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ABSTRACT

This thesis considers the problem of nonlinear predictive control design and applications. A

predictive control formulation is presented which expands on the set of initial conditions for

which closed-loop stability can be achieved. The key idea in this control design is to utilize

control-law independent characterization of the process dynamics subject to constraints via

model predicative controllers. An application of this idea is presented to the case of linear

process systems for which characterizations of the null controllable region (the set of initial

conditions from where closed-loop stability can be achieved subject to input constraints) are

available. A predictive controller is designed that achieves closed-loop stability for every ini­

tial condition in the null controllable region. For nonlinear process systems, the constraints

within the predictive controller are formulated to require the process to evolve within the

region from where continued decay of the Lyapunov function value is achievable and incor­

porated in the predictive control design, thereby expanding on the set of initial conditions

from where closed-loop stability can be achieved. The proposed method is illustrated using

a chemical reactor example, and the robustness with respect to parametric uncertainty and

disturbances demonstrated via application to a styrene polymerization process.

In addition, we also consider the application of the predictive control design to the problem

of handling actuator faults in nonlinear continuous-time processes and transport-reaction

systems. Specifically, we consider faults that preclude the possibility of continued oper­

ating at the nominal equilibrium point using the existing robust or reconfiguration-based

fault-tolerant control approaches. The key consideration is to operate the plant using the

depleted control action at an appropriate safe-park point to prevent onset of hazardous

situations as well as enable smooth resumption of nominal operation upon fault-repair. For

the case of continuous-time nonlinear process systems we consider the presence of input

constraints, uncertainty, and availability of limited measurements. First a Lyapunov-based

predictive controller with an explicitly characterized stability region is developed to handle

the aforementioned conditions. This control design is then subsequently used to develop

a safe-parking framework in the presence of uncertainty, and availability of limited mea­

surements. The proposed framework is illustrated using a chemical reactor example and
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demonstrated on a styrene polymerization process. Finally, we consider the problem of

model predictive control and handling actuator faults in transport-reaction processes de­

scribed by quasi-linear parabolic partial differential equations (PDEs) subject to input con­

straints. A Lyapunov-based model predictive controller is designed which accounts for the

distributed nature of transport-reaction processes and provides an explicit characterization

of the set of initial conditions from where closed-loop stability of the parabolic PDE system

is guaranteed. Similar to the continuous time case, this control design is then subsequently

used to develop a safe-parking framework for handling actuator faults in transport-reaction

processes. The proposed framework is illustrated on a diffusion-reaction process
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Chapter 1

Introduction

The presence of input cqpstraints are ubiquitous in the control and operation of all physical

systems. These constraints usually arise due to the physical limitation of control actuators

such as pumps or valves. Neglecting to take such constraints into consideration while

designing controllers can lead to significant performance deterioration and even closed-loop

instability. This has motivated considerable research effort towards the problem of designing

controllers in the presence of input constraints (see e.g. [54] and references therein).

One product resulting from this research effort for lumped-parameter nonlinear process

systems modelled ordinary differential equations (ODEs) is that of Lyapunov-based control

designs. Such designs explicitly account for the presence of constraints and are able to

provide explicit characterization from where closed-loop stability can be achieved. Fur­

thermore, Lyapunov-based controllers have also been developed within a predictive control

framework. Such predictive control designs provide guaranteed stability regions alongside

the incorporation of performance considerations.

Many essential industrial chemical processes involve the presence of convection and diffusion

phenomena coupled with a chemical reaction. We refer to such processes as transport­

reaction processes. Examples of transport-reaction processes include tubular reactors and

packed-bed reactors. The dynamic models of transport-reaction processes over finite spatial
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domains typically consists of highly dissipative partial differential equations (PDE). In some

cases, the dissipative nature of the differential operator can be exploited to derive finite­

dimensional approximate models of the infinite-dimensional system. This model reduction

allows for the extension of finite-dimensional control designs (e.g. Lyapunov-based designs)

to handle control problems of transport-reaction processes.

Along with actuator constraints, the control of chemical processes involves accounting for

eventualities such as faults. Since faults can potentially lead to hazardous plant situations

and also significant economic damage, there has been extensive research on the development

of strategies for handling faults. The traditional control approaches for handling faults

assume availability of sufficient residual control effort or redundant control configurations

to preserve operation at the nominal equilibrium point. This approach can be categorized

within the robust/reliable, and reconfiguration-based fault-tolerant control approaches. The

problem of handling faults which inhibit continued operation at the nominal operating point

using robust/reliable, and reconfiguration-based schemes- was recently considered in [36].

Specifically, a fault-tolerant scheme was presented which temporarily maintains the process

at 'safe-parking' points during fault rectification, and smoothly resumes nominal operation

upon fault repair. This safe-parking framework utilizes the stability region characterizations ­

provided by Lyapunov-based predictive control designs to identify safe-parking locations

in which the onset of hazardous conditions is prevented and smooth resumption can be

guaranteed.

This thesis considers the following two general problems: 1) The design of predictive

controllers for nonlinear process systems and transport-reaction systems. 2) The appli­

cation of the designed predictive controllers to handling faults which cannot be handled

by robust/reliable, and reconfiguration-based approaches in nonlinear process systems and

transport-reaction systems. The broad objectives of this thesis are as follows:

• To develop a Lyapunov-based predictive control design for continuous-time nonlinear

process systems which enhances the set of initial conditions from which stability can be

guaranteed by better utilizing the constraint handling capabilities of model predictive
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control.

• To develop a Lyapunov-based predictive control design which maximizes the guaran­

teed stability region estimate for linear systems.

• To develop a Lyapunov-based predictive control design for nonlinear process systems

which explicitly accounts for the presence of uncertainty and availability of limited

measurements.

• To develop a Lyapunov-based predictive control design for transport-reaction process

systems which provides an explicit characterization of the set initial conditions of the

infinite-dimensional system from where stability is guaranteed.

• To develop a fault-tolerant safe-parking framework for nonlinear process systems

which accounts for the presence of uncertainty and availability of limited measure­

ments.

• To develop a fault-tolerant safe-parking framework for transport-reaction process sys­

tems.

The rest of this thesis is organized as follows. In chapter 2, Lyapunov-based tools are used to

develop control-law independent characterizations of the stability region and this character­

ization is exploited via the constraints handling capabilities of model predicative controllers

to expand on the set of initial conditions for which closed-loop stability can be achieved. To

clearly illustrate the main idea behind the approach, we first consider linear process-systems

for which characterizations of the null controllable region (the set of initial conditions from

where closed-loop stability can be achieved subject to input constraints) are available. A

predictive controller is designed that achieves closed-loop stability for every initial condi­

tion in the null controllable region. For nonlinear process systems, while characterizing the

null controllable region remains intractable, the set of initial conditions for which a (given)

Lyapunov function can be made to decay can be analytically computed. Constraints are

formulated requiring the process to evolve within the region from where continued decay

of the Lyapunov function value is achievable and incorporated in the predictive control



4

design, thereby expanding on the set of initial conditions from where closed-loop stability

can be achieved. The proposed method is illustrated using a chemical reactor example and

the robustness with respect to parametric uncertainty and disturbances demonstrated via

application to a styrene polymerization process. The author wishes to point out that the

work in chapter 2 was completed prior to start of the masters program. However, a brief

version of this work is retained in this thesis for completeness.

In chapter 3, the problem of handling actuator faults in nonlinear process systems subject

to input constraints, uncertainty and availability of limited measurements is considered. A

framework is developed to handle faults that preclude the possibility of continued oper­

ating at the nominal equilibrium point using the existing robust or reconfiguration-based

fault-tolerant control approaches. The key consideration is to operate the plant using the

depleted control action at an appropriate 'safe-park' point to prevent onset of hazardous sit­

uations as well as enable smooth resumption of nominal operation upon fault-repair. First,

we consider the presence of constraints and uncertainty and develop a robust Lyapunov­

based model predictive controller that enhances the set of initial conditions from which

closed-loop stability is achieved. The stability region characterization provided by the

robust predictive controller is subsequently utilized in a safe-parking algorithm that appro­

priately selects 'safe-park' points from the safe-park candidates (equilibrium points subject

to failed actuators) to preserve closed-loop stability upon fault repair. Specifically, a can­

didate parking point is termed a safe-park point if 1) the process state at the time of failure

resides in the stability region of the safe-park candidate (subject to depleted control action

and uncertainty), and 2) the safe-park candidate resides within the stability region of the

nominal control configuration. Then we consider the problem of availability of limited mea­

surements. An output feedback Lyapunov-based model predictive controller, utilizing an

appropriately designed state observer (to estimate the unmeasured states), is formulated

and its stability region explicitly characterized. An algorithm is then presented that ac­

counts for the estimation errors in the implementation of the safe-parking framework. The

proposed framework is illustrated using a chemical reactor example and demonstrated on a

styrene polymerization process.
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In chapter 4, the problem of handling actuator faults in transport-reaction processes de­

scribed by quasi-linear parabolic partial differential equations (PDEs) subject to input con­

straints is considered. First, by exploiting the separation between the fast and slow eigen­

modes of the parabolic spatial differential operator in combination with Galerkins method,

a finite set of ordinary differential equations (ODE) that captures the dominant dynamics

of the PDE system are constructed. This finite ODE system is used to develop a Lyapunov­

based model predictive controller which provides an explicit characterization of the set of

initial conditions from where closed-loop stability of the parabolic PDE system is guaran­

teed. This control design is then subsequently used to develop a safe-parking framework for

handling faults. In particular, faults which preclude the possibility of maintaining operation

at the nominal equilibrium distribution, using the existing robust or reconfiguration-based

fault-tolerant control approaches are considered. The key idea is to temporarily maintain

the process at an appropriate 'safe-park' distribution using the available depleted control ac­

tion. This 'safe-park' distribution is chosen to prevent onset of hazardous situations as well

ensure smooth resumption of nominal operation upon fault-repair. Utilizing the stability

region characterization provided by the developed predictive controller, safe-park distribu­

tions from the safe-park candidates (equilibrium distributions subject to failed actuators)

are chosen to preserve closed-loop stability upon fault repair. The proposed framework is

illustrated on a diffusion-reaction process.

Finally in chapter 5, we review the presented results and discuss some future directions.



Chapter 2

Enhanced Stability Regions for

Model Predictive Control of

Nonlinear Process Systems

2.1 Introduction

The operation and control of chemical processes often encounters constraints that arise out

of physical limitations on the control actuators. The constraints, if not accounted for in

the control design, can cause performance deterioration or even instability in the closed­

loop system. Specifically, the presence of constraints limits the set of initial conditions

from where a process can be stabilized at a desired equilibrium point (the so-called null

controllable region). A meaningful measure of how well the available control effort is being

utilized by the control law can be obtained via a comparison of the stability region under a

given control law with the null controllable region. Such a measure also provides assurance

on the ability of the control law in recovering from the effect of disturbances that may

temporarily drive the process away from the nominal operating point. These considerations

have motivated extensive research on accounting for constraints via modifications in existing

6
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control approaches (e.g., anti-windup designs [42]) as well as fostered the development of

controllers that explicitly account for the presence of constraints via Lyapunov-based (see,

for example, [48; 79; 41; 27; 28; 57] and [10; 16] for excellent reviews) and model-predictive

control designs (see, for example, [63; 67; 1; 80; 76; 70; 82; 47] and the survey paper, [54]).

Given that process dynamics are sometimes identified or approximated by linear process

systems, extensive research work has focused on designing and analyzing controllers that

utilize a linear process description in computing the control action. Characterization of

the null controllable region for linear process systems, while being difficult, is a tractable

problem and has been the focus of several research efforts [46; 38; 78; 40]. Furthermore,

several controller designs have been proposed that allow the possibility of turning any given

subset of the null controllable region into the stability region of a proposed controller design

[11; 12; 37]. Model predictive control (MPC) approaches allows implementation of stability

constraints demanding the state to go to i?ome invariant neighborhood of the origin (or the

origin itself) [63; 12]. When guaranteeing feasibility from a subset of the null controllable

region (under the assumption of initial feasibility of the optimization problem), the results

use the approach of quantifying (and using as the horizon) the maximum over the minimum

possible time for every point in the given set to be driven to the origin. Such an approach

leads to prohibitively large values of the horizon (leading to practically un-implementable

controllers) when requiring enhancement in the stability region. For some classes of lin­

ear systems (systems with real eigenvalues, low order systems with complex eigenvalues),

explicit expressions for the boundary of the null controllable region, parameterized by the

magnitude of input constraints, have recently been characterized [40]. The work in [40],

however does not consider the problem of determining the control law that c/!.n stabilize

all initial conditions in the null controllabl~ region. As a special case of the key idea in

the proposed work in this chapter, we show how the characterization developed in [40] can

be utilized within the model predictive control framework to achieve stabilization from all

initial conditions in the null controllable region, without unduly increasing the computation

complexity of the optimization problem.

For nonlinear processes, the problem of explicitly characterizing the null controllable region
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remains intractable. Lyapunov-based control designs address the problem of explicit char­

acterizations of the stability region (see, e.g., [48; 27; 28]) under given control laws. The

stability regions, however, are limited to (possibly conservative estimates of) invariant sub­

sets (n) of the set of states for which the Lyapunov function (V) can be made to decay (II)

under the specific control law. In the model predictive control framework, several designs

have been proposed that guarantee closed-loop stability contingent on the assumption of

initial feasibility of the optimization problem [77; 50; 85; 75; 44; 70; 73; 64; 49; 7]. In

[81; 82; 83] the optimization problem is reformulated within the framework of solving linear

matrix inequalities (LMIs), with the ensuring 'error' due to local linearization accounted

for via robust MPC formulation, and stability is guaranteed under the assumption of exis­

tence of a solution to the LMIs. In [31], Lyapunov-based and model predictive approaches

were utilized within a switched controller framework to enable implementation of existing

model predictive controllers with guaranteed stability region. More recently, in [58; 59] (see

[16] for further results and references), the stability properties of auxiliary Lyapunov-based

controllers of [48; 28] were utilized in formulating stability constraints ilL the optimization

problem in a way that the predictive controllers of [58; 59] mimic the (possibly conserva­

tive) stability region of the auxiliary: control designs. The stability region estimates in the

existing designs [58; 59], however, do not fully utilize the constraint handling properties

of the predictive controller approach to expand on the set of initial conditions from where

closed-loop stability can be achieved.

Motivated by these considerations, this chapter considers the problem of control of nonlinear

process systems subject to input constraints and presents predictive controllers that utilize

control law independent analysis of the process dynamics in the controller design. First,

linear process systems are considered and a predictive controller is designed that achieves

closed-loop stability for every initial condition in the null controllable region (not just

subsets of the null controllable region) without resorting to (practically) infinite horizon.

For nonlinear process systems, the set of initial conditions for which Ii < 0 is achievable

(subject to constraints, and independent of the control law) is first characterized. This

characterization is then utilized to formulate constraints in the predictive controller that

not only require the Lyapunov function value to decay, but also require the process to
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continue to evolve in the region from where successive decay in the Lyapunov function

value is achievable. The enhancement in the set of initial conditions from where stability

is achieved by the proposed method is illustrated using a chemical reactor example and

the robustness with respect to parametric uncertainty and disturbances demonstrated via

a styrene polymerization process.

2.2 Preliminaries

In this section, we present the process description, a polymerization reactor to motivate our

results and review existing Lyapunov-based predictive control designs.

2.2.1 Process description

We consider nonlinear processes with input constraints, described by:

x = f(x) + G(x)u(t)
(2.1)

uEU

where x E IRn denotes the vector of state variables, u E IRm denotes the manipulated inputs

taking values in a nonempty convex subset U of IRm, where U = {u E IRm : Umin :::; U ::::;

umax }, Umin E IRm and Umax E IRm denote the lower and upper bounds on the manipulated

input, unarm> 0 is such that Ilull :::; unarm implies u E U, where 11·11 is the Euclidean norm of

a vector, and f(O) = O. The vectorfunction f(x) and the matrix G(x) = [gl(X)'" gm(x)] are

assumed to be sufficiently smooth on tJ.leir domains of definition. The notation Lfh denotes

the standard Lie derivative of a scalar function h(·) with respect to the vector function f('),

ax denotes the boundary of a set X and x(T+) is used to denote the limit of the trajectory

x(t) as T is approached from the right, Le., x(T+) = lim x(t). Throughout the chapter,
t ......T+

we assume that for any u E U the solution of the system of Eq.2.1 exists and is continuous

for all t. In the remaining of this section, we first present a styrene polymerization process

that we will use to motivate our results and then review a Lyapunov-based model predictive

control design that mimics the stability region of Lyapunov-based nonlinear control designs.
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2.2.2 Motivating example

To motivate our predictive control design methodology and to demonstrate an application

of our results, we introduce in this section a polystyrene polymerization process. To this

end, consider a model for polystyrene polymerization process given in [39] (also studied in,

e.g., [69])

(2.2)

where GI, Glf , GM, GMf' refer to the concentrations of the initiator and monomer in

the inlet stream and in the reactor, respectively, T and Tf refer to the reactor and inlet

stream temperatures and Te and Tef refer to the coolant inlet and jacket temperatures,

respectively. The primary manipulated inputs are the monomer Fm and coolant Fe flow

rates. As is the practice with the operation of the polystyrene polymerization process [39],

the solvent flow rate is also changed in proportion to the monomer flow rate. The values of

the process parameters are given in Table 2.2. The control objective is to stabilize the reactor

at the unstable equilibrium point (Gi = 0.0480 kmolm-3 , GM = 2.3331 kmolm-3 , T =

354.92 K, Te = 316.2429 K), corresponding to the nominal values ofthe manipulated inputs

of Fe = 0.000131m3 8-1 and Fm = 0.000105m3 8-1 . The manipulated inputs are constrained

as 0 ::; Fm ::; 0.003105 m38-1 , 0 ::; Fe ::; 0.0031 m 38-1 . Owing to the high dimensionality

and nonlinearity of the process (as will be subsequently seen), stability region estimates
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derived using Lyapunov-based tools are conservative and development of control designs

that best use the available control action to enhance the set of initial conditions from where

stabilization is achieved is of significance. We will demonstrate the application, as well as

investigate the robustness, of the proposed control design to the styrene polymerization

example, while illustrating the finer details of the proposed controller using an illustrative

chemical reactor.

2.2.3 Lyapunov-based model predictive control

In this section, we briefly review a recent result on a Lyapunov-based predictive controller

that has an explicitly characterized feasibility and stability region. To this end, consider

the system of Eq.2.1, for which a predictive controller [58] is designed of the form:

ULBPC argmin{J(x, t,u(·))luC) E S}

s.t. ± = f(x) + G(x)u

V(x(r)) ~ -10* V r E [t, t + il) if V(x(t)) > 0'

V(x(r)) ~ 0' V r E [t, t + il) if V(x(t)) ~ 0'

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

where S = S(t, T) is the family of piecewise continuous functions (functions continuous

from the right), with period il, mapping [t, t +T] into U and T is the horizon. Eq.2.4 is

the nonlinear model describing the time evolution of the state x, V is a control Lyapunov

function and 0', 10* are parameters to be determined. A control u(·) in S is characterized

by the sequence {u(j]} where u[j] := u(jil) and satisfies u(r) = u(j] for all r E [t + jil, t +
(j + 1)il). The performance index is given by

rHT

J(x, t, u(·)) = it -[llxU(s; x, t)lI~ + lIu(s)II~] ds

where Q is a positive serni-definite symmetric matrix and R is a strictly positive definite

symmetric matrix. XU(s; x, t) denotes the solution of Eq.2.1, due to control u, with initial

state x at time t. The minimizing control uO (-) E S is then applied to the plant over the

interval [t, t + .6.) and the procedure is repeated indefinitely.
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The stability properties of the predictive controller are characterized using a bounded con­

troller of the form (e.g., see [48; 27; 28]):

u(x) = -k(x)(LeV)'(x) (2.8)

(2.9)k(x)
LfV(x) + j(LfV(X))2 + (umaxll (LeV)'(x) 11)4

II(Le V),(x)1I 2 [1 + VI + (umax II (LeV)'(x) 11)2]

oV(x)
when LeV(x) -=1= 0 and k(x) = 0 when LeV(x) = 0 where LfV(x) = ----a;;- f(x), LeV(x) =

[Lg1 V(x)· .. L gmV(x)]' and gi(X) is the i-th column of the matrix G(x). For the controller

of Eqs.2.8-2.9, one can show, using a standard Lyapunov argument, that whenever the

closed-loop state, x, evolves within the region described by the set:

(2.10)

then the control law satisfies the input constraints, and the time-derivative of the Lyapunov

function is negative-definite. An estimate of the stability region can be constructed using a

level set of V, i.e.,

(2.11)

where emax > 0 is the largest number for which 0 s:;; II. Closed-loop stability and feasibility

properties under the Lyapunov-based predictive controller are inherited from the bounded

controller under discrete implementation and are formalized in Theorem 2.1 below (for a

proof, see [58]).

