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ABSTRACT 

Theoretical calculations of the renorma1ization of 

the electron mass and the quasiparticle lifetime due to the 

:~lec·tron-phonon interaction are performed in alumi.nurn as a 

function of position on the Fermi surface. The computations 

are carried out at finite temperature, and, in the case 'of 

the relaxation time, for finite energy above the Fermi surface. 

We present a formal deve1opment.of expressions for 

the mass renormalization parameter and lifetime -at finite 

temperature
4 

to second ?rder in the elec~-Phonon interac

tion using a perturbation-theory approach, which is mathe-

matica1ly simpler, if less elegant, than the usual Greensf~c

tion method. The behaviour of the resulting integrals is 

discussed briefly with reference to their numerical evalua-

tion. 

Our results for the electron mass renormalization at ._/ 

finite temperature agree qualitatively with the expected 

variation of the electron wavefunctions on the Fermi surface • 
. 

In terms of the results, the approximate requirements for 

experimental observation of the,calculated increase in elec

tronic effective mass and its -anisotropy are discussed. 

A comparison of the calculated temperature dependence 

of the quasipar~icle lifetime with experiment and with other 

theoretical work has important implications for the accuracy of 

electron~phonon numerical c~lcu1ations in the low-f~equency 
\ 

#~- ~ 

region • ./ 
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CHAPTER I 

INTRODUCTION 

In a normal;neidl in equilibrium, the interaction 

between conduction eleCtrons near the Fermi surface and 

the vibrational modes of the crystal leads to a shift in 
---' . 

energy of the electron states, often described as change 

in the electronic effective mass, and scatters electrons 

between states near the Fermi surface with a characteris-

tic relaxation time. Grimvall (1968) noticed that this 

electron-phonon interaction was-distinguished from other 

contributions to the effective mass observed in cyclotrQn 

resonance by a significant dependence on temperature. Using~ 

Greens function methods, ~e calculated the temperature-

'" dependent electron mass renormalization parameter A in an 

Einstein model and in a more detailed model of sodium. In 

. 1969 Allen and Cohen calculated A(T) in an isotropic model 

for'several metals, and found reasonable agreement with the 

simultaneous experiments of Sabo on zinc. Recenl! detailed ' 

calculations by Leung (1974) 9f direction-dependent frequency 

distributions characterizing the electron-phonon in aluminum 

have made possible the present calculation of A as a function 

of temperature and of position on the Fermi surface. We 

also calculate the lifetime i, which is closely related theore-

1 
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tically and experimentally, as a function of temperatu~e, energy, 

and direction. Aluminum is'of interest largely for being a 
. 

superconductor which, as a polyvalent metal, is o~y one step 

more difficult to deal with theoretically than the alkalis. 

We begin in Chapter II by presenting the model of a 

metal in which we shall work and develop the fundamental ex-

pression describing the electron-phonon inter.action. Essentially, 

this chapter is.a review of methods commonly used in the fiel~ 
,/ 

Features and limitations of the model are discussed with a~-/ 

view to justifying the approximations of the subsequent 

theoretical development. 

In ,the third chapter the expressions for A and L are 

derived, using an ordinary perturbation-theory approach for 

its ~impli~ity. Wilkins (l968) presents such a perturbation

theory development of an expression for A at zero temperature, 

and in an appendix extends it to finite temperature with 

intuitive argument$. Here we present a formal development 

at finite temperature of equations for A and L. 

Our results are presented in the next chapter. The }t ___ 
f 

orientation of the coordinates describing positions on the 

Fermi surface is explatned in somewhat laborious detail, 

but this should be an aid in correlating our points with 

the invariably different systems of other installations .• 
,', 

Numerical procedures and difficulties are described briefly. 

We present our results in tables and graphs and discuss their 

behaviour. The c.alculated lifetimes of Tomlinson and Carbotte 

(1976) and those measured experimentally by Doezema and 
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Wegehaupt (1975) are compared with the present calculations. 

Chapter V concludes with a discussion of the impli

cations of these results to experiments and theoretical 

calculations. 

/ 

\ 
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CHAPTER II 

ELECTRONS IN A LATTICE 

2.1 The Pseudopotential Method 

~ We are concerned in this work with the effect of the 

crystal lattice upon conduction eleotrons~ and more speci-

fically with the electron-phonon interaction. Although the 

ion lattice enters into this problem in a fundamental way, 

we may use" the Born-Oppenheimer theorem to focus our attention 

on the electrons, which to a good approximation obey a Schro

dinger equation involving the ion coordinates only as para-

meters in the potential felt by an electron (Ziman, 1972). 

Describing the electron-electron interactions by including 

a self-consistent interaction energy in the potential, we 

arri ve at a single-electron equation, 

(2.1) 

wheFe T = - ~ V2 is the kinetic energy operator, V(£) i~ 
the self-consistent potential seen by an electron at ~, and 

$(~) is a single-electron wavefunction with energy eigenvalue E. 

The Hamiltonian in (2-1) is not time-independent. The 

~attice is free to vibrate, and the potential V(E) follows 

the motion of the ions. This time-varying part in the Bamil-

tonian, the electron-phonon interaction, will be discussed in 

4 
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subsequent chapters in terms of its effect on the 

obtained as solutions to the static part of (2.1). In the re-
/ 

mainder of this section we shall r~view the method of pJ.eudo-
. 

poten±ia1s (Harrison, 1966) which allows the use ~f familiar ~ 

I 

and c~nvenient techniques for extracting iniormation pf physi-

I cal interest from (2.1). , 

We consider a pure metal with tbe ions at their equi-

librium po~itions on a perfect lattice. Taking the potential 
11 r -, , 

1<£) to be a sum of (identical) single-ion potentials v(E), we 

write (2.1) as 

(2.2) 

for the ionscfixed to their equilibrium positions R~. This 

equation describes all the electrons. For non-transition 

metals such as alUnunum~ the core. electrons are confined to a 

region much less than the size of the unit cell. To a good 

approximation the core wavefunc~ions do not overlap into the 

regions where the potential due to neighbouring ions is large, 

and are essentially unchang~d from the wavefunctions of the 

free ion. The conduction electron states are spread through 
-

the crystal, and their qualitative behaviour is ~ong1y 
\ 

influenced by the distribution of the points~R~ abo~-which 

the potentials are centred. 

