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Abstract

The first part of this thesis is concerned with efficient adaptive image interpolation

techniques for real-time applications. A new image interpolation algorithm is devel­

oped that combines optimal data fusion and context modeling of images. Specifically,

two estimates of missing pixels obtained by cubic interpolation in perpendicular di­

rections are optimally fused under minimum mean square (MMSE) criterion. The

fused result is further improved by a context-based error feedback mechanism to

compensate for the error of cubic interpolation. The proposed image interpolation

algorithm preserves edge structures well and achieves superior visual quality. This is

accomplished at low computational complexity, making the new algorithm suitable

for hardware implementation.

The main part of this thesis is devoted to a more sophisticated image interpolation

algorithm based on hidden Markov modeling (HMM). Most of existing interpolation

algorithms rely on point by point decisions to estimate the missing pixels. In con­

trast, the HMM approach of image interpolation estimates a block of missing pixels

via maximum a posterior (MAP) sequence estimation. The hidden Markov model can

incorporate the statistics of high resolution images into the interpolation process and

the MAP estimation technique can exploit high-order statistical dependency between

pixels. The proposed HMM-based image interpolation algorithm is implemented and
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its performance is evaluated and compared with existing methods. The compari­

son study shows that the HMM-based image interpolation algorithm can reproduce

cleaner and sharper image details than its predecessors, while suppressing common

interpolation artifacts such as ringing, jaggies, and blurring.
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Chapter 1

Introduction

The ability of human visual system to resolve objects in a captured digital image

depends on many factors, among which the spatial resolution is of great importance.

It largely determines the perceptual quality of a digital image. The higher the spatial

resolution of an image, the better reproduction of fine structures in a captured image.

To demonstrate the relation of spatial resolution on image quality, the reader is invited

to compare two images of one scene but of different spatial resolutions in Fig. 1.1.

For many applications the native resolution of a captured image is lower than

required and should be enhanced by computer software. Image interpolation is the

technique to compensate for the insufficiency of the native resolution of an image

acquisition device. In general, a digital signal is obtained by sampling a continues

signal at a specific sampling rate. Recovering the original continuous light field from

corresponding discrete samples (pixels) is the ultimate goal of image interpolation.

Image interpolation is a classical problem of image processing, dated back to the very

beginning of the field. It has a wide range of applications spanning from consumer

electronics to visual arts and medical imaging. Some of these applications are listed
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(a)

(b)

Figure 1.1: Images with different resolutions. (a)Low resolution (LR) and (b)High
resolution (HR).

as follows.

A direct application of image interpolation is large format reproduction of an

image, such as those in high quality large prints in magazines, catalogs or wall posters.

In these cases, the resolution of printers is much higher than that of a digital camera,

and hence one has to convert the spatial resolution of the input image. Similarly,

image interpolation is necessary to prepare standard definition images or videos for

displaying on high-definition monitors, such as large HDTV panels.
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In remote sensing, users want to resolve as much detail on the ground as possible,

say identifying a street sign. But the highest resolution that a satellite imager can

achieve is only 40 centimeter, obviously not sufficient for the above purpose. Here

image interpolation technique can be used to improve the native resolution of the

satellite image.

In some cases the image acquisition process itself may be harmful to the object

being imaged, and the degree of harm is proportional to the spatial resolution of

the imager. For instance, when conducting a CT (Computed Tomography) scan of

a patient in medical imaging, a sophisticated image interpolation technique can be

beneficial to the patient because it can reduce the dosage of X-ray without sacrificing

the image resolution.

The other important application of image interpolation is video deinterlacing. In

digital camcorders frames are recorded as a sequence of fields, each field consists of

alternatively even or odd lines of a frame. For displays, pairs of fields need to be

merged into frames. The process of converting the interlaced frames to progressive

frames is called deinterlacing, which poses a particular type of image interpolation

problem. A detailed study on deinterlacing is presented in Chapter 2.

For the majority of digital cameras and camcorders, each pixel sensor can only

capture a single color and hence the output is a spatially down sampled color image in

a specific mosaic pattern. Demosaicking process that reconstructs a full image from

the mosaic data is also a problem of image interpolation.

Video frame rate upconversion (FRUC), is another application of image interpo­

lation. FRUC is the process to reconstruct the missing or skipped frames, which

is a problem of temporal interpolation between neighboring video frames. It is the

3
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necessary technology to reproduce the video in slow motion or to prevent jerkiness of

fast motions in video playback.

Image interpolation has a role to play in computer vision and robotics as well. For

example, in motion analysis, motion vectors of subpixel precision are required. The

subpixel precision can only be achieved through image interpolation.

For the numerous applications as identified above and beyond, and to satisfy users'

insatiable appetite for details in images, image interpolation has remained an active

research topic in both academia and industry.

The technical challenge of image interpolation is to reconstruct the high-frequency

components or fine textures. Based on Nyquist-Shannon sampling theorem [4], con­

tinuous signals with limited frequency bandwidth are recoverable at specific sampling

rate. However around sharp edges and boundaries of objects, due to rapid changes

of the light field, the 2D image waveform has unlimited bandwidth and hence math­

ematically it is impossible to completely reconstruct the original sampled signal with

a limited number of pixels. To aggravate the difficulty of reproducing the edges, the

human visual system is highly sensitive to edges which signify attributes of an object

(e.g., shape, boundaries, surface and other visual characteristics). Thus, even small

interpolation errors around edges are highly visible and thus drastically degrade the

visual quality of entire image. As such, the performance of image interpolation tech­

niques is largely determined by how well they preserve edges and fine structures of

an image (Fig. 1.2). Most image interpolation algorithms try to fit the 2D image

waveform to a mathematical model and use the model to estimate the high-frequency

components of an image. In the next section, a number of these algorithms, including

those of the current state of the art, are reviewed.

4
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(a) (b)

Figure 1.2: Reproduction qualities of different interpolators. (a) Bicubic and (b) Fast
Directional Interpolation (FDI).

1.1 Literature Review

Interpolation is a classic mathematic problem and has a long history. The first re­

ported application of interpolation dates back to 300 BC when linear interpolation was

used by Babylonian astronomers. In 600 AD Chinese mathematician Liu Zhuo used

an equivalent of order-two Newton interpolation to do the computations of "Imperial

Standard Calendar". Indian astronomers in 625 AD also applied similar interpolation

techniques [5].

The first application of interpolation for digital images was reported in early

1970's. Since then, many two-dimensional interpolation methods have been proposed,

varying from extension of previous (lD) interpolators to 2D space, to sophisticated

interpolation algorithms specially designed for digital images.

Developed interpolation methods are of different tradeoffs between resulting vi­

sual quality and computational/time efficiency. For the applications requiring high
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speed, the common solutions are nearest neighbor pixel replicating or simple image-

independent linear filters, such as bilinear interpolator and bicubic interpolator [6].

These filters are linear since each estimated pixel is formulated as a linear combi-

nation of adjacent pixels with fixed weights. Design of such filters is based on the

interpolation kernel they use. Theoretically, to reconstruct a bandlimited signal f (x)

sampled at a rate higher than Nyquist sampling rate (~), the best kernel is the sine

function (sinc(x) = sin;:x)) and the reconstructed signal j(x) can be formulated as

A ~ x-nT
f(x) = LJ f(nT)sinc( T )

n=-oo

(1.1)

However, as described in previous section, image signal around high frequency com-

ponent is not bandlimited. Furthermore the sine function is not compactly supported

(i.e. unbounded in time domain). Hence in real application it is not feasible to use

this function. The sine function in (1.1) can be replaced by any other interpolation

kernel. Key in [6] proposed the cubic convolution for image interpolation exploiting

larger window and a sine-like kernel to improve the previous linear filters, at the cost

of higher complexity. This method is used in image processing software e.g. Adobe

Photoshop. Other interpolation kernels were also proposed and a number of them

were compared by Lehmann and Spizter [7].

