
MATHEMATICAL MODELING OF THE FLYING PROBE

TEST SYSTEM

Master Thesis - Alvin Hsieh McMaster University- CAS

Master Thesis - Alvin Hsieh McMaster University- CAS

MATHEMATICAL MODELING OF THE FLYING PROBE TEST SYSTEM

By

AL YIN TZU-CHIEN HSIEH.

Computing and Software

A Thesis

Submitted to the School of Graduate Studies

In Partial Fulfillment of the Requirements

For the Degree

Master of Science

McMaster University

© Copyright by Alvin Tzu-Chien Hsieh August 2010

Master Thesis - Alvin Hsieh McMaster University- CAS

MASTER OF SCIENCE, (August, 2010) McMaster University

(Computing and Software.) Hamilton, Ontario

TITLE:

AUTHOR:

MA THEMA TICAL MODELING OF THE FLYING PROBE TEST SYSTEM

ALVIN TZU-CHIEN HSIEH

SUPERVISOR: Dr. Antoine Deza

NUMBER OF PAGES: ix + 73

ij

Master Thesis - Alvin Hsieh McMaster University- CAS

Abstract

Electrical components are the building blocks of any electronics. These building blocks,

when intelligently assembled, form circuits that behave as intended by the designer. Therefore,

any errors, such as defective components and assembly errors will cause the end product to have

abnormalities. Advancement in technology has led to circuits of higher complexity that"require a

greater quantity of components as well as a great reduction in individual component size. This

translates to finer integrated circuits; more components are placed and packed in the same given

area and thus , manual circuit board testing may no longer be feasible. The flying probe tester is

an automated circuit board testing/verification system that uses electric probes to first stimulate a

circuit and then read and verify its corresponding output values. This thesis examines the

processes involved in the flying probe test system and produces a model that characterizes the

current sequential method of testing test points. Furthermore, using existing techniques

developed through the traveling salesman problem and linear optimization, an efficient model is

developed to improve and limit the distance traveled by the probes , thus reducing the required

testing time.

iii

Master Thesis - Alvin Hsieh McMaster University- CAS

Acknowledgments

First and foremost, I would like to thank Dr. Antoine Oeza, my supervisor, for giving me this

opportunity to further my education. Thank you for your continual guidance and feedback

throughout my thesis/research.

In addition, I would not have been able to complete my thesis without the extended support and

knowledge of my peers, notably, Jessie Liu and Feng Xie. Your breadth of knowledge in this

field helped further my understanding and background, and your assistance helped me overcome

the minor obstacles I encountered during my research.

For their offer of the MIT AC internship, which ultimately became my thesis topic, I would like

to acknowledge Acculogic Inc. for providing the necessary materials/documents and information

needed for my research. Special thanks to company VP, Farouk Eshragi, for giving me this

opportunity and providing support every step of the way.

Lastly, I would like to thank my dad, mom, Melvin and Tat, for their continual support,

motivation. They have encouraged me to avoid complacency and to constantly push the

envelope.

iv

Master Thesis - Alvin Hsieh McMaster University- CAS

Contents

Abstract iii

Ackno"vledgments iv

List of Figures ... vii

List of Table ix

Chapter 1 Introduction .. 1

1.1 CIRCUIT BOARDS AND REASON FOR TESTING 1

1.2 FINDING AN EFFICIENT TEST PATH 3

Chapter 2 The Flying Probe Test System .. 5

Chapter 3 Graph Theory 11

3 .1 FUNDAMENTALS 11

3.2 DIRECTED GRAPHS 12

3.3 U NDIRECTED GRAPHS 13

3.4 GRAPH PROPERTIES 14

Chapter 4 Linear Optinlization 17

4.1 OPERATIONS RESEARCH 17

4.2 LINEAR OPTIMIZATION (PROGRAMMING) 18

4.3 SIMPLEX AND INTERIOR POINT METHOD 21

4.4 COMMERCIAL SOLVERS 23

Chapter 5 Modeling of the Flying Probe Test System .. 25

5.1 NOTATION AND OBJECTIVE FUNCTION 26

v

Master Thesis - Alvin Hsieh McMaster University- CAS

5.2 FRACTIONAL 2-FACTOR LO 30

5 .3 SOLVING THE TESTING PATH USING TSP TECHNIQUES ... 32

5.4 SUBTOUR ELIMINATION OFTHE FRACTIONAL 2-FACTOR40

5.5 GRAPH REPRESENTATION 41

5.6 CUTT1NG PLANE METHOD42

Chapter 6 Testing ... 45

6.1 JAVA PROGRAM 45

6.2 STEPS OF TESTING 49

6.3 TESTING RESULTS 50

Future Work ... 53

Appendix A: CLPEX Output .. 55

Appendix B: Flying Scorpion's Testing Capabilities .. 58

Appendix C: Testing Procedure and Results .. 59

Bibliography ... 71

vi

Master Thesis - Alvin Hsieh McMaster University- CAS

List of Figures

Figure I -I:Circuit Board 2

Figure 1-2 Black Box Testing 2

Figure 1-3 Probing a Test Point 3

Figure 2-1 Flying Scorpion 6

Figure 2-2 Conveyer Belt 7

Figure 2-3 Parallel Circuit 9

Fig u re 3-1 Directed Graph 12

Figure 3-2 Undirected Graph 13

Figure 3-3 SiTnple Cycle IS

Figure 4-1 Feasib le Region 20

Figure 4-2 Optimal Point 21

Figure 4-3 Simplex Method 22

Figure 4-4 Interior Point Method 22

Figure 5-1 Hamiltonian Cycle 28

Figu re 5-2 Sub-tours 32

Figure 5-3 Test-Steps 33

Figure 5-4 Optil1'lial Tour 33

Figu re 5-5 Worst Case Traveling Distance 39

Figure 5-6 Cutting Planes 40

vii

Master Thes is - Alvin Hsieh McMaster University- CAS

Figure 5-7 Sub-tour Elilnination Algorithm 43

viii

Master Thesis - Alvin Hsieh McMaster University- CAS

List of Tables

Table 3-1 Adjacency Matrix of Directed Graph 12

Table 3-2Adjacency Matrix of Undirected Graph 14

Table 5-1 Adjacency Matrix 29

Table 5-2 Naming of Edges 34

Table 5-3 Contra ins in Matrix Form 35

Table 5-4 Constrain ts conforming to SeDuMi ... 37

Table 5-5 Traveling Distance 39

Table 6-1 Test Points Coordinates 51

ix

Master Thesis - Alvin Hsieh McMaster University- CAS

x

Master Thesis - Alvin Hsieh McMaster University- CAS

Chapter 1: Introduction

1.1 Circuit Boards and Reason for Testing:

Any technology consists of electrical components that together form electric circuits. In

unity these circuits (placed on a circuit board) provide the functionalities of devices and systems.

In electronics, multiple circuit boards are placedlinstalled together to realize a full system. This

is much like a desktop computer, with its motherboard, video card, sound cards, etc, each

providing a unique feature of computing (figure I-I below). This large system of circuits and

the numerous components that it is comprised of causes the testing and the troubleshooting of the

end product to be time consuming and difficult in most cases. With luck, the error can be traced

back to the specific circuitry responsible, much like how a computer that can no longer be

powered on could be caused by a defective power supply (the circuits within it). However, even

if knowing the power supply is at fault, isolating the exact defective components or circuits could

be difficult and extremely time consuming.

1

Master Thesis - Alvin Hsieh McMaster University- CAS

Figure 1 -3 : Reading the values of a test point (TP2) to read its values [5) .

Testing is done either at the production stage or trouble shooting stage. The decision of

how often to test and how thoroughly lies with the manufacture or tester. Excessive testing may

drain resources and may not be feasible given the cost it takes to test is often more expensive

than replacing a circuit board all together. However, any early undetected error at the production

stage will escalate, increase the amount of time spent on debugging the end product, and

potentially losing consumer confidence.

1.2 Finding an Efficient Test Path:

Testing circuits today have shifted to using automated systems. The research of this

thesis is based on the work done during an internship at a company in the automated testing

instrumentation market. The instrument that was studied was a fl ying probe tester, which uses

electri c probes to make contact with test points, to generate inputs or read outputs. The

instrument itself is part of the fl ying probe tester system, which also includes a computer to

provide the means of control for the user. In short , the tester tests components and test points

that are specified by the user, but the path taken by the probes is of a sequenti al order. This

testing sequence is not an efficient method of testing, as the probes may potenti ally be required

3

Master Thesis - Alvin Hsieh McMaster University- CAS

to travel the total length of the board, back and forth, frequently. This thesis deals with modeling

the flying probe test system and providing an algorithm/model that is able to find an efficient

path of testing, that is superior to the original sequential path. The term efficient in this sense

refers to a shorter distance traveled by the probes during the duration of a complete set of tests.

The intricacies of the flying probe test system will be introduced in the proceeding chapter.

4

Master Thesis - Alvin Hsieh McMaster University- CAS

Chapter 2: The Flying Probe Test

System

The flying probe test system consists of the main testing unit, as well as a computer unit

that runs the software that controls the overall system (figure 2-1). On the hardware side of the

system, a circuit board is suspended on a conveyer belt, supported only by the two edges that rest

slightly on the belt (figure 2-2). The conveyer belt slides the board further into the machine

while being sensed by cameras/sensors. Once the correct board position is determined by

cameras, the testing commences. Tests are able to check for defective components as well as any

misplaced ones, as they would produce different output values than the expected ones. However,

it is up to the technician to specify how many components to test on a circuit board. Also, there

are numerous types electrical components, each with their unique electrical characteristics.

Testing them requires different techniques and approaches.

5

Master Thesis - Alvin Hsieh McMaster University- CAS

Figure 2 -1: Acculog ic's Flying Scorpion, a flying probe tester [2]

Testing resistors involves checking its resistance values (through current and voltage),

and capacitors requires checking its capacitance value as through voltage and discharge time.

For testing each component, a minimum of one probe is used for providing a voltage/current

source to the positive terminal of the component, and one more probes to read the corresponding

output value at the other terminal. For example, by having a probe supplying a current to a

resistor, we are able to measure the voltage output across the resistor with the other probe.

Calculating its resistance value can be done through: Resistance= Voltage/Current. We would

then check whether or not that value matches the one intended by the designer (data stored in the

software).

6

Master Thesis - Alvin Hsieh McMaster University- CAS

Board shown on the _-=:::~I~~~~~~~~ conveyor.

Conveyor clamps

A shaft-encoder is used to track
the boards' position on the
conveyor,

Conveyor trailing
edge sensor

Conveyor rails

Board present sensor

Figure 2 -2 Conveyer Belt of the Flying Scorpion [2]

'+-o
.......
c e
LL

The purpose of the flying probe test or any circuit board testing for that matter is to make

sure the components are assembled properly, correct parts were used, as well as ensuring the

functionality of the board is being realized. Manual testing all the components of a circuit board

could be a long and tedious task, and would not be feasible in an industrial manufacturing

environment. These automated testers are necessary to ensure the quality of the boards as well

as maintaining a certain productivity level of the manufacturing company.

As for the software side of the system, how it works in general is that the circuit board 's

CAD file and BOM (bills of material) file are imported to the tester's software. Each board is

represented as a project file. The board ' s CAD file includes the schematics of the circuit board

while the BOM file includes all the components on the circuit board. Together, they provide

enough information to the software so that it is able to translate/virtualize the physical geography

of the board and translate that to the coordinate system of the tester system itself. In the

software 's database, it usually contains detailed information about commonly used components,

such as their dimensions , characteristics, etc. The components read in from the BOM fi le should

automati cally associate with the components already stored in the database and appear as

7

Master Thesis - Alvin Hsieh McMaster University- CAS

individual entries within the project file. The user can then select which components to test by

enabling/disabling these entries . Thus, when a desired test point needs to be tested, the system

knows the exact x and y coordinate to place the test probes, as well as the method of testing

required for that specific component.