Theorem 2.1 [58]: Consider the constrained system of Eq.2.1 under the MPC law of

Eqs.2.3-2.7. Then, given any d 2: 0, XQ E 0, where 0 was defined in Eq.2.11, there exist

positive real numbers 0', E*, Ll*, such that if Ll E (0,.6..*J, then the optimization problem of ­

Eq.2.3-2.7 is feasible for all times, x(t) EO for all t 2: 0 and lim sup IIx(t) II ::; d.
t-H~O

Remark 2.1: The key idea in the predictive control design is to identify stability con­

straints that can a) be shown to be feasible and b) upon being feasible can guarantee

stability. The analysis of discrete implementation of the control law of Eqs.2.8-2.9 ensures
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the existence of a feasible solution to the predictive controller formulation from an explicitly

characterized set of initial conditions. While the predictive controller utilizes the auxiliary

control design to address the problem of guaranteeing initial feasibility, utilization of the

constraint of Eq.2.5 only imitates the stability properties (and the stability region) of the

bounded controller and does not fully exploit the constraint handling capabilities of the pre­

dictive control approach to expand on the set of initial conditions from where closed-loop

stability is achieved.

2.3 Enhancing the stability region estimates using model

predictive control

The stability region estimates of existing Lyapunov-based predictive controllers are lim­

ited (and dependent upon) stability region estimates obtained using the auxiliary control

approaches, and by not fully utilizing the constraint handling capabilities of the predic­

tive control approach, suffer from the same possible conservatism as the auXiliary control

designs. In this section, we present a predictive control design wherein constraints are for­

mulated that, by better utilizing Lyapunov-based analysis tools, enha.nce the set of initial

conditions from where closed-loop stability is achieved.-Before we proceed to the controller

design for nonlinear systems, we first consider, as a special case, linear systems subject to

constraints and show how the utilization of the process dynamics in the controller design

results in a predictive controller that guarantees stabilization from all initial conditions

for which closed-loop stability can be achieved subject to constraints. We next consider

nonlinear systems and formulate a predictive controller that not only provides an explicit

characterization of the stability region but also enhances the set of initial conditions from

which closed-loop stability is achieved.
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2.3.1 Linear systems subject to constraints

Linear descriptions of the process dynamics are often utilized in controller design for chem­

ical processes. While extensive results exist on constructing control designs that guarantee

stability from any given subset of the null controllable region (see, e.g., [46; 38; 78; 40; 11;

12; 37; 63; 12; 6]), the computational complexity of the control design typically renders

the control implementation impractical as larger and larger stability regions are desired.

Furthermore, there exists a lack of theoretical results that guarantee stability for any initial

condition in the entire null controllable region. In this section, we show how the characteri­

zation of the null controllable region, developed in [40), can be utilized within the predictive

control approach in achieving stability for all initial conditions in the null controllable re­

gion. To this end, consider processes whose dynamics. can be described by

x(t) = Ax(t) + Bu(t), u E U (2.12)

where A and B are constant n x nand n x m matrices respectively. A summary of charac~

terization of the null controllable region is descrtbed below [40).

2.3.1.1 Null controllable region for linear systems

A state xo is said to be null controllable if there exists aTE [0, (0) and an admissible

control u(t) such that the state trajectory xCt) of the system of Eq.2.12 satisfies x(O) = xo

and x(T) = 0. The union of all null controllable states is called the null controllable

region of the system which we denote by x max . The null controllable region characterized

as (see [40]) x max = U {x = -iT e-ATBu(T)dT: U(T) E U} can be shown to be a
TE[O,oo) 0

bounded convex open set containing the origin if A is unstable. It can be shown that the

null controllable region of the multi-input system of Eq.2.12 is the Minkowski sum of the

null-controllable regions of the single input subsystems

(2.13)
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where B = [b1 b2 ... bm] and Ui denotes the ith component of the vector u. Specifically,

let Xiax denote the null controllable region of the subsystem of Eq.2.13 then xmax =
m

2:Xiax = {Xl + X2 + ... + Xm : Xi E Xiax,i = 1, ... ,m}. For systems with real
i=l
eigenvalues (see [40] for computing the null controllable region for low dimensional systems

with complex eigenvalues), the boundary of the null controllable region can be computed

as [40]

n-1
8Xiax = {±[I:2(-I)je-A(t-t j ) + -lnI]A-1biUiorm: 0 = h :::; t2:::;'" :::; tn-1 :::; t:::; oo}

j=l . -

(2.14)

Eq.2.14 can be used to verify whether a state lies within the null controllable region and,

more importantly, can be used ~o compute, for a given state, the unique value of ui such

that the state resides on the boundary of the null controllable region of a system of the form

of Eq.2.13 with a constraint of uron the manipulated input Ui. Utilizing these properties,

for a given state Xo we define a function ui(xo) as the unique positive number ui for

which Xo E 8Xiax(ui). Essentially, for a given state xo, Eq.2.14 is solved to yield ti,

i = 2 ... n - 1, t and uiorm . The value of uiorm equals the fictitious constraint ui (see

Eq.2.22 for an illustrative example). In the next subsection, we show how the predictive

control approach can utilize such a characterization in enabling stabilization from all points

within the null controllable region.

2.3.1.2 Predictive control design with the null controllable region as the sta- .

bility region

The key idea in the predictive control design is as follows: for any given value of the state,

the value ui represents the minimum control action required to stabilize the system. A

meaningful control action therefore would be one that drives the process in a way that

the minimum control action required to stabilize the system decreases. This intuitive idea

is formulated mathematically in Theorem 2.2 below. To this end, consider the system of

Eq.2.12 and an Xo E x max . Let Xi,O E Xiax(ui), i = 1, ... , m be such that Xo = 2.::1 Xi,O,

with ui :::; uiorm . The predictive controller that guarantees stabilization from all initial
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conditions in x max is of the form:

Ui,MPC = argmin{J(x,t,u(·))lu(·) E U, x(O) = Xi,O}

u;(x(t)) :::; 0

(2.15)

(2.16)

(2.17)

Eq.2.16 is the linear model describing the time evolution of the state x, due to the ith

manipulated input. The performance index is given by

J(x, t, u(·)) = U*(Xi(t)) (2.18)

The minimizing controls u?O are then applied to the plant and the procedure is repeated

indefinitely. Note that the above formulation is a continuous time version of the MPC,

and assumes instantaneous evaluation and implementation of the computed control value.

The result under continuous implementation is presented in Theorem 2.2 below, and the

'implement and hold' approach demonstrated and discussed in the simulation example for

linear systems and addressed explicitly in the predictive control design for nonlinear process

systems in Theorem 2.3.

Theorem 2.2: Consider the constrained system of Eq.2.12 under the MPC law of Eqs.2.15­

2.18. Then, given any Xo E x max , the optimization problem of Eq.2. 15-2.18 is feasible for

all times, and lim x(t) = O.
t--+oo

Proof of Theorem 2.2: We first prove the results for a single input system, and then

illustrate the generalization to multi-input systems. In the proof, the key things to show

are guaranteed feasibility of the optimization problem and the optimal solution leading to

closed-loop stability.

Single input system: In this part of the proof, we will drop the subscript on the input with

the understanding that a single input system is being analyzed. Consider an Xo E x max ,

for which u*(xo) = un < unarm. In part 1, we show feasibility of the optimization problem,

and in part 2, the implementation of the optimal solution resulting in closed-loop stability.

Part 1: Since Xo E xmax (unarm) , there exists at least one input trajectory u(t) with

lu(t)1 :::; unarm such that lim x(t) = O. Out of all such possible trajectories (for which
t--+oo
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lim x(t) = 0) let
t->oo

ui = min maxu*(xUl(t))
!ul(t)l:"':=unor1n t

where X Ul (t) denotes the state profile corresponding to an input profile of Ul (t). Thus ui

represents the minimum (over all possible stabilizing trajectories) of the maximum (over

time) value that the function u*(-) takes. Note that if ui ~ unarm then an xi such that

u*(xi) = ui will be such that xi E xmax(unarm) (in other words, it would mean that the

process starting from a state outside the null controllable region is actually stabilized) which

leads to a contradiction, we therefore have that

(2.20)

(2.21)

Let ui = Uo +'Y with 'Y > O. Since Xo E axmax(uo), this implies that Xo E xmax(uo +1'/2).

Denoting

U2 = min max u*(XU2 (t))
IU2(t)l:"':=u(j+,y/2 t, x(O)=xQ

and invoking Eq.2.20 again with uo+'Y/2 = unarm, we get that u2 < uo+'Y/2. Furthermore,

noting that the minimizations of Eq.2.19 and Eq.2.21 are exactly the same, albeit with a

larger constraint in Eq.2.19 compared to Eq.2.21, we get that ui = Uo + 'Y :S u2 < Uo+ 'Y/2,

which once again leads to a contradiction, implying'Y cannot be a positive real number. This

finally leads to the conclusion that for any Xo E xmax(unorm), there exists a manipulated

input profile and corresponding state trajectory such that u*(x(t + at)) :S u*(x(t)) for all

at > O. This implies that along such a trajectory the function u*(x(·)) is non-increasing,

implying the feasibility of the constraint u*(x(t)) :S O.

Part 2: Having established the feasibility of the optimization problem in Part 1 above,

consider now an .xo in x max for which J*(xo,t,uO) = minu*(xo(t)) = O. This implies

that for this Xo, the minimizing UMPC is such that the vector Axo + bu (which represents

the current direction of the state trajectory) is on the tangent plane to the surface defining

axmax(u*(xo)). This would further imply that the vectors Axo and bUMPC must them­

selves be co-planar (if they were not, a different allowable value for UMPC could have been

chosen to point the vector Axo + bu away from the tangent plane to the surface defining

axmax(u*(xo)), resulting in a J*(xo(t)) < 0). Upon implementation of such a UMPC, the
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tangent to axmax at x(t+) cannot remain in the same plane (due to the strict convexity of

the boundary of the set x max
) as that of the vector b resulting in min u*(xt) < O. There­

fore, for any Xo for which the minimum of u*(x(O)) = 0, the minimum of u*(x(O+)) < 0

ensuring convergence of u*(x(t)) to zero, in turn resulting in lim x(t) = O.
t->oo

Multiple input system: The result for the multiple input system is a direct generalization

for the single input system. Having defined Xo = 2.:~1 Xi,O, x max and XYlaX, the evolution

of the multiple input system is exactly the same as the sum of the multiple single input

systems. Feasibility and stability of the subsystems yields stability for the original multi­

input system. 0

Remark 2.2: While extensive results exist on stabilization of linear systems, the stability

guarantees are provided for subsets (which can get arbitrarily close to the null controllable

region) of the null controllable region, and the control design becomes practically impossible

to implement as larger stability regions are sought. The approach in the existing r~sults

is to estimate the time that it would take for all initial conditions in the 'desired' stability

region to reach the origin and to incorporate it in some fashion in the controller design. In

model predictive control approaches, this idea can directly be utilized via large or variable

horizon (e.g., see [63; 12]), leading to computationally expensive optimization problems. In

all of these approaches, the idea remains the same: require the state to go to the origin

(or some neighborhood of the origin) by some time (the horizon) and pick a large enough

horizon to ensure feasibility of the optimization problem. When the horizon is variable,

the optimization problem is in general difficult to solve since the number of decision vari­

ables in the optimization problem itself keep changing. When the horizon is fixed, the

number of decision variables that have to be retained grows as larger and larger subsets

of the null controllable region are desired as the stability region. Note that in our result,

feasibility from the null controllable region is achieved via appropriate formulation of the

stability constraint, and existing predictive controllers, which assume initial feasibility of

the optimization problem, are not guaranteed to be feasible from all initial conditions in the

null controllable region. In contrast, the proposed predictive controller achieves guaranteed

feasibility and stability for all initial conditions in the null controllable region.
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Note also that while the specific objective function of Eq.2.18 is designed to satisfy the

overriding requirement of stabilization (especially for initial conditions close to the boundary

of the null-controllable region for which existing predictive control designs would result in

a computationally un-implementable controller), once the state trajectory reaches closer to

the desired equilibrium point (and inside the stability region of existing predictive controllers

[58]), switching can be executed to implement the predictive controllers that allow for the

minimization of a more general objective function.

Remark 2.3: Note that while the results of Theorem 2.2 are derived under the assumption

of continuous implementation of the control action, in practice the results can be imple­

mented when the control action is computed and held for a certain period of time (as in

most applications). In doing so, for any·given value of the state the current value of ui is

computed, and instead of computing ·a control action that yields iti < 0, a control action is

computed that results in a lower value of ui at the next sampling instant (seethe simulation

example for a demonstration) thereby not requiring the computation and satisfaction of the

constraint on the derivative of ui.
.,

Remark 2.4: The result achieving stabilization from the null controllable region can best

be understood in light of the result using the control Lyapunov function. Specifically, the

controller of Eqs.2.3-2.18 does not guarantee stabilization from all initial conditions in the

null controllable region due to the following reasons: (1) for a choice of a CLF V, 11 is not

necessarily guaranteed to be negative for all initial conditions in x max , (2) even if a certain

choice of the CLF resulted in 11 being negative for all initial conditions in x max , the level

sets of a CLF may not necessarily coincide with the boundary of the null controllable region.

The stability region estimate would therefore typically be a subset of the null controllable

region.
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2.3.1.3 Simulation example

Consider a linear system of the form of Eq.2.12 with A = [0 -0.5] , B [0]
1.0 1.5 -1.0

and unarm = 1 (representing a nominally unstable linear system). The null controllable

region, x max , for this system is computed using Eq.2.14 and is shown in Fig.2.1. For

the sake of comparison, the stability region for the predictive controller of Theorem 2.1,

computed using a quadratic Lyapunov function, the set II (as described in Eq.2.10) and then

constructing the largest level set of the Lyapunov function V(x) = cmax = 1.1 completely

contained in II is also shown, denoted by n. The conservativeness in using level sets of

the Lyapunov function to estimate the stability region (for this particular example) is seen

via the part of x max not captured in n. While the theoretical results are derived under

the assumption of continuous implementation of the control action, the simulation results

demonstrate the discrete implementation of the controller, with a discretization time of

~ = 0.1. The constraint of Eq.2.17 is therefore implemented as u*(x(t + .6.)) ~ u*(x(t)).

The function u* (x) is evaluated by computing the unique solution pair u* ,T to the equation

(utilizing Eq.19 in [40]):

x(t) = (2eAT + I) A-IBu* (2.22)

and then by evaluating u*(-) = lu*l. Note that the same equation, setting u* = 1, and by

varying T from 0 to a sufficiently large number, is used to construct the boundary of the

set x max (for more details, see [40]). The optimization problem in the predictive controller

formulation is solved by using the MATLAB function FMINCON.

To illustrate the stabilization properties of the proposed predictive controller, we pick an

initial condition Xo = [-0.6032, 0.6003] in x max and try to stabilize it using the predictive

controller of Eqs.2.3-2.5 (that requires the control action to result in a decay in the value of

V(x)). As can be seen from the dashed lines in Fig.2.1, closed-loop stability is not achieved

(the corresponding state trajectories and input profile can be seen as dashed lines in Fig.2.2

(a-c)). In contrast, when the control action computed by the proposed predictive controller

is implemented, closed-loop stability is achieved. Note that the proposed predictive con­

troller does not try to compute a control action that decreases the value of the Lyapunov



21

function, but instead computes a control action that drives the state trajectory along lower

'level sets' of u*. Fig.2.2 (d-e) shows the evolution of the Lyapunov function and that of

u*(x(t)) for the two scenarios. Once again, the figures demonstrate the decrease in the

value of the Lyapunov function initially achievable (see inset), after which the state escapes

the set of initial conditions from where the negative definiteness of V can be enforced. In

contrast, the solid lines show the decrease in the value of u*(x(t)) enforced by the predictive

controller (note that the predictive controller also enforces a continual decrease in the value

of the Lyapunov function is only incidental). In summary, the proposed predictive controller

drives the state trajectory to successively lower values of u*(x(t)) eventually stabilizing the

system.

2.3.2 Model predictive control of nonlinear systems

In contrast to linear systems, where an explicit characterization of the null controllable

region is possible, for nonlinear process systems such a characterization remains an open

problem. In [59], predictive controllers were designed that utilized auxiliary Lyapunov­

based control design for estimating the feasibility and stability region. In the predictive

control design of [59], the first layer of conservativeness stems from the estimation of II

which only captures initial conditions for which negative definiteness of V can be achieved

by the auxiliary control law, instead of characterizing the set of initial conditions for which

negative definiteness of V can be achieved independent of the control law (which we will

characterize and denote by II+). Additionally, only requiring V to be negative allows

stabilization from all initial conditions inside n but misses out on achieving stabilization

from initial conditions outside n but inside II.

2.3.2.1 Nonlinear model predictive controller

We utilize in this section the constraint handling capabilities of the predictive controller to

expand on the set of initial conditions from where closed-loop stability can be achieved to

alleviate the possible conservatism associated with Lyapunov-based control designs. To this



22

end, we first characterize the set n+ for which negative definiteness of the Lyapunov function

derivative can be achieved subject to manipulated input constraints (and independent of

the control law) described by

n+
m

{x E lRn
: LfV(x) + 2:LGiinV(X)Ui:::; -E**}

i=l

(2.23)

where LG"!,,in V(x)ui = LGi V(x)u~ax if LGiV(x) :::; 0 and LG"!,,in V(x)ui = LGiV(x)U~in if
• t

LGiV(x) > 0 and E** is a positive number to be defined. The set n+ therefore denotes

the entire set of initial conditions from where V < -E** is achievable (and not just the set

from where a specific control law can achieve V < 0 thereby improving upon the estimate

n in Eq.2.10). The idea behind the expression in Eq.2.23 is as follows: each element of

the vector LGV(x), denoted by LgiV(x) captures the effect of the ith component of the

manipulated input on the Lyapunov function derivative. The term LG,!,inV(x)ui therefore.
captures the most that the ith manipulated input can contribute towards making V(x)

negative. Alternatively, the expression can also be thought of as the set of states for which

V(x) is negative under the 'bang-bang' control law given by Ui(X) = -sgn(LgY(x))uiorm

(for the case where IU~axl = IU~inl = uiorm
) where sgn(x) = 1 if x?: 0 and sgn(x) = -1

if x < O. By accounting for the maximum control action available, the set rr+ expands on

the estimate n. Subsequently, computation of the largest level set n+, of the form

(2.24)

completely contained in n+ improves upon the estimate n. Requiring V ::s -E** instead of

only requiring V < 0 is formulated to ensure stabilization subject to implement and hold

(similar to the result in Theorem 2.1). Having defined the sets rr+ and n+ the predictive

controller enhancing the set of initial conditions from which stability is achieved (accounting

specifically for initial conditions outside n+ but inside rr+) takes the form:

u = argmin{J(x,t,u(·))lu(-) E S}

s.t. ± = f(x) + G(x)u

(2.25)

._(2.26)



V(X(T)) ::::: -E* \f T E [t, t +~) if V(x(t)) > 0'

V(X(T)) ::::: 0' \f T E [t, t +~) if V(x(t))::::: 0'

x(t +T) E rr+ \f T E [t, t +..6..) if V(x(t)) > cmax+
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(2.27)

(2.28)

(2.29)

where S = S(t, T) is the family of piecewise constant functions (functions continuous from

the right), with period ..6.., mapping [t, t + T] into U and T is the horizon. Eq.2.26 is the

model describing the time evolution of the state x under continuous operation, V is the

control Lyapunov function (eLF) and 0', E* > 0 are parameters defined in Theorem 2.1.

The performance index is given by

I
t+T

J(x,t,u(·)) = t [lIxU(s;x,t)lI~ + Ilu(s)II~] ds (2.30)..

where Q is a positive semi-definite symmetric matrix, R is a strictly positive definite sym:­

metric matrix. XU(s; x, t) denotes the solution of Eq.2.1, due to control u, with initial state

x at time t. The minimizing control uO(.) E S is then applied to the process over the interval

[t, t + ..6..) and the procedure is repeated indefinitely. The feasibility and stability properties

of the predictive controller are formalized in Theorem 2.3 below:

Theorem 2.3 : Consider the constrained system of Eq.2.1 under the MPC law of Eqs.2.25­

2.30. Then, given any d > 0, there exists a positive real number E** such that if i o E

n+, where n+ was defined in Eq.2.24, then the optimization problem of Eq.2.25-2.30 is

guaranteed to be feasible for all times, x(t) E n+ for all t ~ 0 and lim sup IIx(t)11 ::::: d.
t->oo

Furthermore, for Xo E rr+\n+ where rr+ was defined in Eq.2.23, if the optimization problem

of Eq.2.25~2.30 is successively feasible for all times, then x(t) E rr+ Un+ for all t ~ 0 and

lim sup Ilx(t)11 ::::: d.
t->oo

Proof of Theorem 2.3: The proof of the theorem comprises of two parts. In part 1, we _

show the feasibility of the optimization problem for all x E n+ and subsequent convergence

to the desired neighborhood of the origin, while in part 2, for x tf- n+ we show convergence

to the desired neighborhood of the origin upon assumption of feasibility of the optimization

problem.

Part 1: From Theorem 2.1 and the proof (see [59]) it follows that given d, there exist

positive real numbers 0' and..6..* such that if ..6.. E (0,..6..*] then satisfaction of the constraints
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of Eqs.2.27-2.28 ensures convergence to the desired neighborhood of the origin. In the

proof, we show the existence of the positive real number E** (yielding ,(1+) which ensures

initial and continued satisfaction of the constraints of Eqs.2.27-2.28 for all XQ E ,(1+. From

the continuity of the functions !O, GO LfV(·) LaV(,), the boundedness of U and by

restricting the state XQ to the set ,(1+, it follows that given E* and /)"* there exists a positive

real number E** such that if LfV(xQ)+LaV(xQ)uQ :::; -E** then LfV(x(r))+LaV(x(r))uQ :::;

-E* \f r E (0, /)"*], where E*, /)"* were defined in Theorem 2.1. This ensures initial feasibility

of the constraints of Eq.2.27 for all XQ E ,(1+. Initial satisfaction of the constraints ensures

that V(x(t + /),,)) :::; V(x(t)), which in turn implies that x(t + /),,) E ,(1+ for all t ~ 0,

thereby yielding successive feasibility of the optimization problem. Successive feasibility of

the optimization problem leads to convergence to the desired neighborhood of the origin.

