
THE ELUSIVE QUEST: SOFTWARE PRODUCT
QUALITY EVALUATION

THE ELUSIVE QUEST: SOFTWARE PRODUCT
QUALITY EVALUATION

By
Silviya Grigorova, B.A. in Computer Science,

B.A. in Economics

A Thesis
Submitted to the School of Graduate Studies in Partial Fulfilment of the

Requirements for the Degree of

M. Sc. in Computer Science
Department of Computing and Software

McMaster University

© Copyright by Silviya Grigorova, October 2009

MASTER OF SCIENCE (2009)

(Computer Science)

McMaster University

Hamilton, Ontario

TITLE: The Elusive Quest: Software Product Quality Evaluation

AUTHOR: Silviya Grigorova,

B.A. in Computer Science (American University in Bulgaria)

B.A. in Economics (American University in Bulgaria)

SUPERVISOR: Dr. T.S.E. Maibaum

NUMBER OF PAGES: vi, 129

11

Abstract

Quality has many definitions, and even more models and methods for assurance and
evaluation associated with it. After an overview of existing concepts, we provide a
comprehensive methodology for evaluating the quality of a software product, complete
with methods for model structure and parameter elicitation and a way for mapping the
quantitative results obtained from the evaluation to qualitative rankings of product
characteristics (e.g. Poor, Good, Excellent). This is complemented with a compendium of
quality characteristics and metrics associated with them and a generic quality model
combining the works of McCall and Boehm with the international standard for software
product quality ISO/IEC 9126-1. A discussion of the advantages that the use of Bayesian
Belief Networks (BBNs) can provide in this framework is also offered, as well as a
method for transforming quality models to a form suited for BBN use. The methodology
has been applied to a case study.

iii

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Tom Maibaum for the
support and academic guidance. He taught me patience, perseverance and critical
judgment, and helped me accomplish what I had set out to do.

I would also like to thank the other members of the examination committee, Dr. Alan
Wassyng and Dr. Spencer Smith for the time and consideration they have given to my
work, as well as for their helpful comments and suggestions.

I would also like to acknowledge the help of the team of experts that participated in the
case study detailed in this thesis and all the people who filled in the questionnaires; their
cooperation is greatly appreciated!

Last but not least, I would like to thank my family, and especially my husband Orlin and
my daughter Ema for the understanding they have shown when I had to focus on my
work and for the unconditional love.

iv

Table of Contents
Abstract .. iii
Acknowledgements .. iv
Table of Contents .. v
1. Introduction ... 1
2. Background ... 3

2.1. Software Quality Definitions and Perspectives ... 3
2.2. Importance of Software Quality Evaluation .. 5
2.3. Approaches to Software Quality Assurance and Evaluation 7

2.3.1. Process-oriented Approach ... 7
2.3.1.1. Waterfall Methodology .. 8
2.3.1.2. Spiral Methodology ... 9
2.3.1.3. Capability Maturity Model (CMM) (Chapman, 2007) and Capability
Maturity Model® Integration (CMMI) ... 11

2.3.2. Product-oriented Approach ... 13
2.4. Summary .. 14

3. Models for Software Product Quality Evaluation ... 15
3.1. McCall Model .. 15
3.2. Boehm Model. .. 20
3.3. ISO/IEC 9126-1 (ISO/IEC, 2001) and ISO/IEC 14598-1 23
3.4. Dromey's Model ... 30
3.5. FURPS ... 34
3.6. Bayesian Belief Networks (BBNs) .. 35
3.7. Summary .. 41

4. Towards a Generic Model. .. 42
4.1. Constructing the Model. ... 43
4.2. Transformation of the Generic Model for Use in BBN Software 43
4.3. Summary .. 51

5. Customization of the Quality Model, Collecting Metrics and Reading the Results 52
5.1. Eliciting Model StlUcture ... 52
5.2. Eliciting Model Parameters .. 53

5.2.1. Deterministic Parameter Elicitation .. 54
5.2.2. Probabilistic Parameter Elicitation ... 55

5.3. Collecting Metrics and Reading the Results .. 56
5.4. Summary .. 60

6. Case Study .. 62
6.1. Eliciting Model StlUcture ... 62
6.2. Eliciting Model Parameters .. 62

6.2.1. The Mutual Comparison Method .. 63
6.2.2. Evaluation of Respondent Judgment Consistency .. 64
6.2.3. Deriving the Weights of the Quality Characteristics 67

6.3. Collecting Metrics and Reading the Results .. 72

v

6.4. Summary .. 85
7. Conclusion .. 86

7.1. Summary .. 86
7.2. Related Work ... 88
7.3. Reasoning behind BBN Use .. 88
7.4. Directions for Future Work .. 89

Appendix A - Compendium of Quality Characteristics .. 90
Appendix B - Questionnaire ... 117
REFERENCES ... 123

vi

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

1. Introduction

The importance of having high-quality software is undeniable - more and more of our
day-to-day activities rely on the use of software, whether to conduct business, educate
ourselves, or for leisure activities - yet there is not a single widely accepted method for
evaluating software quality. Instead, there are different approaches, standards and
models, each having its own advantages and disadvantages. The objective of this thesis is
to provide a comprehensive methodology for evaluating the quality of a software product,
complete with methods for model structure and parameter elicitation and a way for
mapping the quantitative results obtained from the evaluation to qualitative rankings of
product characteristics (e.g. Poor, Good, Excellent). A discussion of the advantages that
the use of Bayesian Belief Networks (BBNs) can provide in this framework is also
offered, as well as a method for transforming quality models to a form suited for BBN
use. The methodology has been applied to a case study. This is complemented with a
compendium of quality characteristics and metrics associated with them and a generic
quality model combining the works of McCall and Boehm with the international standard
for software product quality ISO/IEC 9126-1 (2001). The main goal of our work is to
serve as a knowledge base facilitating the evaluation process.

The thesis is organized as follows:

The second chapter, titled "Background" presents a brief overview of some of the more
popular ideas concerning software quality, providing definitions and justification of the
importance of software quality evaluation for improving project management. The
process-oriented and product-oriented approaches to software quality evaluation and
assurance are briefly discussed, and examples of the former are provided.

Chapter 3 ("Models for Software Product Quality Evaluation") offers an in-depth
consideration of software quality models. The chapter offers an overview and comparison
of the quality models proposed by McCall, Boehm, ISO/IEC 9126, FURPS+ and
Dromey, as well as an introduction of the Bayesian Belief Net approach to software
quality evaluation.

Chapter 4 ("Towards a Generic Model") presents the creation of a generic model
combining the ISO/IEC 9126-1 (2001) external quality model with characteristics from
the McCall and Boehm quality models. It also discusses a method for transforming the
model for use in BBN software that has been proposed in the literature, and suggests
several modifications to the approach.

Chapter 5 ("Customization of the Quality Model, Collecting Metrics and Reading the
Results") describes the essence of our methodology. It details the evaluation process from
beginning to end, providing ways for eliciting the structure of the software product

1

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

quality model, approaches for model parameter elicitation, and alternatives for metric
collection, together with ways of interpreting the obtained quantitative results.

Chapter 6 ("Case Study") presents a case study following the outlined methodology.
It uses the slightly modified ISO/IEC 9126-1 (2001) model, omitting only the compliance
characteristics from the model. Parameter elicitation is performed using the mutual
comparison method from the perspective of user, developer and manager, and a
discussion of the differences in perception is presented. Metrics collection follows the
suggestions of ISO/IEC 9126-2 (2003). The metrics values are transformed to make
possible the comparison of quality characteristic values across perspectives and several
applications of the obtained results are discussed at the end of the chapter.

Chapter 7 ("Conclusion") provides a summary and concluding remarks, directions for
future work and a discussion of the potential of Bayesian Net software in a quality
evaluation setting.

Appendix A ("Compendium of Quality Characteristics") provides definitions,
specification of the relative position of the quality characteristics in the quality models of
which they are a part, and suggested metrics.

Appendix B ("Questionnaire") provides a sample questionnaire for eliciting model
parameters, as well as an example of the elicitation technique used in this work.

2

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

2. Background

This chapter presents a brief overview of some of the more popular ideas concerning
software quality. It provides several definitions of quality, which are examples of the
different views that experts hold. Five perspectives of quality - transcendent, product­
based, user-based, manufacturing-based and value-based, as defined by Garvin (1984) are
discussed. We stress the importance of software quality evaluation as a means for
improving project management, and statistics are provided to support that claim. The
process-oriented and product-oriented approaches to software quality evaluation and
assurance are considered, and as examples of the former we briefly review the Waterfall
and Spiral Models, as well as CMM and CMMI. A more in-depth consideration of the
product-oriented approach, which was chosen for our methodology, and of software
quality models, in particular, is left for Chapter 3: Models for Software Product Quality
Evaluation.

2.1. Software Quality Definitions and Perspectives

Most definitions of quality focus either on the degree of conformance to predefined
requirements, or on the ability of the product to satisfy customer expectations. (Milicic)
Milicic provides as examples definitions proposed by Crosby, Deming, Feigenbaum,
Ishikawa, Juran and Shewhart. The definition provided in the international standard
ISO/IEC 9126-1 (2001) can be seen as an example of the latter view - "the totality of
characteristics of an entity that bear on its ability to satisfy stated and implied needs".
Quality evaluation is defined in the same document as "systematic examination of the
extent to which an entity is capable of fulfilling specified requirements", thus taking into
consideration both views of quality. Another definition of quality, provided by McCall,
Richards and Walters (1977) is "a general term applicable to any trait or
characteristic, whether individual or generic, a distinguishing attribute which indicates a
degree of excellence or identifies the basic nature of something". This is an example of a
definition that does not provide an understanding of the nature of the evaluation process
that has to be employed to assess quality. The reason why there is such a divergence in
the definitions provided by experts is the difference in the perspectives taken, which are
based on competing analyses of the notion of quality, as discussed in the work of David
Garvin (1984).

Garvin (1984) distinguishes between five perspectives of quality - transcendent, product­
based, user-based, manufacturing-based and value-based. The transcendent perspective
was adopted by scholars in the field of philosophy and states that "quality cannot be
defined precisely; rather, it is a simple, unanalyzable property that we learn to recognize
only through experience." Thus, quality is perceived as an inherent and axiomatic
attribute to objects. This approach seems to best reflect the definition provided by

3

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

McCall et al. (1977). However, this definition implies that quality cannot be accurately
measured and this in our opinion makes it unsuitable for use in a quality evaluation
methodology.

According to Garvin, the product-based approach, characteristic to economics, interprets
quality as a variable that can be estimated definitively based on the existence or lack of
existence of certain measurable product characteristics. It is therefore not influenced by
subjective opinions. The user-based perspective is held by scholars from the fields of
economics, marketing and operations management. It postulates that quality depends on
the individua1's perception, and is therefore subjective. In the words of C. D. Edwards,
"[q]uality consists of the capacity to satisfy wants ... " (Garvin, 1984) There are two
problems that arise when considering this view of quality - one is how to consolidate the
individual opinions in order to come up with a definition of quality from the perspective
of a multitude of users; the other how to distinguish between characteristics that signify
quality and characteristics that only improve user satisfaction. If we consider the first
definition quoted from the ISO/IEC 9126-1 (2001) standard, it is a blend of the product
and user perspective, taking into account the subjective nature of user expectations, and
at the same time focusing on attributes of the product which influence the level of
satisfaction experienced by the user.

The manufacturing-based definition interprets quality as "conformance to requirements".
(Crosby, as taken from Garvin, 1984) According to Garvin, this view is better suited for
design and production control, and has an internal focus. This is the perspective that has
been used in the second definition quoted from ISO/IEC 9126-1 (2001). It appears that
the standard made an attempt at reconciling the different perspectives on quality in order
to take advantage of their strong points, as the standard itself offers models for evaluation
of internal and external quality, as well as quality in use.

The last perspective described in the paper is the value-based one. It postulates that
"[q]uality is the degree of excellence at an acceptable price and the control of variability
at an acceptable cost." (Broh, as taken from Garvin, 1984) Neither the price nor the cost
of the product has been modeled in the ISO/IEC 9126-1 (2001) standard, nor in McCall's
model of software quality. However, ISO/IEC 9126-1 (2001) allows for the inclusion of
new quality factors or characteristics in the model, in the case where they are considered
to have a significant contribution to the overall quality of the product, and can therefore
accommodate the inclusion of this perspective as well. Garvin goes on to say that,
according to a survey, the value-based perspective is becoming increasingly more
common among users, and even though the product-based view is most used in particular
domains, overall, quality is progressively being interpreted with regards to price.
According to the author, the value-based perspective is not suitable in practice, as
"affordable excellence" is difficult to delimit.

Garvin (1984) claims that "[r]eliance on a single definition of quality is a frequent source
of problems." He suggests that the different approaches be used in the different phases of

4

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

the software life-cycle. In his opinion, the requirements elicitation needs to be conducted
with the user-based perspective in mind, design should take a product-based view, and
the development process should follow a manufacturing-based view, to guarantee
requirement satisfaction. Following this logic ought to guarantee that the product is
acceptable to customers.

2.2. Importance of Software Quality Evaluation

Quality assessment should be considered an important aspect of each phase of the
software life-cycle. If the quality evaluation is postponed until late in the software
development life-cycle, it is more likely that the estimation of the time it takes to
complete the project will be incorrect, because if an inconsistency is discovered this late,
it takes a lot longer to amend it, and the cost of doing so goes up. A concise way of
expressing the same idea is provided in the words of Tom DeMarco, "You can't control
what you can't measure." (DeMarco, 1986) Software quality evaluation is therefore key
to producing a high-quality product. Judging by the statistics presented by Boehm and
Valerdi (2008) in figure 1, there is a need to improve project performance in terms of
time taken till completion and budget, and quality evaluation can prove instrumental for
that purpose.

Table I
~ -·fte perfolmance -of, 8,OIlDproja.i •• '·

'.In 3&0 Dlgal1lzaOons.

Figure 1. Boehm and Valerdi's Project Performance Data (2008)

Additional project statistics can be found in the Standish Group's Chaos Report.
The Standish Group has been collecting project statistics every two years since 1994.
The first such report was published in 1995 and has been widely quoted. It groups
projects according to requirements satisfaction and meeting of cost and time till
completion forecasts. Interested parties can purchase the report online through the
Standish Group's website (https://secure.standishgroup.com/reports/reports.php).

5

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

The information provided in the 1995 Chaos Report is analyzed in Barry Boehm's article
"Project Termination Doesn't Equal Project Failure". (Boehm, 2000) Barry Boehm
discusses the top 10 reasons for cancellation of projects before they are completed and
presents his view on whether these projects should indeed be considered failures as
claimed in the report, or not. After each reason, a percentage is provided which shows
how many of the 31.1 % canceled projects in the 1995 Chaos report were attributable to
the relevant cause:

• Incomplete Requirements (13.1 %) - most of the time caused by lack of
understanding of users' needs, but sometimes might be due to conflicting user
requirements and inability to reach consensus.

• Lack of user involvement (12.4 %) - inability to communicate with users.
• Lack of resources (10.6 %) - budget cuts, downsizing.
• Unrealistic expectations (9.9 %) - either because no feasibility analysis for

requirements satisfaction was performed or because the analysis showed it is
impossible to meet user expectations.

• Lack of executive support (9.3 %) - either because the project manager was far
too optimistic with regard to executive support, or because of a change of
executives.

• Changing requirements (8.7 %) - most are caused by a change of scope not
associated with adjustments to budget and time needed, but might also result
when the benefits introduced by the change cannot compensate for the higher
costs.

• Lack of planning (8.1 %) - because of incompetent project managers.
• Absence of need (7.5 %) - caused by a shift of needs.
• Lack of IT management (6.2 %) - due to inadequate management.
• Technology illiteracy (4.3 %) - referring to either developer or manager.

Boehm contends that "[m]ost of the top sources of termination apply about equally to
well- and poorly managed projects", and therefore we cannot always claim that a
cancelled project is a failed project. (Boehm, 2000) In his opinion, project termination is
acceptable, and even preferable, when things cannot be sufficiently amended, regardless
of whether it is the result of unforeseeable changes or not.

Looking at the top reasons for project cancellation, we see that some issues (given in
parentheses) can be alleviated with the help of quality modeling and assessment.
Discussing explicitly quality requirements increases the common understanding of what
attributes the software product has to possess in order to satisfy user needs (Incomplete
Requirements). Having an established quality assessment framework might facilitate
user involvement, in the cases where it was hampered by a lack of shared understanding
and common ground for discussion (Lack of user involvement). Quality assessment is
also an important facet of adequate project planning (Lack of planning).

6

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

The most recent Standish Group report is from 2009, and Jim Johnson, chairman of The
Standish Group, says that "[t]his year's results show a marked decrease in project success
rates, with 32% of all projects succeeding which are delivered on time, on budget, with
required features and functions". (Lynch, 2009) He goes on to say that "44% were
challenged which are late, over budget, and/or with less than the required features and
functions and 24% failed which are cancelled prior to completion or delivered and never
used." (Lynch, 2009) Jim Crear, Standish Group CIO asserts that these numbers are the
worst in the last 10 years, and bear the highest failure rate. (Lynch, 2009) Even though
we saw that some of the cancelled projects cannot be labeled failed, a significant portion
is never completed because of inadequate management. The increased percentage of
cancellations, as well as the decrease in successful projects shows that there is a need to
improve project management, and one way to accomplish that is to continuously monitor
quality.

2.3. Approaches to Software Quality Assurance and Evaluation

In general, there can be two approaches to developing or selecting a high-quality software
product - one can either look at the quality of the development process or, alternatively,
at the quality of the product being developed (process-oriented vs. product-oriented
quality assurance and evaluation). (Pressman, 2000) It is more intuitive for the user to
consider the product-oriented perspective of software quality, while it is more natural for
the developer to strive to achieve high quality of the software product by following a
process with established procedures. In a way, even though both approaches can be used
for both assurance and evaluation, it makes more sense to use the process view for
assurance, and the product view for evaluation. As stated in the Software quality analyst
article in Wikipedia, "Software Testing is product oriented, Software Quality Assurance
is process oriented." (2009) This work is concerned with quality evaluation, and will
focus on the product perspective, but we recognize that it is best to use both approaches
in conjunction.

2.3.1. Process-oriented Approach

In order to improve software quality, various models for the software life-cycle have been
proposed. They represent the process-oriented perspective. Some of the more prominent
ones are the Capability Maturity Model (CMM), ISO/IEC 12207, ISO 9001/9000-3, the
waterfall model, the spiral model and the SPICE model. Very well-known among them
are the CMM and ISO 9001. ISO 9001:2000 is more general in nature and provides clues
for designing and implementing a quality assurance system, while CMM gives details for
software process improvement. (Xu, Liu, Zhu & Xing, 2005)

7

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

According to the definition provided in (Chapman, 2007), "[t]he documented collection
of policies, processes and procedures used by a development team or organization to
practice software engineering is called its software development methodology (SDM) or
system development life cycle (SDLC)". Chapman goes on to state that the best way to
approach a methodology is to treat it as a means for risk management. The following
excerpt is taken from the same text and lists some major steps of the SDLC:

• Project charter and business case
• Definition of the business process and business requirements
• Documentation of user, functional and system requirements
• Top level architecture, technical approach, and system design
• System decomposition into component and unit specifications and design
• Coding, unit test planning, and unit test
• Generation of test data for unit testing and system testing
• System integration and testing
• Implementation, delivery and cut-over
• Training and user support
• System upgrades and routine software maintenance

These activities can be complemented by the following:

• Configuration management (version identification, baseline management and
change control)

• Requirements management and tracability [sic]
• Quality management (quality assurance, quality reviews, defect tracking)
• System engineering reviews (requirements review, prelim. and critical design

reviews, etc.)
• Support environment (development tools, libraries, files management, data

management) (excerpted from Chapman, 2007)

The author elaborates that a methodology provides understanding of how these activities
are to be conducted. Since the policies should be described unambiguously and explicitly,
it pays to focus on the core processes and not get into too much detail. This also leaves
some freedom of choice for the manager and development team.

2.3.1.1. Waterfall Methodology (Chapman, 2007)

The waterfall model illustrates how a hierarchy of steps can help manage a project. (Fig.
2)

8

M.Sc. Thesis - S. Grigorova

I System Concept

Scd:"ll;vm System
Requhm. erds

Scd:"ll;vm System
De~ ..

Sy.;tem
Requirerrerds

Review .It.. ..

McMaster - Computer Science

De1a:i1edDe~

Co& & ThitTestl

Crifual
Design
Review

I
Ititegmim &

Tell:.

Test
Reailiress
Review

Figure 2. Waterfall Model (Chapman, 2007)

This model assumes that requirements are fairly stable and have already been specified. It
was created for defense systems development. Several key aspects of a good
methodology are evident here:

• The project follows discrete steps,
• Before a new step is taken, the old one is reviewed, and
• Based on the reviews decisions are made whether to proceed.

The waterfall model establishes the quality, reliability, and maintainability of the
software through the reviews conducted in-between steps. Even though this methodology
is slow and burdensome, it demonstrates some good principles of SDLC.

2.3.1.2. Spiral Methodology (Chapman, 2007)

The slowness of the waterfall model might make it unfeasible for projects which require
quick release. The waterfall model has been modified to accommodate several deliveries
or handoffs, and these attempts have culminated in the spiral model. (Fig. 3) The
development team can thus begin small, and if there is enough time and resources, go
through another iteration, incrementally improving the functionality of the product.

The spiral methodology involves rapid prototyping, increased parallelism, and
concurrency in design and build activities. Each phase in the spiral needs to have clearly
specified deliverables.

Documentation is very important for the improvement of process and product quality.
(Fig. 4) It involves additional overhead and attempts should be made to automate it where
possible. The benefits from documenting include, but are not limited to, better

9

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

understanding of user's needs, increased maintainability of software and increased
reliability. Preparing the documentation should be included in the project scheduling and
budgeting.

...,--~,~

(:tMI Here
.- - -.. .

Bllild in Design the
Stages .--~~_: ___ ~ System

',~--- . //
~-----« ~"'---~--

Figure 3. Spiral Model (Chapman, 2007)

Software
Requirements
S reciflca lions

Software System
Architecture

Inte rface Design
S recifica liollS

Software
COlrq:one nt

Detailed Design

AmlOtated
Source
Code

Software
Test Plan

Software
Test

Procedures

Figure 4. Sample Software Documentation Work Products (Chapman, 2007)

10

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

2.3.1.3. Capability Maturity Model (CMM) (Chapman, 2007) and Capability
Maturity Model® Integration (CMMI) (Carnegie Mellon Software Engineering
Institute, 2006)

The Capability Maturity Model (CMM) was originated by the Software Engineering
Institute at Carnegie Mellon. It is especially prominent in companies developing large­
scale software. CMM distinguishes between five levels of company maturity, and a
given company's rating is becoming progressively more important to customers. The
following list is excerpted from (Chapman, 2007):

• Levell (Initial) - Processes are ad hoc (J.nd occasionally chaotic. Few processes
are defined, and success depends on individual effort and heroics. (A street­
person with a laptop would be at Levell.)

• Level 2 (Repeatable) - Basic project management processes are established to
track cost, schedule and functionality. A process discipline is in place to repeat
earlier successes on projects with similar applications.

• Level 3 (Defined) - Management and engineering processes are documented and
integrated into a standard software process. Projects use an approved, tailored
version of the organization's standard software process.

• Level 4 (Managed) - Detailed measures of the software process and product
quality are collected. Processes and products are quantitatively understood and
controlled.

• LevelS (Optimizing) - Continuous process improvement is aided by quantitative
feedback from the process and from piloting innovative ideas and technologies.

CMM was replaced around 2000 by the SEI Capability Maturity Model® Integration
(CMMI). (Chapman, 2007) As pointed out in (Carnegie Mellon Software Engineering
Institute, 2006), CMMI was developed as an integration of the following three models:

1. The Capability Maturity Model for Software (SW -CMM)

2. The Systems Engineering Capability Model (SECM)

3. The Integrated Product Development Capability Maturity Model (IPD-CMM)

The goal was to use a single framework for promoting better process practices within the
organization. The models to integrate were chosen based on their prominence and their
distinctive approach to the problem at hand. (Carnegie Mellon Software Engineering
Institute, 2006)

Best practices are collected into so-called constellations, and at the moment there are
three constellations - CMMI for Development, CMMI for Services and CMMI for
Acquisition. CMMI for Development deals with the development and maintenance of
products and services (CMMI for Services deals with the delivery of services). It is used
in many domains, e.g. aerospace, banking, computer hardware, software, defense,
automobile manufacturing, and telecommunications, etc. It establishes best practices for

11

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

project management, process management, systems engineering, hardware engineering,
software engineering, etc. (Carnegie Mellon Software Engineering Institute, 2006)

However, CMMI is more general in nature than the SW -CMM, because it covers more
domains, and there is no mention of the word "software" in its definitions, making it quite
abstract. (Capability Maturity Model Integration, 2009)

Colleen Frye wrote an article titled "CMMI: Good process doesn't always lead to good
quality" based on an interview with Bill Curtis, a co-author of CMMI. (Frye, 2008) In
the interview, Curtis says" ... just because I have a high maturity process doesn't mean I
don't have defects. It means I have processes in place. The CMM or CMMI, the successor
to CMM, is not a quality standard."(Frye, 2008) In essence, he claims that it is not
sufficient to only utilize best practices; in order to guarantee a high-quality product, one
needs to be able to evaluate the product's quality, and this is the role of quality models
and standards.

In the interview Bill Curtis recollects three waves in the approach to software quality
improvement:

• The initial wave was characterized by the use of higher-order programming
languages (70-ies)

• The second wave implemented new design methods and took advantage of better
tools, e.g. CASE tools (80-ies)

• The third wave introduced a focus on the process (90-ies)
• The new wave is introducing a focus on the product (2000-s) - the quality of its

architecture, its cost, its modifiability.

Curtis recognizes that there exist standards providing a structure for quality evaluation as
well as metrics to be used, but what he finds lacking is a benchmark that would establish
whether a given software product is of poor quality. He believes it would be useful if a
group of experts were to compile a list of principles and thresholds against which one can
assess and celtify a product. Even though we agree that this would be a very useful
contribution, we think it would be impossible to come up with a number that is applicable
across product lines within a domain, let alone across domains. In this sense we believe it
is more reasonable to establish methods for the assessment of these thresholds and apply
them for the specific product line within the specific domain as necessary. It is also very
important to document thoroughly the decisions made and the process followed for
establishing the quality thresholds, thus providing transparency. In this way users of the
software product would be aided in their decision-making.

The product and process perspectives of quality assurance and evaluation complement
each other and are best used in parallel. We have chosen the product perspective for the
focus of this thesis because we want to evaluate the quality of a finished product, and it

12

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

cannot be guaranteed by following best practices for product development. Instead, a
quality standard needs to be used.

2.3.2. Product-oriented Approach

As quality is defined not only in terms of functional, but also in terms of non-functional
properties of the product (the so-called -ilities), in order to successfully model and assess
quality one needs to be able to specify both. One popular approach is to use a quality
model, defined as "a model which deploys quality into a set of characteristics and shows
the relationships between them". (Azuma, 1996) There are alternative approaches, suited
for modeling the non-functional aspects of timed execution and those of hierarchical
component-based systems (using UML, etc.), which have been summarized by (Colin et
al.,2008).

In order to facilitate the cost-benefit analysis in software development, researchers have
attempted to model the relationships between the various quality characteristics and the
contribution each of them makes to overall quality. There are a number of different uses
for a quality model:

• To provide structure for the requirements elicitation process, by explicitly
outlining product characteristics influencing quality, and thus facilitating the
discussion of what would constitute a quality product

• To set boundary values for quality assurance in all stages of the development
process

• To predict the quality of the finished software product based on intermediate
measures

• To compare and choose among several products
• To decide whether a software product is ready for release, comparing the results

from the evaluation with expected quality
• To determine whether a change in the development process has led to an

improvement in the quality of the products developed
• To consider tradeoffs and decide how best to utilize limited resources
• To highlight areas that need improvement
• To decide whether a product's quality is acceptable
• To check requirements conformance

Of course, in order to arrive at valid conclusions and make meaningful inferences, one
relies on the accuracy of the model. Quality evaluation is not an exact science, but when
the same procedure is followed methodically conclusions can be drawn based on the
relative values derived for various products or product characteristics. For example, it is
possible to compare the relative quality of one product with another, or with expected
quality formulated in the same terms. To check the validity of obtained results, it is very

13

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

important to perform sensitivity analyses, so that it can be established whether a minor
change in measured values leads to a big change in quality. If the results are sensitive,
inferences drawn from the model would be valid only if the quality characteristics have
been precisely measured.

2.4. Summary

This chapter presented an overview of software quality concepts. Of the five perspectives
of quality described by Garvin (1984), we believe that only the transcendent one can be
ignored in the quality evaluation process, as it states that quality cannot be measured
precisely. The methodology that we present in this work has a product-based focus, but it
is suited to incorporate the user-based, manufacturing-based and value-based perspectives
as well, through customizing the hierarchy of the quality evaluation model. The
importance of software quality evaluation was demonstrated through the project statistics
supplied, as we believe that some of the reasons for project cancellation established by
Boehm (2000) could be greatly influenced by quality modeling and evaluation. The
discussion of the process-oriented and product-oriented approaches to software quality
evaluation and assurance lead us to the decision to focus on the product perspective
because we want to evaluate the quality of a finished software product, and it cannot be
guaranteed by following best process practices. The next chapter presents several quality
models that have gained prominence and discusses their advantages and weaknesses.

