MATHEMATICAL MODELING OF THE FLYING PROBE

TEST SYSTEM

Master Thesis — Alvin Hsieh McMaster University- CAS

Master Thesis — Alvin Hsieh McMaster University- CAS

MATHEMATICAL MODELING OF THE FLYING PROBE TEST SYSTEM
By
ALVIN TZU-CHIEN HSIEH.

Computing and Software

A Thesis
Submitted to the School of Graduate Studies
In Partial Fulfillment of the Requirements
For the Degree

Master of Science

McMaster University

© Copyright by Alvin Tzu-Chien Hsieh August 2010

Master Thesis — Alvin Hsieh McMaster University- CAS

MASTER OF SCIENCE, (August, 2010) McMaster University

(Computing and Software.) Hamilton, Ontario
TITLE: MATHEMATICAL MODELING OF THE FLYING PROBE TEST SYSTEM
AUTHOR: ALVIN TZU-CHIEN HSIEH

SUPERVISOR: Dr. Antoine Deza

NUMBER OF PAGES: ix + 73

Master Thesis — Alvin Hsieh McMaster University- CAS

Abstract

Electrical components are the building blocks of any electronics. These building blocks,
when intelligently assembled, form circuits that behave as intended by the designer. Therefore,
any errors, such as defective components and assembly errors will cause the end product to have
abnormalities. Advancement in technology has led to circuits of higher complexity that require a
greater quantity of components as well as a great reduction in individual component size. This
translates to finer integrated circuits; more components are placed and packed in the same given
area and thus, manual circuit board testing may no longer be feasible. The flying probe tester is
an automated circuit board testing/verification system that uses electric probes to first stimulate a
circuit and then read and verify its corresponding output values. This thesis examines the
processes involved in the flying probe test system and produces a model that characterizes the
current sequential method of testing test points. Furthermore, using existing techniques
developed through the traveling salesman problem and linear optimization, an efficient model is
developed to improve and limit the distance traveled by the probes, thus reducing the required

testing time.

Master Thesis — Alvin Hsieh McMaster University- CAS

Acknowledgments

First and foremost, I would like to thank Dr. Antoine Deza, my supervisor, for giving me this
opportunity to further my education. Thank you for your continual guidance and feedback

throughout my thesis/research.

In addition, I would not have been able to complete my thesis without the extended support and
knowledge of my peers, notably, Jessie Liu and Feng Xie. Your breadth of knowledge in this
field helped further my understanding and background, and your assistance helped me overcome

the minor obstacles I encountered during my research.

For their offer of the MITAC internship, which ultimately became my thesis topic, I would like
to acknowledge Acculogic Inc. for providing the necessary materials/documents and information
needed for my research. Special thanks to company VP, Farouk Eshragi, for giving me this

opportunity and providing support every step of the way.

Lastly, I would like to thank my dad, mom, Melvin and Tat, for their continual support,
motivation. They have encouraged me to avoid complacency and to constantly push the

envelope.

Master Thesis — Alvin Hsieh McMaster University- CAS

Contents
INISSEEARE, s e e R i an s R e PR AR S e s S e R S i ey o R R RN iii
AT O EINBNNNS cvancsanswonossnmnnsons e s iwsicnsonsaies s s s s s on A sasaa s SSasensas R ISSA4EEFO RS iv
1sE OF DT ES ccmnisrmssineiminssaissommisissssensenestamas st A A S S AR AR AT vii
LASE Of Table s ssasssasmnmscmssmmimssi st amis i sassissssiosmanssssisssivissstissemsavssanmonsosnasaos ix
Chapter 1 INtroducCtioncoeccecicnneennnecnnicnineineieemessnesseessessssessesssessasssasssassasssasssens 1
1.1 CIRCUIT BOARDS AND REASON FOR TESTINGceovviiriiiiieiiieieeieeieeee e 1
1.2 FINDING AN BEFICIENT TEST PATH ;o cusnunives isassi ousmssvoicnssiss issvies inssnss doiinssnsasind snvasanenvansns 3
Chapter 2 The Flying Probe Test SYStemcccceecrercerrrecrerneeseecsnersaneraessaesasssessessaessnesans 5
Chapter 3 Graph THEOE wusamsisinmimessmss s sisemimammmsmsiesitssorsssiamiasss 11
3.1 PURBANIEITALE oo s o e S S i & G S iAo 11
B DIRECTED CIBUATPEES 1w s 6 634555 555563 6555064 653535 S0 HH A3 A4 Kb i e 12
3.3 UNDIRECTED GRAPHSuviiiiiiiiieiiieeiieste et e steestseeatesaseesssessasessasesensesssessessssnsesenses 13
S RSP PROTPEIRTITES, oo su85ime0soa oot ol ssstesi S i i s s 5 i i Ao 45t A o At 14
Chapter 4 Linear OptimizZationiceoeciceieniicneonsnsesssscssssssessssssssssssssssssassssaessasssssess 17
4.1 OPERATIONS IRESEARICH voss:0siisiinsnisssanmmsnnssssurse snssnsnss sessssassnn esss st ssnsoss sssasssmssssns snoss 17
4.2 LINEAR OPTIMIZATION (PROGRAMMING)vvviiiiiiiiiiiiiiiiiieieiee et 18
4.3 SIMPLEX AND INTERIOR POINT METHODoiiiiiiiiieiieee e 21
4.4 COMMERCIAL SOLVERS ...ttt ittt ettt ettt ettt aneenee et eieeeneeas 23
Chapter 5 Modeling of the Flying Probe Test Systemc.cusiussssassssssssisasssssnssssssnsssns 25
5.1 NOTATION AND OBJECTIVE FUNCTIONcoiiuiiiiiiiiiiieniieeniii et siiee s eiree s 26

Master Thesis — Alvin Hsieh McMaster University- CAS

3.2 PRACTIGGAT, 2-BACTOR JLKY coiincinsssnisinonssnenssmmmssssmss s g s s ssse 30
5.3 SOLVING THE TESTING PATH USING TSP TECHNIQUESceouiiiiiiieeeiieeiiieeeieesiinns 32
5.4 SUBTOUR ELIMINATION OF THE FRACTIONAL 2-FACTORccovviiiiiiiiiiiiiiieiiceens 40
5.5 GRAPH R BPRESEIN T TN o5 65050085455 55 54 o swa R gihsni s 41
5.6 CUTTING PLANE METHODcoouiiiieieiiesiiesiesiiesteeeestsesaeesiesssesssesaeessessesnseessessesssessens 42
ChADTET © TOSTIT oirsssesnsennanunessmensasnssenssesssssosississsismms s IS H 3RS SRS RIAARN 45
6.1 JAVA PROGRAMcoiuiiiiiiiiiiiiiiniesiiesiesitesseestesntesteassesssesaeessessessasesaeessessessaesssesseensesnens 45
0.2 STEPS OF TESTING s oussonsassvesssusasensssssssmisnss ot sisssssinssnss iissoemsssiain s s s smissss 49
0.3 TESTING RESULTS ...uttitiiiiiiieie sttt sttt et sttt e eaesneesaeensesseenseeneesaens 50
FOLIFE WOTK srosumsnsesssssnsscensossvacsssonsussn s ossis sans s smsasssss s s i isssmass s massains s 53
Appendix A: CLPEX OULPUL...ciiiiniiinniinreniseensenssscssecssasssssssssssssssssssssssssssssnsassnssssssssnase 35
Appendix B: Flying Scorpion's Testing Capabilities......cccceererreecrercreereersecsneeseesessaasnnne 58
Appendix C: Testing Procedure and ReSUlscccceereireecsencrnecsnsssaessnssescssesenessness 59
BIbHOSHAPIY sosnsnmemmansunmisassnississsusivamissmiimmmisissmiamriense 71

Vi

Master Thesis — Alvin Hsieh McMaster University- CAS

List of Figures

FIOUFE J=1 2CICHIE BOBEE sonemmonsvinsincissiinsimssainisomsss i satsns b i iessionans fisssni i s neianihsninsss so5sian 2
Figure 1-2 Black BOX TESHNGcccveiiueiiiiiiiiiiiiiie sttt 2
Figiire 1+3 Probifig d TESE POIRE ..xissssvsssooswinnassvinss sonnss s amss o smssmsssnsssissssahae s ausvs soss 3
Figure 2-1 FIYING SCOTPION. ...cc..cooiviiiiiiiiiiiiiiiiieieet ettt e 6
Figure 2-2 CONVEYET Bell............coovcuiiiiiiiiiiiiiiiie it eeee et e siaa e e svae e sne e s saae e enaneas 7
Figure 2+-3 ParGllel CIIETIL uscnssoinsmsssuisorossnsonsosunsssssseisns s s 00 s s s s iss s 9
Figure 3-1 Directed GrapP.........cccccoocuviiiiiiiiiiiieiiie i 12
Figiire 3-2 Ungireeted (raDR s msissvannasissssiossvississss s o s i sssss s eassiss 13
Figure 3-3 SImple CYCLE.ccuueiiiiiiiiiiiieieeeee ettt 15
Figure 4-1 Feasible REGION «ocssssssissviswrnsosnsesvnssnss sumsonss o press s saiis venesss s s 20
Figure 4-2 Optimal POINE..........ccccccoiiiiiiiiiiiiiiiiiii e 21
Figure 43 SIPLER MEIROT «uosvoisssonminsnsssommvasssosvessnsssas s somsmntsss s s s uss sassss 22
Figure 4-4 Interior Point Methodccccoooiiiiiiiiiiiiiiiiiiiiiiicceieeci e 22
Figure 3-1 Hanaltonian CYEIE «viivsmwmsimsssvsssmssvssmsven ssumsms sinsssvsinsss snmssoississinss sasassen 28
FiQUIE 5-2 SUD-TOUFS ..ot 32
FiIGUEE 5-3 TOSI-STEPS ..ottt ettt 33
bt irh e R o T S —— 33
Figure 5-5 Worst Case Traveling DiSIANCE .. swsiwssmssassosssssemsmssvsssasisiams sossssvanigassonios 39
Figure 5-6 CUHING PLANESc..ooooiiiiiiiiiiiiiiiiicii et 40

vii

Master Thesis — Alvin Hsieh McMaster University- CAS

Figure 5-7 Sub-tour Elimination Algorithm

viii

Master Thesis — Alvin Hsieh McMaster University- CAS

List of Tables

Table 3-1 Adjacency Matrix of Directed Graphi. . swssemesmasvswnsssessspsssmsimssmissiminn 12
Table 3-2Adjacency Matrix of Undirected Graph..............ccccooviveiiiiieaiiiiiiiiinieiiiiaaieeens 14
TablE F=1 AGTeEnEY MABILS o ommssnsimsusssasssomses s s s s s S SR 29
Table 5-2 NAMING Of EAGES......cc.oocuviiiiiiieiiiieeeie ettt 34
Table 5=3 Contralns U METER FOPIY v ussomsesmrnsamossssmsmemasssses s s s msss 35
Table 5-4 Constraints conforming to SEDUMIccc.ccoeviiiiiiiiiiiiiieeiieeie e 37
Table 5-5 Traveling DiISIANCEccccueeieeeeiieeiiieeeiie e s eie e saae e sae e saae e 39
Table 6-1 Test POINtS COOFAINALESoceeeiueeiiiiiieiieeieeeeee e k|

Master Thesis — Alvin Hsieh McMaster University- CAS

Master Thesis — Alvin Hsieh McMaster University- CAS

Chapter 1: Introduction

1.1 Circuit Boards and Reason for Testing:

Any technology consists of electrical components that together form electric circuits. In
unity these circuits (placed on a circuit board) provide the functionalities of devices and systems.
In electronics, multiple circuit boards are placed/installed together to realize a full system. This
is much like a desktop computer, with its motherboard, video card, sound cards, etc, each
providing a unique feature of computing (figure 1-1 below). This large system of circuits and
the numerous components that it is comprised of causes the testing and the troubleshooting of the
end product to be time consuming and difficult in most cases. With luck, the error can be traced
back to the specific circuitry responsible, much like how a computer that can no ionger be
powered on could be caused by a defective power supply (the circuits within it). However, even
if knowing the power supply is at fault, isolating the exact defective components or circuits could

be difficult and extremely time consuming.