Sometimes, the physical profile of a component prevents the probe making contact with a

test point in a certain manner. The tester will need to acknowledge this and would attempt to

approach that test point in a feasible way. Probes also need to avoid hitting components that

have a great depth (tall), such as going around the component. The tester's software must take

these physical restrictions into account and sometimes , it may require human monitoring. For

the most part, the software is programmed to route feasible movement only, avoiding the

component in question.

A circuit like the one in figure 2-3 below represents a parallel circuit. The four resistors

in the figure are said to be "parallel" to each other, meaning that their positive terminal belong to

the same node/junction. The terminals on the same junction have the same electric potential.

Even though the electrical components may physically be placed apart on the circuit board , they

are still connected, not visible to us. Assuming that for all four resistors , the top terminal

represents the positive terminal and the bottom represents the negative. Let the left most resistor

be labeled RI and the rightmost~. Each resistor has 2 terminals, and has the coordinates of:

Ri with coordinates (Xi+, Yi+) & (Xi-, Yi-); i = 1, 2, ... , n (number of resistors)

Traditionally, to test R 1, we need to place the probes at the two terminals (XI +, YI +) and (XI _, YI -).

However, since RI and R2 are in parallel and have the same positive terminal , we can use R2'S

8

Master Thesis - Alvin Hsieh McMaster University- CAS

positive terminal (or R3 and R4 for that matter). So we can also use (X2+, Y2+) along with (Xl -, Yl -)

to test Rl if (Xl +, Yl+) is inaccessible.

Parallel Circuit

R. Resl~tor
(~uch ~~ ~ light bulb)

Figure 2 -3: Parallel Circuit [2]

The real benefit of this for parallel circuits is that when testing, we can place one probe

on (Xl+, Yl +), the common positive terminal for all 4 resistors, and only move the probes for the

negative terminals. This allows the first probe to remain stationary for 3 test sequences. The

ability to switch a test point for another one of the same electrical potential is called point

exchange and this is a feature in the test system's software. This feature when enabled may

reduce the overall distance travelled by the probes.

When all the components are loaded in the project files , they are organized by categories.

For example, all the resistors (Rl to Rn) are followed by all the capacitors, followed by all the

inductors. The system will use this chronological sequence of components as the testing

sequence. The problem with this approach is that components that are next to each other in

naming (ie. Rl and R2) are not necessary close to each other physically on the board. I-laving this

sequential order will result in a test path that jumps all over the place. The technician is able to

9

Master Thesis - Alvin Hs ieh McMaster Univers ity- CAS

rearrange the sequence manually, but it is the goal of this thesis to produce an algorithm that

finds a path for solving that will minimize the distance travelled by the probes.

10

Master Thesis - Alvin Hsieh McMaster University- CAS

Chapter 3: Graph Theory

3.1 Fundamentals:

This section introduces several elementary notions of graph theory that is used in the

model we apply. Test points on the fl ying probe tester can be viewed as nodes in a graph and is

modeled as such in this thesis. We can thus take advantage of the well known and developed

work of graph theory to serve as the foundation of our model. Before proceeding, the following

convention needs to be mentioned. A capital letter will refer to a set of values , while small caps

will refer to individual elements.

A graph G consists of a set of vertices V, and a set of edges E: G = (V, E) . The finite set

of verti ces, V , consists of all individual vertex, Vo to Vn-l, in the graph, where n is the number of

vertices in the graph [4]. The finite set of edges, E, consists of the edges, eo to ek-l, that form the

graph, where k is the number of edges in the graph. An edge is a relationship between two

vertices, indicating they are connected in some manner (described below).

11

Master Thesis - Alvi n Hsieh McMaster University- CAS

3 - 1: Directed Graph

3.2 Directed Graphs:

In a directed graph (figure 3- 1), an edge is marked by arrows and it limits travel between

nodes in the direction of the arrow, much like an one-way-street. An edge can be written as, e =

(u, v), and is equivalent to saying the edge is leaves from u and the edge is incident from u,

incident to v [4]. The case u = v is permitted in directed graphs, as illustrated by node 2,

indicates a self-loop. Note that e = (u,v)"* e = (v ,u), due to the direction restriction. T hus , for

e = (u ,v) , we say u is adjacent to v, but v is not adjacent to u. illustrating the non-symmetric

property of edges in directed graphs.

(u.v) 1 2 3 4 5 6

1 0 1 0 0 0 0

2 0 1 0 1 1 0

li\31 III 0 0 0 0 0 0

4 1 0 0 0 1 0

5 0 0 0 1 0 0

6 0 0 1 0 0 0

Table 3 - 1: Adjacency matrix of the directed graph of figure 3-1

Another way to represent the directed graph is with its adjacency matrix (table 3- 1).

Each row represents u in E = (u, v), and each column represents v. When an edge exists, the

12

Master Thesis - Alvin Hsieh McMaster University- CAS

corresponding matrix element stores a 1, as illustrated by matrix element (1, 2). Adjacency

matrix is needed for graphs to be stored in the computer and requires e CIVI2) [6] memory for

storage, V being the set of vertices.

3.3 Undirected Graphs:

The other type of graph is the undirected graph . Its major difference from directed

graphs is that the edge has no directions , allowing passage in both directions between the two

connected vertices. Figure 3- 2 shows an undirected graph, and the edge connecting (1, 2)

allows 1 to go to 2 and vice versa. For a more formal definition, an undirected graph G = (V, E)

has unordered pairs of vertices, and the edge set E consists of {u, v}, where u, v E V & u f:- v [4].

The last restriction restricts any self loop in undirected graphs, unlike the directed version,

requiring two distinct vertices in any edge. Also , (u, v) = (v, u) for undirected graphs, unlike the

directed version as well. Table 3- 2 below represents the adjacency matrix of the undirected

graph in figure 3- 3. Notice the symmetry across the drawn line between (u, v) & (v, u).

3 - 2: Undirected Graph

13

Master Thes is - Alvin Hsieh McM aster Univers ity- CAS

~ 1 2 3 4 5 6

1 ~ 1 0 0 1 0

2 1 ~ 0 0 1 0

3 0 0 ~ 0 0 1

4 0 0 0 ~ 0 0

5 1 1 0 0 ~ 0

6 0 0 1 0 0 ~

Tab le 3 - 2: Adjacency matr ix of the undirected graph of figure 3-2.

3.4 Graph Properties:

Having established the two graphs, we now discuss some of their properties. In an

undirected graph , the degree of a vertex is defined as the number of edges connected to it.

Vertex 2 in figure 3- 3 has a degree of 2, while vertex 4 has a degree of 0, because it is not

connected to any vertex, thus isolated. As for a directed graph, since the edges have direction,

we can talk about the in-degree and out-degree. The overall degree is the sum of the two, which

is essentially counting all the edges that the vertex is connected to, much like the undirected

graph. In figure 3- 1, both of vertex 4' s in-degree and out degree are 2, making its overall degree

4.

Say in a graph G = (V, E), we wish to go from a vertex , v I, to another vertex Vk. The path

of the journey requires taking vertices, {V I, V2, ... , vd , such that edge (Vi, Vi+l) EE for i = 1, ... ,

k. This means that we are traveling through the intermediate vertices and edges , E(VI , V2), E(V2,

V3) , ... , E(Vk_l, Vk) until we reach the destination Vk. The path length refers to the number of

edges involved in the path. In figure 3- 1, the path length from vertex 1 to 4 is 2 (due to direction

of the edges , we must go to vertex 2 first). In figure 3- 2, the path length from vertex 1 to 4 is 0,

because there is no way of getting there. The path is said to be simple, if all vertices in the path

14

Master Thesis - Alvin Hsieh McMaster University- CAS

are distinct, never visited twice. A sub-path refers to a portion of the original path {VI , V2, ... ,

vd , as long as the initial vertex is Vi, i >= 1, the final vertex is Vj, j <= k and i < j. So a sub path

of the original could be {V2, V3, ... , Vk-3}. The distance of the path traveled however, refers to the

summation of all the edge weights in the path. Though the two graphs above are not assigned

edge weights, it will be used later in the modeling section of this thesis.

In a directed graph, a path that is able to return to the initial vertex , v, = Vk, is called a

cycle. In figure 3- 1, if vertex 1 is the starting vertex, there is a path that cycles back to it,

specifically v, -7 V2 -7 Vs -7 V4 -7 v, (ignoring the possibility of looping at V2). On the

contrary, a graph with no cycles is called acyclic. Self loops is also considered a cycle, with

length 1. If in a cycle, all the vertices are unique (first last vertex still have to be the same to

qualify as a cycle) and visited exactly once, the cycle is said to be simple. In figure 3- 5 below,

vertex 1, 2 & 3 forms a cycle, but not a simple cycle, because in order to get back to . vertex 1,

vertex 2 is traversed again, thus all the vertices in the path are not unique. Vertecies 4, 5 & 6

however is part of a simple cycle, with the cycle being V4 -7 Vs -7 V6 -7 V4 . Furthermore a

simple cycle consisting of all v's in V is called a Hamiltonian cycle.

Figure 3 - 3 : Vertex 1, 2 & 3 is not part of a simp le cycle, but vertex 4, 5 & 6 is part of a s imple cyc le

15

Master Thesis - Alvin Hsieh McMaster University- CAS

16

Master Thesis - Alvin Hsieh McMaster University- CAS

Chapter 4: Linear Optimization

4.1 Operations Research:

Operations Research (OR), is defined as "representation of real-world systems by

mathematical modeling together with the use of quantitative methods (algorithms) for solving

such models" . It is the branch of mathematics commonly used to find optimal solutions to real­

life problems. The term optimal refers to optimizing the objective function of the problem, such

as maximizing profits and minimizing costs. To do so, OR uses a wide range of mathematical

techniques including graph theory from the previous chapter, statistical analysis, mathematical

modeling to name a few.

When translating a real word problem to its math counterpart (to be analyzed and solved) ,

there are 3 components that need to be defined. The first component is variables and it is all the

different factors that are decision based. Their values are determined by the user and directly

change the value of the solution . The second component is constraints. They deal with things

such as limited resources that impose certain restrictions. An example of this could be land

17

Master Thesis - Alvin Hs ieh McMaster University- CAS

governing how much crops a farmer can grow. The last component is an objective function that

needs to be optimized (maximize or minimize). The objective function essentially represents

what the problem is trying to achieve. The solution to the overall problem is a specific set of

values (for variables in the objective function) that optimizes the objective function, ultimately,

indicating how to operate most effectively.

When the OR problem that we are trying to optimize have variables that are all

continuous, contains a single objective function that is linear, all constraints are linear, we are

able to use the method of linear optimization. It is used extensively to solve problems in the

business and economics world, as well as some fields of engineering.

4.2 Linear Optimization:

When the objective function is a linear function along with linear and non-negative

constraints , linear optimization can be used. Linear optimization (LO) has the general canonical

form of:

Maximize: c T x

Subject to : Ax :S b

The problem consists of variables for which we' re trying to determine the values,

which will maximize/minimize some objective function,

18

Master Thesis - Alvin Hsieh McMaster University- CAS

subject to certain constraints.

allxl + al2x2 + ... + alnxn :S b l

a21 x I + a22x2 + ... + a2nxn :S b2

With these conditions the constraints form a convex polytope, illustrating a feasib le

region. Any point in the feasible region has a set of specific values for (x I, X2, ... ,xn) which

satisfies all the constraints and thus giving some value when substituted into the objective

function, z. Finding the specific point in the feasible region that gives the optimal (maximin

depending on the goal) object function value is the overall goal of linear optimization. The

optimal point may not be unique.

