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Abstract 

Tuned-liquid dampers (TLDs) can be used as vibration absorbers for tall buildings. The 

ability of TLDs to decrease a building's motions is highly dependent on them being 

tuned to the building's natural frequency. In the present study natural frequency and 

damping estimates are determined for a 187 m tall building equipped with TLDs. A 

properly tuned structure-TLD system acts as a coupled two-degree-of-freedom (2DOF) 

system. In this study several MATLAB (2009) programs were developed in order to 

determine the dynamic properties of both single-degree-of-freedom (SDOF) and 2DOF 

systems. These programs Were based on the statistical maximum likelihood (ML) and 

least squares (LS) methods. The ML programs are based on earlier work by Montpellier 

(1997) and the LS programs were developed independently. All of the programs were 

verified using spectral and time-history data with known dynamic properties. The 

results of the programs were also compared to results generated by the well-known 

half-power bandwidth and random decrement methods: The ML and LS programs 

were found to produce results that were superior to the half-power bandwidth method 

and comparable to the random decrement program for SDOF systems. The ML and LS 

programs are superior to the half-power bandwidth and random decrement programs 

for analyzing coupled 2DOF systems as they are able to determine distinct property 

estimates for each mass. The natural frequency of the building studied for this project 

was found to be significantly higher than predicted at the time of its design. Thus the 
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TLDs were not optimally tuned to the building's actual natural frequency and as a 

result the studied building was behaving as a SDOF system. Therefore the dynamic 

properties estimated in this study are those of a SDOF system. However, the methods 

developed herein could be applied to a 2DOF system in the future. 
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Nomenclature 

fJ forced frequency ratio 

q amplitude of modal acceleration of the free surface in a TLD 

qn amplitude of the modal acceleration of the free surface of a TLD 

X horizontal acceleration of a TLD tank 

Xa acceleration of secondary mass 

fir acceleration of secondary mass relative to main mass 

Xs acceleration of main mass 

8qn virtual displacements 

flt sampling interval 

8Wnc virtual work done by non-conservative forces 

8 logarithmic decrement 

fln integral portion of the nonlinear damping forces, Qn 

flFFT frequency resolution 

q amplitude of modal velocity of the free surface in a TLD 
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qn amplitude of modal velocity of the free surface in a TLD for the nth mode 

X horizontal velocity of the TL:O tank 

Xa velocity of secondary mass 

Xr velocity of secondary mass relative to main mass 

Xs velocity of main mass 

E error term 

Eb bias error 

'fJ free surface displacement of fluid particles in a TLD 

r modal participation factoi' 

"(* excitation factor 

"(~ excitation factor of the nth mode 

r n modal participation factor for the nth mode 

8 estimated parameter 

( estimated damping ratio 

(a estimated damping ratio of the absorber 

(s estimated damping ratio of the structure 

a peak acceleration 

G,p peak acceleration based on predicted dynamic property values 

10 estimated natural frequency 
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ia estimated natural frequency of the absorber 

is estimated natural frequency of the structure 

S(Wk) averaged spectra at Wk 

mass ratio 

v viscosity 

tuning ratio 

W forcing frequency 

WI natural frequency of the first mode 

Wa natural frequency of secondary mass 

Wn natural frequency for the nth mode 

Ws natural frequency of main mass 

flopt optimal tuning ratio 

¢ velocity potential, true value of a parameter 

p density of the fluid in a TLD 

(J random error 

(J2 variance 

(J q root mean square of the free surface fluid amplitude in the first mode 

(JT root mean square of the equivalent response 

e parameter(s) 
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S(Wk) estimate of smoothed spectrum at frequencies Wk 

( 

(
Opt 
eff 

(opt 

(total 

A 

summation portion of the nonlinear damping forces, Qn 

damping ratio 

linearized generalized damping ratio 

damping ratio of secondary mass/absorber 

damping ratio of the structure 

damping ratio due to visous losses 

effective damping ratio 

optimal effective damping ratio 

optimal damping ratio of secondary mass 

total damping ratio 

solid portions of the screens in a TLD normal to the flow 

area under the peak of the frequency response function 

Apeak area under the peak of the response spectrum 

b width of TLD tank perpendicular to excitation, bias of an estimate 

Br half-power bandwidth 

C~ generalized linear damping coefficient for the nth mode 

C:q linearized generalized damping coefficient 

Ca damping coefficient of secondary mass 

x 



Cd drag coefficient 

Cl loss coefficient 

Cs damping coefficient of main mass 

Ceq equivalent damping coefficient 

COV coefficient of variation 

Dp peak value on decay curve 

E expected value 

F external force 

f input displacement, force of liquid acting on TLD screens, forcing frequency 

fo natural frequency 

-1 fa natural frequency of the absorber 

fd force of liquid acting on TLD screens due to drag 

fi force of liquid acting on TLD screens due to inertia 

fj discrete frequency value 

fl lower frequency limit defining the resonance peak 

fp predicted natural frequency of the structure 

fs natural frequency of the structure 

fu upper frequency limit defining the resonance peak 
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fmax frequency value corresponding to the maximum value of the frequency response 

function 

H x dynamic magnification factor 

H Xr dynamic magnification factor for secondary mass 

H Xs dynamic magnification factor for the main mass 

H Xmax maximum value of dynamic magnification factor 

h fluid depth in a motionless TLD 

J variable integer 

K stiffness of main mass 

k stiffness of secondary mass 

k variable integer 

k* generalized stiffness 

k* n generalized stiffness of the nth mode 

keq equivalent stiffness 

L length of TLD tank in the direction of excitation, likelihood function 

M mass of main mass 

m mass of secondary mass, variable integer 

lvI~ mass of structure modified to account for non-participating component of the 

liquid 

XlI 



m* generalized mass 

m~ generalized mass of the nth mode 

meq equivalent mass 

N number of values in a data block 

n random variable, empirical constant, number of blocks into which a series of 

response measurements has been divided 

ns number of screens 

Po external load 

PDF probability density function 

q amplitude of modal displacement of the free surface in a TLD 

Qn nonlinear damping forces for the nth mode 

q.n amplitude of modal displacement of the free surface in a TLD for the nth mode 

Q2DOF non-conservative forces for a two-degree-of-freedom system 

R autocorrelation 

r variable integer 

R,. estimate of the autocorrelation function 

S solidity of the screens in a TLD, frequency response function 

s variable integer 

S(w) power spectral density 
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So constant white noise spectral density 

Sk series of spectral coefficients 

SR spectrum of response data 

SRnorm normalized area under the response spectrum between two consecutive discrete 

frequencies 

se surface contamination factor 

T velocity potential, total period of a block of data 

T2DOF velocity potential fot a two-degree-of-freedom system 

u horizontal velocity of fluid particles in a TLD 

V gravitational potential 

'V2DOF gravitational potential for a two~degree-of-freedom system 

w vertical velocity of fluid particles in a TLD 

x horizontal dimension of a TLD, measured independent variable 

Xa displacement of secondary mass 

Xr displacement of secondary mass relative to main mass, discrete response variable 

Xs displacement of main mass 

Xs series of discrete response variables 

Xst static deflection 

y measured dependent variable 

z vertical dimension of a TLD, random variable 
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Chapter 1 

Introduction 
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damping estimate. However, this method of design has yet to be verified using full-scale 

data. 

In the present work, damping and natural frequency values are determined for a 

residential tower that is equipped with ten tuned-liquid damping devices. There are two 

main purposes for determining the building's dynamic properties. Firstly the dynamic 

properties are compared to those predicted at the time of the building's design. These 

comparisons can be used in conjunction with results obtained from other monitoring 

projects in order to verify current tall building design methods (Kijewski-Correa et al., 

2006). Secondly the value of the identified natural frequency of the building will be 

used to adjust the TLDs in order to enhance their performance. 

1.1 Thesis Overview 

Chapter 2 discussed the equations used to express the dynamic properties of TLDs. 

This chapter begins by illustrating the development of an expression for the effective 

damping generated by a tuned-mass damper. In Section 2.2, the derivation of equations 

used to express TLDs as equivalent tuned-mass dampers in presented and the expression 

for the effective damping generated by the TLDs is derived. 

Chapter 3 discusses the importance of full-scale monitoring. Current research 

on the monitoring of tall buildings and tall buildings equipped with TLDs is presented. 

Chapter 3 also discussed the importance of the building monitored in this study. 

Chapter 4 reviews techniques that have traditionally been used in the identi­

fication of tall building dynamic properties. Forced vibration methods are discussed 

followed by a review of the statistical methods for estimating response spectra from 

ambient conditions. Finally the half-power bandwidth and random decrement methods 

are described. 
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Chapter 5 describes the maximum likelihood and least squares programs devel­

oped in this study. The chapter begins by summarizing the maximum likelihood method 

as presented by Montpellier (1997) and the least squares methoq. The development of 

MATLAB (2009) programs used to implement these methods is then presented. The 

MAT LAB (2009) programs are also verified using data with known dynamic proper­

ties. This is done for both single-degree-of-freedom systems and two-degree-of-freedom 

systems. 

Chapter 6 describes the full-scale data obtained from the studied building. The 

normalized dynamic properties of this building as determined by the maximum likeli­

hood and least squares programs are presented and compared to those predicted at the 

time of the building's design. Finally, Chapter 7 concludes the present work and offers 

recommendations for future work. 

3 



Chapter 2 

Theoretical Dynamic Vibration 

Absorber Equations 

In this chapter the principle characteristics of dynamic vibration absorbers are ex­

plained and several key equations used to model the properties of these devices are 

presented. Section 2.1 describes tuned mass dampers (TMDs) which, like TLDs, are 

used to add supplemental damping to a structural system. The effective damping gen­

erated by a TMD, unlike that generated by a TLD, is independent of the device's 

response. Thus a structure-TMD system's response is linear and the effective damp­

ing can be determined in closed form. Section 2.1.1 begins by describing the general 

concept behind TMDs. The effect of a TMD on the structure-TMD's response to a har­

monic load, as determined by Den Hartog (1956), is also illustrated. In Section 2.1.2 

the importance of properly tuning the TMD is discussed and the optimal TMD param­

eters are found. Following this, the response of a structure-TMD system to white noise 

excitation is derived and the effective damping generated by the TMD is calculated in 

Section 2.1.3. 

Section 2.2 expands on the equations provided in Section 2.1. Equations for a 
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structure-TLD system are derived by treating the system as an equivalent structure-

TMD system. 

2.1 Tuned Mass Dampers 

2.1.1 Structure-TMD Response to Harmonic Load 

The original concept for a tuned mass damper was developed in 1909 (Den Hartog, 

1956). At that time, dynamic vibration absorbers were mainly being used for mechan-

ical systems. Today, however, they are widely accepted as effective in reducing the 

dynamic response of tall buildings (Soong and Dargush, 1997). In its simplest repre­

sentation, the TMD can be thought of as an auxiliary mass connected to the main mass 

(the mas of the structure) by a spring-dash-pot system. A schematic representation 

of the structure-TMD system is shown in Figure 2.1. The TMD works by absorbing 

k 

Figure 2.1: Schematic representation of a simple structure-TMD system (Tait, 2008) 

the vibratiOlial energy that is transferred to it via the structure. Den Hartog (1956) 

derived the equations of motion for both the structure and the TMD. 

The efficacy of the TMD in reducing the structure's motions can be shown by 

examining the response of an undamped strllcture equipped with a TMD to a harmonic 

5 
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load. This response is given in Equation 2.1 

where Po is the externally applied force, w is the forcing frequency, Ca is the damping 

of the TMD, and k, m, K, and M are the mass and stiffness parameters shown in 

Figure 2.1. Equations 2.2 to 2.8 below define the mass ratio of the system (p), the 

natural circular frequencies ofthe TMD (wa) and the structure (ws), the static deflection 

of the structure (Xst) , the forced frequency ratio (f3), the tuning ratio (n), and the 

damping ratio of the TMD ((a). These equations are used to transform Equation 2.1 

into the commonly used format and determine the dynamic magnification factor of the 

structure. 

2 k w =­
a m 

2 Po 
Xst = K 

6 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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(=~ 
a 2mwa · 

(2.8) 

By substituting Equations 2.2 to 2.8 into Equation 2.1, the dynamic magnification 

factor (DMF) for the undamped structure-TMD system can be written as 

(2.9) 

Figure 2.2 shows the dynamic magnification factor for undamped structures equipped 

with TMDs having various TMD damping ratios. The magnitude of the dynamic 

magnification factor is based on both the tuning ratio, D, and TMD damping ratio, (a. 

In Section 2.1.2 the optimal values for these parameters will be determined. 

16 
sa =0 

14 ---Sa = 0.10 

Sa = 0.32 
12 

-sa=oo 

10 

LL 
P ::2: 8 

0 \ 
\ 
\ 

6 \ \ ~, 
4 "'-;/ " 

8.6 0.7 0.8 0.9 1.1 1.2 1.3 

Figure 2.2: Dynamic Magnification Factor as a Function of f3 for Various (a Values 
(J-L = 0.05, D = 1) 
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2.1.2 Optimal TMD Parameters 

In order to determine the optimal tuning ratio, D, and TMD damping ratio, Ca, we 

begin by examining Figure 2.2. From this figure it can be seen that if the TMD has 

zero damping both the TMD response and the structure response will theoretically 

be infinite (since the structure is assumed to have zero damping in this case). If the 

damping of the TMD is infinite, the structure and TMD behave as a single mass, 

lvI + m, and this single-degree-of-freedom response is, again, infinite (Den Hartog, 

1956). Figure 2.2 also shows the response for a TMD with 10% damping and a TMD 

with 32% damping. From this figure it can be seen that there are two points (labeled 

as P and Q) at which the response is independent of the TMDs damping ratio. The 

minimum structure response can be obtained by adjusting D until these two points are 

at equal heights (Soong and Dargush, 1997). Using this technique, the D value which 

minimizes the response, Dopt is found as 

(2.10) 

(Soong and Dargush, 1997; Den Hartog, 1956). In the case shown in Figure 2.2 with 

j1. = 0.05, Dopt is found to be 0.95. Figure 2.3>shows this optimal response along with 

responses for several other D values. This figure illustrates the importance of properly 

tuning the dynamic vibration absorber. 

Another important parameter in TMD design is the damping ratio of the TMD, 

(a' The value of (a that minimizes the response, (opt, can be estimated by finding the 

average of the two (a values that makes the slopes at points P >and Q in Figure 2.2 

equal to zero for the case of optimal tuning (Soong and Dargush, 1997; Den Hartog, 

8 
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u.. 
~ 
o 

15~~~~~~~~~~~~~r=======~ 

8.6 0.7 0.8 0.9 1.1 

0=0.90 
---0 = 0.95 

0=1.00 
-0= 1.05 

1.2 1.3 

Figure 2.3: Dynamic 1/Iagnification Factor as a Function of f3 for Various n Values 
(M = 0.05, (a = 0.1) 

1956). For the case of an undamped structure, (opt is found as 

(2.11) 

(Soong and Dargush, 1997; Den Hartog, 1956). For a structure-TMD system with 

M = 0:05 the (opt value is found to be 13%. Figure 2.4 shows the response for this 

optimal TMD damping value along with several other values. This figure illustrates 

the importance of using an optimal absorber damping ratio. 

2.1.3 Structure-TMD Response and Effective Damping for White 

Noise 

In structural systems the excitation is caused by environmental loads such as winds 

which are not harmonic but instead have various frequencies and amplitudes. In order 
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12~--~----~--~----~--~r=======~ 

10 

8 

u.. 
~ 6 
o 

4 

8.6 0.7 0.8 0.9 

s = 0.05 
a 

---s = 0.10 a 

,"\ 
I \ 

I \ 
I \ 

\ , \ 

";' \ ...... \ 

S = 0.13 a 

\ 

1.1 

" " '~ 

1.2 

......... 