Master Thesis — Alvin Hsieh McMaster University- CAS

Power Supply

Vodeo Card
Rowstrse

Hard Drive

Figure 1 - 1: Different circuit boards working in unity to realize a computer system. [13]

To avoid testing mindlessly at the component level, circuit board designers generally

place test points on various parts of the board. These test points allows testing at a circuit level
(however small or large), treating it as a black box. By giving some voltage (or current) input to
the circuit, v, in figure 1-2, verification can be made against the output, v, to see if the circuit is
working. To read electric values of components and test points, external test probes must make
contact with them (figure 1-3). Since circuits together form bigger circuits, testing will begin at

a general level to specific components. This is reason as to why testing is time consuming.

l

' +
LT
Vin _’) Rg?: Y
| |

| |

| —0

Figure 1 - 2: Black Box Testing [12]

Master Thesis — Alvin Hsieh McMaster University- CAS

Figure 1 -3: Reading the values of a test point (TP2) to read its values [5].

Testing is done either at the production stage or trouble shooting stage. The decision of
how often to test and how thoroughly lies with the manufacture or tester. Excessive testing may
drain resources and may not be feasible given the cost it takes to test is often more expensive
than replacing a circuit board all together. However, any early undetected error at the production
stage will escalate, increase the amount of time spent on debugging the end product, and

potentially losing consumer confidence.

1.2 Finding an Efficient Test Path:

Testing circuits today have shifted to using automated systems. The research of this
thesis is based on the work done during an internship at a company in the automatgd testing
instrumentation market. The instrument that was studied was a flying probe tester, which uses
electric probes to make contact with test points, to generate inputs or read outputs. The
instrument itself is part of the flying probe tester system, which also includes a computer to
provide the means of control for the user. In short, the tester tests components and test points
that are specified by the user, but the path taken by the probes is of a sequential order. This

testing sequence is not an efficient method of testing, as the probes may potentially be required

Master Thesis — Alvin Hsieh McMaster University- CAS

to travel the total length of the board, back and forth, frequently. This thesis deals with modeling
the flying probe test system and providing an algorithm/model that is able to find an efficient
path of testing, that is superior to the original sequential path. The term efficient in this sense
refers to a shorter distance traveled by the probes during the duration of a complete set of tests.

The intricacies of the flying probe test system will be introduced in the proceeding chapter.

Master Thesis — Alvin Hsieh McMaster University- CAS

Chapter 2: The Flying Probe Test

System

The flying probe test system consists of the main testing unit, as well as a computer unit
that runs the software that controls the overall system (figure 2-1). On the hardware side of the
system, a circuit board is suspended on a conveyer belt, supported only by the two edges that rest
slightly on the belt (figure 2-2). The conveyer belt slides the board further into the machine
while being sensed by cameras/sensors. Once the correct board position is determined by
cameras, the testing commences. Tests are able to check for defective components as well as any
misplaced ones, as they would produce different output values than the expected ones. However,
it is up to the technician to specify how many components to test on a circuit board. Also, there
are numerous types electrical components, each with their unique electrical characteristics.

Testing them requires different techniques and approaches.

Master Thesis — Alvin Hsieh McMaster University- CAS

e ———————

|
[ACCULOGIC

<@ o ey

R
\

Figure 2 -1: Acculogic's Flying Scorpion, a flying probe tester [2]

Testing resistors involves checking its resistance values (through current and voltage),
and capacitors requires checking its capacitance value as through voltage and discharge time.
For testing each component, a minimum of one probe is used for providing a voltage/current
source to the positive terminal of the component, and one more probes to read the corresponding
output value at the other terminal. For example, by having a probe supplying a current to a
resistor, we are able to measure the voltage output across the resistor with the other probe.
Calculating its resistance value can be done through: Resistance= Voltage/Current. We would
then check whether or not that value matches the one intended by the designer (data sto?ed in the

software).

Master Thesis — Alvin Hsieh McMaster University- CAS

Board shown on the
conveyor.

/ b

Conveyor clamps

A shaft-encoder is used to track
the boards' position on the
conveyor.

Conveyor trailing
edge sensor

Conveyor rails

Front of Tester

Board present sensor

Figure 2 -2 Conveyer Belt of the Flying Scorpion (2]

The purpose of the flying probe test or any circuit board testing for that matter is to make
sure the components are assembled properly, correct parts were used, as well as ensuring the
functionality of the board is being realized. Manual testing all the components of a circuit board
could be a long and tedious task, and would not be feasible in an industrial manufacturing
environment. These automated testers are necessary to ensure the quality of the boards as well

as maintaining a certain productivity level of the manufacturing company.

As for the software side of the system, how it works in general is that the circuit board’s
CAD file and BOM (bills of material) file are imported to the tester’s software. Each board is
represented as a project file. The board’s CAD file includes the schematics of the circuit board
while the BOM file includes all the components on the circuit board. Together, they provide
enough information to the software so that it is able to translate/virtualize the physical geography
of the board and translate that to the coordinate system of the tester system itself. In the
software’s database, it usually contains detailed information about commonly used components,
such as their dimensions, characteristics, etc. The components read in from the BOM file should

automatically associate with the components already stored in the database and appear as

Master Thesis — Alvin Hsieh McMaster University- CAS

individual entries within the project file. The user can then select which components to test by
enabling/disabling these entries. Thus, when a desired test point needs to be tested, the system
knows the exact x and y coordinate to place the test probes, as well as the method of testing

required for that specific component.

Sometimes, the physical profile of a component prevents the probe making contact with a
test point in a certain manner. The tester will need to acknowledge this and would attempt to
approach that test point in a feasible way. Probes also need to avoid hitting components that
have a great depth (tall), such as going around the component. The tester’s software must take
these physical restrictions into account and sometimes, it may require human monitoring. For
the most part, the software is programmed to route feasible movement only, avoiding the

component in question.

A circuit like the one in figure 2-3 below represents a parallel circuit. The four resistors
in the figure are said to be “parallel” to each other, meaning that their positive terminal belong to
the same node/junction. The terminals on the same junction have the same electric potential.
Even though the electrical components may physically be placed apart on the circuit board, they
are still connected, not visible to us. Assuming that for all four resistors, the top terminal
represents the positive terminal and the bottom represents the negative. Let the left most resistor

be labeled R; and the rightmost R4. Each resistor has 2 terminals, and has the coordinates of:
R; with coordinates (Xi, yi+) & (Xi,, yi.); i =1, 2, ..., n (number of resistors)

Traditionally, to test R;, we need to place the probes at the two terminals (X4, yi+) and (X1, yi.).

However, since R; and R, are in parallel and have the same positive terminal, we can use Ry’s

Master Thesis — Alvin Hsieh McMaster University- CAS

positive terminal (or R3 and R4 for that matter). So we can also use (X24, y2+) along with (x;., y;.)

to test Ry if (x4, yi+) is inaccessible.

Parallel Circuit

Battery

3333

A = Resister
(such ax a lightbulh)

Figure 2 -3: Parallel Circuit (2]

The real benefit of this for parallel circuits is that when testing, we can place one probe
on (X4, Yi+), the common positive terminal for all 4 resistors, and only move the probes for the
negative terminals. This allows the first probe to remain stationary for 3 test sequences. The
ability to switch a test point for another one of the same electrical potential is called point
exchange and this is a feature in the test system’s software. This feature when enabled may

reduce the overall distance travelled by the probes.

When all the components are loaded in the project files, they are organized by categories.
For example, all the resistors (R; to R,) are followed by all the capacitors, followed by all the
inductors. The system will use this chronological sequence of components as the testing
sequence. The problem with this approach is that components that are next to each other in
naming (ie. R; and R;) are not necessary close to each other physically on the board. Having this

sequential order will result in a test path that jumps all over the place. The technician is able to

Master Thesis — Alvin Hsieh McMaster University- CAS

rearrange the sequence manually, but it is the goal of this thesis to produce an algorithm that

finds a path for solving that will minimize the distance travelled by the probes.

10

Master Thesis — Alvin Hsieh McMaster University- CAS

Chapter 3: Graph Theory

3.1 Fundamentals:

This section introduces several elementary notions of graph theory that is used in the
model we apply. Test points on the flying probe tester can be viewed as nodes in a graph and is
modeled as such in this thesis. We can thus take advantage of the well known and developed
work of graph theory to serve as the foundation of our model. Before proceeding, the following
convention needs to be mentioned. A capital letter will refer to a set of values, while small caps

will refer to individual elements.

A graph G consists of a set of vertices V, and a set of edges E: G = (V, E). The finite set
of vertices, V, consists of all individual vertex, vo to vy.j, in the graph, where n is the number of
vertices in the graph [4]. The finite set of edges, E, consists of the edges, e to ey.;, that form the
graph, where k is the number of edges in the graph. An edge is a relationship between two

vertices, indicating they are connected in some manner (described below).

11

Master Thesis — Alvin Hsieh McMaster University- CAS

)

1 }—s 2) 3
]

§ i § 6

3 - 1: Directed Graph

3.2 Directed Graphs:

In a directed graph (figure 3-1), an edge is marked by arrows and it limits travel between
nodes in the direction of the arrow, much like an one-way-street. An edge can be written as, e =
(u, v), and is equivalent to saying the edge is leaves from u and the edge is incident from u,
incident to v [4]. The case u = v is permitted in directed graphs, as illustrated by node 2,
indicates a self-loop. Note that e = (u,v) # e = (v,u), due to the direction restriction. Thus, for
e = (u,v), we say u is adjacent to v, but v is not adjacent to u. illustrating the non-symmetric

property of edges in directed graphs.

(u.v) 1 2 3 4 6
1 0 1 0 0 0
2 0 1 0 1 1 0

idtent| O 0 0 0 0 0
4 1 0 0 0 | 0
5 0 0 0 1 0 0
6 0 0 1 0 0 0

Table 3 — 1: Adjacency matrix of the directed graph of figure 3-1

Another way to represent the directed graph is with its adjacency matrix (table 3- 1).

Each row represents u in E = (u, v), and each column represents v. When an edge exists, the

12

Master Thesis — Alvin Hsieh McMaster University- CAS

corresponding matrix element stores a 1, as illustrated by matrix element (1, 2). Adjacency
matrix is needed for graphs to be stored in the computer and requires ® (IVI») [6] memory for

storage, V being the set of vertices.

3.3 Undirected Graphs:

The other type of graph is the undirected graph. Its major difference from directed
graphs is that the edge has no directions, allowing passage in both directions between the two
connected vertices. Figure 3- 2 shows an undirected graph, and the edge connecting (1, 2)
allows 1 to go to 2 and vice versa. For a more formal definition, an undirected graph G = (V, E)
has unordered pairs of vertices, and the edge set E consists of {u, v}, where u, v EV & u#v [4].
The last restriction restricts any self loop in undirected graphs, unlike the directed version,
requiring two distinct vertices in any edge. Also, (u, v) = (v, u) for undirected graphs, unlike the
directed version as well. Table 3- 2 below represents the adjacency matrix of the undirected

graph in figure 3- 3. Notice the symmetry across the drawn line between (u, v) & (v, u).

3 - 2: Undirected Graph

13

Master Thesis — Alvin Hsieh McMaster University- CAS

: 1 2 4 S 6
1 1 0 1 0
2 1 0 1 0
3 0 0 0 0 1
4 0 0 0 0
S 1 1 0 0
6 0 0 1 0

Table 3 — 2: Adjacency matrix of the undirected graph of figure 3-2,

3.4 Graph Properties:

Having established the two graphs, we now discuss some of their properties. In an
undirected graph, the degree of a vertex is defined as the number of edges connected to it.
Vertex 2 in figure 3- 3 has a degree of 2, while vertex 4 has a degree of 0, because it is not
connected to any vertex, thus isolated. As for a directed graph, since the edges have direction,
we can talk about the in-degree and out-degree. The overall degree is the sum of the two, which
is essentially counting all the edges that the vertex is connected to, much like the undirected
graph. In figure 3- 1, both of vertex 4’s in-degree and out degree are 2, making its overall degree

4.

