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Abstract

In the Heisenberg Lie group with the Carnot-Caratheodory metric, we classify geodesic
triangles up to isometry in terms of side-length and geodesic parameters. We ob­
tain an angle deficit formula for Heisenberg triangles. We construct classical moduli
spaces T and 8 3\T for ordered and for unordered Heisenberg triangles respectively,
computing homotopy type and manifold properties of the spaces, and producing a
compactification of T up to similarity under the non-isotropic dilation.
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M.Sc. Thesis - Christopher Cappadocia

0.1 Introduction

McMaster - Mathematics and Statistics

Both spherical and hyperbolic trigonometry admit close analogues of the Eu­
clidean laws of sines and cosines, as well as geometric interpretations of the sum of
the angles in a triangle. These three classical settings for trigonometry - the plane,
the sphere, and the hyperbolic disk - are 2-dimensional surfaces with a high degree
of symmetryl.

The Heisenberg group JHI is not a surface but a 3-dimensional manifold, in fact a
Lie group. Nevertheless the 2-step nilpotent group structure of JHI distinguishes two of
the three dimensions by way of the horizontal distribution 11.. The sub-Riemannian
geometry that results is intimately connected with the Carnot-Caratheodory distance
on JHI and produces a space with a great deal of symmetry.

Thus it is natural to ask what form trigonometry might take in the Heisenberg
group. Such an investigation is aided greatly by the fact that there is already a
complete explicit description of geodesics in JHI.

This thesis proceeds in two directions: one, we attempt trigonometry in the
Heisenberg group; and two, we describe the space of all triangles in the Heisenberg
group, in which each point of the space corresponds to a unique isometry class of
triangles. When we construct such a space we obtain an example of a moduli space2

.

Chapter 1 describes the construction of the moduli space for Euclidean triangles.
It is hoped that the discussion of the Euclidean case will motivate by analogy the
constructions for the Heisenberg case.

Chapter 2 provides the necessary background material. We cover the horizontal
distribution 11. and the induced sub-Riemannian geometry on the Heisenberg group.
The main purpose of the chapter is to record in full detail the complete classification
of geodesics in JHI.

Chapter 3 presents our efforts towards trigonometry. In particular, we obtain

1Each is homogeneous and isotropic; in words, the geometry is the same at every point and the
same in all directions.

2To be precise, for ordered triangles we obtain a fine moduli space, and for unordered triangles
we obtain a coarse moduli space.

1



M.Sc. Thesis - Christopher Gappadocia McMaster - Mathematics and Statistics

a formula relating the angle deficit of a Heisenberg triangle to the total curvature
around the triangle. Also, we obtain a trigonometric identity that is in some ways
analogous to a law of sines.

Chapter 4 constructs the moduli space of Heisenberg triangles. We show that
the moduli space is a 5-dimensional smooth manifold with the homotopy type of
a thrice-punctured sphere. The moduli space embeds naturally in JR6

, and in this
context we describe its boundary. There is a notion of similar triangles provided by
the non-isotropic dilation of the Heisenberg group. When we take this action into
account on the moduli space and add in the boundary, we obtain a compactification
of the moduli space of Heisenberg triangles.

2



Chapter 1

The moduli space of Euclidean
triangles

1.1 Triangles in the plane

In the plane IR2
, three distinct and non-colinear points determine a unique triangle.

To describe all possible triangles in the plane, we begin with the set

T := IR2
X IR2

X IR2
- 1:;,

where 1:; C IR2 X IR2 X IR2 is the set of triples (A, B, C) such that the points A, B, Care
colinear. Note that if two p~nts from the triple (A, B, C) coincide, then necessarily
A, B, Care colinear. Thus T is the set of all ordered triples of distinct, non-colinear
points in IR2

.

Proposition 1.1.1. The set T C IR6 is open.

Proof. Notice that 1:; can be characterized by the condition

1:; = {(A, B, C) E IR6
: (B - A) x (C - A) = a}

where x denotes the cross product. Thus 1:; is closed, so that T = IR6
- 1:; is open. D

3
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The space T can be viewed as a~'configuration space" for the set of all Euclidea~
triangles, in which each point in T corresponds to a unique triangle. However T
has two conceptual drawbacks: (1) it describes triangles with a definite location,
and thus distinguishes between congruent triangles, unless they coincide; (2) it de­
scribes ordered triangles, and thus distinguishes, for example, between the triangles
corresponding to the triples (A, B, 0) and (B, 0, A).

To remedy (1), we introduce on T an action of the group JR2 )<l 0(2) of isometries
of the plane. Taking the quotient space of this group action will have the effect of
identifying congruent ordered triangles. To remedy (2), we introduce an action of the
symmetric group 8 3 on the quotient space obtained in the previous step. This will
have the effect of ignoring the ordering imposed on the vertices of our triangles.

In the process of applying these two group actions to T, we will see that the
space obtained is naturally identified with an alternative way to characterize the
"configuration space" of Euclidean triangles, which we now describe. In this view,
we think of a triangle as being completely determined by the lengths of its three
sides. This approach implicitly identifies congruent triangles and ignores any notion
of ordering of the sides of a triangle. To construct the space of triangles corresponding
to this view, we start with the set

T:= {(a,b,c) E JR31a+ b > c,b+c > a,c+ a > b},

an open subset of JR3.

Now T is the space of ordered side lengths a, b, c, so we introduce a group action
of 8 3 on T whereby a permutation (]" E 8 3 permutes the triple (a, b, c). When we
identify triples in the same orbit of 83 we obtain the quotient space 8 3\T which
describes unordered triangles in the plane up to isometry.

We have seen that both T c JR6 and T C JR3 are open sets. Thus T and Tare
open submanifolds of JR6 and JR3 respectively, and so inherit differentiable stn~tures

and become smooth manifolds in their own right. There is a natural map p : T ----+ T
defined by

(A,B,O) ~ (d(B,O),d(O,A),d(A,B)).
The continuity of the metric d : JR x JR ----+ JR implies the continuity of the map p. Also,
it is intuitively clear that for every triple of side lengths (a, b, c) satisfying the triangle
inequalities, there are many triples of vertices (A, B, 0) forming triangles with the
specified side lengths, so that p will be surjective. We show below how such a triangle
may be constructed.

4
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Proposition 1.1.2. The map p : T ----+ T is surjective.

-..
Proof. Place the vertex A at the origin (0,0) and the vertex B on the y-axis at (0, c).
Draw the circle of radius b centered at A, draw the circle of radius a centered at B,
and notice that the triangle inequality a +b > c ensures that the two circles intersect.

Figure 1.1: constructing a triangle with side-lengths a, b, c

There are thus two choices for the placement of the vertex C. o

We claim in~addition that p : T ----+ T is an open map, that is, the image of an
open subset of T is open in T. A clean way to see this is to write out the components

5
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In this form it is appare~ that p is a smooth map, since the expressions under each
radical are non-zero on T and hence avoid the critical point x = a of the function
x ~ ft. To see that the rank of the differential matrix Dp(A, B, C) is 3 on T, we
write p as a composition of successive maps p = q 0 r, where r : }R6 ~ }R3 is defined
by

( (XB - Xc)2 + (YB - YC)2,
(XA, YA; XB, YB; xc, YC) ~ (xc - XA)2 + (Yc - YA)2,

(XA - XB)2 + (YA - YB)2 )

and q : }R3 ~ }R3 is defined by

The differential Dr(A, B, C) is

[

0 0 2(XB - xc) 2(YB - Yc) -2(XB - xc) -2(YB - yc)]
-2(xc - XA) -2(yc - YA) 0 0 2(xc - XA) 2(yc - YA)
2(XA - XB) 2(YA - YB) -2(XA - XB) -2(YA - YB) 0 0

and the differential Dq(dl , d2 , d3 ) is

rt a
I

20]2
a

o 1a .
2~

Proposition 1.1.3. The rank of the differential matrix Dr(A, B, C) is 3 if A) B) C
are not colinear) i.e.) the rank of Dr(A, B, C) is 3 on T.

Proof. We examine the conditions in which the rows VI, V2, V3 of the 3 x 6 matrix
Dr(A, B, C) can be dependent. So assume

6
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for real scalars a, fJ, 'Y not all zero. From the six components of this vector equation
we obtain the system of equations

(i) fJ(xc - XA)
(ii) fJ(yC - YA)
(iii) a(xB - :7;c)
(iv) a(YB - YC)
(v) a(xB - xc)
(vi) a(YB - Yc)

'Y(XA - XB)
'Y(YA --'YB)
'Y(XA - XB)
'Y(YA - YB)
fJ(xc - XA)
fJ(yc - YA).

Suppose it is fJ that is non-zero. Then the fact that the points C and A differ means
that at least one of the equations (i) and (ii) has non-zero left-hand side. From this
it follows that 'Y is also non-zero. Equations (v) and (vi) likewise show that a is
non-zero. Thus a, fJ, and 'Yare all non-zero. There are now three cases. Case (1),
if any two of the x's are equal then the equations force all three of the x's to be
equal (for example, XA = XB and equations (i) and (iii) force Xc = XA and XB = Xc
respectively). Then all three y's must be distinct since the points A, B, C are distinct.
In this case A, B, Care colinear, lying on a vertical line. Case (2), similarly, if any
two of the y's are equal then in fact all three y's are equal, and all three x's must be
distinct. The points A, B, C are again colinear, this time lying on a horizontal line.
Case (3), all three x's are distinct, and all three y's are distinct. Here we can divide,
say, equation (ii) by equation (i) to get

Yc -YA ,
Xc -XA

which shows that any solution A, B, C must be colinear.

Proposition 1.1.4. The rank of Dp(A, B, C) is 3 on T.

o

Proof. The matrix

o
1

2Vd2
o 1]

is invertible on r(T) since that is precisely where none of the d/s are O. Since the
~nk of Dr(A, B, C) is 3 on T, it follows that the rank of Dp = Dq 0 Dr is also 3 on
T.

o

7
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We now appeal to a version of the Rank theorem from the study of smooth man­
ifolds. For a proof see [7].

Theorem 1.1.5. Let lvr and Nm..be smooth manifolds of dimension nand m re­
spectively, with n ~ m, and suppose the smooth map f : lvln ---7 N m has rank m at
the point p E lvI. Then there exist coordinate systems (x, U) and (y, V) around p and
f (p) respectively such that

f -1( 1 n) (1 m)yo ox a, ... ,a = a, ... ,a .

Proposition 1.1.6. The map p : T ---7 T is an open map.

Pro!!/- Given (A, B, C) E G, where GeT is open. The rank of pis 3 at all points
of T, which equals the dimension, 3, of T. By the Rank Theorem, G contains an
open neighborhood of (A, B, C) which p maps surjectively to an open neighborhood
of p(A, B, C). Therefore the image p(G) c T is open.

D

We have thus constructed the continuous, open surjection p : T ---7 T defined by

(A,B,C) f-t (d(B,C),d(C,A),d(A,B)).

Proposition 1.1.7. The points (A, B, C) and (A', B ' , C' ) E T have the same image
underp if and only if there exists an isometry 9 of]R2 such that g(A) = A', g(B) = B ' ,
and g(C) = C' .

Proof. One direction is immediate since an isometry preserves distance between points.

Suppose (A, B, C) and (A', B' ,C' ) have the same image (a, b, c) under p. We
will describe a sequence of isometries on (A, B, C) and a sequence of isometries on
(A', B' ,C' ) that bring these triangles to the same intermediate triangle. First, we
translate the triangle (A, B, C) by -A, in effect sliding A to the origin. Second, we
rotate the resulting triangle about the origin until B lies in the positive y-axis. A
thus remains fixed at the origin throughout this rotation and, since each of these
isometries preserves distance, B must end up at the point (0, c) E ]R2. The point C

8
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must end up at distance b from A = 0 and at distance a from B = (0, c). But a
circle of radius b centered at A and a circle of radius a centered at B must intersect
in precisely two points, giving two possibilities for 0, and these two possibilities are
related by a reflection in the y-axis.

In the same way we bring A' to the origin and B' to (0, c), and see that 0' can
also lie only at one of the two possible points for O. Thus (A, B, 0) and (A', B', 0')
either coincide at this stage, or differ by reflection in the y-axis.

D

Let G := Iso!?(Jl~?) = ]R2 ><l 0(2), the group of isometries of]R2. We define a group
action of G on T by

g(A,B,O) = (g(A),g(B),g(O)), for 9 E G.

By the above proposition (A, B, 0) and (A', B', 0') E T have the same image under
p if and only if they are in the same orbit under the action of G. Thus p factors to
the map

p : G\T ----* T.

Since G\T is given the identification topology, the map p re~ins continuous, open,
and surjective, and now in addition is injective, since points in T with identical images
under p have been identified. Thus the continuous bijection p is an open map, i.e., p
is a homeomorphism. Thus

G\T~T.

To remove the notion of an ordering for our triangles, we define a group action
on G\T of the symmetric group 8 3 of permutations of the set {l, 2, 3}. The action is
defined by

for (]" E 8 3 and (Vi, \12, 113) E T. It is clear that this group action is well-defined.
vVe also define a group action of 8 3 on T, where (]" E 8 3 likewise acts to permute
the triple (a, b, c) E T. The map p factors through these actions of 83 producing the

9
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commutative diagram

!

showing S3\(G\T) ~ S3\T.

The space

McMaster - Mathematics and Statistics

T

1

T := {(a, b, c) E JR.31a + b > c, b+ c > a, c+ a> b}

is an open subset of JR.3 and can be readily visualized with the help of the following
considerations. Observe that the inequalities a + b > c and b + c > a when added
together imply a+ 2b+c > a+c, or b > 0; and likewise the triangle inequalities imply
a > 0 and c > O. Thus T lies in the octant of JR.3 in which all coordinates (a, b, c) are
strictly positive.

Now T is the intersection of the three "half spaces"

T I consists of all points below the plane PI defined by a + b = c, and indeed has T I

has H as topological boundary (or frontier). Furthermore, we can view TI U PI as a
3-dimensional manifold with boundary, the manifold boundary in this case coinciding
with the frontier Pl. Likewise:

Tz consists of all points lying to one-side of the plane Pz defined by b+ c = a; Tz
has frontier Pz, and Tz U Pz is a 3-dimensional manifold with boundary Pz.

10
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Ts consists of all points lying to one-side of the plane Ps defined by c + a = b; Ts
has frontier Ps, and Ts U Ps is a 3-dimensional manifold with boundary Ps.

The planes Pi, P2, Ps intersect pairwise in lines

H n P2 : b = 0, c = a

P2 n Ps : c = 0, a = b

Ps n Pi : a = 0, b = c

and these three lines intersect at the same point (0,0,0).

Thus we can view the space

T := {(a, b, c) E jRsla + b > c, b + c > a, c + a> b}

as an open set with a boundary T - T decomposing into pieces

Pi = {(a, b, c) E jRsla + b = c; a, b, c > O}

P2 = {(a,b,c) E jRslb+c= a;a,b,c > O}

Ps = {(a,b,c) E jRslc+ a = b;a,b,c > O}

of dimension 2,

Pi n P2 = {(a, b, c) E jRSlb = 0, c = a; c, a> O}

of dimension 1, and the origin (0,0,0) of dimension O.

Recall the map p : T ----) T which sends a triangle ABC to its side lengths. The
space T was obtained as triples of vertices jR2 x jR2 X jR2 with vertices ~ C jR6 giving
degenerate triangles removed. But notice that the map p is still defined on ~.

We can decompose the degenerate triangles ~ as

11
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• 2::0 , those triangles for which all three points coincide

• 2::1, those triangles for which exactly two points coincide

• 2::2 , those triangles determined by three distinct but colinear vertices.

1.2 Moduli spaces

We now say a few words about the concept of a moduli space. The precise definition
requires the language of category theory and involves objects such as stacks and
families. But we can indicate the main ideas in a classical setting, and in particular
explain why the space T gives a fine moduli space for ordered Euclidean triangles and
why the space 33\T gives a coarse moduli space for unordered Euclidean triangles.
We follow the discussion of Fulton found in [1].

For a topological space 3, a family of unordered triangles over 3 is

(1) a topological space X and a map1 X ~ 3

(2) a metric on each fibre2 X s = p-1(S) such that X s is isometric to some
Euclidean triangle (viewed as a 2-dimensional subspace of JR2).

A family of ordered triangles must additionally include

(3) an ordered triple of sections A, B, 0 : 3 ----+ X which specify the vertices
A(s), B(s), O(s) of each fibre X s .

A morphism between families X ----+ 3 and X' ----+ 3' is a pair of continuous maps f

IThe map p must be continuous and proper, and make X ~ S into a fibre bundle.
2Each metric must vary continuously, Le., it must come from the restriction dlxsxxs of a contin­

uous map d : X Xs X ----> ~2:0, where X Xs X is the fibered product.

12



M.Sc. Thesis - Christopher Cappadocia

and 9 making the following diagram commute

McMaster - Mathematics and Statistics

X

!
8

f

~ X'

9
!

~ 8'

and such that, for each s E 8, f restricts to an isometry between the fibres X s and
X'g(s); for families of ordered triangles, a morphism must additionally respect the
sections: f(A(s)) = A(g(s)) for all s E 8, and likewise for Band C.

What makes T a fine moduli space for ordered trianglesis that there is a universal
family U. It can be constructed as a subspace U c T X ]R2 where the fibre over the
triple (a, b, c) E T is the triangle in the plane ]R2 with side-lengths a, b, c and first
vertex at the origin, second vertex on the positive y-axis, and third vertex having
strictly positive x-coordinate.

Given an ordered family of triangles X ----+ 8 there is then a canonical map 8 ~ T
sending s E 8 to the unique ordered triple (a, b, c) E T of side-lengths giving a triangle
isometric to X s , and moreover there is a unique isomorphism of X with the pullback
via 9 of U ----+ T

X~g*U

!
8

9

U

!
T

Due to the existence of such a universal family, we say that T is a fine moduli space
for ordered Euclidean triangles.

Now in the case of unordered Euclidean triangles, there does not exist a universal
family over the space 8 3\T, The key reason that such a universal family fails to exist

13
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is that some pairs of congruent triangles have multiple isometries between them, with
no way to distinguish a canonical isometry. Between a congruent pair of isosceles tri­
angles there are two isometries, and between a congruent pair of equilateral triangles,
there are six (and notice that imposing an order on the vertices solves this problem).
VVe say that Sa\T is a coarse moduli space for unordered Euclidean triangles.

14



Chapter 2

The sub-Riemannian geometry of
the Heisenberg group

In this chapter we present background material relating to the sub-Riemannian
geometry of the Heisenberg group. The material presented in this chapter is taken
from [4]. The goal is to completely describe geodesics between arbitrary distinct
points in the Heisenberg group.

2.1 The Heisenberg group JH[

On IR3 with the usual differentiable structure we introduce the group multiplication
law

(Xl, YI, t) 0 (X2, Y2, s) = (Xl + X2, YI + Y2, t + s - 2(XIY2 - YIX2))'

The identity element is the origin 0(0,0,0) and the inverse of an element is given by
(x, Y, t)-l = (-x, -Y, -t). We frequently use letters P, Q, A, B, C, etc., to refer to
elements in the group (IR3 , 0) and omit the symbol 0 for multiplication. With these
explicit formulas it is apparent that the maps

(P, Q) ~ PQ from IR3 x IR3
-t IR3

15



M.Sc. Thesis - Christopher Cappadocia McMaster - Mathematics and Statistics

are smooth, so that (IR3, 0) is a Lie group. The Lie group (IR3, 0) is called the (sym­
metric) Heisenberg group with 3 parameters and will be denoted here by lHI. The
word "symmetric" refers to the symmetry apparent in the formula for the inverse of
a group element, and is meant to distinguish this characterization of the Heisenberg
group from another (Lie group-isomorphic) characterization in which the group is
realized as real upper-triangular 3 x 3 matrices with diagonal entries equal to 1.

At a fixed point P E IR3 we have the standard basis

for TpIR3 which we shorten to oxlp, 0Ylp, otlp. Because of the Lie group structure
that lHI places on IR3 it is more natural to use the basis

which coincides with the standard basis at P = (0,0,0) and is in fact the extension
of the standard basis at the origin to a left-invariant vector field on lHI. Thus we have
the vector fields

X:= Ox + 2yot

Y:= oY - 2xot

T:= Ot

restricting at each point P E lHI to a basis for TplHI.