1.3 

Figure 2.4: Dynamic Magnification Factor as a Function of fJ for (a Values Close to 
(opt (f-t = 0.05, n = 0.95) 

to model the response of a structure to wind loads the wind is assumed to act as 

white noise. This assumption is valid because the continuous excitation spectrum has 

a nearly uniform amplitude near the natural frequency of the response. In this case the 

responses of the structure and the TMD are best modeled using statistical probabilities. 

McNamara (1977) derived the mean square responses for a structure-TMD system and 

calculated the effective damping generated by the TMD. In the method presented 

by McNamara (1977), the dynamic magnification factors for both the structure and 

the TMD are determined due to a harmonic load. Statistical methods are then used 

to determine the mean square responses and effective damping due to white noise 

excitation. These derivations are presented below. 

The structure-TMD system used in this derivation will be the same as that 

shown in Figure 2.1 and used to determine Equations 2.1 and 2.9 except that in this 

case both the TMD and the structure have damping. The damping of the structure will 

10 
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be represented by Cs. The equations of motion for the structure and TMD are given 

respectively as 

(2.12) 

and 

(2.13) 

In order to simplify Equations 2.12 and 2.13 the absolute response of the TMD, Xa is 

replaced with the response of the TMD relative to the structure, Xr where 

(2.14) 

Inserting Equation 2.14 into Equations 2.12 and 2.13 gives 

(2.15) 

and 

(2.16) 

Now Equations 2.15 and 2.16 are divided by M and m respectively and the follow-

ing relationship is used, along with Equations 2.2 to 2.4 and 2.8, to transform these 

equations 

(2.17) 

where (s is the damping ratio of the structure. Equations 2.15 and 2.16 can now be 

written as 

(2.18) . 

11 
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and 

(2.19) 

In order to calculate the dynamic magnification factors of the structure and TMD 

(Hxs(w) and Hxr(w) respectively) the input displacement 

f(t) = eiwt = coswt + isinwt (2.20) 

will be used. Now the input force F(t) can be written as 

F(t) = K f(t). (2.21) 

This allow Equation 2.18 to be written as 

(2.22) 

Using the harmonic input described in Equation 2.20, the responses of the structure 

and TMD can be found by nmltiplying the input times the dynamic magnification 

factors Hxs(w) and Hxr(w). The equations for these dynamic magnification factors 

are currently unknown but will be solved for in the following calculations. 

(2.23) 

and 

(2.24) 

respectively. By taking the first and second derivatives of the displacement responses 

given in Equations 2.23 and 2.24 the velocities and accelerations of the structure and 

12 
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TMD can be written as 

(2.25) 

(2.26) 

(2.27) 

and 

(2.28) 

Now Equations 2.23 to 2.28 can be substituted into Equations 2.22 and 2.19 to give 

the following relationship 

[ 

w; - w2 + 2(sws(iw) 

-w2 

-p(w~ + 2(awa(iw)) ] 

(w~ - w2 + 2(awa(iw)) 

(2.29) 

Finally, the equations for the dynamic magnification factors can be found by solving 

Equation 2.29 for Hxs(w) and Hxr(w). This gives 

(2.30) 

and 

(2.31) 

13 
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where 

(2.32) 

The mean square responses of the structure and TMD will be determined below. 

But first several aspects of response to random vibration must be examined. The 

input displacement used in deriving the above equations was given in Equation 2.20 

as j(t) = eiwt . Here w is a specific forcing frequency value and the input is given 

as a function of time. When examining randomly occurring natliral processes the 

forcing frequency varies and it is not possible to determine the response at specific 

moments in time. For such processes, it is often useful to describe the process by its 

autocorrelation function which provides information about the frequencies present in 

the data (Newland, 2005). The autocorrelation function of the input force, F(t) from 

Equation 2.21, is given as 

liT R(T) = lim T F(t)F(t + T)dt. 
T--+oo 0 

(2.33) 

Alternatively, the autocorrelation function can be described by the equation (Newland, 

2005) 

R(T) = E[F(t)F(t + T)] (2.34) 

where E defines the expected value of the input F(t)F(t+T). The input can now be de-

scribed in the frequency domain by taking the Fourier transform of the autocorrelation 

funcLion which gives the power spectral density (Newland, 2005) 

1 100 

. S(w) = - R(T)e-ZWTdT. 
211 -00 

(2.35) 
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In the calculation of the power spectral density the autocorrelation function is in­

tegrated over all time step values from -00 to 00, thus the power spectral density 

effectively describes the input force at any time as a function of the forcing frequency. 

The autocorrelation function can be retrieved from the power spectral density by taking 

the inverse Fourier function 

(2.36) 

Wind force is assumed to be a stationary process which means that the probability 

distribution of F(t + T) is identical to that of F(t) independent of T (Crandall et al., 

1958). That is, the statistical properties of the wind force should be the same no matter 

what value of T is chosen. Since the the value of T can be any real number, T can be 

taken as zero, allowing Equation 2.34 to be written as 

(2.37) 

If the value of T in Equation 2.36 is also taken to be equal to zero, then Equation 2.36 

can be written as 

R(T = 0) = 1: S(w)dw. (2.38) 

Combining the right sides of Equations 2.37 and 2.38 gives 

. (2.39) 

which is the mean square input force. The spectrum of the response can be found by 

multiplying the input force by the square of the dynamic magnification factor (Crandall 

et al., 1958). Therefore the mean square responses of the structure and TMD can be 

15 
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written as 

(2.40) 

and 

(2.41) 

As mentioned at the beginning of Section 2.1.3, the input spectrum is often taken 

to be constant white noise as this assumption is valid in the region of the resonant 

response of the structure which is the region of interest. By taking Sew) as constant, 
-

Equations 2.40 and 2.41 can be written as 

(2.42) 

and 

(2.43) 

Now the integral solutions for Hxs(w) and Hxr(w) are needed. This is done using 

the integral solutions given by Crandall and Mark (1963). Using these solutions the 

integrated dynamic magnification factors can be written ~s 

(2.44) 

and 

100 I' ()1 2 1f( -A1B~) 
HXr W dw = A (A A - A A ) - A A2 

-00 1 2 3 1 4 0 3 
(2.45) 

where 

(2.46) 

(2.47) 
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B2 =w; (2.48) 

A 2 2 0= wswa (2.49) 

Al = 2(swsw~ + 2(aw;wa (2.50) 

A2 = 4(s(awswa + w; + w~(1 + Jl) (2.51) 

A3 = 2(sws + 2(awa(1 + Jl) (2.52) 

and 

A4 = l. (2.53) 

Substituting Equations 2.44 and 2.45 into Equations 2.42 and 2.43 gives the mean 

square responses of the structure and TMD: 

SOK [~3 (A2A3 - A1A4) + A3(Br - 2BoB2) + A1B~] 
E [X2] = _----=--_o-----;-_~---:----:--____:-----:----:--___:_____:_;;,_____--------=--

s Al(A2A3 - A1A4) - AoA~ 
(2.54) 

and 

(2.55) 

The effective damping generated by the TMD, (eff, can now be calculated by 

setting the mean square response of the structure equipped with the TMD (Equa­

tion 2.54) equal to the mean square response of a damped single-degree-of-freedom 

structure where the damping ratio is given as (eff. The dynamic magnification factor 

for the damped single-degree-of-freedom structure is 

(2.56) 

The integral solution for this dynamic magnification factor can again be found from 
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Crandall and Mark (1963) and is given as 

1
00 

2 1rWs 
IHxsl = -r-· 

-00 2<,eff 
(2.57) 

If this single-degree-of-freedom structure is also subjected to a white noise load spec-

trum, the mean square response can be can be calculated in the same way as the mean 

square responses of the structure-TMD system and will be given as 

(2.58) 

Now by equating the left-hand sides of Equations 2.58 and 2.54, the effective damping 

generated by the TMD can be calculated -as 

(2.59) 

In theoretical computer calculations, McNamara (1917) found this effective damping 

value to be greater than 4% for a mass ratio value of 0.02. This value of effective 

damping was generated when n = 0.98 and (a = 7%. 

In Section 2.1.2 the optimal tuning ratio and absorber damping ratio were cal-

culated for a structure-TMD system subjected to harmonic excitation. For a structure­

TMD system with zero structural damping subjected to white noise excitation these 

parameters are (Warburton, 1982) 

Jl+~ n _ 2 
opt - 1 + fJ, (2.60) 
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and 

(opt = (2.61) 

The optimal effective damping for such a system can also be calculated as (Warburton, 

1982) 

( opt ~ ~ ~ ,,+ ,,' 
eff . 4 3/-t . 

1+-
4 

(2.62) 

Equations 2.60, 2.61, and 2.62 are important in TMD design. For a given required 

effective damping the mass ratio, /-t, can be determined from Equation 2.62. This mass 

ratio can then be used to find the optimal tuning ratio and absorber damping ratio 

from Equations 2.60 and 2.61 and these values are used in the design of the TMD. 

2.2 Tuned Liquid Dampers 

Tuned liquid dampers (TLDs) work using the same principles as TMDs (explained in 

Section 2.1) except that the damping provided by a TLD is due to the viscous action of 

the liquid itself. The calculations used in the design of a TLD are more complex than 

those used in the design of a TMD as the liquid sloshing must be correctly modelled in 

order to determine the dynamic properties of the TLD and because the structure-TLD 

response is non-linear. The task of correctly modelling the TLDs is further complicated 

by the fact that the energy dissipated by the boundary layer liquid sloshing is often 

far below that required for optimal damping ((opt) (Warnitchai and Pinkaew, 1998). 

In practice, screens or poles are often fixed to the inside of the TLD tank in order to 

increase energy dissipation (Warnitchai and Pinkaew, 1998; Tait, 2008). 

Warnitchai and Pinkaew (1998) developed a mathematical model to describe 

the liquid sloshing and determine the dynamic properties of the TLD. This model 

was developed specifically to incorporate the additional damping generated by th{{ 
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presence of an energy dissipating device located at the centre of the TLD tank when 

the structure-TLD system is excited by a harmonic force. Tait (2008) expanded on this 

work by determining the equivalent damping generated by a TLD for a structure-TLD 

system excited by a random force. Tait (2008) also developed equations which allow 

the structure-TLD system to be expressed as an equivalent structure-TMD system. As 

the optimal properties given in Equations 2.60, 2.61, and 2.62 are based on a linear 

model, expressing the structure-TLD system as a structure-TMD system allows the 

designer to determine these optimal properties. To familiarize the reader with these 

equations their development is presented below. Section 2.2.1 follows the derivation 

of the generalized properties for a TLD in which the nonlinear non-conservative forces 

generated by the screens are ignored (Warnitchai and Pinkaew, 1998). Section 2.2.2 

builds on the equations developed in Section 2.2.1 by developing an equation for the 

generalized damping coefficient generated by the screens (Tait, 2008). Finally, the 

generalized properties defined in Sections 2.2.1 and 2.2.2 are ttansformed into equivalent 

TMD properties in Section 2.2.3. 

2.2.1 Generalized TLD Properties 

For the development of the following equatIons, the variables identified in Figure 2.5 

are used. The tank's horizontal motion is X(t) and this motion is equivalent to that of 

the structure, Xs(t), at the location of the TLD. 

By assuming that the liquid is inviscid, incompressible, irrotational, and has 

negligible surface tension, and that the tank is rigid, the velocity of a liquid particle 

relative to the tank can be expressed as a gradient of the velocity potential, ¢(x,z,t). 

Then we can state that the amount of liquid entering a given space must be equal to 

that exiting the space (that is the incompressible fluid has kinematic continuity), which 
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z 

-t ~--r---==---==---i---~x 
X1 

I-E~-----------------L------------------~~I 

X(t) 
~ 

Figure 2.5: Definition Sketch for TLD Equation Development (Tait, 2008) 

can be expressed as 

The kinematic boundary conditions of the fluid are expressed as 

Defy I u(x, z, t)l-x=O,x=L = lix = 0 
x=O,x=L 

and 

Defy I w(x, z, t)lz=-h = --_ = o. 
(jz z=-h 

(2.63) 

(2.64) 

(2.65) 

The amplitude of the liquid sloshing is assumed to be small (i.e. 'f] < < h) allowing the 

linearized free surface condition to be applied. That is 

liefyl 
liz z=O 

(2.66) 

The solution satisfying the boundary conditions given by Equations 2.63, 2.64, and 2.65 

is given in general form as the sum of infinite sloshing modes (Warnitchai and Pinkaew, 
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1998). That is 

h [
mr(z+h)] 

~ . (n1fx) cos L 
¢(x,z,t) = ~qn(t)COS -L ( h)' 

(n1f). n1f , 
n=l L smh L 

(2.67) 

By substituting Equation 2.66 into Equation 2.67 the,free surface can be expressed as 

~ (n1fx) 1](x, t) = ~ qn(t) cos L 
n=l 

(2.68) 

where qn is the free-surface sloshing amplitude of the nth mode. The energy of the 

system can be expressed in terms of its gravitational potential and velocity potential, 

given respectively as 

1 1L V = -pbg 1]2(X, t)dx 
2 0 

(2.69) 

and 

(2.70) 

where p is the density of the fluid, b is the width of the tank perpendicular to its motion 

and X is the horizontal v~locity of the tank (Lamb, 1945). 

If this system is assumed to be conservative (that is we ignore the nonlinear 

non-conservative damping forces generated by the screen), it is defined by the following 

Lagrange equations (Tedesco et al., 1999) 

(2.71) 

If we substitute Equation 2.68 into Equation 2.69 and Equation2.67 into Equation 2.70 

then by application of the Lagrange equations given in Equation 2.71 the equation of 
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motion for the system can be written as 

(2.72) 

where 

* 1 pbL2 

mn ="2 (h)' 
mrtanh n~ 

(2.73) 

(2.74) 

and 

* _ bL21 - cos(mr) 
'Yn - P (mr)2 (2.75) 

are the generalized mass, squared natural frequency for the nth sloshing mode, and 

excitation factor respectively. The generali:t;ed stiffness can be found. from the product 

of Equations 2.73 and 2.74. That is 

k* = pbLg 
n 2' (2.76) 

The modal participation factor is found by dividing the excitation factor (Equation 2.75) 

by the generalized stiffness (Equation 2.76). That is 

ry* 2 (nWh) r n = --.!!:.... = -(1 - cos(mr)) tanh - . 
m~ nw L 

(2.77) 
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2.2.2 Generalized TLD Damping Coefficient 

If the effect of the screens is considered, the nonlinear, non-conservative damping forces, 

Qn, can be added to the Lagrange equations (Equation 2.71) to give 

(2.78) 

where the nonlinear damping force, Qn, can be approximated by the product of the 

generalized linear damping coefficient, c~, and the free-surface sloshing velocity iIn(t). 

That is 

(2.79) 

The addition of the Qn term to Equation 2.71 does not affect the derivations of m~, w~, 

and ry~ given in Equations 2.73 to 2.75 so the only variable not yet defined is c~. Tait 

(2008) determined this damping value generated by the use of screens. The derivation 

for this damping term follows. 

For the screens shown at the discrete locations, Xj, in Figure 2.5, the solid 

portions of the screens normal to the flow is given as A. The solidity is then defined as 

(Tait et al., 2005; Tait, 2008) 
A 

s= bh' (2.80) 

The drag coefficient, Cd, and loss coefficient, Cl , are related by the equation (Tait et al., 

2005; Tait, 2008) 

(2.81) 

The force of the liquid acting on the screens can be expressed as (Warnitchai and 

Pinkaew, 1998; Tait, 2008) 

f(x, z, t) = fi(X, z, t) + fd(X, z, t) (2.82) 
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where Ii is the inertia component of the force and Id is the drag component of the 

force. The inertia component of the force does generate kinetic energy which should 

theoretically add a virtual mass to the generalized mass calculated in Equation 2.73. 