Say in a graph G = (V, E), we wish to go from a vertex, vi, to another vertex vx. The path
of the journey requires taking vertices, {vy, va, ..., vk}, such that edge (v, viy;) €EEfori=1, ...,
k. This means that we are traveling through the intermediate vertices and edges, E(vy, v2), E(va,
v3), ..., E(vi., vi) until we reach the destination vy. The path length refers to the number of
edges involved in the path. In figure 3- 1, the path length from vertex 1 to 4 is 2 (due to direction
of the edges, we must go to vertex 2 first). In figure 3- 2, the path length from vertex 1 to 4 is 0,

because there is no way of getting there. The path is said to be simple, if all vertices in the path

14

Master Thesis — Alvin Hsieh McMaster University- CAS

are distinct, never visited twice. A sub-path refers to a portion of the original path {vy, va, ...,
vk}, as long as the initial vertex is vj, 1 >= 1, the final vertex is vj, j <=k and i <j. So a sub path
of the original could be {vy, vs, ..., vk3}. The distance of the path traveled however, refers to the
summation of all the edge weights in the path. Though the two graphs above are not assigned

edge weights, it will be used later in the modeling section of this thesis.

In a directed graph, a path that is able to return to the initial vertex, v; = vy, is called a
cycle. In figure 3- 1, if vertex 1 is the starting vertex, there is a path that cycles back to it,
specifically vi = vo 2 vs = v4 =2 v; (ignoring the possibility of looping at v;). On the
contrary, a graph with no cycles is called acyclic. Self loops is also considered a cycle, with
length 1. If in a cycle, all the vertices are unique (first last vertex still have to be the same to
qualify as a cycle) and visited exactly once, the cycle is said to be simple. In figure 3- 5 below,
vertex 1, 2 & 3 forms a cycle, but not a simple cycle, because in order to get back to vertex 1,
vertex 2 is traversed again, thus all the vertices in the path are not unique. Vertecies 4, 5 & 6
however is part of a simple cycle, with the cycle being v4 = vs 2 vg = v4. Furthermore a

simple cycle consisting of all v’s in V is called a Hamiltonian cycle.

Figure 3 — 3: Vertex 1, 2 & 3 is not part of a simple cycle, but vertex 4, 5 & 6 is part of a simple cycle

15

Master Thesis — Alvin Hsieh McMaster University- CAS

16

Master Thesis — Alvin Hsieh McMaster University- CAS

Chapter 4: Linear Optimization

4.1 Operations Research:

Operations Research (OR), is defined as “representation of real-world systems by
mathematical modeling together with the use of quantitative methods (algorithms) for solving
such models™. It is the branch of mathematics commonly used to find optimal solutions to real-
life problems. The term optimal refers to optimizing the objective function of the problem, such
as maximizing profits and minimizing costs. To do so, OR uses a wide range of mathematical
techniques including graph theory from the previous chapter, statistical analysis, mathematical

modeling to name a few.

When translating a real word problem to its math counterpart (to be analyzed and solved),
there are 3 components that need to be defined. The first component is variables and it is all the
different factors that are decision based. Their values are determined by the user and directly
change the value of the solution. The second component is constraints. They deal with things
such as limited resources that impose certain restrictions. An example of this could be land

17

Master Thesis — Alvin Hsieh McMaster University- CAS

governing how much crops a farmer can grow. The last component is an objective function that
needs to be optimized (maximize or minimize). The objective function essentially represents
what the problem is trying to achieve. The solution to the overall problem is a specific set of
values (for variables in the objective function) that optimizes the objective function, ultimately,

indicating how to operate most effectively.

When the OR problem that we are trying to optimize have variables that are all
continuous, contains a single objective function that is linear, all constraints are linear, we are
able to use the method of linear optimization. It is used extensively to solve problems in the

business and economics world, as well as some fields of engineering.

4.2 Linear Optimization:

When the objective function is a linear function along with linear and non-negative
constraints, linear optimization can be used. Linear optimization (LO) has the general canonical

form of:

" T
Maximize: ¢ X

Subjectto: Ax <b
The problem consists of variables for which we’re trying to determine the values,
X1 X35 w05 X
which will maximize/minimize some objective function,
Z=C1X] +CxXp+ ... +ChXp

18

Master Thesis — Alvin Hsieh McMaster University- CAS
subject to certain constraints.

anXp+apXe+ ..o+ apx, < b]

a21X) + a»Xy + ... + apXy sz

Am1X] + amaXo + ...+ AnnXp < bn

With these conditions the constraints form a convex polytope, illustrating a feasible
region. Any point in the feasible region has a set of specific values for (xi, xz,...,xn) which
satisfies all the constraints and thus giving some value when substituted into the objective
function, z. Finding the specific point in the feasible region that gives the optimal (max/min
depending on the goal) object function value is the overall goal of linear optimization. The

optimal point may not be unique.

If the solution needs to take the form of integers, then the problem is called Integer
Linear Optimization, though its constraints can still be fractional. The integrality constraints
make Integer Linear Optimization usually much harder to solve. A common approach to tackle
the computational challenge is to use linear optimization to get fractional values, and then apply

rounding techniques that will give rise to integer values [16].

Example [17]:

Let x and y denote the amount of tomatoes and squash to be grown respectively in square
meters. A farmer who wishes to maximize his revenue (the objective function), selling a square
meter of tomatoes for $3 and $5 for squash. The first constraint deals with fertilizer, as a square
meter of tomatoes need 2 units of fertilizer and squash needs 3 units. The farmer has a total of

10 fertilizers so the total used has to be at most that. The second constraint deals with

19

Master Thesis — Alvin Hsieh McMaster University- CAS

insecticides, as a square meter of tomatoes and squash both need 1 unit. The total of units of
insecticides the farmer has is 4. The third and forth constraint is trivial and states that tﬁe farmer
cannot grow negative crops. The fifth constraint deals with the amount of tomato seeds
available, and the famer only has enough for 4 square meters. The last constraint is similar to the

previous, with the farmer only have enough seeds for 3 square meters of squash.