14

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

3. Models for Software Product Quality Evaluation

The international standard ISO/IEC 9126-1 (2001) defines a quality model as "the set of
characteristics and the relationships between them which provide the basis for specifying
quality requirements and evaluating quality". This chapter offers an overview and
comparison of the quality models proposed by McCall, Boehm, .ISO/IEC 9126, FURPS+
and Dromey, as well as an introduction of the Bayesian Belief Net approach to software
quality evaluation. A number of different software quality models are presented in the
literature, but none of them has been established as an archetype. One of the purposes of
this chapter is to establish advantages and disadvantages of the proposed models, in order
to make the greatest use of the expert knowledge available in the literature for inferring
the model structure to use in our methodology. We believe that models cannot be labeled
good or bad, they are only good (or bad) in a particular evaluation scenario, depending on
the purpose of the evaluation and on the product being evaluated. Therefore, one key
characteristic for a general model of software quality is custornizability, and we want to
offer that in our methodology, in addition to incorporating the quality characteristics
suggested in the models presented in this chapter.

3. 1. McCall ModeJ (McCall et aI., 1977)

One of the most popular and referenced quality models is the McCall model (Fig. 5),
which was created in 1977 to serve the needs of the U.S. Air Force Electronic Systems
Division (ESD), the Rome Air Development Center (RADC), and General Electric (GE).
It aimed at providing a software quality framework to acquisition managers. This
framework was created in order to enable the more precise specification of quality
requirements, and to facilitate the timely evaluation of whether those requirements have
been met. Up until that time, "the quality desired ha[d] historically been definable only in
subjective terms". (McCall et aI., 1977) McCall and his colleagues gave a definition of
software quality and provided a way of quantifying it through metrics. The model
describes software quality as a result of the presence of certain quality attributes in the
software product. These attributes, called quality factors, were collected from the
literature on software quality evaluation and grouped together in three groups - Product
Operation, Product Revision, and Product Transition. They are user orientei, and are
further broken down into measurable software criteria, which are software oriented2

•

Let us take the quality factor Efficiency as an example. It is broken down into the
measurable characteristics of Execution Efficiency and Storage Efficiency. (Fig. 5) The
model offers definitions for all the criteria, e.g.,

I The term is used to describe quality characteristics which are of interest to the user, e.g. how fast the
program runs (efficiency) or how easy it is to maintain (maintainability).
2 The term is used to describe attributes of the software or software products of the development process.

15

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

• Execution Efficiency - "Those attributes of the software that provide for
minimum processing time."

• Storage Efficiency - "Those attributes of the software that provide for minimum
storage requirements during operation." (McCall et ai., 1977)

Product
Operation

Product
Revision

Product
Transition

Quality
Factors

Correctn ess

Reliability

Efficiency

Integrity

Usability

Maintain ability

Testability

Flexibility

Portability

Quality
Criteria

ility
eness
ncy
y
erance
n efficie ncy
efficiency
control

Access
Operabil

audit
ity

~Training
icativen ess
y

Commun
Simplicit
Concise
Instrume
Self-des
Expanda
Generali
Modulari
Software

ness
ntati on
criptive ness
bility
ty
ty
system indepe nd ence-

Reusability L __ ---=----=----~J----;::;,.L---~Machine i nde pe nde nce
icatio ns common ality -Commun

L.=:!:'..':=::.:..:J----Data con Inte ro perability nmonality

Figure 5. McCall Model (Burris, 2007)

Metrics

It also provides metrics for the measurement of the criteria and stipulates the phase of the
software life-cycle during which they should be collected. The metrics suggested by
McCall et ai. for our example can be reviewed in table 1. Such metrics were chosen for
the quality criteria that would be easy to collect early in the development process, and if
possible extracted automatically. The authors recognize that not all of the metrics
proposed are objective, even though an attempt was made to minimize SUbjectivity.

As stated previously, McCall et al. define quality as "a general term applicable to any
trait or characteristic, whether individual or generic, a distinguishing attribute which
indicates a degree of excellence or identifies the basic nature of something". (McCall et
aI., 1977) The definition by itself does not provide any insights as to how quality is to be
evaluated; it is closer to the transcendent view of quality defined by Garvin (1984) rather

16

...,
15-

CRITERIOH.I
SUBCRlTERI a. METRIC

........
(P
,.......

EXECUTION
CIJ
0
::P

EFflCIE:.CY/
I£Ql,JlREMfrrrS EE. 1 PERFORMANCE REQUIREMENTS ALLOCATED TO DESIGN

~
P:> -.
(P

10
SYSTEM

lIIETRIC VAlUE ... Same as l;ne aboye
t::
P:> -...... q ITERATIVE

PROCESSING EE. Z ITERATIVE PROCESSING EFFICIENCY MEASURE:

~ -.
a
00

(by module)
(1) Non-loop dependent computatioftSkept out of

loop. .

8' -.
......

(1 _ I nonloop de~ndent statements in lO~)
total I oop statements

,....... ::T
-....l (P

"'rj

(2) Perfonnance optimizing compiler/aSSembly
language used.

P:> a (3) Compound expressions defined once.
0 -.
tI1
H;
a
(P

, compound expression defined more than
(once

I compound expressions) 1-

(4) Number of oyer1~ •
::s a

'-< ,......, (, of o!erlays)
~ a {5} Free of bit/byte packing/unpacking in loops.
n
P:> (6) Free of nonfunctioul executable code. ----(P

{l I nonfunctional exeoutableCode}
- total executable statements

P:>
r-' (7) Decision statements efficiently coded.
,.......
\0
-....l
-....l

(1- , inefficient decision statementS)
fota 1 I! decision statements

'--"

L. ~ _________

FACTOR{S): EFFICIENCY
REO,MTS DIESIGIN

YES/NO VALUE YES/NO VALUE
lOR' lOR'

CJ

0

.CJ

CJ

CJ

U.LEPlENTATlOIl
YES/NO VALUE lOR.

I CJI
i

CJ
CJ

CJ

CJ
I

c:::J

Di
I
I

I

~
rn
o

~
00
00

I
CIJ

Q -.
()'q

S;
o
-<
P:>

~
~
P:>
00

sr
I
n o

~
sr
CIJ
a
g'
a
(P

~

~
CD ,.....

CIUTERI 0If/
SUBCRITERION

C/.l
0
:::I:'
~
~
CD

to
~
~

'-<

~
'"'I
0
CIl

b'
'"'I

g
,..... 'T.!
00

~
0

DATA USACE
.....
0
'"'I

tr:I
Hl
0
CD
::l
0

'-<
,.--...
n
0
::l r
'-"
,.--...

~
n
e:..
CD
~
~

.......
1.0
-...l
-...l
'-"

-- -

I I

FACTOR(S): EFFICI£NCY

REOMTS DESIGN
METRIC YES/NO YES/NO VALUE VAlUE

lOR' lOR.

(8) Module linkages.

(1 _ !!!)dule linka.ge time)
execution time

(9) OS linkages.

. (1 _ OS 11nkan time ~
exeeut on hue

MODULE total score frem ap~l1cable elements
METRIC VALUE.. total ., appJica-le elements 0

SYSTEM sum of iterative processing' measures 0 METRIC VALUE • for each module
tota1 J iiiOa~les

fE. 3 DATA USAGE EFfICIENCY MEASURE: (by module)
(1) Data grouped for efficient processing .. CJ
(2) Variables initialized when declared.

(t ja1t111t~ When d~Clared)
total , variables

(3) No mix--mode expressiofts •

('mix mode expressions)
1- , executable statelllents

(4) COfmIOf) choice of units/type. CJ
(11' OCCUrTences of unconmon unit operations)

C1 (5) Data indexed or referenced for efficient
processing •

fIlDUlE total score from aieliCable elements
METRIC VALUE • J appUcaEi e .elements CJ

SYSTEM sum of data usage measures for eacheleme t CJ METRIC VALUE • total I modules

IMPLEHENTATIDn
YES/NO VALUE 1 OR tI

c::J

0

CJ

0

CJ
CJ

CJ

CJ

CJ

0
CJ

~ en o
~
go
CIl
CIl

C/.l

Q
{Tq
o
'"'I o
-<
~

I
~
CIl
CD
'"'I

I
n

~
~
C/.l
o
CD

~
CD

>-3
~
0"
('D

........
CRITERIONI
SU~CR ITERIOH METRIC

C/.l
0
::P
::E

STORAGE EFFICIENC~ SE. t STORAGE EffICIENCY MEASURE: (by mdule)

(1) StOrage requfrelllellts al10cated to design.
e;
('D (2) Virtual storage facilities used.

D c
~

'-<:

~

(3) CCIIIIIon data defined only ance.
(1 'variables defined IDOre than once)

- total' "ii1ibles
(4) Program segmentation.·

('D
q
(")

(1 1III.1(111U11 s~nt l.enQth)
- to.tal Jlrogram lef19th

rn

8'
'"'I
......
::r'
('D

(5) ~u 5egII1enta.ti an.

(1 Amount of unused data)
- tota 1 amount 01 dita

........
>-:rj

\0
~
(")

(5) Dynuric memory IUl'Nlgellent u.t111zed.
(7) Diu Picking used.

0
'"'I

tr.I
H:l
(")

(8) FTC! of nonfunctional code.

(1- , nonfunctional statllllltntS)
tata t , stitellents

('D

::l (9) no duplicate codes.
(")

'-<:
r-..
n

(1- f dt:l1cate staJ:!tts) tal' sta n 5
0
::l
:-'"
'-"

(10) Storage optimizing compfler/assembly language
used.

r-..

~
(")

n
~

(11) Free of redundant ditl elements.
(1- , redundant dita elements)

. ., CIi ta e 1 eIIIe1Its
('D
~ :-

fClOULE togl score fron IlZelicable e . ~'\..mts
METRIC VALUE • ; IppnCi6ie elements -

........
\0
-..l

SYSTEM sum of storage efficiency measures for ea~
METRIC VALUE" total , Dldules

-..l - - ---- -~

'-"

F~CTOR(S): EFFICIENCY
REtlMTS DlESlGI

YES/NO VAJ..U£ YES/NO YM.UE
lOR' lOR'

c::J
c:J

CJ

Cl

CJ

CJ

CJ

c:J

IfllPlEPIEJITAT 1011
¥ESJIIO VALUE lOR'

CJ
0

0
,

,

iCJ

CJ
CJ

CJ

CJ

CJ
CJ

I

I

CJ!
I

CJI

~
C/.l
~

~ rn
rn
I

C/.l

Q
~.
o
-<
~

~
~ rn

~
I
n
o

~
~
C/.l
(")

~
('D

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

than the product -based one. The quality model amends this discrepancy by providing a
group of attributes that are responsible for the presence or lack of quality. (Fig. 5)
Looking at figure 5, we notice that Functionality has not been explicitly considered, even
though most of the characteristics which influence it according to the other models
presented in this chapter are also present here (Suitability and Security are examples of
characteristics being omitted).

Among the contributions of this model are the following additions to the existing state of
the art about software quality evaluation:

• The quality evaluation process is comprehensive, instead of focusing on just one
aspect of evaluation

• A method for metrics validation is provided
• The factors are matched with corresponding life-cycle phases
• The proposed metrics are not influenced by the programming language employed
• Such metrics are chosen that can be used early on in development, thus reducing

the cost of correcting problems
• The criteria are chosen so as to be as independent as possible
• Some automated metric collection tools are suggested

Another achievement of the model, which is domain-specific, is the linking of quality
factors to Air Force applications, measuring factor applicability. This was done as a
means for assessing the usability of the framework, but it gives recognition to the varying
importance of the different quality factors for the various categories of Air Force
applications. In addition, an attempt was made to quantify the correlation of subjective
criteria to the quality factors, which is again domain-specific and no general conclusions
can be drawn.

Among the disadvantages that we see are the fact that the model itself is static, and
cannot be expanded, and that some of the metrics proposed are subjective, even though
they would still be useful for the comparison of products by a single company.

3.2. Boehm Model (Boehm et aI., 1976)

In his article "Quantiative Evaluation of Software Quality" written together with Brown
and Lipow, Barry Boehm provides a framework for software quality analysis. The
presented model features higher-level characteristics corresponding to the uses of the
evaluation, and lower-level ones that are measurable. (Fig. 6) The work also provides a
definition of software metrics which have been grouped and assessed in terms of
usefulness (predictive power and potential benefit), quantifiability, and possibility for
automation. This model is also fixed.

20

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

Boehm et al. consider as one of the great potential advantages that this model has to offer
the increased cost-effectiveness of maintenance. It is evident from the figure that there is
a focus on Maintainability, and the authors reason that higher quality associated with the
Maintainability characteristic would lead to a lower cost incurred during the maintenance
phase of the software life cycle. The other characteristics chosen as prerequisites for
overall quality (labeled here General Utility) are As-is utility and Portability, reflecting
the principal interests of users as the authors see them. Definitions of all quality
characteristics used in the model can be found in Appendix A.

I:----------.t OEVlCE.INOfPENOI':t'lCIl

SELf'-{;O!ffAINI!ONESS

~ ACCUAACY I
?-- r-"---l COMI'UHEk£S$

STIlUCTUnEDNESS

t.lAINTAINABlL.lTV

IAOOrFIABllITY

Figure 6. Boehm's model for software quality evaluation (Selby, 2007)

Boehm et al. recognize several key issues involved in software product quality
evaluation, namely:

21

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

• Users have different needs and requirements, and because of this we cannot apply
a single quality metric that would satisfy all users. Useful results can be obtained
if the user's priorities can be input into the framework and taken into account.

• Metrics would be best utilized for indicators of problem areas in the development,
test planning, acquisition and maintenance phases because " ... the metrics are not
exhaustive ... [and] the resulting overall rating would be more suggestive than
conclusive or prescriptive". (Boehm et aI., 1976)

The metrics used in this work are focused on the quality characteristics that the code
exhibits, and this is a distinction from McCall's model. They are formulated as questions,
and these questions can serve as guidelines for "best programming practices" when
developing the product. This makes them useful for both product evaluation and process
improvement. Boehm et al. point out that it is not only important to have useful and
quantifiable metrics, they should also be easy to collect, so that there is no significant
overhead incurred. The following list excerpted from (Boehm et aI., 1976) gives
definitions of the abbreviations used in the metrics evaluation table (Fig. 7) in order to
signify the least expensive approach for quantification:

• AL - can be done cost-effectively via an automated algorithm
• CC - can be done cost-effectively via an automated compliance checker if given a

checklist (Code Auditor is such a tool ...)
• UI - requires an untrained inspector
• TI - requires a trained inspector
• EI - requires an expert inspector
• EX- requires program to be executed

Similar rating scales have been provided for the quality metrics' correlation with quality,
potential benefit, ease of developing automated evaluation and completeness of the
automated evaluation. Even though the list of metrics was compiled to evaluate the
quality of Fortran code, and is therefore not generally applicable, the way in which the
metrics have been assessed can be utilized in other settings. A formalized comparison of
proposed metrics according to the criteria outlined by Boehm et al. would be a valuable
addition to any quality evaluation framework, as it will help the evaluator choose
amongst alternative metrics. Unfortunately, most authors focus on correlation with
quality alone, and leave the metrics comparisons to the evaluator's discretion.

The models proposed by McCall et al. and Boehm et al. have similar structure in the
sense that both use a hierarchy of characteristics, in which the lower-level characteristics
are prerequisites for the higher-level ones, but there is a difference in the relationships
that have been established. For example, in McCall's model both Maintainability and
Testability are quality factors, appearing at the same level, and in Boehm's model
Testability is a prerequisite for Maintainability. This is a point that is difficult to resolve
when constructing a general model incorporating the above-mentioned ones.

22

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

E.:'1se of
developing Completeness

Primitive Correlation Potential automated of automated
characteristics Definition of metrles with quality benefit Quantifiability evaluation evaluation

Device Are computations A 5 AL+EX+TI E P
Independence independent of

DI-l computer word size
for achievement of
required precision Or

storage scheme?

DI-2 Have machinc- A 5 AL M P
dependent statements
been flagged and
commented upon (e.g.,
those computations that
depend upon computer
hardware cnpability for
addressing half words,
bytes, selected bit
patterns, or those that
employ extended source
language features),?

Self- Does the program A 5 AL E P
COlltainedncss contain a facility for

SC-I initializing core storage
prior to use?

SC-2 Does the program A 5 CC E P
contain n facility for
proper positioning of
input/output devices
prior to use?

Figure 7. Evaluation of quality metrics for Boehm's model (Boehm et aI., 1976)

3.3. ISO/IEC 9126-1 (ISO/IEC, 2001) and ISO/IEC 14598-1 (ISO/IEC,
1999)

This information has been extractedfrOln ISO/IEC TR 9126-1 and ISO/IEC TR 14598-1
with the permission of Standards Council of Canada, in cooperation with IHS Canada,
the official Canadian distributor of ISO publications, License #SCC 08/09 - 035. No
further reproduction is permitted without prior written permission

The International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC) have produced two standards to deal with the
evaluation of software product quality, namely ISO/IEC 9126 and ISO/IEC 14598. The

23

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

first standard bears the title ISO/IEC 9126 - Software engineering - Product quality, and
consists of four parts:

• Part 1: Quality model (2001) - This part provides models for the evaluation of
external quality (Fig. 8), internal quality (Fig. 8), and quality in use (Fig. 9). It
builds on the model presented by McCall et al. ("ISO 9126," 2009), and the
quality characteristics provided specify both functional and non-functional
product attributes. Their definitions can be found in Appendix A.

• Part 2: External metrics (2003) - This part of the standard presents a list of metrics
for the evaluation of external quality, which is defined as "the extent to which a
product satisfies stated and implied needs when used under specified conditions".
(ISO/IEC,2001) According to the information on ISO 9126 in Wikipedia,
external metrics are "applicable to running software". ("ISO 9126," 2009)

• Part 3: Internal metrics (2003) - This part of the standard presents a list of metrics
for the evaluation of internal quality, which is defined as " the totality of attributes
of a product that determine its ability to satisfy stated and implied needs when
used under specified conditions". (ISO/IEC, 2001) Wikipedia describes internal
metrics as "those which do not rely on software execution (static measures)".
("ISO 9126," 2009)

• Part 4: Quality in use metrics (2004) - This part of the standard presents a list of
metrics for the evaluation of quality in use, which is defined as " the extent to
which a product used by specified users meets their needs to achieve specified
goals with effectiveness, productivity and satisfaction in specified contexts of
use". (ISO/IEC, 2001) According to Wikipedia, quality in use metrics are "only
available when the final product is used in real conditions". ("ISO 9126," 2009)

In addition to considering quality from three different perspectives, the standard provides
in its first part an understanding of how the different perspectives are related. (Fig.
10) Ideally, internal quality determines external quality, and external quality in turn
determines quality in use. This makes it possible to use the information obtained through
one of the perspectives to infer a value for another perspective, and the predictive power
is improved with a better understanding of the dependency links between them.

The second standard is titled ISO/IEC 14598 - Information technology - Software
product evaluation, and its name reveals its purpose - to standardize the evaluation
process by providing structure and describing deliverables. It consists of 6 parts:

• Part 1: General overview
• Pmt 2: Planning and management
• Part 3: Process for developers
• Part 4: Process for acquirers
• Part 5: Process for evaluators
• Part 6: Documentation of evaluation modules

24

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

and reveals some potential uses of the evaluation process of intermediate and final
product quality. The following lists have been excerpted from (ISO/IEC, 1999):

The purpose of evaluation of intermediate product quality may be to:
• decide on the acceptance of an intermediate product from a subcontractor;
• decide on the completion of a process and when to send products to the next

process;
• predict or estimate end product quality;
• collect information on intermediate products in order to control and manage the

process.

The purpose of evaluation of end product quality may be to:
• decide on the acceptance of the product;
• decide when to release the product;
• compare the product with competitive products;
• select a product from among alternative products;
• assess both positive and negative effect of a product when it is used;
• decide when to enhance or replace the product.

external and
internal
quality

I I I I I I

functionality reliability usability efficiency maintainability portability

I I I .. I I I
suitability maturity understandability. time behaviour analysability adaptability
accuracy fault tolerance learnability : changeability installability

interoperability recoverability operability resource stability co-existence
security attractiveness utilisation i testability replaceability

functionality reliability usability efficiency maintainability portability
compliance compliance compliance compliance compliance compliance

;

Figure 8. Quality model for external and internal quality according to ISOIIEC 9126-1
(ISO/IEC,2001)

25

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

quality in
use

I

I I I I

effectiveness productivity safety satisfaction

Figure 9. Quality model for quality in use according to ISO/IEC 9126-1 (ISO/IEC, 2001)

process

process
measures

software product

+
intemal

measures

t
extemal

mea(lUreS

eJIecf of software
product

quality in use
measures

Figure 10. Quality in the lifecycle (ISO/IEC, 2001)

contexts
of use

Other uses for the evaluation include the revision and enhancement of the production
process and the deriving of links between the various metrics (internal, external and
metrics in use), which can subsequently be used for quality prediction. Quality
characteristics that need improvement can be better targeted as a result of the evaluation.
This standard recognizes that the different perspectives that users, developers and
managers have will be reflected in potentially different rating levels (their understanding
of what values cOlTespond to a "good" product might differ).

The ISO/IEC 14598 standard was created to facilitate the quality evaluation process by
providing a framework for the use of ISO/IEC 9126. (Fig. 11)

The figure provides a systematic approach to the evaluation process that we have
attempted to follow as much as possible in the case study presented in a subsequent
chapter of this thesis. However, the ISO/IEC 14598 standard we use was released prior to
the newer ISO/IEC 9126 metrics standards and does not match them. This was one of the

26

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

reasons why we consider it more of a general point of reference and observe only the
relevant points it has to offer. For example, the standard suggests that the purpose of
evaluation should be defined first. (Fig. 11) This is meaningful, because the purpose of
evaluation will influence the decision about which quality characteristics to include and
which to omit in the quality model. The type of product and its domain also play an
important role in customizing the model, and are naturally considered as a second step of
establishing the evaluation requirements. The next steps delineated in figure 11 are also
meaningful regardless of the standards and models chosen and the metrics used.

r(Estab lis h p urp 0 se 0 f evalu ation (7.1))
Establish
evaluation I- -(Identify types 0 f product(s) (7.2))
requirements

-(specifY quality model (7.3) - 9126-1 Quality
Characteristics

9 I 26-2 Extern al Metrics
." rCSelectmetrics (8.1) - 9126-3 Intern al Metrics

14598-6 Evaluation
Specify the I- I(Establish rating levels for metrics (8.2) , J eva luatlon

Modules

Es tab lis h criteria for as ses 8m ent (8.3) ,)
~

Design the
--(Produce evaluation plan (9. I))

evaluation
,

t
,

-(Take Measures (10, I) > J
E xecutc th e ~ -(compare with ~ri~eril!-('IO.i) >) evaluation ,

Assess results (lO}))

Figure 11. Software Quality Evaluation Process of ISO/IEC 14598-1 (ISO/IEC, 1999)

Some of the positive aspects of the ISO/IEC 9126 standard as discussed in (Burris, 2007)
are:

• It is an international standard, therefore universally recognized and continuously
improved.

• Because of its prominence, it provides a shared understanding of software product
quality and thus facilitates comparison.

• It measures quality from multiple perspectives (internal, external, in use).
• The model is complete and comprehensive.
• The standard (model and metrics) is general enough to apply across software

application domains and with regard to different implementation technologies,

27

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

and at the same time it provides customization options to make it specific enough
for the tasks at hand.

• The standard does not claim to provide means of measuring absolute quality, as
every quality characteristic in the model can vary in importance according to
application domain, and therefore carry a different weight in the quality
evaluation of different products. As an example, Reliability does not have the
same importance in the quality evaluation of a pacemaker and a minesweeper
game.

• The standard complements the ISO process quality standards.

Intended advantages mentioned in other sources, which we believe are present include:
• Quality evaluation becomes reproducible. (Punter, Solingen, & Trienekens, 1997)
• The standard facilitates the communication between software stakeholders by

providing a common language. This in turn improves the quality of the
requirements specification. (Al-Kilidar, Cox, & Kitchenham, 2005)

We believe that the best feature the standard possesses is its flexibility and the potential
to be customized, as this is of particular importance when trying to arrive to a close
approximation of something as elusive as quality. The standard provides structure for the
evaluation process and gives many useful suggestions, without being overly prescriptive.
The model itself is open for additions as well as for removing some of the recommended
quality characteristics, as long as all the choices are well documented, " ... giving the
reasons for any exclusions, or describ[ing] its own categorisation of software product
quality attributes and provid[ing] a mapping to the characteristics and subcharacteristics
... [of ISO/IEC 9126-1]". (ISO/IEC, 2001) Another example of the flexibility of the
standard is the availability of choice of metrics for the evaluation. The list of metrics is
not considered exhaustive, and evaluators are free to modify the suggested metrics or use
different ones. (ISO/IEC, 2003) Some of the metrics have not been validated; however,
there is an annex section in Annex A ofISO/IEC 9126-2 dedicated to metric validation,
which is yet another useful aspect of the standard. (ISO/IEC, 2003)

Internal metrics refer to inherent product attributes and can be obtained earlier in the
development life-cycle, measuring the quality of intermediate products. (ISO/IEC, 2001)
Quality in use metrics are collected when the product is used in its intended environment
by real users. This distinguishes them from the external metrics, which are collected in a
simulated environment. (ISO/IEC, 2001) Quality in use metrics are suggested as a
means of measuring the quality from the user's perspective and focus on the
characteristics most important to the user (i.e., Effectiveness, Productivity, Safety and
Satisfaction), excluding others which are less relevant. It seems as if the Satisfaction
characteristic is included as a generalization corresponding to all quality characteristics
which are not covered by the other three. However, since Satisfaction is defined in
(ISO/IEC, 2001) as "[t]he capability of the software product to satisfy users in a specified
context of use ... ", it overlaps with the other quality characteristics, as their prerequisites
are necessarily prerequisites for user satisfaction. In this sense it appears closer to the

28

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

definition provided for quality in use, "[t]he capability of the software product to enable
specified users to achieve specified goals with effectiveness, productivity, safety and
satisfaction in specified contexts of use ". (ISO/IEC, 2001) The standard also specifies
that quality in use" ... may be influenced by any of the quality characteristics ... " thus
supporting our understanding of the all-encompassing scope of quality in use. (ISO/IEC,
2001) In our understanding, Satisfaction is also potentially dependent on any and every
quality characteristic, thus a disambiguation clause should be incorporated in the standard
to avoid confusion. A good model minimizes the overlap of quality characteristics, and
we believe that there needs to be an adjustment in the definitions supplied in the standard.
A further discussion of this perceived discrepancy is outside the scope of this work.

In the discussion of the ISO/IEC 9126 standard in (Al-Kilidar, Cox, & Kitchenham,
2005) some disadvantages have been pointed out. Even though the work of Al-Kilidar et
al. is concerned with the evaluation of the outputs of the design phase of the software
life-cycle and uses internal metrics, we are going to briefly review some of the comments
here, as they are general enough to apply to the standard as a whole. The authors were
faced with two major problems: the students who participated in the experiment found
the ISO/IEC 9126 terms unclear, and could not easily grasp what usability incorporates.
The authors go on to add that the standard is lacking a glossary of terms, which is
necessary in order to prevent alternative interpretation of concepts. The version of the
standard that we consider here is newer, and it incorporates definitions of the important
terms, so this can be seen as an example of the continuous improvement of the standard
(the paper refers to Parts 2-4 of the standard from 2002, and we consider ISO/IEC TR
9126-2:2003, ISO/IEC TR 9126-3:2003, ISO/IEC TR 9126-4:2004). However, as we
have seen above, some definitions need further work.

Another point made in (Al-Kilidar et aI., 2005) is that the standard is open to sUbjective
interpretation, and this makes it less of a standard. It is tlUe that having the possibility to
customize the model, interpret the suggested metrics in more than one way and use
alternative metrics may hamper comparisons across companies, or even product lines
within the same company, but this is a necessary feature of any standard which is to be
useful. As the authors themselves point out in the words of M. A. Jackson, lithe generality
of a method is inversely proportional to its utility." (Al-Kilidar et aI., 2005) The standard
provides general guidelines and leaves room for adjustments to be made to meet project
specifics. As long as the metrics used can be validated (and this means that they are
reproducible and repeatable, among other things), the evaluator can choose the ones most
suitable for the objectives of the product evaluation. (ISO/IEC, 2003) Al-Kilidar et al.
state that the generality of the metrics definitions makes some of them overlap, depending
on the interpretation. Since one of the goals of the standard is II [t]o describe the product
quality with a minimum of overlap", we believe that this idea should be pursued
throughout the evaluation process. (ISO/IEC, 2001) It is therefore the responsibility of
the evaluator to choose metrics and interpretation of metric definitions in a way that
minimizes overlapping. When the evaluation process has been appropriately documented,
and all subjective decisions have been committed to paper and justified, there is sufficient

29

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

information to enable comparisons of products based on overall quality or on any given
quality characteristic, as any subsequent evaluation could access this documentation. If
the products are diverse enough to require different modeling and measuring of quality,
then there is no better way to compare them to begin with, as it would be like comparing
apples and oranges. In this case, comparisons can only be made of the matching parts of
the quality model. Documenting the decisions also helps if there is a need to review and
modify them after additional information comes to light. For example, some requirements
which have not been written down, but were anticipated by users as part of an implicit
agreement, might be added later on.