Proposition 2.1.1. The vector fields X, Y, and T are left-invariant vector fields on
lHI.

Proof. Let A = (al, az, a3) E lHI. The map left-translation by A

16
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is defined by LA(P) = AP or in coordinates

McMaster - Mathematics and Statistics

The differential can then be written directly

This matrix was calculated using the coordinate system (x, y, t) on JHI. 'When we
express the vector Xp E TpJHI in these coordinates we get

X p = [ ~ ]
2yp

and therefore DLA(P) takes X p to the vector

which is precisely XILA(P)' Likewise

[ 0] [ 0 ]Yp = 1 I-t 1
-2xp -2(al + xp)

and

D

The left-invariant vector fields X, Y, T form a basis for the Lie algebra of left­
invariant vector fields on JHI and restrict to a basis for TpJHI at each point P. vVe

17
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calculate the Lie bracket [X, Y] using the test function f : ]R3 ----+ ]R

[X, Y]J = X(Yf) - Y(Xf)

= (i!- + 2Y~) (8
f

_ 2x
8f

) _ (i!- _2X~) (8
f

+ 2
y8f

)
8x at 8y 8t 8y at 8x 8t

= ( 8
2
f _ 28 f _ 2x 8

2
f + 2y 8

2
f _ 4xy 8

2
f)

8x8y at 8xat 8Wy at2

so that [X, Y] = -4T. Thus X, Y, and [X, Y] are a basis for the Lie algebra of lHI.
This property of X and Y is key to the sub-Riemannian geometry of lHI.

At each point P E lHI we single out the subspace

'Hp = span {Xlp ,Yip} c TplHI.

The distribution P 1---* 'Hp is called the horizontal distribution 'H on lHI.

Definition 1. A differentiable curve c : [a, b] ----+ lHI is called horizontal if

.( ) = (dCl dC2 dC3 )
C s ds ' ds ' ds

is contained in 'Hc(s) for each s E [a, b], i.e.) if the tangent vectors of the curve always
lie within the horizontal distribution.

We have the following extremely useful criterion for a curve to be horizontal.

Proposition 2.1.2. A curve c(s) = (x(s), y(s), t(s)) in lHI is horizontal if and only if

i = 2(xy - xiJ)·

18
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Proof. Expand

McMaster - Mathematics and Statistics

+ iJ (ay - 2xat)+ 2xiJ8t

= xX + iJY + (i - 2(xy - xiJ)) at

and the result follows.

o

From this we have the following characterization of tangent vectors for horizontal
curves.

Corollary 2.1.3. A differentiable cnrve c is horizontal if and only if

c=xX+iJY.

Proposition 2.1.4. For c(s) a horizontal cnrve and A = (al' a2, a3) E lHI the c'urve
c(s) = LAc(s) is also horizontal.

so that

19
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Then we compute
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D

Proposition 2.1.5. For c(s) = (x(s),y(s), t(s)) a horizontal wrve and 0:::; rp:::; 27f
the C1Lrve

c(s) = ([C?S rp :- sin rp] [x(S)] t(S))
Slllrp cosrp y(s) ,

is also horizontal.

Proof. The form of the equation for c above emphasises that we are taking C and
rotating it by a fixed angle rp about the t-axis while keeping the height of the curve
fixed at each point. We will write Rpc to represent this transformation of c. Explicitly
the transformation is

x(s) = x(s)cosrp-y(s)sinrp

y( s) = x(s) sin rp + y(s) cos rp

so that

xy - xy = (x cos rp - i; sin rp) (x sin rp + y cos rp )

- (x cos rp - y sin rp) (x sin rp + i; cos rp )

= xy - xi;

20
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and then since t = t the horizontality condition i = 2(xy - xi;) on the original curve
implies the horizontality condition t= 2(xy - xy) on the transformed curve.

o

Now at each point P E lHI we put an inner product 9 on the subspace 7{p by
making the vectors X and Y orthonormal

g(X,X) = 1 9 (X, Y) = 0 9 (Y, Y) = 1.

Ivl = J9 (v, v) = JVi + v~
which induces a length for horizontal curves.

Thus two vectors v= V1X +V2Y and 'Iii = W1X +W2Y in 7{p have inner product

9 (v, 'Iii) = 9 (V1 X + V2Y , W1 X + W2Y )

These inner products on each 7{p provide what is known as a sub-Riemannian met­
ric for the distribution 7{ on lHI. The sub-Riemannian metric defines a length for
horizontal vectors

Definition 2. The length of a horizontal curve c : [a, b] -----* lHI is

lb
!C(S)!dS

where Ic(s)I is computed using the sub-Riemannian metric.

Proposition 2.1.6. For horizontal c : [a, b] -----* ]HI and A = (a1, a2, a3) E lHI the curves
c(s) and c(s) = LAc(s) have the same length.

Proof. We have seen that (;1 = C1 and (;2 = C2' Thus
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have identical components so that

McMaster - Mathematics and Statistics

Ic(s)1= k(s)1
for each s E [a, b]. It follows that the length of c equals the length of c.

o

Proposition 2.1.7. For horizontal c : [a, b] ~ JHI and a :s; <p :s; 21f the curves c(s)
and c(s) = Rcpc(s) have the same length.

Proof. Writing c(s) = (x(s), y(s), t(s)) we have seen that

x(s) = x(s)cos<p - y(s)sin<p

y(s) = x(s) sin<p + y(s) cos<p

so that

+ x2sin2 <p + 2xy sin <p cos <p + y2 cos2 <p

= Icl2

and therefore the length of c equals the length of c.

o

2.2 Geodesics in IHI

Geodesics in JHI are defined in terms of a Hamiltonian function, that is, a real-valued
function on the cotangent bundle of JHI. We will see that the geodesics produced in
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this way have the natural properties associated to geodesics, such as being length­
minimizing with respect to the sub-Riemannian metric.

Viewing JHI as ]R3 we introduce the function

H : T*JHI -> ]R

defined by

)
1 2 1 2

(Xl, X2, t, 6, 6, () f-+ "2(6 + 2X2()) + "2(6 - 2Xl())

where (Xl, X2, t, 6, 6, ()) are just Euclidean coordinates on ]R6 ~ T*JHI. We recall
Hamilton's equations

. 8H . 8H
qi = - Pi =--

8Pi 8~

where the coordinates q and P are generalized position and momentum, respectively.
For T*JHI ~ ]R6 the coordinates yield six specific equations

. 8H . 8H
Xi = !':It, ~i = -~

u<". UXi

. 8H . 8H
t = 8() () = - 8t

(where i = 1,2) which we proceed to write explicitly. Now

. 8H
Xl = 86 = 6 + 2X2()

then

then
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and

McMaster - Mathematics and Statistics

Altogether we have obtained the system of equations

(2.2.1)

e= O.

Definition 3. A curve in the cotangent bundle T*JH[

that satisfies the system 2.2.1 is called a bicharacteristic.

Definition 4. A curve c(s) in JH[ is called a geodesic if it is the projection of a bichar­
acteristic curve, i. e. J if there exists a bicharacteristic curve c(s) in T*JH[ s1lch that
c(s) = 'if a c(s) where 'if : T*JH[ ----7 JH[ is the projection.

From the definition of a geodesic and from the system 2.2.1 we immediately have
the following.

Proposition 2.2.1. A geodesic is a horizontal curve.

We proceed to determine further properties of geodesics. We first observe that
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iJ = 0 implies e is constant. Then from 2.2.1 we have

= 2(}X2 + 2(}X2

= 4(}X2

and similarly

We can write this as

[~l(S)] = 4(} [0 1] [~l(S)]
X2(S) -1 0 X2(S)

or more succinctly as

x(s) = 4(}Jx(s)

where J = [~1 ~] is the matrix corresponding to clockwise rotation by 7f/2.

Next suppose that x(s) = e40Jsx(O). Then

x(s) = 4(}Je40Jsx(O)

= 4(}Jx(s).

What this shows is that x(s) = e40Jsx(O) is a solution to the equation

x(s) = 4(}Jx(s).
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We solve for x(s)
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x(s) = x(O) +1s

e4BJux(O)du

() 1 J' () 1 4BJs . ( )= x 0 + 4e x 0 - 4e J e x 0 .

Recalling that J and e4BJs commute, we can write this as .

x(s) = e
4BJs

(- 4~JX(O)) + x(O) + 4~Jx(O)

= e4BJs K + C

where

C = x(O) - K.

We will need the following computation:

Proposition 2.2.2. For 0 ::; e ::; 21f, we have

e4BJs - R- 4Bs

where R4Bs is the matrix corresponding to clockwise rotation by an angle of 4es.
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Proof· With J = [~1 ~] notice the pattern

J4 = I, etc.

We compute

e 4BJs =~ (4BJs)n

LJ n!
n=O

McMaster - Mathematics and Statistics

00 (4Bs)4kI 00 (4Bs)4k+lJ 00 (4Bs)4k+2(_I) 00 (4Bs)4k+3(-J)

=~ (4k)! + t; (4k + 1)! + t; (4k + 2)! +~ (4k + 3)!

00 [(4BS)4k (4Bs)4k+2
_ (4k)! - (4k+2)!- L (4Bs)4k+ 1 (4Bs)4k+3

k=O - (4k+l)! + (4k+3)!

[
cos(4Bs) sin(4BS)]

- - sin(4Bs) cos(4Bs)

(4Bs)4k+l _ (4BS)4k+3]
(4k+l)! (4k+3)!
(4Bs)4k (4Bs)4k+2

(4k)! - (4k+2)!

o

Now that we have determined the solution x(s) = R4BsJ( + C we compute t(s)
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using the horizontality condition
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= 2 (X(8) -JX(8))

= 2 (e40JSK + C) ~J (4()Je40Js K))

= 2 (e40JsK + C) 4()e40JsK)

= 8() IKI2 + 8() (C, e40JsK) .

In order to integrate i(8) notice that

:8 (JC) e
40Js

K) = \ JC) :8e
40Js

K)

= 4() (JT JC) e40JsK)

= 4() (C) e40JsK) .

Then

= 8() IKI 2
8 + 2 (JC) e40JsK) + C1

where
C1 = t(O) - 2 (JC)K).

We summarize these results.
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Proposition 2.2.3. For a geodesic (x(s), t(s)) with constant parameter () and initial
conditions

(x(O), t(O))

given, the equation is given by

x(s) = R4(}sK + C

x(O)

t(s) = 8(} IKI 2
S + 2 (JC, e4

(}JsK) + C1

where

1 .
K = --Jx(O)

4(}

C = x(O) - K

C1 = t(O) - 2 (JC, K) .

Proposition 2.2.4. The image of a geodesic (X1(S),X2(S),t(s)) projected onto the
x1x2-plane is a circle.

Proof. The equation x(s) = R4(}sK + C is the equation for a circle centered at C of
radius IKI.

D

Note that when such a geodesic is parametrized by arc-length we have

because Ix(O)1 = 1.

We have defined the matrix J = [~1 ~] and seen that a geodesic (x (s), t(s))
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satisfies the equation x(s) = 40Jx(s). Now geodesics are horizontal so that

If we think of J as the operator

Xl----+-y

then a geodesic satisfies c= 40Jc. In fact this condition characterizes geodesics.

Proposition 2.2.5. A curve c is a geodesic if and only if (1) c is horizontal and (2)
c= 40Jc.

Proof. One direction is clear. We have seen already that a geodesic is horizontal and
satisfies c= 40J c.

Now suppose we are given a horizontal curve c(s) = (Xl(S), X2(S), t(s)) such that
c= 40J c. Define the curve c in T*lHI by

where

Then c is a bicharacteristic curve in T*lHI and projects to c in lHI. Therefore c is a
geodesic.

o

This criterion for a geodesic is very useful.

30



M.Sc. Thesis - Christopher Cappadocia McMaster - Mathematics and Statistics

Proposition 2.2.6. If c = (Cl, C2, C3) is a geodesic with parameter () then for a E H
arbitrary the left-translation c = Lac is a geodesic with parameter ().

Proof. The left-translation of a horizontal curve is horizontal. Thus Lac is horizontal.
Writing a = (al' a2, a3) we have

and since for horizontal curves C = clX + C2Y we see that the tangent vectors for
c and for c have identical components. Thus c satisfies the same geodesic criterion
C= 4eJc as c.

D

Proposition 2.2.7. If c = (x, y) t) is a geodesic with parameter () then for 0 ~ <p ~ 21f
the rotated curve c = Rlpc is a geodesic with parameter e.

Proof. From

x(s) = x(s) cos <p - y(s) sin <p

y(s) = x(s)sin<p+y(s)cos<p

and from the geodesic criterion on c

x = 4()y

y = -4()x

we have

x= xcos <p - ii sin <p

= (4ey) cos <p - (-4()x) sin <p
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and likewise y= -4ex. Therefore c satisfies the same geodesic criterion as e.

o

Proposition 2.2.8. The speed of a geodesic is constant.

Proof. For a geodesic e = (x, y, t) we have lel 2 = x2 + il. But

:s (x2 +1/) = 2xx + 2iJjj

= 2x(4eiJ) + 2iJ( -4ex) = 0

and it follows that lei is constant.

o

2.3 The Lagrangian picture

There is also a Lagrangian picture of geodesics that is useful. The Lagrangian
L : TlHI: ----+ lR is defined by

L(Xl, X2, t, Xl, X2, i) = ~(xi + x~) + e(i - 2X1X2 + 2X1X2)'

Normally the Lagrangian is a function only of the coordinates of the tangent bundle
TlHI: but in our case the e-coordinate in T*lHI: shows up in the Lagrangian. Thus when
one wants to apply the Lagrangian to a curve in lHI: (which with its velocity vectors
can be treated as a curve in TlHI:) one must carry along the eparameter as extra data
for that curve. Since our curves will all be geodesics with constant ewe do not have
to address the subtleties surrounding this issue. vVe merely treat the Hamiltonian as
fundamental and use the Lagrangian picture for its usefulness.

Recall the Euler-Lagrange equations

d 8L 8L
ds 8e' 8e'
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vVe compute

d aL .. 8'--. =xl-2 X2
ds aXl

d aL .. 8'
-d-a' = X2 + 2 Xl

S X2

d aL .
--. =8
ds at

McMaster - Mathematics and Statistics

aL 28'-a = X2
Xl

aL = 0at .

In calculating the first two rows we have used the fact that 8 = 0, which comes from
the third line. Altogether we have the system

8 = o.

We recognize this condition as the geodesic criterion:

Proposition 2.3.1. A geodesic satisfies the Euler-Lagrange equations.

2.4 Connectivity by geodesics

We want to connect arbitrary distinct points P, Q E IHI by a length-minimizing
geodesic. We will show that, up to parametrization, there exists a unique such
geodesic connecting P to Q. First, we apply the left translation Lp-l taking P
to 0 and taking Q to P-lQ. Under this translation, a geodesic c connecting P to
Q becomes a geodesic c = Lp-lC connecting 0 to P-lQ, and C and c have the same
length. Hence we need study only geodesics with initial point O.
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It is best to work in cylindrical coordinates

Xl = rcos¢

X2 = rsin¢

t = t.

We compute the Lagrangian in these coordinates

Xl =rcos¢+r(-sin¢)¢

McMaster - Mathematics and Statistics

xi = r2cos2 ¢ - 2rr(sin ¢)(cos ¢)¢ + r2¢2 sin2 ¢

X2 = r sine/> + r(cos ¢)¢

so that £ is given by

Next we calculate the Euler-Lagrange equations in polar coordinates

d o£ ..
ds or = r

d o£ d 2' 2)
--. = -(r e/> + 2(}r
ds o¢ ds

d o£ .
--. =()
ds ot

34
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to obtain the system
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r 2 (¢ + 28) _ Co constant

8 _ 80 constant.

(2.4.1)

For our geodesics, which start at 0, we get r(O) = 0 ::::} Co = O. Next if r remains
identically 0 on any non-trivial interval around s = 0 we must have Xl = 0 = X2 so
that i = 2(X1X2 - X1X2) = O. A geodesic with this property starting at 0 will thus
remain stuck at O. Since we want to classify geodesics connecting distinct points we
can thus assume that r cannnot stay at 0 over any non-trivial interval whereupon we
have

Thus, for geodesics starting at the origin, the system 2.4.1 sharpens to

¢= -28

8 == 80 constant.

(2.4.2)

There is not a uniform description of geodesics from 0(0,0,0) to distinct points
P(x, y, t). Rather the description depends on the nature of the point P(x, y, t). The
possibilities are

• P(x, y, t) is on the t-axis so that x2+ y2 = 0 and t =1= 0

• P(x, y, t) is in the xy-plane so that x2+ y2 =1= 0 and t = 0

• P(x, y, t) is not in the xy-plane or on the t-axis so that x2+ y2 =1= 0 and t =1= O.
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2.4.1 Geodesics from 0 to P(O, 0, t) with t I: °
We repeat the Euler-Lagrange equations for a geodesic with initial point 0 ...

¢ = -2e

e=eo constant.

The general solution to

is

r(s) = Asin(2es) + Bcos(2es).

Since r(O) = 0 we have B = 0 so that

r(s) = A sin(2es).

We do not parametrize by arc-length but instead assume our geodesic is such that
')'(0) = 0 and ')'(1) = P. Then we have r(l) = 0 so that 2e = m1T for some integer
m. We will say more about the sign of the integer m shortly.

Next from ¢ = -2e we get ¢(s) - ¢(O) = -2es so that
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Recall i = -2r2¢. Thus

t = t(l) - t(O)

McMaster - Mathematics and Statistics

l
-·m1r

= -2 0 sin2 udu

This gives A2 = ~1r = 2
te' This means that when t > 0 the integerm must be positive

and when t < 0 the integer m must be negative. Similarly e > 0 when t > 0 and
e< 0 when t < O.

Recall that for geodesics the quantity

is constant. Now when r(s) = Asin(28s) hits its maximum value of A we will have
r = O. This gives

= 28t = m7rt.

Therefore Ii'I = vm7rt so that the arc-length T = vm7rt because the parameter s is
on [0,1].
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For the t-coordinate we have
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= _ 2t [~U _~ sin 2U] </J-</Jo
m7r 2 4 a

t .= - [sm2(4) - 4>0) - 2(4) - 4>0)]'
2m7r

Theorem 2.4.1. Between the points 0(0,0,0) and P(O, 0, t) with t > °the equation
for a geodesic from 0 to P leaving the origin at an angle of 4>0 with the positive x-axis
is given by

r(s) = Jt sin(20s)
m7r

4>(s) = 4>0 - 20s

t(s) = _t_ (40s - sin(40s))
2m7r

where 0 = ~7r. There is one s1lch geodesic for each m = 1,2,. ... The arc-length of

each geodesic isVm7rt.

38



M.Sc. Thesis - Christopher Cappadocia McMaster - Mathematics and Statistics

-o.B

Figure 2.1: geodesics to (0,0, t) for m = 1,2,3

Theorem 2.4.2. A length-minimizing geodesic from 0(0,0,0) to P(O, 0, t) with t > 0
has arc-length ..;:ii.

There are of course analogous statements to describe the case when t < O.

Observe that if 'Y is any geodesic connecting 0(0,0,0) to P(O, 0, t) then R<pc is
another geodesic connecting 0(0,0,0) to P(O, 0, t) of equal length for any 0 :s; <p :s; 21f.
Thus for each m = 1,2, ... , we obtain a family of geodesics from 0 to P of equal
length vm1ft parametrized by 0 :s; <p :s; 21f.
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Figure 2.2: a one-parameter family of geodesics with <p = 0, 21f/3, 41f/3 shown

2.4.2 Geodesics from 0 to P(x, y, 0) with x2+ y2 # 0

From the horizontality condition we have

But ¢ = -2() so i = 4()r2
.

Since () is constant we see () > 0 implies i > 0 which implies t(s) is always
increasing. Likewise () < 0 implies i < 0 which implies t(s) is always decreasing.
Therefore to end up at a point P(x, y, 0) the geodesic must have () = O. The Euler-
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Lagrange equations reduce to

r=O

cP=O

e= O.