However, this virtual mass is small compared to the generalized mass and is often 

ignored for cases in which the h/L value of the TLD is less than 0.3 (Tait, 2008). 

In the TLDs monitored in this study the h/L value is 0.19 and the virtual mass was 

ignored in the design calculations; therefore, the derivation for the virtual mass will 

not be shown here. However, the drag component of the force given in Equation 2.82 

is significant as it is used to calculate damping generated by the screens. 

From fluid mechanics, the drag force can be expressed as 

(2.83) 

Substituting Equations 2.67 and 2.81 into Equation 2.83 and taking the drag force at 

a specific height, z, and mode, n, gives 

(2.84) 

A set of virtual horizontal displacements can be found by manipulating Equation 2.67 

to find the horizontal displacements at Xj' That is 

h [
mr(z+h)] cos _ ( ) _ L. (nJrxj) _ () 

IJqn Xj, z, t - . h (nJrh) sm \ -y;- IJqn t . 
sm --

L 

(2.85) 

The virtual' work done by the non-conservative drag forces can be calculated by inte-

grating the product of Equations 2.84 and 2.85 over the entire height of the fluid and 
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summing the forces generated by the number of screens, ns. The virtual work is given 

as 

(2.86) 

Substituting Equations 2.84 and 2.85 into Equation 2.86 produces 

The virtual work expressed in Equation 2.87 can alternatively be expressed as the 

product of the non-conservative forces, Qn, and the virtual displacement, On- That is 

ns 

OTt17nc = L Qnoqn· 
j=l 

(2.88) 

Solving Equation 2.88 for Qn allows the nonlinear damping forces to be expressed as 

[ 

h [
mr(z + h)] ] 3 

1 ns 30COS L 
Qn = -2PbCl LSin (n~'Gj) 1 ( h) dzl<in I <in· 

. 1 -h· h n1T 
J= sm --

L 

(2.89) 

Alternatively Qn can be expressed as 

(2.90) 

where 
1 1 

~n = - + ------c--......,..-

3 . h2 (mrh) SIn --
L 

(2.91) 
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(2.92) 

The equation for the damping coefficient generated by the inclusion of the 

screens can now be calculated from Equation 2.90. In Equation 2.79 above, the non-

linear damping forces are approximated based on a linear damping coefficient c~. The 

equivalent linearized generalized damping coefficient, c:q , will now be estimated by min­

imizing the error between the actual nonlinear damping force, Q, and the linearized 

generalized damping force, c*q. Since TLDs are typically designed to operate in their 

fundamental sloshing mode, this will be done for the first mode only. Thus the error 

term to be minimized is 

(2.93) 

where c* is now written as c:q to indicate that this nonlinear generalized damping coef­

ficient is equivalent to a linear generalized damping coefficient. The error is minimized 

by solving the derivative 

(2.94) 

where E indicates the expected value. This leads to 

(2.95) 

Since c:q is dependent on the excitation, q, the value of the damping coefficient can 

be determined for both harmonic and random excitation. For random excitation, the 
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damping coefficient is defined as (Tait, 2008) 

(2.96) 

where O"q is the root mean square (RMS) ofthe free surface fluid amplitude in the first 

mode and WI is the natural frequency of the first mode. The damping ratio can be found 

by dividing Equation 2.96 by the product of 2, w, and, m* given in Equation 2.73. That 

is 

~ (1rh) ~ 0" ( * = Cz - tanh - ~f::,.-.!L 
eq 7r L ~ L· (2.97) 

The damping ratio given in Equation 2.97 represents the energy dissipation due to the 

screens. Additional energy is also dissipated due to the viscous shear created between 

the liquid and the tank. The damping ratio due to these boundary layer losses can be 

estimated as (Tait, 2004) 

(2.98) 

where v is the viscosity of the fluid in the TLD and SC is the surface contamination 

factor often taken as unity (Tait, 2008). 

2.2.3 Equivalent Properties 

In order to be able to calculate the optimal properties of a structure-TLD system, 

that system must be represented by an equivalent linear two-degree-of-freedom sys­

tem such as a structure-TMD system. Once this is done, the generalized properties 

defined in Sectionss 2.2.1 and 2.2.2 can be expressed as equivalent properties. The 

equivalent properties can then be used to determine the optimal properties discussed 

in Section 2.1.2. The developement of these equivalent properties follows (Tait, 2008). 
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The equations of motion for the structure-TLD system can be determined by ap-

plying the Lagrange equations to an analogous structure-continuous-vibration-absorber 

system (Jacquot and Foster, 1977). Here the gravitational and velocity potentials are 

described for the entire system. That is 

(2.99) 

and 

(2.100) 

where V is the gravitational potential for the TLD defined in Equation 2.69 and T 

is the velocity potential for the TLD defined in Equation 2.70. The non-conservative 

forces can be written as 

(2.101) 

where F(t) is the external force and Cs is the damping coefficient of the structure. 

Application of the Lagrange equations to Equations 2.99 and 2.100 generates 

and 

d (8T) .. .. 
-d ---. = MXs + pbhLXs + "(*ij, 

t oXs 

d (8T) *X * .. 
dt 8rj = "( s + m q, 

8_V = k*q. 
Oq 

(2.102) 

(2.103) 

(2.104) 

(2.105) 

Now the equations of motion for the structure-TLD system can be written by substi-
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tuting Equations 2.101 to 2.105 into Equation 2.78. That is 

(2.106) 

In order to determine the equivalent properties of the structure-TLD system, Equa-

tion 2.106 must be written in a form equivalent to that of a structure-TMD system. 

The equations of motion for a structure-TMD system are given in Equations 2.15 and 

2.19 and are written in matrix form as 

(2.107) 

In order to transform Equation 2.106 into the form shown in Equation 2.107, the fluid 

response, q, is related to the response, XT) by the modal participation factor, r. That 

is (Tait, 2008) 

(2.108) 

where Xr is equivalent to the displacement of the TMD in the structure-TMD system. 

The equivalent properties of the structure-TLD system are related to the generalized 

properties of the structure-TMD system by the square of the modal participation factor. 

That is 

r 2 * meq = m, 
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(2.110) 

and 

(2.111) 

Inserting Equations 2.108 to 2.111 into Equation 2.106 allows it to be written as 

l (1\II+ pbhL) 

--y* 

(2.112) 

Using the equation (Vandiver and Mitome, 1979) 

M~ = M + (pbhL - meq) (2.113) 

which modifies the mass of the structure to account for the non-participating component 

of the fluid and multiplying the second set of equations by r allows Equation 2.112 to 

be expressed as 

l (M~ + meq) m
eq

] l ~s j + l Cs 0] l ~s ] 

meq meq Xr 0 Ceq Xr 

+ l K 0 j l Xs j l P(t) j . 
o keq Xr 0 

(2.114) 

Equation 2.114 is in a form similar to Equation 2.107 and is expressed as an equivalent 

system. 
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The equivalent properties, -meq , keq , and Ceq, are defined by the equations 

8pbL2 (1rh) 
meq = ~tanh L ' (2.115) 

k ~ 8pbLg h2 (1rh) 
eq 1r2 tan L' (2.116) 

and 

(2.117) 

where (Jr is the RMS of the equivalent response. Finally the equivalent damping ratio, 

(eq, is found by dividing Ceq by the product of 2, m eq , and Wl. That is 

(2.118) 

Notice both the equivalent damping coefficient and equivalent da~llping ratio are de­

pendent on the RMS of the amplitude, (Jr, thus these properties can be determined for 

a given amplitude. The total damping of the system is the sum of (eq and (w defined 

in Equation 2.98 

(2.119) 

The effective damping for the system can now be calculated using Equation 2.59 with 

(total being used in place of (a. 

Expressing the properties of the structure-TLD system in the equivalent form 

presented above allows the design equations used for a structure-TMD system to be 

used for the structure-TLD system. The preliminary design for the TLDs can be done 

using Equations 2.60, 2.61, and 2.62 which give the optimal damping ratio, absorber 

damping ratio, and effective damping for a structure-TMD system. 
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Chapter 3 

Full-Scale Monitoring of Tall 

Buildings 

/ 

3.1 Importance of Monitoring Tall Buildings 

Monitoring the motion of existing tall buildings will allow designers to better predict 

the dynamic properties of new tall buildings during their design. This understanding is 

important considering that the current design of tall buildings relies solely on computer 

and scaled wind tunnel models. A complete database of dynamic properties obtained 

from full-scale monitoring would enable these current design methods to be verified. 

Unfortunately, such a database does not currently exist. In particular few estimates 

for buildings taller than 20 stories are available in the literature (Kareem and Gurley, 

1996). 

The scarcity of data available for tall buildings is problematic as these buildings 

are dominated by their resonant responses and thus can experience high accelerations 

when excited at their natural frequencies. In fact the need to limit the perceived 

motion of tall buildings is often a dominant design constraint. The level of discomfort 
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caused by building accelerations can range from perceiving the motion, to discomfort, 

nausea, or even effects on balance, task performance and motor functions. Occupants 

may also experience anxiety due to building motions as they often do not expect the 

building to move and may question the building's structural integrity if it does. Visual 

cues· of movement such as swinging objects, moving sight lines, a swinging horizon, 

or changing light reflections can enhance occupants' perception of motion. Although 

building motion is undoubtedly an important design consideration, there is some debate 

over what criteria should be used for its evaluation. Debate encompasses both the choice 

of characteristic magnitude of acceleration and appropriate recurrence interval. The 

characteristic magnitude bf acceleration could be chosen as the peak or RMS value, 

or some variation of these with the building period. In North America the recurrence 

interval is normally chosen as 10 years. Figure 3.1 shows commonly used acceleration 

criteria for tall buildings. (Isyumov, 1999, 1995). 

The response of a tall building to dynamic loads is dependent on the building's 

damping ratio. This property depends on many different factors and is thus difficult 

to predict. The initial damping ratio estimate is normally obtained from tests con­

ducted on existing buildings with similar material and structural systems. Using this 

method, the damping estimates are normally only within plus or minus 30% (Kareem 

and Gurley, 1996). Several tall buildings have recently been added to the full-scale 

monitoring literature. The damping estimates ascertained from these buildings will 

add vital tall-building data to the information used by researchers trying to develope 

empirical predictive tools for damping estimation such as those given in by Jeary (1986) 

and Satake et al. (2003). 
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Figure 3.1: Commonly Used Acceleration Criteria for Tall Buildings (Isyumov, 1995) 

3.2 Current Research on Tall Buildings 

The tall buildings recently added to the full-scale monitoring literature include three 

. buildings in Chicago (Kijewski-Correa et al., 2006). As building owners are reluctant 

to permit access to researchers it was important that the anonymity of the buildings 

be maintained. Thus the buildings have been labeled as Building 1, Building 2, and 

Building 3. Building 1 resists lateral loads by the use of a steel tube system made up of 

exterior columns, spandrel ties, and additional stiffening elements. Building 2's lateral-

load-resisting system is comprised of concrete shear walls located near the core. The 

core is tied to the outside columns via outrigger walls at two levels. Finally, Building 

3 uses a steel moment-connected framed tubular system to resist lateral loads. In this 
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study both the spectral-based half-power bandwidth method and the random decre­

ment technique were used to estimate the damping ratio from the full-scale response 

measurements. These parameter estimation techniques are discussed in detail in Chap­

ter 4. Results presented by Kijewski-Correa et al. (2006) suggest that the in situ· 

damping ratio values for Buildings 2 and 3 (the concrete and coupled steel buildings) 

were likely higher than the 1% value assumed for design. For Building 1 (the uncoupled 

steel building) the 1% value seemed accurate. 

Two tall buildings in Hong Kong were also recently added to the full-scale lit­

erature. The shorter of the two is a 30-storey, 120 m tall composite structure. The 

taller is a 70-storey, 370 m tall building constructed of steel and concrete. The study 

of this building's response to wind loads is considered particularly important because 

its location makes it subject to very horizontal wind forces during typhoons (Li et al., 

1998). 

The Di Wang Tower in Shenzhen City, China is another tall building with full­

scale monitoring results in the literature (Li et al., 2002, 2004). This building is a 

79-storey, 324 m tall structure consisting of a concrete core tied to a steel perimeter . 

frame at four levels via outrigger walls. The study of this building is important as it 

has a height-to-width ratio of 8.78 which exceeds the criteria given in China's design 

codes (Li et al., 2002). In this study the damping ratios were again estimated using 

both the half-power bandwidth method and the random decrement technique. Special 

attention was paid to the amplitude-dependent characteristic of damping, originally 

identified by Jeary (1986). The amplitude-dependence of damping can be explained as 

follows. There are two principle means of energy dissipation; these are the rubbing of 

materials against each other at joints in the structure, and the lengthening of microc­

racks in the materials. As the amplitude of a building's motion increases, the number of 

joints and microcracks participating in the energy dissipation will increase. Thus more 
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energy will be dissipated through these mechanisms as the building's motion increases 

(Jeary, 1986). Jeary (1986) also found that there were upper and lower plateaus to 

damping as a lower threshold of building displacement must be overcome before the 

joints and microcracks can be mobilized and at an upper limit of building displacement 

the joints and microcracks will reach their maximum displacement and no more energy 

will be dissipated with increased building displacement. The measurements obtained in 

the study lead to damping estimates of 0.57% and 0.58% using the random decrement 

method (considered the more accurate damping estimation technique (Li et al., 2004)). 

However, these estimates were obtained from measurements ascertained during moder­

ate wind conditions. Thus a 1 % damping ratio was considered appropriate for design to 

meet serviceability criteria as the damping ratio increases with increased acceleration. 

3.3 Monitoring Structure-TLD Systems 

Information gained from monitoring tall buildings equipped with TLDs can be used to 

tune the TLDs. In Chapter 2, Section 2.1.2 the importance of properly tuning TLDs 

to the structure's natural frequency is discussed. In order to properly tune a TLD the 

natural frequency of the building must be correctly identified. Through monitoring, a 

building's true natural frequency can be determined. This value ca;n then be used to 

tune the TLDs (the natural frequency of a TLD can be adjusted simply by altering the 

height of the liquid in the tanks). Through further monitoring the effect of adjusting 

TLD parameters on the effective damping they generate can be determined. (The 

effective damping generated by a TLD is defined in Section 2.1.3, Equation 2.59). 
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3.4 Previous Structure-TLD Study 

In 1995 Tamura studied four structures equipped with TLDs (Tamura et al., 1995). 

These structures included the Nagasaki Airport Tower 1 a 42 m steel-framed tower; 

the Yokohama Marine Tower, a 101.3 m steel trussed structure; the Shin-Yokohama 

Prince Hotel, a 149 m tall cylindrical structure; and the Tokyo International Airport 

Tower, a 77.6 m tall tower. The TLDs in" all four of these buildings differed from the 

ones located in the building currently being studied in this project in that they were 

shallow-water TLDs. Shallow-water TLDs use viscous action and wave breaking to 

dissipate energy, while deep-water (h/L » 0.1) TLDs, like the ones in the building 

studied in this project, require the use of screens (discussed in Section 2.2.2) to diSSIpate 

energy (Kareem and Kijewski, 1999). The dynamic response and damping ratio of the 

buildings investigated by Tamura were found both before and after the TLDs were 

installed using the random decrement technique and forced-vibration. It was found 

that the TLDs reduced the acceleration response during strong wind events to 1/3 to 

1/2 the response when the TLDs were not present. 

3.5 Building-TLD Sytem in this Study 

The building being monitored in this study is located in downtown Toronto, Canada. As 

mentioned in Section 3.2 it is important that monitored buildings remain anonymous. 