However these simple linear filters are isotropic and ill suited for directional image

waveforms, and they tend to produce severe interpolation artifacts in areas of edges

and fine textures. Aliasing, ringing and blocking are common artifacts visible in

the output of these interpolators. Aliasing occurs due to aliased frequency spectrum

of sampled signal and loss of high frequency components. Loss of texture is the

perceptual effect of aliasing [8]. Ringing usually happens when the interpolation
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kernel has oscillation (Gibbs phenomena [4]). Another drawback of interpolation

with these windowed kernels is blocking effect which is due to finite influence of any

pixel on neighboring pixels.

To improve the visual quality of above said interpolators, researchers tried to

enhance these filters. In [9], Liang proposed the idea of blending kernels by adopt­

ing affine weights to combine interpolation kernels. The interpolation scheme of

El-Kbamy et al., applies adaptive coefficients on cubic convolution to better match

the structure of local contexts and improve the visuality of enlarged image [10]. Ram­

poni in [11] proposed to modify the Euclidean distances by a warped distance-based

adaptive image interpolation method. This method is applicable to linear filters like

bilinear and cubic convolution to enhance their performance. In [12], the authors

applied a postprocessing algorithm improving perceptual quality of the interpolated

images. The intensities of pixels around edges were modified to reduce ringing ar­

tifacts caused by non-adaptive interpolation methods. Hwang and Lee proposed an

inverse gradient to the structure of conventional bilinear and bicubic interpolation

to sharpen edges [13]. In [14], splines are applied as image model to interpolate the

high resolution images from nonuniformly sampled images. The splines were used for

filtering and an adaptive smoothness was used as a regularization constraint.

Although these algorithms provide better objective (PSNR) results, they are sus­

ceptible to visual defects due to their weak adaptability to varying structures across

a natural image.

In pursuit of better visual quality and higher computational efficiency, more com­

plex and adaptive interpolation algorithms were introduced. Among these methods,

edge-guided schemes are of interest because human visual system is highly sensitive
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to edge structures, which convey much of the image semantics. Hence for most of

applications the performance of an image resolution upconversion algorithm is judged

by how well it can recover high frequency components of the underlying continuous

light field. Different from the task of upsampling a one-dimensional signal, upsam­

pIing an image can and should exploit the fact that high frequency image features,

such as edges and textures, are anisotropic in nature. The spectrum of the edges is

also asymmetric since the frequency is low along the edge-directions and high in the

perpendicular direction.

Edge-directed image interpolation methods can generally be divided in two classes.

In the first class, called explicit edge-directed image interpolation, first the edges in

the image are detected and interpolation is performed along their directions (edge

directions are of low-frequency and hence recoverable by directional interpolation). In

the second class of edge-directed interpolation methods, edge information is implicitly

exploited in interpolation. The reproduction quality of interpolated images for both

of these types of methods mainly depends on faithfully detecting the edge directions.

Otherwise the penalty of filtering in wrong directions is high both subjectively and

objectively.

Wong and Alleback presented an edge-directed image interpolator in [15]. The

method is based on iteratively detecting the edge map of high resolution image, ren­

dering which is bilinear interpolation for the non-edge area and correction by mea­

suring the disparity between original low-resolution samples and the ones predicted

by the results of rendering phase.

Another edge guided interpolator is proposed in [16]. The method first finds the

texture orientation map using directional Gabor filter in subpixel precision, then the

8
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information training set is also applied by kernel Fisher discriminant to further refine

the interpolation direction.

The method published by Carrato and Tenze [17] replicates the pixels and then

corrects the values by a rational operator, designed to produce least average of squared

error for some predefined edge patterns. Their method is simple and suitable for

hardware implementations.

Dube and Hong published a simple classification-based interpolation scheme [18],

that first classifies the edges into some predetermined prototypes of directions and

then applies suitable directional filtering. Zhang and Wu also proposed a classification­

based image interpolation technique [16].

Jensen and Anastassiou in [2] proposed an operator to fit detected edges by some

templates to improve the visual quality of interpolated image. In some cases the

reproduction quality of [2] is better than linear filters and reconstructed edges are

sharper. However, the edges in the output images of [2] sometimes look contrived and

unnatural. Since the large-scale context of edges was not considered, small variations

in texture could be interpreted as an edge and mistakenly fitted by an edge. Such

mistakes result in distortions of textures in such cases. The time complexity of this

algorithm is also too high for real-time applications.

In [19] Li and Orchard proposed a Wiener filtering like-algorithm called new edge­

guided image interpolation (NEDI). NEDI interpolates missing pixels based on the

covariance of HR image computed from LR samples and in a geometric duality prin­

ciple. Geometric duality principle means that the covariance of the HR image and

LR image are similar. The main drawback of this algorithm is high computational

complexity. Although they proposed to perform their algorithm on active areas of an

9
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image and rely on bilinear interpolation for other parts, their algorithm is still too

complex for real-time applications. Besides, in the area with small curvatures and

several intersections, the NEDI algorithm suffers from speckle noises and artifacts.

However, this method is one of the best interpolation schemes regarding visual qual­

ity. As such in this thesis we use NEDI as a benchmark for subjective evaluation of

interpolation results.

Li and Nguyen published an interpolation scheme that converts edge information

to a vector of given weights to different directions. In this scheme, the interpolated

image is related to the minimal energy st.ate of a 2D random Markov field given the

low-resolution image [20]. But the random Markov field methods are iterative and

very time consuming.

Wavelets were also a useful tool for image interpolation [21], [22], [23] and [24]. In

this type of methods some features of high-resolution image are predicted from low­

resolution observations. In [21], Carey et al. proposed a wavelet-based interpolation

method that preserves some local regularity measurements in the up-scaled image.

In [25], Zhang and Wu proposed to fit the image to a 2D autoregressive (AR)

model. In this algorithm each missing pixel in a block is formulated as a linear

combination of four known neighboring pixels. The associated coefficients (AR pa­

rameters) and a block of missing pixels are estimated jointly. This method is among

the best methods in term of objective assessment and also subjective quality. How­

ever this method needs to solve a nonlinear optimization problem for each block and

thus it is unsuited for real-time applications.

In the next section the proposed interpolation algorithms and contributions of this

thesis are summarized.

10
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In this work, two new image interpolation techniques are presented. Both techniques

belong to the class of edge-guided image interpolation methods. But they differ in

algorithmic approach and the trade-off between complexity and performance. One

of them is designed as a fast adaptive directional image interpolator (FDI), which is

a modification of the edge-guided interpolation method proposed in [1]; the other is

an edge-directed interpolation method based on hidden Markov model (HMM-DI).

The former adopts a pixel-by-pixel estimation scheme, whereas the latter casts and

solves image interpolation as a problem of optimal sequence estimation. Both of these

methods are tested on different scenes and merits and limits of each are compared

with some of the existing methods.