McMaster - Mathematics and Statistics

Thus we have constant angle cPo and constant r = A i:- O. Since our geodesic starts
at the origin the equation is

r(s) = AS

cP(s) = cPo

t(s) = O.

In order for P(x, y, 0) to be the terminal point we must take cPo to be a solution to

cPo = arctan (;) .

The sign of A depends on the solution we choose above; the magnitude of A determines
the rate at which we move along the geodesic. To parametrize by arc-length we choose
A = ±1 and either way the result is the unique arc-length parametrized geodesic from
o to P.

Theorem 2.4.3. Between the origin 0(0,0,0) and a point P(x, y, 0) in the xy-plane
with x2+ y2 i:- 0 there exists a 1mique arc-length parametrized geodesic with equation

x(s) = x S
Jx2 + y2

y(s) = J y S
x2 +y2

t(s) = 0

where 0 ~ s ~ J x2+ y2 and the arc-length is T = J x2+ y2.
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2.4.3 Gaveau's function

Next we will describe geodesics connecting 0(0,0,0) to points P(x, y, t) with x 2 +
y2 -I- 0 and t -I- O. The-"classification of such geodesics will depend crucially on the
properties of Gaveau's function, which we now discuss.

The function

()
x - sin x cos x

f-L x =
sin2 x

is called Gaveau's function.

o

10

10 1 \i V

)5 J
/

/
II -5 f/6

5 1
x

n
( -5

f\ -

Figure 2.3: Gaveau's function f-L(x)

As written f-L is defined for all x E lR except for integer multiples of 7f where
sin x = O. Now f-L has a removable singularity at x = 0 so that we can define

f-L(O) = lim f-L(x) = o.
X-'O

Note that the Gaveau function is odd: f-L( -x) = -f-L(x). We record the following
properties of the Gaveau function. These results can all be proven using elementary
calculus.
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Proposition 2.4.4. f.L is a strictly increasing diffeomorphism from (-1r, 1r) to IR.

Proposition 2.4.5. For each integer m = 1,2, 0 •• , there is exactly one critical point
Xm for f.L on the interval ('!IL1r, (m + 1)1r). f.L is strictly decreasing on (m1r, xm) and
strictly increasing on (xm, (m + 1)1r) 0 We also have the limits

lim f.L(x) = +00 = lim f.L(x).
x-->m1r+ x-->(m+l)1r-

We can be more specific about where X m lies in the interval (m1r, (m + 1)1r).

Proposition 2.4.6. The critical point Xm E (m1r, (m+ 1)1r) is less than the midpoint

X m < (m+~) 1r

but within ~1r of this midpoint

( m + ~) 1r - Xm < ~1r'

And we can likewise say more about the local minimum values f.L(xm).

Proposition 2.4.7. The local minimum values f.L(xm) satisfy the ineq'ualities

f.L(xm+l) > f.L(xm) + 1r.

In particular we have the crucial result that for a fixed constant A > 0 there are
only finitely many solutions to the equation

There is always exactly one solution coming from a unique x in the interval (-1r, 1r)

which solution is in fact in the interval (0,1r) because A > O. There are no solutions
for x < 0 since f.L(x) < 0 when x < O. For x > 0 eventually the local minimum values
f.L(xm) on the intervals (m1r, (m + 1)1r) will be larger than A and therefore solutions
exist in only finitely many of the intervals. The graph of f.L(x) makes these remarks
apparent.

Likewise we can count the strictly finite number of solutions to f.L(x) = A ::; O.
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2.4.4 Geodesics from 0 to P(x, y, t) with x2+ y2 i- 0 and t i- 0

Lemma 2.4.8. An arc-length parametrized geodesic starting at 0 with 8 =1= a has
equation

("') = 1 sin 2(cP - cPo) - 2(cP - cPo)
t If' 482 2 .

Proof. For an arc-length parametrized geodesic we have

1 = xi(s) + x~(s)

We thus compute

2~ arcsin(28r) = ±s

28r = sin(±28s)

therefore

r = ± 2
1
8 sin(28s).

Next from the horizontality condition
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we can compute t in terms of <P
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(
1 ) r¢-c/Jo

= -2 482 io sin
2
udu

(
1 ) l¢-c/JO 1 1= -2 - - - -cos2udu

482 0 2 2

(
1 ) [1 1 ] ¢-c/Jo

= - 2 482 "2 u - 4" sin 2u 0

1 sin 2(<p - <Po) - 2(<p - <Po)
482 2

o

We further restrict our geodesics to start at 0 and terminate at some point
P(x, y, t) with x2 + y2 = R 2 i= 0 and t i= O. We do not specify (x, y) but merely
the distance R from the origin. If we insist that the geodesic leaves the origin at an
angle of <Po = 0, then once we fix R i= 0 and t i= 0, we will see that the terminal point
of the geodesic is determined.

A way to visualize this is to clraw a circle of radius R with fixed height t i= 0 and
centered around the t-axis. We want to determine all possible geodesics leaving the
origin 0 at an angle of <Po = 0, i.e., leaving along the positive x-axis, and ending up
somewhere on this elevated ring.
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Figure 2.4: geodesics to an elevated ring

Lemma 2.4.9. For an arc-length parametrized geodesic c : [0, T] -+ JHI with () #- a
and boundary conditions

x(O) = a

the following relations hold

t(O) = a

t(T) = t #- a

cP(O) = a

t = _1__si_n_2...:.-cP-=-1_-_2---.:cP-=.1
4(}2 2
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Proof. From ¢ = -28 we get
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¢1 = ¢(r) = ¢(r) - ¢(O) = -28r.

From the previous lemma we get

2 1. 2",
R = 482 sm 'f'1

and

Using these we have

t sin 2¢1 - 2¢1
R2 2sin2 ¢1

= p(28r).

o

Lemma 2.4.10. Consider arc-length parametrized geodesics c [0, r] ~ lHI with
8 i= a and boundary conditions

x(O) = a t(O) = a

t(r) = t i= a

¢(O) = a

There is precisely one such geodesic for each solution

to the equation
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(note that the solutions (m are all positive when t > 0 and all negative when t < 0).
If T = Sm is the arc-length of the geodesic associated to the solution (m, then

Proof. For such a geodesic we know that

t
P, (2(h) = R2'

The equation p,(() = tjR2 has finitely many solutions (1, ... , (N. Any geodesic must
correspond to some such solution. Furthermore each such solution corresponds to a
geodesic, as we can check by the explicit equation of such a geodesic, which we now
have enough information to compute.

Let the value (m = 2eT be the given solution to p,(() = tjR2
• Now (PI = -2eT

shows that the terminal angle qh is determined. In particular the terminal point
(R cos (PI, R sin qh, t) of the geodesic is also determined. The value e is determined
from the equation

2 1. 2;-
R = 4e2 sm ':,m'

This equation tells us e2
• In fact, since (PI = -2eT and the arc-length T is non­

negative, the sign of e is determined, so that the value of eis completely determined.
Note that e> 0 when t > 0 and e< 0 when t < O.

Thus all the parameters e, (PI, T are determined by the fact that the terminal
point must be on the elevated ring x2 + y2 = R2 i= 0 with constant height t i= O.

Now for the arc-length parameter S E [0, T], we have ¢ = -2e which implies
¢ = -2es. We plug ¢ = -2es into our previous relations to get

1 .
r(s) = 2esm(2es)

¢(s) = -2es

( )
_ ~ 4es - sin 4es

t s - 4e2 2 .
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Notice that we have chosen a positive sign in the equation for r(s). This ensures
that the geodesic leaves the origin at an angle of cPo = 0 with the positive x-axis. (A
negative sign would produce an angle of cPo = 0 with the negative x-axis.)

Since we now have the equation of the geodesic c, it is straightforward to check
directly that it is indeed horizontal and satisfies the criterion c= 4eJc. Thus c is a
geodesic.

Finally we can solve for T = Sm using the two relations

and dividing to obtain

o

The geodesics we have analyzed leave the origin 0 at an angle of cPo = 0 and
rise to the elevated ring x2 + y2 = R2 i= 0, t i= O. From the previous theorem, the
geodesic corresponding to the solution ( E (-1f, 1f) to the equation f-L(() = tfR2 gives
the geodesic of strictly minimum length.

Given a specific point now P(x, y, t) where not only II (x, y) II = R i= 0 is specified
but also (x, y), we can find a geodesic terminating at this point by rotating one of
the above cPo = 0 geodesics. If we rotate the geodesic of strictly minimum length, we
obtain a geodesic from 0 to P(x, y, t) of strictly minimum length. This is because
any geodesic from 0 to P can be rotated to one of the above cPo = 0 geodesics and
vice versa, preserving length.
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Figure 2.5: rotating a geodesic

Below we record the equation of the unique arc-length parametrized length-minimizing
geodesic from 0 to such an elevated ring.

Theorem 2.4.11. For fixed R > 0 and fixed t =I- 0, there is precisely one arc-length
parametrized and length-minimizing geodesic leaving the origin 0 at an angle of cPo
with the positive x-axis and terminating on the ring

{(x, y, t)lx2+ y2 = R 2} .

This geodesic corresponds to the unique ( E (-1f, 1f) which solves p,(() = t / R 2.

The equation of this geodesic is

1 .
x(s) = 28 sm(28s) cos(cPo - 28s)

1
y(s) = 28 sin(28s) sin(cPo - 28s)

1 1
t(s) = 28 s - 482 sin(28s) cos(28s)
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for 0 ::; S ::; 7, where

is the length of the geodesic, and

7= -(-R
sin (

B=~.
27

McMaster - Mathematics and Statistics

Proof. This follows from the work done so far, just recalling that <p(s) - <p(O) = -2Bs,
that is, <p(s) = <Po - 2Bs.

D

By an appropriate choice of the initial angle <Po, we can make such a geodesic
terminate at any specified point (x, y, t) where x2+ y2 =I- 0 and t =I- O.

Theorem 2.4.12. The equation of the unique arc-length parametrized length-minimizing
geodesic from 0 to the fixed point (x, y, t) where x2 + y2 =I- 0 and t =I- 0 is

x(s) = (x cot ( - y) sin(2Bs) cos(2Bs) + (x + Y cot () sin2 (2Bs)

y(s) = (x + Y cot () sin(2Bs) cos(2Bs) - (x cot ( - y) sin2 (2Bs)

t(s) = 2~s - 4~2 sin(2Bs) cos(2Bs)

for 0 ::; s ::; 7 where

-1 ( t )( = f-L x2+ y2
B= sin (

2VX2 + y2

Note that we write f-L-1(a) for a E lR to denote the 'unique solution on the interval
(-1f, 1f).

Proof. We start with the equation for the unique arc-length parametrized and length
minimizing geodesic leaving the origin at an angle of <Po = 0 and terminating on the
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ring of height t and radius R2 = x2+ y2

1 .
x(s) = 2() sm(2()s) cos(2()s)

1
y(s) = - 2() sin(2()s) sin(2()s)

1 1
t(s) = 2()s - 4()2 sin(2()s) cos(2()s)

with 0 ~ s ~ T where

-1 ( t )
(= fl x2 + y2 T = -f-Jx2 + y2

sm(
() = sin (

2Jx2 + y2

The terminal point of this geodesic can be directly computed

( J x 2+ y2 cos (, - J x 2 + y2 sin (, t) .
An appropriate rotation will then rotate this terminal point into the terminal point
(x, y, t). The rotation matrix turns out to be

1 [x cos ( - y sin ( - (x sin ( + y cos ()]
J x 2+ y2 x sin ( + y cos ( x cos ( - y sin ( .

Rotating the original geodesic by this matrix results in the stated equation.

o

2.4.5 Summary of connectivity

Between the origin 0(0,0,0) and a point P(O, 0, t) with t i= 0 there is a one­
parameter family of length-minimizing geodesics from 0 to P of length .;;rm. In
particular there do not exist unique length-minimizing geodesics between 0 and such
points P.

Between the origin 0(0,0,0) and a point P(x, y, 0) in the xy-plane there is a
unique arc-length parametrized geodesic from 0 to P of length

Jx2 +y2.
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Between the origin 0(0,0,0) and a point P(x, y, t) with x2 + y2 i= 0 and t i= 0
there is a unique arc-length parametrized length-minimizing geodesic from 0 to P
with (-value

-1 ( t )( = J-L x2 + y2

and with length

We introduce the function

X
Xf----*-.­

smx
to help unify the properties of these two types of geodesics.

6

5

4

3

(2.4.3) -..

(2.4.4)

-4 ~3 -2 -1 0 1 2 3 4
I ,~

I
-1,

Figure 2.6: O"(x)

Now 0" has a removable singularity at x = 0 so that we can define 0"(0) by the
limit as x ~ 0

0"(0) = lim~ = 1.
x-+O sIn x
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(2.4.5)

Note that (J is an even function. The behaviour of (J is simple to describe. (J decreases
from +00 to 1 on the interval (-1f, 0] and increases from 1 to +00 on the interval
[0,1f).

Now observe that if we assign a (-value of 0 to the first group of geodesics from
o to P(x, Y, 0) then formula 2.4.3 for (-value and formula 2.4.4 for length apply to
all geodesics from 0 to points P not on the t-axis, that is, to all geodesics from 0 to
points P between which there is a uniq'LLe length-minimizing geodesic.

This classification of geodesics from 0 to P actually classifies geodesics between
arbitrary points A and B because any geodesic between A and B left-translates to a
geodesic between 0 and A-lB and vice versa.

In what follows we work primarily with points A and B between which a unique
length-minimizing geodesic exists. The condition for this to happen between 0 and
P is merely that (x, y) i= (0,0). Thus the criteria for this to happen between A and
B is merely that (XA, YA) i= (XB, YB).

For such points A and B there exists a unique arc-length parametrized length­
minimizing geodesic from A to B with (-value

(= j).-l (tB - tA - 2(XBYA - YBXA))
(XB - XA)2 + (YB - YA)2

and length
(2.4.6)

2.5 Isometries

Definition 5. The distance
d(A, B)

between two points A and B in JH[ is defined to be the length of a length-minimizing
geodesic between A and B.

It is a non-trivial theorem that this distance function defines a metric on JH[. This
metric is called the Carnot-Caratheodory metric and sometimes we write dee for this
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metric. We have two explicit formulas for d(A, B)
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which applies when (XA' YA) = (;1:B' YB) and

(2.5.1)

To describe geodesic connectivity we needed to know that left-translation LAC and
rotation Repc of a geodesic c preserve length. These facts immediately give us two
sorts of isometries.

Proposition 2.5.1. For any A E]HI the map left-translation by A

is an isometry.

Proposition 2.5.2. For any 0 :s; <p :s; 2n the map mtation by <p

is an isometry.

There is a transformation that provides another sort of isometry. We define the
involution r by

(x, y, t) ~ (x, -y, -t).

Proposition 2.5.3. For c(s) = (x(s), y(s), t(s)) a horizontal curve the curve c(s) =
T 0 c(s) is also horizontal.
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Proof. We have

t = -t = -2(xy - xiJ)
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= 2 [x( -y) - x( -iJ)]

= 2 (xy - xy).

D

Proposition 2.5.4. For horizontal c : [a, b] ~ lffi the curves c(s) and c(s) = r 0 c(s)
have the same length.

Proof. We have x2+ y2 = x2+ iJ2 and the result follows.

D

Thus far we have encountered isometries in the form of the left-translations LA,
the rotations R<p, and the involution r. It is a non-trivial result that these three types
of isometries generate the full group of isometries of lffi. We record this result below,
as well as results about the structure of this group of isometries. For details see [8].

Theorem 2.5.5. The group 1som(lffi) of isometries oflffi is generated by the group lffi of
left-translations LA : lffi ------t lffi for A E lffi,o the group 80(2) of rotations R<p : lffi ------t lffi
for a ::; <p ::; 21f,o and the involution r : lffi ------t lffi.

The s1.Lbgroup of 1som(lffi) generated by the left-translations lffi and the rotations
80(2) is a normal subgr01.Lp of 1som(lffi) of index 2. This subgroup has the semi-direct
product structure

lffi ~ 80(2).

The f1.Lll group of isometries can then be written as the disjoint union of the cosets

1som (lffi) = [lffi ~ 80(2)] U r [lffi ~ 80(2)] .
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Note also that together the rotations 50(2) and the involution r generate a sub­
group of Isom(H) that is isomorphic to 0(2). Isom(H) can then be written as the
semi-direct product H Xl 0(2)0
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Chapter 3

Triangles in the Heisenberg group

Now that we have a complete description of geodesics between arbitrary distinct
points in the Heisenberg group, we can construct triangles by connecting triples of
vertices by geodesics. Our first result is an angle deficit formula relating the angles
of a Heisenberg triangle to the (-values of the geodesic sides of the triangle.

3.1 An angle deficit formula

3.1.1 Tangent vectors to geodesics

Between the origin 0 and any point P(x, y, t) such that (x, y) i= (0,0) and t i= 0,
there exists a unique arc-length parametrized geodesic ')'(s) = (x(s), y(s), t(s)) from
o to P. We record in full the equation for this geodesic:

x(s) = (x cot ( - y) sin(2es) cos(2es) + (x +Ycot () sin2 (2es)

y(s) = (x + ycot () sin(2es) cos(2es) - (x cot ( - y) sin2 (2es)

t(s) = 2
1
es - 4~2 sin(2es) cos(2es)
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for 0 :s: s :s: T) where
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-1 ( t )
( = fJ, x2 + y2

From this expression we determine the tangent vectors to 'Y) which will in turn
allow us to determine the tangent vectors to arc-length parametrized geodesics be­
tween arbitrary points. Since 'Y is horizontal) the fact that .:y = xX + yY simplifies
the calculation) since we do not have to work with t(s). We calculate separately that

d .
ds [sm(28s) cos(28s)] = 28 cos(48s)

1[sin2 (28s)] = 28sin(48s).

Then

x(s) = 28(x cot ( - y) cos(48s) + 28(x + y cot () sin(48s)

y(s) = 28(x +Y cot () cos(48s) - 28(x cot ( - y) sin(48s).

We are particularly interested in tangent vectors at 0 (s = 0) and at P (s = T))
because we use these vectors to calculate angles between geodesics. The tangent
vector to 'Y at 0 is

.:y(O) = x(O)X + y(O)Y

= 28(x cot ( - y)X + 28(x + y cot ()Y.

The tangent vector to 'Y at P is

.:y(T) = X(T)X +Y(T)Y

= 28 [(x cot ( - y) cos 2( + (x + Ycot () sin 2(] X

+ 28 [(x + ycot () cos2( - (x cot (- y) sin2(] Y
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where we have used the fact that 2eT = (. A calculation shows that the coefficients
of X and Y above simplify:

(x cot ( - y) cos 2( + (x + Y cot () sin 2( = x cot ( + y

(x+ycot()cos2(- (xcot(-y)sin2(= -x+ycot(.

Thus
'Y(T) = 2e(x cot (+ y)X + 2e(-x + ycot ()Y

Finally, using 2e = ~, we obtain expressions in the most convenient form:
x 2+y2

'1'(0) = II(x~Y)11 [(x cos ( - ysin()X + (x sin ( + y cos ()Y]

'Y(T) = II(x~y)11 [(x cos( + ysin ()X + (-x sin ( + y cos ()Y] .

This calculation was carried out for P(x, y, t) with t =I- 0 and therefore ( =I- o. For
the case t = 0, we have ( = 0 whereupon cot ( is undefined and the above calculation
does not apply. We check, however, that the final expressions obtained for '1'(0) and
'1'(T) remain valid. Indeed, the unique arc-length parametrized geodesic from 0 to
P(x, y, 0) with x2+ y2 > 0 has the equation

1
,/,(8) = J (X8,y8,0) 0::; 8::; JX2+y2

x2 +y2

with tangent vectors
. x Y

,/,(8) = X + Y
J x2+ y2 J x2+ y2

independent of 8. For such a geodesic ( = 0 and the formula for '1' holds.