If the solution needs to take the form of integers, then the problem is called Integer

Linear Optimization, though its constraints can still be fractional. The integrality constraints

make Integer Linear Optimization usually much harder to solve. A common approach to tackle

the computational challenge is to use linear optimization to get fractional values, and then apply

rounding techniques that will give rise to integer values [16].

Example [l7] :

Let x and y denote the amount of tomatoes and squash to be grown respectively in square

meters. A farmer who wishes to maximize his revenue (the objective function) , selling a square

meter of tomatoes for $3 and $5 for squash. The first constraint deals with fertilizer, as a square

meter of tomatoes need 2 units of fertilizer and squash needs 3 units. The farmer has a total of

10 fertilizers so the total used has to be at most that. The second constraint deals with

19

Master Thesis - Alvin Hsieh McMaster University- CAS

insecticides, as a square meter of tomatoes and squash both need 1 unit. The total of units of

insecticides the farmer has is 4. The third and forth constraint is trivial and states that the farmer

cannot grow negative crops. The fifth constraint deals with the amount of tomato seeds

available, and the farner only has enough for 4 square meters. The last constraint is similar to the

previous, with the farmer only have enough seeds for 3 square meters of squash.

Objective Function (to be maximized): z = 3x + 5y

Constraints: 2x + 3y:::; 10; x + y:::; 4; x ~ 0; y ~ 0; x:::; 4; y:::; 3

4.: ~""" '" 'r
3.5 -- -,'"...---------------------..!I

---- y :'0 3

2.: _ - "---"-""-_~- -------" 1
--- ___ --,_ ------1

2 -!---------------....;:::..:..;:.------.:,~--__ I
f--------------'-"....;:...-:----' '" 2x + 3y :'0 ' 0 1 1.5 - ',_ --,,',

1 ----,-" ----------- 1
............

0.5 --
o ---- 1 "T" .,.. : '",

o 1 2 3 4

Figure 4 - 1: Fea sible reg ion of the li near optimization proble m

Figure 4- 1 above shows the feasible region in yellow. This is obtained by plotting all the

constraints and observing their intersections. Any combination of x and y in the feasib le region

will satisfy all constraints, but there usually is a specific point where it provides the optimal

solution. In figure 4- 2 below, the optimal solution is obtained when x = 2 and y = 2. By

growing 2 square meters of both tomatoes and squash, the farmer will produce the optimal

revenue of $3*2 + $5*2 = $ 16.

20

Master Thesis - Alvin Hsieh McMaster University- CAS

4.5 ,-----

4 - ~_ ------

3.5 ~- -

3 ~=~---~~-----------------

2.5

2

1.5

1

0.5

-~~~-.~--~-----

o -----------------'------I-- -----------~' '''''''----- 'i---------·------- ..."..----r------- --- ------ .1 I

o 1 2 3 4

Figure 3 - 2: The optimal point in the feas ible region

4.3 Simplex and Interior Point Method:

The above example is 2-dimensional (dealing with only 2 variables x and y) and by

plotting the constraints, the feasible region forms a polygon and can be visualize easily.

Anything beyond 3-dimensions cannot be visualized geometrically and must be solved

mathematically. The most commonly used methods for finding the optimal point(s) in the

feasible region are the simplex and the interior-point-methos , and each one has many variants.

The first is the simplex method created by George Dantzig in 1947 [3]. The idea behind it is

shown in figure 4-2. By traversing adjacent edges of the polytope, the optimal point can be

found as it always lie on an edge. While the simplex method is not proven to be polynomial , it is

effi cient in practice and widely used.

21

Master Thesis - Alvin Hsieh McMaster University- CAS

3.5

3

2.5

2

1.5

1

0.5

0

0 1 2 3 4

Figure 4 - 3: The approach of th e simp lex method

The other algorithm is the interior point method, illustrated 111 figure 4- 3. The idea

behind it is to start examining feasible points from within the feasible region of the polytope (not

on any edges), and converge outwards (graphically) until the optimal solution is reached [16].

The interior point method is both polynomial time for both the worst case and the average case,

as proven by Karmarkar in 1984 [22], and very efficient in practice.

3.5

3 ~~---

2.5

2

1.5

1

0.5
th

tinlC fOl both th
o ~-.--~----+-------~--+-----------+---------~

o 1 2 3 4

Figure 4 - 4: The approach of th e interior point method

22

Master Thesis - Alvin Hsieh McMaster University- CAS

4.4 Commercial Solvers:

There are numerous commercial software that are able to solve linear optimization

problems. Two commonly used ones are CPLEX and SeDuMi. CPLEX is a software package

that solves optimization problems. The name is a combination of the simplex method and

interfacing with the C programming language. Since its existence, it has expanded to include

interior point method and interfacing with C++, Cft and Java. SeDuMi on the other hand is

under GPL (general public license) as long as the user has a license with Matlab, as it is a Matlab

library. It uses interior point method which has polynomial complexity [15].

23

Master Thesis - Alvin Hsieh McMaster University- CAS

24

Master Thesis - Alvin Hs ieh McMaster University- CAS

Chapter 5: Modeling of the Flying

Probe Test System

The objective of the thesis is to model the flying probe tester such that we can use some

algorithm to find an efficient testing path. To do so, some features of the flying probe tester will

be relaxed in order to reduce complexity of the problem. This will allow the model to relate to

some of the existing work done in the Traveling Salesman Problem (TSP). TSP is the

mathematical problem of minimizing the travel cost through a finite number of cities (looping

back to the beginning) , given the cost between each possible pair of cities. What we wish to

accomplish through the model is to obtain an optimal testing sequence. The distance travelled of

this optimal testing order needs to be an improvement over the default sequential order (set by

the tester).

25

Master Thesis - Alvin Hsieh McMaster University- CAS

5.1 Notations and Objective Function:

Consider a circuit board that is ready for testing. We define a single test-step as the

individual testing done to a single component. For example, testing an arbitrary and single

resistor RI counts as one test-step and testing an arbitrary capacitor C I counts as another

independent test-step. Testing of the whole board includes executing the test-steps specified by

the technician (not all components need to be tested). The testing sequence of these test-steps is

the main focus of this research. Stored within each individual test-step, are its associated test

points. For example, if our current test-step involves testing an arbitrary resistor R I, the

associated test-points that will be stored are the x-y coordinate system of the resistor's positive

and negative terminals respectively. The computer is able to place the probes to those exact

positions during testing.

Let n = the total number of the test-steps that needs to be executed. For each test-step Ti

(i :s n) , the coordinates of all its associated-testing-points are recorded as PI Cx,y), P2(x ,y) , etc.

The naming convention used for each test-step's associated-test-points always start with PI, then

P2. To differentiate the PI' s of different test steps, the dot notation will be used. For example,

TI has its associated-test-points of PICO,O) & P2(10,l0), while T2 has its associated-test-points of

PI (20,20) & P2(30,30). They can be referred to uniquely as T1.Pl, T1.P2, T2.Pl and T2.P2

respectively. On absolute terms, all these test points are unique, and the integrator software will

name them uniquely.

In order to reduce the complexity of the model, here are some of the assumptions made

about the flying probe tester:

26

Master Thesis - Alvin Hsieh McMaster University- CAS

• For each test-step, only one set of associated-test-points exists, mean1l1g the point­

exchange feature is disabled.

• We ignore the height of all components so that the probes don't have to go around any

objects. Also, we ignore the the z-axis movement of probes, restricting all movement to

2D.

• The flying probe travels in a straight line manner from point to point. This ass umes that

the shortest and direct path is taken for all movements .

• The speed at which the probes move is constant.

• In TSP, we tend to traverse through cities. However, each test-step has 2 or more

associated-test-points and thus requires two probes to move simultaneously. Since all the

associated-test-points are relatively close to each other, each test-step's PI (x,y) will be

used as the landmark that represents the entire test-step. That is, all test-steps are

represented as a city, with the location of its PI (x,y) . A complete tour will cycle through

all these single points that represent different test-steps .

Here, we define some test-steps and their associated-test-points with arbitrary values

ass igned:

T he goal now is to build a model that tries to find the shortest distance of travel when cycling

(testing) through all test-steps . This problem takes the form of the classical TSP as mentioned,

and it is a NP-hard problem.

We now define the functio nal variable x(i,j) and it takes two values, 0 & 1. The variables

i and j represent test steps Ti and Tj , For simplicity, only the subscript of of Ti and Tj will be

27

Master Thesis - Alvin Hsieh McMaster Univers ity- CAS

used when describing xCi, j). When x(i,j) = 1, it means that the straight and direct path from test­

step i to j is included as a part of our optimal tour. Similarly, x(i,j) = 0, means that the straight

path from test-step i to j is not part of the optimal tour, meaning test-step i doesn't go directly to

j , but rather i goes to some other test-step . Our overall goal is to find all the paths that are a part

of the optimal tour, such that all test-steps are visited exactly once, while minimizing the total

distance travelled in the trip. In other words, find all x(i,j)' s where i = 1.

The test-steps on the circuit board can be represented as an undirected graph, as any point

is able to reach any other point at a distance, having the exact same distance backwards. Thus ,

the i-to-j path and the j -to-i path are referring to the same edge and we only need to specify this

value once. For example, x(1 , 2) = x(2, 1), so storing the latter is redundant. For simplicity, in

xCi, j), variable i will always refer to the test-step of the lower naming value than j, i < j . Thus,

T I is lower than T 2, is lower than T 10. Figure 5-1 below an example of a undirected graph which

represents how circuit boards will be modeled. Table 5- 1 shows the adjacency matrix of the

graph in figure 5- 1.

Geometric graph with 10 nodes

Solution: (0, 3,4, 5,9, 8,2, 1, 6, 7, 0)

Figure 5 - 1: A circuit board and its test-steps are ab le to be represented as a Hamilton ian cycle and an undirected graph (19]

28

Master Thesis - Alvin Hsieh McMaster University- CAS

Based on the modeling work, a flying probe TSP with n number of test-steps would have

n(n-l)/2 number of x(i,j)'s to be determined. In figure 5- 1, there are 10 test-steps and the edges

represent the path to be taken during testing. We would need 10(10-1)/2 = 45 x(i ,j)'s as

illustrated in table 5- 1. Having all the data tabulated in a matrix , it becomes easier to work with

as will be seen later on.

x(i,j)

i = 0

2

3

4

5

6

7

8

9

,
!

i
;
i

,

i

.- 2 3 4 5 6

• o 1 o o o

I o o o 1

I i • I I o o o
i I I I ,
i I , o o
. I l i j

i I o

I I I • , 1 ! I
I I I

i

I I I I ,

I i

I i
~

I I I I I
I j , j

I
l ~

I i ! I i I , I I I
i I

I 1 , I !

I i I I I I I
I I I I I 1 !

Tab le 5 - 1: x(i,j) matrix of TSP in Figure 1. There are 45 (i,j) 's

7 8 9

o o
o o o
o 1 o
o o o
o o o
o o 1

o o

• o
I

r

Since the objective is to minimize distance traveled, we need variables that store the

physical distance between edges . Let wei, j) be the weight variable that stores the distance

between test-step Ti & Tj . Once again, only the subscript will be used. Using the following

equation, it is straight forward to calculate wei, j):

wei, j) = distlTi.P 1-Tj .P21 (5.1)

UT, is represented by its P,(2,3) and T2 is represented by its P,(4,3), w(1,2) = distIT,(P,)-T2(P,)1

= distl(2,3)-(4,3)1 = 2

29

Master Thesis - Alvin Hsieh McMaster University- CAS

Combining xCi, j) and wei, j), the total distance traveled by the probes during a tour of

testing can be computed by:

L wCi, j) * x(i, j) (5.2)

This is the objective function that will be used in linear optimization for minimizing the probe

distance. Since xci, j) only take the values 0 or 1, this type of problem is classified as the 0-1 LO

(linear optimization, also known as linear programming) problem.