The translational symmetry of the' Hamiltonian in (2.2) 

requires that the solutions have the Bloch form (Ziman, 1972) 

lP (r) 
k -

(2.3) 

~ . 
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where uk (E) has .the translational symmetry of the crystal; that 

is " 

0 
~ uk (E.) uk (!. + Rt ) . 

The crysta). volume n is explicitly included in (2.3) for nor:-

malization. We apply periodic boundary conditions on the crys-
, 

tal to specify the allowed. values of wavevector k. 

The periodicity of uk(E) demands that it be expressahle 

as the Fourier sum 

~~ . iK·r 
Q (r) = r C (k)e -n -

.K - n -n 

"-

where the sum is over.reoiprocal lattice vectors K • * ~ 
(2.3) and (2.4) together gives, f1nally, 

I~k> = r Cn(k) I~ + Kn> 
n 

\'Je have gone to Dirac notation with the substitution . 
". 

(2.'4 ) 

Putt;ing 

Solving the Schrodinger equation (2.2) is equivalent to fin

ding the exp~sion coefficients C (k) in (2.5). n-
An approximate solution could be generated by trunca-

ting (2.5) after a finite numqer of terms, substituting into 

(2.2), and solving the resulting mat;ax equation for the C 's 
n 

and the 'eigenvalues E. However, the number of terms required 
A 

for an accurate description ~f the true wavefunction is large. 

It would be preferable to begin with a.set of basis functioris 

• 
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other than simple plane waves, which more nearly approx~rnate 

tQe true electronic eigenstates t . , 
Since the conduction-ban~ states must be orthogonal to 

the~ore stat~sl Herring (1940) suggested the use of orthogona

lized plane waves (OPt'l' s), defined by . 

lopwk> = Ik> - r la><afk> (2.6) 
a 

where the sum is over all core states I a)FI. The OPl"l is just a 

plane wave minus its projection on the core states, and has' 

the synunetry demanded by, (2.3), sj"nce the core states do. Ex-

panding the electron wavefunction in OPW's gives 

- r an(k) {lk+Kn> 
n 

r la><atk+K >} .. - -n 
(2.7) 

.,..,... 

The core states are eigenstates of ~he 'Hamiltonian with 

energies we shall denote by ,Ea. Substituting (2.7) into the 

Schrodinger equation (2.2), we obtain for a conduction electron 

in state I 'Ilk>' 

.. 
r a (k){(T + r v(r-R~» Ik+K > - r E ta><alk+K >} n - - -IV - -n a - -n . n .2. a 

= Ek r an(k) {lk+Kn> - r la><alk+Kn~} • 
n a 

(2.8) 

Following Harrison (l~66) we take all the core state terms to 

the left side and with a little rearrangement write 

(2.9) 
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We have treated r \a><a\ as a projection operator and separated 
a , 

it ~rom the ket Ik+K >. - -n 
Equation (2.9) may be written in a more transparent 

form. We define the pseudopotential W by 

w'~) = r V(E-R~) + L (Ck-ca>\a><a\ 
i a 

(2.10) 

and a corresponding pseudowavefunction I~k> through the 

relation 

that is, 

'Iwk> = I~k> - L la><ul~k> 
a 

(2.11) 

(2.12) 

in the above expressions. (2.9) takes the simple form 

(2.13) 

It is not obvious that we have gained by all this, 

as we have arrived back at a Schrodinger equation with the 

pseudopotential and pseudowavefunction replacing the true po

tential and wavefunction. The value of (2.13) in what follows 

rests on W being much weaker than the true' potential, so that 

it may be treated as a perturbation on a (pseudo) electron gas. 

This is equivalent to saying that we expect the conduction 

band_wavefunctions to be nearly described by a single, or at 

worst a few, OPW's. Using (2.l3) allows us to work with a small . , 
number of plane waves, at the expense of employing a complicated 

~ 
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pseudopoten tial. 

From (2.l0) it is apparent that w is an operator rather 

than simply a c-number function, and that it depends explicitly 

on the energy Ek of the state under consideration. Since we 

, always work at or very near the Fermi energy, the energy depen-
t •• 

dence is not a problem. More serious is the non local operator 

nature of l"1. The form factor <k I w I k' > contains the product\ 

<k I a><a I ~' >, and does pot dep~nd only o~ the momen,tum transfer 

k'-k. Model pseudopotentials have been constructed (see, for 

example, Heine and Abarenkov, 1964) which are local and greatly 

simplify subsequent computations. 

It is necessary to introduce the pseudopotential due to 

a single ion at the origin, 

W{E) = v(r) + E (Ek-Ea ) la><ul 
u 

(2.l4) 

where the sum is now over the core states of the free ion, and 

to assume that the full pseudopotential is the sum of sing1e

ion pseudopotentials centred about all the ions. This approxi-

mation has already been justified for the potential term in 

,(2.10) . Under the same assumption that the c:ore wavefunct.iOns 

are highly localized, the projection operator terms sum in 

the same way. 