We have covered the case for geodesics with initial point O. In general, between
distinct points A(x, y, t) and B(u, v, 8) such that (x, y) =I- (u, v), there exists a unique
arc-length parametrized geodesic 1(8) = (11 (8),12 (8),13 (8)) from A to B. As we have
seen, 1 is the left-translation by A of the unique arc~length parametrized geodesic '/'
from 0 to A-IB. Thus
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so that the tangent vectors to ry at A and B have the same components as the tangent
vectors to 'Y at 0 and A-IB respectively. Therefore for such a geodesic we have

;Y(O)__~ 11(6.X~6.Y)11 [(6.x cos ( - 6.ysin()X + (6.xsin( + 6.ycos()Y]

;Y(T) = 1I(6.X~6.Y)1I [(6.ysin( + 6.xcos()X + (-6.xsin( + 6.y cos ()Y]

where 6.x = u - x, 6.y = v - y, and

__1(S-t-2(UY -VX))
( - J-L 6.x2 + 6.y2 .

3.1.2 Angles between geodesics

Consider a triangle in IHI determined by an arbitrary set of three distinct points

A(XA' YA, tA)

C(Xc, Yc, tc)

subject to the condition that (XA, YA), (XB' YB), (xc, YC) are distinct as well.

By analogy with the Euclidean case, we define the cosine of the angle between
horizontal vectors a and b based at the same point by the formula

lIallllbll cos¢ = g(a, b)

where 9 is the sub-Riemannian metric and the norm 11·11 is calculated using g.

To calculate the angle at A we use the two tangent vectors at A, the first on 'Yc
moving towards B, the second on 'YB moving towards C.

The tangent vector at A towards B:

1 [ ((XB - XA) cos(c - (YB - YA) sin (c) X ]
II(XB-XA,YB-YA)II +((xB-xA)sin(c+(YB-YA)cos(c)Y .
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The tangent vector at A towards C:
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-1 [((XA-xc)cOS(B+(YA-yc)sin(B)X]
lI(xA-xc,YA-Yc)11 +(-(xA-xc)sin(B+(YA-Yc)cos(B)Y .

Since the geodesics "IB and "Ie are parametrized by arc-length, the tangent vectors
are of unit length. Thus cos LA is given by the sub-Riemmannian inner product of
the tangent vectors at A. After simplifying and using the angle sum formulas for sin
and cos, we get

II(XB - XA, YB - YA)IIII(xc - XA, Yc - YA)II cos LA

If we write

then

C(zc, tc) zc = Xc +iyc

Thus we can write

In the same way, we obtain analogous expressions for cos LB and cos LG. We record
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all three:
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Notice that the complex number

(ZB - ZA)(ZC - ZA) ei(B+(d

IZB - zAllzc - zAI

has unit modulus, and real part equal to cos LA. This motivates the following defi­
nition.

Definition 6. In a triangle determined by vertices (A, B, C) E H3 - I; the angle at
A, denoted LA, is the 'unique angle in [0, 21f) such that

eiLA = (ZB - ZA)(ZC - ZA) ei(B+(C)

IZB - zAllzc - zAI

We similarly define the angles at Band C:

eiLB = (zc - ZB)(ZA - ZB) ei(C+(A)

Izc - zBlizA - ZB!

eiLC = (ZA - ZC)(ZB - zc) ei(A+(B)
IZA - zcllzB - zcl .

From these definitions we can read off that

which gives us an angle deficit formula for Heisenberg triangles.
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Theorem 3.1.1. For a triangle ABC we have
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LA + LB + LC -1f = 2 ((A + (B + (c) mod 21f.

Proof. In
ei(L:A+L:B+L:C) = (-1 )e2i«(A+(B+(c)

we write -1 = ei1f and the result follows.

o

3.2 Curvature of a geodesic

The quantity 2 ((A + (B + (C) has a geometric interpretation which we proceed to
demonstrate. For a horizontal curve c(s) the curvature can be given by the expression

l1;(s) = Ic(s)1 / lC(s) I

where length 1·1 is computed using the sub-Riemannian metric g. When c is an arc­
length parametrized geodesic, l1;(s) = Ic(s)l.

We work instead with a signed curvature, which for geodesics is easy to charac­
terize: we define l1;(s) as above (at this stage a non-negative quantity) and give it a
sign, + if the (-value for the geodesic is positive, and - if the (-value for the geodesic
is negative.

For geodesics c = xX + jjY. Using the equation for a geodesic emanating from
the origin, we compute

d
x(s) = ds x(s)

d .
= ds [2B(xcot( - y) cos(4Bs) + 2B(x + ycot() sm(4Bs)]

= SB2 [-(x cot ( - y) sin(4Bs) + (x +Ycot () cos(4Bs)]
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and
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Then

y(s) = SB2 [-(x + Y cot () sin(4Bs) - (x cot ( - y) cos(4Bs)] .

1 1

Icl = (g(c) c))2 = (x2 + i?)"2
and after computing we obtain

Using the identity 2B =~ this simplifies further to
x 2+y2

,,"(s) = 2 sin (
yx2 +y2

Notice the curvature is independent of s, Le.) curvature is constant for a geodesic.
Thus

j sin (
,,"(s)ds = 2 x length c

c VX2 +y2

= (2 sin ( ) (-f-VX2 + y2) = 2(.vx2+y2 sm(

Observe that left-translation of a geodesic preserves the (-value) and as we have
already noted preserves the components of the tangent vectors and therefore of the
acceleration vectors. The above result therefore holds for arbitrary geodesics. We
integrate the curvature around a triangle to obtain the following result.

Theorem 3.2.1. For a triangle ABC, the integral of the wrvat1Lre around the trian­
gle is given by

The angle deficit formula can now be written as

Theorem 3.2.2. For a triangle ABC we have

LA + LB + LC -1r =i K,(s)ds mod 21r.
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3.3 A law of sines

We look more closely at the coefficient
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(ZB - ZA)(ZC - ZA)
IZB - zAllzc - zAI'

for ei((B+(C) in the expression for e iLA . This coefficient is of unit modulus, so we can
define a to be the unique angle in [-1f, 1f) such that

ia (ZB - ZA)(ZC - ZA)
e = -'-----':--C------7-

IZB - zAllzc - zAI'

Analogously we obtain {3, "Y such that

eif3 = (zc - ZB)(ZA - ZB)
Izc - zBlizA - zBI

ei , = (ZA - ZC)(ZB - zc)
IZA - zcllzB - zcl'

Looking at eia , we have already computed that

Re ((ZB - ZA)(ZC - ZA)) = (XB - XA)(XC - XA) + (YB - YA)(YC - YA)
IZB - zAllzc - zAI IZB - zAllzc - zAI

1m ((ZB - ZA)(ZC - ZA)) = _ (XB - XA)(YC - YA) - (YB - YA)(XC - XA)
IZB ~ zAllzc - zAI IZB - zAllzc - zAI '

The expression for the real part is precisely the cosine of the angle between the vectors
ZAZlt and~. Recalling our criterion for orientation of triangles in the plane, we
see that if 6ZAZBZC has clockwise orientation, that is, if

then 1m (eia ) is positive, Therefore in this case a is between a and 1f, so that a is in
fact the angle at ZA in the triangle ZAZBZC. SO a is the angle at ZA in the triangle
ZAZBZC to which the Heisenberg triangle ABC projects, when 6ZAZBZC has clockwise
orientation, When 6ZAZBZC has counterclockwise orientation, we find that -a, -{3,
and -"Yare the angles in the triangle ZAZBZC'
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In both cases, the Euclidean law of sines tells us that

Now by the choice of ex, f3, 'Y we have

so that

sin ex = sin (LA - ((B + (c)) = sin ((LA + (A) - !:::,,)

sinf3 = sin (LB - ((c + (A)) = sin ((LB + (B) - !:::,,)

sin'Y = sin (LC - ((A + (B)) = sin ((LC + (c) - !:::,,)

where!:::" = (A + (B + (c. Expanding using the angle sum formula for sine we have

sin ((LA + (A) -!:::,,) = sin(LA + (A) cos!:::" - cos(LA + (A) sin!:::"

with similar expressions for sin f3 and sin 'Y. Hence we have

= l sin(LB + (B) cos!:::" -l cos(LB + (B) sin!:::"
b b

= ~ sin(LC + (c) cos!:::" - ~ COS(LC + (c) sin!:::".
c c
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In other words the points
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lie on the line x cos b.. - y sin b.. = A. The slope of this line is cot ..0., so cot b.. equals
the slope between any two of the three points. In particular we have the following.

Theorem 3.3.1. For a triangle ABC the triangle parameters (a, (A), (b, (B), (c, (c)
and the Heisenberg angles LA, LB, LC satisfy the identity

cos(LA + (A)/a - cos(LB + (B)/fJ

sin(LA + (A)/a - sin(LB + (B)/b

cos(LB + (B)/b - COS(LC + (c)/c

sin(LB + (B)/b - sin(LC + (c)/c

COS(LC + (d/e - cos(LA + (A)/a
sin(LC + (c)/c - sin(LA + (A)/a

with each ratio equal to the common value cot b.., where b.. = (A + (B + (c.
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Chapter 4

The moduli space of triangles
the Heisenberg group

4.1 The space of vertices

•In

A triangle in lHI is determined by an arbitrary set of three distinct vertices

O(xc, Yc, tc) = O(zc, tc)

subject to the condition that ZA, ZB, Zc are distinct as well, that is, that no vertex A,
B, 0 lies vertically above any other. For such triples of vertices, there exist unique
length-minimizing geodesics between each pair of vertices, so that the sides of a well­
defined triangle are formed by the geodesics IA from B to 0, IB from 0 to A, and
IC from A to B.

We can describe all such "good" triples of vertices by the set

T := lHI x lHI x lHI - I;
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where 2:: removes all the "bad" triples, that is, those triples for which at least one
vertex lies vertically above another. Notice that 2:: includes all triples (A, B, C) with
coinciding points. Thus JHI3 - 2:: contains only triples of distinct vertices. Moreover,
the set 2:: decomposes as a union

2:: = 2::1 U 2::2 U 2::3

where 2::1 contains those bad triples for which A lies vertically above or below B, 2::2
contains those for which B lies vertically above or below C, and 2::3 those for which
C lies vertically above or below A. The advantage of decomposing 2:: in this way is
that each set 2::i can be described explicitly. Indeed, 2::1 contains exactly those points
(A, B, C) E JHI3 for which

YA = YB·

In full detail, 2::1 consists of 9-tuples

(XA' YA, tA; XB, YB, t B;Xc, Yc, to) E lR9

subject to two independent linear constraints

XA - XB = 0

YA - YB = O.

Therefore 2::1 is a 7-dimensional subspace of lR9 , in other words, a subspace of codi­
mension 2. 2::2 and 2::3 are likewise each 7-dimensional subspaces of lR9

• The point is
that it will be possible to analyze the topological properties of the space T = JHI3 - 2::,
because it is really just lR9 with three distinct codimension 2 subspaces removed. For
instance, this remark already shows that T is an open subset of lR9 and therefore
inherits a smooth manifold structure as an open submanifold of Euclidean space lR9

•

4.2 The space of parameters

4.2.1 Description by defining equation

But the space T = JHI3 - 2:: is too large to serve as the moduli space of Heisenberg
triangles. For instance, if 9 : JHI. -----t JHI is an isometry, then the triples (A, B, C)
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and (gA, gB, gC) determine congruent triangles. Up to isometry the triangles are
identical. To account for this, we need to look more closely at the map

p : JHI3 - E -----* lR6

which sends the triangle ABC to its geodesic parameters

where the parameters come from the geodesics /'A, /'B, /'c respectively. The image
of this map will give an alternative description of the moduli space of Heisenberg
triangles, analogous to describing a Euclidean triangle by its side lengths rather than
by the vertices that determine it.

Since the Carnot-Caratheodory distance gives a metric, the Heisenberg side lengths
are strictly positive and satisfy the (non-strict) triangle inequalites

a+b2:c

b+c2:a

and the (-values are in the range

-1f' < (A, (B, (c < 1f'.

Equivalently, we can work with the Euclidean lengths a, b, cof the line segments
connecting the projections ZA, ZB, Zc of A, B, C onto the xy-plane. The Euclidean
lengths are related to the Heisenberg lengths by the expressions

- a -b b _ c
a = O"((A)' = O"((B) , c = O"((c)"

Since the projections ZA, ZB, Zc are distinct, the projected side-lengths are strictly
positive and satisfy the (non-strict) triangle inequalities

a+b2:c

c+ a2: b.
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We proceed to show that in addition to the properties just outlined, the parameters
(a, (A), (b, (B), (c, (0) satisfy a defining equation.

vVe compute the parameters. For /,A

for /'B

for /'0
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From this we obtain

McMaster - Mathematics and Statistics

= 21XB - xA YB - YAI
Xc - xA Yc - YA

We have - when L:::,ZAZBZC is oriented clockwise, and + when L:::,ZAZBZC is oriented
counter-clockwise.

Now L:::,ZAZBZC is a triangle in the xy-plane with sides of length a, b, c. As we
have seen

Therefore the triangle parameters satisfy the equation

We collect these facts in a proposition.

Proposition 4.2.1. Given vertices (A, B, C) E lHI3 - ~, the triangle parameters
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(a, (A), (b, (B), (c, (0) are in the range
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a, b, c > a

satisfy the non-strict triangle inequalities

a + b 2:: c, b+ c 2:: a, c + a 2:: b

and the equation

(4.2.1)

Points in]R6 that satisfy (4.2.1) and the inequalities listed in the above proposition
will turn out to give a description of Heisenberg triangles up to isometry, so we give
a name to the set of such points.

Definition 7. Let T C ]R6 be the space of parameters (a, (A), (b, (B), (c, (0) in the
range

a, b, c > a

satisfying the non-strict triangle inequalities

a + b 2:: c, b+ c 2:: a, C + a 2:: b

and equation (4.2.1)

O,2p,((A) + 62p,((B) + c?p,((o) = ±J(O,2+ 62 + (2)2 - 2(0,4 + 64 + 2:4 )

where a, 6, C are defined as before in terms of (a, (A), (b, (B), (c, (c).

We will show that in fact T provides a description of the moduli space of Heisen­
berg triangles up to isometry in ]HI )<l 80(2). Suppose we are given parameters
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We claim that we can find distinct points A, B, C E lHI no one of which lies vertically
above another, such that 6.ABC has the given parameters (a, (A), (b, (B), (c, (0).

For the construction of such a.. triangle, we will assume that the sign in equation
(4.2.1) is -. This detail shows up below in the fact that the triangle constructed has
clockwise orientation. If the equation had been the + version, the triangle constructed
would have been constructed with counter-clockwise orientation.

To start we observe that a > 0 implies ii = a«(A) > 0, and likewise h, c> O. Also
in order for the right-hand side of equation (4.2.1) to be well-defined, we must have

Recall that this is equivalent to ii, b, csatisfying the non-strict triangle inequalites

ii + h ;:::: c, h+c ;:::: ii, c+ ii ;:::: h.

These preliminary remarks show that, if we could find vertices

corresponding to the specified parameters, then 6.ABC would project to three dis­
tinct points ZA,_ZB, Zo in the xy-plane forming a (possibly degenerate) triangle with
~ide lengths ii, b, c. We will thus use a triangle in the xy-plane with side lengths ii,
b, cas a kind of frame over which to construct the desired triangle.

By choosing the vertex A to be at the origin and the vertex B to be in the yt-plane
with y > 0 we have enough information to compute what the vertices should be and
check that they give the desired parameters. The vertex B must be at (0, C, tB) with
tB such that JL((c) = tBlc2

. Thus B is determined.

Now if a is the angle opposite the side of length ii in a triangle with side-lengths ii,
h, C, then C must project to the point (hsina,hcosa) (the counter-clockwise orienta­
tion of the triangle shows up in this choice for C; clockwise orientation would require
the projection to be (-h sin a, hcos ex)). The vertex C must have JL( -(B) = to Ih2.
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Thus our vertices are

A = (0,0,0)

B = (0, (5, (52f-l((c))
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Then we note that the (-value (BC for the geodesic from B to C satisfies precisely
the same equation

O,2f-l((BC) + lif-l((B) + (52f-l((c) = ±J(O,2+ b2+ (52)2 - 2(0,4 + b4+ (54)

as (A. It follows that (A = (BC and therefore the triangle we have constructed has
the required parameters (a,(A), (b,(B), (c,(c).

Finally, note that if the specified parameters (a, (A), (b, (B), (c, (c) had been such
that the right hand side of equation (4.2.1) was 0, the above construction still goes
through. In this case the triangle ABC projects to a degenerate triangle ZAZBZC where
the vertices are co-linear (but distinct). We summarize these results in a theorem.

Theorem 4.2.2. The parameters (a, (A), (b, (B), (c, (C) associated to a triangle ABC
are in the range

a, b, c > °

satisfy the (non-strict) triangle inequalities

a+b2::c

b+c2::a

c+a2::b

and equation (4.2.1)

O,2f-l((A) + b2f-l((B) + (52f-l((C) = ±J(O,2+ b2+ (52)2 - 2(0,4 + b4 + (54).
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Moreover, given parameters (a, (A), (b, (B), (c, (0) E JR+ x (-'if, 'if) satisfying eq'LLation
(4.2.1) and the non-strict triangle inequalities on a, b, c, there exist vertices A, B, C
such that L::,.ABC has (a, (A), (b, (B), (C, (0) as parameters.

Next we show that if two triangles coming from vertices (A, B, C) and (X, Y, Z)
have identical triangle parameters

then L::,.ABC and L::,.XYZ can be made to coincide by an isometry of IHI.

We do this by showing that both triangles can be made to coincide with the same
"standard" triangle. A standard triangle refers to a triangle with first vertex at 0,
second vertex in the yt-plane with y > 0, and third vertex arbitrary.

Any triangle' ABC can be mapped by isometries to such a triangle. We first left­
translate by A-1 to put the vertex A at the origin, and then rotate until the vertex
B hits the yt-plane with y > O. (Although L::,.ABC is specified by three fixed vertices
A, B, C sometimes we continue to refer to a translated vertex by the same label as
the original vertex, and imagine the vertex moving through IHI.)

By looking at the "frame triangle", the triangle ZAZBZO in the xy-plane to which
L::,.ABC projects, we will be able to see that in fact the standard triangle with
which L::,.ABC is congruent is unique and depends only on the triangle parameters
(a, (A), (b, (B), (c, (0).

To see this,'note that since the two sets of triangle parameters are identical, they
satisfy the defining equation (4.2.1) with the same sign, + or -. This means that their
respective frame triangles have the same orientation, counter-clockwise or clockwise.
The frame triangles clearly have the same side-lengths as well

a x c

Therefore the frame triangles of the two triangles are congruent and have the same
orientation. Mapping the triangles to their respective standard triangles then causes
the frame triangles to coincide. Thus each triangle ABC, XYZ is congruen! to a
standard triangle built out of geodesics over a frame with side lengths a= x, b = y,
c = z. Moreover, the geodesics above each frame side have identical parameters
(A = (x, (B = (y, (0 = (z.
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This shows that once mapped to standard triangles, the projections of A, B, C
must coincide with the projections of X, Y, Z respectively. Just as in the construction
of a triangle given fixed parameters, the respective t coordinates are determined. We
have

and similarly tc = tz .

For the converse, if g is an isometry in the component lHI)<J 80(2) of Isom(lHI), then
the vertices (A, B, C) and (gA, gB, gC) determine triangles with identical parameters,
since arc-length and (-values are preserved by such isometries.

Theorem 4.2.3. The triangles ABC and XYZ are congment by an isometry in
lHI )<J 80(2) if and only if their triangle parameters are identical

4.2.2 Moduli spaces for ordered Heisenberg triangles

With these results in hand, we can describe the moduli space of all possible trian­
gles in the Heisenberg group in terms of the space of parameters. vVe know that to each
triangle (A, B, C) E lHI3 - 2:: there correspond parameters (a, (A), (b, (B), (c, (c) in the
image T ofp. Conversely we know that to each set of parameters (a, (A), (b, (B), (c, (c)
in the image T of p there exist vertices (A, B, C) forming triangles with those parame­
ters. Moreover, the triangles determined by the vertices (A, B, C) and (X, Y, Z) have
the same parameters if and only if they are congruent by an isometry in ]HI )<J 80(2).
These remarks give the following.

Theorem 4.2.4. The map p factors through the quotient space obtained by identifying
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congruent triangles

p
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T C IR6

! /
]HI )<] 80(2) \ (]HI3 - E)

where the map j5 is a continuous bijection.