5.2 Fractional 2-Factor LO:

In a Hamiltonian cycle which represents the tour that the probes undertake, there is a

property that is common to all test-steps. For any test-step, T j , there exist exactly 2 edges, one

arriving at T j from another test-step and the other leaving T j to another test-step. The test-steps

are represented as an undirected graph because the tour can go in either direction, but there is

still an incoming and outgoing edge when testing starts. With this property, for some test-step k:

Ix(i,j)= 2; iorj=k (5.3)

Proof:

If an arbitrary test-step T3 is connected to T2 and T9, x(2, 3) = 1, x(3, 9) = 1, all other xCi , j) that

have either i = 3 or j = 3, would = O. This will give us the overall sum of xCi, j) with either i = 3

or j = 3, equal to 2.

This property allows us to introduce constraints to our linear optimization model, to one known

as the fractional 2-factor LO (2-factor being that xci , j) takes two values):

30

Master Thesis - Alvin Hsieh McMaster University- CAS

Minimize I wCi,}) * xCi,}) (5.4)

Subject to:

I~:l xCi, k) + Ij=k+l x(k,}) = 2

OS xCi, j) S 1

I S i<j S n

k = 1,2,3 .. . n

(5 .5) [3]

There are commercial and open-source solvers that will be able to solve LO problems as

described in section 4.4. By giving the solver the appropriate inputs, it will output the xCi, j)'s,

which corresponds to the paths of the overall tour. However, since TSP is a NP-hard problem

[3], it is difficult computationally and mathematically for the solver to find integer values (0 and

1) for the xCi, j)'s directly. Fortunately, the fractional LO techniques discussed in section 4.2 can

be used to obtain solutions in fractions, ie. xCi, j) = 0.98. After applying rounding to those

numbers, it can give us integer solutions that are desired.

Ultimately, the correct solution will output a tour that is in fact a Hamiltonian cycle that

includes all the test-steps. However the solutions we would get from LO solvers may not

represent the complete tour that is desired, even though the undesirable solution does satisfy all

the mathematical constraint above.

Proof: In figure 5-2, the left graph represents the Hamiltonian Cycle that includes all the test-

steps and is the optimal solution. The right graph contains 2 separate sub-tours. Though it is not

the solution to our problem, it does mathematically satisfy the constraints of the fractional 2-

factor LO. Each test-step has exactly 2 edges though there are no edges connecting the· two sub-

tours.

31

Master Thesis - Alvin Hsieh McMaster University- CAS

Figure 5- 2:- The figure on the left represents t he des ired solution, a Hamilton ian Cycle th at traverses through all the testp-

steps. The figure on th e right represents two sub-tours. Th is illustrates the solution we may get undesirable so lutions from

the f ra ct ional 2-facor LO, even t hough it works out mathematically .

By chance, the optimal solution from the solver does in fact form a complete Hamiltonian

cycle. However, it is common that the LO solver gives a solution that does not correspond to the

desired complete tour. Those values can be used as a lower bound and constraints used for

further computation (through iteration). This will guide us towards the optimal solution that will

eventually produce a complete tour. The rest of the thesis deals with finding algorithms and

introducing constraints that will forbid sub-tours from forming in the solution.

5.3 Solving the Testing Path Using TSP Techniques:

Before proceeding to sub-tour elimination, we will apply the models developed so far , to

solve a hypothetical example. Say we have a circuit board that requires testing, and it has a total

of 6 test. -steps . The first step is to translate the layout of the circuit boards and the location of

the test steps , into to a graph, as illustrated in figure 5- 3. For simplicity, the routable edges are

given in the figure (though in reality, every vertex is able to form an edge with every other

vertex), as well as their conesponding edge weight.

32

Master Thesis - Alvin Hsieh McMaster University- CAS

5
9~

3 5

5 8~

Figure 5 - 3: Layout of test-steps

Since the size of the problem is small , the optimal solution may be easily visuali zed. However, a

small sample size is chosen to demonstrate the modeling work of this thesis in a feas ible manner.

The optimal solution is shown in figure 5- 4 below.

Figure 5 - 4: Optimal Tour of fi gure 5- 3

33

Master Thesis - Alvin Hsieh McMaster University- CAS

Keep in mind that vertex A is a test-step and it represents the first test point of the multiple test

points associated with test step A. The same goes for the rest. Table 5- 2 below illustrates the

naming of the edges in our graph.

AB --7 XI CD --7 X6

AE --7 X2 CF --7 X7

AF --7 X3 DE --7 Xs

BC --7 X4 DF --7 X9

BF --7 Xs EF --7 XIO

Table 5 - 2: x(i, j) matrix of TSP in Figure l. There are 45 (i,j) 's

Having all the necessary information, we can proceed and treat this as a fractional 2-factor LO.

Using (5.4) , (5 .5) and the edge weights, the problem is modeled as the following:

Minimize:

(5.6)

Subject to:

=2

=2

=2

Xs + X9 = 2

X s + XIO = 2

Xs +

(5.7)

o :s Xi :S 1 i = 1, 2, ... , 10

34

Master Thesis - Alv in Hsieh M cMaster University- CAS

The constraints all have the R.H.S . equal to 2, corresponding to the fact that the vertices

represent a Hamiltonian Cycle. As the last vertex loops back to the first, each vertex will have

an edge going in, as well as going out. The last constraint illustrates the permitted values of Xi'S.

Equaling to zero means that edge is not used and vice versa. Keep in mind that this IS a

fraction al 2-factor LO problem, so the values of x's are permitted to be non-integers.

The solver that was used was SeDuMi, which is designed to run in the Matlab

environment. Since the LO solves for min. c T x subject to Ax ::s b, we need to translate the

constraints into their corresponding matrix form . Table 5- 3 contains 3 matrices that correspond

to the constrains of the linear optimization problem. For matrix A, the first row with the variable

names is not part of the input, but is just there for reference.

A=

XI X2 X3 X4 Xs X6 X7 X8 X9 XIO
1 1 1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0
0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 1 0 1 1 0
0 1 0 0 0 0 0 1 0 1
0 0 1 0 1 0 1 0 1 1

b=

2 2 2 2 2 2

c=

9 3 5 5 4 2 8 1 7 5

Tabl e 5 - 3 : Constra ints In matrix form

The matrices in table 5- 3 cannot be used with SeDuMi as is because SeDuMi solves the

problem in the format of:

35

Master Thesis - Alvin Hsieh McMaster University- CAS

min. cTx

subject to Ax = b (5.8)

In order to impose Xi :'S 1, the 3 matrices in table 5- 3 must be modified . In order to add the Xi :'S 1

constraint to SeDuMi, it can be rewritten as:

xi:'Sl~Xi+Si=l (5.9)

with Si ~ 0

Thus, enforcing Xi:'S 1 requires 10 additional variables, also known as slacks. Modifying the

matrices in table 5- 3, the matrices become the following and is represented in table 5- 4:

min [eT, OT] * [Xl s

such that: A2 * [;] :'S [~2] X ~ 0, s ~ 0

where A2 = [1 ~]

C2 = [eT, OT]

Having set up the matrices, a straight forward function call to SeDuMi will yield the optimal

solution , if such solution exists. Once again, SeDuMi uses the interior point method , which

traverses the geometric feasible region of the solution from within, working outwards an edge, as

all optimal solution lie on some edge or hyperplane (higher dimensions).

36

Master Thesis - Alvin Hsie h McMaster University- CAS

A2=

(x, X2 X3 X4 Xs X6 X7 Xg X9 XIO S, S2 S3 S4 Ss S6 S7 Sg S9 SIO)

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 . 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

b2 =

2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

c2 =

9 3 5 5 4 2 8 1 7 5 0 0 0 0 0 0 0 0 0

..
Tab le 5 - 4: Constra ints In matrix form conforming to SeDuMI Input

Input:

sedumi(A2, b2, c2)

Output:

SeDuMi 1.2 1 by AdvOL, 2005-2008 and los F. Sturm, 1998-2003 ,
Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0,250, beta = 0,500
eqs m = 16, order n = 21, dim = 21, blocks = 1
nnz(A) = 40 + 0, nnz(ADA) = 76, nnz(L) = 48
it : b*y gap delta rate t/tP* tltD* feas cg cg prec
o : 5,59E+00I 0,000
1 : 2,25E+001 2,06E+001 0,0000,36920,90000,9000 3,76 1 1 1.6E+000
2: 2,09E+0014,52E+000 0,000 0,2 1910,90000,9000 1.38 1 1 3,lE-001
3: 2,OOE+001 1.26E-002 0,000 0,0028 0,99900,9990 1.04 1 I

37

0
0
0
0
1

0

Master Thesis - Alvin Hsieh McMaster University- CAS

iter seconds digits c*x b*y
3 0.7 Inf 2.0000000000e+001 2.0000000000e+001

IAx-bl = 4.Se-016, [Ay-cL + = 5.4E-016, Ix l= 3.2e+000, Iyl= 9.3e+000

Detailed timing (sec)
Pre IPM Post

5.460E-001 7.488E-001 2.496E-001
Max-norms: Ilbll=2, Ilell = 9,
Cholesky ladd l=O, Iskip l = 0, IIL.Ll I = 1.

ans =

(2,1)
(3,1)
(4,1)
(5,1)
(6, 1)
(8,1)

(11,1)
(17,1)
(19,1)
(20,1)

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

From the answer variable named "ans" above, the solver outputs the variables and their

values, whi le variables that are not displayed have the value of O. More specifically, (2,1)

correspond to X2, so the fu ll solution is:

Referring back LO figure 5- 4, the solution (Xi'S) computed by SeDuMi does indeed match the

edges of the known optimal tour. The Xi'S that are not part of the optimal tour have their

respective Si'S = 1, which conforms to equation (5.9).

The total distance traveled in the tour that is computed by SeDuMi is 20 units, as

illustrated in figure 5- 4. The worst case distance is 33 units, by taking the path shown in figure

5- 5 below. If the average edge weights were taken for all 10 edges, the result is 4.9 units per

38

Master Thesi s - Alvin Hsieh McMaster University- CAS

edge. Since in a complete tour, 6 edges are traveled, the distance traveled based on the average

is 4.9 * 6 = 29.4. This example verifies how the test path generated and solved by the model is

much more efficient than that of the flying probe tester's sequential paths. If the sequential order

produces a sparse graph, the test path generated by the model will be significantly more ' efficient.

If the sequential order produces a dense graph, the test path generated by the model will not be as

efficient, but still more nonetheless . The results are summarized in table 5- 5.

~g7 1 5 4 \
3 5

1, D 2
Figure 5 - 5: Worst case trave l distance

Tour Distance (units)

Solution from Model 20

A verage Case 29.4

Worst Case 33

Ta bl e 5 - 5: Tota l distance from mod e l's solution, ave rage case a nd worst case

39

Master Thesis - Alvin Hsieh McMaster University- CAS

5.4 Subtour Relaxation of the Fractional 2-Factor:

Now back to the topic of sub-tour. In figure 5.6, a tour is mapped out. The red line splits

all the cities into two groups, the ones above and below. Since the tour is indeed a complete

tour, there has to be at least 2 paths that cross the red line, joining two groups together. This

property holds regardless of any cut (orient the red line) made to the group , since the tour is a

complete one, touring each city exactly once. In the right figure of figure 5- 2, if a cut was made

between the two triangles, the number of paths crossing each clusters is 0, because sub-tours

exist and does not contain all the test-steps.

Figure 5 - 6: The po int s above an d below t he red line re presents two different and uni que clusters

Let S be any collection of test points having at least 3 and at most k-l members (S cannot

contain the entire set of test points on the board) , and let Q denote the remaining testing that is

not part of S. To forbid the sub-tours from forming, a condition needs to be added stating: the

sum of the variable corresponding to the path from S to Q must be at least 2. A path from S to Q

40

Master Thesis - Alvin Hsieh McMaster University- CAS

involves a point that is part of S, going to another point that is part of Q, crossing the border (cut)

that separates the two sets.