J 
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2.2 The Electron-Phonon Interaction 

We deal in this section with a crystal of N identical 

ions in a sea of conduction eiectrons. Each electron interacts 

with each ion through a weak pseudopotential W. Electron

electron interactions are ignored except for those effects 

included as screening terms in W. The ions are'-allowed to oscil-

late about their equilibrium positions, and following White (1974) 

an expression is derived for the correction to the many-elec-

tron Hamiltonian assuming the lattice dynamical problem has 

been solved. 

The total pseudopotentia1 is now given by 

(2.15) 

with £~ the displacement from equilibrium of ion ~. 

acts upon each electron separately. Expressed in the notation 

of second quantization it becomes 

(2.16) 

where w~ and ~o are the usual field operators for an electron' 

of spin a at position E. Expanding 

with Cka the annihil~ion operator for an'e1ectron in state 

I~k>' and performing the]integra1 in {2.l6} yields the expres

sion 
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E 
kk'a 

(2.18) 

for the pseudopotential operato~v 

Using (2.15) and (2.12) 'the matrix element is written 

as 

1 
= n L 

nn' 
* a ,(k') a (k) 
n - n--. 

i(k+k ).r 
- -n -x e 

• 

(2.19) 

Substituting'~ = £-R~-~! into each term of the sum over t gives 

for the integral in (2.19) the expression .. 
o 

-i(k'+-nK t-k-~)· (R~+un) n 
e AI AI _ <k'+K ,lwlk+K > 

N - -n --n 

where we normalize the plane waves to the volume per ion, 

~, in the single-ion matrix element 

<11.' Iw 111.> - ~ J d 3y e -iE.' ''.i. w('.i.1eil1.''.i. 

Assuming the ion displacements to be small, we expand the 

exponential to first order in the ~1 and obtain for (2;19) 

r 
nn' 

x 1. r 
N 1 

, 0 
-i(k'+K -k-K )·R 

- -n--n 1 e -

X {l+i(k'+K'-k-K ).u } 
- -n - -n .-1 

(2.20) 
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.'"--,-. 

i The term which is -independent of u
t 
descr~bes the effect 

of the static lattice. Performing the sum over t on this 

terra provides a factor N and restricts k-k' to a ~ciproca~ 

lattice vector. Using this term together with the kinetic 

energy term gives a Schrodinger equ'ation describing the band 

structure. Denoting the energy eigenvalues by Ek , we can 

write kinetic plus static-lattice 

t Hamil tonian as L E:k CkcrCkcr • 
kcr - .... 

I ... 

contributions to the total 

To deal with the term involving the displacements ~t' 
" '"" I 

which are functions of time, we need to,solve the lattice 
i 

dynamic\~.~e shall simply take the standard result derived, 

for example, in Maradudin (1969). In the harmonic ap~roxLma-

tion, the ion displacements are,given by 

L 
q).. 

t 
(a ,\+a '\) -q,n. q,1\ 

(2.21) 

for a crystal containing N ions of mass M. £).. (S) and w)..(g) 

are respectively the normalized polarization vector and fre-

qu~ncy of the c~ystal normal mode with polarization index A 

t and waveveqtor~. The phonon operators a and a create and 

destroy an excitation (phonon) in the appropriate mode. We 

have the symmetry properties 

(2.22) 

for each reciprocal lattice vector K. In the Born-von K~rman 

. .. 
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theory, the frequencies and polarization vectors are derived 

from a small number of interionic force constants, vlhich may 

be determined eh~erimentally by fitting to inelastic neutron 

scattering data (Brockhouse et aI, 1968). 

Substituting (2.21) into (2.20) and performing the 

sum over t gives a factor No ,k'-k' since g is unique only up 
g - -

to a reciprocal lattice vector. The sum over g from (2.21) 

may be performed trivially to give, for the phonon contribution 

with 

r 
nn' 

a*, (k')a (k) (k'+K ,-k-K ) 
n - n - - -n --n 

x <k' + K .~, I wi k+ K >. 
- -n --n 

(2.23) 

(2.24) 

We have made use of ~he symmetry p~operties (2.22) to obtain 

this form. Finally, we substitute into (2.18) to obtain the 

electron-phonon contribution to the Hamiltonian 

H ~-e=:; (2~25) 

* Note that gk,k';A = gk',kiA so that He _p is Hermitian. 

Given the phonon frequencies and polarization vectors, 

and the pseudopotential form factor <E'lwIE>' the electron-
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phonon coupling constant gk' ,k;A may be calculated approximately 

by truncating the expansion (2.12) of the pseudowavefunction 

after a few pl~e waves. For calculations to second order in 

the electron-phonon interaction, the required information on 

9k',kiA is contained more compactly in "effective weighted pho

non frequency distributions l1 (Leung, 1974). We shall need only 

the function 
dSk , 

2 n ~ J' -ak(w)Fk(W) = 3 2 ~ Iv. I 
- - (21T) -n:\ !s. 

(2.26) 

\ 

which contains also the necessary information on the phonon fre-

quencies and the Fer~ surface. The integral is over the Fermi 

surface, with Sk a surface element. v k - Vk Ek is the electron 

velocity. 

Leavens and Carbotte (1971) calculated this function in 

Al using a single plane wave for the coupling constant and a 

spherical Fermi surface. Tomlinson and Carbotte (1976) used four 

plane waves for the coupling constant and for the Fermi surface. 

Leung (1974) described the Fermi surface with four plane waves, 

and used 15 plane waves for the electron-phonon interaction. 

All 'took phonon data from a Born-von Karman fit to inelastic 

neutron scattering experiments. 