Part 2: For all XQ rt ,(1, the assumption of initial and successive feasibility of the constraint

of Eq.2.29 ensures that x(t + r) E rr+ for all x(t) rt ,(1+, r E (0,/),,*). Also, the satisfaction

of the constraint of Eq.2.27 ensures that the value of the Lyapunov function continues to

decreaSe, implying that the state trajectory eventually converges to the set n+. Convergence

to lim sup IIx(t) II :::; d follow from part 1 above. This concludes the proof of Theorem 2.3.
t-400

o

Remark 2.5: The meaning and implication of the constraints of Eqs.2.27-2.29 is as

follows: the constraint of Eq.2.27 requires the control action to enforce a decay in the

value of the Lyapunov-function value over the next time interval; because of the discrete

nature (implement and hold) of the control action, such decay may not be achievable for

all state values, and is only requested to drive the process to a desired neighborhood of

the origin defined by Vex) :::; 0'. Once the process reaches the desired neighborhood of

the origin, the constraint of Eq.2.28 prevents the state from escaping that neighborhood.

For initial conditions within a level set of the Lyapunov function (,(1+), successive decays

in the LyapUl10v function value is achievable and sufficient to drive the state to the desired

neighborhood of the origin. For initial conditions outside the set ,(1+, the constraint of

Eq.2.29 asks for the control action to be computed such that for the process state at the

next time instant, negative definiteness of 11 can be successively achieved. This ensures
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that out of all possible control actions that can achieve negative definiteness of 11, one is

chosen that ensures that the state trajectory stays within n+ from where continued decay

of the Lyapunov function value is possible. A continued decay in the Lyapunov function

value leads to convergence to the desired neighborhood of the origin. Note also that in

contrast to the result on linear system, guaranteed feasibility for all initial conditions in the

null controllable region simply cannot be achieved, yet Eq.2.29 represents a constraint that

at least guides the control law to take some meaningful control action for initial conditions

outside n+. This constraint goes beyond (and does better than) simply requiring a decay

in the value of the Lyapunov function and enables stabilization from a larger set of initial

conditions (see the simulation example for a demonstration).

Remark 2.6: Note that the estimates of the stability region, and the enhancement with

the proposed predictive controllers are influenced by the choice of the control Lyapunov

function. Furthermore, referring to the choice of the control Lyapunov function, it is im-
--

portant to note that a general procedure for the construction of CLFs for nonlinear process

systems of the form of Eq.2.1 is currently not available. We refer the reader to [52] for

further discussion on this issue.

Remark 2.7: Note that in this work, we rely on available nonlinear optimization solvers

(e.g MATLABs FMINCON) to handle the optimization problem in Eqs.2.25-2.30. The

ability to compute a local or global solution does not affect the stability results given in

Theorem 2.3, and remains beyond the scope of the present work. We also note that the

presence of multiple local optima can cause sudden rapid changes within the implemented

input trajectory which may be undesirable in many applications. This behavior can be
- .
mitigated by including a weighted term on the movement of the computed input value

within the objective function in Eq.2.30.

2.3.2.2 Illustrative chemical process example

Consider a continuous stirred tank reactor where an irreversible, first-order exothermic

reaction of the form A ~ B takes place. The mathematical model for the process takes the
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(2.31)

-E
F -
-(CAO - CA) - koeRTRCA
V

-E
F (-f:,.H) - Q
-(TAO -TR) + koeRTRCA +--
V pCp pCpV

where CA denotes the concentration of the species A, TR denotes the temperature of the

form:

reactor, Q is the heat added to the reactor, V is the volume of the reactor, ko, E, f:,.H are

the pre-exponential constant, the activation energy, and the enthalpy of the reaction and

Cp and p are the heat capacity and fluid density in the reactor. The values of all process

parameters can be found in Table 2.1. The control objective is to stabilize the reactor at the

unstable equilibrium point (CA, Til) = (0.57 Kmoljm3 , 395.3 K) using the rate of heat

input, Q, and change in inlet concentration of species A, f:,.CA = CAO - CADs as manipulated

inputs with constraints: IQI ~ 32 KJjs and If:,.CAO! ~ 1 Kmoljm3
.

We first construct a Lyapunov-based predictive controller using a V (x) = x'P x where

(
0.983 0.025)

x = (CA -CA, TR-Til), P = where the matrix P is computed by solving
0.025 0.001

the Riccati inequality with the linearized system matrices. The parameters in the objective

(
10.0 0.0 )

function of Eq.2.30 are chosen as Q = qI, with q = 0.1, and R =
0.0 10000.0

The set rr and the stability region estimate under the Lyapunov-based controller n are

computed and shown in Fig.2.3. Predicition and control horizons of 0.01 min are used in

implementing the predictive controller. The constrained nonlinear optimization problem is

solved using the MATLAB subroutine FMINCON, and the set of ODEs is integrated using

the MATLAB solver ODE15s.

To illustrate the enhancement in the set of initial conditions from where closed-loop stability

can be achieved using the proposed controller, we pick an initial condition CA(O), TR(O) =

1.113 kmoljm3 , 395.3 K outside n+ but inside rr+. We first implement the Lyapunov­

based predictive controller of Theorem 2.1 that only requires the value of the Lyapunov

function to decrease. Since the initial condition is within the set rr+, there exists a control

action that can enforce negative definiteness of the Lyapunov function and the controller

proceeds to implement such control action. However, enforcing negative definiteness of 11
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(i.e., driving the trajectory to successively lower level curves of the Lyapunov function), is

not sufficient to ensure that the trajectory remains within the set n+. At t = 0.12 min,

the state trajectory escapes out of n+, and it is no longer possible to find a control action

that enforces negative definiteness of V. If the stability constraints are removed to allow

feasibility of the optimization problem, the value of the Lyapunov function continues to

increase (see dashed lines in Figs.2.4-2.5 for the corresponding state and input profiles),

and closed-loop stability is not achieved. In contrast, if the proposed predictive controller

is implemented, it not only enforces negative definiteness of V, but also ensures that the

state trajectory does not escape n+. In other words, out of possible state trajectories along

decreasing values of the level curves of V(x), those are chosen (if they exist) that keep the

state profile in n+. Closed-loop stability is thereby achieved, demonstrating an expansion

on the set of initial conditions from where closed-loop stability can be achieved by better

utilizing the constraint enforcing capabilities of the predictive control approach.

2.4 Application to the styrene polymerization process

Having illustrated the enhancement in the stability region via a chemical reactor example,

We implement the predictive controller on the styrene polymerization process. To this end,

first a quadratic Lyapunov function of the form V(x) = xT Px with

P=

52570

2457

261.4

6.942

2457 261.4 6.942

181.9 13.40 2.561

1.340 1.708 0.2300

2.561 0.2300 0.9668

is chosen in the predictive controller design and the set of initial conditions from where V < 0

is achievable (the set rr+) and the invariant set n+ within rr+ (defined by V(x) ~ 105)

is computed. In the application, the 'discretized' version of the stability constraint are

implemented, i.e., V(x(t+..6.)) < V(x(t)) is implemented instead of V(X(t+T)) < -E*, and

x(t +..6.) E n+ is implemented instead of x(t +T) E rr+, where a sampling time ..6. = 5min

is used. The weighting matrices in the predictive controller were chosen as Q = qlx with
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q = 0.1 and R = rIu with r = 1, where Ix and Iu are the identity matrices of appropriate

dimensions.

We first demonstrate the implementation of the predictive control algorithm for an initial

condition (C[(O) = 0.11 kmolm-3 , CM(O) = 3.73 kmolm-3 , T(O) = 334.92 K, Te(O) =

314.24 K) outside the set n+. As can be seen from the solid lines in Figs.2.6-2.7 (which show

the evolution ofthe state and input profiles), even though the initial condition is significantly

outside the stability region estimate, the predictive controller is able to stabilize the closed­

loop system. We next investigate the robustness of the predictive controller with respect to

parametric 'uncertainty and disturbances from an initial condition C[(O) = 0.05 kmolm-3 ,

CM(O) = 2.45 kmolm-3 , T(O) = 372.66 K, Te(O) = 332.05 K. Specifically, we consider

errors in the values of the parameters Ap , hA and Ve of magnitude +1%, +2% and +10%,

respectively as well as sinusoidal disturbances in the initiator flow rate Fi and the coolant

inlet temperature Tef of the form +O.01Fi ,n sin(t/lO) and +O.01Tef,n sin(t/2) respectively,

where the subscript n denotes the nominal steady-state values. These parametric errors

and disturbances result in a change in the value of the nominal steady state. The predictive

controller is however able to offset the effect of the parametric errors and disturbances

demonstrating robust stabilization the closed-loop system (see dashed lines in Figs.2.6­

2.7).

2.5 Conclusions

This chapter considered the problem of predictive control of nonlinear process systems

subject to input constraints. A predictive controller for linear systems was first designed

that achieves stability for every initial condition in the null controllable region without

resorting to infinite horizons. For nonlinear process systems, predictive controllers were

designed that expand on the set of initial conditions from where closed-loop stability is

achievable. The proposed method was illustrated using a chemical reactor example and

the robustness with respect to parametric uncertainty and disturbances demonstrated via

application to a styrene polymerization process.
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Table 2.1: Chemical reactor parameters and steady-state values.

V 0.1 m 3

R 8.314 KJjKmol·K

CADs 1.0 Kmoljm3

TAOs 310.0 K

Qs 0.0 KJjmin

b.H -4.78 x 104 KJjKmol

ko 72 x 109 min-1

E 8.314 x 104 KJjKmol

Cp 0.239 KJjKg·K

P 1000.0 Kgjm3

F 100 x 10-3 m 3 jmin

TRs 395.33 K

CAs 0.57 Kmoljm3



Table 2.2: Styrene polymerization parameter values and units.

Fi 3 x 10-4 m 3s-1

Fm 10.5 X 10-4 m 3s-1

Fs 12.75 x 10-4 m 3s-1

Ft 26.25 x 10-4 m 3s-1

Fe 13.1 X 10-4 m 3s-1

CIj,n 0.5888 kmolm-3

CI 0.0480 kmolm-3

CMj,n 9.975 kmolm-3

CM 2.3331 kmolm-3

Tj,~ 306.71 K

T 354.9205 K

Tej,n 294.85 K

Te 316.2429 K

Ad 5.95 X 1014 s-l

At 1.25 X 1010 s-l

Ap 1.06 X 108 kmolm-3s-1

Ed/R 14.897 X 103 K

EtiR 8.43 X 102 K

Ep/R 3.557 X 103 K

f 0.6

D.H -1.67 X 104 kJkmol-1

PCp 360 kJm-3K-1

hA 700 JK-1s-1

PeCpe 966.3 kJm-3K-1

~T 3.0 m 3

~ 3.312 m 3

30
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Figure 2.1: Evolution of the state trajectory for the linear system example under the predic­

tive controller of Eqs.2.3-2.7 (dashed line) with a stability region n and under the proposed

predictive controller (solid line) with a stability region x max .
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Figure 2.2: The state (a-b) and input profiles (c) and the evolution of the Lyapunov function

(d) and u*(x(t)) (e) for the linear system example under the predictive controller of Eqs.2.3­

2.7 (dashed lines) and under the proposed predictive controller (solid lines). The insets show

the initial evolution of the system.
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Figure 2.3: Evolution of the state trajectory for the chemical reactor example under the

predictive controller of Eqs:2.3-:2.-7 (dashed line) with a stability region n and under the pro­

posed predictive controller (solid line) enabling stabilization from initial conditions outside

n.
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lines) from an initial condition outside f2.
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Figure 2.6: Evolution of the state profiles for the styrene polymerization process under

the proposed predictive controller in the absence (solid lines) and presence of disturbances

(dashed lines).
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Chapter 3

Safe-Parking of Nonlinear Process

Systems: Handling Uncertainty

and Unavailability of

Measurements

3.1 Introduction

The operation and control of chemical processes is experiencing increased reliance on au­

tomation with the enhanced availability of sensors and actuators and communication in­

frastructure. The increased availability of information has opened up several opportunities

in making better use of the available resources and coordinating safety measures across the

plant. The resulting interdependence of processing units, both materially and in terms of

information flow, has also placed more em.phasis on the need to preserve safe plant op­

eration to handle eventualities and contain the effects of faults to local processing units.

Even under 'normal' operating conditions, chemical processes exhibit significant complex­

ity (manifested as nonlinearities) and control designs have to account for operational issues

38
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such as constraints, disturbances and availability of limited measurements. Safe and prof­

itable operation of chemical processes, therefore, relies on the design and implementation of

control algorithms that can handle process complexity as well as respond to, and minimize

the negative effect of, eventualities.

The extensive economic, personnel and environmental damage caused by the faults (it is

estimated that the U.S. petrochemical industry loses an estimated $20 billion per year due

to faults; see e.g., [15] and the references therein) as well as the practical inevitability of

fault occurrence has motivated several researchers to consider the problem of handling of

faults. The first step in handling of faults is the ability to detect and isolate the faults.

Statistical and pattern recognition techniques for data analysis and interpretation (e.g., [45;

72; 66; 65; 18; 2}) use historical plant-data to construct indicators that identify deviations

from normal operation to detect faults. The problem of using fundamental process models

for the purpose of detecting faults has been studied extensively in the context of linear

systems (e.g., [53; 33; 34; 55]); and more recently, fundamental results in the context of

nonlinear systems have been derived (e.g., [74; 20; 68]).

In this chapter, we focus on mechanisms that must be put in place to handle a fault after

it has been detected and isolated. The existing results on fault handling have focussed on

continued operation at the nominal operating point, under the assumption of sufficiency

of the depleted control action to preserve nominal operation. Under this assumption, one

approach dictates fault-accommodation via robust/reliable control designs (e.g., see [84])

that allow continued operation at the nominal equilibrium point via controller-retuning. To

handle the situation when the fault causes such significant depletion of the control action

that prevents the handling of fault via controller re-tuning, other approaches assume the

existence of redundant control configurations to preserve closed~loop stability. In the choice

of redundant control configuration, however, the presence of nonlinearity, input constraints

and uncertainty, as well as the hybrid nature of the closed-loop process must be accounted

for.

The development of the above-mentioned reconfiguration-based approaches has been fa-
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cilitated by extensive research on control of nonlinear and switched systems (see, e.g.,

[48; 79; 41; 54; 22; 58; 59; 16]). These include Lyapunov-based nonlinear control de­

signs (see, e.g., [48; 28] for a review, see [16]) that provide an explicit characterization of

the stability region in the presence of constraints as well as model predictive control designs

(see, for example the survey paper, [54]) that allow incorporation of performance consid­

erations in the control design and provide stability guarantees based on the assumption of

initial feasibility of the optimization problem. Recently, model predictive controllers have

been designed [58; 59] that allow explicit characterization of the stability region, via mim­

icking the stability properties of Lyapunov-based bounded controllers, without assuming

initial feasibility of the optimization problem. In chapter 2 of this thesis a model predictive

controller design was presented which better utilizes the constraint handling capabilities of

model predictive controllers and enhances the set of initial conditions from where stability

is achieved. The work in chapter 2 (also appeared in [52]), however, does not explicitly

consider uncertainty and assumes the availability of complete state information. One of the

contributions of the work in this chapter is the generalization of the I?redictive controller

of chapter 2 to explicitly consider uncertainty and availability of limited measurements for

subsequent use within a fault-handling framework.

In [60; 56; 25; 30; 61] reconfiguration-based fault-tolerant control structures have been devel­

oped that guarantee preservation of closed-loop stability using redundant control configura­

tions. Specifically, closed-loop stability is preserved (having first detected and isolated the

occurrence of a fault) via implementing a backup control configuration chosen such that 1)

the state at the time of the failure resides in the stability region of the candidate backup con­

trol configuration and 2) the backup configuration does not use the failed control actuator.

However, all the reconfiguration-based fault-tolerant control designs of [60; 56; 25; 30; 61]

assume the existence of a backup, redundant control configuration. The scenario where a

fault results in temporary loss of stability that cannot be handled by redundant control

loops has not been explicitly addressed. In the absence of a framework for handling such

faults, ad-hoc approaches could result in onset of hazardous situations and process shut­

down with substantially negative economic ramifications. Recently, in [36] a 'safe-parking'

framework was developed that preserves process safety and enables smooth resumption of
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nominal operation on fault repair via identifying appropriate 'safe-park' points where the

process is stabilized during failure. The safe-parking framework in [36], assumes availability

of the entire state information as well as precise process dynamics knowledge. Availability

of limited measurements and the presence of disturbances and uncertainty, however, can

destabilize even nominal operation and also invalidate the guarantees of safe-parking and

resumption of smooth operation upon fault-repair.

Motivated by the above considerations, the work in this chapter considers the problem

of handling faults in control of nonlinear process systems subject to input constraints,

uncertainty and unavailability of measurements. A framework is developed to handle faults

that preclude the possibility of continued operation at the nominal equilibrium point using

robust or reconfiguration-based fault-tolerant control approaches. The key consideration is

to operate the plant using the depleted control at an appropriate 'safe-park' point to prevent

onset of hazardous situations as well as enable smooth resumption of nominal operation

upon fault-repair. In determining the safe-park point, dynamic considerations (via stability

regions) are incorporated over and above the steady state considerations (via determining

existence of equilibrium points for acceptable values of the functioning actuators). The rest

of the chapter is organized as follows: we first present, in Section 3.2.1, the class of processes

considered, followed by a styrene polymerization process in Section 3.2.2 and formulate the

safe-parking problem in Section 3.2.3. In Section 3.3.1 we extend the results in chapter 2

to develop a robust Lyapunov-based predictive controller that enhances the set of initial

conditions from where stabilization is achieved subject to uncertainty and present a safe­

parking design that addresses the presence of uncertainty in Section 3.3.2. The problem of

availability of limited measurements is handled in the control design in Section 3.4.1 and

incorporated in the safe-parking framework in Section 3.4.2.-- A chemical reactor example is

used to illustrate the details of the safe-parking framework in Sections 3.3.3 and 3.4.3 while

application to the styrene polymerization process is demonstrated in Section 3.5. Finally,

in Section 3.6 we summarize our results.
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3.2 Preliminaries

In this section, we describe the class of processes considered, followed by a motivating

example of a polystyrene process and then a formalization of the control problem.

3.2.1 Process description

We consider nonlinear process systems subject to input constraints and failures described

by:

x(t)

y(x(t))

j(x(t)) + G(x(t))ua(t) + W(x)e(t)

h(x(t)); uaO EVa, () E e
(3.1)

where x E lRn and y E lRm denote the vector of state and measured output variables,

urr(t) E lRm denotes the vector of constrained manipulated inputs, taking values in a

nonempty convex subset Va of lRm
, where Va = {u E IRm

: Umin,u :S U :S umax,u}'

where Umin,.,., umax,u E lRm denote the constraints on the manipulated inputs, ()(t) =

[e 1(t) ... ()q(t)jT E e c IRq where e = {() E lRq : ()min :S () :S ()max}, where ()min, ()max E lRq

denote the bounds on the vector of uncertain (possibly time-varying) but bounded variables

taking values in a nonempty compact convex subset of IRq, j(O) = 0 and U E {1,2} is a

discrete variable that indexes the fault-free (u = 1) and faulty (u = 2) operation. With­

out loss of generality, the equilibrium point x = 0, is assumed to be the point of nominal

operation.

The.vector function j(x) and the matrices W(x), G(x) = [gl(x)··· gm(x)] where gi(x) E

IRn
, i = 1··· m are assumed to be locally Lipschitz. We also assume the existence of

a control Lyapunov function V : lRn
-t IR, which will be subsequently used within the

control design. Throughout the chapter, we assume L f V, LeV, LwV are locally Lipschitz

functions, where the notation Lxh denotes the standard Lie derivative of a scalar function

hC) with respect to the vector function x(} The notation II . IIQ refers to the weighted

norm, defined by IIxll~ = x'Qx fOT all x. E IRn
, where Q is a positive definite symmetric

matrix and x' denotes the transpose of x. The notation B\A, where A and B are sets,
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refers to the relative complement, defined by B\A = {x E B : x rf:. A}.

3.2.2 Motivating example

To motivate the safe-parking framework and to demonstrate an application of our results,

we introduce in this section a polystyrene polymerization process. To this end, consider the

following model for a polystyrene polymerization process given in [39] (also studied in, e.g.,

[69], [52] and [36], where it is used in the context of demonstrating the stability properties

of a new predictive controller design and the safe-parking framework in the absence of

uncertainty and availability of full state information)

--
kt

(3.2)

where GI , Glf, GM, GMf, refer to the concentrations of the initiator and monomer in

the reactor and inlet stream, respectively, T and Tf refer to the reactor and inlet stream

temperatures and Tef and Te refer to the coolant inlet and jacket temperatures, respectively.