Another criticism is that the metrics suggested in the standard might not be the best ones.
The authors quote Einstein's words that "not everything that can be counted counts, and
not everything that counts can be counted". (Al-Kilidar et al., 2005) Counts were
suggested in the standard in an attempt to decrease sUbjectivity and provide metrics
applicable to all product domains. Their generality is not a serious hurdle, as the
evaluator is given freedom in choosing which metrics to use in the evaluation, and is not
limited to the suggested ones, which "are not intended to be an exhaustive set". (ISO/IEC,
2003)

3.4. Dromey's ModeJ (Dromey, 1996)

Dromey describes quality as "experiential", determined by a person's needs, thus taking
the user-based view of quality. He believes that a process approach alone cannot
guarantee product quality and his model focuses on the quality of the products of the
software life-cycle phases. There are in effect separate quality models for the
requirements, design and implementation phase. Dromey attempts to express the
relationship between product attributes and high-level quality characteristics, motivated
by the axiom that "a product's tangible internal characteristics or properties determine
its external quality attributes,,3. (Dromey, 1996) The same idea is reflected in the
relationship of internal and external quality in ISO/IEC 9126. In Dromey's opinion,
establishing the links between the two can serve as a guideline for improving the process
by means of providing a clear objective. He believes that product quality models are
necessary for the efficient adjustment of process practices.

In Dromey's approach, the model is built from the bottom-up, starting with the
measurable attributes of the product and proceeding to the higher-level quality
characteristics that they influence. Since products are comprised of components, their
quality depends on the quality-carrying attributes of the components they contain, and the
quality-carrying attributes of the components' compositions. The model groups the
quality-influencing component properties into Correctness properties, Internal properties,
Contextual properties and Descriptive propeliies. The high-level quality characteristics of
the model are chosen based on their relative importance for the evaluated product and the

3 The excerpt was italicized in the original document.

30

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

current project. Because Dromey's work advocates the synergy of the process- and
product-oriented approaches to software quality evaluation, "Process-mature" is included
as one of the high-level quality characteristics in each of the proposed quality models.
(Fig. 12-14) The dependencies between measurable properties and high-level quality
attributes are inferred based on the relationships established by Dromey between the four
component property groups and the latter. As an example, the Correctness properties
have been linked to Functionality and Reliability. (Fig. 15)

IMPLEMENTATION: HIGH-LEVEL QUALITY ATTRIBUTES

Attributes

Functionality

Subattributes

Suitability, accuracy, interoperahility,
compliance sec,:urity

Figure 12. High-level quality attributes for the implementation model (Dromey, 1996)

Figure 13. High-level quality attributes for the requirements model (Dromey, 1996)

Dromey proposes a framework for model construction with several steps:

31

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

• Choose the high-level quality characteristics with highest priority for the
particular product;

• Make a list of the product components;
• Choose the most relevant measurable attributes of each component and assign

them to one of the property groups;
• Establish dependencies between the property groups and quality objectives;
• Assess the model and improve it.

DESIGN: HiGH .. LEVEL -QUALITY AnRIBUTES
," ".,. -... ; -_..... ~

Subattributes

.: .~Co.D:f~'i~Ma.ilt,: flincti6naI,valiJ:' G()nstrain~d ..

\ ... ~!~ec~iv~. _ ;.;.. _ .:-. '. R~s~u~ce;effi~~en~., .. ~ational ~
L nderstanppJ.,lle .'. - .:. NIQuvateq,- corlen~nt, !-lelf...:contam~d

. . . '" . '. ..' ~ .. . -.
Adaptable Modifiable, extensible, reusable

\~~ _~:i:(:,C(;~S~:-~I;l.!~~.~~~~ ~:' .. ~ ~ ~E:it~¢tiv.e:;\vcll~defi~edf assured ___ _

Figure 14. High-level quality attributes for the design model (Dromey, 1996)

.:-

This is a generic approach that can be utilized for the quality models associated with each
phase of the software life-cycle. Dromey follows the framework to describe the way he
arrived at quality models for requirements, design and implementation. The model that
corresponds to the product quality models we have reviewed above is the Implementation
quality model. Its top level expands on the top level of ISO 9126 by adding Reusability
and Process-mature. (Fig. 12) The list of implementation components can be found in
(Dromey, 1994), and in essence, it comprises the constructs of a programming language.
They are outlined by the language's grammar and can be grouped into two categories,
one describing computations (loops, if-statements, assignments, etc.) and one describing
data (e.g. variables, constants). Figure 16 illustrates the impact that the properties of the
component Expression have on quality. The dependencies between component properties
and quality attributes are represented in figure 15. Dromey chose the links minimizing
overlapping, and recognizes that the set is not complete.

32

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

Software product

Implementation

Product propelties Quality attributes

Correctness Functionality, reliability

Internal

Contextual

Descriptive

Maintainability, efficiency, reliability

Maintainability, reusability, portability,
reliability

Maintainability, reusability, portability,
usability

Figure 15. Links between product properties and quality attributes (adapted from
Dromey, 1996)

Quality-carrying Property
Quality impact properties classification

Component
Computable Correctness Functionality, reliability

Side-effect free Contextual Functionality, reliability

Expression
Effective Internal Efficiency

Adjustable Internal Maintainability, reuse

Figure 16. Impact of the Expression component on quality (adapted from Dromey, 1996)

A positive aspect to the model is the constant reevaluation and improvement that the
framework implies. For example, additional quality-influencing attributes can be added
as deemed necessary. The model is flexible and provides for customization. Another
positive aspect is the linking of the process and product approach to quality evaluation. A
negative aspect is the lack of metrics suggested for the measurable product attributes. The
model is closer to suggesting a checklist of properties that should be present than a means
for evaluating quality, and it does not discuss the varying importance of the quality
characteristics included in the model depending on user preference. Another point that

33

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

should be duly noted is that the term "product" in the Implementation model setting
refers to the software program, thus taking a more limited view of a software product,
omitting attributes such as documentation. This is why the product components are
represented by the constructs of the programming language used. On the other hand,
ISO/IEC 9126 considers the software product in a broader sense, and recognizes its
interaction with its environment and the user, facilitating more applications. (Fig. 17)
This makes it better suited for use as a basis for our methodology.

Product Interface

Product

/

/
"

Externa I Quality
ISO 9126-2

, ,

Product Environment

,
" ,

"
Internal Quality

ISO 9126-3

Users

Quality in Use
ISO 9126-4

Figure 17. Quality perspectives of ISO/IEC 9126 (BulTis, 2007)

3.5. FURPS (Grady & Caswell, 1987)

Another hierarchical quality model is Hewlett-Packard's FURPS, promoted by Robert
Grady and Deborah Caswell. It focuses on both functional and non-functional quality
characteristics. The acronym is expanded as follows:

F - Functionality
U - Usability
R - Reliability
P - Performance
S - Supportability

A disadvantage of this model is that no attention is given to Portability. Each
characteristic is further decomposed into the following components:

• Functionality - Feature set, Capabilities, Generality, Security
• Usability - Human factors, Aesthetics, Consistency, Documentation
• Reliability - Frequency/severity of failure, Recoverability, Predictability,

Accuracy, Mean time to failure

34

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

• Performance - Speed, Efficiency, Resource consumption, Thruput, Response time
• Supportability - Testability, Extensibility, Adaptability, Maintainability,

Compatibility, Configurability, Serviceability, Installability, Localizability

Aesthetics, Documentation, Serviceability and Localizability are some of the quality
characteristics introduced by the model which are not present in the models discussed
above. This model takes explicitly into account the tradeoffs that exist for satisfying the
quality characteristics. The priority of each component needs to be determined, and a way
to measure it established. One of the advantages of the model is taking into account the
specific objectives that a project might have (i.e., the emphasis can be on different quality
characteristics depending on the product domain). After the priorities have been
established, they help in selecting the goals for each component. (Fig. 18) In the figure,
examples of measurable objectives for the respective phases of the software life cycle are
presented. This gives structure to the evaluation process, by suggesting a metric to be
collected during each phase. However, the exact objectives to be set can only be
determined after consulting domain experts and available data.

The model has been extended to FURPS+ in order to accommodate design,
implementation, interface and physical constraints. (Eeles, 2005)

3.6. Bayesian Belief Networks (BBNs)

Charles River Analytics (CRA) (2008) provide a concise description of BBNs in their
short introduction titled "About Bayesian Belief Networks", summarized in the next three
paragraphs. Bayesian Nets represent a modeling framework for causal relations that can
be applied to numerous domains and problems. They take advantage of past information
about the relationships between variables and encode it in conditional probability tables
(CPTs), associated with each variable. BBNs are directed acyclic graphs (DAGs)
(Nicholson & Korb, 2006) where variables are modeled as nodes, and causal
relationships are modeled as edges connecting the nodes. An arrow shows the direction of
influence. (Fig. 19) Each node has states, and can be either discrete or continuous
(Nicholson & Korb, 2006). BBNs are especially useful when the information in the
present is incomplete or vague. They can facilitate or even automate the decision-making
process, thus acting as a decision SUppOlt system.

Bayesian Belief Networks can be used for both inductive and deductive reasoning -
inferring a cause from an effect and forecasting an effect given a cause. The probability
of a node being in a given state depends on the states of other nodes, and is determined
by causal relationships. CPTs hold this prior information. They can be represented in
table form, where each column gives the probability of the node being in a certain state
based on the combination of states of the influencing nodes. (Fig.20)

35

"Ij
(fq
c
(il
......
00

~
Pl F '" C
>-I

&
(Il

(fq
0
Pl
'"
8' U >-I
......
::r'
(Il

'" 0
~
~

~
Pl R 0\ (il
......
(t'
(")

~
(")
(Il

'"d
P ::r'

Pl

'" (Il

'"
~ a
>-I
Pl

~
R=' S
n
Pl
'" ~
(Il
:-'
......
\0
00
-...l
'-"

Investigation/
Specifications

target users to review
spec or prototype

% grade on report card
from user

% features competitive
with other products

interfaces with
existing products

target users to review
spec or prototype

% grade on documentation
plan by target user

% grade on usability
of prototype

omissions noted in
reviews of objectives
(reliability goals)

II changes to project
plan, test plan
after review

II changes to objectives
after review

% grade on objectives
by target user

% grade on objective by
co-product managers

if changes to support
objectives after
review by field & CPE

Design
% spec included

in design
changes to spec dU,e

to design requirement
users to review change

if needed

% grade of design
as compared to
objectives

changes to
prototype manuals
after review

changes to
design after review
due to error

% grade of design
as compared to
objectives

% product to
be modeled

defined modeled
environment

II design changes by
CPE & field

II diagnostic/recovery
changes by CPE &
field input

Implementation
% designs included

in code
code changes due to

omissions discovered
% features removed

(reviewed by original
target user)

% grade by other lab user
% grade by product

marketing,
documentation

% original users to
to review any change

% code changed due to
reliability errors
discovered in reviews

% code covered by
test cases

If defects/KNCSS during
module testing

performance tests
achieve % of
modeled expectations

% of code tested
with targeted
performance suite

(module)

MTTR objective (time)
MTTC objective (time)
time to train tester,

use of documentation

Testing
% features tested

at alpba siles
% user

documentation
tested against
product

If target alpha
customers

changes to product
after alpha test

% grade from usability
lab testing

% grade by test sites

MTTF(MTBF)
% hrs reliability

testing
defects/lK hrs
II defects total
defect rate before

release ckpoints
achieve performance

goal with regard
to enyironment(s)
tested

(system)

Support
Known Problem

Reports
sales act. reports

(esp. cost sales)
user surveys
internal HP user

surveys
I

User
misunderstandings

Known Problem
Reports

II defects/KNCSS

same

~
C/.l o

~
'"
en
I

C/)

a
~ .

(fq

8
<:
~

~
~
Pl
'"
~
I
n o

~
ct
>-I
C/)
(")

~.
(Il

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

Figure 19. A simple Bayesian Network (CRA, 2008)

, Patept:· i" l'::cililcf ' "" "
, '- - . '-"'." -

;; precIP1~i9Q' I, ~> ".' ~OtldCond~lcin~, ""
"/';:;:~"',::,.;jirmpa~s~~ie, \';:PMsabl~,:'~""'------- States of the selected node

Light 0.100 0.900 II ------Conditional probabilities
I~~~~~-----~----~ H6avylh,',!~\'M~I 0.700 0.300

,------------States of the parent node

Figure 20. Road Conditions CPT (influenced directly only by precipitation) (CRA, 2008)

Two important concepts for BBNs are beliefs and evidence. Evidence is information
about the present state of things, while beliefs are "the probability that a variable will be
in a certain state based on the addition of evidence in a current situation". (CRA, 2008)
Therefore, evidence modifies beliefs. There are two kinds of evidence - hard and soft.
Hard evidence refers to information that a node is "100% in one state, and 0% in all other
states". (CRA, 2008) The alternative is soft evidence, which allows for uncertain or even
conflicting information to be entered in the model. This is accomplished by entering a
probability for a variable being in each state. A-priori beliefs are dependent only on the
data in the CPTs, reflecting the beliefs before any evidence is introduced in the model.
(CRA,2008)

Bayesian Belief Networks do not suggest a model, but rather present a way of modeling.
The quality characteristics and overall quality can be modeled as nodes, and the
relationships between them would be represented as edges. If enough data is available,
the direction and strength of influences between the nodes can be inferred and encoded in
the CPTs. Some of the available BBN software solutions provide structure and parameter
learning. Structure learning refers to the elicitation of the model structure - the

37

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

positioning of edges and arrows is determined based on the available past data. Parameter
learning refers to the elicitation of the strength of influences between the nodes, again
inferred from past data. It is then encoded as a-priori beliefs in the CPTs. The
characteristics of the different software solutions can be found in the list compiled and
updated by Kevin Murphy (Murphy, 2009), and more information on parameter and
structural learning can be found in (Goldenberg). A number of interesting links are also
available on the Wikipedia page ("Bayesian Network", 2009).

Ann Nicholson and Kevin Korb point out in their Bayesian AI Tutorial that another
impOltant aspect of Bayesian Net models, which we believe is sometimes overlooked, is
the so-called Markov property. (Nicholson & Korb, 2006) It states that all direct
dependencies between nodes are explicitly modeled through edges. This is important for
the correct computation of probabilities, and therefore for obtaining meaningful results.
The task of determining which nodes are directly connected can be assisted by using
Matilda, which is a tool for visual exploration of dependencies. (Nicholson & Korb,
2006)

The authors also discuss some extensions to Bayesian Nets, such as Bayesian Decision
Networks, and Dynamic Bayesian Networks. The former are well-suited for assisting in
the decision making process, through introducing decision nodes and utility nodes. They
are also known as Influence diagrams. The latter assist in evaluating changes that occur
with time. Bayesian Decision Networks can be used to facilitate decisions such as
whether to release a product or not. If the utilities associated with releasing (or not) a
product of any given quality (poor, satisfactory, average, good, excellent) are known, the
software would provide the optimal decision given the available evidence. A wealth of
information on Bayesian Nets, including a list of references related to learning Bayesian
Networks, BN Knowledge Engineering, BN applications etc. can be found in (Nicholson
& Korb, 2006).

Examples for the use of Bayesian Net models listed in the Bayesian AI Tutorial include
weather forecasting (fogs, hailstorms, ...), medical diagnosis, judicial decisions, hiring
decisions, etc. The following is a list of potential BBN uses excerpted from (Nicholson &
Korb, 2006):

• Decision making: Which policy carries the least risk of failure?
• Forward Prediction: Hypothetical or factual. Who will win the election?
• Retrodiction/Diagnosis: Which illness do these symptoms indicate?
• Monitoring/control: Do containment rods needs [sic] to be inserted here at

Chernobal [sic]?
• Explanation: Why did the patient die? Which cause exerts the greater influence?
• Sensitivity Analysis: What range of probs/utilities make no difference to X?
• Information value: What's the differential utility for changing precision of X to

e?

38

M.Sc. Thesis - S. Grigorova McMaster - Computer Science

This is accomplished through the inference process - probabilities for query variables are
estimated based on the known values of evidence variables, using Bayes's rule. (Fig.21)
When evidence for a given node becomes available, the beliefs of all other nodes are
automatically adjusted to reflect this new information. The conditional independence
implied by the Markov property supports efficient updating. As we have stated before,
conditional independence is encoded in the following way: edges between the nodes
express the qualitative dependency between the variables, while CPTs represent the
quantitative dependencies. (Nicholson & Korb, 2006)