We shall use the functions tabulated by Leung, which 

are the most realistic calculations available. For the Fermi .. 
surface he used the parameters of Ashcroft (1963) fitted to 

the de Raas-van Alphen data. The coupling constant was calcu-



Figure 1 

I ~'''" .. 
The dimensionless function a 2 (w)F (w), calculated by 

E. £ 
Leung (1974), at two points. The upper graph repre-

sents the point e = 21°, ~ = 23° near a Bragg plane, 

and the lower graph is at·the point e = 53°, ~ = 45° 

in a free-electron-1ike region. 
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lated with the pseudopqtential form factor computed by Animalu 

and Heine (1965) by the method of Heine and Abarenkov (1964). 

2 Uk(W)Fk(W) is given at 62 points k on the ir~educible 1/48 

of the Fermi surface as a histogram with 100 bins between 

zero and the maximum phonon frequency. Figure 1 shows Leung's 

as a function of frequency for two k points. The 

sharp peaks at high frequency, and the broader peaks at inter-

mediate frequencies are characteristic of such distributions, 

and correspond to Van Have singularities in the phonon density 

of states. Fluctuations from bin to bin which can be seen in 

figure 1 are an artifact of the method used to calculate the 

distributions in a reasonable amount of computer time, and 

are essentially statistical in origin. 



CHAPTER III 

QUASIPARTICLE PROPERTIES AT FINITE TEMPERATURE 

"'" 3.1 Quasiparticles 

The appearance of the phonon operators in H (2.25) \ e-p 

modifies ou~~icture of electrons in a metal. Instead of a 

Fermi sea of electrons in energy eigenstates moving through 

a self-consistent potential, we imagine electrons followed 

by lattice distortions, occasionally scattering off phonons 

to new momentum states. The fundamental electron-like exci-

tation of the system, or quasiparticle, is an electron plus 
l I 

its attendant lattice distortion. It is described by a 

wavevector k and energy Ek , in general differing from the band 

structure energy €:k. \ie define the self-energy E of the 

electron by 

(3.1) 

Since we shall use ordinary perturbation theory, E will corres-

pond to the real part of the complex self-energy which arises 

in a Green's function approach (Scalapino, 1969). For conve-

nience, we take Ek and £k to be measured from the Fermi energy 
,- - -

U, which is not shifted by the electron-phonon interaction. 

In magnetic resonance experiments (for example, see 

Allen and Cohen, 1969) and other phenomena, the effect of the 

17 
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'\ 
ch~nge in electron energy enters as an extra factor (1 + Ak ) 

multiplying the appropriate band-structure effective mass. 

Ak , the electron mass renormalization parameter, is given by 

(3.2) 

Ek = 0 describes a state at the Fermi Etnergyo 
,.;:;j 

Note that 

£k 

Ek z 
1 + Ak 

(3.3) 

for small Eko 

Individual quasiparticle states are not eigenstates 

of the system Hamiltonian, but decay with a characteristic 

time t k , emitting or absorbing a phonon. The finite relaxa

tion/ time ascribes a width to the quasiparticle energies ac
l' 

cording to the uncertainty principle. At zero temperature tk 

is infinite for a state at the Fermi energy, but becomes 

rapidly shorter as temperature increases, limiting the range 

over which quaSiparticle self-energies may be measured. lk 

will be calculated in the final section of this ~hapter. 

3.2 The Electron t·1ass Renormalization Parameter 

We derive in this section an expression for Ak{T) 

following the approach suggested by ... Hlkins (1968).' Treating 

the electron-phonon interaction as a perturbation, we obtain 

the energy of the many-particle system at finite tempera~~e, 

to second order in H • From this expression, the energy of e-p 
., 
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a,single quasiparticle is extracted, defining the electron 

mass renormalization parameter through (3.1) .and (3.2). t'lith 

some approximations, Ak(T) is written as kn integral over the 

function a; (w) Fk (w) in a form facilitating numeric,al evaluation. 
, 

He take the system Hamiltonian to be 
'-. 

FBZ .... 
'" '" H = 1: nk, (e:

k 
+ll) + E ns..)...trw).. (g) + H 

kcr 90, A 
e-p 

(3.4) 

he number operators 

for electrons and phonons. To second order in'H , the energy e-p 
) 

E of a state Ig> of the N-electron system is 
9 

with 

The sum is over a complete set of states If>. 

(3.5) 

Since H e-p 

contains one phonon operator per term in (2.25), the diagonal 

matrix element <glH -Ig> vanishes: Using (2.25) we expand e-p 

, 

E 
kk' 
A). 

(3.6) 

\ 
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Only the terms involving a phonon creation operator in one 

matrix element and a phonon annihilation operator in the other 
"'\ ~ 
~l 

survive, giving 

l<gIHe _p lf>1
2 = t 

kk' 
"OX 

{3.7} 

The first term is zero ~less the energy denominator in (3.5) 

similarly, for the secbnd term, the 

'energy denominator mu'st be £1<'-£k - ~())A (k l -k). Since we can 

avoid a reference to EiO) in the denominator we may perform 

the sum over f, treating r If><fl as a unit operator. With 
f 

the aid of the commutation and anticommutation relations for 

boson and fermion operators, we ,obtain from (3.5) 

(3.8) 

It is now straightforward to calculate the energy of 

'" 
the system in,equilibri~ at temperature T by replacing matrix 

elements in'the state.lg> by averages in the grand canonical 

ensemble, defined as (~athria, 1972) 
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,.. 
<0> := 

".. -8 (H -lIN) 
Tr 0 e 0 

-t3(H -~N) 
(3.9) 

Tr e 0 

t3 = l/kBT, where kB is Boltzmann's constant, the trace opera

tion is denoted by Tr, and N is the total number operator 

for electrons; the chemical potential is zero for phonons. 