Proof. Notice that by theorem 4.2.3 the effect of the ]HI )<] 80(2)-action on ]HI3 - E is
precisely to identify those triples (A, B, C) with the same image under p. Thus j5 is
injective, and j5 is continuous and surjective because p is continuous and surjective.

o

In section 4.2.3 we will compute the rank of p and conclude that p : ]HI3 - E ------t T.
is an open map. Therefore j5 will actually give a homeomorphism between the two
characterizations of the space of Heisenberg triangles up to congruence by isometry
in]HI )<] 80(2)

To discuss the space T in the context of moduli space theory, we now give one
possible definition of a family of ordered, oriented Heisenberg triangles. A few remarks
are necessary to motivate the definition.

First, the space T characterizes ordered Heisenberg triangles up to isometry in
]HI )<] 80(2), so the space T distinguishes between congruent triangles with opposite
orientation. The definition of a family will have to be compatible with this. Second,
recall that in the Euclidean case we took fibres X s to be isometric to a Euclidean
triangle, where a Euclidean triangle was viewed as a 2-dimensional subspace of the
plane IR2 . A Heisenberg triangle cannot be filled in the way a Euclidean triangle can.
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So for this definition we view a Heisenberg triangle with vertices (A, B, C) as the
union 'YAU 'YE U'Yo of its geodesic sides. The triangle 'YAU'YE U'Yo C IHI then becomes
a metric space with the metric indnced from the Carnot-Caratheodory metric on the
ambient space IHI.

Definition 8. For a topological space 8, a family of ordered Heisenberg triangles over
8 is a s'llbspace X C 8 x IHI such that

(1) projection onto the first coordinate is a (continuous, proper) fibre bundle
projection

(2) each fibre X s = p-l(S) is (after projection onto the second coordinate) a
Heisenberg triangle 'YA U 'YE U 'Yo C IHI

(3) there is an ordered triple of sections A, B, C : 8 ---t X which specify the
vertices A(s), B(s), C(s) of each fibre X s .

Morphisms between families are defined just as for ordered E'llclidean triangles, except
that isometries between fibres m'llst be in IHI XI 80(2).

A universal family U ---t T is the subspace U c T x IHI with fibre over the point
(a, CA, b, eE, c, Co) E T equal to the Heisenberg triangle 'YA U 'YE U 'Yo determined
by the vertices (A, B, C) of the unique standard triangle having the parameters
(a, CA, b, CE, C, Co). The space T is therefore a fine moduli space for ordered Heisenberg
triangles up to isometry in IHI XI 80(2).

To complete the classification up to isometry in the full group of isometries
1som (IHI) = IHI XI 0(2) we use the decomposition

1som(IHI) = (IHI XI 80(2)) U r (IHI XI 80(2))

where r is the involution isometry

(x, y, t) f---7 (x, -y, -t).

Now the transformation of a triangle (A,B,C) to the triangle (rA,rB,rC) has
the effect on parameters
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Hence allowing the full group of isometries to act on the space of vertices T = lHI3 - ~
has the effect on T of taking the quotient by the identification

The definition of a family of ordered Heisenberg triangles over a topological space
S is unchanged, except that now morphisms are allowed to restrict to orientation
reversing isometries on fibres, i.e., isometries can come from the full group lHI)<J 0(2).
The universal family U' is now over the quotient space of T by rv, with fibre over the
point [(a, (A, b, (B, c, (c), (a, -(A, b, -(B' C, -(c)] coming from the unique clockwise
oriented standard triangle having the specified parameters. Again we obtain a fine
moduli space.

Since we have characterized the moduli space of Heisenberg triangles in terms of
the image of the map P, we take a closer look at the properties of this map.

4.2.3 Manifold structure of the parameter space

For a triple
(XA' YA, tA; XB, YB, t B; Xc, Yc, tc) E lHI3 - ~

we obtain the geodesic parameters by the functions

with analogous functions giving b, (B, C, (c. The first step will be to determine the
rank of p. To do so, we decompose p into successive transformations.

The first transformation is Pl : ]R9 ----l- ]R6 which sends

XA,YA, tA;
XB, YB, tB;
Xc, Yc, tc

( (xc - XB)2 + (Yc - YB)2, tc - tB - 2(XCYB - YCXB)
f----+ (XA - XC)2 + (YA - Yc)2, tA - tc - 2(XAYC - YAXC)

(XB - XA)2 + (YB - YA)2, t B - tA - 2(XBYA - YBXA) ).

This is the key component of the transformation. The remaining maps P2, P3, P4, Ps
will map ]R6 ----l- ]R6 and have the full rank 6 on their domains. Below we express the
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maps in coordinates; the letters used for the coordinates are meant to be descriptive,
but the reader should remember that they are really just Euclidean coordinates. The
maps are:

P2 : ]R6~ ]R6 which sends

P3 : ]R6~ ]R6 which sends

P4 : ]R6~ ]R6 which sends

P5 : ]R6~ ]R6 which sends

Observe that indeed P = P5P4P3P2Pl. We look first at the differentials of the maps
P2, P3, P4, P5 in turn, leaving PI for last because the discussion will take substantially
longer.

For P2 we have
1 -tl a a a aD2

a l a a a aDl
a a 1 -t2 a a

DP2 = D5
a a a 1 a 0D2
a a a 0 1 -t3

J52
a 0 a 0 0 1

3

D3

Now DP2 has rank 6 on the image of H3 - I: under PI, because that is precisely where
each Di =I=- O. (In fact Pl(H3 - I:) C ]R6 is precisely the domain of P2.)
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For P3 we have
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1 0 0
o (p,-1 )'(A1) 0
o 0 1
o 0 0
o 0 0
o 0 0

o 0
o 0
o 0
o 0
1 0
o (p,-1)'(A3)

where the rank is 6 because p,-l : ]R. ---7 (-'if, 'if) has strictly non-zero derivative.

For P4 we have
1 0 0 0 0 02VD1
0 1 0 0 0 0
0 0 1 0 0 0

DP4= 2VJ52
0 0 0 1 0 0
0 0 0 0 1 02VJ53
0 0 0 0 0 1

where the rank is 6 because, as we have seen, we have each D i i= 0 on our domain.

For Ps we have

0-((1) 0 0 0 0 0
o-'((1)d1 1 0 0 0 0

Dps =
0 0 0-((2) 0 0 0
0 0 0-'((2)d2 1 0 0
0 0 0 0 0-((3) 0
0 0 0 0 0-'((3)d3 1

where once again the rank is 6 because each 0-((i) 2': 1.

Thus we have Dp = DpsDp4DP3Dp2Dp1 where the matrices DP2, DP3, DP4, Dps
are each 6 x 6 matrices with rank 6 and consequently are invertible. Thus for the two
linear transformations

DP1 : ]R.9 ---7 ]R.6

we find that the dimension of the image of Dp equals the dimension of the image of
DP1, that is, the rank of Dp equals the rank of Dp1.
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At last we consider the differential of the map Pl. The matrix DP1 is

0 0 0 -2(xc - XB) -2(yC -YB) 0 2(xc - XB) 2(yC - YB) 0
0 0 0 2yc -2xc -1 -2YB 2XB 1

2(XA - xc) 2(YA -YC) 0 0 0 0 -2(XA-XC) -2(YA -YC) 0
-2yc 2xc 1 0 0 0 2YA -2XA -1

-2(XB - XA) :"-2(YB -YA) 0 2(XB - XA) 2(YB - YA) 0 0 0 0
2YB -2XB -1 -2YA 2XA 1 0 0 0

It is not as bad as it looks. We label the rows

DpI ~ [1J GE ~"
and show first that the rows are not independent, and therefore that the rank of the
matrix is strictly less than 6. We do this by showing that the equation

aT1 + A1r2 + {3~ + A2T4 +1'r5 + A3r6 = 0

has a non-trivial solution for real scalars a, A1, {3, A2, 1', A3.

If such a solution was found, then by looking at the 3rd, 6th, and 9th components
of this vector equation, it would be apparent that A1 = A2 = A3. Thus a non-trivial
solution exists if and only a non-trivial solution exists for the equation

aT1 + Ar2 + {3T3 + AT4'+ 1'r5 + ATB = O.

In this form, the 3rd, 6th, and 9th components of the vector equation merely telllls
o = 0, but the remaining six components give us a system of six equations in four
unknowns a, {3, "(, A:

(4.2.2)

(4.2.3)

(4.2.4)

(4.2.5)

(4.2.6)

(4.2.7)
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But in this system

(3) + (5) = -(1)

(4) + (6) = -(2)
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so that the system reduces to just equations (3), (4), (5), (6), four equations in four
unknowns:

We set up the 4 x 4 matrix for this system, and embark on a determinant calcu­
lation. We temporarily adopt the notation

XCB = Xc - XB, etc.

The matrix is

[

-XCB

.NI = -YCB

xCB

YCB

But we have the relations

o XBA

o YBA

-XAC 0
-YAC 0

-YAC]
xAC

-YBA

xBA

= -XA + XB - xB + Xc = XBA + XCB

= -YA + YB - YB + Yc = YBA + YCB
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so the matrix becomes
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r

-XCB

NI = -YCB

xCB

YCB

o
o

XBA + XCB

YBA +YCB

XBA YBA + YCB :
YBA -XBA - XCB

o -YBA

o XBA

For the determinant) we expand along the third column:

-YCB

det NI = (XBA) XCB

YCB

-XCB

- (YBA) XCB

YCB

o
XBA +XCB

YBA +YCB

o
XBA +XCB

YBA +YCB

-XBA - XCB

-YBA

XBA

YBA + YCB

-YBA

xBA

Expanding along the top row in Nh

det NIl = (-YCB) IXBA + XCB -YBAI + (-XBA _ XCB) IXCB XBA + XCBI
YBA + YCB XBA YCB YBA + YCB
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Expanding along the top row in lVI2

det lVI2 = (-XCB) IXBA + XCB -YBAI + (-YBA _ YCB) IXCB XBA + XCB I
YBA + YCB XBA YCB YBA + YCB

2 2+ XCBYBA - XBAYCBYBA + XCBYCBYBA - XBAYCB

Then

= O.

Therefore there exist non-trivial solutions ex, fJ, " A to the equation
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We conclude that the rows of DPl are dependent, and therefore that the rank of DPl
is strictly less than 6.

Now we show that the rank is 5. Indeed, the first foW rows of DPl are independent.
If f5 cannot be expressed as a linear combination of the first four rows, the first five
rows are independent and we are done. Otherwise suppose that f5 can be expressed
as a linear combination of rl, T2, f3, f4. We will show that in this case, f6 cannot be
expressed as a linear combination of the first four rows.

So now supposing that r5 can be expressed as a linear combination of rl, T2, is!, f4,
then by looking at the 3rd and 6th columns of DP1, we can see that the coefficients
of T2, f4 must be o. Thus we would have

The components of this vector equation yield six equations (nine actually, but three
are 0 = 0):

But notice that the first and third equations above imply the fifth, and the second
and fourth equations imply the sixth, so that the system is equivalent to just the four
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(4.2.8)

(4.2.9)

(4.2.10)

(4.2.11)

Recall that PI is defined on the domain lHI3 -~. On this domain (XA' YA) =I- (XB, YB).
This fact and equations (1) and (2) together imply that f3 =I- O. Likewise a =I- O.

With a, f3 =I- 0, we can see from equation (1) that XA - Xc = 0 if and only if
XB - XA = 0, and from equation (3) that XB - XA = 0 if and only if Xc - XB = O.
Therefore XA, XB, Xc are either all equal or all distinct. Note that when the x's are
equal the y's must be distinct in order for the points A, B, C to be distinct.

Likewise from (2) we have YA - Yc = 0 if and only if YB - YA = 0, and from (4) we
have YB - YA = 0 if and only if Yc - YB = O. Therefore YA, YB, Yc are either all equal
or all distinct. Note that when the y's are equal the x's must be distinct in order for
the points A, B, C to be distinct.

There are thus three cases:

(i) XA = XB = Xc

(ii) YA = YB = Yc

(iii) XA, XB, Xc are distinct, and YA, YB, Yc are distinct.

Case (i): XA = XB = Xc and the y's are distinct. Then the rows PI, 7~, is, f4 are

( 0 0 0 0 -2(yc - YB) 0 0 2(yc - YC) 0 )
( 0 0 0 2yc - 2xc -1 -2YB 2XB 1 )
( 0 2(YA - Yc) 0 0 0 0 0 -2(YA - Yc) 0 )
( -2yc 2xc 1 0 0 0 2YA -2XA -1 )
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and the sixth row f6 is
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If f6 were to be expressed as a linear combination of Tl, is, is, T4, it is apparent from
the 3rd and 6th columns that the coefficients of T2 and T4 must both be -1. But then
the 1st column tells us that 2yc = 2YB, contradicting that the y's are distinct. Thus
f6 cannot be expressed as a linear combination of the four independent vectors Tl' is,
is, T4 and therefore the rank of the matrix DPl is 5.

Case (ii): YA = YB = Yc and the x's are distinct. Then the rows Tl' is, is, T4 are

( 0 0 0 -2(xc - XB) 0 0 2(xc - XB) 0 0 )
( 0 0 0 2yc - 2xc -1 -2YB 2XB 1 )
( 2(XA - xc) 0 0 0 0 0 -2(XA - xc) 0 0 )
( -2yc 2xc 1 0 0 0 2YA -2XA -1 )

and the sixth row f6 is

Once again the vectors Tl' T2, is, T4, f6 are independent and the rank of the matrix
DPl is 5.

Case (iii): the x's are distinct, and the y's are distinct. We can now solve for a
in equations (3) and (4), and for (3 in equations (1) and (2). We have

YA -YB

Yc -YB

(3 = XB - XA = YB - YA.
Xc - XA Yc - YA

This is equivalent to

Yc - YB = YA - YB = k
Xc - XB XA - XB

Yc - YA = YB - YA = k.
Xc - XA XB - XA
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Note that k -# 0 because the y's are distinct. Incidentally, these equations say that
(XA,YA), (XB,YB), (xc,Yc) are colinear. Using the above relations involving the
constant k, we write out the rows Ti, r2, f3, f4:

o
o

2(XA - xc)
-2yC

o 0
o 0

2k(XA-XC) 0
2xc 1

-2(xC - XB).. -2k(xc - XB)
2yc -2xc
o 0
o 0

o
-1
o
o

2(xC - XB)
-2YB

-2(XA - xc)
2YA

2k(xc - XB)
2XB

-2k(XA - xc)
-2XA

o
1
o
-1

and the sixth row f6 is

( 2YB -2XB -1 -2YA 2XA 1 0 0 0 ).

As before, if r6 were to be expressed as a linear combination of r1, '12, f3, f4, it is
apparent from the 3rd and 6th columns that the coefficients of f2 and f4 must both
be -1. And then if

the first column tells us

2V(XA - xc) + 2yc = 2YB or V = -'-Y_B_----=-Y_C
XA -xc

while the second column tells us

1 Xc - XB
2vk(XA - xc) - 2xc = -2XB or V = k

XA -xc

Equating the expressions for v gives

XC-XB

Yc -YA

YB -Yc

XA -xc

Xc -XB

Yc -YA

Yc - YB Xc - XA
or =----

Xc - XB Yc - YA

1
or k =--

k

or k2 = -1

a contradiction.

Thus we have:
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Proposition 4.2.5. The rank of DPI is 5 everywhere on its domain.

Corollary 4.2.6. The rank of Dp is 5 everywhere on its domain.

The Rank theorem (theorem 1.1.5) now gives the following:

Theorem 4.2.7. The mod'uli space of Heisenberg triangles) represented as the space
of parameters

is a 5-dimensional manifold.·

Moreover

Theorem 4.2.8. We have the homeomorphism

Proof By theorem 4.2.4 the map j5 : H )<l SO(2)\(H3
- 2:) ~ T is a continuous

bijection. In fact since p is a rank 5 mapping into the 5-dimensional manifold T, p is
an open map. It follows that j5 is an open map, i.e., that j5-1 is continuous.

o
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4.2.4 Fibre bundle structure of the map p

We have the commutative diagram showing the factorization of the map p

p

T C JR6

lHI ><I 30(2) \ (lHI3 - ~)

where j5 is a homeomorphism.

We will use facts about proper group actions to see that the quotient map

has a fibre bundle structure, and therefore that the map

likewise has a fibre bundle structure. Our first goal is to show that lHI ><I 30(2) acts
properly on the space of vertices lHI3 -~. vVe decompose this action into two stages,
first the action of the group lHI of left-translations on the vertices, and second the
action of the group 30(2) of rotations on the vertices. Once we have shown that the
successive group actions of

30(2) on lHI\ (lHI3 - ~)

are proper we can conclude that the composition of these two actions is proper (the
composition of proper group actions is proper). But first we must check that the
successive action of lHI and then of 30(2) is the same as the action of lHI ><I 30(2), i.e.,
that

30(2)\lHI\(lHI3 -~) = lHI ><I 30(2)\(lHI3
- ~).

In fact it is not even immediately apparent that the action of 30(2) on lHI\ (lHI3 - ~)

is well-defined so we check this first, with the help of the next proposition.
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Proposition 4.2.9. Suppose the points A, B E H are separated by the left-translation
V E H, so that if V = (u,v,s) then

A=(x,y,t)

B=VA= (u+x,v+y,s+t-2(uy-vx)).

Then for 0 :::; <p :::; 21f the rotated points RepA, RepB are separated by the left-translation

RepV = (u cos <p - v sin <p, 'n sin <p + v cos <p, s).

In partic'ular, the displacement between the rotated points RepA, RepB depends only on
the rotation Rep and on the displacement V between the original points A, B and not
on the precise location of A and B in H.

Proof. The result follows from a routine calculation. The rotated points are

RepA = (x cos <p - y sin <p, x sin <p + y cos <p, t)

RepB = ((u + x) cos<p - (v + y) sin<p, (u + x) sin<p + (v + y) cos<p, s + t - 2(uy - vx)).

To find the displacement from RepA to RepB one calculates RepB(RepAfl. The result
is the displacement vector RepV as stated.

o

We remark that by looking only at the first two coordinates, the above proposition
proves an analogous result for points in IR2 or C where displacement is just the usual
vector addition. In this setting, however, the reader would likely accept a "proof" by
visualization.

Proposition 4.2.10. The action of 80(2) on H\ (H3
- L:) induced by

for 0 :::; <p :::; 21f and (A, B, C) E H3 - I: is well-defined.
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Proof. A point in H\ (H3-2:) is an equivalence class oftriples mutually related by left­
translation. Suppose then that we have two representatives of the same equivalence
class

[(A,B,C)] = [(XA,XB,XC)]

where (A, B, C) E H3 - 2: and X E H. A group element Rrp E 80(2) has the effect

But by proposition 4.2.9 the displacements between RrpA and RAXA) , between
RrpB and Rrp (XB), and between RrpC and Rrp (XC) are all equal to RrpX. Therefore
[(RrpA, RrpB, RrpC)] and [(Rrp(XA) ,Rrp(XB) ,Rrp(XC))] are equal in H\ (H3- 2:) and
the 80(2)-action is well-defined.

o

Proposition 4.2.11. The composite action 80(2) a H on H3 - 2: and the action of
H)<l 80(2) on H3 - 2: have identical orbits. Therefore

80(2)\H\ (H3 - 2:) = H )<l 80(2)\ (H3 - 2:).

Proof. If the triples (A, B, C) and (P, Q, R) are identified under the composite group
action of 80(2) and H it means that some translate of (A, B, C) and some translate
of (P, Q, R) are related by a rotation, for example

Ra Va (A,B,C) = ltV a (P,Q,R)

for V, WE Hand R E 80(2), whereupon (P, Q, R) = ltV-1 aRa Va (A, B, C) so that
(A, B, C) and (P, Q, R) get identified under the H )<l 80(2)-action on H3 - 2:.

Conversely suppose the triples (A, B, C) and (P, Q, R) are related by an isometry
9 E H)<l 80(2). The left-translations and the rotations generate H )<l 80(2) so that
9 can be written as a finite sequence 9 = 9192 ... 9n where each 9i is in either H or
80(2) so that

(A, B, C) = 9192··· 9n(P, Q, R).

