.150
256 532.367 32.082
512 401.400 38.146

1024 323.433 18.824

Figure B.12: Summation Multi-Threaded Look-Ahead "Quantity"

120



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Threads Mean Time (ms) Variance
8 547.900 20.713

16 595.967 10.189
32 647.800 6.943
64 659.933 6.973

128 657.500 7.904
256 641.067 14.332
512 513.767 17.155

1024 447.867 16.102

Figure B.13: Summation Multi-Threaded MMU "Quantity"

Threads Mean Time (ms) Variance
8 239.067 13.636

16 291.033 30.854
32 276.467 30.873
64 284.900 21.561

128 286.533 17.909
256 242.767 8.447
512 222.800 5.974

1024 223.300 6.672

Figure B.14: Summation Multi-Threaded Traditional "Quantity"

121



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

B.2 Unbalanced Binary Tree

Searches Mean Time (ms) Variance
10 240.267 1.662

100 464.333 8.588
500 1928.067 26.863

1000 3961.833 50.180

Figure B.15: Unbalanced Binary Tree Single Threaded gcc

Searches Mean Time (ms) Variance
10 170.300 0.936

100 204.733 2.412
500 425.667 1.695

1000 734.533 1.558

Figure B.16: Unbalanced Binary 'Il'ee Single Threaded gcc -02

Searches Mean Time (ms) Variance
10 1196.867 12.112

100 2142.967 35.997
500 7518.667 188.614

1000 13374.000 91.121

Figure B.17: Unbalanced Binary Tree Single Threaded Heap

122



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Searches Mean Time (ms) Variance
10 297.933 1.388

100 627.200 2.907
500 2774.033 11.593

1000 5767.567 22.559

Figure B.18: Unbalanced Binary Tree Single Threaded Look-Ahead

Searches Mean Time (ms) Variance
10 509.267 7.323

100 761.800 10.497
500 2408.300 8.422

1000 4685.267 22.665

Figure B.19: Unbalanced Binary Tree Single Threaded MMU

Searches Mean Time (ms) Variance
10 230.233 5.911

100 426.000 9.650
500 1707.467 35.937

1000 3502.100 36.331

Figure B.20: Unbalanced Binary Tree Single Threaded Traditional

Threads Mean Time (ms) Variance
1 488.133 5.292
2 544.533 7.636
3 612.167 14.207
4 707.167 17.004
5 912.233 28.081
6 1021.000 13.989
7 1169.667 21.249
8 1284.200 22.821

Figure B.21: Unbalanced Binary Tree Multi-Threaded gcc "Cores"

123



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Threads Mean Time (ms) Variance
1 206.067 2.037
2 206.433 1.363
3 207.867 3.604
4 211.300 5.061
5 214.300 7.116
6 236.067 31.533
7 247.867 15.405
8 250.233 5.981

Figure B.22: Unbalanced Binary Tree Multi-Threaded gcc -02 "Cores"

Threads Mean Time (ms) Variance
1 651.833 4.777
2 692.200 8.293
3 731.467 23.447
4 792.333 25.982
5 896.167 92.520
6 949.700 154.352
7 1011.800 210.585
8 1074.733 320.055

Figure B.23: Unbalanced Binary Tree Multi-Threaded Look-Ahead "Cores"

Threads Mean Time (ms) Variance
1 755.067 5.528
2 881.800 25.740
3 1075.367 27.338
4 1240.533 224.903
5 1455.433 461.089
6 1365.333 552.162
7 1375.033 117.046
8 1585.767 288.890

Figure B.24: Unbalanced Binary Tree Multi-Threaded MMU "Cores"

124



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Threads Mean Time (ms) Variance
1 427.467 10.206
2 446.267 9.267
3 465.933 5.750
4 492.633 5.739
5 570.100 5.784
6 609.600 15.664
7 661.300 18.945
8 696.700 18.349

Figure B.25: Unbalanced Binary Tree Multi-Threaded Traditional "Cores"

Threads Mean Time (ms) Variance
8 928.267 307.654

16 2034.967 156.759
32 3643.567 355.707
64 6647.233 604.172

Figure B.26: Unbalanced Binary Tree Multi-Threaded Look-Ahead "Quantity"

Threads Mean Time (ms) Variance
8 1551.667 150.341

16 2935.000 93.381
32 5994.067 146.873
64 12077.200 177.223

Figure B.27: Unbalanced Binary Tree Multi-Threaded MMU "Quantity"

125



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

B.3 "Real World"

Searches Mean Time (ms) Variance
100 10457.000 48.615
200 20929.767 135.479
300 31378.200 251.054
400 41814.800 55.112
500 52300.133 267.031
600 62713.567 174.954
700 73190.567 389.076
800 83609.233 129.726
900 94040.300 315.154