The trace may be evaluated in a complete set of states 

characterized by their,eigenvalues nka and ngA of the electron 

'" and phonon number operators. Providing 0 is a function of the 

number operators, each term is simply a function of the occu-

pation number eigenvalues. It is a standard trick to trans-

form the sum over all possible sets of number eigenvalues to 

a product of sums over possible occupation numbers of each state. 

For example, for one of the terms in (3.8) we obtain 

n 
00 

E 
x n=O 

00 

L 
n=O 

ne 

n 

-Bne: . 
ka {l-n)e -

- Bni'fw (k-k') 
). - -

- 8n~w (k-k') 
A --e 

(3.10) 

since all other factors cancel out. The electron occupation 

number n may take the values 0 and 1, so those sums are trivial-

ly performed. The sums over the phonon occupation number n 

are, in the denominator, a geornetr~ series, and in the numera-

tor, the derivative of,a geometric series, and may be evaluated 
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analytically. It is apparent that each electron number opera

tor n
ko 

in (3.8) gives rise to a factor 

(3.11) 

and each phonon operator ng). yields a factor 
, 

N(W).(q» (3.12) 

For the energy EN(T) of the N-electron system in equilibrium 

at temperature T we finally obtain 

FBZ 
EN (T) = E (£k +ll) f (E

k
) + 1: ~w). (g) N (w). (g» 

ko g). 

+ 1: 
kk' 
0;\ 

f (£k' ) (l-f (Ek ) ) N (w;\ (k-k' ) ) 

{----------~--=-~~------Ek , -Ek +HWA (k-k' ) 

+ 
f(E k ,) (l-f(Ek»l+N(w;\ (~'-~» 

Ek,-Ek-fiW).(k'-k) 
}. 

C3.I3} 

To extract from this the energyodue to a particular quasi-

particle state, we consider the change in EN due to a variation 

in the average occupation <n ,> or feE ) of a state £0', that 
E.G E. 

is 
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E (T) 
ISEN (T) 

- II = 6£(€: ) 12. E 

2 
(l-f(ck »N(wA,(k-E)} 

= (: + L Ig12.,k;A,1 { 
12. k)' £:e.-Ck+hwA,(k-p) 

(l-f (£k)) [l+N (wA <E.-k)} ] 
+ 

CE.-£k -fiwA (E-k) 
(3.14) 

f(Ck)N(w A (12.-k)} f (e: k > [l+N (w A (.!!.-12.» ] 

+ (: -c ~w (E.-k) + 
(:E.-(:~ +H'wA, (k-12.) } .I 

E..!!. A, - , 

We have subtracted II so as to measure E from the Fermi level, 
E. 

and have dropped the sum over a since we are considering a 

state of particular spin when we take the derivative. In ob-

taining the form of the last two terms, we have used the 

symmetry of the coupling constant, gk',k;A = g;,k';A. 

The expression (3.14) may be explained 1n a straight

forward way. We caJ? think of the eLectron-phonon interaction 

as inducing virtual scattering of an electron from one state 

to another and back, with the emission and absorption of a 

phonon (not necessarily in that order). Each scattering vertex 

gives a factor of the electron-phonon coupling constant, and 

we divide by the energy differe~~6hbetween the original and 

virtual.states in the usual perturbation-theory fasnion. If 

we put an electron in state E,it sc~ters to·all states k, 

giving the first two terms in the sum over states in (3.14)., 

The factor l-f(gk) describes the pauli-principle requirement 

that the state k be empty. The first term describes the 
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, 
absorption of a phonon by the electron in state £1 bringing in 

the phonon occupation factor. In the second term, the electron 

emits a phonon, giving rise to spontaneous emission and stimu-

lated emission (the factor N(w
A

» terms. By filling the 

state £1 we alter slightly the energy of the other stat~k 

by forbidding transitions to state £. This contribution is 
... 

described by the final two terms. 
/ 

Treating (3.14) in this way as a perturbation-theory 

expression involving the single-particle states suggests the 

substitution £ ~ E in the energy denominators, equivalent 
E. E. 

to using Brillouin-wigner perturbation theory in place of 

the Rayleigh-Schrodinger method. In this way we sum higher-

order terms without extra work, and reproduce the Green's 

function result for the real part of the self-energy (Sca1a

pino, 1969). Collecting terms with similar denominators in 

(3.14), and using the phonon symmetry wACg) = wA (-g) 1 we 

now write 

r (E E.) = E - e: 
E,I E, £ 

2 
f(Ek)+N(wA(E,-k» 

= E. !gE,/ki AI {EE.-;k+HWA{E,-k) 
(3.15) 

kA 

I-f(Ek )+N(W A(E,-k» 

+ E -E - Koo <E,-k) 
} 

E, k A-

we change the sum over k to an integral with the substitution 

n I + ---::-
k (21T) 3 
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where dS k is an area element in ~-space of a surface of con

stant Ek . £k is integrated from -~ to 00 along paths perpen

dicular to the const~nt-energy surfaces, or parallel to vk . 

We want the correction to the energy to be real, so the prin-

cipal value of the integrals is assumed . 
... 

With a few remarks on the variation of the integrand in 

~-space, we may separate the two integrations over area and 

energy for the states E of interest. lie shall subsequently dis-

cover that the self-energy L is non-zero only for states within 

a phonon energy or so of the Fermi energy, so we restrict our 

attention to states E near the Fermi surface. The largest con

tribution to (3.15) comes from states k for which the energy 

denominators are small, that is, for £k within a phonon energy 

of E. Because we have restricted E to the region near the 
E 

Fermi surface,., this implies that only states k wi thin a phonon 

energy or two of the Fermi ,energy will contribute significantly 

to L. As we integrate ov~+ ~k' along a direc~ion perpendicular 

to the constant-energy surfaces, we may therefore disr'egard 

contributions from the regions where k differs from the Fermi 

wavevector by more than about w/vk x k
f 

(in magnitude) or 

~w k for a free-electron system. For aluminum, we are 
2(£k+~J f 

therefore interested in Ikl within about .25% of its Fermi-

surface value. Obviously, we may perform the integral over £k 

regarding as constant such factors as IVkl which vary with k 

scale of the ~agnitude IkJ. 