If 9n E H then the points (P, Q, R) and (9nP, 9nQ, 9nR) get identified by the H­
action and the problem is reduced to showing that (A, B, C) and (9nP, 9nQ, 9nR) get
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identified, with strictly fewer isometries relating the triples. If gn E 80(2) then the
equivalence classes [(P, Q, R)] and [(gnP, gnQ, gnR)] get identified by the 80(2)-action
and the problem is once again reduced to showing that (A, B, C) and (gnP, gnQ, gnR)
get identified, again with strictly fewer isometries relating the triples. vVe continue
in this fashion to verify that (A, B, C) and (P, Q, R) get identified.

D

Below we list the definitions and facts we need, cited from [3].

Definition 9. Let f : X ~ Y be continuous. f is said to be proper if for every
space Z the map (x, z) f---+ (j(x), z) from X x Z ~ Y x Z is closed.

Proposition 4.2.12. Let f : X ~ Y be continuous and injective. Then f is proper
if and only if f is closed.

Definition 10. Let the group G act on the space X. G is said to act properly on X
if the map (g, x) f---+ (gx, x) from G x X ---+ X x X is a proper map.

Definition 11. A group G acts freely on the space X if gx = x =} g = e whenever
g E G,x EX.

From this we can see that when G acts freely on X the map (g, x) f---+ (gx, x) is
automatically injective. Indeed, (gx, x) = (hy, y) implies x = y whereupon gx = hx
implies h-lg = e so that g = h. Therefore in the case of a free group action, one need
only show that the map (g, x) f---+ (gx, x) is closed in order to conclude that G acts
properly on X.

The group JHI acts on the space of vertices T = lHI3 - L; by the rule

Go (Pl, P2 , P3 ) = (GP1 , GP2 , GP3 ) for G E lHI, (Pl , P2 , P3 ) E T.
The operation is just to left-translate each vertex by G, and so is a free group action.
The group operation induces the map

f-l:lHIxT---+TxT

defined by
(G, P) f---+ (GP, P).
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We claim that p, is a closed map. Suppose we are given a sequence

that converges in TxT, where A c H x T is a closed set. Now

(GiPi , Pi) - (R, P) E TxT.
VVe will show that in fact (R, P) is also in the image of A under p,. Thus p,(A) is
closed.

The following notation is cumbersome but necessary. Let

and let

P = (Pl , P2, P3) = (Xl, Yl, t l ; X2, Y2, t2;X3, Y3, t3).

Now since (GiPi , Pi) - (R,P) we have in particular that Pi - P and therefore
that Pil - Pl , Pi2 - P2, Pi3 - P3. From these three we see that

Next we introduce notation for the G/s

Gi = (xGp YGi' tGi)

so that we can write out
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And now from the fact that

McMaster - Mathematics and Statistics

and looking only at the first triple of co-ordinates in this limit, we can deduce that

We then immediately have

and moreover

81 = lim tG· + til - 2(XG·Yil - YG·Xil). t t t
1,---+(X)

= .lim tGi + t l - 2(UlYl - VlXl)
t--->oo

or equivalently

.lim tGi = 81 - t l + 2(UlYl - VlXl)
t--->oo

Thus

.lim Gi = (Ul - Xl, VI - Yl, 81 - t l - 2(Ul(-Yl) - Vl( -Xl)))
t--->oo
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Likewise looking at the second and third triples in the limit GiPi ----t R we obtain

lim Gi = R2P;;1
2->00

.lim Gi = RaPa-
1

.
2->00

Therefore we can define

G := .lim Gi = R1P1-
1 = R2P2-

1 = RaPa-
1

.
2->00

But now (Gi ,Pi) ----t (G,P), so that (G,P) E A because A is closed. Then

= (R,P)

so that (R, P) E p,(A).

In summary, if for closed A a sequence {(GiPi ,Pi)}~l c p,(A) converges to a limit
in TxT, then the limit is actually in p,(A). Hence p,(A) contains all its limit points
and is therefore closed. We thus have

Theorem 4.2.13. The group lHI acts properly on the space lHI x lHI x ]HI - I;.

The second group action consists of the rotations 80(2) acting on the quotient
space

obtained from the first group action. We do not need to work directly with this group
action, because we can use another proposition from [3].

Proposition 4.2.14. Let K be a compact group operating contimwusly on a Ha'us­
dorff space X. Then K operates properly on X.

vVe thus have

Corollary 4.2.15. The group 80(2) acts properly on the space lHI\(lHIa - I;).
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The composition of these two group actions on H 3 - I;, first by left-translations
H and then by rotations 80(2), is the same as the action of the group H ><I 80(2) of
isometries generated by the left-translations and the rotations. Since the composition
of proper group actions is again proper (see [3]), we conclude:

Theorem 4.2.16. The action of the group H ><I 80(2) on the space of vertices T =
H3 - I; is a proper group action.

At this point we would like to use the characterization of smooth principal bundles,
which we cite from [6]:

Theorem 4.2.17. Let P be a smooth manifold, H a Lie gr01Lp, and f-L : P x H --7 P
a smooth, free, proper right action. Then

(i) P / H with the quotient topology is a topological manifold (dim P / H = dim P­
dim H),

(ii) P / H has a unique smooth structure for which the canonical projection P --7

P / H is a submersion,

(iii) ~ = (P, 1f, 1\11, H) is a smooth principal right H bundle.

In the notation of the theorem 1\11 = P / Hand 1f : P ~ 1\11 is the canonical
projection. There is one technical issue. We have worked with the action of H><I 80(2)
on H 3 - I; as a left group action. However in general if a group G acts on a set X by a
left group action f-LL : G x X ~ X, we can define a right group action f-LR : X x G ~ X
by the rule

for x E X and g E G. The two group actions have identical orbits so that the quotient
maps X ~ G\X and X ~ X/G are identical maps, and it is straightforward to check
that when f-LL is smooth, free, and proper so is f-LR. We can therefore use theorems
4.2.16 and 4.2.17 to conclude:

Theorem 4.2.18. The map p : H 3 - I; --7 T is a smooth principal right H ><I 80(2)
bundle.
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Note that we have already directly demonstrated some facts we could conclude
from theorem 4.2.17, for instance that T is a 5-dimensional smooth manifold.

4.2.5 A cross-section for the bundle p : IHI3 - ~ ---+ T

We thus have the principal fibre bundle

p : !HI3 - I; -----* T C ]R6

with structure group !HI )<] 30(2). A 6-tuple

in the parameter space corresponds to the equivalence class p-l (a, (A, b, (B, C, (0) con­
sisting of triangles congruent to one another by an isometry in !HI)<] 30(2) and having
the given parameters. We now describe a way to choose a well-defined representa­
tive from each such equivalence class in a continuous fashion. That is, we define a
continuous map

s : T -----* !HI3 - I;

such that po s = idT . For q E T the pre-image p-l(q) is called the fibre over T. Note
that the condition po s = idT really just says that for each q E T we have s(q) in the
fibre over T. Such a map is called a cross-section for the bundle p : !HI3 - I; -----* T.

The construction of the map s is straightforward. From the equivalence class
p-l(a,(A,b,(B,C,(O) of triangles congruent by an isometry in!HI)<] 30(2) we choose
the unique representative with first vertex A at the origin and second vertex B in the
yt-plane with y > O. Recall that we call triangles of this form standard triangles and
that every triangle is congruent by an isometry in !HI )<] 30(2) to a unique standard
triangle.

To see continuity of the map s we can compute the coordinates of the map directly.
In a Euclidean triangle with side lengths

- b
b=--

(J((B)

let a E [0, 'if] be the angle opposite the side ii

b2 + (';2 _ ii2
cos a = ---=---

2b(';
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If the standard triangle ABC is to project to a Euclidean triangle with side-lengths
a, b, cthen we must have projections ZA, ZB, Zc with coordinates

ZA = (0,0)

ZB = (0, c)

Zc = (bsina,bcosa).

Now we just choose a height tB so that the geodesic from A to B has the correct
value (c

and a height tc so that the geodesic from C to A has the correct value (B

(note we have the - sign becallse the geodesic goes from C to A). The map s is
therefore given in coordinates by

and the continuity of the map is clear.

4.3 Topology of the moduli space

vVe start with the space of vertices

IHI3 - I::

and successively apply group actions by IHI

and by 80(2)
80(2)\ (IHI\ (IHI3 - I::))

to obtain the moduli space T of Heisenberg triangles up to isometry in IHI Xl 80(2).
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We can additionally let the group R = {1, r} act on T where r is the standard
involution to get

R\T

the moduli space of Heisenberg triangles up to isometry in the full group of isometries
IHI ~ 0(2).

We proceed with results towards computing the homotopy and homology of the
spaces T and R\T.

Proposition 4.3.1. The space IHI3 - E is homotopy equivalent to the space

where

Proof. The map

gives a homeomorphism IHI3 - E ~ (<C3 - E') X JR3, and (<C3 - E') X JR3 is homotopy
equivalent to <c3 - E' since each JR factor is contractible. 0

Note that this means that the fundamental group of the space of vertices 1fl(IHI3-
E) = 1fl(<C3 - E') is the pure braid group P3 on 3 strands. See, for example, [2].

Now on the space IHI3 - E we have the action of the group IHI of left-translations
and on the space <c3 - E' we have the action of the group <C of translations. If we look
merely at the x- and y-coordinates of a triple (A, B, C) E IHI3- E we observe that the
action of a group element (z, t) E IHI is merely to translate the projections ZA, ZB, Zc

ZB f----t Z + ZB Zc f----t Z + zc.

Observe that the effect of the homotopy equivalence IHI3- E ~ <c3- E' is precisely to
ignore the t-coordinate and thereby identify triples (A, B, C) and (P, Q, R) for which
the projections (ZA, ZB, zc) and (zp, ZQ, ZR) are equal. vVe thus obtain a commutative
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~

IBI3 - ~ <c3 - ~!.

t t
~

IBI\ (IBI3 - ~) -------;:.. <C\(<C3 - ~/)

where the homotopy equivalence across the bottom of the diagram comes once again
from ignoring the t-coordinates.

Proposition 4.3.2. The space <C\ (<C3 - ~/) is homeomorphic to the space

<c2
- £1 U £2 U £3

where

Proof. Under the group action of <C on <c3 - ~' acting by the rule

The map
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then induces a homeomorphism from C\ (C3
- ~/) to C2

- L l U L2 U L3 .

Indeed (ZI-Z3,Z2-Z3) = ('Wl-'W3,'W2-'W3) ifandonlyifzl -'Wl = Z2-'W2 = Z3-'W3

so that <P maps two triples (ZI' Z2, Z3), (WI, 'W2, 'W3) to the s.f;\:me image if and only if
they are in the same orbit under the C-action. Moreover (z, 'W) with z =/: 'W, Z =/: 0,
and 'W =/: 0 is the image of the point (z, 'W, 0) so that <P is surjective.

o

Proposition 4.3.3. The space C2 - L l U L 2 U L3 is homotopy equivalent to

3 3
- L l U L2 U L3

where 3 3 is the 3-sphere viewed as a subspace of c2
.

Proof. Notice that the origin 0(0,0) is not in C2 - L l U L 2 U L3 . Now C2
- 0 can

be identified with ]R4 - 0 which contracts onto the 3-sphere 3 3 . This contraction
restricted to C2

- L l U L2 U L3 then gives a homotopy equivalence

((:2 _ L l U L2 U L3 ~ 33 - L l U L 2 U L 3

where on the right-hand side L i means L i n 33 .

o

Now we add the action of the rotations 30(2) on H\(H3 - ~). We identify 30(2)
with the unit circle 3 1 c C to obtain another commutative diagram

30(2)\(H\(H3- ~))

105



M.Sc. Thesis - Christopher Cappadocia McMaster - Mathematics and Statistics

where the action of 8 1on «=\(<<=3 - ~/) is induced by the action

Z 0 (Z1l Z2) Z3) = (ZZ1) ZZ2, ZZ3)

of 8 1on «=3 - ~/. The action of 80(22. on lHI\(lHI3- ~) is (as we have seen) likewise
induced by the action

of 80(2) on lHI3 - ~ so it is apparent that the diagram is commutative.

We continue with the above commutative diagram and extend it to the right with

~

«=\(<<=3 _ ~/) «=2 - L 1 U L 2 U L 3

1 !
-

81\(<<=\(<<=3 - ~/)) -------.... 81\ (<<=2 - L 1 U L 2 U L 3 )

using the homeomorphism from proposition 4.3.2 and yet further to the right with

':::'

«=2 - L 1 U L 2 U L 3 83- L 1 U L 2 U L 3

1 !
':::'

8 1\(<<=2 - L 1 U L 2 U L 3 ) -------.... 8 1\(83- L 1 U L 2 U L 3 )

using the homotopy equivalence from proposition 4.3.3. Following along the bottom
of the diagrams the conclusion is

Proposition 4.3.4. The mad'uli space of Heisenberg triangles

80(2) \(lHI\ (lHI3 - ~))
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is homotopy equivalent to the space
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where

We view 8 3 as a subspace of <C2 and the action of 8 1 on 8 3 - L 1 U L 2 U L 3 is given by

A0 (w, z) = (Aw, AZ)

4.3.1 The Hopf map

Next we use a famous construction called the Hopf map to produce a homeomor­
phism 8 1\83

----t 8 2
.

Definition 12. For

we define the Hopf map p : 8 3
----t 8 2 by

p(w,Z) = (lwl2 -lzI2,2Re(wz),2Im(wz)).
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1. Then

McMaster - Mathematics and Statistics

Observe next that for any A E 8 1 C <C we have

p(AW, AZ) = p(w, z).

Moreover we have the following:

Proposition 4.3.5. Suppose that for (w, z) and (~, TJ) in 8 3 we have p(w, z) = p(~, TJ).
Then

(w, z) = (A~, ATJ)

for some A E 8 1 C <C.

Proof. From the second and third coordinates of the map p we obtain the equalities

2Re(wz) = 2Re(~7j)

2Im(wz) = 2Im(~7j).

It follows that wz = ~fj.

From here it is straightforward to account for all possibilities where one of w, z,
~, TJ is O. For example z = a forces Iwl = 1 = I~I and TJ = a so that the pairs (w, 0)
and (~, 0) are indeed related in the desired manner. We thus address the case where
w, z, ~, TJ are all non-zero.

Then

or
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Our goal is to show that IAI = 1. Now from these we have the four equations

Multiplying the second equation on the left by IAI2and subtracting the first equation
we obtain

(IAI 4 -1)lzI2= IA12-1
and similarly on the right we obtain

If IAI = 1we are done. Otherwise we can cancel the quantity IAI2- 1and solve to
obtain

2 1
Izi = IAI2 + 1

whereupon

But now from the first coordinate of the map p we use Iwl2- Izl2= 1~12 - 1'1712or
Iwl2+ 1'1712= 1~12 + Izl2to get

2

contradicting the assumption that IAI2f: 1. We conclude that IAI = 1. Finally we
already have w = A~ and then

'ij = Xz ::::} '17 = AZ

1
::::} Z = ='17 = A'17

A

because A has modulus 1.

D
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Proposition 4.3.6. The Hop! map is surjective.
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Proof. This can be checked directly. Suppose (x, y, t) E 8 2 with x =I=- 1. vVe want to
fiiid (w, z) E 8 3 such that p(w, z) = (x, y, t) and by taking advantage of the symmetry
p(w, z) = p(AW, AZ) for A E 8 1 we may assume Z is real, in fact strictly positive. With
this restriction it is routine to compute the solution

(
y t. ~)

(w,z) = J2vr=-x + J2vr=-x2'V~-2-

and check that p(w, z) = (x, y, t). For the case x = 1 we can take (w, z)

(~ + ~i,O).

o

In fact the map (x, y, t) f----+ (w, z) constructed in proposition 4.3.6 is continuous
and provides a continuous inverse for the HopE map factored through the 8 1 -action
on 8 3

p

1/

The HopE map thus induces a homeomorphism 8 1\83 ~ 8 2
.

4.3.2 A homotopy equivalence for the moduli space

This homeomorphism 8 1\83 ~ 8 2 in turn induces a homeomorphism
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p(L1 ) = {(-l,O,On

p(L2 ) = {(l,O,On

p(L3 ) = {(O, 1, On.

We have

Proposition 4.3.7. The spaces

T = SO(2)\(lHI\(lHI3
- ~))

and

x = S2 - {(-1,0,0), (1,0,0), (0, 1, On

are homotopy eq'uivalent.

Thus T has the homotopy type of a thrice-punctured sphere S2 - {P1,P2,P3}.
Citing [5] we can conclude that T is aspherical, that is, T has trivial higher homotopy.
For the fundamental group of T, observe that a thrice-punctured sphere is homotopy
equivalent to the wedge sum of two circles Sl V Sl and therefore has fundamental
group free on two generators:

• 1T1(T) = (a, b)

• 1Ti(T) = 0, i ~ 2.

We account last for the action of the group R = {I, r} generated by the involution.
On a triple (A, B, C) E lHI3 - ~ the involution r has the effect

When we contract away the t-coordinates the action of R on C3 - ~' becomes merely
that of component-wise conjugation (Zl' Z2, Z3) f-----+ (Zl, Z2, Z3). Tracing through the
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commutative diagrams we check that the action of R behaves as component-wise
conjugation and gives the homotopy equivalence

T

1 !

However when we apply the Hopf map p : 8 3 ---+ 8 2 we find that the R-action
changes its behaviour. The R-action identifies conjugates on 8 3 but

p(w,z) = (lwl2 -lzI2,2Re(wz),2Im(wz))

On 8 2 the R-action therefore becomes

r 0 (x, y, z) = (x, y, -z).

The R-action thus identifies the upper and lower hemispheres of 8 2 , turning 8 2 into a
disk with boundary where the equator was. On X = 8 2 -{(-1,0,0), (1, 0, 0), (0, 1, On
the three removed points are all on the equator, so the R-action creates a disk with
three boundary points removed. Such a disk remains contractible, so we can conclude
that R\T is contractible.

4.4 Unordered Heisenberg triangles

4.4.1 The 5 3-action

At last we let the symmetric group 8 3 act on IHI3 - ~ in order to remove the
ordering on vertices (A, B, C). vVe produce triangles ~ABC.
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Proposition 4.4.1. The 53 action on vertices ind'uces a well-defined action on lHI )<l
0(2) \ (lHI3 - ~).

Proof. Indeed given (5 E 53 suppose two triples of vertices are related by an isometry
9 E lHI )<l 0(2)

(PI, P2, P3) rv (gPl , gP2, gP3).

Then the permuted vertices are related by the same isometry

(Po-(l)' Po-(2), Po-(3)) rv (gPo-(l)' gPo-(2), gPo-(3))'

o

In the action we have just constructed 53 acts on lHI )<l 0(2)\(lHI3 -~) by the map

(50 [(PI, P2, P3)] = [(Po-(1),Po-(2),Po-(2))]'

Alternatively we could let 53 act directly on lHI3 - ~ to produce (unordered) sets of
three distinct vertices. Now we let lHI )<l 0(2) act on 5 3 \ (lHI3 - ~) by the map

go {PI, P2, P3} = {gPl , gP2, gP3}.

But if the triple (A, B, C) can be made to coincide with another triple (X, Y, Z) first
by an isometry and then by a permutation, so that (50 9 0 (A, B, C) = (X, Y, Z),
then (50 (A, B, C) and (X, Y, Z) have the same triangle parameters up to sign on the
(-values

a = x,b = y,c = Z,(A = ±(X,(B = ±(Y,(c = ±(z

and therefore (5 0 (A, B, C) and (X, Y, Z) coincide by an isometry. Conversely if
the triple (A, B, C) can be made to coincide with another triple (X, Y, Z) first by
a permutation and then by an isometry, so that go (5 0 (A, B, C) = (X, Y, Z), then
go (A, B, C) and (X, Y, Z) consist of the same vertices, but not necessarily in the
same order, so that go (A, B, C) and (X, Y, Z) coincide by a permutation. Thus we
have shown

Proposition 4.4.2. The S1lccessive gro'up actions

lHI)<l 0(2)\ (53 \(lHI3
- ~))

identify precisely the same triples (A, B, C) E lHI3 - ~.
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Therefore we need not worry about the order in which the group actions are
applied.