Thus the monitored building will be referred to as Building X in this report. Building X 

is 52 stories and 187 m tall. It resists lateral loads through the use of coupled concrete 

shear walls parallel to the building's short dimension. Building X is unique because it 

is very narrow in its East-West dimension. With an aspect ratio of 1:13, it is one of the 

most slender buildings in the world. Figures 3.2 and 3.3 show the accelerations of the 

building" in the East-West and North-South directions, respectively. From these figures 
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it is clear that the East-West accelerations have a lower natural frequency and higher 

magnitude than the North-South accelerations. 
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Figure 3.2: East-West Accelerations of a 187 m Building 
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Figure 3.3: North-South Accelerations of a 187 m Building 

As a result of Building X's slender aspect ratio, mandatory wind-tunnel tests 

were required to determine its predicted accelerations and dynamic properties. These 

tests were conducted at RWDI in Guelph, Ontario. As expected, the tests indicated 

that the East-West accelerations of the building would exceed acceptable limits. In 
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order to mitigate this problem a total of ten TLDs were added to the roof of the 

building during its construction. 

Building X is an ideal structure for monitoring purposes. Since wind tunnel tests 

were performed on the building before its constniction, the actual dynamic properties of 

the building can be compared to those predicted by scale-models. Also, since Building 

X is equipped with TLDs it is possible to use full-scale data in order to tune the TLDs 

as discussed in Section 3.3. 

In this study, it was originally found that Building X's true natural frequency was 

higher than originally predicted. Since the TLDs in Building X were originally tuned 

to the predicted natural frequency, the TLDs were not operating optimally. Figure 3.4 

shows the response spectrum for Building X's accelerations in the East-West direction. 

This figure shows that the structure is acting as a single-degree-of-freedom system. 
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Figure 3.4: Response Spectrum Showing SDOF Behaviour 

Although the TLDs were not performing optimally, the increase in peak accelera-

tion is not significant. This is because the wind-induced motion of a structure decreases 

as its frequency increases (Isyumov et al., 2010). The effect of this decrease in wind-
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induced motion counteracts the effect of mistuning. The peak response acceleration, a 
can be estimated as 

(f) 2-n ( ( ) 1/2 

a ex: ap 1: (s + s(eff 
(3.1) 

where ap is the peak acceleration based on the predicted dynamic property values, 1s is 

the natural frequency of the structure, 1p is the predicted natural frequency of the struc-

ture, and n is an empirical constant that can take on different values (Isyumov et al., 

2010). Figure 3.5 shows the normalized peak hourly acceleration for a structure-TLD 

system optimized based on the originally predicted 1s values. The peak acceleration 

values are normalized by the predicted peak acceleration for a system with no TLDs 

and with 1s = 1p. In this figure the value of n is 2.45. The figure also shows the peak 

hourly acceleration for Building X if no TLDs were used. 
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Chapter 4 

Parameter Estimation Techniques 

Currently, it is not possible for engineers to determine a structure's damping ratio 

using analytical methods based on first principles as this value is dependent on many 

different energy dissipating mechanisms. One of the most effective ways to gain insight 

into a structure's damping characteristics is through the use of full-scale monitoring. 

Once data is obtained from full-scale measurements, the dynamic characteristics of 

the structure can be determined using several different methods. These methods can 

be categorized as: frequency-domain, or spectral, methods and time-domain methods. 

The measurements themselves can be taken using either forced vibrations (including 

free vibration) or ambient vibrations (Littler, 1995). 

In Section 4.1 forced vibration methods will be explained. Section 4.2 will 

describe statistical methods for determining spectral estimates from ambient conditions 

and the frequency-domain half-power bandwidth method used for estimating dynamic 

properties. Finally, Section 4.3 will describe the commonly used time-domain random 

decrement method and its limitations. The maximum likelihood method and least 

squares method, which are used for the analysis in this study, are described in detail 

in Chapter 5. 
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4.1 Forced Vibration Methods 

Forced-vibration measurements can be obtained by using exciters to induce structural 

motion. These exciters usually consist of a set of contra-rotating masses that produce 

a sinusoidal force. There are two ways of determining response measurements from 

forced-vibration. The first is to generate a response spectrum and the second is to 

generate the decay signature through free vibration of the structure (Littler, 1995). 

These methods will be discussed in Sections 4.1.1 and 4.1.2, respectively. While forced 

vibration methods are the most accurate for obtaining'dynamic property estimates, 

they are expensive and time-consuming (Littler, 1995) thus the ambient excitation 

methods discussed in Sections 4.2 and 4.3 and Chapter 5 are often more feasible. 

4.1.1 Spectrum Generation through Forced Vibration 

A structure's response spectrum can be generated by setting the exciters to a known 

frequency and recording the structure's accelerations via accelerometers once the struc­

ture's steady-state response motion is achieved. The frequency of the excitation is then 

incrementally increased and the response at each frequency is recorded. The response 

accelerations are converted to displacements and normalized by the applied force. The 

normalized displacements can then be plotted with respect to the applied excitations 

to generate the response spectrum (Littler, 1995). Finally, the dynamic properties 

can be determined from the response spectrum via the half-power bandwidth method 

described in Section 4.2.4. 

The accuracy of this method depends on the accuracy and stability of the ex­

citers and the accuracy of the accelerometers. It is also important that the incremental 

increases in the excitation frequency are small especially in the region of the resonant 

response. Small increases in the excitation frequency will ensure a high frequency res-
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olution in the response spectrum. The importance of this is discussed in more detail in 

Section 4.2.1. 

4.1.2 Decay Signature Generation through Forced Vibration 

The decay signature of a structure can be determined by setting the exciters to the 

natural frequency of the structure which is determined from the response spectrum. The 

excitation is then ceased and the response of the structure is recorded via accelerometers 

(Littler, 1995). This response is the structure's damped free-vibration response or decay 

signature. The natural frequency of the structure can then be found as the inverse of 

the period between adjacent peaks. The damping ratio can be determined from the 

logarithmic decrement defined as 

(4.1) 

where DAn) and Dp(n+1) define the amplitudes of two consecutive peaks on the decay 

signature. For small values of (, ( is thus approximated as 

5 
(~-. 

21f 
(4.2) 

The accuracy of this method depends only on the ability of the exciters to accu-

rately produce specific frequencies and the ability of the accelerometers to accurately 

measure the accelerations. Thus this method is preferable to the one described in Sec­

tion 4.1.1 when no information about the stability of the exciters is known (Littler, 

1995). 
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4.2 Spectral Analysis 

In Section 2.1.3 the spectral density is defined as the Fourier transform of the autocor-

relation function. That is 

1 100 

. S(w) = - R(T)e-ZWTdT. 
211 -00 

(2.35) 

I· When determining a spectrum based on measured response values, the continuous 
I 

1\ 

response, x(t), is approximated by the discrete response values Xs at times s. The 

finite series of response measurements is divided into n data blocks of equal length. 

The autocorrelation function can be estimated as 

1 N-l 

R,. = N L XsXs+r 

s=O 

(4.3) 

where 

(4.4) 

is the number of points per block, T is the total period of the block, and flt is the 

sampling interval. In a manner similar to that shown in Equation 2.35 the discrete 

Fourier transform of the estimated autocorrelation function can be taken as 

N-l 

Sk = ~ L Rre-i (27rkr/N) 

r=O 

(4.5) 

where Sk are a series of spectral coefficients. In practice the Fourier transform is 

normally obtained using the Fast Fourier transform algorithm. The smoothed spectrum 

can be estimated at frequencies Wk = 211k/T as 

(4.6) 
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Finally, the values of the averaged spectra at Wk can be found as 

(4.7) 

where n is the number of blocks into which the response measurements have been 

divided (Newland, 2005). 

Damping and natural frequency estimates can then be found from a frequency-

domain method. The commonly used half-power bandwidth method is described in 

Section 4.2.4 and the maximum likelihood method and least squares method, which 

are the frequency domain techniques used in this study, are described in Chapter 5. 

The accuracy of any dynamic property estimate obtained from a frequency-domain 

method can be eroded by the presence of bias and variance errors. Descriptions of 

these errors follow in Sections 4.2.1 and 4.2.2 respectively. 

4.2.1 Bias Error 

In statistical terms, a bias exists when the mean value of many estimated parameter 

values is consistently different from the actuai parameter value. An example of a bias 

error is illustrated in Figure 4.1. The bias of an estimated parameter is given as 

b[G] = E[G] - 8 (4.8) 

where 8 is the true value of the parameter being estimated, G is the estimate, and E 

denotes the expected value. It is often convenient to express the bias as a percentage 

of that parameter. This results in the normalized bias error defined as 

(4.9) 
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Spectral estimates are prane to bias as illustrated in Figure 4.2'. Since, for real 

measurements, the number of points per block, N, cannot be infinite, the rapid variation 

in the amplitude of the spectrum near resonance will not be accurately represented 

by the points. Thus the magnitude of the spectrum near resonance will always be 

underestimated. As N increases, the bias error will decrease. 

Figure 4.1: Bias Error in Gun Shots at a Target (Bendat and Piersol, 2000) 
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Figure 4.2: Spectral Estimate Showing Bias 

Bendat and Piersol (2000) have shown that for a spectral estimate of a stationary 

47 



M.A.Sc. Thesis - Julia M. Lewis McMaster. - Civil Engineering 

ergodic random process filtered using a rectangular window, the normalized bias error 

is given as 

where 
1 1 

/::"FFT= T = N/::,.t 

is the frequency resolution of the Fourier transform for a block of length Nand 

(4.10) 

(4.11) 

(4.12) 

approximates the half-power bandwidth of the spectrum with damping ratio, (, and 

natural frequency, fa (Bendat and Piersol, 2000). For a stationary ergodic random 

process filtered using a continuous window, such as the Hamming window used in 

this study, the bias error will be less than that given in Equation 4.10 provided that 

(Schmidt, 1985) 

Br > 
---;;:-- rv 4. 
D.FFT 

(4.13) 

Bendat and Piersol (2000) recommend that Equation 4.13 be adhered to even for data 

filtered using a rectangular window, in order to limit the bias error to 2%. Thus in order 

to decrease the bias error, it is necessary to increase the block lenghth, N. However 

for a given record length, increasing the block length will necessitate decreasing the 

number of blocks, n. This will increase the variance error as illustrated in the following 

section. 

4.2.2 Variance Error 

The variance error, or random error, describes the error that can occur in any direction 

and have any magnitude. An example of a variance error is illustrated in Figure 4.3. 
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The variance of an estimated parameter, 8, is given as 

(4.14) 

In order to express the variance in the same units as the parameter e it is often reported 

as the random error defined as 

( 4.15) 

The random error expressed as a percentage of the true parameter value e defines the 

normalized random error or coefficient of variation 

V E[(8 - E[8])2] 
COV= e . (4.16) 

Bendat and Piersol (2000) have shown that for a spectral estimate generated 

from n different subrecords, the coefficient of variation is given as 

COV=_l_ 
Vn 

(4.17) 

where n is the number of blocks averaged to create S(Wk). Increasing the number of 

blocks decreases the variance. This makes intuitive sense since increasing the number 

of . blocks increases the likelihood that the sampled spectra accurately represent the 

actual response spectrum. 
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Figure 4.3: Variance Error in Gun Shots at a Target (Bendat and Piersol, 2000) 

4.2.3 Selective Ensemble Averaging 

A random process is said to be stationary if the statistical characteristics of that process 

are independent of the origin time at which the recording of the process begins. An 

averaged response spectrum can only be an accurate representation of the true response 

if the process being averaged is stationary. This meam; that Equation 4.3 must be 

independent of s. In order to collect enough stationary data, so that an averaged 

response spectrum of sufficient length can be generated, selective ensemble averaging is 

often used. This is done by stringing together many records which were obtained under 

similar wind conditions. The stringing together of many records creates one continuous 

record. Littler (1995) recommends that the difference in response between the records 

used to create the continuous record be less than that due to variance error. That is 

(4.18) 

This method of ensemble averaging was used in the current study. 

4.2.4 Half Power Bandwidth 

The dynamic properties of a single-degree-of-freedom system are commonly estimated 

using the half power bandwidth (HPBW) technique. This technique essentially fits the 
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response spectrum to the dynamic magnification function (DMF) at two points. The 

dynamic magnification function for a single-degree-of-freedom system is given as 

1 
H x = -,;17-( 1=-=(3::::::;:2~)2=+==;(=2(===:f3~)2 (4.19) 

The maximum value of DMF is defined as 

1 
H Xmax = 2(..J1=(2· (4.20) 

The frequencies at which the response is reduced to 1/V2 of the peak response can be 

determined using the following derivation 

1 1 ( 1 ) 
J(l - f32)2 + (2(f3)2 = V22(..J1=(2 . 

(4.21 ) 

Solving Equation 4.21 for (32 yields the two roots 

(4.22) 

The difference between (31 and f32 is 

(4.23) 

for small (. Now ( can be estimated by dividing Equation 4.23 by 2 

(4.24) 

The natural frequency can simply be estimated as the frequency value corresponding 

to the maximum value of DMF. (Tedesco et al., 1999; Chopra, 2007). 

51 



M.A.Sc. Thesis - Julia M. Lewis McMaster - Civil Engineering 

4.3 Random Decrement Technique 

The random decrement technique (RDT) is a time-history method for determining the 

dynamic properties of a structure. It was first developed in 1973 to be used for on­

line detection of cracks in aerospace structures (Cole, 1973). The principle behind the 

random decrement technique is that the response of a structure can be represented 

by the superposition of a random component and a homogeneous component. The 

random component is due to the forced vibration and is dependent upon the random 

externally applied force. The homogeneous component represents the damped free 

vibration response of the structure. This component is dependent on the dynamic 

properties of the structure and the initial displacement and velocity of the structure. 

The random decrement method sequentially scans a time-history record for given 

displacement and velocity values. These values are known as the trigger values, Xo for 

displacement and .ko for velocity. The merits of various trigger conditions are dis­

cussed in detail by Kijewski-Correa (2003). Segments from the time-history having a 

prescribed length and the given trigger values are collected and averaged together. The 

result is that random components of the time-histories will cancel out and the homo­

geneous components will all be representative of the same free vibration response and 

will thus average to this response. The process is illustrated in Figure 4.4 where X F is 

the random component. The response curve obtained in the bottom left of Figure 4.4 

represents the damped free vibration response for a single-degree-of-freedom system. 

The natural frequency of the system can be found as the inverse of the period between 

consecutive peaks of the response curve and the damping ratio can be found from the 

logarithmic decrement defined in Equations 4.1 and 4.2. The drawback of this tech­

nique is that it cannot be used to model coupled two-degree-of-freedom systems such 

as structure-TLD systems. In the present study, the random decrement technique is 

used to verify the maximum likelihood and least squares programs for single-degree-
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Figure 4.4: Illustration of the Random Decrement Technique (Kijewski-Correa, 2003) 

of-freedom systems described in Chapter 5. The RDT is not designed to be used for 

multi-degree-of-freedom systems. A comparison of the results generated by the maxi-

mum likelihood method, least squares method, and RDT for 2DOF data is provided in 

Chapter 5. 
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Chapter 5 

Maximum Likelihood Method and 

Least Squares Method Descriptions 

and Validations 

In this study two novel computer programs were developed based on two different 

parameter estimation methods. These programs can be used to estimate the dynamic 

properties of both single-degree-of-freedom (SDOF) and two-degree-of-freedom (2DOF) 

structures. The parameter estimation methods used to develop the programs are the 

maximum likelihood (ML) method and the least squares (LS) method. The programs 

used to implement these methods were written using MATLAB (2009). The ML method 

used in this study is based on the procedure introduced by Montpellier (1997) and the 

LS method was developed independently. Initially programs used to implement these 

methods for a single-degree-of-freedom (SDOF) structure were developed and these 

programs are described in Section 5.1. The programs used to implement ML and 

LS methods for coupled 2DOF structures are described in Section 5.2. Section 5.3 

describes how these MATLAB programs were verified. Finally, Section 5.4 investigates 
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the performance of both the ML and LS programs. 