Types of Reasoning

DIAGNOSTIC
Query

Evidence

Evidence

~~~Evidence 

INTERCAUSAL 
(explaining away) 

PREDICTIVE 
Evidence 

QuelY Query 

Evidence 

Evidence 

COMBINED 

Figure 21. Bayesian inference (Nicholson & Korb, 2006) 

Wu (2007) notes that Bayesian Belief Nets build on the Bayesian Probability concept, 
which does not depend on a physical property, but on the belief of a person that an event 
will occur, based on the person's prior knowledge. Thus, P (aIK) is the belief that event a 
will occur based on the knowledge of the person K. Bayesian probability has been around 

39 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

for many years and has gained more popularity recently. One of the fundamental rules of 
Bayesian theory is Bayes's rule: 

P (alb) = P (bla) * P (a) / P (b) 

where the probability of a given evidence b (so-called posterior probability) equals the 
prior probability P (a) multiplied by the likelihood of observing evidence b given a, 
divided by the probability of b. In other words, Bayes' rule could be explained as: 

Posterior = Likelihood x Prior / Probability of evidence, (Nicholson & Korb, 2006) 

where the denominator is used for normalization. (Wu, 2007) 

As noted above, a BBN model is a directed acyclic graph (DAG) where nodes represent 
variables, and edges represent conditional dependencies between variables. Wu points out 
that a missing edge denotes conditional independence between the nodes. The structure 
of the model is often explained as reflecting causal relationships between the variables 
(Pearl, 2000), and the model can be used both for inductive and deductive reasoning. The 
conditional probability tables (CPTs) associated with each node capture the influences 
exerted upon it by the nodes linked with it. (Fig. 22) 

visit 
no visit 

Distnbuted by Norsys Software Corp. 

Smoking 
smoker 50.0 
non smoker 50.0 ... iiiiili:C'1 

Dyspnea 
present 43.6 
absent 56.4 

Chest Clinic 

o Contnbuting Factors 

o Diseases 

o Symptoms 

Figure 22. Netica BBN example (Norsys Software Corp., 2006) 

One of the advantages of BBN models is their flexibility - they can be modified as new 
evidence becomes available. Every new set of data can be used to update the CPTs of the 

40 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

model, taking advantage of the concept of parameter learning. This makes BBN models 
dynamic and constantly improving. 

Wu points out that there has also been work to develop modular BBN models in works 
such as (Laskey & Mahoney, 1997) and (Koller & Pfeffer, 1997). This makes it possible 
to combine BBN models as nodes in a BBN framework and thus tackle more complicated 
problems. In the field of software engineering, BBN models have been used for safety 
risk evaluation by Fenton, Neil & Littlewood (1996); usability evaluation by Galliers, 
Sutcliffe & Minocha (1999); reliability and performance evaluation by Gregoriades & 
Sutcliffe (2005); software architecture evaluation by Gurp and Bosch (2000). 

3.7. Summary 

This chapter provided a brief overview of the McCall, Boehm, ISO/lEC 9126, FURPS+ 
and Dromey product quality models, as well as of Bayesian Belief Networks. After 
reviewing the product quality models presented above we came to the conclusion that 
ISO/lEC 9126-1 (2001) is the best basis for conducting a product quality evaluation. As 
its greatest advantage we consider the flexibility of the model, which allows the evaluator 
to customize it by adding desirable quality characteristics and omitting insignificant ones. 
Combining this product quality model with BBN use would enable the automation of 
some evaluation activities (e.g. parameter learning), and formalize others by explicitly 
considering expert opinion (e.g. determining the utility associated with different 
outcomes). The results obtained by using Bayesian Networks are only as good as the 
model used. In a perfect-case scenario there would be enough available data to verify the 
structure and parameters of the model, however most companies don't have access to 
such data. Herein lies the importance of making the greatest use of the expert knowledge 
available in the literature for inferring the model structure, and we have attempted to 
condense it in the generic model that we present in the next chapter. It combines the 
quality characteristics of ISO/lEC 9126-1 (2001) with characteristics discussed in other 
models, thus providing a convenient source of reference for choosing which 
characteristics to evaluate. In addition, we discuss a way of transforming the resulting 
model into a form suitable for BBN use. A way of eliciting model parameters is presented 
in Chapter 4: Customization of the Quality Model, Collecting Metrics and Reading the 
Results. 

41 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

4. Towards a Generic Model 

This chapter presents the creation of a generic model combining the ISOIIEC 9126-1 
(2001) external quality model with characteristics from the McCall and Boehm quality 
models. It also discusses a way of transforming the model for use in BBN software. 
Section 4.2. presents the ideas of A. T. Morris and Peter Beling, who have developed a 
method for extracting acyclic dependency models from quality standards and have 
applied it to the ISO/IEC 9126-1 model. (Morris & Beling, 2004) A critique of their work 
is presented and several modifications to their approach are suggested, leading to a 
slightly different end result. 

The quality characteristics of the McCall, Boehm and ISO/IEC 9126-1 models which 
have been identified in the preceding chapter have been compiled into a compendium in 
Appendix A. As a basis for the compendium we have used the glossary of non-functional 
requirements provided in (Colin et aI., 2008), extending it with additional definitions, 
specification of the relative position of the quality characteristics in the quality models of 
which they are a part, and suggested metrics. In the appendix, characteristics are listed 
with a definition, parents4 (these are the factors that the characteristic contributes to), 
children (characteristics that contribute to its higher quality) and siblings (other 
characteristics that influence its parents' quality). The information has been elicited from 
the aforementioned quality models in order to reconcile the different views contained in 
them in an attempt to construct a generic model that includes as many of the quality 
characteristics as possible, and reflects all interrelations. 

The idea behind constructing a generic model is to simplify the task of the evaluator, who 
will not have to compare the models in order to choose the one with definitions closest to 
the evaluator's understanding, but instead will only need to review the definitions 
provided in the compendium and remove the insignificant characteristics from the 
generic model to obtain the desired model structure, also ensuring a better fit. An 
alternative approach is to start with a basic model, and add the characteristics that are 
considered significant after reviewing the definitions of the compendium. The first 
approach is better suited for automation as having a generic model means all the nodes 
have already been arranged to reflect the underlying dependencies, and the structure can 
then easily be modified to something more manageable. However, a generic model 
contains many quality criteria, and might discourage the evaluator. According to Miyoshi 
and Azuma (1993), "the number of key factors should be kept between three and eight". 
Therefore, a better approach might be to start with a simpler model and add 
characteristics as necessary. 

4 The terms parents and children used here and in Appendix A do not correspond to parents and children as 
defined in Bayesian Net models. 

42 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

4. 1. Constructing the ModeJ 

We recognize that there is more than one possible arrangement of the quality 
characteristics when combining the quality models, and that in order to determine which 
hierarchy best reflects the relationships between the quality criteria, more research is 
needed. Namely, data needs to be gathered which would support or refute the choices 
made. 

We started the generic model construction with the ISO/IEC 9126-1 (2001) external 
quality model. Then, quality factors and criteria from McCall's model were added. The 
groupings of quality factors into Product Operation, Product Revision and Product 
Transition have been disregarded in the amalgamation of the IS O/IEC 9126-1 and 
McCall models. The quality factors listed in the McCall model, which are not already 
present in the generic model, have been added to the first tier of quality characteristics, 
directly influencing Overall Quality. The process of combining the models saw the 
creation of edges between quality characteristics which belong in the same tier, as well as 
edges that link criteria from the second tier directly to overall quality. Before the model is 
introduced for use in BBN software, all edges need to be evaluated to determine whether 
some of them might be omitted without affecting the precision of the model. Some of the 
quality criteria have similar, albeit slightly different definitions, and depending on the 
purpose of the evaluation and product domain, some of them might be omitted from the 
model. A third tier of quality criteria was introduced as a result of the combination of the 
two quality models. The last model we have incorporated in the generic model is 
Boehm's model. We have interpreted General Utility in Boehm's model as Overall 
Quality. Reviewing the definitions in Appendix A, we consider Modifiability in Boehm's 
model to correspond to Changeability in the ISO/IEC 9126-1 model. Moreover, we have 
accepted the assumption that Robustness and Integrity are sufficiently similar as 
suggested by Boehm and have modeled them as a single node labeled 
Robustness/Integrity. The resulting model, constructed using GeNIe 2.0 (Decision 
Systems Laboratory, University of Pittsburgh, 2008) is presented in figure 23. The 
addition of further criteria to the generic model is left for future work. 

4.2. Transformation of the Generic ModeJ for Use in BBN 
Software 

As we have discussed above, transforming the model for use in BBN software tools will 
enable the evaluator to take advantage of their decision support capabilities. This section 
presents the ideas of A. T. Morris and Peter Beling, who have developed a method for 
extracting acyclic dependency models from quality standards and have applied it to the 
ISO/IEC 9126-1 model. (Morris & Beling, 2004) A critique of their work is presented 
and several modifications to their approach are suggested, leading to a slightly different 
end result. 

43 



J I 

~ ~ 
(Jq en 
c 

~-
(") 

d Audit Control 

~ 
tv ::;' 
t;..) 

~~ ~u~ e Structuroonm 

('D 

~ ~~...-----....... 
r:n 

c.::::::\ \ 0_" ___ ._, __ J ____ - ~ 
...... 

Cl r:n 
('D 
::s r C/:l ('D 
>-j ...... 

Q (") 

s ...... 
(Jq 

0 0 p... >-j 

('D 0 ..... -< 
(") ~ 
0 

~ ...... 
::s ...... 
::s 

(Jq ,..... 
C/:l 
0 

.j:::.. ---.j:::.. ti1 
n 
\0 ..... 
tv 
0\ 

J 
........ 

~ 
~ (") 

n (") 
~ ~ --..... 
r:n ~ 

r:n 
~ 

.-t-
('D ::s >-j 

p... I 
to o Quality characteristic 

n 0 Legend: 0 (1l 
::;' ~ S~ C 
r:n ~ Relationship ...... 

('D 

S >-j 

0 C/:l 
p... (") ...... 
('D ('D ..... ::s r:n 

(") 
('D 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Morris and Beling (2004) point out that at the time they conducted their research there 
were no well-established approaches to the evaluation of COTS software quality. The 
process was often flawed by subjectivity and assumptions regarding the independence of 
criteria that had no justification. This prompted the authors to review existing standards 
and attempt to model the dependencies incorporated in them in a graphical way, 
representing the relationships in a directed acyclic graph (DAG) where possible, thus 
facilitating product quality evaluation and shedding light on the reasoning behind the 
standards. The authors focused their work on standards because they "provide a criterion 
or an acknowledged measure of comparison for quantitative or qualitative value for 
software". (Morris & Beling, 2004) The transformation of the ISO/IEC 9126-1 model is 
provided as an example of the application of their approach. The standard is viewed as a 
knowledge base detailing the criteria that influence software product quality and the 
dependencies that link them. 

The authors start by providing a definition of dependency models and note that both 
directed graphs (Bayesian networks) and undirected graphs (Markov networks) can be 
used as a graphical representation of a dependency model. A graphical representation is 
advantageous because of its ability to reproduce complexity and independence 
relationships in a more intuitive and compact way. The authors concentrated their 
research on BBNs, with some of the reasons provided being: 

• "Bayesian networks ... result in a powerful knowledge representation formalism 
based on probability theory"; 

• "the Bayesian network's requirement of strict positivity allows it to serve as an 
inference instrument for logical and functional dependencies"; 

• "its ability to quantify the influences with local, conceptually meaningful 
parameters allows it to serve as a globally consistent knowledge base". (Morris & 
Beling, 2004) 

For the elicitation of a Bayesian Belief Network when the structure is unknown, Morris 
and Beling (2004) list several approaches - using past know ledge, conditional 
independence statements (CIS), data, or a combination of the aforementioned. Past 
knowledge may refer to expert opinion or problem domain knowledge. The structure of 
the model is usually elicited with the help of domain experts, and the approach presented 
in the paper takes advantage of the expert knowledge incorporated in the ISO/IEC 9126-1 
standard in order to do exactly that. The steps involved in extracting the model structure 
are detailed in figure 24. 

The application of the approach to the ISOIIEC 9126-1 standard resulted in the BBN 
model presented in figure 25. The following abbreviations have been used in the figure: 

Functionality (F) 
Suitability (su) 
Accuracy (acc) 

Learnability (In) 
Operability (op) 
Attractiveness (att) 

45 

M compliance (mc) 
Portability (P) 
Adaptability (ad) 



M.Sc. Thesis - S. Grigorova 

Interoperability (int) 
Security (sec) 
F compliance (fc) 
Reliability (R) 
Maturity (mat) 
Fault tolerance (ft) 
Recoverability (rec) 
R compliance (rc) 
Usability (U) 
Understandability (un) 

U compliance (uc) 
Efficiency (E) 
Time behavior (tb) 
Resource utilization (m) 
E compliance (ec) 
Maintainability (M) 
Analyzability (an) 
Changeability (ch) 
Stability (st) 
Testability (te) 

McMaster - Computer Science 

Installability (in) 
Co-existence (co) 
Replaceability (re) 
P compliance (pc) 
Effectiveness (Eft) 
Productivity (Pro) 
Safety (Safety) 
Satisfaction (Sat) 

Bayesian Network Structure Extraction 

Input: A Software Quality Standard containing relational! 
causal phrases that describe attribute relationships 

Output: A qualitative DAG that encodes the attribute! 
sub .. attribute dependencies in the software standard 

step 1. Identify software quality standard relational/causal phrases that 
define attributelsub .. atlri bute reI ati on shi ps. 

Step 2. Where possible, translate each causal relation into a conditional 
independence statement (CIS) and gather to form causallist. 

step 3. Reconcile the ClSs to include missed causal relations located 
el sewhere in the software standard 

Step 4. Using the causal list, generate qualitative fonDS of local CPDs, 
then aggregate to fonn the quali tative JPD structure. 

Step 5. Represent the JPD graphically allowing only one node for each 
attributelsub~attti bute to fOlID the dependency model. 

Step 6. Check for cycles in the dependency model; if cycles exist, model 
is not a DAG (thus, discard); if cycles do not exist, then model 
is a DAG (thus, DAG represents software standard dependencies). 

Figure 24. BBN Structure Extraction Process (Morris & Beling, 2004) 

46 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Level 

I 

2 

3 

4 

5 

6 

Figure 25. Multi-Level Representation of ISO/IEC 9126-1 Dependency Model 
(Morris & Beling, 2004) 

There are several points in the process that we do not agree with. The first issue is that 
the authors consider the lack of mention of a causal relation between any two criteria to 
be equivalent to their conditional independence. We do not agree with this assumption, 
because the standard was not created with the idea of explicitly listing dependencies and 
independencies between the quality characteristics, and therefore the information 
regarding this topic might be incomplete. To correct this shortcoming, more information 
needs to be gathered, either as a result of expert interviews or literature reviews. Another 
weak point in our opinion is the mixing of different product quality perspectives in a 
single model. We believe that the external, internal and quality-in-use quality models 
should be kept distinct when modeled graphically, and therefore the quality-in-use 
characteristics should be discarded from the model in the figure above, resulting in the 
model in figure 26. In addition, Reliability can be introduced in the same level as 
Efficiency and Portability, reducing the number of levels by one, but we believe the 
authors chose this setting in order to improve the display of the model. 

In our opinion for the sake of completeness, a node signifying Overall Quality needs to 
be added in the appropriate place, which we believe to be reflected in figure 27, based on 
the first of fifteen phrases referenced in the paper: 

"Clause 6 -> external/internal quality is characterized by 6 attributes 
(functionality, reliability, usability, efficiency, maintainability, and portability) 
that have minimal overlap (clause C.3)" (Morris & Beling, 2004) 

47 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Level 

1 

2 

4 

5 

I 

2 

3 

5 

6 

Figure 26. Modified ISO/IEC 9126-1 Dependency Model 

Figure 27. Modified ISO/IEC 9126-1 Dependency Model with Overall Quality 

Another aspect that we believe needs improvement is the amount of clarification with 
regard to the principles guiding the omission of edges that can be inferred from the 
referenced phrases. For example, the sixth phrase states that "some aspects of 
functionality, reliability, and efficiency will also affect usability" (Morris & Beling, 
2004), yet Functionality is linked to Usability through the direct link between Suitability 

48 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

and Operability, while Reliability and Efficiency are linked to Usability through a direct 
link with Operability. There is no phrase that confirms that "some aspects" refers to only 
these aspects, even if this is in keeping with the authors' assumption that if a dependency 
link is not established explicitly, it does not exist. Another example is presented in the 
dependencies established between Installability, Suitability and Operability. The relevant 
phrases (third and thirteenth) state that "suitability also affects operability" and 
"installability can affect suitability and operability". (Morris & Beling, 2004) It can be 
seen in the figure above that all these relationships have been encoded through direct 
links. However, it might be the case that Installability only influences Operability through 
Suitability. Even though the logic the authors follow is consistent with their assumption, 
it does not necessarily lead to an accurate representation of the underlying criteria 
dependencies. To this end, case studies need to be performed to validate the relationships 
established, or past data and experts need to be consulted. 

Despite some weaknesses of the presented approach, we consider it a step in the right 
direction, as BBN use is most advantageous when all conditional independencies have 
been taken into account, and the examples of BBN use in the literature that we are 
familiar with fail to take that into consideration, instead directly assuming a standard­
proposed hierarchy as the model structure, e.g. (Stefani, Xenos, Stavrinoudis, 2003). 

Another paper by MOlTis discusses how to efficiently modify the already defined BBN 
structure by adding or removing nodes. (MolTis, 2007) Clique trees are used in an attempt 
to make it possible to amend the quality hierarchy without having to go through all the 
steps discussed in (Morris & Beling, 2004). The approach is developed as a means of 
using less time and rework when modifying an evaluation model, which might be 
prompted by a change of requirements. Secondary structures such as clique trees present 
us with a deeper understanding of the logic of the network structure. Morris elicits the 
clique tree cOlTesponding to the ISO/IEC 9126-1 dependency model depicted above and 
discusses its potential uses. The clique tree transformation process is described step by 
step and its application to the ISO/IEC 9126-1 dependency model is detailed in the paper, 
resulting in figure 28. The clique tree definition is seen as a first step in an ongoing 
research for the efficient adding and deleting of sub-attributes existing within a specific 
clique associated with an attribute, adding and deleting of cliques associated with 
attribute clusters, and exchanging of cliques associated with attribute clusters. We believe 
that results from this future research would be very useful, as they would simplify the 
task of constructing or modifying a quality hierarchy for BBN use. 

The generic model constructed in the previous chapter is in fact a DAG (directed graph 
with no cycles). Morris and Beling (2004) refer to the work of Castillo, GutielTez & Hadi 
(1997) to establish that a dependency model which has a directed multi-level 
representation is necessarily a DAG. In a directed multi-level representation nodes in the 
same level are not linked, and all arrows point in the same direction. These rules make it 
clear that the generic model represented in fig. 23 is a DAG. This makes it possible to use 
it as a BBN model; however, it is not clear whether all the conditional dependencies have 

49 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

been taken into account. Following the approach outlined by Morris and Beling (2004) 
would involve extracting phrases from the literature signifying relationships between 
quality attributes of the model. Because of the amount of literature that needs to be 
reviewed, this has been left for future work. As an alternative, the ISO/IEC 9126-1 model 
transformed for BBN use can be extended by adding only the quality characteristics that 
are considered of impOltance. The simplification of this process is the subject of ongoing 
research by Morris, expanding on the use of clique trees as mentioned in (Morris, 2007). 
It remains to be seen whether the models obtained by using this approach provide better 
results compared to the models directly reflecting the quality model structure presented in 
the literature, and we consider this as future work. 

Figure 28. Clique Tree for the ISO/IEC 9126-1 DAG (Morris, 2007) 

50 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

4.3. Summary 

In this chapter we have presented a generic model combining the ISO/IEC 9126-1 (2001) 
external quality model with all characteristics from the McCall and Boehm quality 
models. The creation of the model was facilitated by the information collected in 
Appendix A, which was created as a convenient knowledge base assisting the evaluator 
in the choice of quality characteristics to include in the model. Being able to easily tailor 
the quality model to the evaluation needs of the company ensures that time and resources 
would be allocated to the activities that will provide the greatest return. Customizing the 
model by including significant characteristics and omitting the insignificant ones results 
in a better model, and therefore, more meaningful results. The generic model is a directed 
acyclic graph and can thus be used in a BBN setting; however, we cannot claim 
conditional independence of the nodes which have no direct links, and more work is 
needed in that regard. The ideas of Morris and Beling (2004) for establishing explicitly 
the conditional dependencies have been presented together with a critique of their work 
and several suggestions for modifications of their approach. The ISO/IEC 9126-1 
dependency models obtained following their approach and the modified approach we 
have suggested are also presented. Conducting a case study comparing the two 
dependency models is left for future work. 

51 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

5. Customization of the Quality Model, Collecting 
Metrics and Reading the Results 

This chapter describes the essence of our methodology. It details the evaluation process 
from beginning to end. First, ways for eliciting the structure of the software product 
quality model are presented. Then, approaches for model parameter elicitation are 
discussed, which fall in the deterministic or probabilistic category. These approaches 
provide a means for establishing the importance of the quality characteristics included in 
the model and quantifying the relationships between them. Last but not least, two 
alternatives for metric collection are outlined together with ways of interpreting the 
obtained quantitative results. 

5. 1. Eliciting Model Structure 

The generic quality model presented in the previous chapter is too broad and requires the 
collection of many metrics. Its purpose is to serve as an all-encompassing knowledge 
base, and not to be applied directly, due to the time and cost constraints that companies 
face. The importance of quality characteristics and factors varies across domains and 
products and the model needs to be customized to take that into account. Some of the 
characteristics which are considered insignificant can be dropped from the model so that 
there is no need to measure their value. Alternatively, they can remain part of the model, 
with their contribution to the parent's quality downgraded accordingly, and can 
subsequently be left with unknown value, as BBN software accommodates uncertainty. 
Evaluators that consider the ISO/IEC 9126-1 (2001) model to be a closer approximation 
to the tradeoffs they face can take the complementing approach of adding characteristics 
to the model structure after consulting the compendium in Appendix A. The compendium 
itself is not exhaustive, and is just one point of reference, designed to facilitate the choice 
of characteristics to be included in the model. It is created as a "living document", with 
the idea that other quality characteristics, metrics for their evaluation and other 
information will be added on a continuous basis, making it a well-informed source of 
reference. In choosing which characteristics to include, and which to omit, the expert is 
influenced by the product domain, as well as the purpose of the evaluation. 

An alternative approach for the elicitation of model structure from expert opinion is to 
use the so-called card sorting, which is utilized for the grouping of domain concepts. 
(Duijnhoven,2003) There are two types of card sorting - free format sOliing and guided 
sorting. In both types, the expert is asked to review the definitions of concepts that are 
written on index cards, and then to group the cards into categories. With guided sorting, 
the categories into which concepts can be grouped are already known, while free format 
sorting involves the creation of piles with related concepts, and then the choice of a label 
for each pile, effectively introducing a new concept. In free format sorting categories can 

52 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

be further grouped together and relabeled, thus creating a hierarchy and eliciting the 
relationships of the domain concepts. Card sorting is well complemented by the think 
aloud approach, which demonstrates the thought process of the expert and thus elucidates 
the way that concepts are interrelated. Another technique described in (Duijnhoven, 
2003) is laddering, which is a structured interview to group domain concepts into types 
and subtypes, creating hierarchies. The groupings might be determined by definitional, 
causal, superset-subset, generalization-specialization relations etc. Additional methods 
for knowledge elicitation can be found in Janet Burge's work, complete with brief 
descriptions and references. (Burge, 200 1) 

The structure definition of large-scale BBN models can be facilitated by the techniques 
outlined in (Neil, Fenton & Nielsen, 2000), which expand upon object-oriented BBN 
ideas. These techniques are integrated in some BBN software tools, such as Hugin 
(Hugin Expert, 2007) and AgenaRisk (Agena Ltd., 2007). More techniques can be found 
in (Mahoney & Laskey, 1996). 

5.2. Eliciting ModeJ Parameters 

The next step that needs to be taken is the quantification of the relationships between the 
quality characteristics and subcharacteristics. There are several ways to accomplish this. 
The relationships can either be modeled deterministically, in which case the contribution 
of each characteristic to the parent's value needs to be evaluated, or probabilistically, in 
which case the probability of the parent having a certain value needs to be determined 
based on the values of its children.5 The deterministic relation between the nodes can be 
elicited using the AHP method (Han & Han, 2004) or the Mutual Comparison 
method (Behkamal, Kahani & Akbari, 2009). BBNs are not put to their best use in this 
case, they only serve as convenient visualization tool and automate the sensitivity 
analyses. The usefulness of BBN software is best demonstrated in the context of 
probabilistic modeling of the relations between the quality characteristics. If there is 
sufficient training data, several BBN software tools provide the so-called parameter 
learning - a way to infer the probabilistic relationships between nodes using the metrics 
collected for them in the past. The model will be most precise and useful if all underlying 
conditional independencies have been taken into account. The probabilistic dependencies 
can also be elicited using the help of experts, and ways to accomplish this have been 
presented in papers by (Fenton, Neil & Caballero, 2007), (Stefani & Xenos, 2001). The 
method proposed by Fenton et al. (2007) for the Conditional Probability Table elicitation 
has been automated in the AgenaRisk software (Agena Ltd., 2007). 

5 The terms parents and children used here and in Appendix A don't correspond to parents and children as 
defined in Bayesian Net models. 

53 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

5.2.1. Deterministic Parameter Elicitation 

A popular method for structuring multi-criteria decision making processes is the Analytic 
Hierarchy Process (ARP). As part of the process, the importance of criteria is determined 
quantitatively based on pairwise comparisons. In (Han & Han, 2004) D. Han and I. Han 
describe AHP in the following way: 

• As a first step, a decision hierarchy needs to be formulated. It is elicited based on 
expelts' domain knowledge and the goal set. All decision-influencing criteria need 
to be taken into account. 

• As a second step, the criteria are compared in pairs and their relative importance 
for attaining the goal is specified. Alternatives are compared in pairs in order to 
specify their preference on each criterion. 

• The third step involves transforming the collected data into relative weights for 
the criteria and alternatives. 

• As a fourth step, a ranking of the alternatives is obtained, through computing the 
composite priorities of each decision element at each level. This is accomplished 
by using hierarchical composition for aggregating the available weights. 

The authors go on to say that ARP assists in choosing the best alternative by synthesizing 
all the available data in a more manageable form, thus preventing the omission of details 
in the decision-making process. 

An alternative to the AHP for the quantification of characteristic importance is the 
Mutual Comparison method, which we have utilized for our case study. A detailed 
description of this method, complemented by its application is provided in the chapter 
detailing the case study. 

The product domain and the purpose of the evaluation influence not only the structure, 
but also the parameters of the model. With the deterministic approach, this information 
gets reflected in the weights given to the characteristics chosen for inclusion in the 
model. Two models that display the same structure, but different preferences with regard 
to the importance of the quality characteristics modeled will provide different results. 
This can be noted when considering product quality from the different perspectives of 
user, developer and manager. A comparison of the results acquired would reflect the 
importance that each group places on the varying quality characteristics and will help 
outline potential conflicts and misunderstandings. This has been done for a set of 
deterministically linked nodes, but we are not aware of a work that compares 
probabilistic results acquired from several perspectives using the same model, and 
consider this an avenue for future work. 

54 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

5.2.2. Probabilistic Parameter Elicitation 

The accuracy of the BBN model greatly depends on the node Conditional Probability 
Tables, or CPTs. Even if the underlying model structure is a correct representation of the 
interdependencies between quality characteristics, if the CPTs are not well defined, the 
outcome of the evaluation will be compromised. This is the reason why a great deal of 
attention should be focused on their elicitation. The process depends on the access to 
previously collected data and expert opinion. 

In (Duijnhoven, 2003), the author comments that using lotteries, probability scales for 
marking assessments, etc. to elicit probabilities from experts "tend to be problematic and 
time-consuming". The author advocates a method proposed in (Van der Gaag, Renooij, 
Witteman, Aleman, & Taal1999), which combines numerical and verbal aspects. A 
figure for each conditional probability that has to be determined is provided to the expert. 
The figure is supplemented with textual representation of the conditional probability in 
terms of likelihood and a vertical scale with numerical and verbal anchors. Examples of 