1.2.1 Fast Directional Interpolation

This image interpolation technique is a modification and improvement of an earlier

work [1]. In [1], Zhang and Wu proposed a linear minimum mean square method of

fusing two directional interpolators. In this technique, the two interpolation errors

were assumed to be statistically independent. In this study, however, we find that for

natural images significant correlations exist between different directional estimates,

particularly in areas of strong edges. We remove the incorrect assumption of [1] in the

design of directional interpolators and propose a new fusion-based directional inter­

polation (FDI) technique that accounts for statistical dependencies between different

directional estimates. A context-based error-feedback mechanism is also proposed for

further improvement of the interpolation results.

This method preserves edges and fine textures of images very well. It is also

11
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designed to be fast and simple, and hence suitable as real-time hardware solution

for image/video interpolation. The proposed fast directional interpolation (FDI)

algorithm has a general framework. In this work we apply FDI to 2D image resolution

upconversion and video deinterlacing.

1.2.2 Interpolation with Hidden Markov Model

There are two issues with all of the reviewed edge-guided interpolation algorithms.

First, the edge direction is estimated from the low-resolution input image, and it is

error prone when insufficient sampling rate causes aliasing. Second, the edge direc­

tion is determined and directional interpolation carried out on a pixel by pixel basis

disregarding the spatial coherence of edge points.

In this thesis we address these issues and overcome the above said drawbacks by

applying the hidden Markov model (HMM) technique to solve the problem of image

resolution upconversion. The hidden states of the HMM correspond to edge directions

or smooth waveform of the underlying high-resolution image, which are not directly

observable in the low-resolution image. Each of these HMM states is associated with

an interpolator that suits the corresponding waveform. Ideally, if the HMM state

was known for each pixel the corresponding interpolator would be applied for best

performance. As such, the interpolation problem is converted to one of estimating

the hidden states based on the observed low-resolution image, and it is solved by a

maximum a posterior (MAP) sequence estimation method. The advantages of our

HMM-based interpolation approach are two folds:

1. it facilitates the incorporation of the statistics of high-resolution images of a

training set into the interpolation process;

12
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2. it makes a joint decision, via MAP sequence estimation, on interpolated pixels

rather than one pixel at a time in isolation.

The comparison study verifies that the proposed HMM-based image interpola­

tion technique achieves superior visual-quality and removes common artifacts such as

ringing, jaggies, and blurring.

1.2.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 presents the fusion­

based image interpolation algorithm and its applications. Chapter 3 proposes our

new interpolation method based on hidden Markov modeling. Conclusion remarks

and suggestions for future works are presented in the Chapter 4.

13



Chapter 2

Fast Adaptive Directional

Interpolation of Images

In this chapter our first adaptive image interpolation algorithm is presented, called

Fast Directional Interpolation (FDI). In this method, estimates of a missing pixel in

multiple directions are fused under proposed optimal data fusion, based on minimum

mean square error (MMSE) estimation. A similar approach for video deinterlacing is

also presented in this chapter.

2.1 Overview

In this thesis the LR image is considered as an ideal Dirac down-sampled result of the

original HR image. The formation of high-resolution (HR) image from low-resolution

samples is shown in the Fig. 2.1.

The main goal of image interpolation is to estimate the values of pixels depicted by

white circles in the Fig. 2.1. In the regions of smoothness, where there is not a sharp

14
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.0.0.0.
0000000.0.0.0.
0000000.0.0.0.
0000000
eo.o.o.

Figure 2.1: Formation of a high-resolution image from low-resolution samples. The
white dots are interpolated pixels and black dots are original pixels.

edge or rapidly varying texture, the task of interpolation can be easily performed

since the rate of sampling is fairly higher than Nyquist-Shannon sampling limit. The

main challenge of interpolating the missing pixels is around the edges as described in

Chapter 1. Since usually there is a dominant direction in these area, isotropic filters

are error prone and produce blurred edges.

One idea to handle the difficulty reproducing the HR image while keeping the

edge/texture orientation is implicitly apply the edge information by estimating the

missing pixels via fusing interpolated values in some directions of different angles as

proposed in [1]. However, there are two issues with this method:

1. In this technique, the two interpolation errors were assumed to have zero cor-

relation. We experimentally show this assumption is not correct and propose

a new fusion-based directional interpolation (FDI) technique that accounts for

statistical dependencies between different directional estimates.

2. In this paper only two orthogonal directions are considered for estimating each

unknown pixel. Hence, when the edge directions are too different from these

directions the interpolator fails to reconstruct them properly as depicted in

15
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Fig. 2.2. In FDI we added some more directions as the safe guard to handle

these cases.

,.,......
- ..,- ...- ...
- 3

...
5- -- ...

(a) (b)

Figure 2.2: Weakness of method in [1] to reproduce the sharp horizontal and vertical
lines, (a) is the original image and (b) reconstructed by the method of [1].

The rest of this chapter is organized as follows. The formulation of general data

fusion under minimum mean square error (MMSE) is proposed in Sec. 2.4.1. The

detail of FDI algorithm for image resolution upconversion is described in Sec. 2.3.

A deinterlacing method based on FDI is also proposed in Sec. 2.4. The comparison

between results of FDI and some of the other existing methods is presented in Sec. 2.5.

The chapter closes with some conclusion remarks in Sec. 2.6.

2.2 Optimal Data Fusion of Multiple Dependent

Estimates

Data fusion is a statistical inference methodology of combining two or more estimates

of an unknown variable via a function to produce a more robust estimate. For the

interest of this study on adaptive directional image interpolation, we consider n es-

timates dl , d2 , ... , dn of missing pixel y that are produced by n different directional

interpolators. For low complexity and ease of implementation we adopt affine weights

WI, W2, ... , W n to linearly fuse dl , d2 , ... , dn . These weights are optimized to minimize
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the expected estimation error, namely
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n

(2.1)

subject to:
n

(2.2)

Assuming each of n estimates d/s has the error ei (di = Y + ei), the solution of

the above optimization is

(2.3)

where

(2.4)

(2.5)

(2.6)

with al's being variances of individual estimation errors ei, and ai,/s covariances

between variables ei and ej' For n > 2, the complete solution of (2.3) may be too

expensive for real-time applications. But for n = 2, we can compute the optimal

weights efficiently

WI - ar + ai - 2al,2
2al - al,2

ar + ai - 2al,2

17
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For this reason in case of three or more estimates we will choose and fuse the two

estimates whose variances are the two smallest among n > 2 estimates.

Zhang and Wu proposed the idea of fusing the results of two mutually orthogonal

directional interpolators [1]. But they ignored the term (}1,2 in (2.7) by assuming that

the two interpolation errors are statistically independent. But their assumption is an

oversimplification for many types of natural images. In Fig. 2.3, four test images are

presented together with the corresponding joint distributions of the two directional

interpolation errors in 45 and -45 degrees. In cases (b) through (d) the covariance

(}1,2 is significant, and it cannot be dropped from the weights WI and W2 without

degrading the interpolation performance.

El Lf3
.J..JiliLl
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'••.•..', ',. .' ......•.'.,.,•....•
','_" _,." - 0 'y' -- .•

. ', . . .
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(a)0.17 (b)0.49 (c)0.71 (d)0.43

Figure 2.3: Joint distributions of directional interpolation errors in two diagonal
directions. The associated numbers are correlation coefficients.

To estimate the statistics of error terms in (2.7) we take the following approach.