The manipulated inputs are the monomer and coolant flow rates, denoted by Fm and Fe'

respectively. As is the practice with the operation of the polystyrene polymerization process

[39], the solvent flow rate is also changed in proportion to the monomer flow rate. The

values of the process parameters are given in Table 3.1. The control objective is to stabilize
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the reactor at the equilibrium point (Cr = 0.07 kmoljm3 , CM = 3.97 kmoljm3
, T =

303.55 K, Tc = 297.95 K), corresponding to the nominal values of the manipulated inputs

of Fe = 1.31 Ljs and Fm = 1.05 Lj8. The manipulated inputs are constrained as 0::; Fe::;

31.31 Lj8 and 0 ::; Fm ::; 31.05 Lj8.

Consider the scenario where the valve manipulating the coolant flow rate fails and reverts

to the fail-safe position (fully open). With the coolant flow rate set to the maximum, there

simply does not exist an admissible value ofthe functioning manipulated input Pm' such that

the nominal equilibrium point remains an equilibrium point for the process, precluding the

possibility of continued operation at the nominal equilibrium point (regardless of the choice

ofthe control law). The key problem is to determine how to operate the process under failure

conditions to maintain process safety and, upon fault-repair, efficient resumption of nominal

operation. We will demonstrate the application of the proposed safe-parking framework on

the styrene polymerization process subject to uncertainty and limited availability of (noisy)

measurements in Section 3.5, while illustrating the details of the proposed framework using

a chemical reactor in Sections 3.3.3 and 3.4.3.

3.2.3 Problem definition

We consider faults in the control actuators under the assumption that upon failure, the

actuator reverts to a fail-safe position. Examples of fail-safe positions include fully open

for a valve regulating a coolant flow rate, fully closed for a valve regulating a steam flow

etc. Specifically, we characterize the fault occurring without loss of generality, in the first

control actuator at a time Tfau1t , subsequently rectified at a time Trepair (i.e., for t ::; Tfau1t

and t > Trepair cr(t) = 1 and (J(t) = 2 for Tfau1t < t < Trepair) as u1(t) = u1 .
, - '2 fa~led'

with U;"in,2 ::; u}ailed ::; U;"ax,2' where ui denotes the ith component of a vector u, for all

Tfau1t < t ::; Trepair, leaving only u~, i = 2 ... m available for feedback control. With

u§(t) = U}ailed' there exists a (possibly connected) manifold of equilibrium points where

the process can be stabilized, which we denote as the candidate safe-park set Xc := {xc E

IRn
: f(x c) +'gl(Xc)U}ailed+ 2:::2 i(xc)u~ = 0, U~in ::; U~ ::; U~ax, i = 2, ... , m}. The safe-
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park candidates therefore represent possible equilibrium points (note that the subsequent

results do not require the set of equilibrium points to be connected), corresponding to the

failed actuator stuck at the fail-safe value, and acceptable values of the other manipulated

inputs. Note that if U}ailed # 0, then it may happen that 0 ~ Xc, i.e., if the failed actuator

is frozen at a non-nominal value, then it is possible that the process simply cannot be

stabilized at the nominal equilibrium point using the functioning control actuators. In

other words, if one of the manipulated input fails and reverts to a fail-safe position, it

may happen that no admissible combination of the functioning inputs exists for which the

nominal equilibrium point continues to be an equilibrium point. Maintaining the functioning

actuators at the nominal values may result in the onset of hazardous or undesirable process

conditions or drive the process state to a point from where it may not be possible to

resume nominal operation upon fault-repair. We define the safe-parking problem as the

one of identifying safe-park points X s E Xc that preserve process safety and allow smooth

resumption of nominal operation upon fault-repair subject to uncertainty and availability

of limited measurements.

3.3 Safe-parking of nonlinear process systems: handling un­

certainty

The presence of uncertainty can invalidate the stability guarantees of the Lyapunov-based

predictive controller developed in chapter 2, as well as the the safe-parking framework of

[36]. To handle uncertainty, we first develop a robust predictive controller that provides an

explicit characterization of the robust stability region (without assuming initial feasibility

and without resorting to min-max computations), as well as enhances the set of inItial

conditions from where stabilization is achieved in Section 3.3.1 and then present a safe­

parking algorithm handling uncertainty in Section 3.3.2.
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3.3.1 Robust model predictive controller

In this section we present a robust predictive controller, for each mode of operation (and

drop the subscript (J for ease of notation) that allows an explicit characterization of the

feasibility and stability region and fully exploits the constraint handling capabilities of the

predictive control approach. Using a control Lyapunov-function V, we define the set

II = {x E lRn : sup inf LfV(x) + LwV(x)e + LGV(x)u + pV(x) ::; O} (3.3)
8E8 uEU

where LGV = [Lg1 V .. , Lgm V] is a row vector (for a discussion on the definition of the

set II, see Remark 1). The sup inf can be easily computed by determining the sign of
8E8 uEU

the elements within the LwV and LGV terms. For instance, if LWiV(X) ::; 0, then the

supremum is obtained for ei = e-:nax, where LWi V(x) and ei denote the ith elements of the

vectors LwV(x) and e respectively. Similarly, if LGiV(x) ~ 0, then the infimum is obtained

for ui = u-:nin, where LGiV(X) and ui denote the ith elements of the vectors LGV(x) and

u respectively. For all values of the state in the set II, therefore, there exists a value of the

manipulated input that satisfies the constraints (note that the definition of the set II does

not depend on any specific control law, but only on the Lyapunov funCtion, the process

dynamics, input constraints and uncertainty) and also counters the effect of uncertainty on

the Lyapunov function derivative. An estimate of the stability region can be constructed

using a level set of V, i.e

n := {x E IRn : V(x) ::; cmax } (3.4)

where cmax > 0 is the largest number for which n ~ II. Consider now the receding horizon

implementation of the control action computed by solving an optimization problem of the

form:

UMPc(X) := argmin{J(x, t,u(·))lu(·) E S} (3.5)

s.t. x = f(x) + G(x)u (3.6)

LGV(x(t))u(x(t)) ::; sup -LfV(x(t)) - LwV(x(t))e - pV(x(t)) (3.7)
8E8

x(r) E II \;I r E [t, t +.6.) (3.8)



(3.9)
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where p is a constant, S = S(t, T) is the family of piecewise continuous functions (functions

continuous from the right), with period..6., mapping [t, t+T] into U. Eq.3.6 is the 'nominal'

nonlinear model (without the uncertainty. term) describing the time evolution of the state

x. A control u(·) in S is characterized by the sequence {u[j]} where u[j] := u(j..6.) and

satisfies u(t) = u[j] for all t E [j..6., (j + 1)..6.). The performance index is given by

I
t+T

J(x, t,u(')) = t [lI xU(sjx, t)ll~ + Ilu(s)II~] ds

where Q and R are positive semi-definite, and strictly positive definite, symmetric matrices,

respectively, and X
U

( Sj x, t) denotes the solution of Eq.3.6, due to control u, with initial state

x at time t and T is the specified horizon. The minimizing control u~pc(-) E S is then

applied to the plant over the interval [t, t + ..6.) and the procedure is repeated indefinitely.

Feasibility of the optimization problem and how it depends on ..6. and the stability properties

of the closed-loop system under the predictive controller are formalized in Theorem 3.1

below.

Theorem 3.1: Consider the constrained system of Eq.3.1 under the MPC law of Eqs.3.5­

3.9. Then, given any positive real number d, there exists a positive real number ..6.* such

that if ..6. E (0,..6.*] and x(O) := Xo E 0, then the optimization problem of Eqs.3.5-3.9 is

guaranteed to be initially and successively feasible, x(t) EO V t 2: 0 and lim sup Ilx(t)1I ::; d.
t-->oo

Furthermore, if Xo E II\O, then if the optimization problem is successively feasible, then

x(t) E II V t 2: 0 and lim sup IIx(t)11 ::; d.
t-->oo

Proof of Theorem 3.1: The proof of this theorem is divided in three parts. In the first

part we show for all Xo E 0, the optimization problem of Eqs.3.5-3.9 is guaranteed to be

initially feasible. We then show that there exists a ..6.* such that if ..6. E (0, ..6.*] then 0

is invariant under receding horizon implementation of the predictive controller of Eqs.3.5­

3.9 (implying that the optimization problem continues to be feasible) and that the state

trajectories converge to the desired neighborhood of the origin. Finally, in part 3, we show

that the state trajectories, once they reach the desired neighborhood of the origin, continue

to stay in the neighborhood.

Part 1: Consider some Xo E 0 under receding horizon implementation of the predictive
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controller of Eqs.3.5-3.9, with a prediction horizon T = N.6., where .6. is the hold time

and 1 :S N < CXJ is the number of the prediction steps. We first analyze the constraint of

Eq.3.7 for feasibility. Since n <;:;; II and Xo En, this implies that there exists au E S such

that LaV(x)u(t) :S sup -LfV(x) - LwV(x)B(t) - pV(x). Therefore, for all x(O) EO, the
()Ee

solution comprising of u* as the first element followed by N - 1 zeros is a feasible solution

to constraint of Eq.3.7.

Part 2: Having shown initial feasibility of the optimization problem in Part 1, we now

show that the implementation of the control action computed by solving the optimization

problem of Eqs.3.5-3.9 guarantees that for a given d, if we pick a sufficiently small .6. (Le.,

there exists a .6.* such that if .6. E (0,.6.*]) n is invariant under the predictive control

algorithm of Eqs.3.5-3.9 (this would guarantee subsequent feasibility of the optimization

problem due to part 1 above), and then that if the optimization problem continues to be

feasible, then practical stability (convergence to a desired neighborhood of the origin) for

the closed-loop system is achieved.

To this end, we first note that since V (.) is a continuous function of the state, one can find a

finite, positive real number, 8', such that Vex) ::; 8' implies Ilxll ::; d. Now consider a "ring"

close to the boundary of n, described by M := {x E lRn : (cmax - 8) ::; Vex) ::; cmax }, for

a 0 ::; 8 < cmax
, with 8 to be determined later. The initial feasibility of the constraint of

Eq.3.7 implies that for all x(O) En and IIB(t)1I ::; Bb

Vex) LfV + LaVu + LwVB(t)

< -pV(x)
(3.10)

Furthermore, if the control action is held constant until a time .6.**, where .6.** is a positive

real number (u(t) = u(xo) := Uo Vt E [0,.6.**]) then, Vt E [0,.6.**],

V(x(t}) L f V(x(t)) + LaV(x(t))uo +LwV(x(t))B(t)

LfV(xo) + LaV(xo)uo + LwV(xo)B(O) + (LfV(x(t)) - LfV(xO)) (3.11)

+(LaV(x(t))uo - LaV(xo)uo) + LwV(x(t))B(t) - LwV(xo)B(O)

Since Xo E M ~ n, and B E 8, LfV(xo) + LaV(xo)uo + LwV(xo)B(O) ::; -pV(xo).

By definition, for all Xo E M, V(xo) ~ cmax
- 8, therefore LfV(xo) + LaV(xo)uo +
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LwV(xo)B(O) ::::; _p(emaX -0). Since the function 10 and the elements ofthe matrices C(·),

W(·) are continuous, Ilu(t)11 ::::; umax , IIB(t)1I ::::; Bmax and M is bounded, then one can find,

for all Xo EM and a fixed Ll**, a positive real number Kl, such that Ilx(t) - xoll ::::; K1Ll**

for all t ::::; Ll** .

Since the functions LfV(·), LaV(,), LwV(·) are locally Lipschitz, then given that Ilx(t)­
xoll ::::; K1Ll**, Xo E nand IIB(t)1I ::::; Bmax, we have that one can find positive real num­

bers K 2, K3 and K4 such that IILfV(x(t)) - LfV(xo)1I ::::; K 3K 1Ll**, IILaV(x(t))uo ­

LaV(xo)uoll ::::; K 2KILl** and IILwV(x(t))B(t) - LwV(xo)B(O) II ::::; K 4K 1Ll**. Using these

inequalities in Eq.3.1l, we get

(3.12)

p(emaX - 0) - E
For a choice of Ll** < where E is a positive real number such

(KIK2 + KIK3 + KIK4)
that

E < p(emax - 0) (3.13)

we get that 17(x(t)) ::::; -E < 0 for all t ::::; Ll**. This implies that, given 0', if we pick a
such that emax - a < 0' and find a corresponding value of Ll** then if the control action

is computed for any x E M, and the 'hold' time is less than Ll**, we get that V remains

negative during this time, and therefore the state of the closed-loop system cannot escape

n (since n is a level set of V). This in turn implies successive feasibility of the optimization

problem for all initial conditions in M, and that for any initial condition, xo, such that

o< V(xo) ::::; emax we have that V(x(t + Ll)) < V(x(t)). All trajectories originating in n,

therefore converge to the set defined by n f := {x E mn
: Vex) ::::; emax - O}.

Part 3: We now show the existence of Ll' such that for all Xo E n f := {x E mn : V(xo) ::::;

emax - a}, we have that x(Ll) E n u := {xo E lRn : V(xo) ::::; a'}, where 0' < emax , for any

Ll E (0, Ll'].

Consider Ll' such that

a' = max V(x(t))
V(xo):'Scmax_o, uEU, 6E8 tE[O,~']

(3.14)
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Since V is a continuous function of x, and x evolves continuously in time, then for any

value of 8 < cmax , one can choose a sufficiently small tl' such that Eq.3.14 holds. Let

tl* = min{.6.**, tl'}. We now show that for all XQ E QU and.6. E (0,.6.*), x(t) E QU for all

t 2: o.

For all XQ E QU nnf , by definition x(t) E QU for 0 ~ t ~ tl (since tl ~ tl'). For all

XQ E QU\Qf (and therefore XQ EM), 11 < 0 for 0 ~ t ~ tl (since tl ~ tl**). Since QU is

a level set of V, then x(t) E QU for 0 ~ t ~ tl. Either way, for all initial conditions in QU,

x(t) E QU for all future times.

In summary, we showed 1) th~t for all x(O) E Q, the optimization problem is guaranteed

to be feasible, 2) the optimization problem continues to be feasible and x(t) E Q V t 2: 0,

all state trajectories originating in Q converge to QU, and 3) that all state trajectories

originating in QU stay in QU, i.e., x(t) E Q V t 2: 0 and lim sup IIx(t) II ~ d.
t-+oo

We next consider initial conditions such that XQ E II\Q. The initial and successive feasibility

of the optimization problem ensures that V(x(t+tl)) < V(x(t)). All trajectories originating

in II, therefore converge to the set Q. Once the state trajectory enters Q, x(t) E Q V t 2: 0

and lim sup IIx(t) II ~ d can be showed as before. This completes the proof of Theorem 3.1.
t-+oo

D

Remark 3.1: The proposed predictive controller ensures robust stability by computing the

control action such that its effect on the evolution of the Lyapunov-function is sufficiently

negative to counter the worst case effect of the disturbances on the Lyapunov function

derivative. Feasibility of this constraint is guaranteed by explicitly characterizing the set II

for which an acceptable value of the manipulated input exists that can counter the effect of

the state dynamics and uncertainty on the Lyapunov-function derivative. The term pV(x)

appears in the constraint of Eq.3.7 to provide "robustness" against the fact that the control

action is computed for a certain state, but held for a time .6. during which time the process

moves away from the state for which the control action was computed.

Theorem 3.1 establishes the existence of a robustness margin that allows practical stability
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in the presence of disturbances and compute and hold control action. Preparatory to our

results on the output feedback controller in section 3.4.1, we present a corollary that estab­

lishes the existence of an equivalent 'bound' on the error in the state variable measurements

that the controller can tolerate, in the absence of uncertainty. The proof of the corollary

follows along similar lines of Theorem 3.1 and is omitted for brevity.

Corollary 3.1 : Consider the constrained system of Eq.3.1 with O(t) = 0 under the MPC

law UMPc(X + e) designed using IOmaxl, IOminl > O. There exists a positive real number

em such that if lei ~ em and XQ E n, then the optimization problem of Eqs.3.5-3.9 is

guaranteed to be initially and successively feasible, x(t) E nV t ~ 0 and lim sup Ilx(t)1I ~ d.
t---->oo

Furthermore, if XQ E II\n, and if the optimization problem is successively feasible, then

X(t)EIIVt 2:: Oandlimsupllx(t)lI~d.
t---->oo

Remark 3.2: The above corollary establishes the f)xistence, for a given bound on the

disturbances, of an equivalent robustness margin with-J;espect to error in the value of the

state variable measurements. Note that such a robustness margin with respect to errors in

the state measurements can be incorporated in the con~roller over and above the robustness

with respect to disturbances. For the sake of simplicity, in this chapter the 'equivalent'

robustness with respect to measurement errors (in the absence of uncertainty) is analyzed.

This 'equivalent' robustness is then subsequently used within the output feedback predictive

controller in Section 3.4.1.

Remark 3.3: Note that the proposed robust predictive controller is different from existing

robust MPC designs in that it does J:}.ot use a min-max formulation (but guarantees stability

for the nonlinear uncertain system) and also allows explicit characterization of the set

of initial conditions for which the optimization problem is guaranteed (not assumed) to

be feasible. The proposed robust predictive controller also differs from recently proposed

Lyapunov-based predictive control designs. Specifically, the robust predictive control design

in [56] uses an auxiliary control Jaw in formulating the robust stability constraint and

the stability region of the robust predictive controller of [56] is limited to the (possibly

conservative) stability region estimate of the auxiliary control law. The Lyapunov-based
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controller proposed in chapter 2 enhances the set of initial conditions from where closed­

loop stability is achieved compared to Lyapunov-based bounded control designs. However,

the predictive control design of chapter 2 does not explicitly account for the presence of

disturbances and uncertainties. In contrast, the proposed robust predictive controller not

only enhances the set of initial conditions from where stability is achieved, but also explicitly

accounts for the presence of uncertainty in the control design.

Remark 3.4: Note that the estimates of the stability region are influenced by the choice

of the control Lyuapunov function. Furthermore, referring to the choice of the CLF (and

this holds for other Lyapunov-based control laws as well), it is important to note that a

general procedure to construct CLFs for nonlinear process systems of the form Eq.3.6 is

currently not available. Yet, for several classes of nonlinear systems that commonly arise

in the modeling of engineering applications [22], it is possible to use a suitable approxima­

tion [22], or exploit system structure. One approach commonly used to construct (local)

quadratic CLFs is by using the linearized system matrices to compute the solution of a

Ricatti inequality. The stability properties of the nonlinear system can then be analyzed

using the quadratic CLF. While not done in the present chapter, the entries in the matrix

P can be further refined to mitigate possible conservatism in the stability region estimates,

for instance, by formulating an optimization problem to determine (if possible) a Lyapunov

function whose derivative can be made negative definite over a desired neighborhood of the

origin.

3.3.2 Robust safe-parking of nonlinear process systems

The presence of uncertainty and constraints on the manipulated inputs need to be accounted

for to ensure that upon failure, the process does not transit to a hazardous operating point,

and this can be achieved via requiring that the process state at the time of the failure

resides in the stability region for the safe-park point (so the process can be driven to the

candidate safe-park point), and that the safe-park point should reside in the stability region

under nominal operation (so the process can be returned to nominal operation). These
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requirements are formalized in Theorem 3.2 below. To this end, consider the system of

Eq.3.1 for which the first control actuator fails at a time Tfau1t and is reactivated at time

Trepair, and for which the robust stability region under nominal operation, denoted by On,

has been characterized using the predictive controller formulation of Eqs.3.5-3.9. Similarly,

for a candidate safe-park point Xc, we denote Oc as the stability region (computed a priori)

under the predictive controller of Eqs.3.5-3.9, and U2,xc as the control law designed to

stabilize at the candidate safe-park (using the depleted control action) with Ul,xn being the

nominal control law (using all the control actuators).

Theorem 3.2 : Consider the constrained system of Eq.3.1 under the MPC law of Eqs.3.5­

3.9. If x(O) EOn, x(Tfau1t ) E Oc and Oc C On, then the switching rule

Ul,n , 0:::; t < Tfau1t

U(t) Tfau1t :::; t < Trepair

Ul,n , Trepair:::; t

(3.15)

guarantees that x(t) EOn \:j t ~ 0 and lim sup IIx(t) II :::; d.
t->oo

Proof of Theorem 3.2: We consider the two possible cases; first if no fault occurs

(Tfau1t = Trepair = (0), and second if a fault occurs at a time Tfau1t < 00 and is recovered

at a time Tfau1t :::; Trepair < 00.

Case 1: The absence of a fault implies u(t) = Ul,n \:j t ~ O. Since x(O) E On, and the

nominal control configuration is implemented for all times, we have from Theorem 3.1 that

x(t) EOn \:j t ~ 0 and lim sup Ilx(t)11 :::; d.
t->oo

Case 2: At time Tfau1t , the control law designed to stabilize the process at Xc is activated

and implemented till Trepair. Since x(Tfau1t ) E Oc C On, we have that x(t) EOn \:j Tfau1t :::;

t :::; Trepair. At a time Trepair, we therefore also have that x(Trepair) E On. Subsequently,

as with case 1, the nominal control configuration is implemented ror all time thereafter, we

have that x(t) E On \:j t ~ Trepair. In conclusion, we have that x{t) E On \:j t ~ 0 and

lim sup Ilx(t)11 :::; d. This completes the proof of Theorem 3.2. 0
t->oo
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Remark 3.5: Note that the stability regions of candidate safe-parking points can be

computed off-line. Specifically, for a fail-safe position of an actuator, the entire set of

candidate safe-park points Xc can be computed off-line, and also, for any given point in

this set, the stability region subject to depleted control action can also be computed off-line

(as is done for the nominal equilibrium point). Theorem 3.2 presents the conditions that

must be met for a safe-park candidate to be chosen as the safe-park point. By requiring

that the stability (and invariant) region of the candidate safe-park point be such that the

process state at the time of the failure resides in the stability region for the safe-park point,

it is ensured that the process can be driven to the point of safe-park with the depleted

control action available. On the other hand, by requiring that the stability (and invariant)

region for a safe-park point be completely contained in the stability region under nominal

operation, it is ensured that the state trajectory always stays within the stability region

under nominal operation, thereby enabling smooth resumption of nominal operation. Note

that the second requirement can be readily relaxed to only require that the state at the

time of the failure reside in the stability region of the safe-park point. This will allow

for the state trajectory to leave the stability region under nominal operation, and it may

happen that at the time of fault-repair, the closed-loop state trajectory does not reside in

the stability region under nominal operation. However, to preserve closed-loop stability

upon fault-repair, the control law utilizing depleted control action may be continued up

until the time that the state trajectory enters the stability region under nominal operation

(this is guaranteed to happen because Xc E On), after which the control law utilizing all the

manipulated inputs can be implemented to achieve closed-loop stability.