verbal anchors include "certain", "probable", "impossible". The way the figures are 
presented to the expert facilitates the concurrent review of probabilities from the same 
conditional distribution. The method was created with the objective of speeding up the 
elicitation process and making it more appealing. 

In (Fenton, Neil & Caballero, 2007) the authors argue that the evaluators should attempt 
to reduce as much as possible the involvement of expelis, as it is rarely justified to elicit 
the full set of probabilities, because of cost and time considerations. The approach 
presented in the paper concerns the elicitation of CPTs for ranked nodes. Ranked nodes 
are nodes that "represent qualitative variables that are abstractions of some underlying 
continuous quantities". (Fenton et aI., 2007) The method hinges on the use of the doubly 
truncated Normal distribution with a central tendency, and is supported by case studies. 
In addition, the method has been incorporated in the Bayesian Belief Network software 
tool AgenaRisk (Agena Ltd., 2007). It is applicable in all domains and reduces the 
overhead involved with CPT elicitation. A further advantage is provided by the use of 
ranked nodes (vs. continuous ones), which simplifies the CPT definition task greatly, 
provided that some conditions that are described in the paper hold. For other elicitation 
techniques the authors refer us to presentations in (Dfez, 1993), (Huang & Henrion, 
1996), (Laskey & Mahoney, 1997), (Laskey & Mahoney, 2000), (Monti & Carenini, 
2000), (Van der Gaag, Renooij, Witteman, Aleman, & Taal, 2001). Several methods, 
including probability wheels and verbal-numerical response scale are presented in 
(Renooij, 2000). Fenton et aI. also point out that the use of verbal-numerical response 
scales was found to have "markedly improved the efficiency of elicitation and the 
accuracy of results" in (Van der Gaag, Renooij, Witteman, Aleman & Taal, 2002), and 
that it is beneficial when nodes are labeled. Fenton et al recognize that Noisy-OR is 
valuable when working with Boolean nodes and refer to (Zagorecki & Druzdzel, 2004) 
for a discussion of its use and effects. The method that the authors of (Fenton et aI., 2007) 
propose is seen as a complement, rather than an alternative, to expert elicitation. Another 

55 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

issue with expert elicitation that the paper discusses is the bias that can be introduced by 
the selection of questions and the way the problem is represented. For more information 
the readers are refell'ed to (Kahneman, Slovic & Tversky, 1982). In our opinion, one of 
the most advantageous aspects of this work that the authors point out is the automation of 
the approach, which makes it possible for experts who are not familiar with statistics to 
more easily define CPTs and visually inspect the results of their input throughout the 
process. The authors have compiled a table comparing manual elicitation with the use of 
the new approach in two BBN models (for safety assessment and software defect 
prediction), and discovered that the percentage saving of effort on the manual approach 
had been 84% and a minimum of 93% respectively. In addition to that, Fenton et al report 
that their research partners found the predictions of the models constructed with the new 
approach demonstrably better compared to results of approaches utilized before. 

5.3. Collecting Metrics and Reading the Results 

Depending on the availability of data and experts willing to participate in the quality 
evaluation process there are two approaches to measuring the quality of the last tier of 
quality characteristics. One approach is to use the metrics suggested in the standards and 
other literature, some of which can be found in the compendium in Appendix A. The list 
is by no means exhaustive, and some of the metrics have not been validated. However, 
obtaining some of the metrics might be infeasible if there is no access to the development 
process data. An alternative approach is to relate the quality characteristics of the model 
to features of the software product under evaluation which can be either present, or 
absent. This approach has been utilized in (Stefani, Xenos, Stavrinoudis, 2003) and 
(Behkamal et aI., 2009). Both works link product features to quality characteristics, and 
compile questionnaires, which have simple yes/no responses. The results of these 
questionnaires are then propagated up the quality model hierarchy to evaluate overall 
quality. An illustrative example taken from (Stefani et aI., 2003) is the measuring of 
Accuracy for an E-commerce system, which is linked to the presence or absence of a 
Search Engine, Shopping Cart, Shopping List, Comparative Presentation and Alternative 
Presentation. These product features were chosen because the authors are evaluating E­
commerce systems' quality; for other product domains a different choice of product 
features would be appropriate. The whole model can be seen on the website of the 
Hellenic Open University Software Quality Research Group 
(http://guality.eap.gr/ecomen.htm).This approach is similar to the operationalization of 
soft goals in the goal-oriented requirements frameworks - the presence of celtain product 
features and the absence of others can be set as goals in the requirements definition. 
Attaining these goals would lead to the satisfaction of the soft goals that underlie product 
quality. A note worth making is that the metrics associated with the goal-oriented 
paradigm need not be binary. As an example, we refer the reader to (Basili, Caldeira & 
Rombach, 1994) where the goal-question-metric (GQM) approach is described. It links a 
goal to a set of questions that answer how the goal is to be attained and a metric that 
assesses how well that has been done. The approach is applied top-down, breaking down 

56 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

quality into satisfiable goals. Then the values at the bottom can be acquired from the 
metrics associated with goal satisfaction. 

Once the values for the lowest model layer have been elicited, they need to be propagated 
up in the hierarchy based on a certain set of rules. One approach is the deterministic one, 
in which each quality sub characteristic is characterized by a weight, signifying its 
importance for the quality characteristic it influences. Ways to determine these weights 
have been discussed above. Another way is to use conditional probability tables, relating 
the value of the parent quality characteristic to the values of its children (note that the use 
of the terms parent and child are reversed in the definition of a BBN model), as 
elaborated above. Once the metrics data is collected and propagated to the top of the tree, 
another question arises - how should we interpret the results? One approach is to create a 
ranking which matches values from the quantitative scale with qualitative descriptions of 
quality such as Excellent, Good, Average, Satisfactory and Poor. A way to establish such 
a ranking by eliciting Scale Calibration Tables (SCTs) from past data is presented 
in (Stefani, Stavrinoudis & Xenos, 2004). The same work notes that the ranking can be 
alternatively obtained by querying experts or combining both approaches. 

Stefani et al. (2004) provide a way of calibrating a model to make inferences based on the 
numerical results obtained for the quality of its characteristics. The model presented in 
their work was developed for the evaluation of quality of E-commerce systems. It has 
Boolean leaf nodes with values elicited from a user survey, intermediate nodes that have 
states of "good", "average" and "poor" and a central Quality node that has states of 
"good" and "poor". The ranked values correspond to a numerical value from the interval 
o to 1. The introduction of ranked nodes was prompted by the desire to be able to 
compare different E-commerce systems based on quality characteristics, as well as to be 
able to pinpoint problem areas. 

The intervals corresponding to the different labels of the ranked nodes were elicited as a 
result of experimental measurements performed on 120 E-commerce systems. The values 
for the leaf nodes were entered as evidence, and the probabilities of the other nodes were 
calculated based on that information. As a means of validation, the normal distribution of 
each quality characteristic was considered. The data acquired in the case studies was 
grouped in clusters corresponding to good or bad quality. The authors distinguish three 
methods for grouping the data into clusters: 

• Setting boundary values for the clusters before conducting the case studies; 
• Setting the boundary values using percentages of the data results; 
• Setting the boundary values as a result of the natural clustering of data observed 

in the measurement results. 

The paper details the third method, which was chosen because of its more representative 
rates. The data available supported that approach, as it was "clearly distributed in 

57 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

different clusters", providing precise results, as can be seen in figure 29. (Stefani et aI., 
2004) 

After the ranking has been established, the model can be used in two ways - forward and 
backward. An example of forward use is the evaluation of quality based on the values 
supplied for the leaf nodes and providing probabilities for observing good versus poor 
quality. The backward use of the model could be applied to infer what the values of the 
leaf nodes need to be for a specified value of overall quality, thus effectively suggesting a 
set of requirements necessary for building in the specified quality. The model is made 
available at http://guality.eap.gr/default en.asp. 

~ ~ ~ ~ ~ ~ ~ 0 ~ 0 ~ 0 ~ ~ w ~ w ~ 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ q q q 

~ 

Quality 

Figure 29. Histogram for overall quality (Stefani et aI., 2004) 

The results for overall quality obtained from the experimental data evaluated in the paper 
are normally distributed and grouped into three different clusters. Category A groups the 
E-commerce systems with high overall quality, meeting the strictest criteria for the 
underlying quality attributes; category B includes systems with average overall quality, 

58 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

which have a number of issues that need improvement; and category C groups the 
systems with low overall quality. The systems were grouped in three categories because 
of the natural clustering displayed by the overall quality data, as can be seen in the 
histogram in figure 29. The boundaries of the categories were determined using the 
minimal and maximal values of each cluster. The same approach was used for defining 
the categories of the quality characteristics and subcharacteristics, and it was observed 
that all data was distributed normally. The results were gathered in a Scale Calibration 
Table. (Table 2) 

Scale Calibration 

~ategory A B C 

~uality x>O,88 O,88>x>O,53 x<O,53 

Functionality x>O,82 O,82>x>O,55 x<O,55 

Security x>O,82 O,82>x>O,55 x<O,55 

ntero perabil ity x>O,93 O,93>x>O,80 x<O,80 

Suitability x>O,83 O,83>x>OA6 x<O,46 

Accuracy x>O,83 O,83>x>O,61 x<O,61 

Relia bility x>O,84 O,84>x>O,62 x<O,62 

Fault Tolerance x>O,80 O,80>x>O,57 x<O,57 

iVIaturity x>O,80 O,80>x>O,62 x<O,62 

Recoverability x>O,84 O,84>x>O,62 x<O,62 

Usability x>O,87 O,87>x>O,63 x<O,63 

Attractiveness x>O,89 O,89>x>O,72 x<O,72 

Leall1abil ity x>O,90 O,90>x>O,60 x<O,60 

pnderstandability x>O,82 O,82>x>O,57 x<O,57 

IEfficiency x>O,90 O,90>x>O,39 x<O,39 

Resource Behavior x>O,87 O,87>x>O,53 x<O,53 

ITime Behavior x>O,86 O,86>x>044 x<044 

Table 2. Scale Calibration Table (Stefani et aI., 2004) 

Once the Scale Calibration Table has been created, a system's evaluation results can be 
used to determine which category it falls into with regard to overall quality, or with 

59 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

regard to a given quality characteristic, and then inferences can be made concerning any 
need for improvement, and what are the specific areas which need it most. This helps to 
focus resources on the problematic areas. The proposed approach facilitates not only 
quality assessment, but also design activities, as it helps to concentrate on the attributes 
necessary for the product in order to display quality, and thus helps explicitly consider 
the quality attributes and how to build quality into the product. Other uses for the model 
include performing sensitivity analyses which can demonstrate what the optimal solution 
is when we need to increase overall quality or the quality of a certain characteristic, for 
example Usability. Quality characteristics which have been proven insignificant can be 
dropped from the model, taking into account any further modifications that need to be 
made to preserve the conditional independence claim. Evaluating software becomes more 
objective using this approach in the sense that the ranking is obtained by evaluating the 
available data, and not based on subjective judgment. This would be tlUe of models using 
deterministic as well as probabilistic parameter elicitation. 

5.4. Summary 

We have suggested a methodology for evaluating software quality which builds on the 
state of the art that we are familiar with. We have attempted to collect the diverse 
information available in the literature in one place and link the fragmented views 
available through different sources into a comprehensive methodology addressing all the 
important aspects of software quality evaluation. In this chapter we have provided 
alternatives for eliciting the software product quality model stlUcture and parameters, for 
collecting metrics and interpreting the obtained results. Understanding the importance of 
model customization is paramount to appreciating the value of our work. The possibility 
to customize, to adjust the quality model and evaluation process to best utilize the 
available data and expert knowledge promotes more accurate evaluation results, and 
therefore, better company project performance. We offer some insights for the evaluation 
process below: 

• If there is data from previous evaluations, we advise the evaluator to use the 
stlUcture and parameter learning options of BBN software, and subsequently 
verify with experts the obtained results. 

• When there is no data, but there is expert intuition with regard to the relationships 
of the quality characteristics, the probabilistic approach to parameter elicitation 
can be used, complemented when possible with the use of software tools 
facilitating the elicitation. 

• When no evaluator expert opinion is available, the deterministic approach to 
parameter elicitation is more suitable. 

• When the evaluator does not have access to testing and development data, it might 
be more suitable to take a goal-oriented approach to metric collection. 

60 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

• Having access to past data accommodates the mapping of quantitative results to 
qualitative statements using the clustering of values observed. When data is 
unavailable, the evaluator can use expert opinion. 

The next chapter details the application of the proposed methodology to a case study. 

61 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

6. Case Study 

This chapter presents a real-world case study following the outlined methodology. The 
case study that we conducted evaluated the quality of a product monitoring network 
health. The company that developed the product undertook the evaluation with the 
objective to start a formal assessment of software quality which would facilitate the 
comparison of company products developed under the old methodology, and under the 
newly adopted AGILE methodology. The approach taken was to use the slightly 
modified ISO/IEC 9126-1 (2001) model, which was considered representative enough by 
the company experts. The compliance characteristics were the only ones removed and no 
other characteristics have been added. The model was quantified using the mutual 
comparison method from the perspective of user, developer and manager. Since there 
were no added characteristics, all the metrics data gathered followed the suggestions of 
the ISO/IEC 9126-2 (2003) standard. Values for the metrics were collected by the 
company quality analysts. Because of the lack of previous data and expert knowledge on 
the subject, it was not possible to construct Scale Calibration Tables and infer qualitative 
rankings. Several applications of the obtained results are discussed at the end of the 
chapter. 

6.1. Eliciting Model Structure 

The company experts were presented with the ISO/IEC 9126-1 (2001) quality model, 
which we suggested as a basis for the evaluation, as well as with the definitions of 
additional quality characteristics (gathered in Appendix A). After a review of the model 
and definitions, the experts considered the criteria represented in the ISO model sufficient 
for the purpose of the evaluation. Nothing was added to the ISO quality model; however, 
the functionality compliance, reliability compliance, usability compliance, efficiency 
compliance, maintainability compliance and portability compliance subcharacteristics 
were omitted, as they were deemed not applicable. This decision was made because there 
were no "standards, conventions or regulations in laws and similar prescriptions" that 
needed to be followed by the company in developing the product. (ISO/IEC, 2001) 

6.2. Eliciting Model Parameters 

Once the model was finalized, the next step was to determine the weights of the quality 
characteristics. There was no available data on similar projects in the past and therefore a 
deterministic approach to quantifying the relationships in the model was chosen. In other 
work (Behkamal et aI., 2009) a combination of the mutual comparison and the AHP 
methods has been used, we consider applying only the mutual comparison method less 
prone to random answers, and that is especially important since the number of experts 

62 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

who filled out the questionnaire from each viewpoint is relatively small and any 
inconsistencies in their answers would be difficult to resolve. 

6.2.1. The Mutual Comparison Method 

The method chosen for eliciting the weights was the mutual comparison method, as 
described in (Behkamal et aI., 2009). As the name suggests, the method is based on the 
mutual comparisons of the quality criteria, which are collected in an n-by-n (square) 
matrix, where n is the number of the characteristics being compared. The rows of the 
matrix display the preference of the quality characteristic in the row title over the quality 
characteristics listed in the column titles. The preferences are encoded using the integers 
1-5 and their reciprocals, as follows: 1 denotes equal impOltance of the quality attributes, 
2-5 denote that the first characteristic is more important than the second, the strength of 
importance growing with the magnitude of the numbers. For example,S signifies that the 
first characteristic (row title) is extremely more impOltant than the second (column title). 
The reciprocals 1/2-1/5 denote that the first characteristic is less impOltant, 1/5 signifying 
it's significantly less important than the second. Data was collected through a 
questionnaire, a sample of which can be seen in Appendix B. The questionnaires were 
filled in by four users, two developers and two managers. The sample is representative 
enough, as the company is relatively small. Separate calculations were made for the 
different stakeholder perspectives, in order to analyze the difference in perceived 
importance of the quality characteristics for overall quality. An example of the 
calculations made can be seen in Appendix B. 

The questionnaires collect information about the importance of quality characteristics for 
overall quality, as well as the importance of quality subcharacteristics for their parent 
quality characteristic. Since comparing a characteristic with itself should yield equal 
importance, the main diagonal of the matrix is filled with '1'-s, and this comparison is not 
included in the questionnaire. (Fig.30) This reduces the number of necessary questions to 
n(n-l). Moreover, the method stipulates that if when comparing characteristic A with 
characteristic B we obtain x, than comparing B with A should yield l/x. This further 
reduces the number of necessary comparisons to n(n-l )/2. All of these questions are 
necessary, because the method does not assume transitivity. In this it is similar to the 
AHP, which "operates under the axiom of non-transitivity of preference ratios as well as 
under the assumption of reciprocal judgments." (Bardis, 2009) This makes it prone to 
inconsistencies, as we shall see below. However, we agree with Bardis (2009) that "a 
valid preference stmcture does not necessarily require or imply transitivity." 

Figure 30. Mutual comparison matrix 

63 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

6.2.2. Evaluation of Respondent Judgment Consistency 

The questionnaires were designed to elicit expert opinion in a way that minimizes 
random and inconsistent answers; however, because of the nature of the human mind, 
there are always inconsistencies, be it because of conflicting, potentially irrational 
opinions, or the choice of a scale that is not fine-tuned enough to reflect all nuances of 
preference. For example, even if the quality characteristics A and B are considered equal 
in importance, corresponding to a 1 in the comparison matrix, comparing A with C might 
yield 3, and comparing B with C might yield 4. This does not necessarily signify a 
mistake on the part of the respondent, as the actual preference in both cases might be 
somewhere in between 3 and 4, and A and B might not be entirely equal in importance, 
but sufficiently equal so as not to clearly prefer one over the other. The problem then 
becomes how to determine what level of inconsistency is acceptable, and to establish 
whether a minor modification to the matrix could lead to a significant increase in 
consistency. An example where the latter might be very beneficial is catching an 
involuntary mistake the respondents made. It is our belief that any change to the matrix 
has to be performed with the understanding and approval of the person who filled in the 
questionnaire. For example, looking at a matrix that displays A equal in importance to B, 
and A extremely more important than C (signified by 5 in the matrix), one would expect 
that B would also be more important than C. If instead we notice that the corresponding 
matrix component is equal to 113, we might want to further verify with the respondent 
whether one of the numbers entered was a result of a mistake, and which one exactly. 
Even if the expert confirms that the data is correct, or there is no way to contact him/her 
(in particular if the questionnaire was anonymous) we might still find the data useful, as 
long as it is considered sufficiently consistent. In addition to visual inspection, one might 
use the method described by Saaty (2003) to determine which component modification 
would lead to the highest increase in consistency. 

There are several methods for evaluating pairwise comparison matrix consistency, for 
example, if using the AHP method, one might use Saaty's consistency ratio (CR) (Saaty, 
1980), which has been discussed and critiqued in (Xu, Dong & Xiao, 2008). 
Unfortunately, this ratio is dependent on the numerical scale applied in the Conventional­
AHP, and therefore does not facilitate consistency testing when other scales are applied. 
The method has the following logic - a consistency index is defined, which is dependent 
on the order of the matrix, and therefore the consistency measure is given as a 
normalization of this index by dividing it by an index that captures the expected value of 
the consistency index for this particular order. Because the normalization index has been 
calculated through applying the Conventional-AHP prioritization method to a large 
number of simulated matrices using the {1/9, ... ,1, ... 9} scale, the data provided as a result 
of the simulation cannot be directly applied to this case study, which uses the 
{1/5, ... ,1, ... 5} scale. One of the areas proposed by the authors of (Xu et aI., 2008) for 
future work is to develop a method that would not be contingent upon the numerical scale 
used for prioritization. Another consistency testing method is suggested by Aguar6n and 
Moreno-Jimenez (2003), but again is dependent on the scale. Aguar6n and Moreno-

64 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Jimenez give a definition for the Geometric Consistency Index (GCl) and suggest 
thresholds for it, relating it to Saaty's work. This consistency test is applicable when the 
Row Geometric Mean Method (RGMM) has been used, which is one of the two methods 
utilized in this study. Several other consistency evaluation methods have been referenced 
in (Xu et aI., 2008). 

Barzilai (1998) suggests two measures for the evaluation of consistency of pairwise 
comparison matrices, the relative consistency (RC) and the relative error (RE) measures. 
He compares them with other popular consistency measures, such as Saaty's consistency 
index. The RC and RE measures are mapped onto the closed interval [0,1] and their sum 
equals 1. One of the advantages of these measures pointed out by the author is the fact 
that they are not dependent on the order of the matrix, which makes it possible to come 
up with a single consistency threshold, which would signify what values are considered 
sufficiently consistent. It is also possible to compare the consistency of matrices of 
different order. Another advantage of the proposed measures is their independence of the 
scale used for preference encoding. 

Before we can proceed to the method for calculating RC and RE, let us provide the 
definitions of a pairwise additive and multiplicative matrix and related terms, excerpted 
from (Barzilai, 1998): 

1. A = (aij) is a pairwise multiplicative matrix if 0 < aij = 1/aji. 

2. W = (Wk) is a multiplicative weight vector if Wk > 0 and rr~=l Wk= 1. 

3. A =(aij) is a multiplicative consistent matrix if aij = wJwjfor some 
multiplicative weight vector w. 
4. A x , W x and C x are the sets of all pairwise multiplicative matrices, 
multiplicative weight vectors and multiplicative consistent matrices respectively. 
5. f x is the set of all mappings from A x to W x . 

6. A = (aij) is a pairwise additive matrix if aij = - aji. 

7. W = (Wk ) is an additive weight vector if L~=l Wk= O. 

8. A = (aij) is an additive consistent matrix if aij = Wi - wjfor some additive weight 
vector w. 
9. A + , W + and C + are the sets of all pairwise additive matrices, additive weight 
vectors and additive consistent matrices respectively. 
10. f + is the set of all mappings from A + to W + . 

The RC measure for a pairwise multiplicative matrix, which is the type of matrix that we 
constmct from our questionnaire, can be obtained by the following method suggested by 
Barzilai: 

• As a first step, the matrix M needs to be transformed into a pairwise additive 
matrix A by substituting each component with the logarithm of the component to 
a fixed base. Any number can be used for the base, as the sets of all pairwise 

65 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

multiplicative matrices and all pairwise additive matrices are related by a 
logarithmic isomorphism. In our study we have chosen 2 for the base. 

• As a next step, we need to calculate the row arithmetic mean vector of A, w. 
e The third step involves calculating the consistent component CA of A. Its 

definition is as follows: 
CA = (cij) = (Wi-W) 

• Next, we need to calculate the sum of the squared components of CA and the sum 
of the squared components of A. 

• RC is obtained as the quotient of the sums from the previous step (when A is not 
equal to 0), i.e. 

RC(M) = RC(A) = Lij c~ 1Lij a~ 

To complete the definition of relative consistency we need to add that RC (0) = 1. 
(Barzilai, 1998) This means that if we obtain a zero matrix when we transform M to A, 
then M is a totally consistent matrix. We omit the definition and method for calculation of 
relative error for brevity, suffice it to say that it can be obtained from the equation 

RC(A) + RE(A) = 1. (Barzilai, 1998) 

We have computed the relative consistency values for all the matrices derived from the 
questionnaires that were filled in. The results were grouped to obtain the statistics in 
tables 3 and 4. 

USER DEVELOPER MANAGER 
Overall Quality Breakdown consistency 0.88 0.89 0.92 
Functionality Breakdown consistency 0.84 0.90 0.87 
Reliability Breakdown consistency 0.80 0.99 1.00 
Usability Breakdown consistency 0.92 0.87 0.95 
Efficiency Breakdown consistency 1.00 1.00 1.00 
Maintainability Breakdown consistency 0.89 0.83 0.98 
Portability Breakdown consistency 0.83 0.84 0.97 

Table 3. Consistency according to Quality Characteristic Breakdown and Perspective 

USER USER USER USER DEVELOPER DEVELOPER MANAGER MANAGER 
1 2 3 4 1 2 1 2 

0.85 0.87 0.89 0.91 0.91 0.87 0.92 0.92 
0.62 1.00 0.75 1.00 0.85 0.94 1.00 0.74 
0.85 1.00 0.33 1.00 1.00 0.99 1.00 1.00 
0.93 0.91 0.85 0.98 0.84 0.89 1.00 0.91 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
0.92 0.77 0.88 1.00 0.80 0.85 1.00 0.97 
0.85 0.71 0.82 0.95 0.88 0.80 0.99 0.94 
0.86 0.89 0.79 0.98 0.90 0.91 0.99 0.92 

Table 4. Consistency according to respondent 

66 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

It can be seen from the tables that the average relative consistency of any given 
perspective for any given breakdown is greater than or equal to 0.80. The average relative 
consistency grouped by respondent is greater than or equal to 0.79. Granted that taking 
the average is not the most appropriate measure for adequacy of the responses, it provides 
a general feeling. Out of the 56 matrices evaluated, there were only 6 with RC values less 
than 0.80. We have not set a consistency threshold because the data available to us at this 
time is not sufficient to infer what would be a meaningful cut-offline. However, we have 
determined that this is not necessarily a weak point, as Barzilai (1998) claims that 
inconsistency alone cannot warrant the updating of judgments in the comparison matrix. 
One reason for this is that the projected weights will remain the same if we increase 
consistency without affecting the underlying judgments, and if the respondent is 
comfortable with the inconsistency that the answer displays, there is no sense to distort it 
just in order to increase consistency. As Barzilai clarifies: 

Forcing the values of judgements to improve consistency distorts the answer 
regardless of the level of consistency of A. In our opinion the projected weights 
should be presented to the decision maker as feedback from the analysis. If 
the decision maker can confirm that the matrix C is indeed an acceptable 
reflection of his/her preferences, no revision of judgements is necessary regardless 
of his/her level of consistency. Otherwise, a revision of the judgements is 
justified. (Barzilai, 1998) 

Since the questionnaires were anonymous, it is not possible for us to consult the 
respondents to see whether they accept the obtained results. We bust that they have 
dedicated sufficient time in providing their views. An alternative approach would have 
been to exclude the matrices with lowest RC from the calculation of weights for the 
quality characteristics, as we do not justify judgment modification without the 
involvement of the respective respondent. 

As can be seen from the data, the manager perspective displayed the highest consistency 
in all but the Functionality Breakdown. It would be interesting to infer whether that arises 
as a result of a better understanding of the underlying issue, or because of spending more 
time contemplating the problem. Unfortunately, we cannot make any hypotheses as the 
questionnaires were filled in anonymously and we have not had a chance to observe the 
respondents' behavior. 

Barzilai (1998) discusses a way to measure the consistency of an entire hierarchy, but we 
omit this discussion and refer the interested patties to his work. 

6.2.3. Deriving the Weights of the Quality Characteristics 

After checking the consistency of the expert judgments we proceeded by deriving the 
weights of the quality characteristics. To this end, two alternative approaches were used -
the eigenvector approach (Behkamal et aI., 2009) and the geometric mean approach 

67 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

(Barzilai, 1997). The eigenvector approach as described by Behkamal (2009) involves 
several steps: 

• As a first step, a matrix is constructed based on the questionnaire responses, as 
described above. 

• As a second step, the eigenvalues and eigenvectors corresponding to this square 
matrix are calculated. We used a free online calculator, available at 
http://www.bluebit.gr/matrix -calculator/ . 

• The eigenvector corresponding to the largest eigenvalue (A'max) is then set as the 
weight vector. 

• After normalization of the weight vector, we have obtained the desired weights. 

These steps were followed for all collected questionnaires. After applying the eigenvector 
method for finding the weights of the different quality characteristics, the results in tables 
5-11 were obtained. 

The geometric mean approach was discussed by Barzilai (1997). Again we start by 
constructing the square matrix encoding the respondents' preferences. The weight vector 
is then obtained by calculating the geometric mean for each row of the matrix. We have 
proceeded to normalize the vector in order to compare the results of the two approaches. 
Barzilai claims that the geometric mean is "the only method for deriving weights from 
multiplicative pairwise comparisons which satisfies fundamental consistency 
requirements." (Barzilai, 1997) Among the advantages discussed by the author are the 
lack of scale-inversion rank reversal and the fact that the result is not contingent on the 
formulation of the problem or the order of operations. Using the geometric mean to 
derive weights from the pairwise comparison matrices we obtain the results in tables 12-
18. Additional methods for deriving weights have been discussed in (Blankmeyer, 1987). 

Comparing the results of the two approaches, we notice that they are quite similar, the 
only differences are centered and bolded in table 19 below. The first column in each 