Assuming the image signal is stationary in the locality of the missing pixel, we first

estimate the unknown pixels along each direction, then interpolate the neighboring

known pixels (Y(i,j)) by estimates of the unknown pixels along the same direction

(Y(i,j)) and compare them with existing known pixels to measure the errors and the

values of variances and covariances

18
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and

(J~ = N ~ 1 L (Y(i,j) - Yk(i,j))2 k = 1,2
i,jEW

1 ~ A A

(Jl,2 = N -1 L..J (Y(i,j) - Yi(i,j))(Y(i,j) - Y2(i,j))
i,jEW

(2.8)

(2.9)

where the W is the local window centered at the estimating pixel and N is the number

of known pixels in W.

The FDI technique outlined above has the same level of complexity as the tech­

nique of [1]. Since each pixel is processed in the same way and the process only

involves linear filtering operations, FDI lends itself conveniently to parallel and hard-

ware implementations.

2.3 FDI for Image Resolution Upconversion

In this section we reexamine the problem of upconverting the spatial resolution of an

image via interpolation.

To make full use of low resolution image data and in the interest of low complexity,

we choose four direction13 in which the low resolution pixels are aligned, and two of

which are mutually orthogonal. Fig. 2.4 depicts these four interpolation directions. In

the presence of sharp horizontal and vertical edges, the fused diagonal interpolation

result may be very poor. We resort to the bicubic filter designed to act on pixels in

horizontal and vertical directions (Fig.2.4), whenever the error variances in diagonal

directions are much larger than an empirically estimated threshold.

As mentioned above, the applied interpolator for our design is bicubic filter. In

this method, the intensity assigned to each missing pixel is modeled as a function of
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Figure 2.4: (a), (b) Interpolation directions for the first step of proposed algorithm.
(c) Directions for interpolating remaining pixels by pre-estimated values.

its sixteen nearest neighbors as

3 3

I(x, y) = L L aijXiyj
i=O j=O

(2.10)

The coefficients are determined by solving the sixteen equations obtained from the

sixteen nearest pixels. For the horizontal and vertical directions of Fig. 2.4 this

formulation will be changed to

3 1

I(x,y) = LLaijXiyj
i=O j=O

and
1 3

I(x,y) = LLaijXiyj
i=O j=O

As such, the coefficients of the applied filters will be as depicted in Fig. 2.5.
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Figure 2.5: Axial cubic filter applied in proposed FDI algorithm.

2.3.1 Noise Effect

The input LR image may contain noises from various sources: sensor noises, quan-

tization errors in compression, etc. The compound noise of all these sources can be

modeled as white Gaussian of variance 0";'. In smooth areas the interpolation errors

in both directions are very small. This may make the solution of (2.7) unstable. To

avoid this, the optimization problem (2.1) should be reformulated to factor in the

image noise

and the optimal weighting will be

(2.13)

w
O"~ - 0"1,2 + 0.640";'

(2.14)

Since the noise is convolved with a cubic filter its variance is reduced to 0.640";'. In the

smooth area the terms 0"1, 0"2 and 0"1,2 are negligible. Therefore, the optimal weight

converges to 0.5. This modification improves the subjective and objective quality of

the proposed interpolation method substantially.
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2.3.2 Error Compensation
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After finding the corresponding weights, each missing pixel is found as

Y(i,j) = wYi(i,j) + (1- w)Y;,(i,j) (2.15)

A A

where Yi and 1'2 are two estimates in perpendicular directions. As such the ex-

pected error of final estimate is

(2.16)

In many regions of an image, cubic interpolator suffer from large error and hence the

interpolated values by FDI are susceptible to large errors. To handle this problem,

we take a classification approach to reduce the error of cubic interpolator.

In theory it is impossible to exactly detect and compensate the error of interpo-

lation:

Interpolation Error Theorem- Let I(x) be a real function (N+l)-times dif­

ferentiable in the interval partitioned as [a = Xo, Xl, ... , XN = b]. Assume I(x) is

interpolated with a Nth-order polynomial PN(x). Then for every x E [a, b] there is a

point ~ E [a, b] where:

(2.17)

where ~ is independent of X. [26]

In general it is impossible to exactly determine ~ when, similar to pixel inten-

sity function, the interpolated signal is unknown. However we will develop a new
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classification-based approach to reduce the interpolation error.

Fitting the signal waveform by a smooth third degree polynomial, cubic interpo­

lation often has the largest error around sharp edges where the image light field is not

continuous. Based on this, we detect and classify possible cases and measure the error

of cubic interpolator in training for each. The key to success for this algorithm is the

formation of context (set of pixels we utilize to estimate missing pixel) to characterize

the image signal waveform. The feature vector we defined for a pixel being interpo­

lated by a set of LR pixels Xl, ... ,X4 is ¢ = (Xl - X2, X2 - X3, X3 - X4). The magnitude

of differences obey exponential distribution and hence are quantized in 8 levels with

exponentially increasing step size. Including the signs, we have 173 = 4913 classes.

To find the table of errors, an appropriate set of training images is used. Given a

context, the error of cubic interpolator is computed by comparing with existing HR

pixels and the mean value of these errors for each class is saved in a look-up-table.

This process is time consuming, but is performed off line and in interpolation process

first the context is computed and then the error of cubic interpolation is computed

and compensated from interpolation results.

This technique is not restricted to cubic convolution, but suitable for any inter­

polation kernel. This method improves visual quality and increases the PSNR. Error

compensation can be interpreted as de-noising, since it reduces the interpolation error

by applying prior knowledge from training data.

2.3.3 Algorithm Implementation

The algorithm of FDI for image resolution upconversion consists of two passes. First,

the set of unknown pixels pictured by white circles in Fig. 2.4 are estimated by
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cubic interpolator. For this set of pixels in all of four pre-defined directions, original

samples of LR image are available. First the error-variances of diagonal directions are

computed and if they are larger than a pre-determined threshold (th), then horizontal

and vertical estimates are fused. Otherwise, the diagonal directions are used.

Once these missing pixels are estimated, in the second pass, the remaining pixels in

Fig. 2.4 (grey circles) are estimated via fusing only horizontal and vertical interpolated

values since for this configurations there are not enough samples in other directions.

As depicted in Fig. 2.4 one of these directions consists of original samples and the

other consists of estimated values of the first pass.

The implementation of error-compensated FDI (EC-FDI) is identical but the

context-based error compensation is applied when estimates in diagonal and axial

directions are computed. The verification and fusion is similar to FDI.

Although the interpolation algorithm based on FDI is described to double the size

of images, it is applicable for any scaling factor S = 2m , where m is an integer. For

scaling factors which are not a power of two (2m < K < 2m +1 ) , first FDI is used to

enlarge it 2m times and then we may expand it by a linear filter e.g. cubic convolution

k times such that: k2m = K.

2.4 FDI for Video Deinterlacing

2.4.1 Overview

All of analog and many digital camcorders scan and save frames as consecutive fields.

Each field consists of alternatively odd and even lines of corresponding frame. This
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process is called interlacing and the process of converting interlaced frames to progres-

sive sequence of frames is called deinterlacing which is necessary in displays. Many

LCD's and plasma TV sets have built-in circuitry to carry out this task.

Deinterlacing methods are generally classified in intra-field and inter-field cate-

gories. In former method each field is processed separately to reproduce the entire

field and in the latter the between-frame correlations and motion-compensation al-

gorithms are considered to improve the visual quality of resulting frame. However,

beside much higher complexity, in case with incorrect provided motion-estimation

information they fail to yield good results.