Objective Function (to be maximized): z=3x+ Sy

Constraints: 2x+3y<10; x+y<4; x=0; y=0; x<4; y<3

4.5 X 4’

3.5 Sz

2.5 - L3 o e e = == =5 i

~~~~~~~

1.5 -

0.5 e ;

Figure 4 - 1: Feasible region of the linear optimization proble m

Figure 4- 1 above shows the feasible region in yellow. This is obtained by plotting all the
constraints and observing their intersections. Any combination of x and y in the feasible region
will satisfy all constraints, but there usually is a specific point where it provides the optimal
solution.  In figure 4- 2 below, the optimal solution is obtained when x = 2 and y = 2. By
growing 2 square meters of both tomatoes and squash, the farmer will produce the optimal

revenue of $3*2 4+ $5%2 = $16.

20



Master Thesis — Alvin Hsieh  McMaster University- CAS

Figure 3 - 2: The optimal point in the feasible region

4.3 Simplex and Interior Point Method:

The above example is 2-dimensional (dealing with only 2 variables x and y) and by
plotting the constraints, the feasible region forms a polygon and can be visualize easily.
Anything beyond 3-dimensions cannot be visualized geometrically and must be solved
mathematically. The most commonly used methods for finding the optimal point(s) in the
feasible region are the simplex and the interior-point-methos, and cach one has many variants.
The first is the simplex method created by George Dantzig in 1947 [3]. The idea behind it is
shown in figure 4-2. By traversing adjacent edges of the polytope, the optimal point can be
found as it always lie on an edge. While the simplex method is not proven to be polynomial, it is

efficient in practice and widely used.

21



Master Thesis — Alvin Hsieh  McMaster University- CAS

Figure 4 - 3: The approach of the simplex method

The other algorithm is the interior point method, illustrated in figure 4- 3. The idea
behind it is to start examining feasible points from within the feasible region of the polytope (not
on any edges), and converge outwards (graphically) until the optimal solution is reached [16].
The interior point method is both polynomial time for both the worst case and the average case,

as proven by Karmarkar in 1984 [22], and very efficient in practice.

Figure 4 - 4: The approach of the interior point method

22



Master Thesis — Alvin Hsieh  McMaster University- CAS

4.4 Commercial Solvers:

There are numerous commercial software that are able to solve linear optimization
problems. Two commonly used ones are CPLEX and SeDuMi. CPLEX is a software package
that solves optimization problems. The name is a combination of the simplex method and
interfacing with the C programming language. Since its existence, it has expanded to include
interior point method and interfacing with C++, C# and Java. SeDuMi on the other hand is
under GPL (general public license) as long as the user has a license with Matlab, as it is a Matlab

library. It uses interior point method which has polynomial complexity [15].

23



Master Thesis — Alvin Hsieh McMaster University- CAS

24



Master Thesis — Alvin Hsieh  McMaster University- CAS

Chapter 5: Modeling of the Flying

Probe Test System

The objective of the thesis is to model the flying probe tester such that we can use some
algorithm to find an efficient testing path. To do so, some features of the flying probe tvester will
be relaxed in order to reduce complexity of the problem. This will allow the model to relate to
some of the existing work done in the Traveling Salesman Problem (TSP). TSP is the
mathematical problem of minimizing the travel cost through a finite number of cities (looping
back to the beginning), given the cost between each possible pair of cities. What we wish to
accomplish through the model is to obtain an optimal testing sequence. The distance travelled of
this optimal testing order needs to be an improvement over the default sequential order (set by

the tester).

25



Master Thesis — Alvin Hsieh  McMaster University- CAS

5.1 Notations and Objective Function:

Consider a circuit board that is ready for testing. We define a single test-step as the
individual testing done to a single component. For example, testing an arbitrary and single
resistor R; counts as one test-step and testing an arbitrary capacitor C; counts as another
independent test-step. Testing of the whole board includes executing the test-steps specified by
the technician (not all components need to be tested). The testing sequence of these test-steps is
the main focus of this research. Stored within each individual test-step, are its associated test
points. For example, if our current test-step involves testing an arbitrary resistor R, the
associated test-points that will be stored are the x-y coordinate system of the resistor's positive
and negative terminals respectively. The computer is able to place the probes to those exact

positions during testing.

Let n = the total number of the test-steps that needs to be executed. For each test-step Tj
(1 < n), the coordinates of all its associated-testing-points are recorded as P;(x,y), Po(x,y), etc.
The naming convention used for each test-step's associated-test-points always start with Py, then
P,. To differentiate the P1’s of different test steps, the dot notation will be used. For example,
T has its associated-test-points of P(0,0) & P,(10,10), while T, has its associated-test-points of
P1(20,20) & P»(30,30). They can be referred to uniquely as T1.P1, T1.P2, T2.P1 and T2.P2
respectively. On absolute terms, all these test points are unique, and the integrator software will

name them uniquely.

In order to reduce the complexity of the model, here are some of the assumptions made

about the flying probe tester:

26



Master Thesis — Alvin Hsieh  McMaster University- CAS

For each test-step, only one set of associated-test-points exists, meaning the point-

exchange feature is disabled.

e  We ignore the height of all components so that the probes don’t have to go around any
objects. Also, we ignore the the z-axis movement of probes, restricting all movement to
2D,

e The flying probe travels in a straight line manner from point to point. This assumes that
the shortest and direct path is taken for all movements.

® The speed at which the probes move is constant.

e In TSP, we tend to traverse through cities. However, each test-step has 2 or more

associated-test-points and thus requires two probes to move simultaneously. Since all the

associated-test-points are relatively close to each other, each test-step's Pi(x,y) will be
used as the landmark that represents the entire test-step. That is, all test-steps are
represented as a city, with the location of its Pj(x,y). A complete tour will cycle through

all these single points that represent different test-steps.

Here, we define some test-steps and their associated-test-points with arbitrary values

assigned:
T Pi1(2,3) T P2(4,5) ToPi(4,3) & T P2(5.2) ... T.Pi(3.4); Tn.P2(12,30)

The goal now is to build a model that tries to find the shortest distance of travel when cycling
(testing) through all test-steps. This problem takes the form of the classical TSP as mentioned,

and it is a NP-hard problem.

We now define the functional variable x(i,j) and it takes two values, O & 1. The variables

i and j represent test steps T and Tj. For simplicity, only the subscript of of T; and T; will be

27



Master Thesis — Alvin Hsieh  McMaster University- CAS

used when describing x(i, j). When x(i,j) = 1, it means that the straight and direct path from test-
step 1 to j is included as a part of our optimal tour. Similarly, x(i,j) = 0, means that the straight
path from test-step i to j is not part of the optimal tour, meaning test-step i doesn't go directly to
j, but rather i goes to some other test-step. Our overall goal is to find all the paths that are a part
of the optimal tour, such that all test-steps are visited exactly once, while minimizing the total

distance travelled in the trip. In other words, find all x(i,j)’s where i = 1.

The test-steps on the circuit board can be represented as an undirected graph, as any point
is able to reach any other point at a distance, having the exact same distance backwards. Thus,
the i-to-j path and the j-to-i path are referring to the same edge and we only need to specify this
value once. For example, x(1, 2) = x(2, 1), so storing the latter is redundant. For simplicity, in
x(1, j), variable 1 will always refer to the test-step of the lower naming value than j, i < j. Thus,
T is lower than T, is lower than T)o. Figure 5-1 below an example of a undirected graph which
represents how circuit boards will be modeled. Table 5- 1 shows the adjacency matrix of the

graph in figure 5- 1.

Geometric graph with 10 nodes

Solution: {0, 3,4, 5,9, 8,2, 1,6, 7, 0)

Figure 5—1: A circuit board and its test-steps are able to be represented as a Hamiltonian cycle and an undirected graph [19]

28



Master Thesis — Alvin Hsieh  McMaster University- CAS

Based on the modeling work, a flying probe TSP with n number of test-steps would have
n(n-1)/2 number of x(i,j)'s to be determined. In figure 5- 1, there are 10 test-steps and the edges
represent the path to be taken during testing. We would need 10(10-1)/2 = 45 x(i,j)'s as
illustrated in table 5- 1. Having all the data tabulated in a matrix, it becomes easier to work with

as will be seen later on.

xGj) | j=0 | 1 ) 3 4 5 6 7 8 9
i=0 0 0 I 0 0 0 1 0 0
v B 1 0 0 0 0
- 0 0 | 0
B ; o
et o
| e T
LR T
e o
B 1

Table 5 - 1: x(i,j) matrix of TSP in Figure 1. There are 45 (i,j)'s

Since the objective is to minimize distance traveled, we need variables that store the
physical distance between edges. Let w(i, j) be the weight variable that stores the distance
between test-step T; & Tj. Once again, only the subscript will be used. Using the following

equation, it is straight forward to calculate w(i, j):

w(i, j) = distlTi.P1-Tj.P2I (5.1)

If T, is represented by its P1(2,3) and T is represented by its P;(4,3), w(1,2) = distIT;(P;)-T2(Py)!

= distl(2,3)-(4,3)| =2

29



Master Thesis — Alvin Hsieh  McMaster University- CAS

Combining x(i, j) and w(i, j), the total distance traveled by the probes during a tour of

testing can be computed by:
Lw(i,j) *x(1,)) (5.2)

This is the objective function that will be used in linear optimization for minimizing the probe
distance. Since x(i, j) only take the values O or 1, this type of problem is classified as the 0-1 LO

(linear optimization, also known as linear programming) problem.

5.2 Fractional 2-Factor LO:

In a Hamiltonian cycle which represents the tour that the probes undertake, there is a
property that is common to all test-steps. For any test-step, Tj, there exist exactly 2 edges, one
arriving at T; from another test-step and the other leaving T; to another test-step. The test-steps
are represented as an undirected graph because the tour can go in either direction, but there is

still an incoming and outgoing edge when testing starts. With this property, for some test-step k:
YR, D=2 iorj=k (5.3)
Proof:

If an arbitrary test-step T3 is connected to T, and T, x(2, 3) = 1, x(3, 9) = 1, all other x(i, j) that
have either i = 3 or j = 3, would = 0. This will give us the overall sum of x(i, j) with eitheri=3

orj =3, equal to 2.

This property allows us to introduce constraints to our linear optimization model, to one known