perspective contains the results of the eigenvector approach (labeled A), while the second 
contains the results of the geometric mean approach (labeled B). The Reliability, 
Usability and Efficiency breakdowns display the same values regardless of the approach 
taken. Using precision of 2 decimal places shows 3 rank changes for the importance of 
the quality characteristics, even though the difference in values is relatively 
minor. According to the geometric mean approach Suitability and Security contribute 
equally to Functionality, while the eigenvector approach determines Suitability as slightly 
more important (Manager perspective). The eigenvector approach sees Changeability and 
Stability as equally important for Maintainability, while the geometric mean approach 
favors Stability slightly (User perspective). The biggest change, leading to rank reversal, 
concerns Adaptability and Replaceability, which are subcharacteristics of Portability. The 
eigenvector approach favors the latter, while the geometric mean approach favors the 
former (Developer perspective). For the purposes of this study we are going to proceed 
using the results obtained using the geometric mean method because of the advantages 
pointed out by Barzilai (1997). 

68 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Functionality Reliability Usability Efficiency Maintainability Portability 
USER 0.2665 0.2500 0.2176 0.0780 0.1254 0.0625 

DEVELOPER 0.3447 0.2217 0.1648 0.0921 0.1130 0.0636 
MANAGER 0.1590 0.2906 0.1691 0.0522 0.2386 0.0905 

Table 5. Overall Quality using the eigenvector method 

Suitability Accuracy Interoperabili!y Securi!y' 
USER 0.3932 0.2507 0.1915 0.1646 

DEVELOPER 0.3467 0.2782 0.1373 0.2377 
MANAGER 0.2459 0.2088 0.3072 0.2382 

Table 6. Functionality Breakdown using the eigenvector method 

Maturity Fault Tolerance Recoverabili!y 
USER 0.3308 0.3920 0.2772 

DEVELOPER 0.3698 0.3485 0.2817 
MANAGER 0.2250 0.4500 0.3250 

Table 7. Reliability Breakdown using the eigenvector method 

Understandability Learnability Operability Attractiveness 
USER 0.2636 0.2900 0.3643 0.0821 

DEVELOPER 0.2001 0.3229 0.3711 0.1059 
MANAGER 0.2056 0.2289 0.3796 0.1859 

Table 8. Usability Breakdown using the eigenvector method 

Time Behavior Resource Utilization 
USER 0.7083 0.2917 

DEVELOPER 0.7750 0.2250 
MANAGER 0.3500 0.6500 

Table 9. Efficiency Breakdown using the eigenvector method 

Analysability Changeability Stability Testability 
USER 0.2042 0.2455 0.2529 0.2975 

DEVELOPER 0.3590 0.2240 0.2918 0.1252 
MANAGER 0.1781 0.1796 0.3994 0.2428 

Table 10. Maintainability Breakdown using the eigenvector method 

Adaptability Installability Co-existence Replaceability 
USER 0.2904 0.2948 0.3247 0.0901 

DEVELOPER 0.2732 0.3307 0.1211 0.2750 
MANAGER 0.1732 0.3201 0.2623 0.2445 

Table 11. Portability Breakdown using the eigenvector method 

69 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Functionality Reliability Usability Efficiency Maintainability Portability 
USER 0.2670 0.2524 0.2173 0.0771 0.1229 0.0634 

DEVELOPER 0.3422 0.2253 0.1644 0.0942 0.1116 0.0623 
MANAGER 0.1576 0.2803 0.1749 0.0526 0.2440 0.0905 

Table 12. Overall Quality using the geometric mean method 

Suitability Accuracy Interoperability Security 
USER 0.3926 0.2460 0.1959 0.1655 

DEVELOPER 0~3471 0.2789 0.1371 0.2369 
MANAGER 0.2439 0.2065 0.3097 0.2398 

Table 13. Functionality Breakdown using the geometric mean method 

Maturity Fault Tolerance Recoverability 
USER 0.3308 0.3920 0.2772 

DEVELOPER 0.3698 0.3485 0.2817 
MANAGER 0.2250 0.4500 0.3250 

Table 14. Reliability Breakdown using the geometric mean method 

Understandability Learnability Operability Attractiveness 
USER 0.2637 0.2925 0.3619 0.0818 

DEVELOPER 0.1996 0.3198 0.3726 0.1080 
MANAGER 0.2059 0.2313 0.3757 0.1871 

Table 15. Usability Breakdown using the geometric mean method 

Time Behavior Resource Utilization 
USER 0.7083 0.2917 

DEVELOPER 0.7750 0.2250 
MANAGER 0.3500 0.6500 

Table 16. Efficiency Breakdown using the geometric mean method 

Analysability Chanqeability Stability Testability 
USER 0.2058 0.2444 0.2526 0.2972 

DEVELOPER 0.3567 0.2267 0.2948 0.1218 
MANAGER 0.1780 0.1804 0.3994 0.2422 

Table 17. Maintainability Breakdown using the geometric mean method 

Adaptability Installability Co-existence Replaceability 
USER 0.2901 0.2910 0.3252 0.0937 

DEVELOPER 0.2762 0.3340 0.1210 0.2688 
MANAGER 0.1730 0.3205 0.2614 0.2450 

Table 18. Portability Breakdown using the geometric mean method 

70 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

USER DEVELOPER MANAGER 

A B A B A B 
Overall Quality 

Functionality 0.27 0.27 0.34 0.34 0.16 0.16 
Reliability 0.25 0.25 0.22 0.23 0.29 0.28 
Usability 0.22 0.22 0.16 0.16 0.17 0.17 

Efficiency 0.08 0.08 0.09 0.09 0.05 0.05 
Maintainability 0.13 0.12 0.11 0.11 0.24 0.24 

Portability 0.06 0.06 0.06 0.06 0.09 0.09 
Functionality Breakdown 

Suitability 0.39 0.39 0.35 0.35 0.25 0.24 
Accuracy 0.25 0.25 0.28 0.28 0.21 0.21 

Interoperability 0.19 0.20 0.14 0.14 0.31 0.31 
Security 0.16 0.17 0.24 0.24 0.24 0.24 

Reliability Breakdown 
Maturity 0.33 0.33 0.37 0.37 0.23 0.23 

Fault Tolerance 0.39 0.39 0.35 0.35 0.45 0.45 
Recoverability 0.28 0.28 0.28 0.28 0.33 0.33 

Usability Breakdown 
Understandability 0.26 0.26 0.20 0.20 0.21 0.21 

Learnability 0.29 0.29 0.32 0.32 0.23 0.23 
Operability 0.36 0.36 0.37 0.37 0.38 0.38 

Attractiveness 0.08 0.08 0.11 0.11 0.19 0.19 
Efficiency Breakdown 

Time Behavior 0.71 0.71 0.78 0.78 0.35 0.35 
Resource Utilization 0.29 0.29 0.23 0.23 0.65 0.65 

Maintainability Breakdown 
Analysability 0.20 0.21 0.36 0.36 0.18 0.18 

Changeability 0.25 0.24 0.22 0.23 0.18 0.18 
Stability 0.25 0.25 0.29 0.29 0.40 0.40 

Testability 0.30 0.30 0.13 0.12 0.24 0.24 
Portability Breakdown 

Adaptability 0.29 0.29 0.27 0.28 0.17 0.17 
Installabilit~ 0.29 0.29 0.33 0.33 0.32 0.32 

Co-existence 0.32 0.33 0.12 0.12 0.26 0.26 
Replaceability 0.09 0.09 0.28 0.27 0.24 0.25 

Table 19. Comparison of the results obtained using the eigenvector method (A) and the 
geometric mean method (B) 

It is interesting to note that as expected, developers attribute highest impOltance to 
Functionality, and users are the group that cares most about Usability. (table 20) 
Efficiency and Portability are stressed least by all groups, which seems to be a reflection 
of the product domain, and managers put the greatest emphasis on Maintainability, 
estimating it as roughly twice as important as the other groups perceive it. Managers are 
also the group that esteems Portability most, which is again expected, as it creates more 

71 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

market opportunities. Some of the obtained results provide new intuition, e.g. managers 
perceive product Attractiveness as far more important than users do, more than two times 
as much. (table 20) In addition, users and developers both consider Time Behavior as 
more important than Resource Utilization, while managers hold the opposing view. (table 
20) This might lead to misunderstandings in the development process and we consider 
outlining such differences as very important for the smooth operation of the company. It 
is also unexpected to see Testability get its least importance value from developers, even 
though this could be explained as being the result of attributing more weight to 
Analysability, which is expected. (table 20) This demonstrates the point that we should 
not consider the numbers as absolutes, but interpret them in the overall setting in order to 
get the best understanding. 

USER DEVELOPER MANAGER 

Functionality 0.27 0.34 0.16 
Reliability 0.25 0.23 0.28 
Usability 0.22 0.16 0.17 

Efficiency 0.08 0.09 0.05 
Maintainability 0.12 0.11 0.24 

Portability 0.06 0.06 0.09 
Suitability 0.39 0.35 0.24 
Accuracy 0.25 0.28 0.21 
Interoperability 0.20 0.14 0.31 
Security 0.17 0.24 0.24 

Maturity 0.33 0.37 0.23 
Fault Tolerance 0.39 0.35 0.45 

Recoverability 0.28 0.28 0.33 
Understandability 0.26 0.20 0.21 
Learnability 0.29 0.32 0.23 
Operability 0.36 0.37 0.38 
Attractiveness 0.08 0.11 0.19 

Time Behavior 0.71 0.78 0.35 
Resource Utilization 0.29 0.23 0.65 

Analysabilitv 0.21 0.36 0.18 
Changeability 0.24 0.23 0.18 
Stability 0.25 0.29 0.40 
Testability 0.30 0.12 0.24 

Adaptability 0.29 0.28 0.17 
Installability_ 0.29 0.33 0.32 

Co-existence 0.33 0.12 0.26 
Replaceability 0.09 0.27 0.25 

Table 20. Comparison of characteristic importance across perspectives 

6.3. Collecting Metrics and Reading the Results 

The stmcture of the model chosen for this evaluation corresponds closely to ISO/IEC 
9126-1 (2001), and we chose metrics suggested in the ISOIIEC 9126-2 (2003) standard 
for the product quality evaluation. The metrics' values were provided by the company 

72 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

quality analysts. The chosen metrics, their definitions and the results obtained from the 
evaluation are presented in table 21.6 

In table 21 there are four metrics which have a pair of submetrics associated with them: 

• Data exchangeability (User's success attempt based) 
• Operational consistency in use 
• Error correction in use 
• Undo ability (User error correction) 

After a discussion with company experts it was concluded that the pair of submetrics for 
the first metric represent alternatives, while the pairs of submetrics associated with the 
other metrics are complements, and therefore two values have been entered in our table 
for these metrics. Moreover, it was deemed that the submetrics have equal impOltance, 
and are represented with a weight of 0.5 each in our quality model. 

Below we present some notes on the collected metrics: 

• The results obtained for Physical accessibility reflect the accessibility of the 
software product for a user who has an inability to use a mouse. 

• The value of the Interface appearance customizability metric reflects the fact that 
there was no explicit requirement to make the product customizable. The quality 
subcharacteristic was left in the model in order to determine whether users, 
managers and developers agree that it is of low significance, and make the 
appropriate conclusions and amendments if the results of the questionnaires show 
otherwise. 

• The Hardware environmental adaptability and System software environmental 
adaptability metrics have values of 1 reflecting adaptability to the environments 
supported in the requirements definition. If other possible environments are 
considered, the result would be different. 

• The value of the Ease of installation metric was set to 0 because there was no 
available data and the user can not change install operations for his/her 
convenience. 

• The value for the Continued use of data metric shows that there is no support for 
data migration to a previous version. Again, software system migration was not 
part of the requirements definition for the product. Our model has outlined a 
feature that can be improved upon, if its importance justifies the spending of 
additional time and resources. 

6 The information in the table (with the exception of the Result column) has been extracted from ISOllEC 
TR 9126-2 with the permission of Standards Council of Canada, in cooperation with IHS Canada, the 
official Canadian distributor of ISO publications, License #SCC 08109 - 035. No further reproduction is 
permitted without prior written permission 

73 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

In addition to the submetrics issue discussed above, there was another issue which 
required consultation with the company experts. As can be seen in table 21, several 
quality subcharacteristics have more than one metric associated with them, and this made 
it necessary to determine the weights of each metric. The company experts provided the 
results in table 22. 

The numbers in the Result column of table 21 are given as provided by the company 
evaluation and have not been truncated or rounded by us. 

Looking at the Interpretation of measured value column in table 21 we note that most of 
the metrics fall within the closed interval [0;1]; however, there are unbounded exceptions, 
which make the result of combining the metrics unbounded as well. This makes it 
impossible to determine a maximal value for quality. Moreover, a transformation of some 
of the metrics is necessary in order to be able to compare results obtained for different 
software products. For example, if we get a small number for Accuracy, this signifies 
better quality, while in the case of Suitability bigger numbers are better. Holding 
everything else equal, we could get a higher value for the Functionality metric by either 
inputting an increased value for Accuracy, or for Suitability. This makes it impossible to 
compare the Functionality of two alternative products based on the value of the 
Functionality metric. In order to overcome this and arrive at meaningful results usable for 
comparisons we have transformed the metrics that provide values which are better the 
smaller they are by taking the result of subtracting them from 3.4 (the maximal metric 
value obtained from the evaluation that needs transforming), and then dividing by 3.4 to 
normalize the value and avoid skewing of results because of the different magnitudes of 
metrics. 

Metrics which have the interpretation "the higher, the better" have also been modified 
when they are unbounded from above (e.g. the first submetric associated with Error 
correction in use), by dividing them by 1.2 (the maximal occurring value). With regard to 
metric manipUlation it would have been easiest to collect metrics which have consistent 
interpretation; however choosing a metric which is more meaningful for the product 
domain and easier to collect in the company setting take precedence over this concern. 
The list of metrics associated with the quality subcharacteristics after this transformation 
is presented in table 23. The transformed metrics are rounded and listed with precision of 
3 decimal digits. The transformation process might need to be repeated when comparing 
this product with another one, to take into account new maximal values to use in the 
transformations. 

Figure 31 displays the quality model reflecting the user perspective, implemented in 
WinBUGS14 (Imperial College of Science, Technology and Medicine & Medical 
Research Council, 2003). 

74 



Qualit;y J.¥fetric name Clarifu:ation of metric intent 
subcharacteristic 
(parent) 
Suitability FunctionaJI. How complete is the 
(Functionality) implementation implementation according to 

completeness requirement specifications? 

Accuracy Accuracy to Are ·d!ifferences between the 

'"':l 
& 

(Functionality) expectation actual and reasonable expected 
results acceptable? 

......... 
(ll 

N 
......... Interoperability Data exchangeability How often does the end. user 
Id 
(ll 

(Functionality) (User's success attempt fail to exchange data between 
CIl 
C ......... 

based) target so,ftwa:re and other 
~ 
CIl 

-.l 0 VI >-+> 

software? 

~ 
~ 

Security Access controllab:i1ity How controllable is access to 
'4 ,... 
("l (Functionality) the system? 
("l 
0 ......... 
~ 
("l 
~ ,... 
0 
::; 

Maturity F allure resolution How many failure conditions 
(Reliability) are resolved? 

Fault tolerance BreakdoVi.?D. avoidance How often the software 
(Reliab'ility) product causes the break do\VD. 

of the total pro duction 
environment? 

-

lnterpr.etation 
of measured 
value 
O<=X<=l 
The doserto 
1.0 is the better. 

O<=X 
The clo'ser to' 
o is the better. 

O<=X<= 1 
The doserto 
1.0 is the better. 

O<=X<=l 
The doser to 
LO is the better. 

O<=X<= 1 
The doser to 
1.0 is better as 
more failures are 
resolved. 

O<=X<= 1 
The closer to 
LO is the better. 

Result 

0.95 

0.04 

.0.999975 

0.78 

.0.9875 

.0.9875 

~ 
U:J 
o 
'"':l 
g-
CIl ,... 
CIl 

I 
C/) 

Q ,... 
(Jq 

8 
-< p.; 

I p.; 
CIl 

~ 
I 
n 
o 

~ c 
~ 
C/) 
("l 

~. 
(ll 



Quality .lvfetric name Clarifzcation of metric intent 
subcharacteristic 
(parent) 

Reooverability Resterability Hew capable is the product :in 
(Reliability) restering its e1.f aft.er abnermal 

.....j event or at. request? 

& ...... 
(1l 

tv -
~ 
'" ~ ...... .-
'" 0 ......, 

-..J 

S 
(1l 

0\ 
.--. ....... 
(") 

Understandability Evident fun·ctiens Vi/hat. prepertion of fun·ctiens 
(Usability) (o.r types of functien)can be 

identified by the us·er based 
upen start up conditiens? 

(") 
0 ...... ...... 
(1l L eamability Effectiveness of the Vlh.at proportio.n of tasks can 
(") ...... ....... 
0 
i:l 

(U sability) user do.c:mnentatien he cemplet.ed cerrectly after 
andlor help system using the user do.crnnentatien 

,-... 
n 
0 

.and/or help system? 
i:l .-....... 
§ Operability Operatienal Hew consistent are the 
(1l 

c (Usability) oonsistenCYT :in use component of the user 
interface? 

I I 

interpretation 
of measurecl 
value 

O><=X<=l 
The l!.a.rger and 
closer t.n 1.0 is 
better. as he [sicj 
preduct is me:re 
capable to' restore 
:in defined cases. 

n<=x<= 1 
The closer to 
1.0 is the better. 

O<=X<=1 
The deserte 
1.0 is the better. 

OI¢=X<=l 
The do s er to. 
1.0 is the better. 

OI¢=Y 

The smaller and 
closer to 0.0 is 
the better. 

Result 

0.5 

1.0 

0.958 

a) 0.85 

b) 1 

~ 
i:/J 
o 

~ 
'" ....... 
'" I 
en 

S1 ....... 
(Jq 

8 
-< 
~ 

~ 
~ 

'" ~ 
I 
n 

~ 
c 
~ 
en 
(") 

~f 
(") 
(1l 



Qualily lvletric name Clarification of m.etric irlient 
subcharacterisfic 
(par:ent) 

Operability Enm correction in llse Can user easily :recover his/her 
(U sability) error or .retry tasks? 

>-3 
& ....... 
(P Can user easily recover his/h.er 
tv ....... input? 

~ 
CIl 
C Operability Default value Can user easily select ...... 
""'" CIl (Usability) availability in use parameter values fo:r his/h.er 
0 ....., convenient operation? 

~ 
-.....l 
-.....l ""'" -. >-. 

(') 

(') 

2-...... 
(P 

Operability Se1f-e:A."P1an.atory error In what proportion oferro:r 
(Usability) messages conditions does the m,er 

propose the correct recovery 
(') 

""'" action? >-. 
0 
i:l 

,.--. 
n Operability Undoability (User error How frequently does the user 
0 
i:l 
""'" 

(Usability) correction) successfully COlrect mput 
>-. g error.s? 
(P 

8 How frequently does the user 
correctly undo errors'? 

Operability Physical accessibility %at pr,oportion of functions 
CU sability) can be accessed by mers with 

physical handicaps? 

Interpretation 
o/measured 
value 

()¢::X 
The higher is the 
better. 

O<=X<=l 
The doser to 
1.0 is the better. 
O<=X<= 1 
The doser to 
1.0 is the better. 

O<=X<=l 
The doser to 
l.0 is the better. 

O<=X<=l 
Thedoserto 
1.0 is the better. 

O<=Y<= 1 
Thedoserto 
1..0 is the better. 

O<=X<=l 
Thedoserto 
1.0 is the better. 

Result 

3.) 1.2 

b) 1 

0.74-

.0.857 

3.) 1 

b) 0.857 

0 

: 

, 

~ 
C/.J 
f.l 

~ 
CIl >-. 
CIl 

I 
C/:l 

G2 >-. 
C/Ci 
o -. o 
-< 
~ 

~ 
~ e; 
""'" ~ 
I 
n 
o 

~ c 
~ 
C/:l 
(') 

~r 
(') 
(P 



Quality Metric name Clariju:ation ,afmetric intent 
subcharacteris tic 
(parent) 

Attractiveness Interface appearance \V'hat proportion of interface 
(Usability) rustomizabil!ity elements can berustomised in 

,.., 
& 

appearance to the us er' s 
satisfaction? 

...... 
(1l 

tv ...... Time behaviour Response time (Mean What is the average wait time 

?;i 
CZl 
C 

(Efficiency) time to response) the mer experiences. after 
iss.umg a request until the 

...... ,...... 
CZl request is completed within a 
0 
H-, specified system load in terms 
g of concurrent tasks and system 

-....l 
00 

r:; ....... 
(') 

utilisation? 
(') 

0 ...... ...... 
(1l 

Time behaviour 1hroughput. (Mean Viihat is the average num'ber ·of 
(') ,...... ....... (Efficiency) amoun.t of throughput) concmrent tasks the system can 
0 ::s handle over a set unit .of time? 
~ 

() 
0 ::s Time heha'il:iour Tmnaround time "\"Vhat is the absolute limit on ,...... 
S· 
c 
(1l 
0.. 

(Efficiency) (VIorstcase turnaround time required in fulfilling a job 
time ratio) task? 

'-' 

R.esource Mean ItO fuffilment \"Vh.at is the average number of 
utilis.a.tion ratio I/O related error messages and 
(Efficiency) failures over a specified length 

of time and speci:t1ed 
utilisation? 

I I 

Interpretation 
of measured 
value 

O<=X<=l 
The doserto 
l.0 is the better. 

O<=X 
The nearer to 
l.0 ~41es.s than 
l.0 is the better. 

O<X 
The larger is the 
'better. 

O<X 
The nearer to 
l.0 ~..9 less than 
l.0 is the better. 

0<= X 
The smaller is 
~better. 

-_.-

R.esult 

0 

1.14 

0'.82 

l.76 

0 

------_._- -
r 

s:: 
en 
~ ,.., 
g-
CZl ....... 
CZl 

I 
en 

S2 
~. 

'"' o 
< 
$l:> 

~ 
~ 
~ 
I 
() 
o 
,g 
c 
~ 
en 
(') 

~. 
(1l 



Ouality J:.~etric name 
subcharacteris tic 
(parent) 

Resource Ma.~um memory 
utilisation utilization 

.....j 
(Efficiency) 

& Resource Mean of transmission 
......... 
CD 
N 
......... 

utilisation error per time 
(Efficiency) 

~ 
CIl 
~ ......... ...... 
CIl 

0 
H-, 

~ 

~Aula1ysa.b:i1ity Failure analysis 
(Maint.a.inab ility) capa.billity 

-...l 
\0 

...... 
"'"I ....... 
("l 

("l 

2-......... 
CD 
("l ...... o· 
::l 

Changeability Change cycle 
(Maintainability) efficiency 

,......, 
n 
0 
::l ...... 
S· 
~ 
CD 

e 
Stability Modification impact 
(Maintainability) localisation (Emerging 

failure after change) 

Clarification of m.etric .intent 

'Vio1hat is the absolute limit on 
memory required in fulfilling 3. 

function? 
How many transmission-
related error messages were 
experienced over 3. set period 
of time and specified resomce 
utilisation? 
Can. user identifyspeci:fic 
operation which caused 
failure? 

Can maintainer easily find 
cause of failure? 
Can the user's problem be 
solved to .hissatisfaction v...-ith:in. 
an acceptable time scale? 

Can user operate sioftware 
system \'\Iithout fa.i1mes after 
maintenance? 

Can maintainer easily mitigate 
failurescaus ed by maintenance 
side effects'? 

lnterpretat.ion 
of measured 
)lalue 

0<= X 
The smaller is the 
better. 
O<=X 
The smaller is the 
better. 

O<=X<= 1 
The doser to 
LO is the better . 

O<Tav 
The shorter is the 
g.~~~w. e.."\:cept of 
the number ·of 
re"ised versions 
was large. 
O<=X 
The smaller and 
closer to 0 is the 
better 

Result 

0 

0 

0..9875 

i 

3.4 days 

0.0125 

~ 
en 
~ 
.....j 

~ 
CIl ....... 
CIl 

I 
C.I.l 

o 
"'"I ....... 

aq 
Q 
o 
<: 
~ 

~ 
~ 
~ 
CIl 

~ 
I 
n 
o 

~ 
~ 
C.I.l 
("l 

~r 
("l 
CD 



Duality Metric name 
subcharacteris tic 
(parent) 
Testability Re-test efficiency 
(Maintainability) 

>-3 
& Adaptability Hardware 
........ 
(D (P'ortability) en'Vironmental 
N ...... adaptability 
~ 
(D 
CIl c:: ........ 
~ 
CIl Adaptability System. soft,vare 
0 
>-+, (portability) environmental 

~ 00 ...., ..... 0 (") 

adaptability 

(") 

2-........ 
(D 
(") ..... ..... 

Installability Eas,e of installation 
(Portability) 

0 
~ 

,..-., 
n Go-e..>ci:stence Available co-existence 
0 g (P'ortability) ..... 
§ 
(D 
0-
'--' 

Replaceability Continued u.s,e ·of data 
(portability) 

ClarifICation ,of metric in.tent 

Can user and maintainer easily 
perform operational testmg and 
detennin.e ,vhether the s,o:fiware 
is, ready for operation o:r not? 
Can user m: maintainer easily 
adapt s·ofivvare to en'Vironment? 
Is softw"are system capable 
enough to adapt itself to 
operation envHonment? 
Can mer or maintainer easily 
adapt software to environment? 
Is somvar·e system capable 
enough to adapt itself to 
operation environment? 
Can. user or maintainer easily 
mstall soft\vare to operation 
environment? 
How often user encounters any 
constraints or uneA-pected 
failmes. \vhen operating 
concurrently Viith other 
software? 
Can u.ser or maintainer easily 
continue to lls,e the same data 
after replacing this software to 
pre".-],ous one? 
Is sofuvare system migration 
going on successfully? 

Interpretation 
,of measztr,ed 
value 
O<X 
The smaller is the 
better. 

O<=X<=l 

The hrger is the 
better. 

O<=X<=l 

The larger is the 
better. 

O<=X<= 1 
The closer to 
LO is the better. 
O<=X 
The doserto 
0: is the better. 

0<= X <=1 
The larger is the 
better. 

----_ .. _-_ .... _-

Result 

0.167 

1 

I 

1 

0 

0. 

00 

~ 
rn 
!"'l 

~ 
(D 
CIl ..... 
CIl 

I 
C/.l 

~ 
~ 
o 
<: 
~ 

I 
~ 
(t ...., 
I 
n 
o 

~ c:: g 
C/.l 
(") 

~r 
(") 
(D 



M,Sc, Thesis - S, Grigorova McMaster - Computer Science 

Quality Metric name % 
subcharacteristic 
Operability Operational consistency in use 21 
Operability Error correction in use 21 
Operability Default value availability in use 21 
Operability Self-explanatory error messages 21 
Operability Undo ability (User error correction) 11 
Operability Physical accessibility 5 
Time behaviour Response time (Mean time to response) 28 
Time behaviour Throughput (Mean amount of throughput) 36 
Time behaviour Turnaround time (Worst case turnaround time ratio) 36 
Resource Mean I/O fulfilment ratio 36 
utilisation 
Resource Maximum memory utilization 28 
utilisation 
Resource Mean of transmission error per time 36 
utilisation 
Adaptability Hardware environmental adaptability 50 
Adaptability System software environmental adaptability 50 

Table 22, Weights of multiple metrics associated with a single subcharacteristic 

name: Quality type: logical link: identity 

value: .27'Functionality+.25*Reliability+.22'Usability+.OS'Efficiency+.12'Maintainability+.OS'Portability 

Figure 31, Quality model reflecting the user perspective 

81 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Quality Metric calculation Result 
subcharacteristic 
Suitability Kept the same. 0.95 
Accuracy (3.4 - 0.04)/3.4 = 0.988 0.988 
Interoperability Kept the same. 0.999975 
Security Kept the same. 0.78 
Maturity Kept the same. 0.9875 
Fault tolerance Kept the same. 0.9875 
Recoverability Kept the same. 0.5 
Understandability Kept the same. 1.0 
Learnability Kept the same. 0.958 
Operability Kept the same. a) 0.85 

(3.4 - 1)/3.4 = 0.706 b) 0.706 
Operability 1.2/1.2 = 1 a) 1 

Kept the same. b) 1 
Operability Kept the same. 0.74 
Operability Kept the same. 0.857 
Operability Kept the same. a) 1 

b) 0.857 
Operability Kept the same. 0 
Attractiveness Kept the same. 0 
Time behaviour (3.4 - 1.14)/3.4 = 0.665 0.665 
Time behaviour 0.82/1.2 = 0.683 0.683 
Time behaviour (3.4 - 1.76)/3.4 = 0.482 0.482 
Resource utilisation (3.4-0)/3.4 = 1 1 
Resource utilisation (3.4-0)/3.4= 1 1 
Resource utilisation (3.4-0)/3.4 = 1 1 
Analysability Kept the same. 0.9875 
Changeability (3.4- 3.4)/3.4 = 0 0 
Stability (3.4 - 0.0125)/3.4 = 0.996 0.996 
Testability (3.4 - 0.167)/3.4 = 0.951 0.951 
Adaptability Kept the same. 1 
Adaptability Kept the same. 1 
Installability Kept the same. 0 
Co-existence (3.4-0)/3.4= 1 1 
Replaceability Kept the same. 0 

Table 23. Transformed quality metrics 

In addition, after obtaining the weights for the metrics associated with Operability, Time 
behaviour, Resource utilisation and Adaptability from consultation with company experts 
we were able to calculate the corresponding metrics. (Table 24) 

82 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Quality Metric calculation Result 
subcharacteristic 
Operability 0.21 *(0.5*0.85+0.5*0.706) 0.810885 

+0.21 *(0.5*1+0.5*1) + 0.21 *0.74 
+0.21 *0.857 +0.11 *(0.5*1+0.5*0.857) 
+0.5*0 = 0.810885 

Time behaviour 0.28*0.665 + 0.36*0.683 + 0.36*0.482 0.6056 
=0.6056 

Resource utilisation 0.36*1 + 0.28*1 + 0.36*1=1 1 
Adaptability 0.5*1 + 0.5*1 = 1 1 

Table 24. Metric aggregation 

Using the calculated metrics as input in our quality models reflecting the perspectives of 
USER, DEVELOPER and MANAGER we obtained the following results from using 
WinBUGS14 (Imperial College & MRC, 2003): 

• USER 
o Quality 
o Functionality 
o Reliability 
o Usability 
o Efficiency 
o Maintainability 
o Portability 

• DEVELOPER 
o Quality 
o Functionality 
o Reliability 
o Usability 
o Efficiency 
o Maintainability 
o Portability 

• MANAGER 
o Quality 
o Functionality 
o Reliability 
o Usability 
o Efficiency 
o Maintainability 
o Portability 

0.835617222 
0.950095 
0.8510000000000001 
0.8297386 
0.7199759999999999 
0.741675 
0.62 

0.8137821220000001 
0.9363365 
0.8510000000000001 
0.80658745 
0.702368 
0.7584599999999999 
0.4 

0.7838401309999998 
0.93267225 
0.8365 
0.7384763 
0.8619600000000001 
0.80439 
0.43 

Table 25 presents a side-by-side comparison of the rounded results. 

83 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

USER DEVELOPER MANAGER 
Overall Quality 0.84 0.81 0.78 
Functionality 0.95 0.94 0.93 
Reliability 0.85 0.85 0.84 
Usability 0.83 0.81 0.74 
Efficiency 0.72 0.70 0.86 
Maintainability 0.74 0.76 0.80 
Portability 0.62 0.40 0.43 

Table 25. Comparison of evaluation results according to perspective 

Looking at table 25 we notice several things with regard to the evaluation of the 
company's product: 

• Reliability and Functionality are the quality characteristics that can garner a 
consensus from users, developers and managers. 

• Developers thought the least of Efficiency and Portability compared with users 
and managers. 

• Users gave the highest scores to Functionality, Reliability and Usability, followed 
closely by developers. 

• Managers gave the highest score of any group to Efficiency and Maintainability. 
• POliability got its highest score from users, and lowest from developers, and here 

we observe a big quantitative difference. 
• Users have the highest score for overall product quality, while managers have the 

lowest; however the numbers are relatively close across the perspectives, which 
would facilitate communication among them. 

Because of the lack of previous quality evaluation data and experience in this product 
domain it was not possible to obtain qualitative rankings for the quality characteristics. It 
is therefore not possible to determine whether the calculated values correspond to 
Excellent, Good or Poor quality. However, it is possible to compare the results from the 
different perspectives and see which group attributes more quality to a certain quality 
factor. It would also be possible to compare the results acquired from two similar 
projects, as well as to perform sensitivity analyses to see which characteristics need to be 
changed to make the perception of quality consistent across perspectives, or to improve it 
significantly for a certain group. The results of the case study presented in this chapter 
have been collected in a knowledge base that would enable parameter learning and SCT 
elicitation for future evaluation processes. 

Performing sensitivity analyses is important for validating the obtained results. We have 
not performed sensitivity analyses for this data because it would be difficult to interpret 
the meaning of the observed quantitative changes without the qualitative rankings. 

84 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

6.4. Summary 

This chapter saw the proposed methodology applied to a case study. We used the slightly 
modified ISO/IEC 9126-1 (2001) model, omitting only the compliance characteristics 
from the model. Parameter elicitation was performed using the mutual comparison 
method from the perspective of user, developer and manager, and a discussion of the 
differences in perception was presented. Metrics following the ISOIIEC 9126-2 (2003) 
standard were collected and transformed in order to make possible the comparison of 
quality characteristic values across perspectives. It was not possible to construct Scale 
Calibration Tables because of the lack of previous data and expert knowledge on the 
subject; however we have outlined some applications for the obtained results. 

85 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

7. Conclusion 

The methodology outlined in this work has several key advantages that distinguish it 
from other general approaches to software quality evaluation. Most of the quality models 
presented in the literature do not accommodate structural change, while our methodology 
allows model customization. In addition, it indicates how to take advantage of newly 
available information and data in order to fine-tune the model. In essence, it consists of a 
set of hierarchies, with overall quality always being at the root of the tree, and the 
particular hierarchy is determined by the intention of the evaluation. Morris (2007) points 
out that the general approaches to software evaluation are not suitable for the discussion 
of tradeoffs in the requirements acquisition process. Even though he made this point with 
regard to commercial off-the-shelf software, we believe that it is relevant for the 
evaluation of any type of software. The approach we suggest accommodates tradeoff 
consideration, and further promotes decision-making by considering quality from 
different perspectives. 

Depending on the product domain and the perspective of the evaluator (developer, 
manager, user) the importance of quality characteristics and sub characteristics and their 
contribution to overall quality is different. Therefore, when we want to evaluate the 
quality of a specific product, we need to customize the model taking into account the 
relative weights that the quality characteristics have. These weights can influence the 
decision where to focus limited resources when trying to improve product quality. For 
example, the manager might have to decide whether to add functionality, or to devote 
more time to increasing the reliability of the product. In the case where both activities 
will lead to an equal increase in overall quality from the manager's perspective, he might 
take into consideration the developer's perspective or the user's perspective to finalize his 
decision. Having separate models for the different viewpoints will also facilitate 
discussions in the company as to why people view the importance of contributing factors 
differently and are intuitively lead to focus more time and energy on certain activities. If 
the perspectives can be reconciled, this will lead to increased levels of overall 
contentedness with the finished product. 

7.1. Summary 

This work provides a comprehensive view of the steps necessary to evaluate a software 
product. It compares and combines several alternative approaches to evaluation. We 
began with an overview of software quality concepts and a demonstration of the 
importance of software quality evaluation through the project statistics supplied. Then we 
established the relevance of the product-oriented approach to software quality evaluation, 
as the quality of a finished software product cannot be guaranteed by following best 
process practices. After presenting an overview of several existing quality models that 

86 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

have gained prominence and discussing their advantages and weaknesses we came to the 