Remark 3.6: The necessity of the requirements of Theorem 3.2 can be understood in the

context of preventing onset of hazardous situations as well as enabling smooth resumption

of nominal operation. Note that in the presence of an actuator failure, if the control law still

tries to utilize the available control actuators to try to drive the process state to the nominal

operating point, the active actuators may saturate and end up driving the process state to a

hazardous operating point, or to a point from where nominal operation cannot be resumed

upon fault-repair. On the other hand, if continued operation at the nominal operating point

was possible either via the depleted control configuration or via control loop reconfiguration,
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then reconfiguration-based fault-tolerant control approaches (e.g., see [56]) could be utilized

to preserve closed-loop stability. However, Theorem 3.2 addresses the problem where a fault

occurs that precludes operation at nominal operating point, and provides an appropriately

characterized safe-park point where the process can be temporarily 'parked' until nominal

operation can be resumed.

Remark 3.7: The assumption that the actuators revert to the fail-safe position upon

failure reflects common practice wherein actuators have a built-in fail-safe position that

they revert to upon failure. The fail-safe positions are typically determined to minimize

possibilities of excursions to dangerous conditions such as high temperatures and pressures

(setting a coolant valve to fail to a fully open position, while setting a steam valve to fail

to a shut position). This assumption allows enumerating the possible fault situations for

any given set of manipulated inputs a-priori to determine the safe-park candidates and then

pick the appropriate safe-park point online (the condition X s E On can be verified off-line,

however x(Tfau1t ) E S1xs has to be verified online, upon fault-occurrence, and can be done via

simply evaluating the Lyapunov function). Note also that while the proposed safe-parking

framework assumes apriori knowledge of the fail~safe positions of the actuators, it does

not require a priori knowledge of the fault and repair times, and only provides appropriate

switching logic that is executed when, and if, a fault takes place andis subsequently rectified.

We also note that the switch to the alternate control law involves the remaining (functioning)

actuators, and does not involve invoking a backup actuator configuration (that could involve

hardware delays). Delays in the present framework could arise due to the fault-detection

and isolation time, and the proposed framework has the appropriate tools (via stability

regions) to allow for the incorporation of such delays. In particular, the proposed strategy

can be modified to incorporate a delay term such that the safe-park point is chosen based

on the state position after the fault has been detected and isolated. Explicit incorporation

of the fault-detection and isolation mechanism and the associated delays, however, remains

outside the scope of the present work.
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3.3.3 Illustrative simulation example: handling uncertainty

We illustrate in this section the proposed safe-park framework in the presence of uncertainty

via a continuous stirred tank reactor (CSTR). To this end, consider a CSTR where an irre­

versible, first-order exothermic reaction of the form A ~ B takes place. The mathematical

model for the process takes the form:

(3.16)

where CA, CB denotes the concentration of thespecies A, and B, respectively, TR denotes

the temperature of the reactor, Q is the heat added to/removed from the reactor, V is

the volume of the reactor, ko, E, !:i.H are the pre-exponential constant, the activation

energy, and the enthalpy of the reaction and cp and Pi are the heat capacity and fluid

density in the reactor. The values of all process parameters can be found in Table 3.2. The

control objective is to stabilize the reactor at the unstable equilibrium point (CA, TR) =

(0.45 Kmol/m3 , 393 K) in the presence of uncertainty. Specifically, we consider an error in

the parameter !:i.H of magnitude +1%, and a sinusoidal disturbance in the inlet temperature

Tin of the form +O.05Tins sin(t/0.02). We also consider random disturbances in F, CA,in,

and Q of the form O.01v(t)F, O.OIV(t)CA,ins' and 0.05v(t)Qs respectively. The variable v(t)

is an uniformly distributed random variable for each instance in time t which takes values

in the interval [0,1] and is generated using MATLAB's pseudo random number generator

function RAND. Manipulated variables are thera:te of heat input/removal, Q, and change in

inlet concentration of species A, !:i.CA,in = CA,in - CA,ins' with constraints: IQI ::; 32 K J / s

and 0 ::; CA,in ::; 2 Kmol/m3 . The heat input/removal Q consists of heating stream Ql

and cooling stream Q2 with the constraints on each as, 0 K J / s ::; Ql ::; 32 K J / sand

-32 KJ/s ::; Q2 ::; 0 KJ/s. The nominal operating point (N) corresponds to steady state

values of the inputs CA,in = 0.73 Kmol/m3 and Q = 10 KJ/s.
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For stabilizing the process at the nominal equilibrium point, the Lyapunov based MPC

of Section 3.3.1 is designed using a quadratic Lyapunov function of the form V = xT Px

[
4.32 0]with PN =

o 0.004
We consider the problem of designing a safe-parking framework to handle temporary faults

in the heating valve (resulting in a fail-safe value of Q1 = 0). The nominal operating

point corresponds to Qs = 10 K J / s, and no value of the functioning manipulated inputs

-32 KJ/s ~ Q2 < 0 KJ/s and 0 ~ CA,in ~ 2 Kmol/m3 exists such that the nomi-

nal equilibrium point continues to be an equilibrium point of the process subject to the

fault. For Q2 = -30.72 KJ/s, CA,in = 1.86 Kmol/m3 and Q2 = -4.57 KJ/s, CA,in =

1.26 Kmol/m3
, the corresponding equilibrium points are 81 = (1.05 Kmol/m3 , 396 K)

and 82 = (0.8 Kmol/m3 , 391.5 K), which we denote as safe-park candidates. For each

:s:~e[:;~~parkoca]~:a:,~:e;~:o~dC[~~~ LYa~un]O:o::'dT:~:a::i:::::h:::j:::
o 0.083 0 0.027

function (Eq. 3.9), are chosen as Qw = [10
5

0] and Rw = [10-
2

c? ].. Prediction
o 105 0 10-2

and control horizons of 0.01 min are used in implementing the predictive controller.

Consider a scenario where the process starts from 0 = (1.25 Kmol/m3 , 385 K) and

the predictive controller drives the process toward the nominal operating point, N. At

t = 0.5 min, when the process state is at F = (1 Kmol/m3 , 393.76 K), the heating valve

fails, and reverts to the fail-safe position (completely shut) resulting in Q1 = 0 KJ/s. This

restricts the heat input/removal to -32 KJ/s ~ Q < 0 KJ/s instead of -32 KJ/s ~ Q <

32 K J / s. We first consider the case where the safe-park candidate 81 is arbitrarily chosen

as the safe-park point, and the process is stabilized at 81 until the fault is rectified. At t =

1.7 min, the fault is rectified, however, we see that even after fault-repair, nominal operation

cannot be resumed (see dashed lines in Fig.3.1). This happens because 81 lies outside the

stability region under nominal operation. In contrast, if 82 is chosen as the safe-park point,

we see that the process can be successfully driven to 82 with limited control action as well

as it can be successfully driven back to N after fault-repair (see solid lines in Fig.3.1). The
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state and input profiles are shown in Fig.3.2. In summary, the simulation scenario illustrates

the necessity to account for the presence of input constraints and uncertainty (characterized

via the stability region) in the choice of the safe-park point.

3.4 Safe-parking of nonlinear process systems: handling avail­

ability of limited measurements

In the previous section, a robust safe-parking methodology was presented under the assump­

tion of availability of the full state for feedback. In practice, the entire state information

may often not be available and necessitates estimation of the process state via an appro­

priate state observer. We first develop in Section 3.4.1 a predictive controller formulation

that provides guaranteed stability from an explicitly characterized set of initial conditions

under availability of limited measurements. A safe-parking algorithm that accounts for the

estimation errors associated with the state observer is subsequently presented in Section

3.4.2.

3.4.1 Output-feedback Lyapunov-based predictive controller

To allow for the output-feedback controller design, we impose the following assumption on

the process of Eq.3.1.

Assumption 1. There exist a set of integers (rl' r2, ... , rm) and coordinate transformations

(~Ci) = TCi) (x)) such that the represent~tion of the system of Eq.3.1, in the ~(i) coordinates

takes the form
'(i)
~l

~~:)

Ljihi(X) + "L-j=l LgjLj'-lhi(x)uj

(3.17)

where LgiV]i-lhmi(X) i 0 for all x E lRn . Also, ~Ci) ---t 0 if and only if x -+ O. Prepara-
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tory to the presentation of the output feedback model predictive controller, we present an

assumption below that formally characterizes the 'speed of escape' of the system states, i.e.,

establishes a time for which the process states will continue to reside in n given that the

initial conditions are within a given subset of n.

Assumption 2. Consider the nonlinear system of Eq.3.1 with u E U. Then, given any

positive real numbers 0> Ob, there exists some time n > 0, such that if V(x(O)) ::oS Ob, then

V(x(t))::oS oVt::oS Tb•

We now present the output feedback predictive controller (for a similar result in the context

of sensor data losses, see [62]). To this end, consider again the nonlinear system ofEq.3.1, for

which the parameter em (allowable error in the state values used in computing the control

action) has been characterized (using Corollary 1), and for a given subset Db (the desired

output feedback stability region; characterized by Ob), the time Tb (defined in Assumption

2) has also been computed.

Theorem 3.3 : Consider the nonlinear system of Eq.3.1, under the output feedback MPC

law of Eqs.3.5-3.9;

~(i)
Y

U

-Liaii) 1 0 0 L (i)ial

-Lta~i) 0 1 0 Lta~i)
iii + Ym

(3.18)

-Lia~i) 0 0 0 Lia~)

umpc(x)

where the parameters, aii), ... , a~) are chosen such that the polynomial sn + aii) sn-l_+

a~i) sn-2 + ... + a~) = 0 is Hurwitz, x = [Tl-lUh), ... ,T,:;;l(Ym)], and let E = max{l/Ld.

Then, there exists positive real number E* such that if E E (0, E*J, x(O) E Db and X(O) E nb,

then x(t) E D V t 2': 0 and lim SUPt--->oo IIx(t) II ::oS d. Furthermore, for a choice of E E (0, E*],

IIx(t) - x(t)11 ::oS em for all t 2': T b
•

Proof of Theorem 3.3: The proof of this theorem consists of two parts. In the first

part, we use a singular perturbation formulation to represent the closed-loop system, with
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the resulting fast subsystem being globally exponentially stable, and use this, together with

Assumption 2 to show that for any X(O) and x(O) E Db, there exists e* > 0 such that, for

every 0 < e < e*, the state trajectory remains in the set D till the time that the state

estimation error falls below a given value em' Then in the second part, we show practical

stability of the closed-loop system using Corollary 1.

Part 1: Defining the auxiliary error variables ej = L;i-j (Yi -fJ?\ j = 1, ... ,Ti, the vectors

(i) [Ai A(i) A(i)]T [(l)T (2)T (m)T] h t 11L h .eo = ele2 , ... , eri ,eo = eo ,eo , ... ,eo t e parame ers ei = i, t e matnces

Ai and the vector hi:

(i) 1 0 0 0-a1

(i)
0 1 0 0-a2

Ai = ,b = (3.19)

(i)
0 0 1 0-ar- 1

(i) 0 0 0 1-ar

the system of Eq.3.6 under the controller of Eq.3.18 takes the following form:

x = f(x) + g(x)u(x)

(3.20)

(3.21)

where w(x, x) is a Lipschitiz function of its argument, with Lipschitz constant, K" such

that K, ~ 1/ei. Owing to the presence of the small parameter ei that multiplies the time

derivative e~i), the system of Eq.3.21 can be analyzed as a two-time-scale system. Defining

t = max{ei}, multiplying each eg) subsystem by tic and introducing the fast time-scale

T = tit, and setting t=O, the closed-loop fast subsystem takes the form:

(3.22)

where each Ai is Hurwitz. Establishing that the fast system is globally exponentially stable

implies that for a given subset Db, having computed Tb according to Assumption 2 (note

that the state trajectory stays bounded for t s: n) and also a positive real number em

(defined in Corollary 1), there exists an e* such that if e s: e*, Ix(n) - x(n)1 s: em'
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Part 2: Having established the convergence of the state estimates to a value less than em,

by a time Tb' the results of Corollary 2 can be invoked to prove practical stability of the

closed-loop system. This concludes the proof of Theorem 3.3. o

Remark 3.8: The output feedback controller in Eq.3.18 consists of a high-gain observer

which provides estimates of the derivatives of the measured output Ym up to order n - 1,

denoted by Yo, :iil, ... ,Yn-l, and thus estimates of variables ~jl), ... ,~jn) (see [43] for another

example of an observer design for nonlinear systems). Note that the peaking phenomenon

associated with the high-gain observer is naturally eliminated due to the presence of con­

straints on the manipulated input. It should be noted, however, that while the output

feedback stability region can be chosen as close as desired to its state feedback counterpart

by increasing the observer gain, the large observer gains result in poor performance due to

noisy measurements. This however, cannot be mitigated simply by using a 'smaller' gain,

because that would not preserve the stability guarantees. It cannot also be mitigated by

using alternative estimation schemes (such as moving horizon estimators) that handle noise,

but do not provide convergence guarantees. In practical scenarios, high gain observers can

be- used in a switched fashion-using a high gain initially for rapid convergence and then

switching to a lower gain to mitigate noise. We also note that Theorem 3.3 provides a

relation between the error bound (em), the time it takes to achieve such convergence (n)

and the observer parameters and the value of the result is in exploiting this relationship to

achieve convergence by as early a time as desired.

3.4.2 Output-feedback safe-parking of nonlinear process systems

Owing to the lack of full state measurements, the decision to utilize a safe parking candidate

has to be made using only the available state estimates. This necessitates that the supervisor

be able to make reliable inferences regarding the position of the states based upon the

available state estimates. Proposition 1 below establishes the existence of a set, Ds , such

that once the state estimation error has fallen below a certain value (note that the decay

rate can be controlled by adjusting L i ), the presence of the state within the output feedback
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stability region, nb, can be guaranteed by verifying the presence of the state estimates in

the set f28 • A similar notion was used in [57; 32] in the context of hybrid predictive control

of linear systems and nonlinear switched systems under output feedback. The proof of

Proposition 1 follows from the continuity of the function V ('), and relies on the fact that

given a positive real number, 8b, (Le., given a desired output feedback stability region), one

can find positive real numbers em and 88 such that if the estimation error is below em (Le.,

Ilx - xII ::; em) and the estimate is within f2 8 (Le., Vex) ::; 88 or x E f2 8 ), then the state

itself must be within f2b' Le., Vex) ::; 8b.

Proposition 1: Given any positive real numbers 8b and em, there exists a positive real

number 88 and a set f28 := {x E lRn
: Vi(x) ::; 88 } such that if IIx - xII ::; e, where e E (0, em]

then x E f28 ==} x E f2b.

We are now ready to proceed with the design of safe parking framework under availability

of limited measurements. To this end, consider the process of Eq.3.1 for which Assumptions

1 and 2 hold and, for each safe-parking point, an output feedback controller of the form of

Eq.3.18 has been designed. Furthermore, given the desired output feedback stability regions

f2b,i C f2i , i = 1,'" ,N, we choose, for simplicity, E1 = E2 = ... = En ::; min{Ei'} (i.e., the

same observer gain is used for all candidate safe-park points). Also assume that the sets f2 8 ,i

and the times n,i (see Assumption 2) have been determined, and let Tr:QX = max{n,d, i =

1, ... ,N. Theorem 3.4 below presents the output feedback safe parking framework.

Theorem 3.4 : Consider the constrained system of Eq.3.1 under the MPC law of Eqs.3.5­

3.8. If x(O) E f2b,n, TfQult > Tt:wX and x(TfQu1t ) E f28 ,c and f2c C f2b,n, then the switching

rule

U1,n , 0::; t < TfQult

u(t) TfQult ::; t < TrepQir

U1,n , TrepQir::; t

(3.23)

guarantees that x(t) E f2n \f t 2: 0 and lim sup Ilx(t)11 ::; d.
t---'>oo

Proof of Theorem 3.4: The proof of the theorem follows along the lines of theorem 3.2.
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If no fault takes place, practical stability of the nominal equilibrium point is guaranteed via

Theorem 3.3. If a fault takes place, the key difference is the requirement of Tfault > Tb. This

ensures that Ix(Tfault ) - x (Tfau1t ) I :s: em' This in turn ensures that x E Os,e '* X E On,e,

that ensures practical stability of the equilibrium point xe• Upon fault repair, and switching

back to the original configuration, since x E De E Ob,n and x E Ob,n, practical stability of

the nominal equilibrium point is achieved. To summarize, we have that x(t) E On V t 2: 0

and lim sup Ilx(t)11 :s: d. This completes the proof of Theorem 3.4. 0
t->co

Remark 3.9: Limited availability of state measurements requires a redesign of the con­

troller (appropriately incorporating the state observer) as well as that of the safe-parking

framework. In contrast to the state-feedback scenario, the decision to pick a safe-park point

requires a time interval of at least Tb'ax. This is done to ensure that the estimation error

has enough time to decrease to a sufficiently small value such that, from that point in time

onwards, the position of the state can be inferred by looking at the state estimate. Recall

from Proposition 1 that the relation x E Os,j ==? x E 0b,j holds only when the estimation

error is sufficiently small. Second, the decision to use a given safe-park point is not based

on x being in the set Ob,e; rather it is based on x being inside Os,e' The inference that

x E Os,e ==? x E Ob,e, however, can be made only once the error has dropped sufficiently,

and this is guaranteed to happen after the closed-loop system has evolved fault-free at least

for a time Tb'ax 2: Tb,i' Therefore, the decision to go to a safe-park poiptis not made before

an interval of length Tb'ax elapses even if x resides in Os,e at some earlier time. Note that

in practice, if an actuator is prone to early faults, the observer design allows for decreasing

the value of Tb'Q,x to achieve earlier estimate convergence and allow for appropriate picking

of the &afe-park point.

Remark 3.10: Note that the proposed framework can be very well used to incorporate

optimality considerations in the safe-parking framework. Specifically, having determined

the appropriate safe-park points, the cost of transitioning to the safe-park point, the cost of

operating at the safe-park point, as well as resuming nominal operation ean be estimated

using the auxiliary controller (see [36] for the incorporation of performance considerations

in the state-feedback safe-parking framework). Furthermore, the contribution of the cost of
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operation at the safe parking point to the total cost can be appropriately scaled utilizing

reasonable estimates of fault-rectification times. Specifically, if the malfunctioned actuator

is known to require significant time to be rectified, then this cost can be 'weighted' more to

recognize the fact that the process will deliver substantial amount of product corresponding

to the safe-park point under consideration. If, on the other hand, it is known that the fault

can be rectified soon, then the cost involving the resumption to nominal operation can be

given increased weight.

Remark 3.11: Note that while the work in the present chapter develops the safe-parking

framework for a single processing unit, the idea can very well be generalized to handle faults

within a networked-plant setting. Specifically, operating considerations for downstream

processing units can be incorporated in the choice of safe-park points for the upstream

processing units. Additionally, the issue of handling sensor failures that may lead to loss of

observability remains the topic of future work.

3.4.3 Illustrative simulation example: output feedback

We illustrate in this section the proposed safe-park framework under availability of limited

measurements via the continuous stirred tank reactor (CSTR) of section 3.3.3. To this

end, consider the CSTR example presented in section 3.3.3 in the absence of uncertainty

and disturbances but subject to availability of limited measurements. Specifically, we now

consider the case when only CB and TR are measured, that is Yl = TR, and Y2 = CB. The

relative degrees for the choice of process outputs, with respect to the vector of manipulated

inputs, are rl = 1, and r2 = 2, respectively. Therefore Assumption 1 is satisfied and an

output feedback controller of the following form is designed.

(3.24)
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The observer parameters in the state estimator design of Eq.3.24 are chosen as L1 = L2 =

100, ail) = ai
2

) = 10 and a~l) = a~) = 20. The observer generates estimates of TR as iJF)

and of CB and OB as iJi2) and iJ~2), respectively, to generate estimates of CA.