as the fractional 2-factor LO (2-factor being that x(i, j) takes two values):

30



Master Thesis — Alvin Hsieh  McMaster University- CAS

Minimize Y w(i,j) * x(i,)) (5.4)
Subject to:
T x (k) + T x(k, ) = 2 (5.5) 3]

0<x(,j <=1
1<i<j<n

k=1,2, 310
There are commercial and open-source solvers that will be able to solve LLO problems as
described in section 4.4. By giving the solver the appropriate inputs, it will output the x(i, j)’s,
which corresponds to the paths of the overall tour. However, since TSP is a NP-hard problem
(3], it is difficult computationally and mathematically for the solver to find integer values (0 and
1) for the x(i, j)'s directly. Fortunately, the fractional LO techniques discussed in section 4.2 can
be used to obtain solutions in fractions, ie. x(i, j) = 0.98. After applying rounding to those

numbers, it can give us integer solutions that are desired.

Ultimately, the correct solution will output a tour that is in fact a Hamiltonian cycle that
includes all the test-steps. However the solutions we would get from LO solvers may not
represent the complete tour that is desired, even though the undesirable solution does satisty all

the mathematical constraint above.

Proof: In figure 5-2, the left graph represents the Hamiltonian Cycle that includes all the test-
steps and is the optimal solution. The right graph contains 2 separate sub-tours. Though it is not
the solution to our problem, it does mathematically satisfy the constraints of the fractional 2-
factor LO. Each test-step has exactly 2 edges though there are no edges connecting the two sub-

tours.

31



Master Thesis — Alvin Hsieh  McMaster University- CAS

A A

d oo d=d
N QR ol

e 1

1 1
OO 0

Figure 5- 2:- The figure on the left represents the desired solution, a Hamiltonian Cycle that traverses through all the testp-

4

Mg

steps. The figure on the right represents two sub-tours. This illustrates the solution we may get undesirable solutions from

the fractional 2-facor LO, even though it works out mathematically.

By chance, the optimal solution from the solver does in fact form a complete Hamiltonian
cycle. However, it is common that the LO solver gives a solution that does not correspond to the
desired complete tour. Those values can be used as a lower bound and constraints- used for
further computation (through iteration). This will guide us towards the optimal solution that will
eventually produce a complete tour. The rest of the thesis deals with finding algorithms and

introducing constraints that will forbid sub-tours from forming in the solution.
5.3 Solving the Testing Path Using TSP Techniques:

Before proceeding to sub-tour elimination, we will apply the models developed so far, to
solve a hypothetical example. Say we have a circuit board that requires testing, and it has a total
of 6 test.-steps. The first step is to translate the layout of the circuit boards and the location of
the test steps, into to a graph, as illustrated in figure 5- 3. For simplicity, the routable edges are
given in the figure (though in reality, every vertex is able to form an edge with every other

vertex), as well as their corresponding edge weight.

32



Master Thesis — Alvin Hsieh  McMaster University- CAS

A)

N )7

Figure 5 - 3: Layout of test-steps

Since the size of the problem is small, the optimal solution may be easily visualized. However, a
small sample size is chosen to demonstrate the modeling work of this thesis in a feasible manner.

The optimal solution is shown in figure 5- 4 below.
(A\ . R
I C
7

Figure 5 - 4: Optimal Tour of figure 5- 3

33



Master Thesis — Alvin Hsieh  McMaster University- CAS

Keep in mind that vertex A is a test-step and it represents the first test point of the multiple test
points associated with test step A. The same goes for the rest. Table 5- 2 below illustrates the

naming of the edges in our graph.

AB 2 x, CD = Xx¢
AE = x, CF = x;
AF > X3 DE - X8
BC = x4 DF = X9
BF = X5 ER =2 X10

Table 5 - 2: x(i,j) matrix of TSP in Figure 1. There are 45 (i,j)'s

Having all the necessary information, we can proceed and treat this as a fractional 2-factor LO.

Using (5.4), (5.5) and the edge weights, the problem is modeled as the following:

Minimize:
99X + 3X2 + 5X3 + 5X4 + 4Xs5 + 2X¢ + 8X7 + Xg + 7X9 + 5X 19 (5.6)
Subject to:
X] + X2 + X3 =2
X1+ X4 + X5 =2
X4 + Xe + X7 =2
Xe + Xg + X9 =9
X2 + Xg + X10= 2
X3 + Xs &+ X7 + X9+X10:2
(5.7)



Master Thesis — Alvin Hsieh McMaster University- CAS

The constraints all have the R.H.S. equal to 2, corresponding to the fact that the vertices
represent a Hamiltonian Cycle. As the last vertex loops back to the first, each vertex will have
an edge going in, as well as going out. The last constraint illustrates the permitted values of x;’s.
Equaling to zero means that edge is not used and vice versa. Keep in mind that this is a

fractional 2-factor LO problem, so the values of x’s are permitted to be non-integers.

The solver that was used was SeDuMi, which is designed to run in the Matlab
environment. Since the LO solves for min. ¢'x subject to Ax < b, we need to translate the
constraints into their corresponding matrix form. Table 5- 3 contains 3 matrices that correspond
to the constrains of the linear optimization problem. For matrix A, the first row with the variable

names is not part of the input, but is just there for reference.

A=
X1 X2 X3 X4 X5 X X7 Xg X9 Xj0
1 1. 1.0 0 O O O O O
1 0 0 1 1 0 0 O 0 O
o o0 o0 1 o0 1 1 0 0 O
O 0 0o 0 o0 1 0 1 1 O
O I 0 0O 0 0O 0 1 0 1
O 0 1 0 1 O 1 O 1 1

9 3 5 5 4 2 8 1 7 5

Table 5 - 3: Constraints in matrix form

The matrices in table 5- 3 cannot be used with SeDuMi as is because SeDuMi solves the

problem in the format of:

35



Master Thesis — Alvin Hsieh McMaster University- CAS

min. ¢cTx
subjectto Ax =b (5.8)

Xizo

In order to impose x; < 1, the 3 matrices in table 5- 3 must be modified. In order to add the x; <1

constraint to SeDuMi, it can be rewritten as:

Xi§1_> Xi+ s =1 (59)

with s;> 0
Thus, enforcing x; < 1 requires 10 additional variables, also known as slacks. Modifying the

matrices in table 5- 3, the matrices become the following and is represented in table 5- 4:

min [CT, OT] * E]

such that: A, * [ﬂ < [bz] x>0,s>0

I
where A, = [‘? (I)]
by = [l; ] ¢ = [CT, 07]

Having set up the matrices, a straight forward function call to SeDuMi will yield the optimal
solution, if such solution exists. Once again, SeDuMi uses the interior point method, which
traverses the geometric feasible region of the solution from within, working outwards an edge, as

all optimal solution lie on some edge or hyperplane (higher dimensions).

36



Master Thesis — Alvin Hsieh  McMaster University- CAS

A2 =
(X1 X2 X3 X4 X5 X¢ X7 X8 Xo Xjo| S1 S2 S3 S4 Ss S¢ S7 Sg So Sio)

1 1 1 &€ € 9 0 ¢ 0 g0 & 0 0 0 4 0 @€ 0 @
!1 0 o 1.1.0 0 060 00 0 O O O O O0O O 0 O0
o o0 o 1 o0 1 1 0 O O0OJO0 O O O O o o0 o0 o0 O
o o0 o o o 1 0 1 1 OO0 O O O O O O O 0 O
o 1 o o o o o 1 o0 110 O O O O O O O 0 O
0o 0 1 0 1 0 1 0 1 1]J]0 0 0 O O 0 0 0 0 o0
1 0 0o 0o o 00 0 0 0|1 00 0O OO0OTO0OO0O O O
o 1 0 o o o o o o oyjo0 1 0 0O O O o O0 o0 o
o o0 1 o o o o o o o(o0 o1 0 0 o0 o o0 o0 o0
o o0 o0 1 o0 o0 o0 o o ojo o0 o 1 o0 0 O 0 o0 o0
o o o o 1 0 0 o0 o0 ojo 0 o o0 1 0 O O 0.0
o o o o o 1 0 o o0 ojo 0 o o0 o 1 0 0 o0 o0
o o o o o o 1 0 o0 O0jo 0 0 o o0 o0 1 0 0 o0
o o0 o o o o o 1 0 0jO O O O 0 0 o0 1 0 O
o o o o o o0 o o 1 00 0O O O O O O o0 1 o0
o o0 o0 o o o0 o o 0 170 0 O 0 O O 0 0 o0 1

b2 =
2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

2=
9 3 5 5 4 2 8 1 7 5 0 0 0 0 0 O 0 0 0 O

Table 5 - 4: Constraints in matrix form conforming to SeDuMi input
Input:
sedumi(A2, b2, c2)
Output:

SeDuMi 1.21 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.
Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta = 0.500
eqs m = 16, order n = 21, dim = 21, blocks = 1
nnz(A) =40 + 0, nnz(ADA) = 76, nnz(L) = 48
it: b¥*y gap delta rate t/tP* t/tD* feascgcg prec
0: 5.59E+001 0.000

1: 2.25E+001 2.06E+001 0.000 0.3692 0.9000 0.9000 3.76 1 1 1.6E+000 |

2: 2.09E+001 4.52E+000 0.000 0.2191 0.9000 0.9000 1.38 1 1 3.1E-001
3: 2.00E+001 1.26E-002 0.000 0.0028 0.9990 0.9990 1.04 1 1

37




Master Thesis — Alvin Hsieh  McMaster University- CAS

iter seconds digits ~ c*x b*y
3 0.7 Inf 2.0000000000e+001 2.0000000000e+001
|IAx-bl = 4.5e-016, [Ay-c]_+ = 5.4E-016, IxI= 3.2e+000, lyl= 9.3e+000

Detailed timing (sec)
Pre IPM Post
5.460E-001 7.488E-001 2.496E-001
Max-norms: lIbll=2, llcll = 9,
Cholesky laddl=0, Iskipl = O, lIL.LIl = 1.

ans =
(2,1) 1.0000
(3,1) 1.0000
4,1) 1.0000
(5,1) 1.0000
(6,1) 1.0000
(8,1) 1.0000

(11,1) 1.0000

(17,1) 1.0000

(19.1) 1.0000

(20,1) 1.0000
From the answer variable named “ans” above, the solver outputs the variables and their
values, while variables that are not displayed have the value of 0. More specifically, (2,1)

correspond to X;, so the full solution is:

X2=X3=X4=X5=X6=Xg=sl=S7=Sg=S|0=1

Referring back to figure 5- 4, the solution (x;’s) computed by SeDuMi does indeed match the
edges of the known optimal tour. The x;’s that are not part of the optimal tour have their

respective s;’s = 1, which conforms to equation (5.9).

The total distance traveled in the tour that is computed by SeDuMi is 20 units, as
illustrated in figure 5- 4. The worst case distance is 33 units, by taking the path shown in figure

5- 5 below. If the average edge weights were taken for all 10 edges, the result is 4.9 units per

38



Master Thesis — Alvin Hsieh  McMaster University- CAS

edge. Since in a complete tour, 6 edges are traveled, the distance traveled based on the average
is 4.9 * 6 = 29.4. This example verifies how the test path generated and solved by the model is
much more efficient than that of the flying probe tester’s sequential paths. If the sequential order
produces a sparse graph, the test path generated by the model will be significantly more efficient.
If the sequential order produces a dense graph, the test path generated by the model will not be as

efficient, but still more nonetheless. The results are summarized in table 5- 5.

(
-

Figure 5 - 5: Worst case travel distance

Tour Distance (units)

Solution from Model 20
Average Case 294
Worst Case 33

Table 5 - 5: Total distance from model’s solution, average case and worst case

39



Master Thesis — Alvin Hsieh  McMaster University- CAS

5.4 Subtour Relaxation of the Fractional 2-Factor:

Now back to the topic of sub-tour. In figure 5.6, a tour is mapped out. The red line splits
all the cities into two groups, the ones above and below. Since the tour is indeed a complete
tour, there has to be at least 2 paths that cross the red line, joining two groups together. This
property holds regardless of any cut (orient the red line) made to the group , since the tour is a
complete one, touring each city exactly once. In the right figure of figure 5- 2, if a cut was made
between the two triangles, the number of paths crossing each clusters is 0, because sub-tours

exist and does not contain all the test-steps.

Figure 5 - 6: The points above and below the red line represents two different and unique clusters

Let S be any collection of test points having at least 3 and at most k-1 members (S cannot
contain the entire set of test points on the board), and let Q denote the remaining testing that is
not part of S. To forbid the sub-tours from forming, a condition needs to be added stating: the