Basically, intra-field video deinterlacing is a problem of 2D image interpolation

with a particular spatial configuration (Fig. 2.6). Each missing line is to be estimated

by pixels of neighboring lines. Line-doubling (duplicating each line) and line-averaging

are the simplest deinterlacing methods. But identical to isotropic filters, they tend

to introduce visual artifacts and therefore researchers proposed more sophisticated

algorithms, faithfully applying available pixels to interpolate missing data.

, ,

1 ,

Known lines~"

Missing lines 0 0 0 ....~
//

.~•.
"

//
/

/./..... '.

•••

Figure 2.6: Directions used for proposed de-interlacing method.

Similar to resolution upconversion problem, many directions can be considered to

estimate the unknown pixels. This implies that we can take the similar approaches as
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edge-guided image interpolation methods to find the directions of smoothness. The

conventional edge-based line averaging (ELA) is a simple edge-directed method [27].

In ELA, the best direction is figured out by computing the absolute value of differences

in three (or more) directions showed in Fig. 2.6 and then averaging is applied in that

direction:

where

1
Y(i,j) = 2" (X(i - l,j - s) + X(i + l,j + s))

s= arg min IX(i -1,j - 8) - X(i + l,j + 8)1
-lss::::;1

(2.18)

(2.19)

Based on this approach, other papers were published to improve ELA. A key

to success for this type of algorithms is to well distinguish the right interpolation

direction which is normally done by modifying (2.19). Chen et al. in [28], defined

two parameters

0:

P = 2:: IX(i -1,j - 1) - X(i + l,j -l + 1)/
1=-0:+1

0:

Q = L IX(i -1,j -l + 1) - X(i + l,j -1)1
1=-0:+1

and modified (2.19) to

arg min_o:ssso IX (i - 1, j - 8) - X (i + 1, j + 8) I' P > Q

s= arg min_o:ssso: IX (i - 1, j - 8) - X (i + 1, j + 8) I' P = Q

arg minossso: IX (i - 1, j - 8) - X (i + 1, j + 8) I· P < Q

(2.20)

(2.21)

Wang et al [3] used the sum of absolute differences (SAD) to find the right direction
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and

SAD(m) = L IX(i,j) - ~(X(i - 2m,j - 2) +X(i + 2m,j + 2))1
i,jEW

s= arg min SAD(m)
-2::;m::;2

(2.22)

(2.23)

In [29] some predefined edge patterns are used to improve the performance of ELA.

In the rest of this section, we present our deinterlacing method based on FDI.

2.4.2 Fusion Based Deinterlacing Algorithm

As argued so far, the accuracy of edge-guided deinterlacing algorithms mainly depends

on the discriminant applied to find the best interpolation direction. In the proposed

algorithm, we first measure the error variances for each direction (CTk) , using our

verification approach to find the two directions with the least errors and then fuse

them under MMSE criteria

arg min CTk
-2::;k::;2

arg min CTk
kE{-2"" ,2}-{81}

(2.24)

and

where "Yk(i,j) is the interpolated value of Y(i,j) in the (k + 3)th direction.

(2.25)

As depicted in Fig. 2.6, five directions are chosen to reconstruct missing lines in a
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field. For directions 2, 3 and 4 cubic convolution filter is used and simple averaging

is used for directions 1 and 5.

2.5 Simulation Results

The proposed interpolation and deinterlacing methods based on FDI were imple-

mented and tested on different scenes. The images shown below are the benchmarks

used to test our interpolation technique. The images are selected among different

scenes which are typically used in image processing applications. The original sizes

are 512 x 512 and the LR images are obtained by direct down sampling by a factor

of two (aliasing introduced).

First, the objective comparison between FDI and some of existing interpolation

methods is presented. The objective metric applied is the PSNR. Table 2.1 shows the

results of conducted simulation on images of Fig. 2.7

Table 2.1: PSNR (decibels) results of reconstructed images for methods bicubic,
method in [2], method in [1], FDI and EC-FDI. For EC-FDI gains over the method
in [1] are given in parentheses.

Image
Cafe

Baboon
Flinstones

Man
Bush
Lena

Motor
Fruits

Average

Bicubic
21.39
22.91
26.85
30.58
27.61
33.92
38.30
36.97
29.81

method in [2]
21.32
22.82
26.23
30.38
26.92
33.17
35.80
36.10
29.17

Wu and Zhang [1]
21.56
22.88
27.13
30.76
27.20
34.06
38.39
37.16
29.89

28

FDI
21.75
23.16
27.66
31.05
27.88
34.70
39.33
37.69
30040

EC-FDI
21.96(OAdB)
23.16(0.34dB)
28.00(0.87dB)
31.22(OA6dB)
27.97(0.77dB)
34.90(0.84dB)
39.60(1.21dB)
38.02(0.86dB)
30.58(0.72dB)
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The gains over the method of [1] show that the modifications we introduced for

EC-FDI in this study result in great objective improvements.

However the objective metrics only support an average measurement of perceptual

quality. They can not take the effect of visual masking effect and other sharpening

issues around edges into account [19]. Hence the subjective comparison is of more

importance in image interpolation. Figs. 2.8 to 2.11 compare the results of FDI versus

other methods for portraits of images: Bush, Flinstones, Baboon and Cafe.

The reconstructed images with bicubic interpolation suffer from blurred and jaggy

artifacts around edges. The method in [2] reconstructs sharp edges, but the results are

somewhat unnatural. This method is of the class of explicit edge-guided interpolation

and error prone when the algorithm commits error in edge-detection. The method

in [1] provides superior results than bicubic and [2], but still suffer from artifacts

around edges and leaves discontinuities which are mostly removed by FDI. The results

of EC-FDI are slightly superior than FDI regarding less noises and cleaner results.

Error compensation does not affect the edge preserving issues which is addressed by

directional filtering and optimal data fusion in this work.

The effect of considering additional horizontal and vertical interpolation directions

to retain the sharp axial directions is depicted in Fig. 2.12.

The algorithm is also fast. The execution time for converting a 256 x 256, 8-bit

grey-scale image to 512 x 512 is less than 0.8 second (Intel Pentium (4), 2.96 GHz, 1

GB RAM). Parallel processing is also applicable to speed up the algorithm since in

each step, each missing pixel is computable individually.

The proposed de-interlacing method is compared with the method presented in [3]

in Fig. 2.13. Our weighting method preserves the lines considerably better than the
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other method and results in sharper and cleaner edges.

2.6 ConcIusion

Low complexity algorithms for 2D image interpolation and video de-interlacing are

proposed. These methods are based on fusion of estimations in multiple directions.

The proposed method of interpolation, FDI, in term of speed is comparable with fast

algorithms e.g. cubic convolution, and is adaptive to edge orientations and varying

pixel structures hence reduces the common artifacts and other visual defects of scene­

independent algorithms which is verified via simulations.
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(b)
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(I)

(9) (h)

Figure 2.7: Sample images in the test set.
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(b)

(d)

(f)

Figure 2.8: Portions of (a) original Bush image, (b) reconstructed image by bicubic ,
(c)method of [2], (d)method of [1], (e)FDI, (f)EC-FDI.
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(b)

(d)

(f)

Figure 2.9: Portions of (a) original Flinstone image, (b) reconstructed image by
bicubic, (c)method of [2], (d)method of [1], (e)FDI, (f)EC-FDI.
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(b)

(d)

(f)

Figure 2.10: Portions of (a) original Baboon image, (b) reconstructed image by bicu­
bic, (c)method of [2], (d)method of [1], (e)FDI, (f)EC-FDI.
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(a) (b)

(e) (d)

Figure 2.11: Portions of (a) original Cafe image, (b) reconstructed image by bicubic
, (c)method of [2], (d)method of [1], (e)FDI, (f)EC-FDI.
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Figure 2.12: Portions of reconstructed image by (a)method of [1], (b)FDI.