4.4.2 The moduli space for unordered Heisenberg triangles

We now give a definition for families of unordered Heisenberg triangles. Our defi­
nitions for families of ordered and unordered Heisenberg triangles bear the same rela­
tion as the definitions for families of ordered and unordered Euclidean triangles, with
one significant exception. Since we allow geodesically colinear vertices for Heisenberg
triangles, we require an unordered triple of sections to specify vertices.

Definition 13. For a topological space 8) a family of unordered Heisenberg triangles
over 8 is a subspace X c 8 x lHI such that

(1) projection onto the first coordinate is a (continuous) proper) fibre bundle
projection

(2) each fibre X s = p-l(S) is (after projection onto the second coordinate) a
Heisenberg triangle IA U IB U ,e C lHI

(3) there is an 'unordered triple of sections V, V', V" : 8 -* X which specify the
vertices of each fibre X s '

Morphisms between families X -* 8 and X' -* 8' are pazrs of continuous maps
making the diagram commute

f

X

1
8

9
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and such that for each s E 8 the map f restricts to an isometry in Isom(H) from X s

to X'g(s) respecting vertices in the sense that the sets {f(V(s)),f(V'(s)),f(V"(s))}
and {V (g( s)) , V' (g( s)) , V" (g( s))} are identical.

Any family X ~ 8 determines a canonical map 8 ~ 83\(Isom(H)\H3 - ~)

taking s E 8 to the isometry class of the fibre X s ' But just as in the Euclidean case,
the existence of non-trivial self isometries for equilateral trianglesl means the space
83\ (Isom(H)\H3-~) cannot have a universal family over it. Therefore the quotient
83\ (Isom(H)\H3-~) is a coarse moduli space for unordered Heisenberg triangles.

4.4.3 Topology of the moduli space

We proceed to trace the effect of the 83-action down through our commutative
diagrams of homotopy equivalences and homeomorphisms.

First the 83-action has the effect on H3- ~ of identifying sets of six distinct triples

(A, B, C), (B, C,A), (C,A, B), (A, C, B), (C,B,A), (B,A, C).

After retracting the t-coordinates to get the homotopy equivalance H3 - ~ S:! C3- ~'

the 83-action identifies the distinct triples

We pause to point out that this means 1fl(83\H3 -~) = 1fl(83\C3 - ~') is the braid
group B3 on 3 strands. Again see [2].

lThat is, a triangle having parameters (a, (, a, (, a, (). We show in section 4.7.1 that such triangles
exist.
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After the «:::-action on «::3 - ~' the six equivalence classes

are identified. One checks that in fact these are precisely the induced identifica­
tions because if (A, B, C) and (X, Y, Z) are related by a translation then so are their
permutations.

Next the homeomorphism «::\«::3 ~ «::2 (note that for convenience we will often
suppress the fact that we have removed subsets) given by the map [(Zl, Z2, Z3)] f-+

(Zl - Z3, Z2 - Z3) induces the identification of the pairs

(ZA - ZB, Zc - ZB), (zc - ZA, ZB - ZA), (ZB - Zc, ZA - zc).

If (w,z) E «::2 is given we find (ZA,ZB,Zc) with (ZA - ZC,ZB - zc) = (w,z). The six
pairs above written in terms of w, Z are

(w, z), (z - w, -w), (-z, w - z), (w - Z, -z), (-w, Z - w), (z, w). (4.4.1)

One checks that the algorithm which produces these six pairs out of the pair (w, z)
also produces the same six pairs if one starts, for example, with (w - Z, -z) = (~, TJ)
and computes the points (~, TJ), (TJ - ~, -~), .... Thus at this stage the effect of the
83-action on «::2 is to identify all sets of six pairs as in 4.4.1. (On our space the six
pairs are always distinct; we have removed precisely the points where any of the pairs
could coincide.)

Next we apply the retraction of «::2 - (0,0) onto 8 3 to our subset of ([2. Notice
that (w,z) and (~,TJ) retract to the same point on 8 3 if and only if (~,TJ) = (cw,cz)
for some c E jR+. In this case the six pairs identified by the 8 3-action are likewise
related by this positive real scalar c, for example, (~ - TJ, -TJ) = (c(w - z), c(- z)) .

Thus if we start with (w,z) E 8 3, so that Iwl2+ IzI2 = I, then in «::2 our point
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gets identified as usual with

(w, z), (z, w),
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(w - z, -z), (-z, w - z),

(-w, z - w), (z - w, -w)

but these points are not all on S3. After the retraction the identification is therefore
between

(w, z), (z, w),

1 1
Jlw - Zl2 + Izl2(w - z, -z), Jlw _ Zl2 + Izl2 (-z, W - z),

1 1
--r.::::::::::=====:;:=(-w z - w) (z - w, -w).
Jlwl2+ Iz - wl2 ' , vlwl2 + Iz - wl2

The images under the Hopf map p : S3 ---+ S2 of these six points must be identified.
Also these are precisely the identifications on S2 caused by the S3-action, because if
for A E Sl we have (w, z), (AW, AZ) E S3 in the same Sl-fibre, then (w - z, -z) and
(A(W - z), A( -z)) are also in the same Sl-fibre and so have the same image under p,

and likewise for the remaining pairs produced by (w, z) and (AW, AZ) respectively.

We can describe the identifications on S2 by starting with a point (x, y, t) E S2.
We have seen that the point

maps to (x, y, t) under p. For this (w, z) the six images under p of the points in 4.4.1
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are

(x, y, t)

(-x, y, -t)
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(
2(1- y )-(1-X) 1-x-y -2t)
2(1- y) + (1 - x)' 22(1 - y) + (1- x)' 2(1- y) + (1 - x)

(
(1 - x) - 2(1 - y) 1 - x - Y 2t)
2(1- y) + (1 - x)' 22(1 - y) + (1 - x)' 2(1- y) + (1- x)

(
(1+X)-2(1- Y) l+x-y -2t)
2(1- y) + (1 + x)' 22(1_ y) + (1 + x)' 2(1 - y) + (1 + x)

(
2(1-Y)-(1+X) l+x-y 2t)
2(1 - y) + (1 + x)' 22(1_ y) + (1 + x)' 2(1 - y) + (1 + x) .

One checks that the algorithm that produces these six points out of the triple (x, y, t)
produces the same six points if one begins with any other triple in the list; that is,
suppose we take the third triple and treat it as the original, writing

(u,v,s)

(
2(1- y )-(1-X) 1-x-y -2t)

= 2(1- y) + (1- x)' 22(1_ y) + (1- x)' 2(1- y) + (1- x)

and then list the six points (u, v, s), (-u, v, - s), .... It is tedious to check, but we get
the same set of six points produced by (x, y, t).

Recall that the action of the involution group R had the effect on 8 2 of identifying
points (x, y, t) and (x, y, -t). One way to look at this is that R\82 can be obtained
as the image of the map (x, y, t) f-----7 (x, y) since (x, y, t) and (x, y, -t) are precisely
the points mapping to (x, y). In this picture R\82 is viewed as the unit disc D 2 in
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the plane and the six identifications above become

(x, y)

(-x, y)
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(
2(1 - y) - (1 - x) 1 - x - y )
2(1 - y) + (1 - x)' 22(1 - y) + (1- x)

(
(1-X)-2(1- Y) 1-X- Y )
2(1- y) + (1 - x)' 22(1 - y) + (1 - x)

(
(1+X)-2(1- Y) l+X- Y )
2(1 - y) + (1 + x)' 22(1 - y) + (1 + x)

(
2(1- Y)-(1+X) l+X- Y )
2(1- y) + (1 + x)' 22(1 - y) + (1 + x)

when we drop the t-coordinate. One checks as before that the algorithm producing
these six points out of (x, y) produces the same six points if we begin at any other
point in the list.

Part of this identification, evident in the first two pairs, is that the left half of the
disk gets identified with the right half when (x, y) and (-x, y) get identified. So we
work now on the half disk

D~ = {(x,y) E]R2: x2+y2:::; 1,x 2': o}

where now only three identifications are necessary

(x, y)

(
(1-X)-2(1- y ) 1-X- y )
2(1 - y) + (1 - x)' 22(1_ y) + (1 - x)

(
(1+X)-2(1- y ) l+X- y )
2(1 - y) + (1 + x)' 22(1 - y) + (1 + x) .
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The points (x, y) in the half disk D~ where
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....:.-(l,...--_x.....:...).,---_2.....:...(1_-_y-'-) > 0
2(1 - y) + (1 - x) -

are those points for which x ::; 2y -1, and the points (x, y) in the half disk D~ where

(1 + x) - 2(1- y) > 0
2(1 - y) + (1 + x) -

are those points for which x 2:: - 2y + 1. We divide the half disk D~ into the regions

R1 = D~ n {x ::; 2y - 1}

Rz = D~ n {x 2:: 2y - 1} n {x 2:: - 2y + 1}

R3 = D~ n {x ::; - 2y + 1} .

-1.0 -05

Figure 4.1: D~ and the regions Rl, Rz, R3
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The identification
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(
(1+X)-2(1- Y) l+X- Y )

(x,y) f"V 2(1-y)+(1+x),22(1-y)+(1+x)

identifies the regions R1 and R2 , folding (and stretching) R1 onto R2 along the com­
mon boundary segment x = 2y - 1 and matching up the line segments x = °and
x = -2y + 1 as shown.

The identification

(
(1- x) - 2(1 - y) 1 - x - y )

(x, y) f"V 2(1 _ y) + (1- x)' 22(1_ y) + (1 - x)

identifies the regions R1 and R3 , which can be visualized as R 1 swinging clockwise
(and stretching) to coincide with R3 , or alternatively as R2 folding over onto R3 after
R1 and, R2 are identified. The end result is just the space R3 , shaped like a distorted
pie slice, which remains contractible.

Notice that the points (-1,0,0), (1,0,0), (0,1,0) removed from 8 2 end up at
(-1,0), (1,0), (0,1) on the disk D2 and finally, after all identifications, at the corner
(1,0) on R3 , leaving R3 contractible.

4.5 Local charts for the parameter space T

Observe that the section 8 : T ---t lHI3 - L; gives a homeomorphism onto its image:
8 is surjective onto its image; 8 is injective because it maps distinct points into distinct
fibres; we have shown that 8 is continuous; and 8-1 is continuous because 8-1 is the
restriction of the bundle projection p to the image of 8.

Thus the image 8(T) provides yet another characterization of the moduli space of
Heisenberg triangles. Described explicitly this image is the space of standard triangles

8(T) = {(O,B,C) E lHI3
- ~: XB = O,YB > O}.

The 8(T) moduli space is useful because we can directly obtain local charts. Given
a point (0, B, C) E 8(T). We choose any connected 2-dimensional open subset VB
of the yt-plane containing B, such that y > °for all points in VB. Then we choose
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any connected 3-dimensional open subset Va containing G, such that no point of Va
projects to the origin O. Additionally we need to make sure that VB and Va do not
intersect, and moreover that no two points in VB and Va project to the same point
in the xy-plane.

With such VB and Va we obtain the smooth local chart

{O} X VB X Va C s(T) ----7 VB x Va C lR5

by simply dropping the origin (0, B', G') 1---7 (B', G'). The advantage of such a chart
is that it offers a direct picture of the topology of the moduli space of Heisenberg
triangles. We can visualize a path in s(T) (and thereby equivalently a path in T) by
visualizing the vertices Band G moving within VB and Va respectively.

4.6 T is embedded in ]R6

We have seen that T is a 5-dimensional injectively immersed submanifold of lR6
.

Now we show that in addition to being injectively immersed in lR6 , the topology on
T is the same as the subspace topology on T induced by the inclusion T C lR6

. Thus
T is embedded in lR6 .

The space T sits inside the open subset

U := lR x (-1f, 1f) X lR x (-1f, 1f) X lR x (-1f, 1f) C lR6
.

For this discussion only we rearrange the order of the coordinates on lR6 so that a
6-tuple in T looks like

In fact it will be easier to work with the side-lengths of the projected Euclidean
triangles than with the side-lengths of the Heisenberg triangles, so on U we apply the
transformation
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It is straightforward to check that the map f is a continuous bijection onto its image.
The differential D f of the map is

1 0 0"-
a«A)

0 1 0 X
a«B)

0 0 1
a«o)

1 0 0
0 0 1 0

0 0 1

which has rank 6 so that f is an open map. The point is that f maps the open
set U C JR6 diffeomorphically to the open set f(U) C JR6. vVe will show that f(T)
is embedded in the open set f(U) C JR6 and therefore is embedded in JR6 itself. It
follows that T is likewise embedded in the open set U C JR6 and therefore is embedded
in ]R6 itself.

Given a fixed point

This 6-tuple of triangle parameters represents an equivalence class of Heisenberg
triangles up to isometry in lHI><l 80(2) with the unique standard triangle representative

= (O,Bo,Co)

where ao is the angle opposite the side of length 0,0 in a Euclidean triangle with
side-lengths 0,0, bo, Co. (We assume the 6-tuple of parameters satisfies the defining
equation with positive sign; if the sign were negative, the coordinate Xc would be
-bosin ao.)

vVe now construct a chart for T as in section 4.5 of a particularly convenient form.
We want the parameters b, C, (B, (c to have complete freedom to range through open
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intervals
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- --
bo - c1 < b < bo + C1

These requirements determine the neighborhood VBo around Bo. Indeed it is clear
that B must project to a point (0, C, 0) on the positive y-axis with Co - C2 < C< Co +C2

so that B lies within a rectangular strip in the yt-plane.

Now since
t B = C2 /-l((c)

we see that B lies in the region of the yt-plane defined by the boundary conditions

Co - C2 < YB < Co + C2

This is the neighborhood VBo '

To describe the region VCo recall that for the projected frame triangle of DBaCo
the side-Ienghts aa, bo, Co determine an angle ao at the vertex D. Since the vertex C
is free to move in 3 dimensions we can vary a freely through an open range around
ao

ao - 7 < a < ao + 7

while still letting band (B vary freely through their respective open ranges. The
resulting neighborhood VCo is the 3-dimensional region produced by rotating a region
shaped like VBo about the origin through an angle of 27.

We take these choices of VBo and VCo as the regions giving a local chart around
DBoCo. We now describe the image of this region in the parameter moduli space
j(T). We already know that the parameters b, C, (B, (c range freely in open intervals
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det~rmining a four-dimensional open rectangle. The third side-length ii is determined
by b, c and a. We have

ii = Vb2 + c2 - 2bccos a
and it is straightforward to check that with this formula the map

is a rank 5 map except where both b = c and a = 0, and therefore is rank 5 on
{O} X VBo X VCo ' This 5-dimensional portion of the image parameters (ii, b, C, (B, (c)
is therefore an open set in IR5 which we call ltV'.

We now use this open set ltV' C IR5 to construct an open subset of IR6 . To do this
we choose 03 > 0 such that the interval ((Ao - 03, (Ao + 03) is contained in (-'if, 'if).
Then we produce the following open subset of IR6

(above we really mean that the (A interval is in the 4th coordinate slot but to avoid
cumbersome notation we do not explicitly indicate this). Thus in fact VV is an open
subset of J(U) and in particular ltV contains the point (iio, ho,co; (Ao, (Bo' (co),

Suppose now that the point

is contained in ltV n J(T). Then the five parameters

are contained in ltV'.

By construction there is a standard Euclidean frame triangle with side-lengths ii,
h, csuch that the three vertices lie respectively at the origin, in the projection of VBo
onto the positive y-axis, and in the projection of VCo onto the xv-plane. If we choose
heights
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over the corresponding vertices of the frame triangle, then we have constructed a
standard Heisenberg triangle with vertices Band C inside VBo and VCo respectively.
This triangle OBC has the five parameters

Now the sixth parameter ( for the triangle OBC is completely determined by the
points Band C. But this parameter will satisfy precisely the same defining equation
as that satisfied by the parameters corresponding to the point P E ltV n f (T). It
follows that ( and (c coincide.

Therefore the unique standard Heisenberg triangle corresponding to P E Wnf(T)
is actually inside the neighborhood VBo x VCo . That is

We have therefore found an open set ltV c f(U) C ]R6 such that W n f(T) is a local
chart around the point Po. The topology on f(T) induced by the ambient space ]R6
is thus the same as the moduli space topology on f(T) induced by.the original map
p : lHI3 - ~ -t T. .

Therefore f(T) is an embedded submanifold of ]R6 and likewise therefore T is an
embedded submanifold of ]R6.

4.7 The boundary of T

As a 5-dimensional embedded submanifold T c ]R6, every point of T is a boundary
point of T in the topological sense, when T is viewed as a subset of ]R6. Nonetheless
some points of]R6 will be in the closure T but not in T, and such points can be viewed
as a kind of boundary for T. Henceforth when we refer to the boundary of T, we will
mean T -T.

To describe this boundary, it will be useful to have an explicit criterion to decide
whether the parameters ((A, (B, (c) E (-'if, 'if)3 can be obtained as the (-values for a
triangle ABC.
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'What triples ((A, (B, (0) are possible? Equivalently, what triples (J.t((A), J.t((B), J.t((0)) =

(>'1, A2,").3) are possible?

Whatever triples (AI, A2' A3) we can get, we can get from triangles constructed
from points of the form

0(0,0,0)

A(x, 0, t)

B(u, v, s)

with x i- 0, (u, v) i- (x, 0), u2 + v2 = 1, by taking advantage of the isometries of lHL
vVe think of (AI, A2, A3) as fixed, and decide whether we can find values for x, t, u, v,
s giving these A'S. Thus we set

s - t + 2xv
A2 = J.t((AB) = ( )2 + 2u-x V

We obtain the system of equations

s = -A3'

Substituting the first and third equations into the second, using the relation U
2

+V
2 =

I, and simplifying, we obtain
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viewed as a quadratic in x, still with x =I- 0, (x,O) =I- (u, v), u2 + v2 = 1. The case
Al + A2 = 0 will be dealt with separately; for now we assume this is not so and we
have a genuine quadratic in x~ Therefore if, for fixed (AI, A2' A3), we can find such x,
u, v to satisfy the quadratic, then (AI, A2, A3) can be obtained as a triple of J1.(()'s;
and likewise if (A1, A2' A3) can be obtained as a triple of J1.(()'s then we can find such
x, u, v. So the question becomes, what conditions on (AI, A2, A3) are necessary and
sufficient to find such x, u, v satisfying the quadratic?

The quadratic can be solved for real x if and only if the discriminant b2
- 4ac is

non-negative; this condition becomes

So, thinking of AI, A2, A3 as fixed, do there exist u, v such that u2+ v2 = 1 and
the inequality is satisfied? To answer this, we determine the maximum value that
(v + 1lA2)2 can attain, subject to u2+ v2 = 1.

For the case A2 = 0 it is immediate that (v + UA2)2 attains the maximum value 1
when v = 1. The condition on the discriminant becomes 1 ~ A1A3 which in this case
is equivalent to

because A2 = O.

For the case A2 =I- 0, let

(1l, v) = (cos e, sin e), -1[":::; e :::; 1[",

and let

Setting I'(e) = 0 we obtain critical points where

sin e+ A2 case = 0, i.e., tane = -A2

and where
1

case - A2 sine = 0, i.e., tane = A2'
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For tan () = -A2 we compute f((}) = 0, and for tan () = J2 we compute f((}) = 1+ A~.

At the endpoints () = -X,7f we compute J((}) = A~. Thus we see that the largest
possible value attained by (v + UA2)2 subject to u2 + v2 = 1 is 1 + A~. Thus the
condition on the discriminant becomes

which simplifies to

Last we address the case Al + A2 = O. Now the equation for which we must find
a solution is no longer a quadratic in x but the linear equation

with x =J- 0 and u2 + v2 = 1. If A2 + A3 =J- 0 then we can always find u and v with
u2+ v2 = 1 such that v + UA2 =J- 0, whereupon we can solve for x =J- O. If A2 + A3 = 0
then solutions with x =J- 0 exist so long as we can find u and v with u2 + v2 = 1
and v + 1tA2 = O. This we can always do by setting (u, v) = (cos (), sin ()) and solving
tan () = - A2. Thus solutions always exist for the case Al + A2 = O. But in this case

Theorem 4.7.1. The triple ((A,(B,(C) occurs as the (-values for a triangle ABC if
and only if

We pause to point out that the work done in this section serves to find equilateral
triangles.