LX(i,j)~2 withlofiandjisinS,theotherinQ (5.10)

The solution quality of this lower bound (obtained from solving the sub-tour relaxation) is much

better than the one obtained from the fractional 2-factor LO. However, this greatly increases the

computational difficulty of the problem and we can no longer feed the equations to the LO solver

to solve directly, as its complexity is 0(211) [3].

5.5 Graph Representation:

If we record the problem as a graph, G=(V,E), where V IS the set of all the points

representing each test-steps and E stores all the edge weights w(i,j).

We have following definition:

Let S be a subset of V. An cut, G, that separates S from the rest of V should come intersect

edges that have one of its point in S, the other not in S. Let 8(v) represent these edges. As

stated in the previous section, when there exist two sets/clusters of vertices , there has to be at

least 2 edges whose starting and ending points from different sets. This property must hold in

order to have a complete tour.

We could re-write the fractional 2-factor LO as the following:

Minimize w' x (5.11)

Subject to:

41

Master Thesis - Alvin Hs ieh McMaster University- CAS

x(o(v)) = 2 for all the vertices v (5.12)

O:SXe:S1, for all edges e (fractional) (5.13)

Equation (5.11) is essentially the same objective function as (5.4), but in a different form.

Equation (5.12) is equivalent to (5.5), but modified to represent cuts, where all vertices/points

must have an incoming and outgoing edge. Given a non-empty proper subset S of V, the sub­

tour inequality for S requires that the variables corresponding to edges joining vertices in S to

vertices in V-S sum to at least 2, giving rise to (5.14).

Thus the sub-tour relaxation of the fractional 2-factor LO becomes:

Minimize w'x

Subject to:

x(o(v)) = 2 for all the vertices v

x(o(S)) ;::: 2 or xeS, V - S) ;::: 2 mfor all S c V,S * V, lSI ;::: 3 (5 .14)

O:SXe:S 1, for all edges e

5.6 Cutting-Plane Method:

Consider the equation (5.13) above, the size of the problem is extremely large. A

fundamental idea could be apply in order to reduce the size of the problem. An LO relaxation

can be improved during a solution procedure by adding constraints in the form of linear

inequalities that are satisfied by all points. This means we will add some constraints during

42

Master Thesis - Alvin Hsieh McMaster University- CAS

solving process instead for add all the constraints at the beginning, The flowchart below

illustrates the idea behind the algorithm:

SUI mg t e Mo 'Id' h d I e

~

[Solving Model
1

~
No sub-tour find the subtour

according to the solution

V Sub-tour ex ist

Adding the
corresponding constraint

get the optmial solution

Figure 5 - 7: Idea beh ind sub-tour elimination algorithm

43

Master Thesis - Alvin Hsieh McMaster University- CAS

Algorithm:

1. Build the initial linear system: x(o(v)) = 2 for all the vertices v

2. Solve the system, returning the solution x*

3. While (Subtour exist in x*)

4. FindCut(x*), return a nonempty set

5. do rebuild the system, adding constraint based on the suboutrs found

6. Solve system again

7. end

8. Return the solution

The algorithm will successfully eliminate all sub-tours, however, it is computationally

heavy. Along with section 5.3, the models introduced in this thesis are able to successfully find a

tour path that decreases the distance travelled by the probe. Under a mass production setting

where many of the same boards are tested, the cost of computing the optimal tour is divided into

many circuit boards in the sense that it is computed once but executed multiple times.

44

Master Thesis - Alvin Hsieh McMaster University- CAS

Chapter 6: Testing

In this section, the tour distance of Acculogic's sequential path is compared with that of

the model developed in the previous chapter. Using CPLEX as the linear optimization-solver, 3

additional programs were written in Java. The first program handles inputs (coordinates of test

points) and sets up the problem, while the other 2 are used to eliminate any sub-tours that may

arise from CPLEX's output. In section 6.1, these 3 programs will be explained in more details ,

including their purpose, input and output files , as well as their general algorithm.

6.1 Java Programs:

Program: fileData.java

Input File: inputtxt (contains coordinate of all points)

Output File: output.lp

Description:

4S

Master Thesis - Alvin Hsieh McMaster University- CAS

The purpose of this program is to read in all the test points that we wish to find the

shortest path of. Points are in the x, y coordinate format and is read by the program and stored as

objects. From these objects, the decisional variables (distance from every city to all others) are

computed. This program then prints the LO problem to the output file, conforming to the format

required by the CPLEX solver.

Algorithm:

1. Read all test points from inputtxt

2. From test points , determine the n(n-l)/2 decisional variables (name + edge weights)

3. Print objective function to output file

4. Print constraints to output file

S. Print bounds to output file

Input file: cplex.txt

cplex2.txt

output.lp

Output file: output.lp

Description:

Program: Cplex.java

To relax the model, the bound of each decisional variable allows it to take non-integer

values between a and 1. Though integer solutions desired, there are cases where the optimal

solution would contain non-integer values . If the value is < 0.5 , it can be rounded down to O. If

the value is > 0.5 , it can be roundcd to 1. However, when the value is equal to 0.5, it would be

inaccurate to round all of it up, because we would end up having more edges in the tour than it is

allowed in a Hamiltonian cycle. This program is to be executed proceeding the use of the

46

M aster Thesi s - Alvin Hsieh McMaster Univers ity- CAS

CPLEX solver, after copyll1g its solution from the command prompt to either cplexU xt or

cplext2, txt. For the very first use of CPLEX, the solution is placed in the former, while all

succeeding solutions are placed in the latter. This program processes the CPLEX solution by

checking whether or not any decisional variables in cplex2,txt with the value of 0,5, are also

present in cplexu xt (the prev ious solution) , If those new decisional vari able with the value of

0,5 do exists in the previous solution, then nothing is to be done, For those decisional variables

that do not exist in the previous solution, we must change its corresponding bound in outpuUxt

to 0, For example, if in cplex2,txt, x2_5 = 0,5 , x2_5 does not exist in cplex ,txt, then in output.lp,

we must change the bound of x2_5 to 0 <= x2_5 <= 0,

The idea behind thi s is that for a decisional variable with a value of 0,5, if that edge is

also present in cplex,txt, it is a part of some sub-tour in the previous solution, and sub-tours form

because they are the local minimum of that part of the graph, Though joining two separate

clusters together do requiring the breaking of edges amongst each cluster, keeping these local

minimum (edges existing in the previous solution) is essenti al to prevent the creation of sub­

tours within our sub-tours, It is expected that at least two edges will be broken, an edge from the

first cluster that is closest to the second cluster, as well as an edge from the second cluster that is

closest to the first. Each of the two loose points of each cluster will form an edge with a separate

loose point of the other cluster, thus creating two cluster joining edges, Whenever CPLEX

outputs decisional variables with the value of 0,5 , they always come in pairs, because together

they have the sum of 1, which represent a whole edge, Thus the idea is to keep the edge that is

also present in the previous solution (making the edge value = 1) while changing the bounds of

the other one that is not part of the previous tour, to 0 (making the edge value = 0), Doing so

will prevent the fo rmation sub- tour creating edges within cluster (because bounds are changed to

47

Master Thes is - Alvin Hsieh McMaster University- CAS

0, that edge can ' t exist) as well as ensuring only the edges that are closest to the other cluster are

broken.

Algorithm:

1. Read in cplex2.txt

2. if decisional variables in cplex2.txt contain 0.5

3.

4.

5.

6.

7. else

8.

if decisional variables contains 0.5

read cplex.txt, check if cplex.txt also contains it

if cplex.txt does not contain it

change its bound in outputtxt to 0, ie. 0 <= x2_ 4 <= 0

overwrite cplex.txt with contents of cplex2.txt (newest solution)

Program: subTour.java

Input Files: inputtxt

cplex.txt

output.lp Output:

Description:

This program is responsible for analyzing whether the solution solved and output by

CPLEX contains any sub-tours. This is to be executed after running Cplex.java if and only if no

decisional variables have the value 0.5, which the Cplex.java will confirm. Along with the

CPLEX solution, this program also must read the input file that contains all the coordinates.

Starting from the first decision variable in the solution (first row of cplex.txt), the program

traverses to the next point that it is connected, then onto that's next, and so on. For example, if

48

Master Thes is - Alvin Hsieh McMaster University- CAS

the first edge in cplex.txt is xLlS, the program find the next edge that contains test point 15 , say

x8_15, and finds the next edge that contains test point 8 and so on. If the path that leads back to

the first point and contains all the points in the system, then the program outputs the total

distance traveled, as a complete tour is established. If any sub-tour exists, then the program will

generate a new constraint based on the points in the current sub-tour to all external points. This

constraint is updated (written) to the appropriate place in output.lp, to be solved by CPLEX.

Algorithm:

l. Read all test points from inputtxt

2. Read CPLEX solution from cplex.txt

3. Using the first decisional variable as starting point, traverse through the connected edges

4. if no sub-tour exist

5. Output to screen the distance traveled

6. else if sub-tour exists

7. Generate new constraint: sum of all edges in the sub-tour to external edges = 2

8. Update constraint to output file

6.2 Steps of Testing:

With a better understanding of what each program does , the following sequence explains

the overall testing process:

1. Enter test point coordinates into inputtxt

2. Run fileData.java to obtain LO problem, written to output.lp

3. Read output.lp in CPLEX, optimize it and copy solution to cplex.txt

4 . Run subTour.java, will update output.lp

49

Master Thesis - Alvin Hsieh McMaster University- CAS

If no sub-tour exist, output total distance traveled, go to step 7.

If sub-tour exists, will update output.lp

5. Feed output.lp to CPLEX solver, optimize it and copy solution cplex2.txt

6. Run cplex.java

If decisional variable = 0.5 exist, go back to step 5

If decisional variable = 0.5 don't exist, go back to step 4

7. End

6.3 Testing and Results:

The coordinates of Acculogic's demo board (which is used for the testing of the flying

scorpion) is entered into inpuuxt. In this test instance, there are a total of 20 test points . In table

6-1 below the (x, y) coordinates of each point (in cm), the distance from the current point to the

next, as well as the sum of these di stances (the 20th goes back to the first point, completing the

tour). In the inpuUxt file , the coordinate of each point lies on a separate line, with the x

coordinate first, followed by a comma, then the y coordinate.

x Y Distance Sum

4.2799 7.66064
4.5466 7.6454 0.267135 64.34205
5.0038 7.6454 0.4572
6.6548 7.6454 1.651

3.81 6.5786 3.038248
4.4196 3.5306 3.108362
4.3942 3.52044 0.027357

1.76784 0.6604 3.882988
6.3246 0.6604 4.55676

0.79756 3.3782 6.159108
4.6228 0.6604 4.69243
2.7686 5.2324 4.933684
8.6106 6.3246 5.94322

50

Master Thesis - Alvin Hsieh McMaster University- CAS

8.9662 5.461 0.933947
9.271 3.1242 2.356594
5.207 3.5179 4.083025
3.937 3.0734 1.345541

6.6548 1.7653 3.016217
3.4417 5.04444 4.590944

3.94716 1.7272 3.355528
4.2799 7.66064 5.942763

Table 6 - 1: Test Points Coord inate from Accu logic's demo board (values obta ined from Integrator software).