The coupling constant gE,k;A and the phonon frequency 

wA(E-k) both vary on the scale of IE-kl as we change~. How-
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ever, we may disregard the regions where £-k is small com-

pared to I k I . In the long-wave length limit, w (g) a: S. and --the 

pseudop~tential form factor goes to a constant non-zero value. 

2 
By (2.24) I Ig£'~iAI a IE-~I as ~~E' cancelling the l/w di-

vergence of N(w). The number of states contributing to (3.15) 

for a particular value of I£-~I and £k is proportional to I£-kl 
at small momentum transfer, and so we may treat e-k as being 

sufficiently large that it does not vary much as £k varies 

between about ± hw. .. 
We have finally arrived at the point where we may per-

form the integration over energy treating wA(e-k ), gE,ki A and 

" v
k 

as constant. The phonon factors now vanish since they may 

be taken outside the energy integral, and. 

J
oo 1 1 

dx[--- + x_yl = 0 . _ x+y 

-00 

where, of course, we are taking principal values, and the 

range of integration may be extended from -~ to -00 for the 
J 

energies E of interest. 
e 

We are left with, 

n J dS~ 
r(te,e) = (2n)3 ~lv~1 

-00 

from (3.15) 

(3 .16) 

" 

Making a change of variables £ ~ -E +£ in the first term and 
E. 

£ ~ E -£ in the second, and using the relation f(x) ~ I-f(-x) p 

gives for the energy integral 
_" I 
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f(e-E ) - f(e+E ) 
E. E 

I

co 

de 

-co 

At E = a the integrand vanishes, so E (O,E) = O. 1-1ith (3.1), 
E 

this implies that the Fermi energy is not shifted by the elec-

tron-phonon interaction. The numerator f(€-E )-f(e+E ) is 
£ E. 

non-zero and constant for € between ±E and zero elsewhere, 
E. 

with a rounding of the corners to a distance ~ kBT. As E 
E 

increases above a few times the maximum phonon frequency, the 

integral, and thus the self-energy, falls off like l/E. ''Ie 
E , 

can therefore evaluate the surface integral in (3.16) over the 

Fermi surface for all E of interest, rather than over the 
E 

surface £k = EE." Introducing the factor 

I~ dw&(w-w,(E-k)) = 1 

o 

into (3.16) and using the definition (2.26), we obtain 

a 2 (w)F (w) de f(€-E)-f(£+E) . I
oo I 

E. E. e - "Hw 
-00 

(3.l7) 

In this expression the self-energy depends separately 

on the energy E (measured from the Fermi level) of a quasi-
. 

particle and on the position E. on the Fermi surface closest 

to the actual quasiparticle wavevector. By restricting E. to 

the Fermi surface, we have introduced a fractional error of 

the order of a phonon energy divided by th~ Fermi energy, ~ 1% 
\ 

at most. 
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Using (3.2; and (3.17) we Ob~ an expression for the 

mass renormalization parameter, 

A (T) = 
E. 

2H r 
o 

where f' (E) = df (E) 
dE: 

dw a 2 (w)F (w) 
12 12 r 

-00 

d€ f' (E) 
E-t1w (3.18) 

\ 

Even in taking derivatives we are justi-

fied in treating E and 12 as independent variables. E varies 

with 12 on the scale of a Fermi wavevector, and with E on the 

scale of phonon and thermal 

Fermi velocity, so the term 

energies. V E 
~12 

aE ~ . 
Clp dE whl.ch we 

is a (renormalized) 

h~ ignored is 

of the order of the ratio of the sound velocity to the Fermi 

velocity, again ~ 1%, times the term ~i which has been re

tained. 

The behaviour of (3.18) will be discussed more fully 

in the next chapter when we outline the calculations, but we 

shall point out here that at T=O the function f' (E) becomes 

the Dirac delta 0(£), so we obtain at zero temperature 

A (0) 
12 

dw a 2 (w)F, (w). 
w 12 12 

(3.19) 

This is the familiar expression appearing in the work of 

Leavens and Carbotte (1971) and of Leung (1974) on the aniso-

tropy of the electron-phonon interaction in aluminum. 
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3.3 The Quasiparticle Lifetime 

A quas~particle near the Fermi energy does not rc-

main in the same state indefinitely, but scatters via ,the 

electron-phonon interaction to states nearby in energy, with 

the emission or absorption of a phonon. The decay rate is 
~ 

described in a Green's function approach (Fetter and Walecka, 

1971) by the imaginary part of a complex self-energy, obtained 

by subtracting i6 from E in (3.16), where 6 is a positive 
£ 

infinitesimal. We shall use an approach based on the Fermi 

golden rule, after Wilkins (1968). 

Again we begin with an N-electron system in state \g>. 