Consider a scenario where the process starts from F = (0.99 Kmol/m3 , 394.02 K) the ob­

server is initialized at E = (0.03 Kmol/m3 , 424 K), and the predictive controller drives the

process toward the nominal operating point, N = (0.45 Kmol/m3 , 393 K). Immediately,

the heating valve fails, and reverts to the fail-safe position (completely shut) resulting in

Q1 = 0 K J / s. We first consider the case where the supervisor does not wait for a sufficient

period of time in choosing the safe park point, and based on the proximity of the state

estimates to the candidate safe-park point 81 , chooses 8 1 = (0.17 Kmol/m3 ,424.75 K)

as the safe~park point. However, the process state is outside the stability region for the

safe-park point 1, and the controller is unable to drive the process to the desired safe-park

point. In contrast, if the supervisor waits for the estimates to converge, then the point

82 (0.8 Kmol/m3 ,391.5 K) is chosen as the safe-park point. Subsequently, the process is

driven to and back from the safe park point after fault-repair (see solid lines in Fig.3.3). The

state and input profiles are shown in Fig.3.4. In summary, the simulation scenario illustrates

the necessity to appropriately design, and account for the presence of state estimation error

in executing the safe-parking framework.

3.5 Application to the styrene polymerization process

In this section, we demonstrate the efficacy of proposed safe-parking mechanism to stabilize

the styrene polymerization process described in Section 3.2.2, in presence of disturbances

and measurement noise as well as availability of limited measurements. We consider errors in

the values of the parameters Ap , hA and Ve of magnitude +1%, +2% and +10%, respectively

as well as sinusoidal disturbances in the initiator flow rate Fi and the coolant inlet temper­

ature Tef of the form +0.02Fi ,n sin(t/lO) and +O.lTef,n sin(t/2) respectively, where the sub­

script n denotes the nominal steady-state value. It is assumed that measurements are avail­

able only for CM and T (with sinusoidal measurement error of the form +0.05CM,nsin(t/4)
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and +0.005Tcsin(t/4)). The control objective is to stabilize the process at the nominal equi­

librium point (Cl = 0.07 kmol/m3 , CM = 3.97 kmol/m3 , T = 303.55 K, Tc = 297.95 K),

corresponding to the nominal values of the manipulated inputs of Fe = 1.31 L/sand

Fm = 1.05 L/s, while handling disturbances/noise and a fault in the valve manipulating

the coolant flow rate.

A high gain observer of the form of Eqs. 3.18 is designed, to estimate Cl and Tc from

measurements of CM and T, with parameters Ll = 10, L2 = 40, ail) = 10, ai
2
) = 20, a~l) =

10 and a~2) = 20. To prevent the undesired effect of measurement noise, the measurements

are filtered before passing on to the state observer. The predictive controller of Eqs.3.5­

3.9 is designed using a quadratic Lyapunov function of the form Vex) = x'Px with P =

2091.4 35.9537 -6.5924 9.1116

35.9537 1.1603 -0.2231

-6.5924 -0.2231 0.8473

0.3084

-0.2857

9.1116 0.3084 -0.2857 1.4576

The first part of the simulation demonstrates the implementation of the output-feedback

controller in the presence of uncertainty and measurement noise. To this end, consider the

process starting from an initial condition (Cl = 0.07 kmol/m3 , CM = 4.36 kmol/m3 , T =

333.91 K, Tc = 327.74 K) with the estimator initialized at the nominal equilibrium point.

As seen by the dashed and solid lines in Fig.3.5 (see Fig.3.6 for the corresponding manip­

ulated input profiles), the observer converges to the exact state values sufficiently fast and

drives the process to the nominal equilibrium point.

We next demonstrate the implementation of the proposed safe-parking mechanism. To this

end, consider the scenario, where after the process is stabilized at the nominal operating

point, a fault occurs in coolant flow rate at t = 83.3 minutes, where the flow reverts to

the fail safe value (6f fully open, corresponding to Fe = 31.31 lis) and it is no longer

possible to operate the process at the nominal equilibrium point. Subsequently, a safe-park

point of (Cl = 0.14 kmol/m3 , CM = 3.42 kmol/m3 , T = 300.35 K, Tc = 294.98 K)

is chosen, and the process is driven to, and stabilized at the safe-parking point using the

functioning control actuator. At t = 150 minutes the fault is rectified. The controller
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subsequently uses both the functioning actuators and is able to drive the process back to the

original nominal equilibrium point. In summary, the simulations demonstrate an application

of the proposed safe-parking framework in the presence of limited (noisy) measurements,

parametric uncertainty and disturbances.

3.6 Conclusions

This chapter considered the problem of handling actuator faults in nonlinear process sys­

tems subject to input constraints, uncertainty and limited availability of measurements. A

framework was developed to handle faults that preclude the possibility of continued oper­

ating at the nominal equilibrium point using robust or reconfiguration-based fault-tolerant

control approaches. First, we considered the presence of constraints and uncertainty and

developed a robust Lyapunov-based model predictive controller as well as a safe-parking

algorithm that preserves closed-loop stability upon fault repair. Specifically, a candidate

parking point is chosen as a safe-park point if 1) the process state at the time of failure

resides in the stability region of the safe-park candidate (subject to depleted control ac­

tion and uncertainty), and 2) the safe-park candidate resides within the stability region

of the nominal control configuration. Then we considered the problem of availability of

limited measurements. An output feedback Lyapunov-based model predictive controller,

utilizing an appropriately designed state observer (to estimate the unmeasured states), was

formulated and its stability region explicitly characterized. An algorithm was then pre­

sented that accounts for the unavailability of the state measurements in the safe-parking

framework. The proposed framework was illustrated using a chemical reactor example and

demonstrated on a styrene polymerization process.



Table 3.1: Styrene polymerization parameter values and units.

Fi 0.3 Lis

Fm 1.05 Lis

Fs 1.275 Lis

Ft 2.625 Lis

Fe 1.31 Lis

Crj,n 0.5888 kmollm3

Cr 0.067 kmollm3

CMj,n 9.975 kmollm3

CM 3.968 kmollm3

Tj,n 306.71 K

T 303.55 K

Tej,n 294.85 K

Te 297.95 K

Ad 5.95 X 1014 s-l

At 1.25 X 1010 s-l

Ap 1.06 X 108 kmoll(m3 . s)

Ed/R 14.897 X 103 K

EtiR 8.43 X 102 K

Ep/R 3.557 X 103 K

f 0.6

f::.H -1.67 X 104 kJ/kmol

PCp 360 kJ/(m3 . K)

hA 700 J/(K· s)

Pecpe 966.3 kJ/(m3 . K)

Vpr 3.0 m3

Ve 3.312 m 3
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Table 3.2: Chemical reactor parameters and steady-state values.

V 0.1 m 3

R 8.314 KJ/(Kmol· K)

GA,ins 0.73 Kmol/m3

Tins 310.0 K

Qs 10.0 KJ/sec

f:.H -4.78 X 104 KJ/Kmol

ko 72 X 109 min-1

E 8.314 X 104 KJ/Kmol

Cp 0.239 KJ/(Kg'K)

PI 1000.0 Kg/m3

F 100 X 10-3 - m 3 /min

TRs 393 K

GAs 0.447 Kmol/m3
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Figure 3.1: Evolution of the state trajectory for the CSTR example in the presence of

uncertainty. Dashed line (- -) indicates the case when a safe-park point 8 1 is arbitrarily

chosen (resulting in the inability to resume nominal operation upon fault-repair) while the

solid line (-) indicates the case when 8 2 is chosen according to Theorem 2, guaranteeing

resumption of nominal operation upon fault-repair.
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Figure 3.2: Evolution of the closed-loop state (a-b) and input (c-d) profiles for the CSTR

example in the pres~nce of uncertainty. Dashed lines (- -) indicate the case when a safe­

park point 8 1 is arbitrarily chosen (resulting in the inability to resume nominal operation

upon fault-repair) while the solid lines (-) show the case when 82 is chosen according to

Theorem 2, guaranteeing resumption of nominal operation upon fault-repair.
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Figure 3.3: Evolution of closed-loop states and closed-loop state estimates for the CSTR

example with limited availability of state measurements. The dashed-dot line (- .) and

dotted line (...) represents the state estimates and state trajectories for the case when

a safe-park point 82 is immediately chosen, without waiting for the state estimates to

converge, resulting in the inability to reach the chosen safe-park point. The dashed line (­

-) and solid line (-) represents the state estimates and state trajectories for the case when a

safe-park point 8 1 is chosen after waiting for the convergence of the state estimates (utilizing

Theorem 4), guaranteeing stabilization at the safe-park point and subsequent resumption

of nominal operation upon fault-repair.
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Figure 3.4: Evolution of the closed-loop state (a-b) and input (c-d) profiles for the CSTR

example with limited availability of state measurements. The dashed-dot line (-.) and

dotted line (... ) represents the state estimates and state trajectories for the case when

a safe-park point 8 2 is immediately chosen, without waiting for the state estimates to

converge, resulting in the inability to reach the chosen safe-park point. The dashed line (­

-) and solid line (-) represents the state estimates and state trajectories (see the insets in

(a) and (b) illustrating the convergence of the state estimates) for the case when a safe­

park point 8 1 is chosen after waiting for the convergence of the state estimates (utilizing

Theorem 4), guaranteeing stabilization at the safe-park point and subsequent resumption

of nominal operation upon fault-repair.
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Figure 3.5: Evolution of the state (solid lines) and state estimates profiles (dashed lines)

for the styrene polymerization process. Fault occurs at 83.3 min and is rectified at 150 min.

The nominal operating point and the safe-park point are denoted by the markers * and 0,

respectively.
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Chapter 4

A Safe-Parking Framework for

Fault-Tolerant Control of

Transport-Reaction Processes

4.1 Introduction

Transport-reaction processes are characterized by significant convection and diffusion phe­

nomena coupled with a chemical reaction. Such processes are essential in the production

of various industrial products. Examples include tubular reactors and packed-bed reactors.

For such processes, the distinguishing feature for the control problem is that it involves the

regulation of distributed variables by using spatially-distributed control actuators and mea­

surement sensors. The dynamic models of transport-reaction processes over finite spatial

domains typically consists of highly dissipative partial differential equations (PDE), such

as parabolic PDEs. These parabolic PDEs possess a highly dissipative differential operator

which is characterized by an eigenspectrum which can be partitioned into a finite slow part

and an infinite stable fast complement [35]. Due to the infinite-dimensional nature of the

transport-reaction processes, the control designs for lumped parameter systems cannot be

76
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directly implemented on transport-reaction systems.

To develop finite dimensional· approximations of the infinite dimensional system for use in

controller design, some of the existing approaches include discretizing the spatial domain

(e.g, [9], [71]), which could possibly lead to high dimensional control designs, and exploiting

the separation in the eigenspectrum of the parabolic operator via Galerkin's method. The

reduced order model has been subsequently used to design nonlinear controllers for quasi­

linear parabolic PDE systems (and other highly dissipative PDE systems, see e.g., [3] and

the book [13] for details and references). These order reduction techniques have been used

to design controllers for other classes of dissipative PDE systems, and address issues such

as lack of full state measurement [8], uncertainty [14] and optimality [5]. Subsequently, the

work in [26] has developed a general framework for the analysis and control of parabolic

PDEs with input constraints via Lyapunov-based bounded controllers. To address the

issue of state constraints satisfaction, Model Predictive Controllers (MPC) were designed

using modal decomposition techniques [23; 21; 24]. In particular, the results in [23; 21;

24] addressed the problem of designing finite dimensional MPC formulations that ensure

satisfaction of state constraints for the infinite dimensional system based on satisfaction of

more stringent state constraints imposed on the finite dimensional system.

While MPC formulations with explicitly characterized stability regions are available for

lumped parameter systems (see, e.g., chapter 2, [59]), an issue which has yet to be addressed

for MPC of parabolic PDE systems is that of identifying, a priori (Le., before controller

implementation), the set of initial conditions of the infinite dimensional system from where

feasibility of the optimization problem and closed-loop stability are guaranteed. Preparatory

to the design of the safe-parking framework, one of the contributions of the work in the

present chapter is to develop a Lyapunov-based MPC for the control of parabolic PDE

systems modeled by parabolic PDEs that provides an explicit characterization of feasibility

and therefore the stability region.

The stability guarantees of the control designs (including the proposed Lyapunov-based

MPC), however, do not hold in the presence of actuator fault that prevents the imple-
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mentation of the control action prescribed by the control law, and motivate the design of

fault-tolerant approaches to preserve process stability and safety. Existing fault-tolerant ap­

proaches for distributed parameter systems shadow those of lumped parameter systems and

follow the robust/reliable, or reconfiguration-based fault-tolerant control designs (see, e.g.,

[29; 25; 4]). Such approaches assume the availability of sufficient control effort or redundant

control configurations to preserve operation at the nominal equilibrium point in the presence

of faults (we will henceforth refer to operation at the nominal equilibrium point as 'nom­

inal operation'). Specifically, within robust/reliable schemes, the robustness of the active

control configuration is used to handle faults as disturbances (e.g., [84]). Reconfiguration­

based approaches (see eg., [29; 30; 19]), on the other hand, assume the existence of a backup,

redundant control configuration that can preserve nominal operation.

In contrast, handling faults which prevent the ability to operate at the nominal operating

point has received limited attention. In particular, the case where a fault results in a scenario

where the nominal operating point is no longer an equilibrium point for any allowable values

of the functioning actuators has not been sufficiently addressed. Without a framework

to handle such faults, ad-hoc approaches could result in the process being driven to a

hazardous operating point, or to a state from where nominal operation cannot be resumed

even upon fault-repair, thus resulting in a temporary shut down of the process which can

have substantially negative economic ramifications.

Recently, in [36] a 'safe-parking' framework was developed that preserves process safety and

enables smooth resumption of nominal operation on fault repair. This is accomplished by

identifying appropriate 'safe-park' points where the process can be temporarily 'parked' un­

til nominal operation can be resumed. In chapter 3 (also appeared in [51]), this safe-parking

framework was generalized to handle the availability of limited measurements and the pres­

ence of disturbances and uncertainty. However, the safe-parking framework of chapter 3

and [36] considers lumped parameter systems described by ordinary differential equations

(ODEs). In summary, the problem of designing a predictive controller which provides an

explicitly characterized stability and feasibility region, along with a mechanism which han­

dles faults that preclude the possibility of nominal operation has not been addressed for
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transport-reaction processes described by parabolic PDE systems. Implementing control

and fault handling schemes without accounting for the distributed nature of the process

can lead to the inability to control and handle faults in the process. In particular, the

stability guarantees of an MPC design based on lumped parameter approximation of the

infinite dimensional system may not hold for the infinite dimensional system. Furthermore,

a safe parking framework implemented without accounting for the infinite dimensional na­

ture of the process could lead to the inability to preserve process safety and resume nominal

operation.

Motivated by these considerations, this chapter addresses the problem of designing a Lyapunov­

based predictive controller and handling actuator faults in quasi-linear parabolic PDEs sub­

ject to input constraints. To this end, by exploiting the separation of the eigenspectrum

of the differential operator via Galerkin's method, a finite dimensional ODE system which

captures the dominant dynamics of the PDE system is constmcted. This ODE system is

used as the basis for the synthesis of a Lyapunov-based predictive controller that enforces

closed-loop stability and provides, simultaneously, an explicit characterization of the stabil­

ity region. This predictive controller is then used to develop a safe-park framework which

handles faults which preclude the ability to maintain nominal operation. The key idea in

the safe-park framework is to operate the plant using the depleted control at an appropriate

'safe-park' location to prevent onset of hazardous situations as well as enable smooth re­

sumption of nominal operation upon fault-repair. Specifically, a candidate parking location

is termed a safe-park distribution if 1) the process state at the time of failure resides in the

stability region of the safe-park candidate (subject to depleted control action), and 2) the

safe-park candidate resides within the stability region of the nominal control configuration.

In determining the safe-park distribution, dynamic considerations (via stability regions) are

incorporated over and above the steady state considerations (via determining existence of

equilibrium distributions for acceptable values of the functioning actuators). The proposed.

framework is illustrated on a diffusion-reaction process.
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4.2 Preliminaries

In this section, we describe the class of processes considered, and then employ model reduc­

tion techniques via Galerkin's method to derive a finite-dimensional system that captures

the dominant dynamics of the infinite-dimensional system. This is followed by a motivating

example of a diffusion-reaction process and then a formalization of the control problem.

4.2.1 Process description

In this chapter, we consider quasi-linear parabolic PDEs in one spatial dimension of the

form:

subject to the boundary conditions:

ox
Glx(a, t) + DI oz (a, t) = RI

ox
G2X((3, t) +D2oz ((3, t) = R2

and the initial condition:

x(z,O) = xo(z)

(4.1)

(4.2)

(4.3)

where x(z, t) = [XI(Z, t) ... xn(z, t)jT denotes the vector of state variables, z E [a, (3] C lR is

the spatial coordinate, t E [0,00) is the time, up = [ul u2 ... um] E lRm denotes the vector

of constrained manipulated inputs taking values in a nonempty convex subset Up of lRm ,

where Up = {u E lRm : Umin,p :::; U :::; Umax,p} , where Umin,p'Umax,p E lRm denote the

constraints on the manipulated inputs. ~~, ~:~ denote the first- and second-order spatial

derivative of x. xo(z) denotes the initial condition, w is a constant, A, B, GI, DI, G2 , D2

are constants matrices, R I , R2 are column vectors and f(x) is a nonlinear vector function.
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The vector b(z) is a known smooth function of z of the form b(z) = [bI(z) bZ(z) ... bm(z)],

where bi(z) describeshow the control action u~(t) is distributed in the finite-spatial interval

[a, ,6J, and p E {1,2} is a discrete variable that indexes the fault-free (p = 1) and faulty

(p = 2) operation. Throughout the chapter, the notation 1·1 refers to the standard Euclidian

norm in lRn
. The notation Lxh denotes the standard Lie derivative of a scalar function

h(·) with respect to the vector function xU. We denote the nominal (possibly spatially­

nonuniform) steady-state distribution, and nominal steady-state manipulated input values

of Eq.4.1 as x~~m, u~~ respectively. Finally, we recall the definition of a class K and KL

function. In particular, a function 'Ys : lR~o ---t JR~o is said to be class K if it is continuous,

nondecreasing, and zero at zero. Similarly, a function 13 : JR~o x JR~o ---t lR~o is said to

be of class KL if, for each fixed t, the function 13(8,') is continuous, increasing, and zero

when s = 0 and, for each fixed 8, the function ,6(', t) is non-increasing and tends to zero as

t ---t 00. The notation X\Y, where X and Y are sets, refers to the relative complement,

defined by Y\X = {x E Y : x ff- X}

We formulate the PDE of Eq.4.1 as an infinite dimensional system in the Hilbert space

1i([a,13J : JRn) with 1i being the space offunctions defined on [a,,6J that satisfy the boundary

conditions of Eq.4.2, with inner product and norm:

(4.4)

where WI, Wz are two elements of1i([a, ,6Jj JRn) and the notation (., ')lR denotes the standard

inner product in JR. Defining the state function x on 1i([a, ,6J; lRn ) as:

the operator A as:

x(t) = x(z, t), t> 0, z E [a,,6J (4.5)

(4.6)

and the input operator as:

13u = wbu (4.7)
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the system of Eqs.4.1-4.2-4.3 takes the form:

± = Ax + Bu + j(x), x(O) = xo (4.8)

where j(x(t)) = j(x(z, t)), Xo = xo(z). We assume that the nonlinear terms j(x) satisfy

j(O) = 0 and are also locally Lipschitz continuous with respect to their arguments.

For A, the eigenvalue problem is defined as:

(4.9)

where Aj denotes an eigenvalue and ¢j denotes an eigenfunction; the eigenspectrum of A,

denoted by a(A), is defined as the set of all eigenvalues of A, i.e. a(A) = {Al' A2,.' .}.

Assumption 1 that follows states an important property concerning the partition of the

eigenspectrum of a(A) into slow and fast parts.

Assumption 1[13]:

1. Re{Ad 2:: Re{Ad 2:: ... 2:: Re{Aj} 2:: ... , where Re{Aj} denotes the real part of Aj

2. a(A) can be partitioned as a(A) = al(A) + a2 (A) , where O"l(A) consists of the first

m (finite) eigenvalues.

3. ReAm+l < 0 and IRe{Am}I/IRe{Am+dl

number.

O(c) where c < 1 is a small positive

Remark 4.1: The majority of diffusion-convection-reaction processes satisfy the assump­

tion of countable eigenspectrum and the existence of a reduced sub-system that captures

the dominant dynamics of the process (see example in Section 4.2.3, and chapter 4 in [13]).

This property derives from the fact that the eigenspectrum of a(A) can be partitioned in

two parts consisting of m slow, and infinite stable fast eigenvalues and is always satisfied

by parabolic PDEs [35]. Note also that the sufficiency of a certain number of eigenmodes

to capture the dominant dynamics of a PDE system can be empirically determined through

computer simulation.
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4.2.2 Galerkin's Method

In this section, a finite approximation to the infinite dimensional system in the form of

a set of ODEs is derived by applying Galerkin's method to the system of EqA.1. Let

H s' and 1if be modal subspaces of A, defined as H s = span{(PI, ¢2, ... I ¢m} and H f =

span{¢m+l, ¢m+2," .,}. We note that the existence ofHs, and Hf follows from Assumption

1. By defining orthogonal projection operators Ps and Pf as Xs = PsX' Xf = Pfx, the state

x of the system of EqA.8 can be decomposed as

(4.10)

The operators Ps and Pf are applied to the system of EqA.8 to derive an equivalent form

of EqA.8 in terms of X s and xr

dxs

dt
aXf
at

xs(O) = Psx(O) = PsxQ, xf(O) = Pfx(O) = Pfxo

(4.11)

where As = PsA, Bs = PsB, fs = Psf, Af = PfA, Bf = PfB and !J = Pff and
aXf

partial derivative notation in at is used to denote that the state x f belongs to an infinite-

dimensional space. In the above system, As is a diagonal matrix of dimension m x m of

the form As = diag{Aj}, fs(xs,xf) and !J(xs,xf) are Lipschitz vector functions, and Af

is an unbounded differential operator which is exponentially stable (following from part 3

of Assumption 1 and the selection of H s I 1if). In the remainder of the chapter, we will

refer to the xs-and xf-subsystems in EqA.11 as the slow and fast subsystems, respectively.