Testing includes running any of the 3 programs and CPLEX at different stages of testing

as described in section 6.2. Some programs will be required to execute multiple times ,

depending on the number of iterations needed to eliminate all sub-tours. This is directly linked

to the sample size. For the specifics of testing this instance, please refer to Appendix C, which

will illustrate which bounds are changed, constraints are added, as well as the CPLEX solution

after each iteration. The final output produced by CPLEX is of the following form:

xL2 1.000000
xL5 1.000000
x2_3 1.000000
x3_4 1.000000
x4_13 1.000000
x5_19 1.000000
x6_7 1.000000
x6_16 1.000000
x7_17 1.000000
x8_10 1.000000
x8_17 1.000000
x9_11 1.000000
x9_18 1.000000
xlO_12 1.000000
xlL20 1.000000
x12_19 1.000000
x13_14 1.000000
x14_15 1.000000
x 15_ 18 1.000000
x16_20 1.000000

51

Master Thesis - Alvin Hsieh McMaster University- CAS

On the left column are the decisional variable names. Their value on right side confirms

that they are indeed on the path (1 being part of the tour, 0 being not part of the tour) . The

solution can also be confirmed by tracing the tour path: 1 -72-7 3 -74-7 13 -714 -7 15 -718

-79 -711 -720 -716 -76 -77 -717 -78 -710 -712 -719 -75 -71. A Hamiltonian cycle did

indeed form as the tour looped back to test point number 1. The number of edges in the tour is

20, which is equal to the number of test points in the test instance. From the subTour.java

program, when there are no sub-tours present, it computes the distance of the tour, which IS

31.04 cm, a 51.76% reduction of the sequential distance of 64.24 cm.

52

Master Thesis - Alvin Hsieh McMaster University- CAS

Chapter 7: Future work

Future work could include incorporating the point exchange feature in the modeling. It

will increase computation time, but should reduce the tour distance further as it takes advantage

of test points common to different test-steps. Other features of the flying probe tester that can be

considered are test-point selection, pre-processing of test points, motion sort and n10del the

vertical z-axis of components as well as probe movements. Also , work can be done in

implementing the model on the actual Flying Scorpion and see how it performs.

53

Master Thesis - Alvin Hsieh McMaster University- CAS

54

Master Thesis - Alvin Hsieh McMaster University- CAS

Appendix A: CPLEX Output

The test program in section 5.3 was also done in CPLEX. Here is the output.

CPLEX> set logfile solutionPrimal . txt
Logfile ' cplex . l og ' closed .
Logfile ' so lu t i o nP rima l . txt ' open.
CPLEX> opt
No problem exists .
CPLEX> read test .lp
Problem ' test . lp ' read .
Read time = 0 . 01 sec .
CPLEX> opt
Tried aggregator 1 time.
No LP pre so l ve o r aggregator reduct i o ns .
Pre solve time 0 . 00 sec .

Iteration log
Iteration : 1 I nfeasibility
Switched to devex .
Iteration : 3 Objective

3.000000

20 . 000000

Primal simplex
Solution time =

Opt i ma l : Object i ve 2 . 0000000000e+01
0 . 00 sec . Iterations = 3 (2)

CPLEX> display solution variables -
Variable Name Solution Value
x2 1.000000
x3 1.000000
x4 1 .000000
xS 1 . 000000
x6 1.000000
x8 1 . 000000
All other variables in t he range 1-10 are O.
CPLEX>

Dual Simplex

CPLEX> set lp
Present value for method for linear optimization : 1
a automat ic
1 primal simplex
2 dual simple x
3 network s i mplex
4 barrier
5 sifting

55

M aster Th es is - Alvin Hsieh McM aster Universi ty- CAS

6 = concurrent dual , barrier , and primal
New value for method for linear optimization : 2
New value for method for linear optimization: 2
CPLEX> read test.lp
Problem ' test .lp ' read .
Read time = 0 . 01 sec.
CPLEX> opt
Tried aggregator 1 time.
No LP presolve or aggregator reductions .
Presolve time 0.00 sec .

Iteration log
Iteration : 1 Dual objective 8 . 000000

Dual simplex Opt imal : Object ive 2 . 0000000000e+01
Solution time = 0.00 sec. Iterations = 4 (0)

CPLEX> disp l ay soluti o n variab l es =

Variable ' = ' does not exist .
Display val ues of which var i able (s): -
Variable Name Solution Value
x2 1 . 000000
x3
x4
x5
x6

1 . 000000
1.000000
1.000000
1 . 000000

x8 1 . 000000
All other variables in the range 1-10 are O.

===

IPM
==

CPLEX> set lp 4
New value for method for linear optimization: 4
CPLEX> read test.lp
Problem ' test .lp ' read.
Read time = 0 . 01 sec .
CPLEX> opt
Tried aggregator 1 t ime .
No LP preso l ve or aggregator reductions.
Presolve time = 0 . 00 sec .
Parallel mode : using up to 16 threads for barrier.
Number of non zeros in lower tr iangle of A*A ' = 10
Using Approximate Minimum Degree order ing
Total time for automatic order ing = 0.00 sec .
Summary statistics for Cho l es ky factor:

Threads 16
Rows in Factor 6
Integer space requ i red 6
Total non-zeros in factor 21
Total FP ops to factor 91

Itn Primal Obj Dual Obj
o 4.9000000e+01 -4.9000000e+01
1
2

2 . 5927682e+01
2. 1408090e+01

1.1222573e+01
1.9362105e+01

Prim Inf
8 . 00e+00
1.11e-15
6.66e-16

56

Upper Inf
1 . 00e+01
O. OOe+OO
1.3ge-16

Dual Inf
O. OOe+OO
6 . 66e-15
3.44e- 15

Master Thesis - Alvin Hsieh McMaster University- CAS

3 2 . 0040014e+Ol 1. 99377 15e+Ol
4 2 . 0002543e+Ol 1. 9997428e+Ol
5 2 . 0000128e+Ol 1. 9999872e+01
6 2 . 0000006e+01 1 . 9999994e+01
7 2 . 0000000e+0 1 2 . 0000000e+01
8 2 . 0000000e+01 2 . 0000000e+01

Parallel barrier rea l time = 0 . 02

Primal crossover.
Primal: Fixed no variables .
Dual : F i xing 6 variab l es .

4 . 44e-16
4 . 44e-16
8 . 88e-16
O.OOe+OO
O. OOe+OO
8.88e-16

sec .

1. 60e-16 3 . 98e-15
2 . 63e- 16 4 . 95e- 15
2 . 75e- 16 4 . 60e-15
2 . 93e-16 2 . 93e-15
2 . 87e-16 2 . 63e-15
2 . 80e-16 4 .9ge- 1 5

5 DMoves: Infeasibility
a DMoves : In feasibility

Dual : Pushed 5 , exchanged 1.

O. OOOOOOOOe+OO Objective
O. OOOOOOOOe+OO Objective

2 .0 0000000e+Ol
2 . 00000000e+01

Using devex .
Total crossover time = 0 . 00 sec .

Total real time on 16 threads = 0 . 02 sec .

Pr i mal simp l ex - Optimal: Object i ve = 2 . 0000000000e+Ol
Solution time = 0.02 sec. Iterations = a (0)

CPLEX> disp lay solution var
Di splay val ues of whi ch variable (s) : -
Variable Name
x2
x3
x4
x5
x6
x8

Sol u t i o n Va lue
1. 000000
1.00000 0
1 . 000000
1 . 000000
1. 000000
1.000000

All other variab l es in t he range 1-10 are O.

57

Master Thesis - Alvin Hsieh McMaster University- CAS

Appendix B: Flying Scorpion's

Testing Capabilities .

These are the electrical components that the Flying Scorpion is capable of testing:

• Resistors

• Capacitors (need to discharge first)

• Inductors

• Shorts

• Switch: opened or closed circuits (test presence or absence of jumpers)

• Diode: forward and reverse/leakage tests

• Zener Diode

• BJT: NPN, PNP

• MOSFET

• Opto

• Thyristor

• Triac

58

Master Thesis - Alvin Hsieh McMaster University- CAS

Appendix C: Testing Procedure and

I11111lI111Ze

Results

1. Enter test point coordinates into input.txt

Contents of input.txt

4.2799,7.66064
4.5466,7.6454
5.0038,7.6454
6.6548,7.6454

3.81 ,6.5786
4.4196,3.5306
4.3942,3.52044
1.76784,0.6604
6.3246,0.6604

0.79756,3.3782
4.6228,0.6604
2.7686,5.2324
8.6106,6.3246
8.9662,5.461
9.271 ,3 .1242
5.207,3.5179
3.937,3.0734

6.6548,1.7653
3.4417,5.04444
3.94716,1.7272

2. Running fileData.java -7 Adds LO problem to output.Ip

Contents of output.1p

0.27 xL2 + 0.72 xl 3 + 2.37 xL 4 + 1.18 xL5 + 4.l3 xL6 + 4.14 xL7 + 7.44 xL8 + 7.29
x1 _9 + 5.52 xLlO + 7.01 xLII + 2.86 xL12 + 4.53 xL13 + 5.18 xL14 + 6.74 xL15 + 4.25
xL16 + 4.6 xL17 + 6.36 x L18 + 2.75 xL19 + 5.94 xL20 + 0.46 x2_3 + 2. 11 x2_4 + 1.3 x2_5
+ 4.l2 x2_6 + 4.13 x2_7 + 7.52 x2_8 + 7.21 x2_9 + 5.68 x2_10 + 6.99 x2_11 + 3.0 x2_12 +
4.27 x2_13 + 4.93 x2_14 + 6.54 x2_15 + 4.18 x2_16 + 4.61 x2_17 + 6.25 x2_18 + 2.83 x2_19 +

59

Master Thesis - Alvin Hsieh McMaster University- CAS

5.95 x2_20 + 1.65 x3_4 + 1.6 x3_5 + 4.16 x3_6 + 4.17 x3_7 + 7.7 x3 8 + 7.11 x3_9 + 5.99

x3_ 10 + 7.0 x3_ 11 + 3.29 x3_ 12 + 3.84 x3_13 + 4.52 x3_ 14 + 6.22 x3_ 15 + 4.13 x3_ 16 + 4 .69

x3_17 + 6.11 x3_18 + 3.03 x3_19 + 6.01 x3_20 + 3.04 x4_5 + 4.68 x4_6 + 4.7 x4_7 + 8.52 x4_8

+ 6.99 x4_9 + 7.25 x4_10 + 7.27 x4_11 + 4.57 x4_12 + 2.36 x4_13 + 3.18 x4_14 + 5.22 x4_ 15

+ 4.37 x4_16 + 5.32 x4_17 + 5.88 x4_18 + 4.13 x4_19 + 6.51 x4_20 + 3.11 x5_6 + 3.11 x5_7 +
6.26 x5_8 + 6.43 x5_9 + 4.4 x5_10 + 5.97 x5_11 + 1.7 x5_12 + 4.81 x5_13 + 5.28 x5_14 + 6.46

x5_ 15 + 3.36 x5_16 + 3.51 x5_17 + 5.59 x5_18 + 1.58 x5_ 19 + 4.85 x5_20 + 0.03 x6_7 + 3.91

x6_8 + 3.44 x6_9 + 3.63 x6_10 + 2.88 x6_11 + 2.37 x6_12 + 5.04 x6_13 + 4 .94 x6_ 14 + 4.87

x6_15 + 0.79 x6_16 + 0.66 x6_17 + 2.85 x6_18 + 1.8 x6_ 19 + 1.86 x6_20 + 3.88 x7_8 + 3.45

x7_9 + 3.6 x7_10 + 2.87 x7_11 + 2.36 x7_12 + 5.06 x7_13 + 4.97 x7_14 + 4.89 x7_ 15 + 0.81

x7_16 + 0.64 x7_17 + 2.86 x7_18 + 1.8 x7_19 + 1.85 x7_20 + 4.56 x8_9 + 2.89 x8_10 + 2.85

x8_11 + 4.68 x8_12 + 8.88 x8_13 + 8.65 x8_14 + 7.9 x8_15 + 4.47 x8_16 + 3.24 x8_17 + 5.01

x8_18 + 4.69 x8_19 + 2.43 x8_20 + 6.16 x9_10 + 1.7 x9_11 + 5.79 x9_I2 + 6.11 x9_13 + 5.48

x9_14 + 3.84 x9_15 + 3.07 x9_16 + 3.39 x9_17 + 1.15 x9_18 + 5.25 x9_19 + 2.61 x9_20 + 4.69

xlO_II + 2.71 xlO_I2 + 8.35 x10_13 + 8.43 xlO_14 + 8.48 x10_I5 + 4.41 x10_ 16 + 3.15

x10_17 + 6.08 xlO_18 + 3.13 xlO_19 + 3.56 x 10_20 + 4.93 xl L12 + 6.93 xl L13 + 6.47

xl Ll4 + 5.26 x1L15 + 2.92 x1L16 + 2.51 xl Ll7 + 2.31 xlL18 + 4 .54 x1L19 + 1.26

xl L20 + 5.94 x12_13 + 6.2 x12_14 + 6.84 x12_15 + 2.98 x12_ 16 + 2.45 xI2_17 + 5.21 x12_18