conclusion that ISO/IEC 9126-1 (2001) is the best basis for conducting a product quality 
evaluation. We consider the flexibility of the model as its greatest advantage, allowing 
the evaluator to customize it by adding desirable quality characteristics and omitting 
insignificant ones. Combining this product quality model with BBN use makes possible 
the automation of some evaluation activities (e.g. parameter learning), and formalizes 
others by explicitly considering expert opinion (e.g. determining the utility associated 
with different outcomes). We have attempted to condense the expert knowledge available 
in the literature regarding the model structure in the generic model that we presented in 
Chapter 4. It combines the quality characteristics of the ISO/IEC 9126-1 (2001) external 
quality model with all characteristics from the McCall and Boehm quality models, thus 
providing a convenient source of reference for choosing which characteristics to evaluate. 
In addition, we discuss a way of transforming the resulting model into a form suitable for 
BBNuse. 

The methodology for evaluating software quality that we have suggested provides 
alternatives for eliciting the software product quality model structure and parameters, for 
collecting metrics and interpreting the obtained results. Understanding the importance of 
model customization is paramount for appreciating the value of our work. The possibility 
to customize, to adjust the quality model and evaluation process to best utilize the 
available data and expert knowledge, promotes more accurate evaluation results, and 
therefore, better company project performance. The application of the proposed 
methodology to a case study is detailed in chapter 6. Parameter elicitation was performed 
from the perspectives of user, developer and manager, and the differences in perception 
were outlined. Understanding these differences facilitates dialogue between the parties, 
and contributes to a better work environment and more efficient company operation. 

Working with the collected metrics presented a problem, as they had different 
interpretations which necessitated metric transformation in order to be able to make valid 
inferences. The comparison of quality characteristic values across perspectives exhibited 
some interesting results. Among the potential applications for the results obtained in the 
case study are: 

• Comparing the results from the different perspectives to see which group values a 
certain quality factor more; 

• Comparing the results acquired from the case study with results from a similar 
project; 

• Performing sensitivity analyses to see whether the results can be considered valid 
even if the obtained measures for the quality characteristics are somewhat 
imprecise; 

• Performing sensitivity analyses to see which characteristics need to be changed in 
order to make the perception of quality consistent across perspectives; 

• Performing sensitivity analyses to see which characteristics need to be changed in 
order to improve quality significantly for a certain group; 

87 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

• Adding the results collected in a knowledge base that would enable parameter 
learning and SCT elicitation for future evaluation processes. 

Appendix A was created as a convenient knowledge base assisting the evaluator in the 
choice of quality characteristics to include in the model, and in addition provides 
suggestions for metrics. 

7.2. Related Work 

There are a number of works that have been referenced and discuss similar ideas, yet they 
are taking a more customized approach or focusing on just one aspect of the evaluation 
process. The works that come close to our views are (Stefani et aI., 2003) and (Behkamal 
et aI., 2009), both of which evaluate the quality of E-commerce products using ISO/lEe 
9126-1 as a basis and utilizing BBN tools. Both are customized to reflect domain 
specifics and can be seen as examples of domain specific application of the more general 
approach presented here. Stefani et ai. (2003) used an earlier version of the ISO/lEe 
9126-1 standard and this led to some perceived discrepancies. For example, the authors 
model quality from the user's perspective, with questionnaires that are filled in to 
document use of the product in a real setting versus a simulated environment, and 
therefore we believe that it is more appropriate to employ the quality in use model and 
not the external quality model. It would be interesting to see whether the two models 
would provide different insights or will be sufficiently similar. The creation of an all­
encompassing generic model and its transformation for BBN use are among the novel 
ideas presented in this work, and their usefulness will have to be confirmed by future case 
studies. 

7.3. Reasoning behind BBN Use 

In this methodology it was suggested that the quality model is used in conjunction with a 
BBN software tool. There are many potential rewards in this arrangement, and some of 
them are described in this section. One possibility is the creation of an add-on module to 
the software specifically dedicated to product-oriented software quality evaluation. The 
add-on module will present the evaluator with either the generic model proposed above 
with the potential to remove nodes, or with the ISO/lEe 9126-1 (2001) model with the 
potential to add new nodes automatically in their correct place. The definitions and other 
relevant information regarding the quality characteristics (as contained in Appendix A) 
can be made available as a reference point. The dependencies between the nodes can be 
quantified either deterministically or probabilistically using questionnaires which are also 
palt of the module and the necessary calculations can be performed automatically after 
the experts fill in their opinions. The next step would be to suggest operationalization of 
the bottom layer of the model according to the product domain, or to suggest metrics to 

88 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

be used for the quantification of the bottom layer. There has been work on automating the 
collection of internal metrics for use with ISO/lEC 9126 (Lincke & Lowe, 2006) and this 
might enable the establishment of mappings between internal and external metrics, which 
will be useful in predicting external quality before external metrics are available. Many 
BBN software tools provide the option of performing sensitivity analysis and this makes 
it possible to evaluate tradeoffs. Some tools additionally offer the capability to extend the 
model to a decision model, taking into account the utility associated with different 
outcomes, and can be used for further facilitation of the decision-making process. As we 
have already pointed out, if the evaluators have sufficient data at their disposal, there are 
BBN software tools that provide as features structure learning and parameter learning. 
The use of Bayesian Net tools can therefore significantly decrease the time that company 
expelis need to dedicate to the evaluation process. 

7.4. Directions for Future Work 

As directions for future work we consider the following: 

• Addition of further criteria to the generic model and Appendix A; 
• Providing more suggested metrics in Appendix A; 
• Verifying the conditional independence property for the generic model we 

constructed using the ideas of Morris and Beling (2004); 
• Comparing the results acquired by using models obtained by the Morris and 

Beling transformation with results from models directly reflecting the hierarchies 
presented in the literature; 

• Comparing probabilistic model results acquired from several perspectives for the 
same product; 

• Creating a BBN module dedicated to software product quality evaluation, as 
outlined in section 7.3. 

89 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Appendix A - Compendium of Quality Characteristics 

In Appendix A we present a glossary of non-functional requirements excerpted from 
(Colin et aI., 2008) and extended with additional definitions, suggested metrics for the 
evaluation of the listed quality characteristics, as well as a specification of their relative 
position in a quality model. The positioning is determined by their parents? (these are the 
factors that the characteristic contributes to), children (characteristics that contribute to its 
higher quality) and siblings (other characteristics that influence its parents' quality). This 
document is intended as a living document, which should be updated regularly to include 
new definitions and insights. 

The 151 candidate metrics proposed by Boehm (Selby, 2007) are not listed here as 
suggested metrics, because they are established for the quality evaluation of FORTRAN 
code, and are therefore not generally applicable. We have attempted to include only 
generally applicable metrics in this appendix, and therefore some quality characteristics 
do not have suggested metrics at this time. 

The information added to the original glossary is italicized. A reference is provided after 
the last quality characteristic of a list coming from the same source. Whenever the quality 
characteristic is already listed with a different source, it is not repeated. 

Abstractness 
The degree to which a system or component performs only the necessary functions 
relevant to a particular purpose. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

Access control 
Access control is the ability to permit or deny the use of particular resource to particular 
user based on the user credentials. 
Related terms: Accessibility, Auditing, Integrity 
Example: Driver and user authentication 
Parent: Integrity (McCall et al., 1977) 
Siblings: Access audit (McCall et al., 1977) 
Children: 

7 The terms parents and children used here do not correspond to parents and children as defined in Bayesian 
Net models. 

90 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Similar: 
Suggested metric: consider (McCall et al., 1977) 

Accessibility 
The degree to which the software system protects system functions or service from being 
denied to the user. 
Related terms: Access control, Efficiency 
Example: Additional services for handicap persons 
Parent: Efficiency, Human Engineering, Testability (Selby, 2007) 
Siblings: Accountability, Device Efficiency, Robustness/Integrity, Communicativeness, 
Self-Descriptiveness, Structuredness (Selby, 2007) 
Children: 
Similar: 
Suggested metric: 

Accountability 
Code possesses the characteristic of accountability to the extent that its usage can be 
measured. This means that critical segments of code can be instrumented with probes to 
measure timing, whether specified branches are exercised, and so on. Code usedfor 
probes is preferably invoked by conditional assembly techniques to eliminate the 
additional instruction words or added execution times when the measurements are not 
needed. (Selby, 2007) 
Related terms: 
Example: 
Parent: Efficiency, Testability (Selby, 2007) 
Siblings: Accessibility, Device Efficiency, Communicativeness, Structuredness, Self­
descriptiveness (Selby, 2007) 
Children: 
Similar: 
Suggested metric: 

Accuracy 
A quantitative measure of the magnitude of error [IEE90]. 
Related terms: Reliability 
Example: The distance between predecessor and successor cycabs 
Parent: Reliability (McCall et al., 1977), (Selby, 2007), Functionality (ISO/IEC, 2001) 
Siblings: Consistency, Error tolerance, Simplicity (McCall et aI., 1977), Suitability, 
lnteroperability, Security, Functionality Compliance (ISO/IEC, 2001), Self­
containedness, Completeness, Robustness/Integrity (Selby, 2007) 
Children: 
Similar: 
Suggested metric: consider (McCall et al., 1977), (ISO/IEC, 2003) 

91 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Adaptability 
The ease with which software satisfies differing system constraints and user needs. An 
adaptable software system can tolerate changes in its environment without external 
intervention [EM87]. 
Related terms: 
Example: Using cycabs at different routes 
Parent: Portability (ISO/IEC, 2001) 
Siblings: lnstallability, Co-existence, Replaceability, Portability Compliance (ISO/IEC, 
2001) 
Children: 
Similar: 
Suggested metric: consider (ISO/lEe, 2003), (Khosravi & Gueheneuc, 2004) 

Anal yzability 
Attributes of software that relate to the effort needed for diagnosis of deficiencies or 
causes of failures, or for identification of parts to be modified [ISOOl]. 
Related terms: 
Example: Sensor changing 
Parent: Maintainability (ISO/IEC, 2001) 
Siblings: Changeability, Stability, Testability, Maintainability Compliance (ISO/IEC, 
2001) 
Children: 
Similar: 
Suggested metric: consider (ISO/IEC, 2003) 

Anonymity 
The degree to which a software system or component allows for or supports anonymous 
transactions. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

As-is utility 
How well (easily, reliably, efficiently) can I use it as is? (Selby, 2007) 
Related terms: 
Example: 
Parent: Product quality (Selby, 2007) 
Siblings: Portability, Maintainability (Selby, 2007) 
Children: Reliability, Human engineering, Efficiency (Selby, 2007) 
Similar: 

92 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Suggested metric: derivedfrom children's (Selby, 2007) 

Attractiveness 
The capability of the software product to be attractive to the user. (ISO/IEC, 2001) 
Related terms: 
Example: the use of colour, the nature of the graphical design (ISO/lEe, 2001) 
Parent: Usability (ISO/IEC, 2001) 
Siblings: Understandability, Learnability, Operability, Usability Compliance (ISO/IEC, 
2001) 
Children: 
Similar: 
Suggested metric: consider (ISO/IEC, 2003) 

Auditing 
The degree to which a software system records information concerning transactions 
performed within the system. 
Related terms: Access control, Integrity 
Example: Black box 
Parent: Integrity (McCall et al., 1977) 
Siblings: Access control (McCall et al., 1977) 
Children: 
Similar: 
Suggested metric: consider (McCall et al., 1977) (Access audit) 

Augmentability 
Code possesses the characteristic of augmentability to the extent that it can easily 
accommodate expansion in component computational functions or data storage 
requirements. This is a necessary characteristic for modifiability. (Selby, 2007) 
Related terms: Maintainability (Selby, 2007) 
Example: 
Parent: Modifiability (Selby, 2007) 
Siblings: Structuredness (Selby, 2007) 
Children: 
Similar: Changeability (Selby, 2007) 
Suggested metric: 

Availability 
The ability of a system to be operable and in a committable state when required to use. 
Availability is the proportion of time a system is in a functioning condition and is ready 
to provide correct services. 
Related terms: 
Example: Brakes 
Parent: 
Siblings: 

93 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Children: 
Similar: 
Suggested metric: 

Capacity 
A measure of the amount of work a system can perform [BKLW95]. 
Related terms: 
Example: Seating capacity for persons, stamina of battery 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

Changeability 
Attributes of software that relate to the effort needed for modification, fault removal or 
for environmental change [IS001]. 
Related terms: Maintainability 
Example: 
Parent: Maintainability (ISOIIEe, 2001) 
Siblings: Analysability, Stability, Testability, Maintainability Compliance (ISOIIEC, 
2001) 
Children: 
Similar: Modifiability 
Suggested metric: consider (ISOIIEC, 2003) 

Co-existence 
The capability of the software product to co-exist with other independent software in a 
common environment sharing common resources. (ISOIIEC, 2001) 
Related terms: 
Example: 
Parent: Portability (ISOIIEC, 2001) 
Siblings: Adaptability, lnstallability, Replaceability, Portability Compliance (ISOIIEC, 
2001) 
Children: 
Similar: 
Suggested metric: consider (ISOIIEC, 2003) 

Communicativeness 
Code possesses the characteristic of communicativeness to the extent that it facilitates the 
specification of inputs and provides outputs whose form and content are easy to 
assimilate and useful. Communicativeness is necessary for testability and human 
engineering. (Selby, 2007) 
Related terms: As-is Utility, Maintainability (Selby, 2007) 

94 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Example: 
Parent: Human Engineering, Testability (Selby, 2007), Usability (McCall et ai., 1977) 
Siblings: Integrity, Accessibility, Accountability, Structuredness, Self_descriptivness 
(Selby, 2007), Operability, Training (McCall et ai., 1977) 
Children: 
Similar: 
Suggested metric: consider (McCall et ai., 1977) 

Communications commonality 
Those attributes of the software that provide the use of standard protocols and inteiface 
routines. (McCall et ai., 1977) 
Related terms: 
Example: 
Parent: Interoperability (McCall et al., 1977) 
Siblings: Modularity, Data commonality (McCall et ai., 1977) 
Children: 
Similar: 
Suggested metric: consider (McCall et ai., 1977) 

Compactness 
The degree to which a system or component makes efficient use of its data storage space 
i.e. occupies a small volume. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

Compatibility 
The ability of two or more systems or components to perform their required functions 
while having the same hardware or software environment [IEE90]. 
Related terms: 
Example: Sensors 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

Completeness 
The degree to which all the parts of a software system or component are present and each 
of its patts is fully specified and developed. This means that if the code calls a subroutine 

95 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

from an external library, the software package must provide reference to that library and 
all required parameters must be passed and all required input data must be available 
[BBK+78]. 
Related terms: Correctness, Reliability 
Example: 
Parent: Correctness (McCall et ai., 1977), Reliability (Selby, 2007) 
Siblings: Traceability, Consistency (McCall et ai., 1977), Self-containedness, Accuracy, 
Robustness/Integrity (Selby, 2007) 
Children: 
Similar: 
Suggested metric: consider (McCall et ai., 1977), (Khosravi & Gueheneuc, 2004) 

Complexity 
The degree to which a system or component has a design or implementation that is 
difficult to understand and verify [IEE90]. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: consider (Khosravi & Gueheneuc, 2004) 

Compliance 
Attributes of software that make the software adhere to application related standards or 
conventions or regulations in laws and similar prescriptions [ISOOl]. 
Related terms: 
Example: Adherence to specific rules 
Parent: Functionality/Reliability/Usability/Efficiency/Maintainability/Portability 
(ISO/lEC, 2001) 
Siblings: 
Children: 
Similar: 
Suggested metric: consider (ISO/lEe, 2003) 

Conciseness 
The degree to which a software system or component has no excessive information 
present [MRW77]. 
Related terms: Maintainability, Understandability 
Example: Unavailability of unused methods and dummy variables 
Parent: Maintainability (McCall et ai., 1977), Understandability (Selby, 2007) 
Siblings: Simplicity, Self-descriptiveness, Modularity, Consistency (McCall et ai., 1977), 
Structuredness, Legibility (Selby, 2007) 
Children: 

96 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Similar: 
Suggested metric: consider (McCall et aI., 1977), (Khosravi & Gueheneuc, 2004) 

Confidentiality 
The nonoccurrence of the unauthorized disclosure of information [BKLW95]. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

Consistency 
The degree of uniformity, standardization, and freedom from contradiction among the 
documents or parts of a system or component [IEE90]. 
Related terms: Correctness, Reliability 
Example: Naming conventions 
Parent: Correctness, Reliability, Maintainability (McCall et ai., 1977), Understandability 
(Selby, 2007) 
Siblings: Traceability, Completeness, Accuracy, Error Tolerance, Simplicity, 
Conciseness, Modularity, Self-Descriptiveness (McCall et aI., 1977), Self-containedness, 
Robustness/Integrity, Structuredness, Legibility (Selby, 2007) 
Children: 
Similar: 
Suggested metric: consider (McCall et al., 1977) 

Correctness 
The extent to which a program satisfies its specifications and fulfills the customer's 
mission objectives [MRW77]. 
Related terms: Traceability, Completeness, Consistency 
Example: 
Parent: 
Siblings: 
Children: Traceability, Consistency, Completeness (McCall et ai., 1977) 
Similar: 
Suggested metric: derivable from children, consider (Khosravi & Gueheneuc, 2004) 

Data commonality 
Those attributes of the software that provide the use of standard data representations. 
(McCall et ai., 1977) 
Related terms: 
Example: 
Parent: Interoperability (McCall et ai., 1977) 

97 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Siblings: Modularity, Communications commonality (McCall et al., 1977) 
Children: 
Similar: 
Suggested metric: consider (McCall et al., 1977) 

Denial of service 
The degree to which a software system or component prevents the interference or 
disruption of system services to the user. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

Dependability 
The property of a system such that reliance can justifiably be placed on the service it 
delivers. 
Related terms: 
Example: Brake, stamina of battery 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

Device independence 
Code possesses the characteristic of device independence to the extent it can be executed 
on computer hardware configurations other than its current one. Clearly, this 
characteristic is a necessary condition for portability. (Selby, 2007) 
Related terms: 
Example: 
Parent: Portability (Selby, 2007) 
Siblings: Self-containedness (Selby, 2007) 
Children: 
Similar: 
Suggested metric: 

Effectiveness 
The degree to which a system's features and capabilities meet the user's needs. 
Related terms: 
Example: 
Parent: 

98 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Siblings: 
Children: 
Similar: 
Suggested metric: 

Efficiency 
The degree to which a system or component performs its designated functions with 
minimum consumption of resources (CPU, Memory, I/O, Peripherals, Networks) 
[IEE90]. 
Related terms: Accessibility 
Example: Power consumption 
Parent: Product Quality, As-is Utility (Selby, 2007) 
Siblings: Functionality, Reliability, Usability, Maintainability, Portability (ISO/IEC, 
2001), Human Engineering (Selby, 2007) 
Children: Execution Efficiency, Storage Efficiency (McCall et al., 1977), Time 
Behaviour, Resource Utilisation, Efficiency Compliance (ISO/lEe, 2001), Accountability, 
Device Efficiency, Accessibility (Selby, 2007) 
Similar: 
Suggested metric: derivable from children (McCall et al., 1977), (ISO/lEe, 
2003), consider (Khosravi & Gueheneuc, 2004) 

EvolvabilitylUpgradability 
The ease with which a system or component can be modified to take advantage of new 
software or hardware technologies. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

Exception Handling / Error Tolerance 
The capability of system to handle the occurrence of some condition that changes the 
normal flow of execution. For example, incorrect input, communication problems, page 
fault and etc [IEE90]. 
Related terms: Reliability 
Example: Packet collision 
Parent: Reliability (McCall et al., 1977) 
Siblings: Consistency, Accuracy, Simplicity (McCall et al., 1977) 
Children: 
Similar: 
Suggested metric: consider (McCall et al., 1977) 

99 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Execution Efficiency 
Those attributes of the software that provide for minimum processing time. (McCall et 
al., 1977) 
Related terms: 
Example: 
Parent: Efficiency (McCall et al., 1977) 
Siblings: Storage Efficiency (McCall et al., 1977) 
Children: 
Similar: 
Suggested metric: consider (McCall et a!., 1977) 

ExtendibilitylExpandability 
The ease with which a system or component can be modified to increase its storage or 
functional capacity [IEE90]. 
Related terms: Flexibility 
Example: 
Parent: Flexibility (McCall et al., 1977) 
Siblings: Modularity, Generality, Self-descriptiveness (McCall et al., 1977) 
Children: 
Similar: 
Suggested metric: consider (McCall et al., 1977) 

Fault-Tolerance 
The capability to continue normal operation after the occurrence of an error, with as 
minimal human intervention as possible. Fault-tolerant describes a computer system or 
component designed so that, in the event that a component fails, a backup component or 
procedure can immediately take its place with no loss of service. 
Related terms: 
Example: 
Parent: Reliability (ISOIIEC, 2001) 
Siblings: Maturity, Recoverability, Reliability Compliance (ISOIIEC, 2001) 
Children: 
Similar: 
Suggested metric: consider (ISOIIEC, 2003) 

Fidelity 
The degree of similarity between a model and the system properties being modeled 
[IEE90]. 
Related terms: 
Example: Usage of system on multiple type of vehicles 
Parent: 
Siblings: 
Children: 
Similar: 

100 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Suggested metric: 

Flexibility 
The ease with which a system or component can be modified for use in applications or 
environments other than those for which it was specifically designed [IEE90]. 
Related terms: Expandability, Generality 
Example: 
Parent: 
Siblings: 
Children: Modularity, Generality, Expandability, Self-Descriptiveness (McCall et aI., 
1977) 
Similar: 
Suggested metric: derivable from children 

Functionality 
A set of attributes that relate to the existence of a set of functions and their specified 
propelties [IS 00 I]. 
Related terms: Accuracy, Compliance, Interoperability, Security, Suitability 
Example: 
Parent: Product Quality 
Siblings: Reliability, Usability, Efficiency, Maintainability, Portability (ISO/IEC, 2001) 
Children: Suitability, Accuracy, Interoperability, Security, Functionality Compliance 
(ISO/lEe, 2001) 
Similar: 
Suggested metric: derivable from children 

Generality 
The degree to which a system or component performs a broad range of functions 
[IEE90]. 
Related terms: Flexibility, Reusability 
Example: Movement of vehicle in both directions 
Relevant: 
Parent: Reusability, Flexibility (McCall et aI., 1977) 
Siblings: Modularity, Software System Independence, Machine Independence, Self­
Descriptiveness, Expandability (McCall et aI., 1977) 
Children: 
Similar: 
Suggested metric: consider (McCall et aI., 1977), (Khosravi & Gueheneuc, 2004) 

Human engineering 
Code possesses the characteristic of human engineering to the extent that it fulfills its 
purpose without wasting the users' time and energy, or degrading their morale. This 
characteristic implies accessibility, robustness, and communicativeness. (Selby, 2007) 
Related terms: 

101 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Example: 
Parent: As-is Utility (Selby, 2007) 
Siblings: Reliability, Efficiency (Selby, 2007) 
Children: Integrity, Accessibility, Communicativeness (Selby, 2007) 
Similar: 
Suggested metric: 

Incompleteness 
The degree to which all the parts of a software system or component are not present and 
each of its parts is not fully specified or developed. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

Install-ability 
Attributes of software that relate to the effOlt needed to install the software in a specified 
environment [ISOOl], 
Related terms: Portability 
Example: 
Parent: Portability (ISO/IEC, 2001) 
Siblings: Adaptability, Co-existence, Replaceability, Portability Compliance (ISO/IEC, 
2001) 
Children: 
Similar: 
Suggested metric: consider (ISO/IEC, 2003) 

Instrumentation 
Those attributes of the software that provide for the measurement of usage or 
identification of errors. (McCall et al., 1977) 
Related terms: 
Example: 
Parent: Testability (McCall et al., 1977) 
Siblings: Simplicity, Modularity, Self-Descriptiveness (McCall et al., 1977) 
Children: 
Similar: 
Suggested metric: consider (McCall et al., 1977) 

Integrity 
Absence of improper system alterations. 
Related terms: Access control, Auditing, Reliability 

102 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Example: 
Parent: Reliability, Human Engineering (Selby, 2007) 
Siblings: Self-containedness, Accuracy, Completeness, Consistency, Accessibility, 
Communicativeness (Selby, 2007) 
Children: Access Control, Access Audit (McCall et al., 1977) 
Similar: Robustness (Selby, 2007) 
Suggested metric: derivable from children 

Interoperability 
The ability of two or more systems or components to exchange information and to use the 
information that has been exchanged [IEE90]. 
Related terms: Commonality, Modularity 
Example: Interaction among heterogeneous vehicles 
Parent: Functionality (ISO/lEe, 2001) 
Siblings: Suitability, Accuracy, Security, Functionality Compliance (ISO/IEC, 2001) 
Children: Modularity, Communications Commonality, Data Commonality (McCall et al., 
1977) 
Similar: 
Suggested metric: derivable from children, consider (ISO/lEe, 2003) 

Latency 
The length of time it takes to respond to an event [BKLW95]. 
Related terms: 
Example: Time for brake 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

Legibility 
Code possesses the characteristic of legibility to the extent that its function is easily 
discerned by reading the code. Legibility is necessary for understandability. (Selby, 
2007) 
Related terms: Maintainability (Selby, 2007) 
Example: complex expressions have mnemonic variable names and parentheses even if 
unnecessary (Selby, 2007) 
Parent: Understandability (Selby, 2007) 
Siblings: Consistency, Conciseness, Structuredness, Self-descriptiveness (Selby, 2007) 
Children: 
Similar: 
Suggested metric: 

103 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Logging 
The capability to register events of a given component, for traceability and/or debugging 
purposes. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

Machine Independence 
Those attributes of the software that determine its dependency on the hardware system. 
(McCall et al., 1977) 
Related terms: 
Example: 
Parent: Portability, Reusability (McCall et al., 1977) 
Siblings: Self-Descriptiveness, Software System Independence, Generality, Modularity 
(McCall et al., 1977) 
Children: 
Similar: 
Suggested metric: consider (McCall et al., 1977) 

Maintainability 
The ease with which a software system or component can be modified to C011"ect faults 
and improve performance [MRW77]. 
Related terms: Conciseness, Modifiability, Modularity, Simplicity, Testability, 
Understandability 
Example: Software/Hardware drivers 
Parent: Product Quality 
Siblings: Functionality, Reliability, Usability, Efficiency, Portability (ISO/IEC, 2001), 
As-is Utility (Selby, 2007) 
Children: Consistency, Simplicity, Conciseness, Modularity, Self-Descriptiveness 
(McCall et al., 1977), Analysability, Changeability, Stability, Testability, Maintainability 
Compliance (ISO/IEC, 2001), Understandability, Modifiability (Selby, 2007) 
Similar: 
Suggested metric: derivable from children (McCall et al., 1977), (ISO/IEC, 2003) 

Maturity 
Attributes of software that relate to the frequency of failure by faults in the software 
[ISOOl]. 
Related terms: 
Example: 
Parent: Reliability (ISO/IEC, 2001) 

104 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Siblings: Fault Tolerance, Recoverability, Reliability Compliance (ISO/IEC, 2001) 
Children: 
Similar: 
Suggested metric: consider (ISO/IEC, 2003), (Khosravi & Gueheneuc, 2004) 

Modifiability 
The degree to which a system or component facilitates the incorporation of changes, once 
the nature of the desired change has been determined [BBK+ 78]. 
Related terms: Maintainability, Structuredeness, 
Example: 
Parent: Maintainability (Selby, 2007) 
Siblings: Testability, Understandability (Selby, 2007) 
Children: Structuredness, Augmentability (Selby, 2007) 
Similar: Changeability 
Suggested metric: 

Modularity 
The capability to divide a system into local modules for understandability and reusability 
purposes. 
Related terms: 
Example: Classes, Components, Modules 
Parent: Maintainability, Testability, Reusability, Interoperability, Flexibility, Portability 
(McCall et al., 1977) 
Siblings: Consistency, Simplicity, Conciseness, Self-Descriptiveness, Instrumentation, 
Generality, Software System Independence, Machine Independence, Communications 
Commonality, Data Commonality, Expandability (McCall et al., 1977) 
Children: 
Similar: 
Suggested metric: consider (McCall et al., 1977), consider (Khosravi & Gueheneuc, 
2004) 

Multi Access 
The capability of having several users using the system at the same time. 
Related terms: 
Example: Supervisors intervention 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

Openness 
The degree to which a system or component complies with standards. 
Related terms: 

105 



M.Sc. Thesis - S. Grigorova 

Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

Operability 
The ease of operating the software [DW88]. 
Related terms: Usability 
Example: Joysticks 
Parent: Usability (McCall et al., 1977), (ISO/IEC, 2001) 

McMaster - Computer Science 

Siblings: Training, Communicativeness (McCall et al., 1977), Understandability, 
Learnability, Attractiveness, Usability Compliance (ISO/lEe, 2001) 
Children: 
Similar: 
Suggested metric: consider (McCall et al., 1977), (ISO/IEC, 2003), (Khosravi & 
Gueheneuc, 2004) 

Portability 
The ease with which a system or component can be transferred from one hardware or 
software environment to another [IEE90]. 
Related terms: 
Example: Components usability from one vehicle to another 
Parent: Product Quality 
Siblings: Functionality, Reliability, Usability, Efficiency, Maintainability (ISO/IEC, 
2001), As-is Utility (Selby, 2007) 
Children: Modularity, Self-Descriptiveness, Machine Independence, Software System 
Independence (McCall et al., 1977), Adaptability, lnstallability, Co-existence, 
Replaceability, Portability Compliance (ISO/lEe, 2001), Device Independence, Self­
containedness (Selby, 2007) 
Similar: 
Suggested metric: derivable from children (McCall et al., 1977), (ISO/IEC, 
2003), consider (Khosravi & Gueheneuc, 2004) 

Quantifiability 
The quality of being measurable. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

106 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Readability 
The degree to which a system's functions and those of its component statements can be 
easily discerned by reading the associated source code. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: consider (Khosravi & Gueheneuc, 2004) 

Recovery 
The restoration of a system, program, database, or other system resource to a prior state 
following a failure or externally caused disaster; for example, the restoration of a 
database to a point at which processing can be resumed following a system failure 
[IEE90]. 
Related terms: 
Example: Cycab's direction 
Parent: Reliability (ISO/lEe, 2001) 