Proposition 4.7.2. There exist triangles having parameters (a, (, a, (, a, 0, where

a > 0 is arbitrary and ( = f-L- 1 (±Js) .

Proof. Substituting the parameters in the defining equation 4.2.1 gives f-L(() = ±Js.
In the notation above we have Al = A2 = A3 = ± ~, and the work already done
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makes it straightforward to solve for x, t, u, v, s to obtain the vertices

( 1) (1 V3 1)O(O,O,O),A 1,0, V3 ,B 2'2'- V3

of an equilateral triangle.

4.7.2 Finding points in the boundary

To obtain points in the boundary T - T we use the map

o

We take a sequence of triples (An, Bn, Cn) E lHI3 - ~ that approach a removed triple
(A, B, C) E~. The sequence of images p(An, Bn,Cn) E T approaches a 6-tuple of
parameters that is in T but not in T, as we will see. (Alternatively, we take a path
in lHI3 - ~ with limit (A, B, C) E ~.)

We divide the set of removed triples ~ into types. Recall that ~ was the set of
triples

for which at least one pair out of the three projections ZA, ZB, Zc coincided. Thus ~
decomposes into

• triples for which exactly two projections coincide

• triples for which all three projections coincide.

The first group further decomposes into

• TYPE I: triples with three distinct vertices

• TYPE II: triples where precisely two vertices coincide (necessarily the two points
with coinciding projections)
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and the second group further decomposes into
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• TYPE III: triples with three distinct vertices

• TYPE IV: triples where precisely two vertices coincide

• TYPE V: triples where all three vertices coincide.

TYPE I:

We left-translate such a triple so that the vertex with distinct projection is at the
origin. A typical triple of TYPE I then has the form

where (x, y) =1= (0,0) and tl < t 2 • All other TYPE I triples (after left-translation to
the origin) are obtained as permutations of triples with the form specified above. The
parameters

and

are well-defined, and as we approach (A, E, C) via points (An' En, Cn) in lHI3 - ~,

the sequences (bn , (En), (Cn , (oJ approach (b, (E), (C, (0) respectively, by continuity.
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Moreover the lengths an = d(Bn, Cn) will approach the length of the geodesics from
B to C, which exist but are not unique. Thus

Finally as Bn and Cn approach Band C, (An = (BnCn ~ Jr. Therefore we obtain the
parameters

Notice that the parameters do not depend directly on (x, y) =j:. (0,0) but only on
the value 0 < r 2 = x 2 + y2. We can set up a map sending the parameters (r, t I , t2 ) to
the 6-tuple

This map, defined on the open subset

is of rank 3. We need look only at the 1st, 4th, and 6th rows of the resulting 6 x 3
differential matrix

[0 V7f 1 V7f 1 ]
-2Vt2-tl 2 Vt2-tl

[~~32 (ft-I), (-;~) 0 - /2 (ft-I), (- ;~)]

[- ~tl (ft-1)' (;~) r I2 (ft-1)' (;~) 0]

to find three linearly independent rows. The linear independence follows from the
facts that r > 0, that (ft-I), > 0, and that t l < t2, so in particular t2- t l > 0 and t l

and t2 are not both O. Therefore this portion of the boundary T - T sits in ~6 as a
3-dimensional immersed submanifold.

Note also that we have described only one component of the portion of the bound­
ary obtained from points of this type. There are six such components, corresponding
to the six permutations of a typical triple ABC. These components can also be
counted by considering the three possible positions for the two values ( = ±Jr.

TYPE II:
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vVe again left-translate and write down a typical triple of this type (of which all
other left-translated triples of the same type are permutations)

A(O, 0, 0)

B(x, y, t)

C(x, y, t)

with (x, y) =1= (0,0). As before the parameters b, (B, C, (c are determined by continu­
ity, no matter how (An, Bn, Cn) E JHI3 - :B approach (A, B, C):

and

Likewise the lengths an = d(Bn, Cn) must approach 0 as Bn and Cn approach the
mutual limit B = C. However the sequence (An can be made to approach any limit
in [-7f,7f] by judicious choice of the paths by which Bn and Cn approach the point
B = C. In fact we can fix A = (0,0,0) and B = (x, y, t) and let C approach B
continuously:

A = (0,0,0)

B = (x,y, t)

C = (x, y, t) 0 h(a, b, 1)
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where a2 + b2 i= 0, and we take the limit as h approaches 0. Then

c= (x,y,t)oh(a,b,l)

= (x, y, t) 0 (ha, hb, h2)

= (x+ha,y+hb,t+h2-2h(xb-ya)).

Now

(A = ( for B to C

and

B-1C = (-x, -v, -t) 0 (x + ha, y + hb, t + h2 - 2h(xb - va))

so

-1 ( h
2

) -1 ( 1 )
(A = f-1 (ha)2 + (hb)2 = f-1 a2 + b2

is constant along the path. By ranging a2 + b2 on (0,00) we can obtain any value in
(0,1f) for (A.

Similarly, by using h(a, b, -1) for the continuous path towards C, we can obtain
any value in (-1f, 0) for (A. By using h(a, b, 0) for the continuous path towards C, we
get (A = 0.

To get (A = ±1f, we simply choose a path where C approaches B more steeply,
from above for (= 1f and from below for ( = -1f. For example the path

taking h -----t 0+ gives

so that
h h2 ( ) .l... + 2(x-y)

(r ) = + 2 x - y = ha h 2 --+ 00
f-1~A 2~ 2
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as h ---7 0+. Hence (A = 7r.
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Now that we have categorized the boundary points obtained by approaching
TYPE II points in 1:: we can parametrize such points by the map sending ((A, r, t) to _.,
the image

(0, (A) ,(rY((B)r,j.l-l(-t/r2)), (rY((c)r,j.l-l(t/r2)).

We obtain maps from the domains

{(±7r,r,t)lr> O} ~ {(r,t)Jr > O}

of ranks 3 and 2 respectively, giving one 3-dimensional immersed submanifold com­
ponent and two 2-dimensional immersed submanifold components of the boundary
T-T.

As before, permutations of the vertices ABC give more components of the bound­
ary. In this case the six permutations give rise to only three components. These can
be counted by considering the three possible positions for the side-length O.

TYPE III:

After left-translation a typical triple is

A(O, 0, 0)

B(O, 0, t1)

with t1 < t2 • All other such TYPE III triples are permutations of such a triple. The
same arguments presented above show such a triple corresponds to a 6-tuple

VVe obtain a rank 2 map defined on the open subset
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mapping to a 2-dimensional immersed submanifold component of the boundary T - T
in }R6.

Once again, we have described only one of six such component~ resulting from the
permutations of the triple we have written above.

TYPE IV:

After left-translation a typical triple is

A(O, 0, 0)

B(O, 0, 0)

C(O, 0, t)

with t > 0, which gives a 6-tuple

(.;KVt,1f) , (.;KVt, -1f), (0,(0) E T - T

where (0 can be in the range -1f :::; (0 :::; 1f.

vVe obtain maps from the domains

{((0, t) I - 1f < (0 < 1f, t > O}

{(±1f, t)lt > O} ~ {tit> O}

of ranks 2 and 1 respectively, giving one 2-dimensional immersed submanifold com­
ponent and two 1-dimensional immersed submanifold components of the boundary
T-T.

Once again, we have described only one of six such components coming from
permutations of the triples.

TYPE V:

All vertices A, B, C converge to the same point, say (0,0,0). All side lengths a,
b, c converge to 0. Using the non-isotropic dilation by ).. and taking).. -+ °we can
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obtain any parameters
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where the ('S are realizable as the (-values for a triangle.

This portion of T - T can be obtained by first looking at the space

which is a 3-dimensional manifold, with boundary where ),1),2 + ),2),3 + ),3),1 = 1. The
image of this space under the map

is then the union of a 3-dimensional manifold (the image of where ),1),2+),2),3+),3),1 <
1) and a 2-dimensional manifold (the image of where ),1),2 + ),2),3 + ),3),1 = 1). With
this construction we do not need to account for permutations for this component of
the boundary.

In fact we can obtain (-values of ±'if, so long as they work together to keep

in the limit. Thus, we can obtain triples of the form

(0, (A), (0, 'if), (0, -'if)

(0, ±'if), (0, 'if), (0, -'if)

where -'if < (A < 'if. This portion of the boundary T - T is a I-dimensional manifold
with boundary where (A = ±'if. And here we obtain 6 components of the boundary.

4.7.3 Do we have them all?

vVe repeat the full description of the space T as a subset of }R6. The space T
consists of all 6-tuples
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satisfying the inequalities
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a, b,e > 0

a + b ~ e, b+ e ~ a, e + a ~ b

and the defining equation (4.2.1)

ii2/-1((A) + b2/-1((B) + 2;2/-1((c) = ±V(ii2 + b2 + (2 )2 - 2(ii4 + b4 + (4 )

where
a - b e

ii=-- b=-- c=--
(J((A)' (J((B)' (J((B)"

Additionally we know that for such points the following inequalities are satisfied

ii + b~ c, b+ c~ ii, c+ ii ~ b

An equivalent characterization of equation (4.2.1) will be useful

where the triangle has side lengths ii, b, C.

For points in the closure T C ]R6, all the same inequalities must still be satisfied,
except that strict inequalites are replaced with non-strict inequalites. Roughly speak­
ing, this means that now the side-lengths a, b,e can be 0 and that the (-values can
be ±1r.

When (a, (A) makes part of a 6-tuple in T, we can still define ii = a((A) and this
value ii agrees with the limit of the "tilde" -lengths for whatever sequence of points
(an, (An) limited to (a, (A) in the closure. Notice then that for a point in the closure,
a = 0 ~ ii = O.

Points in the closure will still satisfy equation (4.2.1) so long as it is still defined.
For closure points with a, b, or e of length 0 the equation makes sense, but for closure
points with (-values of ±1f the equation no longer makes sense and we must be more
careful.
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Having made these remarks, we will attempt to classify all points in T - T and
make sure that we have hit them all by our previous analysis based on the map p.
vVe will anchor the analysis by focusing on the (-values. There are four cases:

• (i) none of the ('s are ±1f

• (ii) exactly one of the ('8 is ±1f

• (iii) exactly two of the ('s are ±1f

• (iv) all three of the ('s are ±1f.

Case (i): (a, (A), (b, (B), (c, (0) E T - T with -1f < (A, (B, (0 < 1f. Now if
a, b, c > a then our point is in fact in T and is therefore not a point in the boundary
T-T.

Suppose WLOG that a = a and b, c > O. Then ii = a and from the triangle
inequalities on ii, b, cwe see that b= c. Moreover the triangle with side lengths ii, b,
chas area O. Hence equation (4.2.1) becomes

and with b = c =I a this gives (B = -(0, whereupon b = c also. We have thus
obtained points of the form

all of which we can hit by approaching triples in E of type II.

The other possibility in case (i) is WLOG a = a and one of b, c is also O. The
triangle inequalities then force the remaining side-length to be O. We obtain points
of the form

all of which can be hit by approaching triples in E of type V.

Case (ii): (a, (A), (b, (B), (c, (0) E T-T with exactly one of the ('s at ±1f, WLOG
(A = 1f. Then ii = atrr) = O. The triangle inequalities on ii, b, cthen force b= c.
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We obtain points of the form
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(a, 1f), (ba((B), (B), (ba((c) ,(c).

When b i= °these can be hi.t by approaching triples in ~ of type 1. Indeed, we want
to find (r, t1 , t2 ) such that

Here we are viewing the 6-tuple on the right as an arbitrary case (ii) point, and we
are trying to show that it can be obtained by the process of approaching removed
triples in~. The expression on the left is the general form of such images. Recall
that on the right (B is not arbitrary, but is determined by J-L((B) = tl/r2

, and likewise
J-L((c) = -t2/r2

. We show that the resulting system of equations has a solution.

First we want

so we obtain
t 2 = t 1 + a

2 /1f.

From J-L((B) = tl/r2 we get t1 = r2 J-L((B) and from J-L((c) = -t2 /r2 we get -t2 =
r2 J-L((c). These relations in t 2 = t1 + a2 /1f end up giving

Thus r is determined, whereupon tl and t2 are determined, and a quick check shows
that these values work.

When b = 0 = cthe fact that -1f < (B, (c < 1f forces b = °= c. Then the triangle
inequalities on a, b, c force a = 0 as well and we obtain points of the form

(0,1f), (O,(B), (0, (c)

all of which can be hit by approaching points of type V.

Case (iii): (a, (A), (b, (B), (c, (c) E T - T where (WLOG) (A = ±1f, (B = ±1f and
-1f < (c < 1f. Now whatever points in T limited to our point in T - T we have
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If the ± signs agree then in the limit of the inequality

we obtain 1 ::; 0, a contradiction. Thus (A = ±1f and (B = =f1f must have opposite
sIgns.

Now a= u(:1r) = 0 and b= u(~1r) = 0, whereupon the triangle inequalities on a,
b, c force c= O. Since a-((0) is finite, this in turn forces c = cCJ((0) = O. Then the
triangle inequalities on a, b, c force a = b. vVe have obtained points of the form

(a, ±1f), (a, =f1f), (0, (0)

all of which can be hit by approaching triples in ~ of type IV.

Case (iv): (a, (A), (b, (B), (c, (0) E T - T where (A, (B, (0 are all ±1f. The
inequality

shows that (A, (Bl (0 cannot all have the same sign. WLOG we assume (A = (0 = 1f
and (B = -1f.

N - a
ow a = U(CA)

- a 0an =~ ----+ .

vVe also have

O. For whatever points (an, (An) limit to (a, (A), we have

Since (An ----+ 1f we in particular have

a
----+ -.

1f

Now we have
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since the side-lengths a, b, c of the triangle all go to O. The left-hand-side of this
equation is

( (t -2) 1 _ ( an )= . 2;- an ---;:-- - an .;- COS (An
SIn "A" "An sIn "An

2 ( - \(B -') 1 - bn+ ( . 2 ( b;) ---;:-- - bn . (.) cos (BnSIn B n "Bn SIn B n .

(
;-2 ) 1 (-)"Cn -2 - en+ . 2 Cn ---;:--. - Cn . ( COS (Cn ·

SIn (Cn "Cn SIn Cn

These are all limits we have seen. As n ----+ 00 these go to

21 a )a--O·-·(-1
1f 1f

2 1 b
+b - - 0 . - . (-1)

-1f -1f

21 C ( )+c - - 0 . _. -1 .
1f 1f

Since the overall limit is 0 we obtain
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or simply b2 = a2 + c2
. vVe obtain points of the form

all of which"can be hit by approaching points in ~ of type III.

4.8 Compactification of T up to dilation

Recall for A > 0 the non-isotropic dilation

A: lHI --d:JI

(x, y, t) f-+ (AX, AY, A2t).

vVe can let A map triples of vertices (A, B, C) f-+ (AA, AB, AC) to obtain an lR+ action
on the space of vertices lHI3 - ~.

Between arbitrary points P(x,y,t) and Q(u,v,s) we have

P-1Q = (u - XlV ---- y,s - t - 2(uy ---- xv))

while
(AP)-l(AQ) = (A(U ---- x), A(V - y), A2(S ---- t - 2(uy ---- xv))).

In particular we compute that

and
d(AP, AQ) = Ad(P, Q).

Thus if the vertices (A, B, C) give a triangle with the parameters

then the vertices (AA, AB, AC) give a triangle with the parameters
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In this way the lR+ action on IBI3 - ~ induces an lR+ action on the parameter moduli
space T

We introduce the map

A:T--tT

Two 6-tuples of triangle parameters in the same orbit under the lR+ action have the
same image under A, i.e., for q E T we have A(Aq) = A(q). Moreover suppose that
A(q) = A(q'), i.e., that

Then q' = Aq for A = x+y+z. Therefore
a+b+c

Theorem 4.8.1. The quotient space lR+\T is homeomorphic to the subspace

A(T) = {(a, (A, b,(B,C, (c) E T: a+b+c= I}.

The space A(T) is bounded but not closed. The closure A(T) is closed and
bounded, therefore compact. The space A(T) can be viewed as the compactification
of the moduli space of Heisenberg triangles up to dilation. Points in the boundary
A(T) - A(T) are precisely the points in T - T with perimeter equal to 1. For if points
in T converge qn = (an, (An' bn, (Bn, cn, (Cn) ----7 q = (a, (A, b, (B, c, (c) E T - T with
a + b+ c = 1, then A(qn) ----7 q E A(T) - A(T) also; while if points in A(T) converge
to a limit in A(T) then that limit has perimeter 1 and is in T since A(T) CT.

We can obtain the boundary points in another way, namely by applying the map
A to those points in T - T for which the perimeter is non-zero, for if a sequence
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qn E T converges to q E T with the perimeter of q non-zero, then for all large n the
perimeter of qn is non-zero also, whereupon A(qn) is a sequence in A(T) converging
to A(q) E A(T).
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Chapter 5

Appendix: Some properties of
plane triangles

5.1 Orientation

Consider three distinct points in the plane

We describe a criterion to check whether the points A,B,c are colinear. Indeed,
A,B,C are colinear if and only if the vectors

~

AB = (XB - XA,YB - YA)

~

AC = (xc - XA,YC - YA)

are dependent. Thus A,B ,C are colinear if and only if

0= I XB - XA YB - YA I
Xc - XA Yc - YA
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Next consider a triangle determined by an ordered triple of distinct non-colinear
points in the plane, again labelled

We describe a criterion to check whether L.ABC is oriented clockwise or counter­
--+ --+

clockwise. Since A,B,C are not colinear, the vectors AB, AC are independent and
--+ --+

therefore provide a basis for ~2. Now L.ABC is oriented clockwise if {AB,AC} is a
basis for JR2 with negative orientation, and is oriented counter-clockwise if the basis
has positive orientation. We thus obtain the following criterion for the orientation of
a triangle:

(XB - XA)(YC - YA) - (YB - YA)(XC - XA) > a{:? L.ABC oriented counter-clockwise.

5.2 Area

--+ --+
By a well-known formula the vectors AB, AC are two sides of a parallelogram

with area equal to the ahsolute value of the detenninant of the matrix [~~]. Thus

we also have the formula

area L.ABC = ±~ IXB - ~A YB - YAI.
2 Xc - XA Yc - YA

Additionally we record two expressions for the area R of a triangle having side­
lengths a, b, c:

R = Js(s - a)(s - b)(s - c)

where s = a+g+c is the semi-perimeter.

147



Bibliography

[1] Kai Behrend, Brian Conrad, Dan Edidin, Barbara Fantechi, William Fulton,
Lothar Gottsche, and Andrew Kresch, Algebraic stacks, http://www .math. uzh.
ch/index.php?pr_vo_det&key1=1287&key2=580&no_cache=1.

[2] Joan S. Birman and Tara E. Brendle, Braids: a survey, Handbook of knot theory,
Elsevier B. V., Amsterdam, 2005, pp. 19-103. MR MR2179260 (2007a:57004)

[3] Nicolas Bourbaki, Elements of mathematics. General topology. Part 1, Hermann,
Paris, 1966. MR MR0205210 (34 #5044a)

[4] Ovidiu Calin, Der-Chen Chang, and Peter Greiner, Geometric mechanics on the
Heisenberg group, Bull. Inst. Math. Acad. Sinica 33 (2005), no. 3, 185-252. MR
MR2165285 (2006f:53039)

[5] Edward Fadell and Lee Neuwirth, Configuration spaces, Math. Scand. 10 (1962),
111-118. MR MR0l41126 (25 #4537)

[6] R. VV. Sharpe, Differential geometry, Graduate Texts in Mathematics, vol. 166,
Springer-Verlag, New York, 1997, Cartan's generalization of Klein's Erlangen pro­
gram, vVith a foreword by S. S. Chern. MR MR1453120 (98m:53033)

[7] Michael Spivak, A comprehensive introd,tLction to differential geometry. Vol. I,
second ed., Publish or Perish Inc., Wilmington, Del., 1979. MR MR532830
(82g:53003a)

[8] Kang-Hai Tan and Xiao-Ping Yang, Characterisation of the sub-Riemannian
isometry groups of H-type groups, Bull. Austral. Math. Soc. 70 (2004), no. 1,
87-100. MR MR2079363 (2005c:53033)

148