sum of the variable corresponding to the path from S to Q must be at least 2. A path from S to Q

40



Master Thesis — Alvin Hsieh  McMaster University- CAS

involves a point that is part of S, going to another point that is part of Q, crossing the border (cut)

that separates the two sets.

2x(i,j)=2 withlofiandjisinS, theotherinQ (5.10)

The solution quality of this lower bound (obtained from solving the sub-tour relaxation) is much
better than the one obtained from the fractional 2-factor LO. However, this greatly increases the
computational difficulty of the problem and we can no longer feed the equations to the LO solver

to solve directly, as its complexity is O(2") [3].
5.5 Graph Representation:

If we record the problem as a graph, G=(V,E), where V is the set of all the points

representing cach test-steps and E stores all the edge weights w(i,j).
We have following definition:

Let S be a subset of V. An cut, G, that separates S from the rest of V should come intersect
edges that have one of its point in S, the other not in S. Let §(v) represent these edges. As
stated in the previous section, when there exist two sets/clusters of vertices, there has to be at
least 2 edges whose starting and ending points from different sets. This property must hold in

order to have a complete tour.
We could re-write the fractional 2-factor LO as the following:
Minimize w’X (5.11)

Subject to:

41



Master Thesis — Alvin Hsieh  McMaster University- CAS
x(S(U)) = 2 for all the vertices v (5.12)
0<x.<l, for all edges e (fractional) (5.13)

Equation (5.11) is essentially the same objective function as (5.4), but in a different form.
Equation (5.12) is equivalent to (5.5), but modified to represent cuts, where all vertiées/points
must have an incoming and outgoing edge. Given a non-empty proper subset S of V, the sub-
tour inequality for S requires that the variables corresponding to edges joining vertices in S to

vertices in V-S sum to at least 2, giving rise to (5.14).
Thus the sub-tour relaxation of the fractional 2-factor LO becomes:
Minimize w’x
Subject to:

x(&(v)) = 2 for all the vertices v
x(6(S)) =2 orx(S,V—S8)=2 mforallScV,S+V,I|S| =3 (5.14)

0<x¢<1, for all edges e

5.6 Cutting-Plane Method:

Consider the equation (5.13) above, the size of the problem is extremely large. A
fundamental idea could be apply in order to reduce the size of the problem. An LO relaxation
can be improved during a solution procedure by adding constraints in the form of linear

inequalities that are satisfied by all points. This means we will add some constraints during

42



Master Thesis — Alvin Hsieh  McMaster University- CAS

solving process instead for add all the constraints at the beginning.

illustrates the idea behind the algorithm:

No sub-tour

Building the Model

Solving Model

\.

find the subtour
according to the solution

7

Sub-tour exist

-

Adding the
corresponding constraint

get the optmial solution

Figure 5 — 7: Idea behind sub-tour elimination algorithm

43

The flowchart below



Master Thesis — Alvin Hsieh McMaster University- CAS

Algorithm:

1. Build the initial linear system: x(d(v)) = 2 for all the vertices v
2. Solve the system, returning the solution x*

3. While (Subtour exist in x*)

4, FindCut(x*), return a nonempty set

3. do rebuild the system, adding constraint based on the suboutrs found
6. Solve system again

1 end

8. Return the solution

The algorithm will successfully eliminate all sub-tours, however, it is computationally
heavy. Along with section 5.3, the models introduced in this thesis are able to successfully find a
tour path that decreases the distance travelled by the probe. Under a mass production setting
where many of the same boards are tested, the cost of computing the optimal tour is divided into

many circuit boards in the sense that it is computed once but executed multiple times.

44




Master Thesis — Alvin Hsieh  McMaster University- CAS

Chapter 6: Testing

In this section, the tour distance of Acculogic’s sequential path is compared with that of
the model developed in the previous chapter. Using CPLEX as the linear optimization: solver, 3
additional programs were written in Java. The first program handles inputs (coordinates of test
points) and sets up the problem, while the other 2 are used to eliminate any sub-tours that may
arise from CPLEX’s output. In section 6.1, these 3 programs will be explained in more details,

including their purpose, input and output files, as well as their general algorithm.
6.1 Java Programs:

Program: fileData.java

Input File: input.txt (contains coordinate of all points)
Output File:  output.lp

Description:

45



Master Thesis — Alvin Hsieh  McMaster University- CAS

The purpose of this program is to read in all the test points that we wish to find the
shortest path of. Points are in the x, y coordinate format and is read by the program and stored as
objects. From these objects, the decisional variables (distance from every city to all others) are
computed. This program then prints the LO problem to the output file, conforming to the format
required by the CPLEX solver.

Algorithm:

1. Read all test points from input.txt

2. From test points, determine the n(n-1)/2 decisional variables (name + edge weights)
3. Print objective function to output file

4. Print constraints to output file

5. Print bounds to output file

Program: Cplex.java

Input file: cplex.txt
cplex2.txt
output.lp

Output file:  output.lp

Description:

To relax the model, the bound of each decisional variable allows it to take non-integer
values between O and 1. Though integer solutions desired, there are cases where the optimal
solution would contain non-integer values. If the value is < 0.5, it can be rounded down to 0. If
the value is > 0.5, it can be rounded to 1. However, when the value is equal to 0.5, it would be
inaccurate to round all of it up, because we would end up having more edges in the tour than it is

allowed in a Hamiltonian cycle. This program is to be executed proceeding the use of the

46



Master Thesis — Alvin Hsieh  McMaster University- CAS

CPLEX solver, after copying its solution from the command prompt to either cplext.txt or
cplext2.txt. For the very first use of CPLEX, the solution is placed in the former, while all
succeeding solutions are placed in the latter. This program processes the CPLEX solution by
checking whether or not any decisional variables in cplex2.txt with the value of 0.5, are also
present in cplext.txt (the previous solution). If those new decisional variable with the value of
0.5 do exists in the previous solution, then nothing is to be done. For those decisional.variables
that do not exist in the previous solution, we must change its corresponding bound in output.txt
to 0. For example, if in cplex2.txt, x2_5 = 0.5, x2_5 does not exist in cplex.txt, then in output.lp,
we must change the bound of x2_5 to 0 <=x2_5 <=0.

The idea behind this is that for a decisional variable with a value of 0.5, if that edge is
also present in cplex.txt, it is a part of some sub-tour in the previous solution, and sub-tours form
because they are the local minimum of that part of the graph. Though joining two separate
clusters together do requiring the breaking of edges amongst each cluster, keeping these local
minimum (edges existing in the previous solution) is essential to prevent the creation of sub-
tours within our sub-tours. It is expected that at least two edges will be broken, an edge from the
first cluster that is closest to the second cluster, as well as an edge from the second cluster that is
closest to the first. Each of the two loose points of each cluster will form an edge with a separate
loose point of the other cluster, thus creating two cluster joining edges. Whenever CPLEX
outputs decisional variables with the value of 0.5, they always come in pairs, because together
they have the sum of 1, which represent a whole edge. Thus the idea is to keep the edge that is
also present in the previous solution (making the edge value = 1) while changing the bounds of
the other one that is not part of the previous tour, to 0 (making the edge value = 0). Doing so

will prevent the formation sub-tour creating edges within cluster (because bounds are changed to

47



Master Thesis — Alvin Hsieh McMaster University- CAS

0, that edge can’t exist) as well as ensuring only the edges that are closest to the other cluster are
broken.

Algorithm:

1. Read in cplex2.txt

2. if decisional variables in cplex2.txt contain 0.5

3. if decisional variables contains 0.5

4. read cplex.txt, check if cplex.txt also contains it

. if cplex.txt does not contain it

6. change its bound in output.txt to 0, ie. 0 <=x2_4 <=0
7. else

8. overwrite cplex.txt with contents of cplex2.txt (newest solution)

Program: subTour.java

Input Files:  input.txt
cplex.txt

Output: output.lp

Description:

This program is responsible for analyzing whether the solution solved and output by
CPLEX contains any sub-tours. This is to be executed after running Cplex.java if and bnly if no
decisional variables have the value 0.5, which the Cplex.java will confirm. Along with the
CPLEX solution, this program also must read the input file that contains all the coordinates.
Starting from the first decision variable in the solution (first row of cplex.txt), the program

traverses to the next point that it is connected, then onto that’s next, and so on. For example, if

48



Master Thesis — Alvin Hsieh  McMaster University- CAS

the first edge in cplex.txtis x1_15, the program find the next edge that contains test point 15, say
x8_15, and finds the next edge that contains test point 8 and so on. If the path that leads back to
the first point and contains all the points in the system, then the program outputs the total
distance traveled, as a complete tour is established. If any sub-tour exists, then the program will
generate a new constraint based on the points in the current sub-tour to all external points. This
constraint is updated (written) to the appropriate place in output.lp, to be solved by CPLEX.

Algorithm:

1. Read all test points from input.txt

2. Read CPLEX solution from cplex.txt

3. Using the first decisional variable as starting point, traverse through the connected edges
4. if no sub-tour exist

3. Output to screen the distance traveled

6. else if sub-tour exists

7. Generate new constraint: sum of all edges in the sub-tour to external edges = 2
8. Update constraint to output file

6.2 Steps of Testing:

With a better understanding of what each program does, the following sequence explains

the overall testing process:

1. Enter test point coordinates into input.txt
2. Run fileData.java to obtain LO problem, written to output.lp
3. Read output.lp in CPLEX, optimize it and copy solution to cplex.txt

4. Run subTour.java, will update output.lp

49



Master Thesis — Alvin Hsieh  McMaster University- CAS

If no sub-tour exist, output total distance traveled, go to step 7.

If sub-tour exists, will update output.lp
5. Feed output.lp to CPLEX solver, optimize it and copy solution cplex2.txt
6. Run cplex.java

If decisional variable = 0.5 exist, go back to step 5

If decisional variable = 0.5 don’t exist, go back to step 4

7. End

6.3 Testing and Results:

The coordinates of Acculogic’s demo board (which is used for the testing of the flying