5.1 Methods Using SDOF Models 

The ML and LS parameter estimation methods operate using the same principles. In 

both cases, a sample of random data is obtained and a curve with unknown parameters, 

8, is fit to this data. In signal analysis, the time-history data cibtained from measure-

ment is first transformed into the frequency domain using the methods discussed in 

Section 4.2 and it is the frequency response spectrum to which a curve is fit. For SDOF 

systems, the curve fit to the sample acceleration spectral data is the equation of the 

frequency response function for a SDOF. That is 

(5.1) 

where S(f) is the frequency response function for the SDOF system, f is the forcing 

frequency, fa is the system's natural frequency, and ( is the damping ratio of the 

system. In the curve described by Equation 5.1 the unknown parameters, 8, are fa 

and (. These parameters are adjusted in order to best fit the sample data and the 

parameters corresponding to the best fit are the estimates of the true fa and ( values 

for the system. The estimated parameters are given the notation <3 or f~ and (. The 

difference between the ML and LS methods is the way in which the curve fitting is 

performed. 
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5.1.1 ML Method Description 

The maximum likelihood method is a commonly used statistical technique for obtaining 

parameter estimates. This method can be described in generic form as follows. Assume 

a set of independent random variables is given as Xl, ... , Xn and this data is known 

to have the probability density function PDF(x,8) which depends on the random 

variables, X, and the unknown parameter(s), 8. Then the likelihood function for this 

data is given as 

The likelihood function describes the probability that the n sampled values would have 

occurred for a given 8. It is often more convenient to write Equation 5.2 in the following 

form 
n 

InL(xl, ... , xn , 8) = LlnPDF(xi' 8). 
i=l 

(5.3) 

For a given fixed set of sample data, Xl, ... Xn, L is dependent on 8 only. The values 

of 8 that make L a maximum are the estimates, 8, of the true values of the unknown 

parameters. This makes intuitive sense, as the maximum value of the likelihood function 

occurs when the values of the parameters, 8, are such that it is most likely that the 

sampled values would be observed. Traditionally the estimated parameters, 8, would 

be found by taking the derivative or partial derivatives of L with respect to 8, setting 

these derivative equations equal to zero and solving for e (Montpellier, 1997; Hayter, 

2002). However, using MATLAB (2009) tools, it is not necessary to take derivatives of 

the likelihood function, rather, the values of 8 that maximize L can be found directly. 

It is beneficial to use the tools available in MATLAB (2009) for finding the maximum 

of the L function as opposed to taking its derivatives because the L function changes 

rapidly with respect to the forcing frequency in the region of the resonant peak. Due 
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to this rapid variation, the partial derivative of the likelihood function with respect to 

I may have a discontinuity at I = 10 making it impossible to find a solution that will 

set all partial derivatives equal to zero. The method employed by the MATLAB (2009) 

tools to find the maximum value of L is discussed in Section 5.1.3. 

Montpellier (1997) proposed a method for using the ML method to determine the 

dynamic properties, 10 and (, of a SDOF system by allowing the normalized mechan-

ical admittance function to replace the probability density function in the likelihood 

equation. The parameters, 8, that are adjusted in order to maximize the likelihood 

function are then 10 and (. The PDF function used in Equation 5.3 is thus 

(5.4) 

where S(J) is the frequency response function for a SDOF system defined in Equa-

tion 5.1, Ar is the area under the resonant peak of the frequency response function, S R 

is the spectrum of the response data, and Apeak is the area under the resonant peak of 

the response spectrum. The criteria for defining the limits of the resonant peaks are 

described in Section 5.1.3. The exponent SR(J)/Apeak is a weighting value. By taking 

the logarithm of Equation 5.4 and writing this equation such that it can be applied to 

discrete values, the function to be maximized is 

(5.5) 

where h are frequency values ranging from the lower frequency limit Iz to the upper 

frequency limit lu. These frequency limits are defined such that the resonant peak is 

isolated and the methods for finding them are given in Section 5.1.3. The areas Apeak 

and Ar are also calculated over the range of Iz to lu and these calculations are also 
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discussed in Section 5.1.3. 

5.1.2 LS Method Description 

The least squares method, like the maximum likelihood method, is a commonly used 

method for estimating parameters. This method minimizes the vertical distance be­

tween the data points (Xl, Yl), ... (Xn' Yn) and the model to which they are being fit. The 

equation to be minimized is thus 

n 

Q = L(Yi - Y(Xi' 8))2 (5.6) 
i=l 

where Yi is the measured data point at i and Y(Xi' 8) is the model which depends on both 

Xi and the unknown parameter(s) 8. Like the ML method, the unknown parameters, 

8, that minimize Equation 5.6 can be found by taking the partial derivatives of that 

equation with respect to 8. The derivative equations can then be set to zero and solved 

for 8. Also like the ML method, for application in the current study it was found to be 

more effective to find the values of the 8 that minimize Equation 5.6 using the built-in 

minimization function in MATLAB (2009). The method employed by MATLAB is 

discussed in Section 5.1.3. 

In this study the value being minimized is the area between the normalized 

response spectrum, obtained from the full-scale data, and the normalized frequency 

response function. Thus the LS method attempts to match the variances of the two 

response spectra. The difference in area is weighted by the area under the normalized 

response spectrum curve at each increment. This allows more importance to be placed 

on the values at resonance. The function to be minimized is thus 

L SRnorm(Jj,j+l) X [IS(Jj,j+1)I;orm - SRnorm(Jj,j+l)]
2 

j 
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where SRnarm(fj,j+1) is the area under the SR curve between fj and fj+l normalized by 

the area under SR, Apeak and IS(hj+l)l~oTm is the area under the IS(fW curve between 

fj and fj+l normalized by the area AT' As in the ML method the values of fj range 

from fl and fu, and the areas Apeak and AT are also calculated over this range. The 

technique for determining these limits for the LS method is described in Section 5.1.4. 

5.1.3 ML MATLAB Program 

As discussed in Section 5.1.1, the maximum likelihood method attempts to maximize 

the function 

(5.5) 

For this project a MATLAB (2009) program to optimize this function was developed. 

The MAr LAB (2009) program transforms the time-history data into the response spec­

tnim SR(fj) using a Hamming window where the difference between adjacent discrete 

frequencies is given by 

Ii = jI:lFFT. (5.8) 

The frequency response function to be fit to the response spectrum is given by Equa-

tion 5.1. The resonant peak is isolated by assuming that is begins exactly when 

IS(fj, fo, ()1 2 > 1. This value was chosen based on the method outlined by Mont­

pellier (1997). Thus fl can be calculated as 

fl = fj exactly when IS(f, fo, ()1 2 > 1 (5.9) 

where it is the minimum frequency value, Ii used in Equation 5.5. The frequency 

response function is assumed to be symmetric about its maximum value. Thus fu can 
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be calculated as 

fu = fl + 2(jmax - fl) (5.10) 

where fu is the maximum frequency value, fj, used in Equation 5.5 and fmax is the 

value of f that corresponds to the maximum value of IB(jj, fa, ()i2. The area, An under 

the frequency response function and the area under the response spectrum, Apeak, are 

estimated using the trapezoidal method. The values B(j, fa, () and AT are calculated 

based on the unknown parameters fa and (. MATLAB (2009) iterates through different 

values of these unknown parameters, for a maximum of n iterations, until the maximum 

value of In (PDF(jj,!o, ()) is found. The program uses the interior-point algorithm to 

solve the mininiization problem 

min (-In((PDF(h, fa, ())) (5.11) 

which is equivalent to the maximization problem 

max (In(PDF(h, fa, ())). (5.12) 

The interior-point algorithm was originally developed by Karmarkar in 1984. It is an 

advantageous linear optimization method since the number of iterations necessary grows 

more slowly than the dimension grows. The interior-point algorithm works by moving 

along the central path of a problem towards the solution so that the distance between 

the estimated solution and the optimal solution is decreased with each iteration. This is 

done by solving a series of equality constrained problems which estimate the inequality 

constrained problem. (Ignizio and Cavalier, 1994; Roos et al., 2006; Ye, 1997). In the 

current study the minization problem defined by Equation 5.11, and is subject to the 
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bounds 

0.1 ::; fa ::; 0.5 (5.13) 

and 

0.010 ::; ( ::; 0.10. (5.14) 

These constraints were chosen to encapsulate all expected values of fa and (. The 

termination tolerance was set to be 10-9 . This value was found to be sufficient to allow 

MATLAB (2009) to converge to the optimal solution in all cases tested. The maximum 

number of iterations for the interior-point algorithm was chosen to be n = 40. This 

number allowed the program to converge for all tested situations (the tests are described 

in Section 5.3). 

The interior-point algorithm requires initial estimates for the values of the un­

known parameters. The ML program was written such that initial guess for fa and ( 

are generated using the half-power bandwidth method described in Section 4.2.4. This 

was done because the ML program will only converge to the values of fa and ( that 

generate a global maximum of the likelihood function if the initial estimate fa is close 

to the true fa value (within ± 10%). The reason for this is discussed in more detail in 

Section 5.3.1. Actual estimates generated by the ML program are given in Section 5.3. 

The ML program was not found to be sensitive to the initial ( estimate; however, 

the HPBW method is a convenient method for generating this initial estimate. The 

program also generates a plot of both the response spectrum, SR, and the frequency 

response function as a function of ia and (, S(j, ia, (). This plot will allow the user to 

see if the fit generated by the program is suitable. 

61 



M.A.Sc. Thesis - Julia M. Lewis McMaster - Civil Engineering 

5.1.4 LS MATLAB Program 

The least squares MATLAB (2009) program works using the same principles as the 

maximum likelihood program. In the LS program, MAT LAB (2009) is programmed 

to minimize the weighted least-squares function defined in Equation 5.7. Again, the 

MATLAB (2009) program transforms the time-history data into the response spectrum 

SR(Jj) and the frequency response function to be fit to the response spectra is given by 

Equation 5.1. The lower and upper frequency limits are defined in Equations 5.9 and 

5.10 respectively. The areas, Ar and Apeak, are calculated in the same manner as for the 

ML program and the difference between the two curves, [lS(Ii,j+l) I~orm - SRnorm(Jj,j+1)] 2 
, 

is estimated using the trapezoidal method. MATLAB (2009) iterates through different 

values of fa and ( in order to find the minimum value of Equation 5.7. This is done 

using the interior-point algorithm and the termination tolerance is set to 10-9 while the 

maximum number of iterations is set to 40. These values are the same as those chosen 

for the ML method and the justification for these values is described in Section 5.1.3. 

Again the initial guesses for fa and ( are found using the half-power bandwidth method. 

The values of io and ( which correspond to the minimum value of Equation 5.7 are the 

estimates of the true fa and ( values for the response spectrum. 

Using the above method, this program was not always able to find the optimal 

solution. When the interior-point algorithm began to converge towards an incorrect 

solution, the LS program would attempt to minimize the distance between fz and fu in 

order to minimize the value of the weighted least-squares function given in Equation 5.7. 

In order to prevent this error from leading to incorrect fa and ( estimates, the program 

is now designed to redefine fz and fu when the value of the weighted least-squares 

function is found to be greater than 104 . This criteria was chosen because ill all trials 

in which the LS program converged to an incorrect solution the value of the weighted 

least-squares function was found to be greater than 104 . In cases where the weighted 
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least-squares function exceeds 104 the value of Iz is defined as 

(5.15) 

where 0-
2 is the variance of the response spectrum. The upper frequency limit, Iu 

is still defined according to Equation 5.10 except that now the value of Iz used in 

that equation is found using Equation 5.15. Using this alternative definition for Iz 

and Iu in cases where the primary definitions of Iz and Iu would lead to incorrect 

property estimates, allows the LS program to converge towards the optimal solution. 

The definition of Iz given in Equation 5.15 is not used as the primary definition because 

estimates obtained using Equations 5.9 are otherwise more accurate that those obtained 

using Equation 5.15. Like the ML program, the LS program produces a plot of both 

the response spectrum and the fitted frequency response function so that the user can 

determine if the estimated parameters are suitable. 

5.2 Methods Using 2DOF Models 

The ML and LS methods were selected as these methods allow the response spectrum 

to be fit to coupled multi-degree-of-freedom systems. For a function to be employed by 

the ML method, it must satisfy the following criteria 

and 

PDF(x,8);::: 0 

j
lu . 

PDF(x, 8)dx = 1. 
II 

(5.16) 

(5.17) 

For the LS method any model that is differentiable with respect to the unknown param-

eters can be used. Therefore these methods are well suited for modeling the coupled 
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two-degree-of-freedom behaviour exhibited by properly tuned structure-TLD systems. 

The equation for the dynamic magnification factor for a coupled two-degree-of-

freedom system is given in Equation 2.30 as 

This equation can be expressed in the following form 

where 

H(f f .(' ;- ;-)2 = [(02 
- {]2)2 + (2(af30 ?l 

, s,Ja,"s,"a !;:"A . 

!;:"A = [02 (1 - f32) - p,02f32 - f32(1- f32) - 4(a(s0f32] 2 

+ [2(af30 (1- f32 - p,f32) + 2(sf3(02 - f32)] 
2 

• 

(2.30) 

(5.18) 

(5.19) 

Multiplying Equation 5.18 by f3·4 produces the frequency response function for the 

acceleration of a coupled 2DOF system. That is 

(5.20) 

where f3, 0, and p, are the forced frequency ratio, frequency ratio, and mass ratio 

respectively and were defined in Chapter 2 as 

m 
(2.2) p,= M' 

f3= ~, 
Ws 

(2.6) 

and 

(2.7) 
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Equation 5.20 is the model function used in the ML and LS methods. The unknown 

parameters are the natural frequencies and damping ratios of the structure and the 

absor?er, fs, fa, (s, and (a· The variables f and the masses of the structure, 1\11, and 

the absorber, m are fixed and given. 

5.2.1 Description of 2DOF Programs 

The programs to implement the ML and LS methods for the 2DOF model operate 

similarly to the programs for the SDOF model except that in this case the spectral 

response data is fit to Equation 5.20 instead of Equation5.I. The variables M and m 

also need to be input to the MATLAB (2009) program. These variables can be defined 

for either a structure-TMD system or a structure-TLD system depending on the data 

being analyzed by the programs. For a structure-TLD system these variables were 

given in Equations 2.113 and 2.115 respectively. The frequency limits surrounding 

the coupled resonant pealm must be carefully defined in these programs. Since the 

frequency response function for a coupled 2DOF system has two resonant peaks, the 

upper frequency limit cannot be defined by assuming a symmetric distribution of the 

frequency response function about its maximum value. Therefore, the frequency limits 

must be defined according to different criteria. In this study, the lower frequency limit, 

fl, was set such that 0.5% of the area under the response spectrum would be contained 

between f = 0 and f = fl. The upper frequency limit, fu, was set such that 80% of 

the area under the response spectrum would be contained between f = 0 and f = fu. 

These values were chosen to encapsulate all expected values of the resonant frequencies. 

The optimization problems used in both the ML and LS methods are subject to the 

following inequality constraints 

0.1 :::; fs :::; 0.5, (5.21) 
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and 

0.1 ~ fq ~ 0.5, 

0.01 ~ (s ~ 0.20. 

0.01 ~ (a ~ 0.20. 

McMaster - Civil Engineering 

(5.22) 

(5.23) 

(5.24) 

These values were chosen to encapsulate all expected values of fs, fa, (s, and (a for the 

monitored structure-TLD system in this study. They can be adjusted as required for 

studies on additional systems. 