Neglecting the stable infinite-dimensional xf-fast subsystem in the system of EqA.11, the

following m-dimensional slow system is obtained:

dxs

dt (4.12)

where the bar symbol in xs denotes that this variable is associated with a finite-dimensional

system. The system of EqA.12 will be referred to as the reduced system.
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Remark 4.2: We note that empirical eigenfunction of the system in EqA.1 can be used

within the procedure to develop the approximate ODE system in EqA.12, and it is not

necessary that an analytical solution be available for the above eigenvalue problem. We also

note that the choice of the basis functions {cPj}, j = 1, ... ,00 is in principle not restricted to

the solution of the above eigenvalue problem and can be any set of standard basis functions

of H. Specifically, eigenfunctions computed using Karhuen-Loeve (KL) expansion can be

used as basis functions for the spaces Hj, and H s in place of the eigenfunctions of A.

Note also that a finite-dimensional approximation similar to that of EqA.12 could also be

obtained by employing the methods of approximate inertial manifolds along with Galerkin's

method (see chapter 4 in [13]).

4.2.3 Motivating example

In this section we present a benchmark diffusion-reaction process (used in (26) to demon­

strate the implementation of the Lyapunov-based bounded control design) to motivate the

control and fault handling safe-parking framework. To this end, consider a long, thin cat­

alytic rod in a reactor. The inlet to the reactor is pure species A, and a zeroth-order

exothermic reaction of the form A -t B takes place on the rod. A cooling and heating

medium in contact with the rod is used to control the rod temperature. The spatiotempo­

ral evolution of the dimensionless rod temperature is described by the following parabolic

PDE:

subject to the boundary and initial conditions:

(4.13)

x(O, t) = 0, x(1f, t) = 0, x(z,O) = xo(z), (4.14)

where x denotes the dimensionless temperature, f3T denotes a dimensionless heat of reaction,

'Y denotes a dimensionless heat transfer coefficient, ui(t) denotes the i-th manipulated input

which is the temperature of the cooling and heating medium, and bi(Z) denotes the i-th

actuator distribution function, chosen to be bi(z) = o(z - Zai) (i.e. a point-control actuator
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influencing the rod at Z = Zai), where 0 is the dirac-delta function. The following typical

values of process parameters are used: (JT = 50, (Ju = 2, 'Y = 3. We consider two-point

actuators (l = 2) applied at Zal = 1r/3, and Za2 = 21r/3. The solution of the eigenvalue

problem for the above spatial differential operator can be solved analytically to yield

'2
-~ , <Pi(Z) = .;gsin(iz), i = 1, ... ,00, (4.15)

Although the eigenvalues of the differential operator for this process are all stable, the

exothermicity of the reaction lends to the instability of the steady-state corresponding to

the nominal values of the manipulated inputs of u1 = -0.35, and u2 = -0.45 (i.e the system

in Eq.4.13 linearized will have positive eigenvalues). The control objective is to stabilize

the rod temperature profile at an unstable steady-state distribution xss(z, t) corresponding

to the nominal values of the manipulated inputs of u1 = -0.35, and u2 = -0.45. The

manipulated inputs are constrained as -0.4 ::::; u1 ::::; 1, and -1 ::::; u2 ::::; 1.

Consider the scenario where u1
, the manipulated input at z = 1r/3 fails and reverts to

the fail-safe position (fully open). With the coolant temperature set to fully open, there

simply does not exist an admissible value of the functioning manipulated input U2, such that

the nominal equilibrium distribution remains an equilibrium distribution for the process.

Hence, this precludes the possibility of continued operation at the nominal equilibrium point

(regardless of the choice of the control law).

The key problem is twofold; First, a Lyapunov-based model predictive controller which can

handle input constraints, and provide an explicit characterization from where stabilization

can be achieved for the infinite-dimensional system must be designed. Upon failure of

a control actuator, by utilizing this predictive control design we must determine how to

operate the process to maintain process safety and, upon fault-repair, efficiently resume

nominal operation.
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4.2.4 Problem formulation and solution overview

In this chapter, we first consider the problem of designing an MPC that provides an explicit

characterization of the stability region. Next, we consider faults in the control actuators

which by assumption revert to a fail-safe position upon failure. Examples of fail-safe posi­

tions include fully open for a valve regulating a coolant flow rate, fully closed for a valve

regulating a steam flow etc. Specifically, we assume that a fault occurs (without loss of gen­

erality), in the first control actuator u1(t) at a time Tfau1t and reverts to a fail-safe position,

and is subsequently rectified at a time Trepair (i.e., for t ::; Tfau1t and t > Trepair, a(t) = 1

and a(t) = 2 for Tf
au1t < t ::; Trepair), as u~(t) = U}ailed' with U~in,2 ::; U}ailed ::; U~ax,2'

where ui denotes the ith component of a vector u, for all Tfault < t ::; Trepair, leaving

only u~, i = 2 ... m available for feedback control. Note that if U}ailed # ul;~m, i.e., if

the failed actuator is frozen at a non-nominal value, then the process may not be able to

be stabilized at the nominal equilibrium distribution using the remaining functioning con­

trol actuators. Iri other words, in the event that one of the the manipulated input fails

and reverts to a fail-safe position, it may happen that no admissible combination of the

functioning inputs exists for which the nominal equilibrium distribution continues to be

an equilibrium distribution. In such a scenario, an attempt to continue operation at the

nominal operating distribution will result in the process being stabilized at a non-nominal

distribution which may result in the onset of hazardous or undesirable process conditions.

In addition, a decision to drive the process state to an arbitrarily chosen distribution may

result in the inability to resume nominal operation upon fault-repair. We will denote the

set of possible steady-state distributions as the candidate safe-park set:

(4.16)

Each candidate safe-park distribution represents a possible steady-state distribution corre­

sponding to the actuator fail-safe position, and the other manipulated inputs at acceptable

values. We define the safe-parking problem as the one of identifying safe-park distributions

x sp E X sp that preserve process safety and allow smooth resumption of nominal operation

upon fault-repair.
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4.3 Lyapunov-based model predictive control of parabolic

PDE systems

Preparatory for use within the safe-parking framework, in this section, the finite dimen­

sional system derived in Section 4.2.2 is used to design a Lyapunov-based model predictive

controller that accounts for the discrete nature of implementation of the controller and pro­

vides an explicit characterization of the set of initial conditions from where the optimization

problem in the predictive controller is guaranteed to be initially and successively feasible.

4.3.1 Controller design and analysis

Having obtained a finite-dimensional system that approximates the dominant dynamics of

the infinite-dimensional system, we proceed to develop a Lyapunov-based predictive con­

troller. This controller design, for each mode of operation (we drop the subscript p for ease

of notation) will enforce closed-loop stability of the infinite-dimensional system, provide

an explicitly characterized feasibility and stability region, and fully exploit the constraint

handling capabilities of the predictive control approach. To this end, consider the system

of Eq.4.12 for which a predictive controller is designed. Using a control Lyapunov function

V: lRn
---t lR we define the set:

(4.17)

where d, and E* is a parameter to be defined later. Thus for all values of the state in the set

rrd, there exists a value of the manipulated input that ~atisfies the input constraints (note

that the definition of the set rrd does not depend on any specific control law, but only on the

Lyapunov function, the process dynamics, and input constraints and d) and also achieves

negative definiteness of the Lyapunov function derivative. Furthermore, we define the sets:

(4.18)

for a given c> O. Let cmax be the largest number for which ncmax ~ rrd.
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Consider now the formulation of the predictive controller designed on the basis of the low­

order, finite dimensional reduced slow subsystem describing the evolution of the Xs states

(the fast subsystem is neglected). The receding horizon implementation of the control action

is computed by solving an optimization problem of the form:

dxs _ (- )s.t. dt = Asxs + 13su + fs xs,O

V(XS(T)) :S -e* V T E [t, t +.0.) if V(xs(t)) > 0'

V(Xs(T)) :S 0' \:j T E [t, t +.0.) if V(xs(t)) :S 0'

Xs(t+T) E lId VTE[t,t+.6.)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

where UMPc(Xs , x~~m, Umin, umax ) is the Lyapunov based model predictive controller de­

signed to stabilize the process at x~~m with constraints on the inputs as Umin :S u(t) :S Umax

(defined by the set U), S = S(t, T) is the family of piecewise constant functions (functions

continuous from the right), with period .6., mapping [t, t + T] into U and T is the horizon.

Eq.4.20 is the reduced finite-dimensional model, V is a control Lyapunov function and 0',

e* are parameters to be determined.The performance index is given by

(4.24)

where Q is a positive semi-definite symmetric matrix and R is a strictly positive definite

symmetric matrix. x~((}; xs , t) denotes the solution of Eq.4.12, due to control u, with initial

state Xs at time t. The minimizing control uD(-) E S is then applied to the plant over

the interval [t, t + .0.) and the procedure is repeated indefinitely. Since the reduced order

system of Eq.4.12 comprises of a finite set of ODEs, one can use the result from chapter

2, to show the stability and feasibility properties of the closed-loop reduced order system

under the implementation of this predictive control formulation (this is formalized in part

1 of Theorem 4.1 below). Specifically, it can be shown that the set ncmax is an estimate

of the stability region for the reduced order system of Eq.4.12, and if xs(O) E ncmax, then
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xs(t) E ncmax, Vt 2': 0 under the implementation of the above MPC law. These stability

properties for the reduced order system are subsequently used in part 2 of the Theorem 4.1

below to show the practical stability of the infinite-dimensional system of Eq.4.l.

Theorem 4.1 : (1) Consider the system of Eq.4.12 under the MPC law of Eqs.4.19-4.24.

Then, given any positive real number d, there exist positive real numbers r/, E*, and b.*,

such that ifxs(O) E ncmax, where ncmax was defined in Eq.4.18, and Ll E (O,Ll*], then the

optimization problem of Eq.4.19-4.24 is feasible for all times, xs(t) E ncmax, Vt 2': 0, and

the closed-loop system is practically stable in the sense that lim sup IXs(t)1 ~ d. Furthermore,
t--->oo

if xs(O) E rrd\ncmax, then if the optimization problem is feasible for all times, then xs(t) E

rrd ,Vt 2': 0, and lim sup Ixs(t)1 ~ d.
t--->oo

(2) Consider the parabolic PDE system of Eq.4.1, for which Assumption 1 holds, under the

MPC law of Eqs.4.19-4.24. Then, given any positive real numbers dS, and of, there exists

positive real numbers 0', E*, Ll*, sand e* such that if x s(0) E ns, where ns was defined in

Eq.4·18, Ilxf(0)1I2 ~ of, Ll E (0, b.*], and e E (0, e*], the infinite-dimensional closed-loop

system is practically stable in the sense that lim sup Ixs(t)1 ~ dS and lim sup Ilxf(t)1I2 ~ dS
•

t--->oo t--->oo

Proof of Theorem 4.1: Part 1: Since the system of Eq.4.12 is composed of a m­

dimensional finite set of ODEs, the proof of this part is similar to the proof of Proposition 2

of [58]. Using a similar argument it can be established that given a positive real number, d,

there exists an admissible manipulated input trajectory, and values of Ll*, and 0', such that

for any b. E (O,Ll*] and xs(O) E ncmax, the optimization problem is s feasible for all times,

lim sup lV(xs(t))~~ 0', and lim sup Ixs(t)1 ~ d. In preparation for part 2 of the theorem we
t--->oo t--->oo

briefly state an equivalent form of this result in terms of comparison functions. It follows

that for all xs(O) E ncmax, there exists a class KL function (3s, and a class K function

"Is, such that the closed-loop reduced order system under the MPC law of Eqs.4.19-4.24

satisfies

(4.25)

for all times t > 0, where 1's(b.*) = d.

Part 2: The proof of this part initially follows similar lines as Theorem 4.1 in [26], where
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the two time sc.ale nature of the system is exploited with the aid of singular perturbed

arguments. However, the present argument differs from Theorem 4.1 in [26] in that it

accounts for the discrete implementation of the control action. Substituting the predictive

controller of Eqs.4.19-4.24 into Eq.4.11 and using the separation of the eigenspectrum of

parabolic operator we can represent the closed-loop system in singularly perturbed form.

This follows since c = IReAII/IReAm+!1. and 0 < E ~ 1 (Assumption 1, part 3) [14]. Hence,

Eq.4.11 can be written as follows:

(4.26)

(4.27)

where Afe is an unbounded differential operator defined as Afe = cAf and h(xs, xf) =

BfuMPC + ft(xs,xf)' Note that ft(xs,xf) is independent of c. In this case, X s represents

the slow states, and xf represents the fast states. Introducing the fast time scale T = tic

and setting c = 0, we obtain the following infinite-dimensional fast subsystem:

aXf _
aT = Afexf,

where the bar symbol in xf, denotes that the state xf is associated with the approximation

of the fast xrsubsystem. Since ReAm+! < 0 (Assumption 1) and using the definition of c,

we have that the above system is globally exponentially stable. Therefore there exists real

numbers k1 ~ 1, al > 0 such that

(4.28)

Setting c = 0 in the system of Eq.4.26 and using the fact that the operator Afe is in­

vertible, we have that the steady-state solution of the xf subsystem is xfss = O. The

finite-dimensional closed-loop slow system therefore reduces to the one analyzed in part 1

of the theorem. This has already been shown to be practically stable (x s will asymptotically

reach any arbitrary small neighborhood about the origin of small d) for all initial conditions

within ncmax, and !:i. E (0, !:i.*].

Let r max = max Ixl. It follows that,
V(x):S;cmax
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Let r S be a positive real number such that f3s(rS
, 0) + 'Ys(.6.*) + d' < rmax for the class KL

function f3s, and class K function 'Ys given in the proof of part 1, and for ad' > 0 which to

be defined later. We let s to be the largest positive number such that

(4.29)

Using the stability properties for the fast and slow subsystems, and using the fact that there

exists some rmax , such that Ixs(O)1 ::::; rmax for all xs(O) E !1cmax, it can be shown, with the

aid of calculations similar to those preformed in [17), that if the eigenvalue separation

parameter c is small enough, the trajectories of the infinite-dimensional closed-loop system

are bounded. That is, for any given d', d, and of, there exists positive real numbers 0',

Ll*, sand c* such that if xs(O) E f.ls' Ilxf(O)II2::::; Of, Ll E (O,Ll*), and c E (O,c*], then the

following inequalities hold for t 2: 0:

IXs(t}1 < f3s(lxs(O)I, t) + d + d',

IIxf(t)112 < f3f(lI xf(O) 112, tic) + d'.
(4.30)

where f3s' and f3f are class KL functions, and d is the same as in part 1 of the Theorem.

Note the definition of !1s as stated in EqA.29 requires that X s be within !1cmax, and also

satisfy f3(lxs(O)I,O) + 'Ys(Ll*) + d' ::::; r max . Note that since f3(s,O) 2: s, for all s E JR,

it follows that rmax > r S
• The inequalities in EqA.30 ensure that the "slow" states of

the closed-loop system remain within !1cmax, and thus preserving the the feasibility of the

optimization problem in EqsA.19-4.24. Note that the bound on the state trajectories given

by EqA.30 will ultimately depend on d and d'. Since both d and d' are arbitrary, we can

choose both to be small enough such that after a sufficient time, say i, the trajectories of the

closed-loop system are confined within a small compact neighborhood of the origin. This

time i, is dependent on both the initial condition and the desired size of the neighborhood,

but not on c. Choose d = dS /4, and d' = dS /4, then let i be the smallest time such that

. max{f3s(lxs (O)I, i), f3f(lI xf (0) 112,t/c)} s dS /2. Then it can be easily verified that

(4.31)

Therefore it follows, that lim sup Ixs(t)1 s dS and lim sup Ilxf(t)1I2 S dS. This completes the
t-->oo t-->oo

proof of Theorem 4.1. 0
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Remark 4.3: Note that for all initial conditions in the set !lema"" the above MPC law

is guaranteed to achieve negative definiteness of the time-derivative of the Lypaunov func­

tion along the trajectories of the finite-dimensional closed-loop reduced order system for all

times, while satisfying input constraints. Therefore, the set !lema'" represents an estimate

of the stability region for the closed-loop system of Eq.4.12. By exploiting the large sepa­

ration of slow and fast eigenmodes of the parabolic operator in Eq.4.1, the estimate of the

closed-loop stability region for the finite reduced-order system is practically preserved for

the closed-loop infinite dimensional system of Eq.4.1. Specifically, given any initial "slow"

state within a subset of !lema"" and any initial "fast" state, there exists c* (the minimum

required separation in the eigenmodes) , E* (the minimum required decay rate of the Lya­

punov function), and..6.* (the maximum implement and hold time) such that the MPC law

of Eqs.4.19-4.24 continues to enforce practical stability in the constrained infinite dimen­

sional closed-loop system. Theorem 1 above establishes that for all initial states within !ls,

the above MPC law ensures that, during the evolution of the state, the "slow" component

of the state remain within !lema",. Note that the fact that the stability region is only practi­

cally preserved can be attributed to the nonlinear terms fs(x s, xi) and ft(x s, xi) in Eq.4.11.

The nonlinear terms introduce an interconnection between the two subsystems resulting in

a slight mismatch (dependent on the separation in the eigenmodes) between the slow states

of the reduced finite-dimensional subsystem and the slow states of the infinite-dimensional

subsystem. The absence of these nonlinear terms (as in [21; 24)), would result in the exact

preservation of the stability region.

Remark 4.4: The work in [26], and [29) (in the context of switched systems) utilize a sim­

ilar decomposition technique to design stabilizing nonlinear bounded laws that establishes

closed-loop asymptotic stability of the constrained infinite-dimensional system while also

providing an explicit characterization of the sets of admissible initial conditions which guar­

antee closed-loop stability. The above developed MPC recognizes discrete implementation

of the MPC and accordingly achieves practical stability. That is, the state profile reaches

a small neighborhood of the origin (the size of which depends on the implement and hold

time ..6., and the required rate of the Lyapunov function decay E*). Note that this is not

a limitation of the MPC formulation, but is due to the discrete-time implementation of
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the predictive control formulations. The same practical stability would be achieved in the

discrete-time implementation of any other control law as well. Furthermore, the constraint

in EqA.23, by requiring the states to remain in the region from where negative definiteness

of 11 is achievable, enhances the set of initial conditions (compared to the Lyapuonv-based

bounded control designs) from where closed-loop stability is achieved (see [52] for further

discussion on this issue).

Remark 4.5: An estimate of £* (the minimum necessary separation between the slow

and fast eigenvalues) can in principle be obtained from proof of Theorem 4.1 via singular

perturbation techniques. However, this estimate is typically conservative. To alleviate this

conservatism, computer simulations can be preformed to obtain a better estimate of £*.

Specifically, for an initial condition in sterna", from where the proposed predictive controller

with a certain number of modes is unable to achieve closed-loop stability, the simulations

have to be repeated with gradual increases in the number of modes used within the con­

trol design (reduced-order system) until closed-loop stability is achieved. The separation

parameter corresponding to the number of modes required to achieve closed-loop stability

from this initial condition could serve as a better estimate for £*.

Remark 4.6: The MPC formulations developed in [23] and [24] are similar to the formu­

lation developed in this work in that they utilize the separation of the eigenspectrum of the

parabolic operator to establish a reduced order model which can be used within the pre­

dictive controller. The results in [23; 24], however, focused on the issue of state constraint

satisfaction, and under the assumption of initial feasibility, determined the appropriate

'backing off' from the constraint that must be incorporated in the control design using the

reduced order model, such that constraint satisfaction for the infinite dimensional system

is achieved. In contrast, the present formulation, while not considering state constraints,

focuses on the satisfaction of input constraints, and appropriately designed 'stability con­

straints' and provides a priori the set of initial conditions of the infinite-dimensional system

from where feasibility of the optimization problem is guaranteed and constrained stabi­

lization of the closed-loop system can be established. The key idea from the results in

[23; 24] and the work in the present chapter can very well be amalgamated to simulta-
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neously achieve state constraint satisfaction and explicitly characterize the set of initial

conditions from where the optimization is feasible.

4.3.2 Implementing the Lyapunov-based MPC on the diffusion-reaction

process

In this section, we apply the predictive control formulation from section 4.3.1, to the

diffusion-reaction process of Eqs.4.13-4.14. To derive a finite dimensional approximation

of the process, we first note that the linearization of Eq.4.13 around the unstable steady­

state distribution xss(z, t) corresponding to the nominal values of the manipulated inputs

of u1 = -0.35, and u2 = -0.45, possesses two unstable eigenvalues. Therefore we take

the first two eigenvalues to be dominant and use the aforementioned Galerkins method to

derive a second order approximate model. To simplify the presentation of our results, we

will work in an equivalent representation of the system in Eq.4.1 in terms of evolution of

the amplitudes of the eigenmodes.