scorpion) is entered into input.txt. In this test instance, there are a total of 20 test points. In table
6-1 below the (x, y) coordinates of each point (in cm), the distance from the current point to the
next, as well as the sum of these distances (the 20" goes back to the first point, completing the
tour). In the input.txt file, the coordinate of each point lies on a separate line, with the x

coordinate first, followed by a comma, then the y coordinate.

X Y Distance Sum
4.2799 | 7.66064
4.5466 | 7.6454 0.267135 64.34205
5.0038 | 7.6454 0.4572
6.6548 | 7.6454 1.651
3.81 | 6.5786 3.038248
44196 | 3.5306 3.108362
4.3942 | 3.52044 0.027357
1.76784 | 0.6604 3.882988
6.3246 | 0.6604 4.55676
0.79756 | 3.3782 6.159108
4.6228 | 0.6604 4.69243
2.7686 | 5.2324 4.933684
8.6106 | 6.3246 5.94322

50



Master Thesis — Alvin Hsieh  McMaster University- CAS

8.9662 5.461 0.933947

9.271 | 3.1242 2.356594

5.207 | 3.5179 4.083025

3.937 | 3.0734 1.345541

6.6548 | 1.7653 3.016217

3.4417 | 5.04444 4.590944

3.94716 | 1.7272 3.355528
4.2799 | 7.66064 5.942763

Table 6 — 1: Test Points Coordinate from Acculogic’s demo board (values obtained from Integrator software).

Testing includes running any of the 3 programs and CPLEX at different stages bf testing
as described in section 6.2. Some programs will be required to execute multiple times,
depending on the number of iterations needed to eliminate all sub-tours. This is directly linked
to the sample size. For the specifics of testing this instance, please refer to Appendix C, which
will illustrate which bounds are changed, constraints are added, as well as the CPLEX solution

after each iteration. The final output produced by CPLEX is of the following form:

x1_2 1.000000
x1_5 1.000000
x2_3 1.000000
x3_4 1.000000
x4_13 1.000000
x5_19 1.000000
X6_7 1.000000
X6_16 1.000000
x7 17 1.000000
x8_10 1.000000
x8_17 1.000000
x9_11 1.000000
x9_18 1.000000
x10_12 1.000000
x11_20 1.000000
x12_19 1.000000
x13_14 1.000000
x14_15 1.000000
x15_18 1.000000
x16_20 1.000000

51



Master Thesis — Alvin Hsieh McMaster University- CAS

On the left column are the decisional variable names. Their value on right side confirms
that they are indeed on the path (1 being part of the tour, O being not part of the tour). The
solution can also be confirmed by tracing the tour path: 1 > 2 >3 >4 > 13 214 > 15 218
29 211 220 216 26 27 217 8 210 »>12 219 -5 >1. A Hamiltonian cycle did
indeed form as the tour looped back to test point number 1. The number of edges in the tour is
20, which is equal to the number of test points in the test instance. From the subTour.java
program, when there are no sub-tours present, it computes the distance of the tour, which is

31.04 cm, a 51.76% reduction of the sequential distance of 64.24 cm.

52



Master Thesis — Alvin Hsieh  McMaster University- CAS

Chapter 7: Future work

Future work could include incorporating the point exchange feature in the modeling. It
will increase computation time, but should reduce the tour distance further as it takes advantage
of test points common to different test-steps. Other features of the flying probe tester that can be
considered are test-point selection, pre-processing of test points, motion sort and model the
vertical z-axis of components as well as probe movements. Also, work can be done in

implementing the model on the actual Flying Scorpion and see how it performs.

53



Master Thesis — Alvin Hsieh  McMaster University- CAS

54



Master Thesis — Alvin Hsieh  McMaster University- CAS

Appendix A: CPLEX Output

The test program in section 5.3 was also done in CPLEX. Here is the output.

CPLEX> set logfile solutionPrimal.txt
Logfile 'cplex.log' closed.

Logfile 'solutionPrimal.txt' open.
CPLEX> opt

No problem exists.

CPLEX> read test.lp

Problem 'test.lp' read.

Read time = 0.01 sec.

CPLEX> opt

Tried aggregator 1 time.

No LP presolve or aggregator reductions.
Presolve time = 0.00 sec.

Iteration log

Iteration: 1 Infeasibility = 3.000000
Switched to devex.

Iteration: 3 Objective = 20.000000
Primal simplex - Optimal: Objective = 2.0000000000e+01
Solution time = 0.00 sec. Iterations = 3 (2)

CPLEX> display solution variables -

Variable Name Solution Value

X2 1.000000

%3 1.000000

x4 1.000000

x5 1.000000

x6 1.000000

x8 1.000000

All other variables in the range 1-10 are O.
CPLEX>

CPLEX> set 1lp

Present value for method for linear optimization: 1
0 = automatic

= primal simplex

= dual simplex

= network simplex

= barrier

= gifting

g W N
|

55



Master Thesis — Alvin Hsieh  McMaster University- CAS

6 = concurrent dual, barrier, and primal
New value for method for linear optimization: 2
New value for method for linear optimization: 2
CPLEX> read test.lp
Problem 'test.lp' read.
Read time = 0.01 sec.
CPLEX> opt

Tried aggregator 1 time.
No LP presolve or aggregator reductions.
Presolve time = 0.00 sec.

Iteration log
Iteration: 1 Dual objective

Dual simplex - Optimal: Objective = 2.0000000000e+01

Solution time = 0.00 sec. Iterations = 4 (0)

CPLEX> display solution variables =

Variable '=' does not exist.

Display values of which variable(s): -

Variable Name Solution Value

X2 1.000000

x3 1.000000

x4 1.000000

%5 1.000000
1.000000

x8 1.000000

All other variables in the range 1-10 are O.

8.000000

CPLEX> set 1lp 4

New value for method for linear optimization: 4
CPLEX> read test.lp

Problem 'test.lp' read.

Read time = 0:01 secs

CPLEX> opt

Tried aggregator 1 time.

No LP presolve or aggregator reductions.
Presolve time = 0.00 sec.

Parallel mode: using up to 16 threads for barrier.

Number of nonzeros in lower triangle of A*A' = 10
Using Approximate Minimum Degree ordering
Total time for automatic ordering = 0.00 sec.
Summary statistics for Cholesky factor:

Threads = 16

Rows in Factor =6

Integer space required = 6

Total non-zeros in factor 21

Total FP ops to factor = 91

Itn Primal Obj Dual Obj Prim Inf Upper Inf
0 4.9000000e+01 -4.9000000e+01 8.00e+00 1.00e+01
1 2.5927682e+01 1.1222573e+01 1.11le-15 0.00e+00
2 2.1408090e+01 1.9362105e+01 6.66e-16 1.39%e-16

56

Dual Inf
0.00e+00
6.66e-15
3.44e-15



Master Thesis — Alvin Hsieh  McMaster University- CAS

3 2
4 2
5 2
6 2
7 2
8 2
Parallel

.0040014e+01
.0002543e+01
.0000128e+01
.0000006e+01
.0000000e+01
.0000000e+01
barrier real time =

Primal crossover.

NN e

.9937715e+01
.9997428e+01
.9999872e+01
.9999994e+01
.0000000e+01
.0000000e+01
0.02 sec.

Primal: Fixed no variables.
Dual: Fixing 6 variables.
5 DMoves: Infeasibility
0 DMoves: Infeasibility
Dual: Pushed 5, exchanged 1.

Using devex.
Total crossover time

Total real time on 16 threads =

Primal simplex - Optimal:
Solution time =

0.02 sec.

0.00 sec.

Objective =

CPLEX> display solution var
Display values of which variable(s): -
Variable Name

X2
x3
x4
x5
X6
x8

1

= e

Solution Value
.000000
.000000
.000000
.000000
.000000
1

000000

O O 00

8.

Iterations

.44e-16
.44e-16
.88e-16
.00e+00
.00e+00

88e-16

0.00000000e+00
0.00000000e+00

0.02 sec.

NN DN

.60e-16
.63e-16
.75e-16
.93e-16
.87e-16
.80e-16

SN W

Objective
Objective

2.0000000000e+01

=0

All other variables in the range 1-10 are 0.

57

(0)

.98e-15
.95e-15
.60e-15
.93e-15
.63e-15
.99%e-15

2.00000000e+01
2.00000000e+01



Master Thesis — Alvin Hsieh McMaster University- CAS

Appendix B: Flying Scorpion’s
Testing Capabilities

These are the electrical components that the Flying Scorpion is capable of testing:

® Resistors

e Capacitors (need to discharge first)

® Inductors

e Shorts

e Switch: opened or closed circuits (test presence or absence of jumpers)
e Diode: forward and reverse/leakage tests
e Zener Diode

e BJT: NPN, PNP

e MOSFET

e Opto

e Thyristor

e Triac

58



Master Thesis — Alvin Hsieh  McMaster University- CAS

Appendix C: Testing Procedure and

Results

1. Enter test point coordinates into input.txt
Contents of input.txt

4.2799,7.66064
4.5466,7.6454
5.0038,7.6454
6.6548,7.6454
3.81,6.5786
4.4196,3.5306
4.3942,3.52044
1.76784,0.6604
6.3246,0.6604
0.79756,3.3782
4.6228,0.66004
2.7686,5.2324
8.6106,6.3246
8.9662,5.461
9.271,3.1242
520733179
3.937,3.0734
6.6548,1.7653
3.4417,5.04444
3.94716,1.7272

2. Running fileData.java > Adds LO problem to output.lp
Contents of output.lp

minimize

027x1_2+0.72x1_3+237x1_4+1.18x1_5+4.13x1_6+4.14x1_7+7.44x1_8+7.29
x1_ 9+552x1_10+7.01 x1_11+2.86x1_124+4.53 x1_13+5.18 x1_14+6.74x1_15+4.25
x1_16+4.6x1_17+636x1_18+2.75x1_19+594x1_20+046x2_3+2.11 x2_44+13x2_5
+4.12x2_6+4.13x2_7+752x2_8+721x2. 9+5.68x2_10+699x2_11+3.0x2_12+
427x2_13+493x2_14+654x2_15+4.18x2_16+4.61 x2_17+6.25x2_18+2.83x2_19 +

59



Master Thesis — Alvin Hsieh  McMaster University- CAS

595x2_20+1.65x3_4+1.6x3_5+4.16x3_6+4.17x3_7+7.7x3_8+7.11x3_9+5.99
x3_10+7.0 x3_11 +3.29 x3_12 + 3.84 x3_13 + 4.52 x3_14 + 6.22 x3_15 + 4.13 x3_16 + 4.69
x3_17+6.11 x3_18 +3.03 x3_19 4+ 6.01 x3_20 + 3.04 x4_5 + 4.68 x4_6 + 4.7 x4_7 + 8.52 x4_8
+6.99%x4 9+725x4_10+7.27x4_11+4.57 x4_12 +2.36 x4_13 +3.18 x4_14 + 5.22 x4_15
+4.37x4_16+532x4_17+5.88x4_18+4.13x4_19+6.51 x4_20+3.11 x5_6+3.11 x5_7 +
6.26 x5_8+6.43x5_9+4.4x5_10+5.97x5_11+1.7x5_12 +4.81 x5_13 + 5.28 x5_14 + 6.46
X5_15+3.36x5_16+3.51 x5_17 +5.59 x5_18 + 1.58 x5_19 + 4.85 x5_20 + 0.03 x6_7 + 3.91
X6_8 +3.44x6_9 4+ 3.63 x6_10 + 2.88 x6_11 +2.37 x6_12 + 5.04 x6_13 + 4.94 x6_14 + 4.87
X6_15+0.79 x6_16 + 0.66 x6_17 + 2.85 x6_18 + 1.8 x6_19 + 1.86 x6_20 + 3.88 x7_8 + 3.45
X7_9+3.6x7_10+2.87x7_11+2.36x7_12+5.06x7_13 +4.97 x7_14 +4.89 x7_15 + 0.81
X7_16+0.64 x7_17 +2.86 x7_18 + 1.8 x7_19 + 1.85 x7_20 + 4.56 x8_9 + 2.89 x8_10 + 2.85
Xx8_11 +4.68 x8_12 + 8.88 x8_13 + 8.65 x8_14 + 7.9 x8_15+4.47 x8_16 +3.24 x8_17 + 5.01
x8_18 +4.69 x8_19 +2.43 x8_20+6.16 x9_10+ 1.7x9_11+5.79x9_12+6.11 x9_13 +5.48
X9_14 +3.84 x9_15+3.07 x9_16 +3.39x9_17 + 1.15x9_18 + 5.25 x9_19 + 2.61 x9_20 + 4.69
x10_11 +2.71 x10_12 + 8.35 x10_13 + 8.43 x10_14 + 8.48 x10_15 + 4.41 x10_16 + 3.15
x10_17 +6.08 x10_18 + 3.13 x10_19 + 3.56 x10_20 + 4.93 x11_12 + 6.93 x11_13 + 6.47
x11_14 +526x11_154+292x11_16+2.51 x11_17 +2.31 x11_18 +4.54 x11_19 + 1.26
x11_20+594 x12_13+6.2x12_14 + 6.84 x12_15+2.98 x12_16 +2.45 x12_17 + 5.21 x12_18
+0.7x12_19 +3.7x12_20 + 0.93 x13_14 + 3.27 x13_15 + 4.41 x13_16 + 5.69 x13_17 + 4.96
x13_18 +5.33 x13_19 + 6.55 x13_20 + 2.36 x14_15 + 4.23 x14_16 + 5.57 x14_17 + 4.36
x14_18 +5.54 x14_19 + 6.26 x14_20 + 4.08 x15_16 + 5.33 x15_17 + 2.95 x15_18 + 6.14
x15_19 +5.5x15_20 + 1.35 x16_17 + 2.27 x16_18 + 2.33 x16_19 + 2.19 x16_20 + 3.02 x17_18
+2.03 x17_19 + 1.35 x17_20 + 4.59 x18_19 + 2.71 x18_20 + 3.36 x19_20

subject to

X1 2+x1 34+x1 4+x1. 54+x1 64+x1 74+x1 8+x1 9+x1 10+x1_11+x1_12+x1_13+
x1_14+x1_15+x1_16+x1_17+x1_18+x1 _19+4+x1 20=2

X1 2+x2.3+4+x2 44+x2.54+%x2 64+x2 7+x2. 8+x2 9+x2 10+x2_ 11 +x2 12+ X2_13 +
X2_ 14 +x2_15+x2_ 16+ x2_17+x2_18+x2 19+x2 20=2

X1 3+%x2.34+x3 4+x3 54+x3 64+x3 7+x3. 8+x3 9+x3 10+x3 11+x3 12+x3_13+
x3_14+x3_15+x3 16+x3_17+x3 18+x3 194+x3 20=2

XI_ 4+x2 4+x3 4+x4 5+x4 6+x4_ T7+x4 8+x4 9+x4 10+x4_11+x4_12+x4_13+
X4_14+x4_15+x4_16+x4_17+x4_18 +x4_19+x4 20=2

XI.S5+Xx2 5+4+x3 54+x4 54+x5 64+x57+x5.8+x5 9+x5 10+x5 11+x5 12+x5_13+
X5_ 14 +x5_15+x5_16+x5_17+x5_18+x5_19+x5.20=2

X1_ 64+X2. 6+x3 64+x4 6+%X5 6+x6_7+x6_8+x6 9+x6_10+x6_11+4+x6_12+x6_13+
X6_14 +x6_15+x6_16+x6_17 +x6_18 + x6_19 + x6_20=2

60



Master Thesis — Alvin Hsieh  McMaster University- CAS

X1 7+x2 74+x3 7+x4 T+x5T+x6_7+x7T_8+x7 9+x7_10+x7_11+x7_12+x7_13+
X7 14+ x7 15+x7_16+x7_17+x7_18+x7_19+x7 20=2