5.3 Validation of MATLAB Programs 

The ML and LS programs developed in this study were validated using data with known 

properties before they were used to determine the properties of the data obtained from 

full-scale measurements. Several methods were used to validate the programs. First, 

response spectrum data, with no noise, was input into the programs. This was carried 

out to ensure the fit of the programs. In this case the programs did not need to 

transform time-history data into the frequency domain. The programs were only used 

to fit the spectral data to the spectral model. The results from these tests are given in 

Section 5.3.1. Secondly, the programs were tested on time-history data with no noise. 

This was to ensure that for data without noise, the programs would converge to the 

correct solution. 

One of the main purposes of developing the programs used in this study is to 

correctly estimate the dynamic properties of a coupled 2DOF structure-absorber system 

so that adjustments to the absorber(s) can be made in order to optimize performance. 

The results presented in this section show that they are well suited for this purpose. 
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5.3.1 Description of Validation Tests for Spectral Input 

In order to test the SDOF programs, a response spectrum with known dynamic property 

values was created using Equation 5.1. As discussed in Section 5.1.3 and 5.1.4, the initial 

guesses for the dynamic properties are generated via the HPBW method internally in 

the MATLAB (2009) programs for both the ML and LS methods. Therefore, the only 

input value that can be altered in these programs is the frequency resolution .6.F FT. 

Although this set of tests does not require the input data to be transformed from 

the time domain to the frequency domain, the frequency resolution is important since 

Equation 5.1 is fit to the input data at the discrete frequencies Ii defined as 

Ii = j.6.FFT. (5.8) 

Using more discrete frequencies increases the likelihood that the MATLAB (2009) pro­

grams will converge to the exact property values. This result is illustrated below. 

In this test several representative dynamic property values were used. The 

fa values used in the test vary between 0.2 Hz and 0.3 Hz. These values were chosen 

because initial analysis of the data obtained from Building X suggested that that build­

ing's natural frequency is within this range. The true ( values used in the test vary 

between 1.00% and 3.00%. Several variations of these parameters were tested. The 

.6.F FT values used in the test were 4.0690 x 10-3 Hz, 2.0345 X 10-3 Hz, and 1.0173 x 

10-3 Hz. These values are calculated based on the sampling frequency, 8.3333 Hz, that 

was used for collecting the full-scale data, and block sizes, N, of 2048, 4096, and 8192 

respectively. The results generated by the ML program are given in Figures 5.1 and 

5.2. The figures show the results for various fa values with a constant ( value on the 

left and variolls ( values with a constant fa value on the right. Figure 5.1 shows the 

errors in the fa estimates for the tested true dynamic property values and the three 
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block sizes. Figure 5.2 shows the percent errors in the ( estimates for the tested true 

dynamic property values and the three block sizes. 
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Figure 5.1: Percent Error in fo Estimates Generated by the ML Program using Spectral 
Input 

The results generated by the ML program show that the errors in the fo esti­

mates are small (all less than 0.20%). In some cases the errors increase as N increases. 

This is due to the effect that the limits fz and fu have on the likelihood function. 

These limits are calculated according to Equations 5.9 and 5.10 and are dependent on 

the resolution. However, since the errors in the fo estimates are all less than 0.20%, the 

tendancy for the errors to sometimes increase with increased N was considered trivial. 

The application of the estimates generated by the ML program is discussed below. 

Figure 5.2 shows a tendancy for the (errors to increase with decreased damping. 

Here it is observed that, for N is equal to 2048, the errors are larger when the true ( 

value is equal to 1.00 %, 1.50%, and 2.00% than when it is equal to 2.50 % and 3.00 

%. This result is expected as the narrow resonant peak associated with a low damping 

ratio is difficult to fit to a model using a discrete number of points. \iVhen N is equal 
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Figure 5.2: Percent Error in (Estimates Generated by the ML Program using Spectral 
Input 

to 4096 and 8192, the tendancy for the ( errors to increase with decreased damping" is 

not shown because these larger values of N allow for the narrow resonant peak to be 

resolved by the discrete points. 

There are several cases in which the ( error increases as N increases. This result 

is not expected since the larger values of N provide more discrete points at which to fit 

the response spectrum to the frequency response function. However, in all the cases in 

which the ( error increases with increased N, the relative percent ( errors are less than 

2.00%. These percent errors in the estimates for these cases are shown on a smaller scale 

in Figure 5.3. This represents an absolute difference of only 0.04% between the true and 

estimated (values. Since damping ratios are typically only reported to the first decimal 

place, these differences are considered trivial. The differences arise from the flat shape 

of the likelihood function with respect to the damping estimate and the distortion of the 

resonant peak due to the continuous response function being represented by a discrete 

number of points. The shape of the likelihood function is shown in Figure 5.4. The 
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issue of the distortion of the resonant peak is discussed further in Section 5.3.2. 
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Figure 5 .. 3: Percent Error in ( Estimates where Error Increases with Increased N 

The results show that the errors in the natural frequency estimates are much 

smaller than the errors in the damping ratio estimates (the maximum error in the 

damping estimates is 20.63% compared to a maximum error of 0.19% for the natural 

frequency estimates). The is due to the shape of the likelihood function with respect to 

each of these parameters. Figure 5.4 shows the shape of the likelihood function for true 

fa and ( values of 0.25 Hz and 2.00% and various estimated fa and (values. This figure 

shows that the rate of change in the likelihood function is much greater with respect 

to the estimated fa value than it is with respect to the estimated ( value. In this case 

the value of the likelihood function is 1507 when the estimated ( value is equal to the 

true (value. The value of the likelihood function is also equal to 1507 when (; is equal 

to 2.04% (this is the case which resulted inthe 1.98% error discussed above). This is 

shown in the contour plot given in Figure 5.5. Since the likelihood function is fiat over 

a range of ( values, the value of ( returned by the ML n;tethod will be dependent on 

the initial estimates and decreasing the error tolerance will not increase the accuracy 
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of the ( estimate. 

From Figure 5.4, it is evident that there are more local maxima with respect 

to the natural frequency estimate than there are with respect to the damping ratio 

estimate. This fact explains why the accuracy of the estimates generated by the ML 

program is highly dependent on the initial natural frequency estimate . 
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Figure 5.4: Surface Plot of Likelihood Function for True fa and <: values of 0.25 Hz and 
2.00% and Various fa and <: Estimates 

The ML method generated a maximum fa error of 0.19% and a maximum ( 

error of 20.63%. The maximum ( error is limited to 1.98% for all cases in which N 

is greater than or equal to 4096. If the same data is tested using the HPBW method, 

the maximum fa error is 0.72% and the maximum ( error is 57.14% (6.76% for cases 

in which N is greater than or equal to 4096). Thus the ML method is more accurate 

than the HPBW method in the tested cases. 

One of the main purposes of developing the ML program used in this study 
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Figure 5.5: Contour Plot of Likelihood Function for True fa and ( values of 0.25 Hz 
and 2.00% and Various fa and ( Estimates 

is to correctly estimate the dynamic properties of a coupled 2DOF structure-absorber 

system so that adjustments to the absorber(s) can be made in order to optimize per-

formance. In absorber design, a target mean square response value is chosen and the 

effective damping required to meet that response is calculated from Equation 2.58. 

The structural damping is often assumed to be zero or a small value at this stage to 

be conservative. The mass ratio can then be calculated from Equation 2.62. Using 

the mass ratio generated from Equation 2.62, the optimal tuning ratio and absorber 

damping ratio can be calculated from Equations 2.60 and 2.61. Equations 2.60, 2.61, 

and 2.62 assume zero structural damping. If the natural frequency of the structure 

changes or is found to be different from the value assumed during design, the natural 
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frequency of the absorber(s) can be adjusted to tune the system. Section 3.3 discusses 

how structure-TLD systems are adjusted. The accuracy of the estimates generated by 

the ML program show that it is well suited for the purpose of adjusting absorber(s) to 

enhance performance. 

The ability of the ML program to deliver information that can be used to tune 

. the absorber(s) was evaluated in the following way. The true dynamic property values 

of a structure-TLD system were assumed to be those given in Table 5.1. These are the 

values of an optimally tuned structure-TLD system. If the natural frequency of the 

structure was incorrectly estimated by 0.19% (the maximum error in the fo estimates 

generated by the ML program in the cases tested above) and this incorrect fo estimate 

was used to tune the TLDs, the relative decrease in the effective damping would be 

0.01 % of the optimal effective damping value for a given mass ratio. The value of the 

estimated damping ratios are not used to adjust the TLD properties so inaccuracies in 

their estimates would not affect the effective damping generated by the TLDs. 

The LS program was tested using the same true dynamic property values that 

were used to test the ML program. The LS program converged to the exact dynamic 

property values with zero error in all tested cases. 

The 2DOF programs were also tested using spectral input. The spectral input 

was written using Equation 5.20. The true dynamic property values used in Equa-

tion 5.20 are given in Table 5.1. For these programs the initial estimates of the dynamic 

properties cannot be generated using the HPBW method, thus the user must input the 

initial estimates. This means that the 2DOF programs have four additional input val­

ues compared to the SDOF programs, as the four initial estimates, is, ia, (s, and (a as 

well as the block size, N, can all take on various values. The user is assisted in selecting 
A A 

the fs and fa values. Before the user is prompted to enter these initial estimates both 

programs generate a plot of the response spectrum. From the plot the user can see the 
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locations of the resonant peaks and use these values as initial frequency estimates. 

Table 5.1: True Dynamic Property Values for 2DOF Tests 

Property Value 
Ms (kg) 12080590 
is (Hz) 0.2720 

(s(%) 1.86 
ma (kg) 308359 
ia (Hz) 0.2703 
(a (%) 9.14 

Since the initial property estimates are not automatically generated within the 

programs, the ability of the programs to correctly estimate the dynamic property values 

was evaluated for several initial estimate values. Figure 5.6 shows the accuracy of the 

dynamic property estimates generated by the ML program with respect to the accuracy 

of the initial estimates. In Figure 5.6(a) the initial ia, (s, and (a estimates are kept 

constant at the true dynamic property values, while the value of the initial is estimate 

is varied from -20% to 20% of the true is value. In Figure 5.6(b) the values of is, (a, and 

(s are kept constant while the value of ia is varied. Figure 5.7 shows equivalent plots 

generated by the LS method. Plots generated by varying the inital damping ratios were 

also generated. However when either of the initial damping ratios was varied between 

-20% and 20% of its true value, both programs converged to the true dynamic property 

values with percent errors equal to zero. Thus plots generated by altering the damping 

ratios have been omitted. For the illustrated tests the block size is kept constant at 

4096. The effect of altering the block size was examined and, as expected, the accuracy 

of the results increased with increased block size. The plots generated using other block 

sizes are omitted for beverity. 

Figure 5.6 shows that the ML method will converge to estimates within ± 

1 % of the true values when the initial is estimate is within ± 10 % of its true value 

and when the initial ia estimate is within -16% to 18% of its true value. Figure 5.7 
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shows that the LS method will converge to estimates with 0% error when the initial 

fs estimate is within -9% to 8% of its true value and when the initial fa estimate is 

within ± 7% of its true value. These results show that the 2DOF programs are useful 

for practical applications. In all cases stlldied, the user would be able to determine 

the initial estiamtes for the natural frequencies from the generated plot of the response 

spectrum with enough accuracy to allow the programs to converge to within ± 1% of 

the correct solutions. The user is not aided in determining initial estimates for the 

damping ratios; however, the results show that the accuracy of the programs is not 

dependent on the initial damping ratio estimates. If the estimated dynamic properties 

were used to adjust the TLDs in this study (with true dynamic property values given 

in Table 5.1) in order to enhance their performance, an error of 1% in the structure's 

natural frequency estimate would result in a relative decrease of 0.28% in the effective 

damping compared to the optimal effective damping. 

The ML and LS programs are advantageous because they can be used to estimate 

the dynamic properties of a 2DOF system. The data used in this test was also analyzed 

using the HPBW method in order to illustrate the advantage of using the ML and LS 

methods compared to the HPBW method. The HPBW method is not designed to be 

used with 2DOF data, thus it only produces one frequency estimate and one damping 

estimate and a direct comparison between the ML and LS methods and the HPBW 

method is not possible for 2DOF systems. However, the estimates generated by the 

HPBW method are preseneted below in order to illustrate the advantage of the ML and 

LS methods for estimating the dynamic properties of 2DOF systems. The fa estimate 

generated by the HPBW method is an estimate of the resonant frequency associated 

with the higher resonant peak (in this case fa). The (estimate generated by the HPBW 

method is, in this case, higher than both damping values and the effective damping 

value because both resonant peaks are included in the estimate. The fa and ( estimates 
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generated by the HPBW method are 0.2543 Hz and 1.24% respectively. The estimated 

fa value is 6.10% lower than the true fa value. The estimated ( value is 76.64% higher 

than the effective damping value. Since the ML and LS programs are able to accurately 

estimate the dynamiC property values for both masses of the 2DOF system within ± 

1 % of their true values over the ranges listed above, they are clearly superior to the 

HPBW method for estimating the dynamic properties of a 2DOF system. 
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5.3.2 Description of Validation Test~ for Time Domain Input 

The SDOF ML and LS programs developed in this study were tested on time history 

data with known dynamic property values. Newmark's method was used in order to 

create this time history data. Newmark's method is a classic numerical method that 

uses a time-step method to evaluate the equation of motion based on a known applied 

force, p(t). The initial velocity and displacement of the structure being evaluated must 

also be known along with its dynamic properties damping, stiffness, and mass. A time 

step value must also be chosen. Chopra recommends that this time step value be less 

than or equal to 0.551 times the structure's natural period (Chopra, 2007). The data 

in the current study was generated using the linear acceleration method which assumes 

that the change in acceleration between time steps in linear. 

The time history data for this study was written using a MATLAB program (MAT­

LAB, 2009) and the method outlined by Chopra (2007). For this program, the dynamic 

property fo was varied between 0.20 Hz and 0.30 Hz and ( was varied between 1.00% 

and 3.00%. These values are the same as those used in the evaluation of the SDOF 

programs using input spectral data and are based on the initial analysis of Building X. 

The time step value used was 0.12 s which is the same as the sampling rate used to 

collect the full-scale data and is well below the maximum time step value recommend 

by Chopra (1.84 s for a building with a natural frequency of 0.30 Hz). The input force, 

p(t) is a time history of white noise. A sample of the forcing data is shown in Figure 5.8. 

Figure 5.9 shows a sample of the response of the building generated using Newmark's 

method. As in the test for the input spectral data, the block size N was varied for this 

test between 2048, 4096, and 8192. The number of blocks was kept constant at 100. 

The results generated by the ML program are given in Figures 5.10 and 5.11. 

Figure 5.10 shows the percent errors in the fo estimates for the tested true dynamic 

property values and the three block sizes. Figure 5.11 shows the percent errors in 
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the ( estimates for the tested true dynamic property values and the three block sizes. 