(a) (b)

Figure 2.13: Results of deinterlacing by (a) method in [3], (b) proposed deinterlacing
algorithm.

36



Chapter 3

Image Interpolation with Hidden

Markov Model

For most applications the performance of an image resolution upconversion algorithm

is judged by how well it can recover high frequency components of the underlying

continuous light field. Different from the task of upsampling a one-dimensional signal,

upsampling an image can and should exploit the fact that high frequency image

features, such as edges and textures, are anisotropic in nature. A common technique

adopted by many image interpolation algorithms is to estimate the edge/texture

direction and interpolate in that direction [12], [15], [2] and [20]. However, there

are two issues with these algorithms. First, the edge direction is estimated from

the low-resolution input image, and it is error prone when insufficient sampling rate

causes aliasing. Second, the edge direction is determined and directional interpolation

carried out on a pixel by pixel basis disregarding the spatial coherence of edge points.

In this work we address these issues and overcome the above said drawbacks by

applying the hidden Markov model (HMM) technique to solve the problem of image
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resolution upconversion. The hidden states of the HMM correspond to edge directions

or smooth waveforms of the underlying high-resolution image, which are not directly

observable in the low-resolution image. Each of these HMM states is associated with

an interpolator that suits the corresponding waveform. Ideally, if the HMM state

was known for each pixel the corresponding interpolator would be applied for best

performance. As such, the interpolation problem is converted to one of estimating

the hidden states based on the observed low-resolution image, and it is solved by a

maximum a posterior (MAP) sequence estimation method. As mentioned in Chapter

1, the advantages of our HMM-based interpolation approach are two folds: 1) it

facilitates the incorporation of the statistics of high-resolution images of a training

set into the interpolation process; 2) it makes a joint decision, via MAP sequence

estimation, on interpolated pixels rather than on one pixel at a time in isolation.

The rest of this chapter is structured as follows. The general framework of inter­

polation with HMM is presented in Section. 3.1. The proposed edge-directed image

interpolation and details of the algorithm are described in Section. 3.2. Simulation

results and comparison between the proposed method and some existing methods are

reported in Section. 3.3. Section. 3.4 concludes the chapter.

3.1 Hidden Markov Model for Image Interpolation

One dimensional hidden Markov model (HMM) theory was developed by Baum et

al. in 19608 and is an effective machinery of characterizing sample dependencies in

Markovian processes. It has had remarkable success in optimally estimating state

sequences of Markovian processes given observed data, especially in speech recog­

nition. Recently, some researchers proposed a two-dimensional extension of HMM
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(2D-HMM), and applied the 2D-HMM to problems in image classification [30] and

error-resilient image communication [31]. In this research we find the 2D-HMM to well

suit the task of image interpolation, thanks to its ability to model two-dimensional

spatial correlations.

The interpolation of a missing pixel can greatly benefit from the knowledge of

waveform of the true underlying high-resolution image, in particular, whether the

pixel is in a smooth area or near/on an edge. In the latter case it is crucial to know

the edge direction. The difficulty is that the smoothness and orientation properties

of the original image cannot be deduced reliably from the observed low-resolution

image. This problem has a natural HMM formulation, if we classify the original 2D

intensity function at the missing pixel xi,j into a set of states S = {eo, el , . . . ,eK }.

Specifically in our application, eo stands for the class of smooth waveforms in which

an isotropic interpolator (e.g., bicubic) is effective, and ek , 1 ~ k ~ K, for the class of

edges of direction k. We quantize the edge directions into a small number K of classes

to reduce algorithm complexity and also to avoid data overfitting in the construction

of HMM using a training set. For direction k, a suitable directional interpolator will

be used.

The interpolator cannot observe and thus needs to estimate the state Si,j E S at

pixel location (i, j) that is hidden by the down sampling process. The estimation

is based on observable low-resolution features exhibited by Si,j' In general, feature

vector ~i,j of Si,j consists of local attributes of the low-resolution image in a window

Wi,j centered at (i, j). In our setting, the interpolation of Xi,j is solely determined by

the state Si,j.

In 2D-HMM the state Si,j of a pixel Xi,j (or block of pixels) depends on the states
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of previous pixels (blocks) which are denoted by (Fig. 3.1)

(3.1)

j

Figure 3.1: Definition of previous pixels in 2D HMM.

Assuming a first-order 2D-HMM, then the conditional probability of the hidden

state Si,j of pixel Xi,j is

(3.2)

Using the HMM transition probabilities above, we formulate the interpolation of

missing pixels on an M x N lattice L as a 2D MAP estimation problem of finding
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the state ensemble with maximum a posteriori probability [30]

S* = argmaxP(sle) = argmax II {P(si,jlsi,j-b Si-l,j)' (3.3)
s s

(i,j)EL

p(~i,jlsi,j,Si,j-l, Si-l,j) }, S E SMxN

The above 2D-HMM estimation framework allows off-line learning to assist image

interpolation. Indeed, the 2D transition probability P(si,jlsi,j-b Si-l,j) can be learnt

from an appropriate training set of high-resolution images whose statistics match

those to be interpolated. The 2D-HMM also furnishes an adaptive image interpolator

with an optimal way of exploiting 2D spatial correlations. But solving the 2D MAP

problem (3.3) poses an algorithm challenge. Since a 2D image signal does not have

a natural sequencing of the pixels, the classical dynamic programming algorithm for

conventional 1D HMM problems cannot be directly applied. One possible approach

is to lump all pixels of every row (or column) as into a "super-pixel" and consider

the corresponding space of (K + 1)N (or (K + 1)M) super HMM states. Then the

2D-HMM MAP estimation problem can be converted to one of 1D MAP sequence

estimation by mapping the image to a sequence of super-pixels. This sequentialization

would allow the use of dynamic programming algorithm. However, the above scheme

is computationally intractable because the number of super states is of o(Kmin(M,N)),

meaning this problem is NP-hard.

In quest for a practical algorithm for 2D HMM-based interpolation we propose to

break down the 2D problem into two tightly coupled sequence estimation problems,

each of which can be efficiently solved by dynamic programming. Granted such

an approach can only produce an approximation solution of the 2D HMM MAP
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estimation problem, but we take careful considerations not to sacrifice the use of 2D

spatial correlations in our algorithm design. In estimating the 2D state ensemble we

make two orthogonal scans of the image: a horizontal scan followed by a vertical scan.

When scanning row i, we fix the estimated states of row i-I in (3.3) and compute

the MAP state sequence for row i:

S; = argm:xL {logP(si,jlsi,j-b S;_l) + logp(~i,jlsi,j, Si,j-1, S;_l,j)}, Si E SN
j

To develop a dynamic programming algorithm to compute the MAP state sequence

S;, we use the following recursion:

+ lOgp(~i,llsi,l = fh, S;-l,l)' 0:::; k :::; K

w· k(n) = max {w. ·(n - 1)
~, 1-5,j-5,K ~,J

+ log P(Si,n = Bklsi,n-1 = Bj , S;-l,n)

+ logP(~i,nlsi,n = Bk, Si,n-1 = Bj , S;-l,n) }

o:::; k :::; K, 2:::; n :::; N.