(4.32)

where as(t) = [al(t) a2(t)]', where ai(t) E ~, As = diag{.Xi}, where Ai is the eigenvalue

given in Eq.4.15, Bs(z) is a matrix whose i-th row is of the form f3u[(/Ji(11-j3) q)i(21f/3)],

u(t) = [u1 (t) u2(t)]', xs(t) = ~:=1 o'i(t)q)i(t) and f(O,s) = [11 12]. The nonlinear function Ii
-"(

is given by Ii = Ch,q)i(Z)), where h = f3Te 1+xs - f3uxs - f3Te--Y. The ODE in Eq.4.32 is

used for the synthesis of the Lyapunov based predictive controller of Eqs.4.19-4.24 which

is the implemented on a 30th order Galerkin discretization on the parabolic PDE system

(higher order discretization led to identical results).

For stabilizing the process at the nominal equilibrium distribution, the Lyapunov based

MPC of Section 4.3.1 is designed using a quadratic Lyapunov function of the form V = xT Px

[

73.6050 53.6864]
with P = , where the matrix P is computed by solving the Riccati in-

53.6864 45.3090

equality with the linearized system matrices. The parameters in the objective function

of Eq.4.24 are chosen as Q = P, and R = rI, with r = 0.002. The stability region
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estimate Os for the infinite dimensional system under the Lyapunov-based predictive con­

troller as per Theorem 4.1 is computed and shown in Fig.4.7. The constrained nonlinear

optimization problem is solved using the MATLAB function FMINCON, and the set of

ODEs is integrated using the MATLAB solver ODE15s. The eigenmode amplitudes for

the nominal operating equilibrium distribution corresponding to the nominal values of the

manipulated inputs of u1 = -0.35, and u2 = -0.45 are (al(O), a2(0)) = (0.2213, -0.0651).

An open-loop simulation is first performed starting at the initial condition (al(O), a2(0)) =

1.0001(0.2213, -0.0651). As can be seen in Fig.4.1, the nominal equilibrium is unstable

as the exothermicity of the reaction causes the temperature profile to escape to a higher

temperature distribution. This demonstrates the need for feedback control to stabilize the

process at this unstable steady-state distribution. We show the implementation of the pre­

dictive control algorithm on the initial condition (al(O), a2(0)) = (0.1,0.03) which is within

the estimate of the stability region (see Fig.4.3), with the objective of stabilizing at the

nominal unstable distribution. The predictive controller is able to continuously reduce the

value of the Lyapunov function, and hence (as can be seen from the temperature profile in

Fig.4.2) achieves practical closed-loop stability of the infinite dimensional system and drive

the process sufficiently close to the nominal equilibrium distribution. The corresponding

phase-plane for the amplitudes of the slow eigenmodes and manipulated input profiles can

be seen in Fig.4.3 and Fig.4.4, respectively.

4.4 Safe-parking of transport-reaction processes

Having presented a Lyapunov-based predictive control formulations that allow for the ex­

plicit characterization of the stability region under fault-free and faulty conditions, in this

section, a framework is presented which in the event of a fault determines a 'safe-parking'

distribution where the process can be temporarily operated utilizing the depleted control

action and enable resumption of nominal operation upon fault repair.
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4.4.1 Methodology

In this section, we use the stability region characterizations of the predictive controller pre­

sented in Section 4.3;1 to identify 'safe-parking' distributions so that the switching scheme

outlined by this framework guarantees the transition to the 'safe-parking' distribution (with

depleted control action), and back to the nominal distribution (with full control action).

To account for the presence of constraints on the manipulated inputs, the key requirements

for a safe-park distributions include that the process state at the time of the actuator fault

resides in the stability region for the safe-park distribution (so the process can be driven

to the candidate safe-park distribution), and that the safe-park distribution should reside

in the stability region under nominal operation (so the process can be returned to nominal

operation). These requirements are formalized in Theorem 4.2 below.

To this end, consider the system of Eq.4.1 for which the first control actuator fails at a

time Tfault and is reactivated at time Trepair, and for which the stability region for the

infinite dimensional system under nominal operation, denoted by n~, has been character­

ized for the predictive controller formulation of Eqs.4.19-4.24. Similarly, for a candidate

safe-park distribution x sp , we denote n~P as the stability region (computed a priori) of

the infinite dimensional system under the predictive controller of Eqs.4.19-4.24. We also

denote U2,xsp = UMPC(Xs , x sp , Umin, 2 , Umax'2)' as the control law designed to stabilize at the

candidate safe-park distribution (using the depleted control action), where um in,2' umax,2

denote the constraints on the manipulated variables in the presence of a fault.

Theorem 4.2: Consider the constrained system of Eq.4.1 under the MPC law of Eqs.4.19­

4.24 designed to achieve lim sup Ixs(t)1 ~ d and lim sup Ilxf(t)112 ~ d for a given positive
t-+oo t-+oo

number d. If xs(O) E n~, xs(Tfault ) E n~P and n~P C n~, then the switching rule

Ul,n , 0::; t < Tfault

U(t) Tfault ~ t < Trepair

T repair ::; tUl,n ,

(4.33)

guarantees that xs(t) E n~ V t ;:::: 0 and infinite-dimensional closed-loop system is practically
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stable in the sense that lim sup Ixs(t)1 ::; d and lim sup II x f(t) 112 ::; d.
t->oo t->oo

Proof of Theorem 4.2: We consider the two possible cases; first if no fault occurs

(Tfau1t = Trepair = 00), and second if a fault occurs at a time Tfault < 00 and is repaired

at a time Tfau1t ::; Trepair < 00.

Case 1: The absence of a fault implies u(t) = Ul,n V t 2: O. Since xs(O) E n~, and the

nominal control configuration is implemented for all times, we have from Theorem 4.1 that

xs(t) E n~ V t 2: 0 and lim sup Ixs(t)1 ::; d, lim sup II x f(t) 112 ::; d.
t->oo t->oo

Case 2: At time Tfault , the control law designed to stabilize the process at xsp is acti­

vated and implemented till Trepair. Since xs(Tfault) E n~P C n~, we have that xs(t) E

n~ V Tfau1t ::; t ::; Trepair. At a time Trepair, we therefore also have that xs(Trepair) E n~.

Subsequent~y, as with case 1, the nominal control configuration is implemented for all

time thereafter, we have that xs(t) E n~ V t 2: Trepair. In conclusion, we have that

xs(t) E n~ V t 2: 0 and lim sup IIxs(t) II ::; d. This completes the proof of Theorem 4.2. 0
t->oo

Remark 4.7: Note that the entire design of the safe-parking candidates is carried out

off-line, and only the decision as to a particular choice of a safe-park point is made online,

upon fault occurrence. In particular, for a fail-safe position of an actuator, the entire set

of candidate safe-park points X sp can be computed off-line. In addition the corresponding

stability (and invariant) regions subject to depleted control action can also be computed

off-line (as is done for the nominal equilibrium distribution). Note as per Theorem 4.1, all

stability regions are characterized using the slow-states X s , while Theorem 4.2 outlines the

criteria for selecting the safe-park distributions. Specifically, the Theorem requires that the

stability (and invariant) region of the candidate safe-park distribution be such that the slow

state at the time of the failure resides in the stability region for the safe-park distribution.

This ensures that the process can be driven to the safe-park distribution with the remaining

depleted control action. Furthermore, the theorem requires that the stability (and invariant)

region for a safe-park distribution be completely contained in the stability region ulJ.der

nominal operation. This ensures that the slow-state trajectory always stays within the
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stability region under nominal operation, thereby enabling smooth transition to nominal

operation upon fault recovery (see [36] for a discussion on relaxing this requirement).

Remark 4.8: Referring to the practical implementation of the result in Theorem 4.2, one

must initially determine the set -of candidate safe-park distributions. Note that although

the computation of the control law developed in Section 4.3.1 which is used within the

safe-parking framework neglects the evolution of the fast states, the computation of the

candidate safe-park distributions uses both the slow and fast states. Specifically, using a

suitable Galerkin discretization of the parabolic PDE system, the equilibrium states of the

approximate ODEs which correspond to the failed actuator at fail-safe position, and the

other manipulated inputs at admissible values, must be solved. These equilibrium states

correspond to equilibrium distributions for the PDE system and are the candidate safe­

park distributions. A suitable Lyapunov function is then used to construct estimates of the

stability region for each possible fault scenarios for a given set of manipulated inputs. The

switching logic outlined in Theorem 4.2 is then checked on-line to determine, for a given

fault, suitable safe-park distributions.

Remark 4.9: The proposed safe-parking framework is different than previously devel­

oped safe-parking schemes in that the present work considers infinite-dimensional systems

modeled by dissipative quasi-linear PDEs. The frameworks in [36] and chapter 3 were devel­

oped for spatially homogeneous processes which could be modeled by ODEs. By considering

lumped parameter systems the frameworks in [36] and chapter 3, work with safe-park points,

where the process could be temporarily preserved upon a fault. In contrast, this chapter

considers processes with spatial variation and thus the framework stabilizes the process at

steady-state spatial distributions rather than points. Furthermore, the construction of the

stability region estimates must account for the infinite dimensional nature of the system.

This is done by using the time scale separation of the eigenspectrum to construct. an esti­

mate for the reduced order system, and then making this estimate slightly more conservative

to compensate for the remaining neglected eigenmodes. Subsequently, the safe-parking de­

cisions are implemented based on the slow states residing within the conservative stability

region estimate.
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Remark 4.10: The assumption of actuators reverting to fail-safe positions upon failure

is common practice for actuators which have a fail-safe mechanism. The fail-safe positions

are chosen to minimize the possibility of hazardous conditions, e.g. high temperatures and

pressures. For example, the fail-safe position of a coolant valve and steam valve would be

the fully open and fully closed position respectively. This assumption allows for the a priori

enumeration of the possible fault scenarios for a given set of manipulated inputs. For each

possible fault scenario, the safe-park candidates, and appropriate safe-park distributions

can be determined. Note that the safe-park distribution is chosen online (the condition

Xs E n~ can be verified off-line, however xs(Tfault) E n;P has to be verified online, upon

fault-occurrence) and can be done via simply evaluating the Lyapunov function. Note also

that while the proposed safe-parking framework assumes a priori knowledge of the fail-safe

positions of the actuators, it does not require a priori knowledge of the fault and repair

times, and only provides appropriate switching logic that is executed when, and if, a fault

takes place and is subsequently rectified.

Remark 4.11: The safe-parking framework as outlined in Theorem 4.2 addresses the

problem where a fault occurs that precludes operation at nominal operating distribution,

and provides an appropriately characterized safe-park distribution where the process can

be temporarily held until nominal operation can be resumed. Note that the safe-parking

framework addresses a problem not considered by the reconfiguration-based approaches of

[29; 30; 19]. In particular, we consider faults for which the nominal equilibrium point is no

longer an equilibrium point, and we _address the case where no backup control configura­

tion is available (for which the nominal equilibrium point continues to be an equilibrium

point). Note also, that the criteria for choosing safe-park distributions may lead to several

safe-park candidates being suitable. The choice can then be made by incorporating opti­

mality considerations in the safe-parking framework. Specifically, having determined the

appropriate safe-park distributions, the cost of transitioning to the safe-park distribution,

the cost of operating at the safe-park distribution, as well as resuming nominal operation

can be estimated using an auxiliary controller (see [36] for the incorporation of performance

considerations in the safe-parking framework for lumped-parameter systems).
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4.4.2 Safe-parking of the diffusion-reaction process

In this section, we demonstrate the implementation of the proposed safe-parking mechanism

from Section 4.4.1 to the diffusion-reaction process of Eqs.4.13-4.14. We use the same model

representation in terms of evolution of the amplitudes of the eigenmodes as in Section 4.3.2.

To this end, consider the scenario where the process is stabilized at the nominal operating

distribution. At t = 0.5 min, a fault occurs in the coolant flow rate (centered around

the point z = 1r/3), and reverts to the fail-safe position (fully open). Hence only one

actuator at z = 21r/3 is functioning, and the nominal steady-state operating distribution

corresponding to u1 = -0.35, and u2 = -0.45 is no longer an equilibrium distribution of

the process subject to the fault in u1 . To demonstrate the need for implementing the safe­

parking approach, we first show a possible outcome if the controller simply tries to preserve

nominal operation using the functioning actuator. Attempting to continue operating at this

nominal distribution using the proposed predictive controller results in the process escaping

to an undesired stable equilibrium which corresponds to a very high temperature (as can be

seen from the temperature profile in Fig.4.5). The corresponding state and input trajectory

are shown by dashed lines in Fig.4.7 and Fig.4.8 respectively. Specifically, as the coolant

flow centered at z = 1r/3 reverts to the fully open position, the remaining functioning

actuator at z = 21r/3 must begin to counter the affect of the cooling in order to maintain

the process at the nominal operating temperature profile. This decrease is immediately

followed by an increase in the coolant for the functioning actuator as the exothermicity

of the reaction accelerates the increase in temperature. Since no admissible value of the

functioning actuator will result in the nominal operating distribution to be a steady-state

distribution, the functioning actuator eventually saturates at the fully open position in

attempt to counter the exothermicity of the reaction. However, this cooling is inadequate

to counter the exothermicity of the reaction and results in the state profile escaping to a high

temperature steady-state distribution. In contrast, if the fault is handled using the proposed

safe-parking mechanism, a safe-park distribution corresponding to slow amplitudes of the

eigenmodes of (al(O), a2(0)) = (0.1,0.03) is chosen. This safe-park distribution is contained

within the stability region of the nominal operating distribution, and the nominal operating
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distribution is also contained within the stability region for this safe-park distribution. Thus

this safe-park distribution meets the criteria outlined in Theorem 4.2. The stability region

estimates for the nominal (dashed-dotted line) and safe parking distributions (dotted line)

can be seen FigA.7, and are denoted by n~ and n~p respectively. The process is driven

to, and stabilized at the safe-parking point using the remaining functioning point actuator

at z = 2'7l"/3. Since at the time of the fault, the process is within the stability region of

the safe-park distribution, successful stabilization at the safe-park distribution is ensured

(Theorem 4.2). At t= 4.6 minutes the fault is rectified. The safe-parking mechanism

reverts the controllers to use both functioning actuators and is able to drive the process

back to the original nominal equilibrium point. This successful stabilization is ensured

(again by Theorem 4.2), since at the time of fault recovery, the process was within the

stability region of the nominal operating distribution. The state trajectory under the safe­

parking mechanism is shown in FigA.7 (solid lines). The temperature profile during the

fault and fault recovery stages, under the safe-parking framework can be in FigA.6. The

corresponding manipulated input profiles can be seen in FigA.8 with solid lines.

4.5 Conclusions

This chapter considered the problem of model predictive control and handling actuator

faults in transport-reaction processes subject to input constraints. First, a Lyapunov-based

model predictive controller was designed which establishes closed-loop practical stability of

the infinite dimensional system, while simultaneously providing an explicitly characterized

stability region. This predictive control formulation was then used to develop a framework

to handle faults that preclude the possibility of continued operating at the nominal equilib­

rium distribution using robust or reconfiguration-based fault-tolerant control approaches.

This framework utilizes pre-specified (candidate safe-park) distributions where the process

can be temporarily maintained. Such distributions are chosen to prevent the onset of haz­

ardous situations as well ensure smooth resumption of nominal operation upon fault-repair.

Specifically, a safe-parking distribution is chosen based on the following criteria: 1) the pro-
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cess state at the time of failure resides in the stability region of the safe-park distribution

(subject to depleted control action), and 2) the safe-park distribution resides within the sta­

bility region of the nominal control configuration. The proposed framework was illustrated

using a diffusion-reaction process.
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Figure 4.1: Open-loop dimensionless temperature profile for the diffusion-reaction process.
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Figure 4.2: Closed-loop dimensionless temperature profile under the implementation of the

proposed predictive controller with (al(O), a2(0)) = (0.1,0.03).
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Figure 4.3: Dashed line (- -) indicates the evolution of the state trajectory for slow states,

and .os denotes the stability region estimate under the proposed predictive control formu­

lation.
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Figure 4.4: Manipulated input profiles under the implementation of the proposed predictive

controller with (al(0),a2(0)) = (0.1,0.03).
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Figure 4.5: Closed-loop dimensionless temperature profile in the presence of actuator faults.

At t = 0.5 min a fault occurs to the point actuator at z = 1r/3, and this actuator reverts

to the fully open position. Continued operation at the nominal equilibrium is attempted

and is not achievable. The process escapes to a potentially hazardous high temperature

distribution.
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Figure 4.6: Closed-loop dimensionless temperature profile in the presence of actuator faults

under the implementation of the safe-park mechanism. At t = 0.5 min a fault occurs to the

point actuator at z = 1r/3, and this actuator reverts to the fully open position. With the

remaining functioning actuator at z = 21r/3, the process is stabilized at a safe-park point.

Upon fault recovery at t = 4.6 min, the process is successfully driven back to nominal

operation using both point actuators.
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Figure 4.7: Evolution of the state trajectory for slow states in the presence of actuator

faults. Dashed line (- -) indicates the case when a continued operation at the nominal

operating condition in the presence of a fault is attempted. Solid line (-) indicates the case

when the process is stabilized at the safe park distribution Sp which is chosen according

to Theorem 2. This guarantees resumption of nominal operation upon fault-recovery. n~

and n~P (dashed-dotted line (-.-), and dotted line (.)), denote the nominal and safe-parking

distribution stability region estimates respectively.
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0.1 min and is rectified at 4.6 min. The dashed lines (- -) represent trying to continue

operation at the nominal operation conditions using the depleted control action. The solid

lines (-) represent operation under the proposed safe-parking mechanism.



Chapter 5

Conclusions and Recommendations

5.1 Conclusions

This thesis considered the design and applications of predictive control of nonlinear process

systems subject to input constraints. In chapter 2, continuous-time nonlinear process sys­

tems were considered, and a predictive control formulation was presented which enhances

the set of initial conditions from where closed-loop stability can be achieved. The main

idea in this formulation was to employ characterization of the process dynamics which were

independent of the specific control-law used. Linear process systems were first considered as

a subcase. For linear systems a predictive controller was designed that achieves closedloop

stability for every initial condition in the null controllable region. For nonlinear process

systems, suitable constraints are formulated within the predictive controller which require

the process to remain within the region where a given Lyapunov function value can be made

to decay. The incorporation of this constraint expanded on the set of initial conditions from

where closedloop stability can be achieved, and thus better utilized the constraint handling

capabilities of MPC. The proposed method was illustrated using a chemical reactor example,

and the robustness with respect to parametric uncertainty and disturbances demonstrated

via application to a styrene polymerization process. In chapter 3, this predictive control

design was further broadened by considering the presence of uncertainty and lack of full
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state measurements. The problem of fault handling was also given attention. Specifically, a

safe-parking scheme was developed for actuator faults which preclude the possibility of con­

tinued nominal operation using the existing robust or reconfiguration-based fault-tolerant

control approaches. Using the proposed robust/output feedback control design, the scheme

extended a previously developed safe-parking framework to handle uncertainty and lack

of full state measurements. The proposed framework was illustrated using a chemical re­

actor example and demonstrated on a styrene polymerization process. Finally in chapter

4, we considered transport-reaction processes described by quasi-linear PDEs subject to

input constraints. A Lyapunov-based model predictive controller which provides an ex­

plicit characterization of the set of initial conditions from where closed-loop stability of

the parabolic PDE system is guaranteed was first developed. This was done by deriving

a finite set of ODEs which capture the dominant dynamics of the infinite-dimensional sys­

tem via Galerkins method. Similar to the continuous-time setting, this control design was

then subsequently used to develop a safe-parking framework for handling actuator faults.

Safe-parking for distributed parameter systems is intuitively similar to continuous-time sys­

tems, with equilibrium distributions replacing equilibrium points. Utilizing the stability

region characterization provided by the developed predictive controller, safe-park distribu­

tions from the safe-park candidates (equilibrium distributions subject to failed actuators)

are chosen to preserve closed-loop stability upon fault repair. The proposed framework was

illustrated on a diffusion-reaction process.

5.2 Recommendations for Further Work

One interesting avenue to explore is the reformulation of the predictive control design in

chapter 2 for linear systems within a Lyapuriov framework. The presented design utilized

the description of the boundary of the null-controllable region as level sets of an energy­

like function. Decay of the function was enforced via constraints in the MPC design, and

the feasibility and stability guarantees were shown for all initial conditions within the null­

controllable region. However, this analysis and design did make use of any Lyapunov-based
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tools. The ability to characterize the null-controllable region within a Lyapunov framework

would be of great value. Specifically, it would provide a systematic procedure to construct

control Lyapunov functions for linear systems which accounts for the presence of input

constraints. In light of the fact that the construction of Lyapunov functions remains to be

a bottleneck of all Lyapunov-based control designs, this construction procedure would be

very beneficial.

Furthermore, another interesting avenue to explore is the extension of the stabilizing con­

trol design presented for linear systems in chapter 2 to the nonlinear platform. Although

characterizations of the exact null-controllable region are in general not available for non­

linear systems, one approach could be to design a similar control scheme using some sort of

maximal estimates of the region.

There are several directions for the further development of the fault-tolerant safe-parking

scheme. Namely, the extension to multi-unit processes which involve recycle streams, the

incorporation of sensor failures, and the integration with switched control schemes. In ad­

dition, given that many chemical processes involve distributed variables which are modelled

by PDEs, the safe-parking framework for transport-reaction processes presented in chapter

4 can be extended to other PDE systems (e.g. hyperbolic).
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