Equivalent plots for the results generated by the LS program are given in Figures 5.12 

and 5.13. 

a 100 200 300 400 500 600 700 800 900 1000 
Time (5) 

Figure 5.8: Input Force for Generation of Time History Response 

J 
1\ 

a 100 200 300 400 500 600 700 800 900 1000 
Time (s) 

Figure 5.9: Response Time History Generated Using Newmark's Method 

The results generated by the ML program show that, in general, the accuracy of 

the estimated ( value increases as N increases. This is the expected result and this trend 
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Figure ~.10: Percent Error in fo Estimates Generated by the ML Program using Time­
History Input 

was also illustrated by the ML program tested on spectral input data. There are two 

cases in which this pattern is not evident; these are when fo is equal to 0.25 Hz and ( is 

equal to 2.50 % and 3.00 %. These cases are anomolies and do not follow the expected 

pattern because of the distortion of the peak that occurs when the continuous reponse 

spectrum is represented by a discrete number of points. Figure 5.14 shows the response' 

spectrum for a time history with fo equal to 0.25 Hz, ( equal to 2.50%, and N equal 

to 2048. In this figure, the response spectrum is fit to a frequency response function 

with fo and ( also equal to 0.25 Hz and 2.50%. Figure 5.15 shows the same frequency 

response spectrum fit to a frequency response function with fo and ( values equal to 

the estimates generated by the ML program, 0.2498 Hz and 2.65%. From Figure 5.14 is 

is clear that the frequency response function has a higher peak value than the response 

spectrum. Thus in order to produce a good fit the ML program overestimates the 

damping in the frequency response function to lower its peak. Figures 5.16 and 5.17 

show plots similar to those given in Figures 5.14 and 5.15 except in these plots the block 
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Figure 5.11: Percent Error in ( Estimates Generated by the ML Program using Time­
Jiistory Input 

size is 4096. From Figure 5.16 it is evident that the peak of the frequency response 

function with fo and ( equal to 0.25 Hz and 2.50%, respectively, is higher than the 

response spectrum. Again the ML program overestimates the damping in order to 

decrease the amplitude of the response function's peak. The damping for the case 

where the block size is equal to 4096 is overestimated more than that when the block 

size is equal to 2048 because of the way in which the function is resolved by the discrete 

number of points. From Figure 5.14 it is evident that the peak is essentially cut off by 

the poor resolution when N is equal to 2048; thus, the amplitude of the peak of the 

frequency response function is lower for this case than for N is equal to 4096 and the 

damping does not need to be as large to fit the function to the response spectrum. 

The results show that the accuracy of the estimated ( value decreases with 

decreasing damping. This result is expected due to the narrow peak associated with 

low damping. This result was also illustrated by the ML program tested on spectral 

input data and is discussed in Section 5.3.1. The numerical method used in this study 
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Figure 5.12: Percent Error in fo Estimates Generated by the LS Program using Time­
History Input 

does not produce amplitude decay which wo:uld be manifested as additional damping. 

The fo estimates are all lower than the true fo values. This is an expected result as 

the numerical method required to produce the time history data introduces a period 

elongation error into the data. Using the linear acceleration method with natural 

frequencies between 0.2 and 0.3 Hz the period elongation is expected to be less than 

0.75%. The percentage error in the fa estimates corresponds to errors in the third 

decimal place of the fo estimate and thus the discrepencies between fo estimates are 

not considered. The accuracy of the estimates generated using the time domain data is 

lower than that generated using the spectral data. This result is expected due both to 

numerical errors mentioned above and errors introduced by the transformation of the 

data from the time domain to the frequency domain. 

The results generated by the LS program are very similar to those generated by 

the ML program. Unlike the spectral input case, the LS program does not generate 

zero error when the input is in the time domain. The error in the damping estimates 

83 



M.A.Sc. Thesis - Julia M. Lewis McMaster - Civil Engineering 

40.00,----------,------,----------------, 

CfJ 
Q) 

35.00 

~ 30.00 

~ 
ill 25.00 

"-" 
.~ 20.00 
..... e 
W 15.00 
C 
Q) 

2 10.00 
Q) 

a.. 
5.00 

0.00 ~ 
fo (Hz) 0.20 
t; (%) 2.00 

0.25 
2.00 

0.27 
2.00 

1 
0.30 
2.00 

!'. 

0.25 0.25 
1.00 1.50 

-
0.25 
2.00 

0.25 0.25 
2.50 3.00 

ON = 2048 
ON = 4096 
.N = 8192 

Figure 5.13: Percent Error in (, Estimates Generated by the LS Program using Time­
History Input 

is larger than the error in the frequency estimates. This is because the value of the 

function being minimized changes more rapidly with respect to frequency than it does 

with respect to damping. This is shown in Figure 5.18. The percent errors in the ( 

estimates generated by the LS program are, on average, larger than those generated 

by the ML program by approximately 2.5 %. The fo estimates generated by the LS 

program are, on average, as accurate as those generated by the ML program. 

The errors generated by the ML and LS methods were compared to errors gen-

erated by the HPBW method and the random decrement technique (RDT). The RDT 

was discussed in Section 4.3 and the RDT program used in this test was developed 

at the Boundary Layer Wind Tunnel at the University of Western Ontario (Morrish, 

2009). The maximum fo and ( errors generated by each program are given in Table 5.2. 

This table shows the the ML and LS programs are able to estimate both the fo value 

and the ( value with mote accuracy than the HPBW. The RDT produced the most 

accllrate (estimates. However, the RDT method cannot accurately analyze 2DOF 
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Figure 5.14: Response Spectrum with fa, (, and N Equal to 0.25 Hz, 2.50%, and 2048 
Respectively, fit to a Frequency Response Function with fa and ( Equal to 0.25 Hz and 
2.50% Respsectively 
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Figure 5.15: Response Spectrum with fa, (, and N Equal to 0.25 Hz, 2.50%, and 2048 
Respectively, fit to a Frequency Response Function with Estimated fa and ( Values 
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Figure 5.16: Response Spectrum with fa, (, and N Equal to 0.25 Hz, 2.50%, and 4096 
Respectively, fit to a Frequency Response Function with fa and ( Equal to 0.25 Hz and 
2.50% Respsectively 
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Figure 5.17: Response Spectrum with fa, (, and N Equal to 0.25 Hz, 2.50%, and 4096 
Respectively, fit to a Frequency Response FUnction with Estimated fa and ( Values 
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data as discussed below. 

Table 5.2: Maximum Errors in Dynamic Property Estimates generated by Various 
Methods 

Method Ja Error (%) ( Error (%) 
ML 0.41 32.64 
LS 0.30 26.09 

HPBW 0.92 68.85 
RDT 0.52 13.33 

The maximum error generated in the fa estimate by either method is 0.41% 

(generated by the ML program for N is equal to 8192 and true fa and ( values of 

0.27 Hz and 2.00% respectively). As discussed in Section 5.3.1 the accuracy of the fa 

estimate is important for the purpose of tuning a structure-absorber system in order 

to maximize the effective damping. Using the values for an optimally tuned 2DOF 
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structure-TLD system defined in Table 5.1, a 0.41 % error in the estimate of the natural 

frequency of the structure would result in a relative decrease of 0.05% of the optimal 

effective damping generated by the TLDs if the estimated natural frequency value was 

used to tune the TLDs. 

The effect of the number of blocks used to estimate the dynamic properties was 

also examined. Figure 5.19 shows the percent errors in the ( estimates for various 

block sizes ranging from 10 to 200. The block size, N, is held constant at 4096 and the 

estimates are based on a response history with true fo and ( values of 0.2500 Hz and 

2.00% respectively. The plot shows that as the number of blocks increases, the accuracy 

increases. This is the expected result, as increasing the number of blocks decreases the 

variance error discussed in Section 4.2.2. The fo estimates did not exhibit this trend. 

However, the errors in the- fo were, in all cases, less than 0.40 %. 
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Figure 5.19: Percent Error in ( Estimates for Various Block Sizes 
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The 2DOF programs developed in this study were also tested on time history 

data with known dynamic properties. The time history data was written using New­

mark's method for coupled multi-degree-of-freedom systems (Chopra, 2007). In this test 

the known dynamic property values are set such that the system is optimally tuned. 

The property values are given in Table 5.1. The white noise force, p(t) is applied to 

the str'ucture and is shown in Figure 5.8. The time step is set to be 0.12 s, the block 

size N is set at 4096, and the number of blocks used is set at 100. The accuracies of 

the estimates generated by the programs are given in Figures 5.20 to 5.23. Figure 5.20 

shows the accuracies of the dynamic property estimates generated by the ML program 

with respect to the accuracies of the initial frequency estimates. In Figure 5.20(a) the 

initial fa, (s, and (a estimates are kept constant at the true dynamic property values, 

while the value of the initial is estimate is varied from -20% to 20% of the true is value. 

In Figure 5.20(b) the values of fs; (a, and (s are kept constant while the value of fa is 

varied. Figure 5.21 shows the accuracies of the dynamic property estimates generated 

by the ML program with respect to the accuracies of the initial damping estimates. 

In Figure 5.21(a) the initial (s estimate is varied and in Figure 5.21(b) the initial (a 

estimate is varied. Figures 5.22 and 5.23 show equivalent plots generated by the LS 

program. 

Figures 5.20 and 5.22 show that the fs, fa, and (a estimates are within ±0.50% 

of their true values when the initial frequency estimate being varied is within a certain 

range of its true value. In Figure 5.20(a) is, f:, and (a are within ±0.50% of their 

true values when the initial fs estimate is within -4% to 6% of its true value and in 

Figure 5.20(b) is, fa, and (a are within ±0.50% of their true values when the initial 

fa estimate is within -9% to 8% of its true value. In the equivalent plots generated by 

the LS method, Figures 5.22(a) and 5.22(b), fs, fa, and (a are within ±0.50% of their 

true values when the inital fs and fa estimates are within -8% to 3% and ±4% of their 
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respective true values. The (s estimates are approximately 18% less than the true (s 

value when generated by the ML method and approximately 21% less than the true (s 

value when generated by the LS method over the ranges. listed above. The reason the 

(s estimate is less accurate than the other dynamic property estimates is that its value 

does not greatly affect the frequncy response function. A 21% decrease in (s increases 

the variance of the response by only 2.6% and the effect on the shape of the frequency 

response function is less pronounced than the effect on the variance. 

Since the frequency estimates are all within ±0.50% of their true values when 

the intial estimates are within a given range, the ML and LS programs are well-suited 

for determining the dynamic properties of a structure-absorber system for the purpose 

of adjusting the absorber(s) in order to enhance performance. Although the (s esti­

mate is less accurate than the frequency estimates, the impact of the (s estimate on 

the effective damping is less pronounced than that of the frequency estimates. There 

are two reasons for this. Firstly, the effective damping changes Inore rapidly with re­

spect to the tuning ratio than it does with respect to the structural damping. This 

is illustrated in Figure 5.24 which shows a contour plot of the relative percent change 

in effective damping generated by a structure-TLD system with respect to changes in 

the structural frequency and structural damping. Secondly, the structural damping 

does not impact adjustments made to the absorbers. The process used for the design 

of absorbers is discussed in Section 5.3.1 and the process of adjusting TLDs to enhance 

their performance is discussed in Section 3.3. If the is estimate used to tune the TLDs 

in this study was 0.50% less than its true value, this mistuning would result in a rel­

ative decrease in the true effective damping would by 0.08%. Conversely, if the zetas 

estimate was inaccurate, it would not affect the true effective damping value because 

it would not be used to tune the TLDs. 

The ML and LS programs are advantageous because they can capture the 2DOF 
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response of a structure-TLD system. TIle data generated in these tests was also ana-

lyzed using the HPBW method and the RDT in order to show the advantage of the 

ML and LS methods over the HPBW method and RDT. These methods are not de-

signed to be used on2DOF data and thus were only able to prodl~ce one estimate of 

natural frequency and one estimate of damping. The HPBW method produced fa and 

( estimates of 0.2543 Hz and 11.97% respectively. The fa estimate generated by the 

HPBW method is an estimate of the frequncy that corresponds to the higher resonant 

peak (fa in this case). The natural frequency estimate is 6.10% lower than the true 

fa. The ( estimate generated by the HPBW method is, in this case, larger than both 

the (a and (8 values and the effective damping ratio because both resonant peaks are 

included in the estimate. The damping ratio estimate is 26.82% higher than the true 

(a value, 146.20% higher than the true (8 value, and 76.44% higher than the effective 

damping ratio value. The RDT produced fa and ( estimates of 0.2533 Hz and 4.66% 

i respectively. The fa estimate produced by the RDT is an estimate of the natural fre-
I 

--! 
quency associated with the higher resonant peak. The natural frequency estimate is 

6.49% lower than the true fa value. The ( estimate generated by the RDT is between 

the (a and (8 values since it is based on the decay curve of bOoth resonant responses. 

The damping ratio estimate is 13.79% lower than the effective damping ratio value. 

Since the HPBW method and RDT are not able to generate estimates for both reso-

nant peaks the ML and LS programs are clearly more useful in estimating the dynamic 

properties of a 2DOF system. 

91 



M.A.Sc. Thesis - Julia M. Lewis McMaster - Civil Engineering 

20 
u C/) 
.- (J) 

~ 10 10 
c E >..--Ow 
c· (J) 0 
.- >. 
.... t:::: e (J) 

Q; 0..-10 e 
"Cf2.0.. 

-20 

-20 

20 
u C/) 
.- (J) 

~ 10 10 
c E >..--Ow 
c (J) 0 
.- >. 
.... t:: e (J) 

Q; 0..-10 e 
"Cf2.0.. 

-20 

first natural frequency 
·····'second natural frequency 

first damping ratio 
-second damping ratio' 

, ............................. J 'J 'I············,··········· .... · 
! I Ii i 

l' 
' , 

I 1; i , , 
:: 

\ 
Ii I :: ~ ; 1 

n j il I 
:t " : 
i! I I! 

j I' 
: i I I lLJ 

-10 0 10 
% difference between first natural 
frequency and its initial estimate 

(a) Various Initialfs 

first natural frequency 

20 

· .... 'second natural frequency 
first damping ratio 

-second damping ratio 
" ..............•... , ..... ../ 
i 

\ I 
I ! 
) i , 
i I f , 
i i ........................................ I I , I t 

-20 -10 0 10 20 
% difference between second natural 

frequency and its initial estimate 

(b) Various Initial fa 

Figure 5.20: Accuracy of Dynamic Property Estimates for Various Initial Frequency 
Estimates Generated by the ML Method 
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Figure 5.21: Accuracy of Dynamic Property Estimates for Various Initial Damping 
Estimates Generated by the ML Method 

93 



I 
-j 

M.A.Sc. Thesis - Julia M. Lewis McMaster - Civil Engineering 

p 

20 : 
:1 
ti 
Ii 

U (j) :I 
'E 2 II 
co co 10 Ii 
c E ~ >..-. 

. first natural frequency 
·····'second natural frequency 

first damping ratio 
-_. second damping ratio 

-0 1/) j~ 

. ~p- ~ 0 :.:n::,. .:·.t.~I, 
: ~ 10 " i I ~ ! 

", ................................ .1 ." ..... \ .......................... .1 

; ~ :20 .Ii l,;.: 11 !,:.: \ i,1 \ \ Ii 
I f! 'I: n •••••••• ; I: i; i •••• ! 

~L'~ _,_i--"-----I'---___ --"--__ L __ ._--'----____ ".------'l 

-20 -10 0 10 20 

20 
U (j) 
.- (i) 

~ ro 10 
c E >..­
-o1/) 
c (i) 0 
. - >. 
.... t e (i) 

Q; 0..-10 e 
"2f2.0.. 

-20 

% difference between first natural 
frequency and its initial estimate 

(a) Various Initial is 

first natural frequency 
...... second natural frequency 

first damping ratio 
-second damping ratio / 

i 

I 
I •• j ••••••••• -••• -••••••••• 

........................................ ! I 
I I 

-20 -10 0 10 20 
% difference between second natural 

frequency and its initial estimate 

(b) Various Initial ia 

Figure 5.22: Accuracy of Dynamic Property Estimates for Various Initial Frequency 
Estimates Generated by the LS Method 
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Figure 5.23: Accuracy of Dynamic Property Estimates for Various Initial Damping 
Estimates Generated by the LS Method 
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Figure 5.24: Contour Plot of Relative Percent Change in Effective Damping for Various 
is and (s Estimates 

5.4 Discussion of Tested Methods 

In Section 5.3 the ML and LS programs were tested on spectral data and time-history 

data with no noise. The results generated by the ML and LS programs were compared 

to those generated by the HPBW and RDT programs. For spectral SDOF data, it 

was found that the ML and LS programs had lower maximum errors than the HPBW 

method. The HPBW method generated maximum errors of 0.72% and 57.14% for the 

natural frequency and damping ratio estimates respectively. The errors in the estimates 

gep.erated by the ML program were only 0.19% and 20.63% for the natural frequency 

and damping ratio respectively. The LS program generated perfectly accurate estimates 

of the dynamic properties for all SDOF spectral input cases. For the spectral 2DOF 
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data, the ML and LS programs again generated better estimates than the HPBW 

program. The ML and LS programs estimated the correct dynamic property values 

within ±1% when the initial estimates were close to the true dynamic property values. 