By solving (3.4) for n = 2,3, ... ,N, we obtain

maxP(s,e) = max Wik(N),s E SN
s 1-5,k-5,K '

and the resulting state sequence is s;.
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After estimating the corresponding state of any pixel (i, j), denoted by S~j' in

the next step of underlying method, columns are scanned and the MAP sequence

estimation is applied identical to previous step to estimate si,j' However, transition

probabilities are updated based on estimates of row-scanning. Using Bayes' formula

this can be formulated as

(3.6)

Assuming S~j is independent of states of neighboring pixels in column-scanning, we

have

Using Bayes's formula

P( hi . .) _ P(si,jIS~j)P(S~j)
Si,j S2,J - P(s . .)

2,J

and

Plugging (3.7),(3.8) and (3.9) in (3.6) yields

(3.7)

(3.8)

(3.9)

(3.10)

With the assumption P(Si,j) ~ P(s~j) the denominator of (3.10) is estimated from

results of row-scanning by forward-backward algorithm [31]. Let in the estimated

sequence si, the forward probability ai,j((h) be the joint probability of being in state

Ok at Xi,j and observing ~i,n, 2 :::; n :::; j. The backward probability fJi,j(Ok) is defined

as the conditional probability of observing ~i,n, j < n :::; N given the state Si,j is Ok.
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These probabilities can be computed by recursive formulae [30]

(3.11)

K

ai,j(8m ) p(~i,jlsi,j, Si,j-l, Si-l,j) L ai,j-l (8k )P(Si,jlsi,j-l, Si-l,j)
k=O

o:'S m :'S K (3.12)

where 7rk is the probability of being at kth state at the first pixel of a sequence

and

!3i,N 1
M

L P(Si,j ISi,j-l, Si-l,j )p(~i,j ISi,j, Si,j-l, Si-l,j )!3i,j+l (8m ) (3.13)
k=l

The conditional probability P(Si,j IS?,j) in (3.10) is estimated by training. Applying

the transition probabilities (3.10) in the above described MAP sequence estimations,

column-scanning is performed analogously.

So far we presented a general scheme for image interpolation based on HMM. Using

this method, in the next section we will propose a practical explicit edge-guided image

interpolation algorithm and describe it in detail.
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Figure 3.2: Formation of a high-resolution image form low-resolution image by up
sampling. Solid dots represent original low-resolution samples. Empty and hatched
circles represent missing pixels with different coordinates. Interpolation is done in
two passes. First to find the empty circles, then to interpolate the hatched circles.

3.2 Edge Preserving Image Interpolation Based On

HMM

The formation of a high-resolution (h) image from low-resolution (Il ) samples and

estimated missing pixels is shown in the lattice depicted in Fig. 3.2. Three sublattices

pictured by white (L1), vertically hatched (Lz) and horizontally hatched (L3) circles

are to be estimated. The 2D-HMM and MAP state estimation is applied on these sets

of pixels separately to figure out the best interpolation direction for each interpolating

pixel.

In the first pass of our algorithm the pixel sites in L1 with coordinates h(2i, 2j) are

interpolated. Directions specified in Figs. 3.3(a)-(c) are used in interpolating this set

of pixels. These directions are of interest since in each there are four original samples

from Il in local window centered at PZi,Zj (W2i,2j) and hence are suitable for applying
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four tap filters e.g. cubic convolution. Nevertheless, in case of sharp edges in horizon-

tal or vertical directions these diagonally aligned filters often suffer from large error

where bicubic filter Fig. 3.3(c) outperforms its diagonally directed counterparts and

is capable to retain these directions. Another substantial reason of applying bicubic

as an 2-D isotropic filter is its well and sufficient performance in low frequency area

where there is no dominant direction. In this case directional filtering magnifies some

unreal lines and makes artifacts while bicubic filtering preserves smooth textures.

••••· ·0··••••••••(a).re..••~•••
••••••(d)

••••· ·0··••••
••••(bl

••••.•~•••
••••••(el

• ••••·0· 8>••••••••(c)

•••...~•••
.~...
•(f)

Figure 3.3: Sets of filters for proposed HMM-based image interpolation. (a)-(c) rep­
resent the directions to interpolate the pixels I(2m,2n) and (d)-(e) are associated
directions for the pixel sites: I(2m - 1, 2n) and I(2m, 2n - 1).

Based upon the directions applied in the interpolation scheme, we need an observa-

tion providing us with information about texture orientation and frequency attributes

of W2i,2j. To address this problem we proposed a feature minimizing the linear least

square problem below

6i,2j = rnJn-1 L III(m, n) - ei[(m, n) - (1- e)il(m, nW (3.14)
m,nEWZi,Zj

where il(m,n) and il(m,n) are interpolated values of known pixels by estimates of

interpolation in directions depicted in Fig. 3.3. First unknown pixels are estimated in
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directions of (a) or (b) and then applied in a cubic filter to yield il (m, n) and il (m, n)

respectively. The solution of (3.14), which is equal to (2.2), can be formulated as:

The Fig. 3.4 depicts six different portraits of variant textures and corresponding

f. for filters (a) and (b) in Fig. 3.3. Let direction 1 and 2 correspond to alignments

shown in Fig. 3.3(a) and (b) respectively. The higher value of this feature in cases

(c),(d), shows the prominent direction is along direction 1 and the edges in (a),(b)

and (f) are close to direction 2. In presence of edges not along specified filters the

value of f. tends to ~ e.g. Fig. 3.3(e).

(a)

(d)

(b)

(e)

(c)

(f)

Figure 3.4: Portions of different structures. The average value of f. in each picture is:
(a) 0.76, (b) 0.89, (c) 0.24, (d) 0.35, (e) 0.49, (f) 0.77.

Based on this definition, we can solve the MAP estimation problem formulated

in (3.4). The MAP estimation for every row/column is equivalent to finding the

longest path in the graph shown in Fig. 3.5 The quantity of wi(N) is the overall weight

for the longest path starting from 81 to the end of sequence, which is computed by

dynamic programming.
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2 3 4 N-l N

__-+-~ ~ directions

Figure 3.5: Graph constructed for MAP estimation.

To adapt the transition probability matrix by context of pixels we have classified

contexts based on their activity. According to our classification a context is identified

as a highly active context when the term a-i + a-~ is above an empirically estimated

threshold. In the low-frequency parts of an image both of these variances and hence

their summation are relatively small. Based on contexts, two different transition

probability matrices are used.

The observations are assumed to obey Gaussian distribution

(3.16)
exp { - H~i,j - f-lY~-I(~i,j - f-l) }

p(~i,jlsi,j, Si,j-I, Si-I,j) = (21r)~ I~I~

The quantities of mean vector (f-l) and covariance matrix (~) are also estimated by

training.

Up to now, we have described the interpolation process of the first pass. After

estimating the samples in Jh (2i, 2j) of the high-resolution image, the remaining pixels

of L2 and Lg , h(2i, 2j -1) and h(2i-1, 2j) can be estimated in horizontal and vertical

directions in a rotated Wi,j by 45° as shown in Fig. 3.3(d)-(f). Identical to the first

pass, to deal with both sharp diagonal directions and low frequency parts of an image

a 2-D filter with same coefficients as bicubic is used in a rotated window (Fig. 3.3(f)).

The difference between first and second passes is unlike the first step, only in one
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of the axial directions shown in Fig. 3.3(d) and Fig. 3.3(e) original samples of I z are

available and the other direction consists of already approximated samples i h (2i, 2j).