By the golden rule, the decay rate from this state is given by 

_-J7 r 2rr 
L l<glH If>1

2
6(E -E f )· (3.20) = ~ J g f e-p g 

, 
Since we are interested in a system at (or near) equilibr1um 

~t temperature T, we again average over states Ig> in the 

grand canonical ensemble. We can proceed exactly as we did in 

evaluating the self-energy, replacing energy denominators with 

energy o-functions. We obtain an expression analogous to the 

expression (3.13) for the total system energy. This averaged 

decay rate, which we label r , refers to the equilibrium distrieq 

bution over-states in the ensemble, and must be zero. Invoking 

the detailed balance condition, we may require more specifi-

cally that the ensemble-averaged occupancy of each particle 

state be constant in time. If we now alter slightly the 

\ 
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occupancy of state E, the decay of the system to new states is 

entlr~ly due to scattering to and from state E, and we may 

identify the relaxation rate ~ with the functional derivative 
T 

<sr /6f(~). 
eq E 

compar~ this wit* (3.14), where the quasiparticle 

energy was equated with the der1vative OEN/of(£E) - ~. Without 

trudging through the same mathematics twice, we write from 

1nspection of (3.15), 

1 
"\ 
E 

x O{EE-€~~WA{E-~» 

+ [1-f(€k)+N(wA(E-~)]6(EE-€~~WA (E-~»}' 

(3.21) 

We take E to be near the Fermi s~face, and change the sum to 

an integral 

dS " 
k fdC!s 

-00 

where the o-functions in (3.21) restrict k to the region of 

the Fermi surface and by arguments similar to those used in 

deriving (3.16) we may perform the two integrations indepen-

dently. Again we introduce the factor 

J

'X> 

O(w-wA(E-~»dw = 1 

o 

and after performing the energy integral, obtain 

\ 
\ 

\ 
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== 2n 
)

00 

dw a 2 {w)F (w){2N(w)+f(Hw+E)+f(6w-E)}. 
E E 

(3.22)' 

o 

It is of interest to estimate the behaviour of the 
"..} 

relaxation time at low temperature and energy. N(w) falls off 

exponentially for ~w above about 2k
B
T, as the Fermi functions 

do for ~w greater than lEI + kBT. Only the low-frequency 

part of a 2 (w)F (w) will be significant in the region of low 
E E 

E and T. Since the phonon frequencies w\ (g) are zero for 

g equal to a reciprocal lattice vector, the low frequency con= 
tributions in (2.26'> arise from those portions of the Fermi 

surface integral where ~-~' is close to some~. The fre-

quencies w\ (g) are evenly distributed in g-space and propor

.tional to Iql at low frequency. \iithin a mode A, the frequency 

will be constant as k' moves about k in a closed curve whose 

perimeter will be proportional to w\ if the phonon anisotropy 

does not change rapidly as frequency increases. As was 

2 
argued earlier, Igk'~':At is also proportional to w\ (k-k') 

2 . 
in the low-frequency regions. \'Je should expect Cl (w) F (w) to 

p p 

vary as w2 at 'sufficiently' low frequencies, although-it is 

hard to estimate quantitatively what range this will encompass 

in polyvalent metals, which have Umklapp processes across the 

Fermi surface at zero phonon frequency for certain points k. 

Taking (3.22) at T==O and E small but positive,· and 

defining the step function Sex) as equal to 1 for positive x 

and zero for negative X, we have 



1 
T (E, 0) 

« J~ dw w2 6(E~w) 
o 

which implies, since T(E,O} = l(-E,O) I 

for small IE \. 

\ 
-' 

1 
<r \E\3 

T (E,O) 

32 

(3.23) 

If we set E=O in (3.22) the weight function in curly 

brackets becomes a function of ~w/kBT only, so for T small, 

_1 ex JCO 
l(O/T)-

2 flw 
w g(k T)dw 

B 
o 

since the exponential decrease of g at large argument allows us 

to ignore the contributions to the integral in the regions where 

2 w is a bad approximation to the true distribution. Setting 

llw --- ~ x gives a definite integral in x whose value is indepen-
kBT 
dent of T, with a factor (kBT/~)3 in front. So at low tempera-

tures, , 
I IX T3 .. 

l{O,T) (3.24) 

'" It is worth noting that experiments cannot be per-

formed at T=O or in general at E=O. We shall simply state 

that the domdnant effect of allowing E and T to be simul! 

taneously non-zero is to add a constant to the right hand side 

of relations (3.23) and (3 .. 24). The proof invol~es making 
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an appropriate change of variables for each function in (3.22) 

and examining the resulting terms in the regions E » kBT and 

k T » E. 
B 

.~ 

'. 
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CHAPTER IV 

CALCULATIONS AND RESULTS 

4.1 The Aluminum Fermi Surface 

We discuss in this chapter the formulae developed 

in Chapter III for A and ~ and the methods used to evaluate 

them numerically. The results are presented at a few tem-

peratures and energies as a function of position on the Fermi 

surface. \'le list the values at 62 points in k-space of a few 

parameters describing Ak(T) and ~k(E/T) in regions acces

sible to experiment. Where such exist, experimental values 

rand previous cal~ulations are compared with the present 

results. 

lie begin by presenting a map (Fig. 2) of the irre
\ 

ducible l/48th of the Fermi surface as calculated by Leung 

(1974) from Ashcroft's (1963)'parameters. 6=0 is a cube edge, 

6=4.5°, ~=O a face 'diagonal, -and 6::::54.7°, CP=45° a body dia

gdnal: (Alumin~ has a face-centred cUbic structure.) In 

certain directions the Fermi surface does not exist, with 
,-

empty and filled states being separated by a Bragg plane in 

these regions. On our map (Fig. 2) the Fermi surface is 

divided in this way into four sections. Sections I and IV 

form a hole surface in the second band when reduced back to 

34 

• 



Figure 2 

Irreducible 1/47'th of the Al Fermi surface. In the 

shaded regions the Fermi surface does not exist. 8=0° 

is a cube edge, 8=45°, ~=Oo is a face diagonal, and 

e = 54.7°, ~ = 45° is a body diagonal . 

. \ 
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the ,irst Brillouin zone. The remaining pieces comprise an 
I 

electron-surface 'monster' in the third band. l-le r-efer to 

Harrison (1966) for a fuller discussion of the Fermi-surface / 

shape. 