X1_8+x2 8+x3 8+x4 8+x5_8+x6_8+x7_8+x8 9+x8 10+x8 11 +x8 12+x8 13+
X8 _ 14 +x8 15+ x8 16+ x8 17 +x8_ 18 +x8 19+ x8 20=2

X1 94x%x2 9+x3 9+x4 9+x5. 9+x6_9+x7 9+x8 9+x9_10+x9_11+x9_12+x9_13 +
X9 14 +x9 15+x9 16+ x9_17+x9_18+x9_19+x9 20=2

x1_ 10+x2 10+x3_ 10+x4 10+x5_10+x6_10+x7_10+x8 10+ x9 10+ x10_11+
x10_12 +x10_ 13 +x10_14 +x10_15+x10_16+x10_17 +x10_18 +x10_19 +x10_20=2

XI_IT+x2_11+x3_11+x4_11 +x5_11+x6_114+x7_11+x8_11+x9_11 +x10_11+
x1T_124+x11_13 +x11_14+x11_15+x11_16+x11_17+x11_18 +x11_19+x11_20=2

X112+ x2_12+x3_12+x4_12 +x5_12+x6_12 +x7_12 + x8_12+x9_12 + x10_12 +
x11_12 4+ x12_13+x12_ 14 +x12_15+x12_16+x12_17 +x12_18 +x12_19 +x12_20=2

X1 13+x2 13+x3 13+x4 13+x5_ 13+x6_13+x7_13+x8 13 +x9 13 +x10_13+
x11 13+ x12 13 +x13 14 +x13 15+x13_16+x13_17+x13 18 +x13 19+ x13 20=2

X1_14 +x2_14 + x3_14 + x4_14 + x5_14 + x6_14 + x7_14 + x8_14 + x9_14 + x10_14 +
x11_14 +x12_14 + x13_14 + x14_15 + x14_16 + x14_17 + x14_18 + x14_19 + x14_20 =2

X1_15+x2_15+x3_15+x4_15+x5_15+x6_15+x7_15+x8_15+x9_15 +x10_15 +
k11 154+x12 15 +x13_15+x14_15+x%15_16+x15_17+x15_18+x%x15_19+x15 20=2

x1 164+x2 16+x3_16+x4_16+x5_16+x6_16+x7_16+x8 16 +x9 16+ x10_16 +
x11_ 16+x12_16+x13_16+x14_16+x15_16+x16_17+x16_18 +x16_19+x16 20=2

x1_174+x2_17+x3_17 +x4_17 + x5_17 +x6_17 + x7_17 + x8_17 + x9_17 + x10_17 +
x11_17+x12_17+ x13_17 + x14_17 + x15_17 + x16_17 + x17_18 + x17_19 + x17_20 =2

X1 18 +x2_18+x3_18+x4_18 +x5_18+x6_18 +x7_18 +x8_18 +x9_18 + x10_18 +
X11_18 4+ x12_18 + x13_18 + x14_18 + x15_18 + x16_18 + x17_18 + x18_19 + x18_20 =2

X1 19+x2 194+ x3 194+ x4 19+x5 19+x6_19+x7 19+ x8 19+x9 19 +x10_19 +
x11 19+ x12 19+ x13_ 19+ x14_ 19 +x15_19+x16_19 +x17_19 +x18 19 +x19 20=2

x1 20+ x2 20+ x3_20+x4 20+ x5_20+x6_20+x7_20+x8 20+ x9 20+ x10_20 +
x11 20+ x12 20+ x13 20+ x14 20+ x15 20+ x16_ 20+ x17 20+ x18 20+ x19 20=2

bound
0<=x1_2<=1
O0<=x1_3<=1
O<=x1_4<=1

61



Master Thesis — Alvin Hsieh  McMaster University- CAS

O<=x1_5<=1
Dg=x]_6<=1
O<=x1_7<=1
De=x] 8 <=1
0<=x1_9<=1
Q<=x1 10=<=1
O0<=x1_11<=1
0<=x1_12<=1
O0<=x1_13<=1
O<=x]_14<=1
O<=x1_15<=1
O<=x1_16<=1
0<=%1_17<=1
O0<=x1_18<=1
0<=x1_19<=1
0<=x1_20<=1
O0z=x2 F<=1
O<=x2 4<=1
0z=x2 5==1
0<=x2_6<=1
Oz=x2.T<=1
(<=x2 B==1
0<=x2 9<=1
0<=x2 1D<=1
0<=x2_11<=1
Oe=x2 12<=1
0<=x2_13<=1
0<=x2_l4<=1
0<=x2_15<=1
0<=x2_16<=1
O<=x2 17<=1
0<=x2_18<=1
0<=x2_19<=1
0<=x2_20<=1
0<=x3_4<=1
0<=x3 5<=1
0<=x3_6<=1
0<=x3_T7«<=1
Oz=x3 8<=1
0<=x3_9<=1
0<=x3_10<=1
0<=x3_11<=1
0<=x3_12<=1
0«=x3_13<=1
0<=x3_14<=1
Oz=x3 15=<=1

62



Master Thesis — Alvin Hsieh  McMaster University- CAS

0<=x3_16<=1
O0<=x3 17<¢=1
0<=x3_18<=1
0<=x3_19<=1
0<=x3_20<=1
O<=%4 5<=1

O<=x4_6<=1

O<=x4_7<=1

O<=x4_8<=1

0<=x4_9<=1

Oe=x4 10<=1
O<=x4_11<=1
OD<=x4 12<=1
O<=x4_13<=1
O<=x4_l4<=1
U<=x1 15<=1
O<=x4 16<=1
O<=x4_17<=1
O<=x4_18<=1
0<=x4_19<=1
De=xd 20<= 1
0<=x5_6<=1

0<=x5_7<=1

0<=x5_8<=1

0<=3%5 9<=1

0<=x5_10<=1
O<=x5_11<=1
O0<=x5_12<=1
0<=x5_13<=1
O<=x5_l4<=1
0<=x5_15<=1
O<=x5_16<=1
0<=x5_17<=1
0<=x5_18<=1
0<=x5_19<=1
0<=x5_20<=1
0<=x6_7<=1

0<=x6_8<=1

0<=x6_9<=1

0<=x6_10<=1
O<=x6_11<=1
O<=x6_12<=1
0<=x6_13<=1
0<=x6_14<=1
0<=x6_15<=1
0<=x6_16<=1

63



Master Thesis — Alvin Hsieh  McMaster University- CAS

D<=x6_17T<=1
0<=x6_18<=1
0<=x6_19<=1
O<=x6_20<=1
0<=x7_8<=1
0<=x7_9<=1
0<=x7_10<=1
O0<=x7_11<=1
0=z=3%7_12<«=1
O<=%x7_13<=1
Q<=5x7 ld=<=1
Q=x7 15<=1
D<=x7 16 <=1
0<=x7_17<=1
De=x7 18 <=1
O<=x7_19==1
O<=27 ]
0<=x8_9<=1
0<=x8_10<=1
0<=x8_11<=1
0<=x8_12<=1
0<=x8_13<=1
0<=x8_14 <=1
0<=x8_15<=1
0<=x8_16<=1
Q==x8_17<=1
0<=x8_18<=1
0<=x8_19<=1
O<=x8_20<=1
0<=x9_10<=1
0<=x9_11<=1
0<=x9_12<=1
0<=x9_13<=1
0<=x9_l14<=1
0<=x9_15<=1
0<=x9_16<=1
0<=x9 17<=1
0<=x9_18<=1
0<=x9_19<=1
0<=x9_20<=1
0<=x10_11<=1
0<=x10_12<=1
0<=x10_13<=1
0<=x10_14<=1
0<=x10_15<=1
O<=x10_16<=1

64



Master Thesis — Alvin Hsieh McMaster University- CAS

0<=x10_17<=1
0<=x10_18<=1
0<=x10_19<=1
0<=x10_20<=1
O<=x11_12<=1
0z=x11_13<=1
O<=x11_14<=1
O0<=x11_15<=1
O<=x11_l6<=1
O0<=x11_17<=1
O<=x11_18<=1
O0<=xI11_19<=1
0<=x11_20<=1
0<=x12_13<=1
0<=x12_1l4<=1
0<=x12_15<=1
O0<=x12_16<=1
0<=x12_17<=1
0<=x12_18<=1
0<=x12_19<=1
O<=x%x12 20<=1
0<=x13_14<=1
0<=x13_15<=1
0<=x13_16<=1
0<=x13_17<=1
0<=x13_18<=1
0<=x13_19<=1
0<=x13_20<=1
O<=x14_15<=1
0<«=x14 16<=1
0<=x14_17<=1
O0<=x14_18<=1
0<=x14_19<=1
0<=x14_20<=1
<=x15_l6<=1
U<=x15_1T<=1
0<=x15_18<=1
0<=x15_19<=1
0<=x15_20<=1
O0<=x16_17<=1
O<=x16_18<=1
0<=x16_19<=1
0<=x16_20<=1
0<=x17_18<=1
0<=x17_19<=1
0<=x17_20<=1

65



Master Thesis — Alvin Hsieh  McMaster University- CAS

0<=x18_19<=1

0<=x18_20<=1

0<=x19_20<=1
end

3. Send output.lp to CPLEX - copy solution to cplex.txt

Contents of cplex.txt

x1_2 1.000000
x1_5 1.000000
x2 3 1.000000
x3_4 1.000000
x4_13 1.000000
x3_19 1.000000
x6_7 1.000000
X6_16 1.000000
X7_17 1.000000
x8_10 1.000000
x8_20 1.000000
x9_11 1.000000
x9_18 1.000000
x10_12 1.000000
x11_20 1.000000
x12_19 1.000000
x13_14 1.000000
x14_15 1.000000
x15_18 1.000000
x16_17 1.000000

4. Execute subTour.java - new constraint is generated and added to outpilt.lp
The newly generated constraint that is added to output.lp

XI_6+x1_74+x1_16+x1_17+x2_6+x2_7+x2_16+x2_17+x3_6+x3_7+x3_16+x3_17
+x4_ 6+x4_7+x4_16+x4_17+Xx5_6+x5_7+x5_16+x5_17 +x6_8 + x7_8 + x8_16 +
X8_17+x6_9+x7_9+x9_16+x9_17+x6_10+x7_10+x10_16 +x10_17 + x6_11 +x7_11 +
XI1_16 +x11_17 +x6_12 + x7_12 +x12_16 + x12_17 + x6_13 + x7_13 + x13_16 + x13_17 +
X6_14 +x7_14 +x14_16 + x14_17 + x6_15 + x7_15+ x15_16 + x15_17 + x6_18 + x7_18 +
x16_18 + x17_18 + x6_19 + x7_19 + x16_19 + x17_19 + x6_20 + x7_20 + x16_20 + x17_20 =
2

5. Send output.lp to CPLEX - copy solution to cplex2.txt

Contents of cplex2.txt

66



Master Thesis — Alvin Hsieh  McMaster University- CAS

x1_2 1.000000
x1_5 1.000000
x2_3 1.000000
x3_4 1.000000
x4_13 1.000000
x5_19 1.000000
x6_7 1.000000
X6_16 1.000000
X7_16 1.000000
x8_10 1.000000
x8_17 1.000000
x9_11 1.000000
x9_18 1.000000
x10_12 1.000000
x11_20 1.000000
x12_19 1.000000
x13_14 1.000000
x14_15 1.000000
x15_18 1.000000
x17_20 1.000000

6. Execute Cplex.java —>no decisional variables with the value of 0.5 is detected.
Thus, cplex.txt is overwritten with contents of cplex2.txt - execute subTour.java 2>
new constraint is generated and added to output.lp

The newly generated constraint that is added to the contents of output.lp

XI 64x1 7+x1_16+x2 6+x2_7+x2_16+x3_6+x3_7+x3_16+x4 6+x4_7+x4_16+
X5_6+x5_7+x5_16+x6_8+x7_8+x8_16+x6_9+x7_9+x9_16+x6_10+x7_10+
X10_16+x6_11 +x7_11 +x11_16+x6_12 + x7_12 4+ x12_16 + x6_13 + x7_13 + x13_16 +
X6_14 +x7_14 +x14_16 + x6_15+ x7_15 + x15_16 + x6_17 + x7_17 + x16_17 + x6_18 +
X7_18 +x16_18 + x6_19 + x7_19 + x16_19 + x6_20 + x7_20 + x16_20 =2

7. Send output.lp to CPLEX - copy solution to cplex2.txt

Contents of cplex2.txt

x1_2 1.000000
x1_5 1.000000
x2_3 1.000000
x3_4 1.000000
x4_13 1.000000
x5_19 1.000000

67



Master Thesis — Alvin Hsieh McMaster University- CAS

x6_7 1.000000
x6_16 1.000000
x7_17 1.000000
x8_10 1.000000
x8_11 0.500000
x8_20 0.500000
x9_11 1.000000
x9_18 1.000000
x10_12 1.000000
x11_20 0.500000
x12,_19 1.000000
x13_14 1.000000
x14_15 1.000000
x15_16 0.500000
x15_18 0.500000
x16_18 0.500000
x17_20 1.000000

8. Execute Cplex.java - decisional variables with value of 0.5 is detected > change
the bounds of those decisional variables that don’t also exist in cplex.txt - update
bounds of output.lp

Bounds that are changed in output.lp are
0<=x8_11<=1t00<=x8_11<=0
0<=x8_20<=1t00<=x8_20<=0

0<=x15_16<=1t00<=x15_16<=0

0<=x16_18<=1t00<=x106_18<=0
9. Send output.lp to CPLEX - copy solution to cplex2.txt

Contents of cplex2.txt

x1_2 1.000000
x1_5 1.000000
x2_3 1.000000
x3_4 1.000000
x4_13 1.000000
x5_19 1.000000
x6_7 1.000000
x6_16 1.000000
%717 1.000000
x8_10 1.000000
x8_17 1.000000
x9_11 1.000000

68



Master Thesis — Alvin Hsieh  McMaster University- CAS

x9_18 1.000000
x10_12 1.000000
x11_20 1.000000
x12_19 1.000000
x13_14 1.000000
x14_15 1.000000
x15_18 1.000000
x16_20 1.000000

10. Execute Cplex.java —>no decisional variables with the value of 0.5 is detected.
Thus, cplex.txt is overwritten with contents of cplex2.txt > execute subTour.java >
no sub-tours exist, the program outputs the distance of the tour

No Sub-Tours Exist
The total cost of the trip is 31.04

Thus, the total tour distance is 31.04 cm, which is much better than the sequential way of testing

of 64.34 cm.
This results to a 51.76% reduction in this instance.

69



Master Thesis — Alvin Hsieh  McMaster University- CAS

70



Master Thesis — Alvin Hsieh  McMaster University- CAS
Bibliography
[1] Acculogic Inc. (2007) “Integrator Training on the FLS”

(2] Acculogic Inc. (2005) “Training Manual for the Flying Scorpion Test System”

(3] Applegate, D. L., Bixby, R. E., Chvatal, V., Cook, W. J. (2006) “The Traveling Salesman

Problem: A Computational Study”, Princeton University Press.

(4] Bondy, J. A., Murty, U. S. R. (1982) “Graph Theory with Applications”, Elsevier Science

Publishing Co., Inc.

[5]Cook, D. The Robot Room. http://www.robotroom.com/SandwichPCB/TestPointLoop.png

(figure)

[6] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (2001) “Introduction to Algorithms”

(2" Ed.), McGraw-Hill.
[7] Dantzig, G.B (1963) “Linear Programming and Extensions”, Princeton University Press

(8]Dietzel, B. (2009) “Software Documentation: Acculogic Integrator Software Optimizer”,

Acculogic Inc.

[9] Gutin, G., Punnen, A. (2002) “The Traveling Salesman Problem and its Variations”, Kluwer

Academic Publishers.

[10] A. J. Hoffman and P. Wolfe (1985), "History" in The Traveling Salesman Problem, Lawler,

Lenstra, Rinooy Kan and Shmoys, eds., Wiley, 1-16.

71



Master Thesis — Alvin Hsieh McMaster University- CAS

[11] Hoffman, K., Padberg M. (1994) “Traveling Salesman Problem”, George Mason University,

http://iris.emu.cdu/~khoffman/papers/trav_salesman.html

[12] Johnson, D. (2004) “Finding Thévenin Equivalent Circuits”,

http://cnx.org/content/m002 1 /1atest/

[13]Kern Computers, http://www.kern-computers.com/wp-content/uploads/2009/06/Computer-

Parts.jpg (figure)

[14] Kolman, B., Beck, R. (1995) “Elementary Linear Programming with Application” (2"d Ed.),

Academic Press

[15] Lu, W. S. (2009) “Use SeDuMi to solve LP, SDP, and SCOP Problems: Remarks and

Examples”, Department of Electrical Engineering, Univeristy of Victoria

[16] Murty, K. G. (1995) “Operations Research: Deterministic Optimization Models”, Prentice-

Hall Inc.

[17] Orlin, J. (2007) “Optimization Methods in Management Science”, MIT, Sloan School of

Mangement, Lecture Series. http://ocw.mit.edu/courses/sloan-school-of-management/15-053-

optimization-methods-in-management-science-spring-2007/lecture-notes/ (figures)

[18] Shepertycky G, “Physics Tutorial: Parallel Circuits and Hazard Lights”, Physics 24/7,

http://www.physics247.com/physics-tutorial/parallel-circuits.shtml (figure)

72



Master Thesis — Alvin Hsieh  McMaster University- CAS

[19] Sibeyn J. F. (2005) “Algorithms and Datastructures II”’, Halle (Gemany)University, Institute

of Computer Science, Lecture Series. http://users.informatik.uni-

halle.de/~jopsi/dinf503/notes_full.shtml

(20] Terlaky, T. (1996) “Interior Point Methods of Mathematical Programming”, Dordrecht,

Netherlands; Boston : Kluwer

[21] Wright, S.J. (1997) “Primal-Dual Interior-Point Methods,” SIAM Publications, Shepertycky

(22] Y. Ye. (1997) “Interior-Point Algorithms: Theory and Analysis,” Wiley-Interscience Series

in Discrete Mathematics and Optimization.

73



"}2 oo
o S

4