Apparently, the estimates provided by original samples are more likely to be close

to real missing values than those of preestimated ones. Thus the probabilities of

transition to associated states of directions with original pixels are expected to be

more, which is consistent with results of training.

This interpolation process is performed by row-scanning followed by scanning the

columns. The resulting HR image is obtained by interpolating using filters corre-

sponding to maximum a posteriori.

3.3 Simulation results

The proposed HMM-DI algorithm was implemented and tested on a variety of scenes.

34.56
37.10
37.25
39.20
30.95
32.24

proposed HMM-DI
33.74
36.50
36.89
36.80
30.08
29.73

NEDI [19]
Lena 33.92

Flowers 36.79
Parrots 36.58
Motor 38.30
Flight 30.60

Peppers 31.84

Table 3.1: PSNR (decibels) results of reconstructed images for methods BICUBIC,
NEDI and proposed HMM-DI.

Image Bicubic

Average 34.68 33.95 35.21

For objective comparison, the results of experiments on six test images listed in

Fig. 3.6 are presented. The original images are 512 x 512 and the low resolution

images are obtained by directly down sampling by a factor of two. These images
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were commonly used in previous works on image interpolation and for the fairness

of comparison are selected among the cases with several edges making these images

difficult for interpolation.

The PSNR results of applied methods on six sample images in Fig. 3.6 are tab­

ulated in Table 3.1. The results are compared with the two of its predecessors: the

conventional method of bicubic [6] and the edge-directed interpolation (NEDI), pro­

posed by Li and Orchard in [19]. The first method is one of the computationally

efficient but signal-independent filters and the second one is of the best structure

adaptive methods with higher complexity. The objective comparison confirms pro­

posed HMM-DI algorithm outperforms both competing methods, NEDI and bicubic.

The average gain over NEDI is 1.26 dB. The bicubic is a proper benchmark for PSNR

comparison, despite its moderate visual quality. The gain of 0.53 dB over bicubic in­

terpolator verifies the good performance of HMM-DI in term of objective assessment.

Especially, for the image Motor which contains several edges and rich frequency com­

ponents the gain is around 1 dB over bicubic.

Objective measurements, e.g. PSNR, usually support a moderate evaluation of

interpolation algorithms. For instance the sharpness and perceptual quality of recov­

ered edges and other high frequency parts of an image cannot be directly assessed

by the quantity of PSNR. Hence, in the remaining part of this section we conduct

a subjective evaluation to assess the performance of proposed hidden Markov model

based algorithm. The experimental results for two test images, Parrots and Flower,

are depicted in Figs. 3.7 and 3.9.

As is evident in Figs. 3.6 to 3.9, the bicubic interpolator produces annoying jaggy

artifacts along edges and provides inferior visual quality than NEDI and HMM-DI. As
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described before, applying an isotropic filter, with no spatial adaptivity to structures

across an image is the main reason of producing jaggy edges and blurred details.

The edge-directed method of [19] is considered as one of the best interpolation

algorithms so far and is very competitive in term of visual quality. This method is

adaptive to local orientations and by estimating covariance of high-resolution image

using low-resolution samples, is able to preserve the directions, especially long edge

structures pleasantly. However it is subject to visual defects in highly active con­

texts which is visible in the curves around iris in Fig. 3.7 and the portraits shown

in Fig. 3.10, where a side-by-side close up comparison between NEDI and proposed

HMM-DI algorithm is provided. Since at any point the proposed method applies suit­

able filter among directional and isotropic alternatives it incorporates the advantages

of a conservative method i.e. bicubic in low frequency areas and directional filtering

around edges. Hence HMM-DI provides superior visual quality and preserves small

curvatures better than NED!.

3.4 Conclusion

An image interpolation algorithm based on hidden Markov modeling is proposed. The

hidden states of the HMM correspond to edge directions or smooth waveform of the

underlying high-resolution image. Each of these hidden states is associated with an

interpolator that suits the corresponding waveform. The MAP sequence estimation

is applied to find the most likely sequence of states for missing pixels in rows and

columns. This solution is given by devised graph theoretical method. Simulation

results verify the presented HMM based method outperforms competing methods

both in term of objective measures (PSNR) and visual quality significantly.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Sample images in the test set. (a) Lena, (b) Flower, (c) Parrots, (d)
Motor, (e) Flight, (f) Peppers.
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(a)

(c)
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(b)

(d)

Figure 3.7: Comparison of different methods on a portion of the image Parrots. (a)
original HRhigh-resolution image, (b) bicubic interpolation, (c) NEDI, (d) proposed
HMM-DI.
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(a)

(c)
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(b)

(d)

Figure 3.8: Comparison of different methods on a portion of the image Flower. (a)
original high-resolution image, (b) bicubic interpolation, (c) NEDI, (d) proposed
HMM-DI.
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(a)

(c)
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(b)

(d)

Figure 3.9: Comparison of different methods on a portion ofthe image motor. (a) orig­
inal high-resolution image, (b) bicubic interpolation, (c) NEDI, (d) proposed HMM­
DI.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Close up visual comparison between NEDI and proposed HMM-DI. The
portions on left column are reconstructed by NEDI and right column are interpolated
by HMM-DI.
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Chapter 4

Concluding Remarks

In this thesis we investigated the classical problem of image interpolation. Two dif­

ferent methods were developed: FDI and HMM-DI. Both techniques belong to the

class of edge-directed image interpolation methods.

In FDI two estimates of a missing pixel by cubic interpolation in perpendicular

directions are fused under the minimum mean square error criterion to improve the

precision and robustness of the interpolation. In pursuit of better visual quality and

cleaner high-resolution images, a context-based error compensation algorithm is also

developed to reduce the error of cubic interpolator.

In HMM-DI the problem of image interpolation is converted to one of MAP se­

quence estimation by hidden Markov modeling. For each missing pixel the hidden

state is associated with an interpolator that suits the corresponding waveform. HMM­

DI incorporates the statistics of high-resolution images, which are supplied by a train­

ing set, into the interpolation process, and is able to exploit high-order dependency

between missing pixels. Unlike the FDI (and most of existing interpolation tech­

niques) where high-resolution pixels are interpolated one at a time independently, in
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HMM-DI a sequence of missing pixels in row/column are jointly estimated.

Both of these algorithms are tested on a wide variety of scenes. These two new

algorithms are compared with some of competitive existing methods in perceptual

quality and objective quality (i.e., PSNR metric). The achieved reproduction qualities

are competitive against the state of the art image interpolation techniques. Edges

and fine details of the image are well preserved and interpolation artifacts plaguing

many competing methods are greatly reduced.

4.1 Future Works

Even though the image interpolation methods proposed in this work show competitive

performance compared to the best interpolation methods, there are some issues that

call for further investigations in the future. Hereby, some of possible future works are

outlined:

1. The idea of context-based error compensation is not restricted to cubic interpo­

lator, but applicable for any linear interpolation filter. Furthermore, the selected

features in the context classification are not chosen optimally. Therefore, the

FDI algorithm can be improved in these two fronts.

2. The proposed optimal data fusion in Chapter 2 can be tailored to data of any

dimension. It is possible to apply it in other applications, such as 3D medical

image interpolation or video frame rate up-conversion.

3. In this thesis we introduced the idea of edge-guided image interpolation based

on hidden Markov modeling. The problem formulation and the MAP estimation

process are general. However, the observations associated with hidden states are
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specific to this work. Finding better observation(s) to enhance the performance

of the HMM-DI method can be another research topic.
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