1000 104528.567 120.227

Figure B.28: "Real World" Single Threaded gcc

Searches Mean Time (ms) Variance
100 3476.467 7.562
200 6953.233 16.444
300 10421.000 0.000
400 13895.667 12.301
500 17368.000 0.000
600 20841.467 1.019
700 24316.133 3.062
800 27790.933 3.836
900 31264.800 4.424

1000 34738.933 5.452

Figure B.29: "Real World" Single Threaded Heap

126



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Searches Mean Time (ms) Variance
100 3474.833 6.416
200 6950.067 12.465
300 10427.600 21.749
400 13893.433 2.511
500 17366.633 3.141
600 20840.033 3.595
700 24313.133 4.075
800 27787.133 4.588
900 31259.967 5.206

1000 34734.633 4.701

Figure B.30: "Real World" Single Threaded Look-Ahead

Searches Mean Time (ms) Variance
100 3476.667 8.088
200 6953.967 16.315
300 10424.667 20.470
400 13905.367 33.922
500 17380.033 40.352
600 20858.067 47.043
700 24327.167 50.376
800 27799.333 50.484
900 31279.433 67.400

1000 34754.367 74.726

Figure B.31: "Real World" Single Threaded MMU

Searches Mean Time (ms) Variance
100 3476.567 8.128
200 6951.700 14.198
300 10426.133 20.295
400 13904.367 36.792
500 17373.067 38.841
600 20843.300 20.366
700 24324.900 45.668
800 27805.133 61.237
900 31262.633 29.471

1000 34734.100 5.121

Figure B.32: "Real World" Single Threaded Traditional

127



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Threads Mean Time (ms) Variance
1 1045.867 4.242
2 1047.233 2.566
3 1051.500 8.198
4 1058.867 10.555
5 1468.300 78.435
6 1589.000 75.048
7 1696.533 113.923
8 1820.600 91.148

Figure B.33: "Real World" Multi-Threaded gee "Cores"

Threads Mean Time (ms) Variance
1 348.000 0.000
2 349.467 3.829
3 352.533 3.365
4 361.667 8.540
5 521.433 27.587
6 550.233 46.686
7 638.167 24.527
8 705.700 18.537

Figure B.34: "Real World" Multi-Threaded Look-Ahead "Cores"

Threads Mean Time (ms) Variance
1 348.000 0.000
2 349.500 3.063
3 351.433 3.363
4 360.400 8.560
5 525.367 20.994
6 554.267 43.461
7 639.767 26.784
8 704.733 23.889

Figure B.35: "Real World" Multi-Threaded MMU "Cores"

128



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Threads Mean Time (ms) Variance
1 348.400 1.000
2 348.600 1.944
3 351.467 4.825
4 356.367 11.971
5 524.700 14.050
6 554.967 41.483
7 634.533 20.803
8 701.533 11.378

Figure B.36: "Real World" Multi-Threaded Traditional "Cores"

Threads Mean Time (ms) Variance
8 1829.700 132.315

16 3427.800 57.301
32 6877.433 126.508
64 13909.633 254.544

128 28432.800 354.881
256 58041.567 689.085
512 116923.833 2528.484

1024 234874.033 2753.601

Figure B.37: "Real World" Multi-Threaded gcc "Quantity"

Threads Mean Time (ms) Variance
8 704.833 19.286

16 1409.000 20.242
32 2798.567 24.240
64 5573.467 14.975

128 11126.733 18.944
256 22244.167 26.807
512 44474.700 27.193

1024 88925.367 30.809

Figure B.38: "Real World" Multi-Threaded Look-Ahead "Quantity"

129



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Threads Mean Time (ms) Variance
8 704.500 11.548

16 1403.333 17.473
32 2794.200 20.224
64 5576.367 22.285

128 11127.167 20.792
256 22240.267 21.299
512 44461.800 21.452

1024 88917.333 15.617

Figure B.39: "Real World" Multi-Threaded MMU "Quantity"

Threads Mean Time (ms) Variance
8 702.000 11.527

16 1405.067 17.470
32 2791.433 13.459
64 5572.200 20.713

128 11123.067 35.482
256 22189.600 78.179
512 44319.367 174.388

1024 88587.433 354.017

Figure B.40: "Real World" Multi-Threaded Traditional "Quantity"

130



MSc Thesis - J. Moore-Oliva McMaster - Computing and Software

Appendix C

Glossary of Acronyms

gee Gnu Compiler Collection

IEEE Institute of Electrical and Electronics Engineers

LLVM The Low Level Virtual Machine (Compiler Infrastructure)

NASM Netwide Assembler

POSIX Portable Operating System Interface [for Unix]

Pthreads POSIX Threads

MMU Memory Management Unit

131