+ 0.7 x12_19 + 3.7 x12_20 + 0.93 x13_ 14 + 3.27 x13_15 + 4.41 x13_16 + 5.69 x 13_17 + 4.96

x13_18 + 5.33 x13_19 + 6.55 x 13_20 + 2.36 x14_15 + 4.23 x14_16 + 5.57 x14_17 + 4.36

x14_18 + 5.54 x14_19 + 6.26 x14_20 + 4.08 x15_16 + 5.33 xI5_17 + 2.95 x15_18 + 6.1 4

x15_19 + 5.5 x15_20 + 1.35 x16_ 17 + 2.27 x16_18 + 2.33 x16_19 + 2.19 x16_20 + 3.02 x17_18

+ 2.03 x17_19 + 1.35 x 17_20 + 4.59 x18_19 + 2.71 x18_20 + 3.36 x19_20

subject to

xL2 + xl 3 + xL 4 + xL5 + xL6 + xL7 + xL8 + xL9 + xLlO + xLII + xL12 + xL13 +
xLl4 + xL15 + xL16 + xL17 + xL18 + xL19 + xL20 = 2

xL2 + x2_3 + x2_ 4 + x2_5 + x2_6 + x2_7 + x2_8 + x2_9 + x2_10 + x2_11 + x2_12 + x2_13 +
x2_ 14 + x2_ 15 + x2_16 + x2_17 + x2_18 + x2_19 + x2_20 = 2

xL3 + x2_3 + x3_4 + x3_5 + x3_6 + x3_7 + x3_8 + x3_9 + x3 10 + x3_11 + x3_12 + x3_13 +
x3_14 + x3_ 15 + x3_ 16 + x3_ 17 + x3_18 + x3_19 + x3_20 = 2

x 1_4 + x2_ 4 + x3_ 4 + x4_5 + x4_6 + x4_7 + x4_8 + x4_9 + x4_10 + x4_11 + x4_1 2 + x4_13 +
x4_14 + x4_15 + x4_16 + x4_17 + x4_18 + x4_19 + x4_20 = 2

xL5 + x2_5 + x3_5 + x4_5 + x5_6 + x5_7 + x5_8 + x5_9 + x5 10 + x5_11 + x5_12 + x5_ 13 +
x5_ 14 + x5_15 + x5_16 + x5_17 + x5_18 + x5_19 + x5_20 = 2

xL6 + x2_6 + x3_6 + x4_6 + x5_6 + x6_7 + x6_8 + x6_9 + x6_10 + x6_ 11 + x6_1 2 + x6_13 +
x6_14 + x6_ 15 + x6_16 + x6_17 + x6_18 + x6_19 + x6_20 = 2

60

Master Thesis - Alvin Hsieh McMaster University- CAS

xL7 + x2_7 + x3_7 + x4_7 + x5_7 + x6_7 + x7_8 + x7 9 + x7_10 + x7_ll + x7_l2 + x7_13 +
x7_l4 + x7_l5 + x7_l6 + x7_l7 + x7_l8 + x7_l9 + x7_20 = 2

xL8 + x2_8 + x3_8 + x4_8 + x5_8 + x6_8 + x7_8 + x8_9 + x8 10 + x8_ll + x8_12 + x8_l3 +
x8_14 + x8_15 + x8_16 + x8_17 + x8_l8 + x8_19 + x8_20 = 2

xL9 + x2_9 + x3_9 + x4_9 + x5_9 + x6_9 + x7_9 + x8_9 + x9 10 + x9_11 + x9_12 + x9_l3 +
x9_ l4 + x9_15 + x9_l6 + x9_l7 + x9_l8 + x9_19 + x9_20 = 2

xL10 + x2_10 + x3_10 + x4_10 + x5_l0 + x6_l0 + x7 _10 + x8 10 + x9_10 + x10_11 +
x10_l2 + x10_13 + x1O_14 + xlO_15 + x10_l6 + xlO_17 + xlO_18 + x1O_19 + x10_20 = 2

xLII + x2_11 + x3_ll + x4_11 + x5_11 + x6_1l + x7 _11 + x8_11 + x9_11 + x1O_ll +
xl L 12 + xl L 13 + xl L 14 + xl L 15 + xl L 16 + xl L 17 + xl L 18 + xl L 19 + xl L20 = 2

xL12 + x2_l2 + x3_12 + x4_12 + x5_12 + x6_12 + x7_12 + x8_12 + x9_12 + x1O_12 +
x1l _ l2 + x12_l3 + x12_14 + x12_l5 + x12_l6 + x12_17 + x12_18 + x12_19 + x1 2_20 = 2

x 1_13 + x2_l3 + x3_13 + x4_13 + x5_13 + x6_13 + x7 _13 + x8_13 + x9_13 + xlO_13 +
xl L13 + x12_13 + x13_l4 + x13_15 + x13_16 + x13_17 + x13_18 + x13_19 + x13_20 = 2

xL14 + x2_14 + x3_14 + x4_14 + x5_14 + x6_14 + x7_14 + x8_14 + x9_l4 + x1O_14 +
xl L14 + x12_14 + x13_14 + x14_15 + x14_16 + x14_17 + x14_18 + x14_19 + x14_20 = 2

xLl5 + x2_15 + x3_l5 + x4_l5 + x5_l5 + x6_l5 + x7_l5 + x8_15 + x9_15 + xlO_15 +
xlL15 + x12_l5 + x13_l5 + x14_15 + x15_16 + x15_17 + x15_18 + x15_19 + x15_20 = 2

xL16 + x2_16 + x3_16 + x4_16 + x5_16 + x6_16 + x7_l6 + x8_16 + x9_16 + x10_16 +
xl L16 + x12_l6 + x13_16 + x14_l6 + x15_16 + x16_17 + xI6_18 + x16_19 + x16_20 = 2

x L17 + x2_17 + x3_17 + x4_17 + x5_17 + x6_17 + x7 _17 + x8_17 + x9_17 + x10_17 +
xl L17 + x12_17 + x13_17 + x14_l7 + x15_17 + x16_17 + x17_l8 + x17_19 + x17_20 = 2

xl_18 + x2_l8 + x3_18 + x4_18 + x5_l8 + x6_18 + x7_18 + x8_18 + x9_l8 + xlO_ 18 +
xl Ll8 + x12_l8 + x13_18 + x14_18 + x15_18 + x16_18 + x17_ l8 + x18_19 + x18_20 = 2

xL19 + x2_l9 + x3_l9 + x4_l9 + x5_19 + x6_19 + x7_l9 + x8_19 + x9_19 + xIO_I9 +
xl L19 + x12_19 + x13_19 + x14_19 + x15_l9 + x16_19 + x17_19 + x18_l9 + x19_20 = 2

xl _20 + x2_20 + x3_20 + x4_20 + x5_20 + x6_20 + x7_20 + x8_20 + x9_20 + xlO_20 +
xll _20 + x12_20 + x13_20 + x 14_20 + x15_20 + x16_20 + x 17_20 + x18_20 + x19_20 = 2

bound
0<= xL2 <= 1 ° <= xL3 <= I ° <= xL4 <= 1

61

Master Thesis - Alvin Hsieh McMaster University- CAS

0<= xL5 <= 1
0<= xL6 <= 1
0<= xl_7 <= 1
0<= xL8 <= 1
0<= xL9 <= 1
0<= xLlO <= 1
0<= xLll <= 1
0<= xLI2 <= I
0<= xLI3 <= I
0<= xL14 <= 1
0<= xL15 <= 1
0<= xL16 <= 1
0<= xL17 <= 1
0<= xL18 <= 1
0<= xL19 <= 1
0<= xL20 <= I
0<= x2_3 <= 1
0<= x2_ 4 <= 1
0<= x2_5 <= 1
0<= x2_6 <= 1
0<= x2_7 <= I
0<= x2_8 <= 1
0<= x2_9 <= 1
0<= x2_10 <= 1
0<= x2_Il <= 1
0<= x2_12 <= 1
0<= x2_13 <= 1
0<= x2_14 <= 1
0<= x2_15 <= 1
0<= x2_16 <= 1
0<= x2_17 <= I
0<= x2_18 <= I
0<= x2_19 <= 1
o <= x2_20 <= 1
0<= x3_4 <= I
0<= x3_5 <= 1
0<= x3_6 <= 1
0<= x3_7 <= 1
0<= x3_8 <= 1
0<= x3_9 <= I
o <= x3_10 <= 1
0<= x3_11 <= I
0<= x3_12 <= 1
o <= x3_13 <= I
0<= x3_14 <= 1
0<= x3_15 <= 1

62

Master Thesis - Alvin Hsieh McMaster University- CAS

0<= x3_16 <= 1
0<= x3_17 <= 1
0<= x3_18 <= 1
0<= x3_19 <= 1
a <= x3_20 <= 1
0<= x4_S <= 1
0<= x4_6 <= 1
0<= x4_7 <= 1
0<= x4_8 <= 1
0<= x4_9 <= 1
a <= x4_10 <= 1
a <= x4_11 <= 1
0<= x4_12 <= 1
0<= x4_13 <= 1
0<= x4_14 <= 1
0<= x4_1S <= 1
0<= x4_16 <= 1
a <= x4_17 <= 1
0<= x4_18 <= 1
0<= x4_19 <= 1
a <= x4_20 <= 1
0<= xS_6 <= 1
0<= xS_7 <= 1
0<= xS_8 <= 1
0<= xS_9 <= 1
0<= xS_lO <= 1
0<= xS_ll <= 1
0<= xS_12 <= 1
0<= xS_1 3 <= 1
0<= xS_14 <= 1
0<= xS_lS <= 1
0<= xS_16 <= 1
0<= xS_ 17 <= 1
0<= xS_ 18 <= 1
0<= xS_19 <= 1
0<= xS_20 <= 1
0<= x6_7 <= 1
0<= x6_8 <= 1
0<= x6_9 <= 1
a <= x6_10 <= 1
a <= x6_11 <= 1
0<= x6_12 <= 1
0<= x6_13 <= 1
0<= x6_14 <= 1
0<= x6_1S <= 1
0<= x6_16 <= 1

63

Master Thesis - Alvin Hsieh McMaster University- CAS

o <= x6_17 <= 1
0<= x6_18 <= 1
0<= x6_19 <= 1
o <= x6_20 <= 1
0<= x7_8 <= 1
0<= x7_9 <= 1
0<= x7_10 <= 1
o <= x7 _11 <= 1
0<= x7_12 <= 1
0<= x7_13 <= 1
0<= x7_14 <= 1
0<= x7_15 <= 1
0<= x7_16 <= 1
0<= x7_17 <= 1
0<= x7_ 18 <= I
0<= x7_19 <= 1
0<= x7_20 <= 1
0<= x8_9 <= 1
0<= x8_10 <= 1
o <= x8_11 <= 1
0<= x8_12 <= 1
0<= x8_13 <= 1
0<= x8_14 <= 1
0<= x8_15 <= 1
0<= x8_16 <= 1
0<= x8_17 <= 1
0<= x8_18 <= 1
0<= x8_19 <= 1
0<= x8_20 <= 1
0<= x9_10 <= 1
0<= x9_11 <= 1
0<= x9_12 <= 1
0<= x9_13 <= 1
0<= x9_14 <= 1
0<= x9_15 <= 1
0<= x9_16 <= 1
0<= x9_17 <= 1
0<= x9_18 <= 1
0<= x9_19 <= 1
0<= x9_20 <= 1