Siblings: Maturity, Fault Tolerance, Reliability Compliance (ISO/IEC, 2001) 
Children: 
Similar: 
Suggested metric: consider (ISO/IEC, 2003) 

Reliability 
The ability of a system to perform and maintain its functions in routine circumstances as 
well as in hostile or unexpected circumstances with required precision [MRW77]. 
Related terms: Accuracy, Completeness, Consistency, Error Tolerance, Integrity, 
Robustness 
Example: 
Parent: Product Quality, As-is Utility (Selby, 2007) 
Siblings: Functionality, Usability, Efficiency, Maintainability, Portability (ISO/IEC, 
2001), Human Engineering (Selby, 2007) 
Children: Error Tolerance, Consistency, Accuracy, Simplicity (McCall et al., 1977), 
Maturity, Fault Tolerance, Recoverability, Reliability Compliance (ISO/IEC, 2001), Self­
containedness, Completeness, Robustness/Integrity (Selby, 2007) 
Similar: 
Suggested metric: derivable from children (McCall et al., 1977), (ISO/lEC, 
2003), consider (Khosravi & Gueheneuc, 2004) 

Replaceability 
Attributes of software that relate to the opportunity and effort of using it in the place and 
environment of other software [1S001]. 

107 



M.Sc. Thesis - S. Grigorova 

Related terms: Portability 
Example: 
Parent: Portability (ISOIIEC, 2001) 

McMaster - Computer Science 

Siblings: Adaptability, lnstallability, Co-existence, Portability Compliance (ISOIIEe, 
2001) 
Children: 
Similar: 
Suggested metric: consider (ISOIlEC, 2003) 

Requirement 
A requirement is a singular documented need of what a particular product or service 
should be or do. It is most commonly used in a formal sense in systems engineering or 
software engineering. It is a statement that identifies a necessary attribute, capability, 
characteristic, or quality of a system in order for it to have value and utility to a user. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

Resource Behavior 
Attributes of software that relate to the amount of resources used and the duration of such 
use in performing its function [ISOO 1]. 
Related terms: Efficiency 
Example: 
Parent: Efficiency (ISOIIEC, 2001) 
Siblings: Time Behaviour, Efficiency Compliance (ISOIIEC, 2001) 
Children: 
Similar: 
Suggested metric: consider (ISOIIEC, 2003) 

Response Time 
The capability to react promptly to external stimuli confronting the processing time with 
performance requirements. The response time may be calculated between the instant at 
which an operator at a terminal enters a request for a response from a computer and the 
instant at which the first character of the response is received at a terminal. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 

108 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Suggested metric: 

Responsiveness 
The degree to which a software system or component has incorporated the user's 
requirements. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

Reusability 
The extent to which a program (or parts of a program) can be reused in other applications 
[MRW77]. 
Related terms: Generality, Modularity 
Example: 
Parent: 
Siblings: 
Children: Generality, Modularity, Software System Independence, Machine 
Independence, Self-Descriptiveness (McCall et aI., 1977) 
Similar: 
Suggested metric: derivable from children 

Robustness 
The degree to which a system or component can function correctly in the presence of 
invalid inputs or stressful environment conditions [IEE90]. 
Related terms: Reliability 
Example: 
Parent: Reliability, Human Engineering (Selby, 2007) 
Siblings: Self-containedness, Accuracy, Completeness, Consistency, Accessibility, 
Communicativeness (Selby, 2007) 
Children: 
Similar: Integrity (Selby, 2007) 
Suggested metric: consider (Khosravi & Gueheneuc, 2004) 

Safety 
The ability of the system to operate without (internal) catastrophic failure [BKLW95]. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 

109 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Similar: 
Suggested metric: 

Scalability 
It is a desirable property of a system which indicates its ability to either handle growing 
amounts of work in a graceful manner, or to be readily enlarged. A system whose 
performance improves after adding hardware, proportionally to the capacity added, is 
said to be a scalable system. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: consider (Khosravi & Gueheneuc, 2004) 

Security 
The capability of the system to protect itself against (external) accidental or deliberate 
intrusion. 
Related terms: 
Example: 
Parent: Functionality (ISOIIEC, 2001) 
Siblings: Suitability, Accuracy, lnteroperability, Functionality Compliance (ISOIIEC, 
2001) 
Children: 
Similar: 
Suggested metric: consider (IS 01 lEe, 2003) 

Self-containedness 
Code possesses the characteristic of self-containedness to the extent that it performs all 
its explicit and implicit functions within itself. Examples of implicit functions are 
initialization, input checking, and diagnostics. (Selby, 2007) 
Related terms: 
Example: 
Parent: Portability, Reliability (Selby, 2007) 
Siblings: Device independence, Completeness, Accuracy, Integrity, Consistency (Selby, 
2007) 
Children: 
Similar: 
Suggested metric: 

Self-descriptiveness 
Code possesses the characteristic of self-descriptiveness to the extent that it contains 
enough information for a reader to determine or verify its objectives, assumptions, 

110 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

constraints, inputs, outputs, components, and revision status. Commentary and 
traceability of previous changes by transforming previous versions of code into 
nonexecutable but present (or available by macro calls) code are some of the ways of 
providing this characteristic. Self-descriptiveness is necessary for both testability and 
understandability. (Selby, 2007) 
Related terms: Maintainability (Selby, 2007) 
Example: 
Parent: Testability, Understandability (Selby, 2007), Maintainability, Flexibility, 
Portability, Reusability (McCall et aI., 1977) 
Siblings: Communicativeness, Accessibility, Accountability, Structuredness, Consistency, 
Conciseness, Legibility (Selby, 2007), Modularity, Simplicity, Expandability, Software 
System Independence, Machine Independence, Generality, Instrumentation (McCall et 
aI., 1977) 
Children: 
Similar: 
Suggested metric: consider (McCall et al., 1977) 

Simplicity 
The degree to which a system or component has a design and implementation that is 
straightforward and easy to understand [IEE90]. 
Related terms: Maintainability 
Example: 
Parent: Testability, Maintainability, Reliability (McCall et aI., 1977) 
Siblings: Consistency, Conciseness, Modularity, Self-Descriptiveness, Instrumentation, 
Accuracy, Error Tolerance (McCall et al., 1977) 
Children: 
Similar: 
Suggested metric: consider (McCall et al., 1977), (Khosravi & Gueheneuc, 2004) 

Software System Independence 
Those attributes of the software that determine its dependency on the software 
environment (operating systems, utilities, input/output routines, etc.). (McCall et aI., 
1977) 
Related terms: 
Example: 
Parent: Portability, Reusability (McCall et al., 1977) 
Siblings: Self-Descriptiveness, Machine Independence, Generality, Modularity (McCall 
et al., 1977) 
Children: 
Similar: 
Suggested metric: consider (McCall et al., 1977), (Khosravi & Gueheneuc, 2004) 

Speed 
The rate at which a software system or component performs its functions. 

111 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

Stability 
Attributes of software that relate to the risk of unexpected effect of modifications. 
Related terms: Maintainability 
Example: 
Parent: Maintainability (ISOIIEC, 2001) 
Siblings: Analysability, Changeability, Testability, Maintainability Compliance 
([SOIIEC, 2001) 
Children: 
Similar: 
Suggested metric: consider (ISOIIEe, 2003) 

Storage Efficiency 
Those attributes of the software that provide for minimum storage requirements during 
operation. (McCall et al., 1977) 
Related terms: 
Example: 
Parent: Efficiency (McCall et al., 1977) 
Siblings: Execution Efficiency (McCall et al., 1977) 
Children: 
Similar: 
Suggested metric: consider (McCall et al., 1977) 

Structuredness 
The degree to which a system or component possesses a definite pattern of organization 
of its interdependent parts [BBK+ 78]. 
Related terms: Modifiability, Testability, Understandability 
Example: 
Parent: Modifiability, Testability, Understandability (Selby, 2007) 
Siblings: Augmentability, Accountability, Accessibility, Communicativeness, Self­
descriptiveness, Consistency, Conciseness, Legibility (Selby, 2007) 
Children: 
Similar: 
Suggested metric: consider (Khosravi & Gueheneuc, 2004) 

112 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Suitability 
Attributes of software that bare on the provision of right or agreed results or effects 
[ISOOl]. 
Related terms: 
Example: 
Parent: Functionality (ISO/lEe, 2001) 
Siblings: Accuracy, lnteroperability, Security, Functionality Compliance (ISO/lEe, 
2001) 
Children: 
Similar: 
Suggested metric: consider (ISO/lEe, 2003) 

Survivability 
The degree to which essential functions are still available even though some part of the 
system is down [DW88]. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

Testability 
The effort required to test a program to ensure that it performs its intended function 
[MRW77]. 
Related terms: Maintainability, Modularity, Simplicity, Structuredness 
Example: 
Parent: Maintainability (ISO/IEC, 2001) 
Siblings: Analysability, Changeability, Stability, Maintainability Compliance (ISO/IEC, 
2001), Understandability, Modifiability (Selby, 2007) 
Children: Simplicity, Modularity, Instrumentation, Self-Descriptiveness (McCall et al., 
1977), Accountability, Accessibility, Communicativeness, Structuredness (Selby, 2007) 
Similar: 
Suggested metric: derivable from children, consider (ISO/IEC, 2003) 

Throughput 
Throughput is the amount of work that an application can do in a given time period. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 

113 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Suggested metric: 

Time behavior 
Attributes of software that relate to response and processing times and on throughput 
rates in performing its function [1S001]. 
Related terms: Efficiency, Response time, Throughput 
Example: 
Parent: Efficiency (ISOIIEC, 2001) 
Siblings: Resource Utilisation, Efficiency Compliance (ISOIIEC, 2001) 
Children: 
Similar: 
Suggested metric: consider (ISOIIEC, 2003) 

Traceability 
The degree to which a relationship can be established between two or more products of 
the development process, especially products having a predecessor-successor or master­
subordinate relationship to one another [IEE90]. 
Related terms: Correctness 
Example: 
Parent: Correctness (McCall et al., 1977) 
Siblings: Consistency, Completeness (McCall et al., 1977) 
Children: 
Similar: 
Suggested metric: consider (McCall et al., 1977), (Khosravi & Gueheneuc, 2004) 

Training 
Those attributes of the software that provide transition from current operation or initial 
familiarization. (McCall et al., 1977) 
Related terms: 
Example: 
Parent: Usability (McCall et al., 1977) 
Siblings: Operability, Communicativeness (McCall et al., 1977) 
Children: 
Similar: 
Suggested metric: consider (McCall et al., 1977) 

Trustworthiness 
The degree to which a system or component avoids compromising, conupting, or 
delaying sensitive information. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 

114 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Similar: 
Suggested metric: 

Understandability 
The degree to which the purpose of the system or component is clear to the user. All of 
the design and user documentation must be clearly written so that it is easily 
understandable. This is obviously sUbjective that the user context must be taken into 
account, i.e. if the software product is to be used by software engineers it is not required 
to be understandable to the layman. [BBK+78] 
Related terms: Conciseness, Maintainability, Structuredness 
Example: 
Parent: Usability (ISO/IEC, 2001), Maintainability (Selby, 2007) 
Siblings: Learnability, Operability, Attractiveness, Usability Compliance (ISO/IEC, 
2001), Testability, Modifiability (Selby, 2007) 
Children: Consistency, Self-descriptiveness, Structuredness, Conciseness, Legibility 
(Selby, 2007) 
Similar: 
Suggested metric: consider (ISO/IEC, 2003), (Khosravi & Gueheneuc, 2004) 

Usability/Learnability 
The ease with which a user can learn to operate, prepare inputs for, and interpret outputs 
of a system or component [IEE90]. 
Related terms: Operability 
Example: 
Parent: Product Quality 
Siblings: Functionality, Reliability, Efficiency, Maintainability, Portability (ISO/IEC, 
2001) 
Children: Training, Communicativeness, Operability (McCall et al., 
1977), Understandability, Learnability, Operability, Attractiveness, Usability 
Compliance (ISO/IEC, 2001) 
Similar: 
Suggested metric: derivable from children (McCall et al., 1977), (ISO/lEC, 
2003), consider (Khosravi & Gueheneuc, 2004) 

Verifiability 
The relative effort to verify the specified software operation and performance [EM87]. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

115 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Vulnerability 
The degree to which a software system or component is open to unauthorized access, 
change, or disclosure of information and is susceptible to interference or disruption of 
system services. 
Related terms: 
Example: 
Parent: 
Siblings: 
Children: 
Similar: 
Suggested metric: 

116 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Appendix B - Questionnaire 

Appendix B provides a sample questionnaire for eliciting model parameters, as well as an 
example of the elicitation technique used in this work. 

The next three pages represent a sample questionnaire filled from the Manager 
perspective. 

Table 26 presents the mutual comparison matrix constructed for the breakdown of 
Usability reflected in the sample questionnaire. 

The eigenvector approach is presented in figure 32 and table 27, while the geometric 
mean approach is presented in table 28. 

117 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Dear SirlMadam, 

This questionnaire is targeted at you as a MANAGER. The following tables contain pairs 
of quality factors and characteristics. I rely on your experience to determine the relative 
importance that these factors/characteristics have. In the third column, fill in a number in 
the range 1-5 if the first factorlcharacteristic is more important than the second (l 
signifies equal importance, 5 signifies that the first factor!characteristic is significantly 
more important). Use reciprocals to signify that the first factor is less important (1/5 
signifies it is significantly less important). Based on this information, I will calculate the 
relative weight of contribution these characteristics have in the ISO 9126 model used for 
the quality evaluation (Fig. 1). As you may notice, the compliance characteristics have 
been omitted, as they were considered not applicable in this case. The software products 
that are being evaluated are xxxxxx. Thank you! 

Best, 
Silviya Grigorova 

external and 
internal 
quality 

I I I I I I 

functionality reliability usability efficiency maintainability portability 

I I I I I I 
suitability maturity understandability analysabilily adaptability 
accuracy fault tolerance learnability time behaviour 

changeability instaIJability 
interoperability recoverability operability resource stability co-existence 

security attractiveness utilisation testability replaceabiJity 

functionality reliability usability efficiency maintainability portability 
compliance compliance compliance compliance compliance compliance 

Fig. 1 Quality Model for External and Internal Quality According to ISOIIEC 9126 * 

* This information has been extractedfrom lSOllEC TR 9126-1 with the permission of 
Standards Council of Canada, in cooperation with lHS Canada, the official Canadian 
distributor of ISO publications, License #SCC 08109 - 035. No further reproduction is 
permitted without prior written permission 

118 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Comparison of the Relative Importance of Quality Factors Influencing Overall Quality 

First Quality Factor Second Quality Factor Strength of Preference 
Functionality Reliability Y2 
Reliability Usability 2 
Usability Efficiency 2 
Efficiency Maintainability 1/3 
Maintainability Portability 2 
Portability Functionality Y2 
Functionality Usability 1 
Reliability Efficiency 4 
Usability Maintainability 1/3 
Efficiency Portability 1/3 
Maintainability Functionality 2 
Portability Reliability Y2 
Functionality Efficiency 2 
Reliability Maintainability 1 
Usability Portability 1 

Relative Importance of the Characteristics Influencing Functionality 

First Quality Characteristic Second Quality Characteristic Strength of 
Preference 

Suitability Accuracy 2 
Accuracy Interoperability Y2 
Interoperability Security 4 
Security Suitability 1,4 

Suitability Interoperability I 
Accuracy Security 2 

Relative Importance of the Characteristics Influencing Reliability 

First Quality Characteristic Second Quality Characteristic Strength of 
Preference 

Maturity Fault Tolerance Y2 
Fault Tolerance Recoverability 2 
Recoverability Maturity 1 

119 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Relative Importance of the Characteristics Influencing Usability 

First Quality Characteristic Second Quality Characteristic Strength of 
Preference 

Understandability Learnability Y2 
Learnability Operability 1 
Operability Attractiveness 1 
Attractiveness Understandability 2 
Understandability Operability Yz 
Learnability Attractiveness 1 

Relative Importance of the Characteristics Influencing Efficiency 

First Quality Characteristic Second Quality Characteristic Strength of 
Preference 

Time Behavior Resource Utilization 1fii 

Relative Importance of the Characteristics Influencing Maintainability 

First Quality Characteristic Second Quality Characteristic Strength of Preference 
Anal yzability Changeability 1 
Changeability Stability 1 
Stability Testability 1 
Testability Anal yzability 1 
Anal yzability Stability 1 
Changeability Testability 1 

Relative Importance of the Characteristics Influencing Portability 

First Quality Characteristic Second Quality Characteristic Strength of Preference 
Adaptability Installability Y2 
Installability Co-existence 4 
Co-existence Replaceability 1/3 
Replaceability Adaptability 2 
Adaptability Co-existence 2 
Installability Replaceability 1 

120 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Understandability Learnability Operability Attractiveness 

Understandability 1.0000 0.5000 0.5000 0.5000 

Learnability 2.0000 1.0000 1.0000 1.0000 

Operability 2.0000 1.0000 1.0000 1.0000 

Attractiveness 2.0000 1.0000 1.0000 1.0000 

Table 26. Mutual comparison matrix constructed for the breakdown of Usability 

Input matriX: 

;::::: ~:~::: ~:~::: ::::::- . ..... . ..... ........... ···1 
2.0000 1.0000 1.0000 1.0000 j 
2.0000 1.0000 1.0000 1.0000 

... _ .......•..•........ - .. -...... . . _. ......... . ......•.... -. --_ .•................ - •..........• --.•.. -........ ..... ..-. 

Eigenvalues Eigenvectors: 

Eigenvalues: 

(O.OOOO,O.OOOOi) 
(4.0000,O.0000i) 

(O.OOOO,O.OOOOi) 
(O.oooo,O.OOOOi) 

E"tgenvectors: 

i 

I 
..1 

i ··-(=~·.~·~4·7, o. OOOOi} -~. ~-.2;;~ :.~.~ ~~~~~~- o.~O~~, O. OOOOi) ... ~.-~~~~:~. ~~~·o~·~-·l 
i (0.4364, O.OOOOi) ( 0.5547, O.OOOOi) (-0.5774, O.OOOOi) (-0.5774, O.OOOOi) I 
I (0.4364, O.OOOOi) (0.5547, O.OOOOi) ( 0.7887, O.OOOOi) (-0.2113, O.OOOOi) 'I 

i (0.4364, O.OOOOi) (0.5547, O.OOOOi) (-0.2113, O.OOOOi) ( 0.7887, O.OOOOi) 
. .1 

Figure 32. Results obtained for the matrix in table 26 by using the online calculator 
available at http://www.bluebit.gr/matrix-calculator/ 

Eigenvector Normalized 

Understandability 0.2774 0.1429 

Learnability 0.5547 0.2857 

Operability 0.5547 0.2857 

Attractiveness 0.5547 0.2857 
sum 1.9415 1.0000 

Table 27. Excel table normalizing the eigenvector values 

121 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Geometric Mean Normalized 

U nderstandabi lity 0.5946 0.1429 

Learnability 1.1892 0.2857 

Operability 1.1892 0.2857 

Attractiveness 1.1892 0.2857 
sum 4.1622 1.0000 

Table 28. Excel table with geometric mean computations 

122 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

REFERENCES 

Agena Ltd .. (2007). AgenaRisk Software, www.agenarisk.com. 

Aguaron, J., & Moreno-Jimenez, J. M. (2003). The geometric consistency index. 
Approximated thresholds, European Journal of Operational Research, Vol. 147, 
No.1, pp. 137-145. 

Al-Kilidar, H., Cox, K., & Kitchenham, B. (2005). The Use and Usefulness of the 
ISO/IEC 9126 Quality Standard, Proceedings of the 2005 International 
Symposium on Empirical Software Engineering (ISESE 05), IEEE CS Press, pp. 
126-132. 

Azuma, M. (1996). Software products evaluation system: quality models, metrics and 
processes - International Standards and Japanese Practice, Information and 
Software Technology, 38 (3), pp.145-154. 

Bardis, G. (2009). Intelligent Personalization in a Scene Modeling Environment, 
Intelligent Scene Modelling Information Systems, SCI 181, pp. 89-119. 

Barzilai,1. (1997). Deriving Weights from Pairwise Comparison Matrices, Journal of the 
Operational Research Society, Vol. 48, No. 12, pp. 1226-1232. 

Barzilai, J. (1998). Consistency measures far pairwise comparison matrices. Multi­
Criteria Decision Analysis, Vol. 7,No. 3,pp.123-132. 

Basili, V. R, Caldeira, G., & Rombach, H. D. (1994). The Goal Question Metric 
Approach. In J. Marciniak. Encyclopedia of Software Engineering. John Wiley & 
Sons. New Yark, USA. 

Bayesian network. (2009). In Wikipedia. Retrieved March 15,2009, from 
http://en. wikipedia.org/wikilBayesian network 

Behkamal, B., Kahani, M., & Akbari, M. K. (2009). Customizing ISO 9126 quality 
model far evaluation ofB2B applications, Information and Software Technology, 
Vol. 51, No.3, pp. 599-609. doi:1O.1016/j.infsof.2008.08.001 

Blankmeyer, E. (1987). Approaches to Consistency Adjustment, Journal of Optimization 
Theory and Applications, Vol. 54, No.3, pp. 479-488. 

Boehm, B. W. (2000). Project Termination Doesn't Equal Project Failure, Computer, Vol. 
33, No.9, pp. 94-96. doi:10.110912.868706 

123 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Boehm, B. W., Brown, J. R, & Lipow, M. (1976). Quantiative Evaluation of Software 
Quality, Proceedings of the 2nd International Conference on Software 
Engineering. IEEE Computer Society Press, Los Alamitos, CA, pp. 592-605. 

Boehm, B. W., & Valerdi, R (2008). Achievements and Challenges in Cocomo-Based 
Software Resource Estimation. IEEE Software, Vol. 25, No.5, pp. 74-83. 

Burge, J. E. (2001). Knowledge Elicitation Tool Classification. Aliificial Intelligence 
Research Group, Worcester Polytechnic Institute. Online at 
http://web . cs. wpi.edu/ -jburge/thesis/kematrix.html 

Burris, E. (2007). Software Quality Management. Programming Large. Retrieved June 8, 
2009, from http://programminglarge.com/software quality management! 

Castillo, E., Gutierrez, J. M., & Hadi, A. S. (1997). Expert Systems and Probabilistic 
Network Models, Springer-Verlag, New York. 

Chapman, J. R (2007). Software Development Methodology a.k.a. System Development 
Life Cycle. Retrieved April 23, 2009, from 
http://www.hyperthot.com/pmsdm.htm 

Capability Maturity Model Integration. (2009). In Wikipedia. Retrieved May 2,2009, 
from http://en.wikipedia.org/wiki/Capability Maturity Model Integration 

Carnegie Mellon Software Engineering Institute. (2006). CMMI for Development, 
Version 1.2. Pittsburgh. Retrieved May 2,2009, from 
http://www.sei.cmu.edu/reports/06tr008.pdf 

Charles River Analytics. (2008). About Bayesian Belief Networks. Retrieved April 25, 
2009, from http://www.cra.com/pdfIBNetBuilderBackground.pdf 

Colin, S., Maskoor, A., Lanoix, A., Souquieres, J., Hammad, A., Dormoy, J., Chouali, S., 
Huffien, J.-M., Kouchnarenko, 0., Mountassir, H., Lecomte, S., Petit, D., & 
Poirriez, V. (2008). A synthesis of existing approaches to specify non-functional 
properties, Livrable TACOS L2-1.1. Retrieved March 19,2009, from 
http://tacos .loria.fr/ dmpall? q=system/files/Livrable2-1.1-2Fev08. pdf 

Decision Systems Laboratory, University of Pittsburgh. (2008). GeNIe Version 2.0, 
http:// genie. sis. pitt.edu/. 

DeMarco, T. (1986). Controlling Software Projects: Management, Measurement, and 
Estimates. Prentice Hall PTR 

124 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Diez, F. J. (1993). Parameter adjustment in Bayes networks: the generalized noisy or­
gate. Proceedings of Ninth Conference on Uncertainty in Artificial Intelligence, 
pp.99-105. 

Dromey, R. G. (1994). A Model for Software Product Quality. Griffith University, 
Australia. 

Dromey, R. G. (1996). Cornering the Chimera. IEEE Softvvare, Vol. 13, No.1, pp. 33-43. 
doi: 10.1109/52.476284 

Duijnhoven, J. v. (2003). Knowledge Assessment using Bayesian Networks. A case study 
in the domain of algebraic expectation. Utrecht University. 

Eeles, P. (2005). Capturing Architectural Requirements. Retrieved July 5,2009, from 
http://www.ibm.com!developerworks/rational/library/4 706 .html 

Fenton, N. E., Neil, M., & Caballero, J. G. (2007). Using Ranked Nodes to Model 
Qualitative Judgments in Bayesian Networks. IEEE Transactions on Knowledge 
and Data Engineering, Vol. 19, No. 10, pp. 1420-1432. 
doi: 1O.1109/TKDE.2007 .1073 

Fenton, N. E., Neil, M., & Littlewood, B. (1996). Applying Bayesian belief networks to 
systems dependability assessment. Proceedings of 4th Safety Critical Systems 
Symposium. Springer Verlag. 

Frye, C. (2008). CMMI: Good process doesn't always lead to good quality. Retrieved 
July 21,2009, from 
http://searchsoftwareguality. techtarget. com/news/interview /0,289202,sid92 gci 13 
16383,00.html 

Galliers, J., Sutcliffe, A, & Minocha, S. (1999). An impact analysis method for safety­
critical user interface design. ACM Transactions on Computer-Human 
Interaction, Vol. 6, No.4, pp. 341-369. 

Garvin, D. A (1984). What Does "Product Quality" Really Mean? Sloan Management 
Review, Vol. 26, No.1, pp. 25-43. 

Goldenberg, A Bayes Nets: Learning Parameters and Structure. Retrieved July 13,2009, 
from 
http://www.cs.cmu.edu/~awm/10701/slideslParam Struct Learning05v1.pdf 

Grady, R. B., & Caswell, D. L. (1987). Softvvare Metrics: Establishing a Company-wide 
Program. Prentice Hall. 

125 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Gregoriades, A., & Sutcliffe, A. (2005). Scenario-Based Assessment of Nonfunctional 
Requirements. IEEE Transactions on Software Engineering, Vol. 31, No.5, pp. 
392-409. 

Gurp, J.v., & Bosch, J. (2000). SAABNet: Managing Qualitative Knowledge in Software 
Architecture Assessment. 7th IEEE International Symposium on Engineering of 
Computer-Based Systems (ECBS 2000). IEEE Computer Society. 

Han, D., & Han, 1. (2004). Prioritization and selection of intellectual capital measurement 
indicators using analytic hierarchy process for the mobile telecommunications 
industry. Expert Systems with Applications, Vol. 26, No.4, pp. 519-527. 

Huang, K, & Henrion, M. (1996). Efficient Search-Based Inference for Noisy-OR 
BeliefNetworks, Twelfth Conference on Uncertainty in Artificial Intelligence, pp. 
325-331. 

Hugin Expert. (2007). Hugin Researcher package, www.hugin.com. 

Imperial College of Science, Technology and Medicine & Medical Research Council. 
(2003). WinBUGS Version 1.4, http://www.mrc-bsu.cam.ac.uklbugs/. 

ISO 9126. (2009). In Wikipedia. Retrieved June 11,2009, from 
http://en.wikipedia.org/wiki/ISO 9126 

ISO/IEe. (1999). ISO/IEC 14598-1: Information technology - Software product 
evaluation-Part 1: General overview. Geneva, Switzerland: International 
Organization for Standardization. 

ISO/IEC. (2001). ISO/IEC 9126-1: Software Engineering-Product quality-Part 1: Quality 
model. Geneva, Switzerland: International Organization for Standardization. 

ISO/IEC. (2003). ISOIIEC 9126-2: Software Engineering-Product quality-Part 2: 
External metrics. Geneva, Switzerland: International Organization for 
Standardization. 

Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment Under Uncertainty: 
Heuristics and Biases, Cambridge, UK: Cambridge University Press. 

Khosravi, K, & Gueheneuc, Y. (2004). A Quality Model for Design Patterns, Technical 
Report 1249, University of Montreal. 

Koller, D., & Pfeffer, A. (1997). Object-Oriented Bayesian Networks. Proceedings of the 
13th Annual Conference on Uncertainty in Artificial Intelligence, pp. 302-313, 
San Francisco, Ca. Morgan Kaufmann Publishers. 

126 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Laskey, K, & Mahoney, S. (1997). Network fragments: Representing knowledge for 
constructing probabilistic models. Proceedings of the 13th Annual Conference on 
Uncertainty in Artificial Intelligence, pp. 334-341, San Francisco, Ca. Morgan 
Kaufmann Publishers. 

Laskey, K B., & Mahoney, S. M. (2000). Network engineering for agile belief network 
models, IEEE Transactions on Knowledge and Data Engineering, Vol. 12, No.4, 
pp.487-498. 

Lincke, R., & Lowe, W. (2006). Validation of a Standard- and Metric-Based Software 
Quality Model, 10th ECOOP Workshop on Quantitative Approaches in Object­
Oriented Software Engineering (QAOOSE). 

Lynch, J. (2009). New Standish Group repOlt shows more projects failing and less 
successful projects. Online at 
http://www1.standishgroup.comlnewsroomlchaos 2009.php. 

Mahoney, S., & Laskey, K (1996). Network Engineering for Complex Belief Networks. 
Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, 
pp. 389-396. 

McCall, J. A., Richards, P. K & Walters, G. F. (1977). Factors in Software Quality, 
Volumes I, II, and III, US. Rome Air Development Center Reports NTIS AD/A-
049014, NTIS AD/A-049 015 and NTIS AD/A-049 016, U. S. Depmtment of 
Commerce. 

Milicic, D. Software Quality Models. Retrieved March 6,2009, from 
http://www.bth.se/tek/besq .nsf/(WebFiles)/316446EBCD98499CC 125706900346 
83B/$FILE/chapter l.pdf 

Miyoshi, T., & Azuma, M. (1993). An Empirical Study of Evaluating Software 
Development Environment Quality. IEEE Transactions on Software Engineering, 
Vol. 19, No.5, pp. 425-435. 

Monti, S., & Carenini, G. (2000). Dealing with the expert inconsistency in probability 
elicitation, IEEE Transactions on Knowledge and Data Engineering, Vol. 12, No. 
4, pp. 499-508. 

Morris, A. T. (2007). Revealing the ISO/lEC 9126-1 Clique Tree for COTS Software 
Evaluation. AIAA Infotech@ Aerospace 2007 Conference and Exhibit, AIAA 
Paper 2007-2960. 

127 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Morris, AT., & Beling, P. A (2004). Extracting Acyclic Dependency Models from 
Quality Standards for COTS Software Evaluation. AIAA 1st Intelligent Systems 
Technical Conference, Chicago, minois, Sep. 20-22, 2004. 

Murphy, K. (2009). Software Packages for Graphical Models / Bayesian Networks. 
Online at http://people.cs.ubc.ca/~murph ykiSoftwarelbnsoft.html 

Neil, M., Fenton, N.E., & Nielsen, L. (2000). Building Large-scale Bayesian Networks, 
The Knowledge Engineering Review, Vol. 15, No.3, pp. 257-284. 

Nicholson, A E., & Korb, K. B. (2006). Bayesian AI Tutorial. Retrieved Febmary 20, 
2009, from http://www.csse.monash.edu.aulbai/tutoriaIIBOMJuly06.pdf 

Norsys Software Corp .. (2006). Netica, www.norsys.com. 

Pearl, J. (2000). Causality: models, reasoning, and inference. Cambridge: Cambridge 
University Press. 

Pressman, R. S. (2000). Software Engineering: A Practitioner's Approach (5th ed.). New 
York: McGraw-Hill. 

Punter, T., Solingen, R., & Trienekens, J. (1997). Software Product Evaluation, presented 
at 4th IT Evaluation Conference (EVIT-97), Netherlands, Delft. 

Renooij, S. (2000). Probability elicitation for belief networks: issues to consider. The 
Knowledge Engineering Review, Vol. 16, No.3, pp. 255-269. 

Saaty, T. L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill. 

Saaty, T. L. (2003). Decision-making with the AHP: Why is the principal eigenvector 
necessary, European Journal of Operational Research, Elsevier, Vol. 145, No.1, 
pp. 85-91. 

Selby, R. W. (Ed.). (2007). Software Engineering: Barry W Boehm's Lifetime 
Contributions to Software Development, Management, and Research, IEEE CS 
Press-John Wiley &Sons. 

Software quality analyst. (2009). In Wikipedia. Retrieved August 17,2009, from 
http://en.wikipedia.org/wiki/Software quality analyst 

Stefani, A, Stavrinoudis, D., & Xenos, M. (2004). Experimental Based Tool Calibration 
Used for Assessing the Quality of E-Commerce Systems, Proceedings of the First 
IEEE International Conference on E-Business and Telecommunication Networks, 
Portugal, Vol. 1, pp. 26-32. 

128 



M.Sc. Thesis - S. Grigorova McMaster - Computer Science 

Stefani, A., & Xenos, M. (2001). A model for assessing the quality of e-commerce 
systems, Proceedings of the Panhellenic Conference with International 
Participation in Human Computer Interaction (PC-HeI 2001), pp. 105- 109. 

Stefani, A., Xenos, M., & Stavrinoudis, D. (2003). Modelling E-Commerce Systems' 
Quality with Belief Networks, International Symposium on Virtual Environments, 
Human-Computer Interfaces, and Measurement Systems, Switzerland, pp. 13-18. 

Van der Gaag, L. c., Renooij, S., Witteman, C. L. M., Aleman, B. M. P., & Taal, B. G. 
(1999). How to elicit many probabilities. Proceedings of the Fifteenth Conference 
on Uncertainty in Artificial Intelligence. 

Van der Gaag, L. c., Renooij, S., Witteman, C. L. M., Aleman, B. M. P., & Taal, B. G. 
(2001). Probabilities for a Probabilistic Network: A Case-study in Oesophageal 
Carcinoma, University of Utrecht, UU-CS-2001-01. 

Van der Gaag, L. c., Renooij, S., Witteman, C. L. M., Aleman, B. M. P., & Taal, B. G. 
(2002). Probabilities for a Probabilistic Network: A Case-study in Oesophageal 
Cancer, Artificial Intelligence in Medicine, Vol. 25, No.2, pp.123-148. 

Wu, W. (2007). Architectural Reasoning for Safety-Critical Software Applications. The 
University of York. 

Xu, D., Liu, Z. T., Zhu, B. & Xing, D. H. (2005). Metric Based Software Quality 
Assurance System. Current Trends in High Performance Computing and Its 
Applications, Part II, pp. 551-555. doi: 1O.1007/3-540-27912-L76 

Xu, W., Dong, Y., & Xiao, W. (2008). Is It Reasonable for Saaty's Consistency Test in 
the Pairwise Comparison Method? Proceedings of the 2008 ISECS international 
Colloquium on Computing, Communication, Control, and Management - Volume 
03, pp. 294-298. doi: 1O.1109/CCCM.2008.136 

Zagorecki, A. & DlUzdzel, M. (2004). An Empirical Study of Probability Elicitation 
under Noisy-OR Assumption, Proceedings of the Seventeenth International 
Florida Artificial Intelligence Research Society Conference (FLAIRS. 2004 ), pp. 
880-885. 

129 