The ranges of initial estimates that cause the dynamic property value estimates to be· 

within ±1% are discussed in Section 5.3.1. The HPBW method generated errors of 

6.10% and 30.5% for the absorber natural frequency and damping ratio respectively. 

The HPBW method is also only able to generate one estimate for natural frequency 

and one estimate for damping ratio since it is not suited to estimating the dynamic 

properties of a 2DOF system. Thus the ML and LS programs are clearly superior to 

the HPBW method for 2DOF systems as they are able to generate estimated dynamic 

property values for both masses of a 2DOF system. For the SDOF time history data 

with no noise the LS method generated the smallest maximum error for the natural 

frequency estimate for all tested cases. The ML had the second-smallest error for the 

natural frequency estimate followed by the RDT and the HPBW method (see Table 5.2). 

The RDT had the smallest error for the damping ratio estimate followed by the LS 

method, the ML method and finally the HPB,i\T method. Although the RDT was able 

to estimate the damping ratio with more accuracy than the ML and LS method for a 

SDOF system, the RDT can not be used to estimate the dynamic properties of a 2DOF 

system. For the 2DOF time history data with no noise the ML and LS programs were 

able to estimate the is, ia, and (a values within ±0.50% of their true values when the 

initial estimates were within the ranges discussed in Section 5.3.2. The (s estimates 

were approximately 18% less and 21% less than the true (s value when generated by 

the ML and LS programs respectively. Although these error may seem large, the (s 

estimate is not used in the adjustment of the absorbers to enhance their performance 

so these errors will have a negligible effect on the efficacy of the absorbers. This was 

discussed further in Sections 5.3.1 and 5.3.2. The errors generated by the HPBW 
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method were 6.10% and 26.82% for the absorber natural frequency and damping ratio 

respectively. The errors generated by the RDT were 6.49% and 13.79% for the absorber 

natural frequency and effective damping ratio respectively. Thus the errors generated 

by the ML and LS programs are smaller than those generated by the HPBW method 

and RDT for most cases. The only exception is that the RDT generates a smaller 

error for the effective damping estimate than the ML and LS programs generate for 

the structural damping estimate (the RDT is not able to generate an estimate of the 

structural damping for a more direct comparison). The ML and LS programs main 

advantage is that they are able to capture the 2DOF behaviour which the HPBW 

method and RDT are not. 

The results show that the ML and LS programs are well-suited for determining 

the dynamic properties of a 2DOF structure-absorber system so that adjustments can 

be made to the absorbers in order to enhance their performance. Tuning of absorbers to 

a structure's natural frequency is important if the effective damping is to be maximized. 

This is shown in Figure 5.24. The ML and LS programs were able to accurately estimate 

the natural frequencies of the structure and TLDs within 0.50% of their true values 

when the initial fs estimates were between -4% and 6% and -8 and 3% of their true 

values for the ML and LS programs respectively and when the initial fa estimates 

were between -9% and 8% and ± 4% of their true values for the ML and LS programs 

respectively. If frequency estimates within 0.50% of their true values are used to tune 

the TLDs the effective damping will be within 0.08% of its optimal value. 
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Chapter 6 

Full-Scale Monitoring of a 187 m 

Building 

In this chapter the results from the full-scale monitoring of Building X are presented. 

Section 6.1 discusses how the data was separated and the method employed to select 

the block lengths and number of blocks. Section 6.2 presents the results from the initial 

analysis of Building X and Section 6.3 presents the results obtained from Building X 

after the TLDs were adjusted to enhance their performance. 

6.1 Methods Used to Sort Full-Scale Data 

The full-scale data was collected in segments of 16384 data points or approximately 32 

minutes and 46 seconds. Each of these segments is a time history of consecutive data 

points and is identified by the date and time at which it was collected. In order to create 

time-histories that represent stationary data, the standard deviation of each segment of 

data was determined and the data segments were ordered according to their standard 

deviation. The data, ordered according to standard deviation, was then separated into 

segments each containing 409600 data points. This was done so that each segment of 
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data could contain 100 blocks of length N = 4096. This ensures that the bias error is 

less than or equal to 2% (see Section 4.2.1) and the variance error is equal to ·10% (see 

Section 4.2.2). Only segments that agreed with Equation 4.18 were used in order to 

ensure that the data could be treated as stationary. 

6.2 Results from Initial Analysis of Acceleration 

Data 

Prior to the adjustment of the TLDs, Building X was acting as a SDOF system as 

discussed in Section 3.5. The acceleration data obtained from Building X before the 

TLDs were adjusted was separated as outlined in Section 6.1 and analyzed using SDOF 

methods. The fa estimates, normalized by the predicted natural frequency, fp, and 

generated for various time-history segments are presented in Table 6.1. The normalized 

variance for each time-history is also reported. The variances are normalized by the 

maximum variance. Table 6.2 presents the ( estimates, normalized by the predicted 

damping ratio, (p. 

Table 6.1: Normalized fa Estimates from Initial Analysis of Acceleration Data 

Normalized Variance fa Estimate, Normalized by fp 
of Segme:q.t ML LS HPBW RDT 

0.2636 1.0019 1.0122 1.0096 1.0119 
0.3482 1.0296 1.0289 1.0300 1.0289 
0.6518 1.0148 1.0133 1.0170 1.0119 
1.0000 1.0100 1.0089 1.0096 1.0119 

Table 6.1 shows that there is very little variability within the natural frequency 

estimates both between methods and between data sets. 

Table 6.2 shows a tendency for the damping estimates to increase with increasing 

variance for the ML, HPBW, and RDT methods. The linear regression R2 values for 
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Table 6.2: Normalized ( Estimates from Initial Analysis of Acceleration Data 

Normalized Variance ( Estimate, Normalized by (p 
of Segment ML LS HPBW RDT 

0.2636 1.42 1.08 1.09 0.75 
0.3482 1.55 0.89 1.10 0.70 
0.6518 0.90 1.09 1.28 0.95 
1.0000 1.22 1.22 1.64 1.03 

these methods are 0.4672, 0.9650, and 0.8959, respectively. It is expected that damping 

should increase with increased variance as discussed in Section 3.2. This trend may not 

be evident in the estimates produced by the LS method because of the limited number 

of data sets available. The RDT generated the lowest damping estimates. ThIs was 

an expected result because the spectral methods have a tendency to overestimate the 

damping estimates as discussed in Section 4.2.1. 

6.3 Results from Analysis of Acceleration Data af-

ter Adjustment of TLDs 

In order to enhance the performance of the TLDs water was added to the tanks to 

increase their natural frequency. This increase in water depth was expected to increase 

the effective damping; however, the increase in damping was not expected to be great 

enough to cause the response spectra to exhibit the distinctive coupled-2DOF response 

of an optimally tuned system. Instead the added damping was expected to appear as 

an increase in the effective damping of a SDOF response. Thus the data was analyzed 

using the SDOF LS and ML programs. The data was also analyzed using the HPBW 

method and RDT for comparison. 

The data was sorted using the methods outlined in Section 6.1. Due to setbacks 

involving the acquisition of full-scale data, a limited amount of data was obtained from 
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the system after the adjustments of the TLDs. Thus Equation 4.18 was not able to 

be satisfied for the majority of the data. Nevertheless, the result from the data are 

presented below in order that a comparison of the data before and after the adjustment 

of the TLDs can be made. The fa estimates, normalized by fp, and generated for 

various time-history segments are presented in Table 6.3. The variance for each time-

history is also reported. The variances are normalized by the same maximum variance 

used for Tables 6.1 and 6.2. 

Table 6.3: Normalized fa Estimates from Analysis of Acceleration Data after Adjust­
ment of TLDs 

Normalized Variance fa Estimate, Normalized by fp 
of Segment ML LS HPBW RDT 

0.1609 1.0315 1.0315 1.0322 1.0330 
0.1752 1.0281 1.0278 1.0248 1.0289 
0.4630 1.0222 1.0219 1.0248 1.0289 
0.7553 1.0248 1.0252 1.0248 1.0289 

The average natural frequency estimate over all methods and all data sets is 

approximately 1% higher than the natural frequency estimate obtained before the ad-

justment of the TLDs. This difference is statistically significant as the two-sided p-value 

is 0.76%. The difference may be due to the fact that adding water to the TLDs increased 

their natural frequency which may have a tendancy to shift the natural frequency of 

the overall system slightly up. 

Table 6.4: Normalized (Estimates from Analysis of Acceleration Data after Adjustment 
of TLDs 

Normalized Variance ( Estimate, Normalized by (p 
of Segment ML LS HPBW RDT 

0.1609 1.58 1.15 0.88 0.58 
0.1752 1.25 0.91 1.16 0.63 
0.4630 0.89 0.91 0.97 0.72 
0.7553 0.95 1.02 1.36 0.67 

The average damping ratio estimate over all methods and data sets is 0.14% 

102 



M.A.Sc. Thesis - Julia M. Lewis McMaster - Civil Engineering 

lower tlian that obtained before the adjustment of the TLDs. However this result is 

not statistically significant as the two-sided p-value is 20.60%. It is expected that the 

damping ratio for the system has actually increase due to the adjustment of the TLDs. 

More data is required to see if this has occured. 

The results obtained from the ML and LS programs show good agreement with 

the results obtained from the HPBW and RDT programs. The damping ratio estimated 

from the RDT is lower than that estimated from the other methods. This is the 

expected result as the spectral methods have a tendency to· overestimate the damping 

as discussed in Section 4.2.1. 
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Chapter 7 

Conclusions 

7.1 Maximum Likelihood and Least Squares Meth­

ods 

Two MATLAB (2009) programs were developed in order to estimate the dynamic prop­

erties of a structural system using the maximum likelihood and least squares methods. 

Versions of these programs were developed to be used on both SDOF and coupled-2DOF 

systems. The programs were designed to isolate the resonant peak(s) of a system so 

that the noise along the rest of the spectrum would not erode the accuracy of the esti­

mates. The SDOF programs determine the initial estimates needed for the optimization 

problem automatically using the half-power bandwidth method. The 2DOF programs 

require user input for the initial estimates; however the user is aided in estimating 

the natural frequencies of the system by a plot of the response spectrum generated 

automatically by the programs. 

The programs were verified using several different methods. First, the programs 

were tested using spectral data with known dynamic properties. Second, the programs 

were tested using time-history data. As expected the results generated by the programs 
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analyzing spectral data were more accurate than those generated by programs analyzing 

time-history data. The programs were also tested using different spectral block sizes 

and number of blocks. As expected, the accuracy of the estimates tended to increase 

with increased number and size of blocks. 

The results generated by the ML and LS programs were compared to those gen­

erated by the HPBW method and RDT to further validate their accuracy. The results 

showed that the ML and LS programs produced quite good results when compared 

to the HPBW method and RDT. The errors produced by the ML and LS programs 

were smaller than the errors produced by the HPBW method and RDT in most cases 

tested. The exception to this is that the RDT produced smaller errors for the damping 

estimates than the ML and LS programs for time-history data. However, the largest 

advantage of the ML and LS methods is that they can be used to determine dynamic 

property values for two distinct masses in a 2DOF system which the HPBW method 

and RDT can not. 

This study was limited in that only sample data with certain dynamic property 

values was tested. In the case of the SDOFdata, data sets with four distinct natural 

frequencies, and five distinct damping ratios were tested. The natural frequencies 

ranged from 0.20 Hz to 0.30 Hz and the damping ratios ranged from 1.00% to 3.00%. For 

the 2DOF data only one set of dynamic properties was tested. These dynamic properties 

represent an optimally tuned structure-TLD system and are given in Table S.1. The 

data was tested using block sizes of 2048, 4096, and 8192 and number of blocks of 10, 

20, SO, 100, and 200. A number of assumptions were made in the development of the 

MATLAB (2009) programs and these are discussed in Section 7.3. 
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7.2 Results of Full-Scale Analysis 

The data obtained from the full-scale monitoring of a structure equipped with TLDs 

(known as Building X) was analyzed using the ML and LS programs developed in this 

study as well as the HPBW method and RDT. The results suggest that the normalized 

natural frequency and normalized damping ratio of Building X were originally 1.0163 

and 1.1200 respectively. The TLDs of the tested building were then adjusted in order 

to enhance their performce. After the adjustment of the TLDs the analysis suggests 

that the normalized natural frequency and normalized damping ratio of Building X 

are 1.0275 and 0.9800 respectively. Full results from the analysis are presented in 

Chapter 6. The results show good agreement between the estimates generated by the 

different methods. 

The ML and LSprograms were developed for the purpose of analyzing the 

coupled-2DOF behaviour ofa structure-TLD system. However, because the TLDs 

were not optimally tuned the actual data obtained from Building X did not display 

2DOF behaviour, but instead was similar to the data that would be obtained from a 

SDOF system. As a result, the 2DOF ML and LS programs that were developed in 

this study were not able to be tested on full-scale data. However, the 2DOF programs 

were verified and could be used on 2DOF systems in the future. 

The behaviour of a structure-TLD system is nonlinear, yet the methods devel­

oped in this study are based on a linear system. In order to justify analyzing the 

nonlinear system as a linear system, it is important that the analyzed data is station- . 

ary. The analyzed data was manipulated using selective ensemble averaging in order to 

force stationarity. The selective ensemble averaging used is discussed in Section 4.2.3 

and Chapter 6. 
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7.3 Recommendations for Future Work 

Several assumptions were made in the development of the MAT LAB (2009) programs 

regarding the most accurate way of estimating the dynamic properties of a system. The 

validity of these assumptions should be tested by performing a sensitivity analysis on 

several factors. These factors include: 

1. The frequency limits used to define the resonant peak(s). For the SDOF pro­

grams the lower frequency limit of the resonant peak was defined to begin at the 

frequency value corresponding to the first discrete frequency response function 

value that was greater than one. The frequency response function was assumed 

to be symmetric so that the upper frequency response function could be estimated 

according to Equation 5.10. These values for the upper and lower frequency limits 

were based on the recommendations made by Montpellier (1997). The resonant 

peak could also be defined so that a certain percentage of the total area under the 

response spectrum was contained between the upper and lower frequency limits. 

This was the method chosen for the 2DOF programs. The effect of altering the 

method for determining the lower and upper frequency limits should be examined. 

2. The MATLAB (2009) solver method used to solve the minimization problem. The 

MATLAB (2009) programs use the interior-point algorithm to solve the minimiza­

tion problems in both the maximum likelihood and least squares methods. MAT­

LAB (2009) has other solver methods available such as the active-set method. 

The effect of altering the solver m~thod should be examined. 

3. The SDOF programs use the HPBW method to determine the initial estimates 

of the dynamic properties. Other methods to determine these initial estimates 

could also be employed such as the method developed by Thompson and Tree 

(1980). The effect of altering the method used to determine the initial estimates 
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of the dynamic properties should be examined. 

4. The MAT LAB (2009) programs transform data from the time domain to the fre­

quency domain using Fast Fourier transforms windowed by the Hamming window. 

The effect of using another window in the transformation could be examined. 

In this study the natural frequency of the tested building (Building X) was 

originally found to be greater than the predicted natural frequency. Since the TLDs 

had been tuned to the building's predicted natural frequency they were not operating 

at their optimal level. In order to improve their performance, water was added to 

the TLDs. However, after water was added to the TLDs it was found that there was 

no statistically significant change in the estimated effective damping. More data is 

required to determine the effect of the adjustment to the TLDs. 
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