O<= xlO_ll <= 1
0<= xlO_12 <= 1
0<= xl0_13 <= 1
0<= xlO_14 <= 1
0<= xl0_15 <= 1
0<= xl 0_16 <= 1

64

Master Thesis - Alvin Hsieh McMaster University- CAS

0<= xlO_17 <= 1
0<= xlO_18 <= 1
0<= xlO_19 <= 1
0<= x 10_20 <= 1
o <= xI L 12 <= 1
o <= xI L 13 <= 1
o <= x 1 L 14 <= 1
o <= xI L 15 <= 1
o <= xI L 16 <= 1
o <= xl L 17 <= 1
o <= xI L 18 <= 1
o <= x I L 19 <= 1
o <= xl L20 <= 1
0<= xI2_13 <= 1
0<= x12_14 <= 1
0<= x12_15 <= 1
0<= x12_16 <= 1
0<= x12_17 <= 1
0<= x12_18 <= 1
0<= x12_19 <= 1
0<= x12_20 <= 1
0<= x13_14 <= 1
0<= x13_15 <= 1
o <= x I 3 _16 <= 1
0<= xI3_17 <= 1
0<= x13_18 <= 1
0<= x13_19 <= 1
0<= x13_20 <= 1
0<= x14_15 <= 1
0<= x14_16 <= I
0<= xI4_17 <= 1
0<= x14_18 <= 1
0<= x14_19 <= 1
0<= x14_20 <= 1
0<= x15_16 <= 1
0<= x15_17 <= I
0<= x15_18 <= 1
0<= x15_19 <= 1
0<= x15_20 <= 1
0<= x16_17 <= 1
0<= x16_18 <= 1
0<= x16_19 <= 1
0<= x16_20 <= 1
o <= x 17 _ 18 <= 1
o <= x I 7 _ 1 9 <= I
o <= x 17_20 <= 1

65

Master Thesis - Alvin Hsieh McMaster University- CAS

0<= x18_19 <= 1
0<= x18_20 <= 1
a <= x 19 _20 <= 1

end

3. Send output.lp to CPLEX -7 copy solution to cplex.txt

Contents of cplex.txt

xl 2 1.000000
xLS 1.000000
x2_3 1.000000
x3_4 1.000000
x4_13 1.000000
xS_19 1.000000
x6_7 1.000000
x6_16 1.000000
x7_17 1.000000
x8_10 1.000000
x8_20 1.000000
x9_11 1.000000
x9_18 1.000000
xlO_12 1.000000
xlL20 1.000000
x 12_ 19 1.000000
x13_14 1.000000
x14_1S 1.000000
xlS_18 1.000000
xI6_17 1.000000

4. Execute subTour.java -7 new constraint is generated and added to output.lp

The newly generated constraint that is added to output.lp

xL6 + xL7 + xl 16 + xL17 + x2_6 + x2_7 + x2_16 + x2_17 + x3_6 + x3_7 + x3 16 + x3_17

+ x4_6 + x4_7 + x4_16 + x4_17 + xS_6 + xS_7 + xS_16 + xS_17 + x6_8 + x7_8 + x8_16 +
x8_17 + x6_9 + x7_9 + x9_16 + x9_17 + x6_10 + x7_10 + xlO_16 + xlO_I7 + x6_11 + x7_11 +
x l L16 + x l L17 + x6_12 + x7 _ 12 + x12_16 + xI2_17 + x6_13 + x7 _13 + x 13_ 16 + x13_17 +
x6_14 + x7_14 + x14_16 + xI4_17 + x6_1S + x7_IS + xIS_I6 + x IS_I7 + x6_18 + x7_18 +
x16_18 + x17_18 + x6_19 + x7_19 + x16_19 + x17_19 + x6_20 + x7_20 + x16_20 + x 17_20 =

2

5. Send output.lp to CPLEX -7 copy solution to cplex2.txt

Contents of cplex2.txt

66

Master Thes is - Alv in Hsieh McMaster University- CAS

xL2 1.000000
xLS 1.000000
x2_3 1.000000
x3_4 1.000000
x4_13 1.000000
xS_19 1.000000
x6_7 1.000000
x6_16 1.000000
x7_16 1.000000
x8_10 1.000000
x8_ 17 1.000000
x9_11 1.000000
x9_18 1.000000
xl0_12 1.000000
xlL20 1.000000
x12_19 1.000000
x13_14 1.000000
x14_1S 1.000000
xlS_18 1.000000
x17_20 1.000000

6. Execute Cplex.java -7no decisional variables with the value of 0.5 is detected.
Thus, cplex.txt is overwritten with contents of cplex2.txt -7 execute subTour.java -7

new constraint is generated and added to output.lp

The newly generated constraint that is added to the contents of output.lp

xL6 + xL7 + xL16 + x2_6 + x2_7 + x2_16 + x3_6 + x3_7 + x3_ 16 + x4_6 + x4_7 + x4_16 +
xS_6 + xS_7 + xS_16 + x6_8 + x7_8 + x8_16 + x6_9 + x7_9 + x9_16 + x6_10 + x7_10 +
x 10_16 + x6_11 + x7 _11 + xl L16 + x6_12 + x7 _12 + x12_16 + x6_13 + x7 _13 + x 13_16 +
x6_ 14 + x7_ 14 + x14_16 + x6_1S + x7_1S + xlS_16 + x6_17 + x7_17 + xI6_17 + x6_18 +
x7_18 + x16_18 + x6_19 + x7_19 + x16_19 + x6_20 + x7_20 + x16_20 = 2

7. Send output.Ip to CPLEX -7 copy solution to cplex2.txt

Contents of cp1ex2.txt

xl_2
xLS
x2_3
x3_4
x4_13
xS_19

67

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Master Thesis - Alvin Hsieh McMaster University- CAS

x6_7
x6_16
x7_17
x8_10
x8_11
x8_20
x9_11
x9_18
xlO_12
xlL20
x12_19
x13_14
x14_15
x15_16
x15_18
x16_18
x 17_20

1.000000
1.000000
1.000000
1.000000
0.500000
0.500000
1.000000
1.000000
1.000000
0.500000
1.000000
1.000000
1.000000
0.500000
0.500000
0.500000
1.000000

8. Execute Cplex.java 7 decisional variables with value of' 0.5 is detected 7 change
the bounds of' those decisional variables that don't also exist in cplex.txt 7 update

bounds of' output.lp

Bounds that are changed in output.1p are

a <= x8_11 <= 1 to a <= x8_11 <= a
0<= x8_20 <= 1 to a <= x8_20 <= a

0<= x15_16 <= 1 to a <= x15_16 <= a
0<= x16_18 <= 1 to a <= x16_18 <= a

9. Send output.lp to CPLEX 7 copy solution to cplex2.txt

Contents of cplex2.txt

xL2
xL5
x2_3
x3_4
x4_13
x5_19
x6_7
x6_16
x7_17
x8_10
x8_17
x9_11

68

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

Master Thesis - Alvin Hsieh McMaster University- CAS

x9_18
xl0_12
xlL20
x12_19
x13_14
x14_15
x15_18
x16_20

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

10. Execute Cplex.java -7no decisional variables with the value of 0.5 is detected.
Thus, cplex.txt is overwritten with contents of cplex2.txt -7 execute subTour.java -7

no sub-tours exist, the program outputs the distance of the tour

No Sub-Tours Exist
The total cost of the trip is 31.04

Thus, the total tour distance is 31.04 cm, which is much better than the sequential way of testing
of 64.34 cm.

This results to a 51.76% reduction in thi s instance.

69

Master Thesis - Alvin Hsieh McMaster University- CAS

70

Master Thesis - Alvin Hsieh McMaster University- CAS

Bibliography

[1] Acculogic Inc. (2007) "Integrator Training on the FLS"

[2] Acculogic Inc. (2005) "Training Manual for the Flying Scorpion Test System"

[3] Applegate, D. L., Bixby, R. E ., Chvatal, V., Cook, W. J. (2006) "The Traveling Salesman

Problem: A Computational Study", Princeton University Press.

[4] Bondy, 1. A., Murty, U. S. R. (1982) "Graph Theory with Applications", Elsevier Science

Publishing Co., Inc.

[5]Cook, D. The Robot Room. http://www.robotroom.com/SandwichPCB/TestPointLoop.png

(figure)

[6] Cormen, T.H., Leiserson, C.E. , Rivest, R.L., Stein, C. (2001) "Introduction to Algorithms"

(2nd Ed.), McGraw-Hill.

[7] Dantzig, G.B (1963) "Linear Programming and Extensions", Princeton University Press

[8]Dietzel, B. (2009) "Software Documentation: Acculogic Integrator Software Optimizer",

Acculogic Inc.

[9] Gutin , G., Punnen, A. (2002) "The Traveling Salesman Problem and its Variations", Kluwer

Academic Publishers.

[10] A. 1. Hoffman and P. Wolfe (1985), "History" in The Travel ing Salesman Problem, Lawler,

Lenstra, Rinooy Kan and Shmoys, eds., Wiley, 1-16.

71

Master Thesis - Alvin Hsieh McMaster University- CAS

[11] Hoffman, K., Padberg M. (1994) "Traveling Salesman Problem", George Mason University,

http://iri s.gmu.cdu/- khoffman/papers/trav salesman.html

[12] Johnson, D. (2004) "Finding TMvenin Equivalent Circuits" ,

http://cnx .org/content/m0021 /latestl

[13]Kern Computers, http://www.kern-computers .com/wp-content/uploads/2009/06IComputer­

Parts.jpg (figure)

[14] Kolman, B., Beck, R. (1995) "Elementary Linear Programming with Application" (2nd Ed.),

Academic Press

[15] Lu, W. S. (2009) "Use SeDuMi to solve LP, SOP, and SCOP Problems: Remarks and

Examples", Department of Electrical Engineering, Univeristy of Victoria

[16] Murty, K. G. (1995) "Operations Research: Deterministic Optimization Models", Prentice­

Hall Inc.

[17] Orlin , J. (2007) "Optimization Methods in Management Science", MIT, Sloan School of

Mangement, Lecture Series. http://ocw .mit.edu/courses/sloan-school-of-management/15-053-

opti mizati on -methods-in-management -science-spring -2007 Ilecture-notesl (figures)

[18] Shepertycky G, "Physics Tutorial: Parallel Circuits and Hazard Lights", Physics 2417 ,

http://www.phys ics247.com/physics-tutoriallparallel-circu i tS.shtml (figure)

72

Master Thesis - Alvin Hsieh McMaster University- CAS

[19] Sibeyn 1. F. (2005) "Algorithms and Datastructures II", Halle (Gemany)University, Institute

of Computer Science, Lecture Series. http://users.informatik.uni-

halle.de/-jopsi/dinfS03/notes full.shtml

[20] Terlaky, T. (1996) " Interior Point Methods of Mathematical Programming", Dordrecht,

Netherlands; Boston : Kluwer

[21] Wright, SJ. (1997) "Primal-Dual Interior-Point Methods," SIAM Publications, Shepertycky

[22] Y. Yeo (1997) " Interior-Point Algorithms: Theory and Analysis," Wiley-Interscience Series

in Discrete Mathematics and Optimization.

73

A I'

'"j. I