Section I and the upper edge of section II intersect 

111 \-
the (2 2 2) plane.' Between the points Wand U which lie 

in directions 6=26.6°, ~=Oo and 8=19.5°, ~=45° respectively, 

,the planes (1 !!.) and COOl) intersect. The lOwer edge of 222 

section II and the upper edges of sections III and IV end 

at the (001) plane. Along the boundary of the 1/4S'th from t'l to 

111 
the point K in the direction 6=45°, ¢=O° the (222) plane 

1 1 I 
intersects the (2 -2 2) plane. The left-hand edge of surface 

IV and the right-hand edge of surface III are bounded by 
1 1 I ' 

this (2 -2 2) plane. At about 8=32°, section III is divided 

into two parts as the upper piece bends inward to cut the 

1 1 1 
(2 -2 2) plane, and the lower piece curves outward to the (001) 

plane. The 62 points at which Leung's di~tributions are calcu

lated are distributed over all 4 sections with a concentration 

near the Bragg planes, where the electronic properties may 

be expected to vary rapidly. 

With these remarks as an aid to orienting the reader 

in momentum space, we proceed to a description of the ca1cula-

tions. 
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4.2 The Computations 

For the purpose of nurnerlcal calculation, the formula 

(3-18) for A (T) may be written in the more convenient form 

r dw 2 -f x xe dx } (4.1) A (T) = 2 a (w)F (w) {l x 2 E. w E. E. (l+e ) ) x-~w} 
0 -co 

We have substituted B€ ~ x and written 

1 1 ( x _ 1) 
- Shw x-B~w x-Bi1w 

in order to extract a factor 1 from the energy integral. It 
w 

will simplify the logic of the computer programs to deal 

dw with the dimensionless quantities -- and ~w. w 

To evaluate the integral 

r ~ 

x xe dx ,,(4.2) x 2 (l+e ) (x-8t\w) 

I -00 

as a function of ahw, we must consider the behaviour of the 

integr~d. We are only interested in the principal value but 
. 

the singularity at x = a~w has an unhealthy effect on conver-

gence of numerical algorithms. It may be removed by integra

ting the sum of the contributions from either side of ~ = ~~ 

over half the range o'f the integral (4.2). More explicitly • 
.. 

we subs ti tute x - Bi\w -+ y for x > etlw and x - a-ziw -+- -y 

t. 

for x < ~w, to obtain 



J

oo 

-00 

x 
xe dx 

(~w+y}eY 

(1+e ShW- y )2} • 
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(4.3) 

Because of the cancellation of terms at y=O, the inte-

grand on the right hand side is finite everywhere, which faci-

litates the numerical integration. An accuracy of 3 digits in 

A was deemed sufficient in view of the limitations of the 

available distributions a 2 (w)F(w) (and of possible experiments) 
, 

which requires that the integral (4-3) be calculated to an 

accuracy of 10- 3 . In practice it was calculated to a precision 

-5 of 10 , requiring less than a doubling of computer time for 

, the integration subroutine and avoiding some problems of 

spurious convergence of the algorithm for small values of ~w. 

The range of integration was truncated at a value above which the 
. 

contribution of the exponential tail could be assumed to be 

. negligible, and the resulting definite integral was evaluated 

on the McMaster CDC 6400 computer using Simpson's rule. Con
~ 

vergence to within 10-5 was obtained after 5 or 6 iterations 

(a total of 33 or 65 points at which the integrand was.evalua

ted). A hundred evaluations of the integral (4.3), sufficient 

to calculate A at one value of temperature from (4.1), re-

quired about a second of computer time. Because.of the histo-
. 2 '. 

gram nature of the tabulated functions ak(w)Fk(w~, a simple 

discrete sum was used for the frequency integration, with w 



Figure 3 a) 

Calculated Ak(T)/Ak(O) ~lotted against temperature for 4 

pOints (8,$) as follows: 

I 

Figure 3 b} 

, 

Calculated Ak(T)/Ak(O) vs. temperature for 4 points 

(8,4» : 

• 
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values taken to be at the centres of the histogram bins. 

Evaluating expression (3.22) for the relaxation time 

was much simpler, as onl~ a single integration, over frequency 

w, is involved. Again the frequency inte~ration was performed " "---
simply by summing over the 100 values of w at which the distri-

\ 

butions are given. However,since the statistical factors in 
I 

(3.22) can vary rapidly with w at low temperatures, it was 

necessary to average them over the width of each histogram bin 

(rather than simply taking the value at the centre of the bin) 

in order to obtain T as a reasonably smooth function of E and 

T. 

4.3 Results 

In Fig.' 3a) and b) we display Ak as a function of 

temperature, normalized to unity at T=O, for B points k on 

the Fermi surface. The overall shape of the curves is a general 

feature of ~ calculations, and was first disfussed by Grimvall 

(1968) in an Einstein model. Starting From T=O, Ak rises ,to 

a maximum at about 65°K in our aluminum calculations, then falls 

off gradually, going to zero like T- 2 at high temper~tures. 

It is apparent from fig. 3, however, that quantitative differen-

ces in behaviour exist between different states k on the Fermi 

surface. This anisotropy in Ak(T) is displayed in another 

way in fig. 4a), b) and C), in which Ak(T) at three temperatures 
, 

is, plot,ted as a function of angle e along three constant-$ arcs. 

Table I lists a few numbers which characterise the 

}kmperature-dependent mass enhancement at each of the 62 points 

on the irreducible 1/4B'th. In addition to the values of Ak 
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Figure 4 

Ak(T) plotted along constant-~ arcs on the Fermi surface. 

The temperatures are: 

, 
[, 

Figure 4 a) (lower graph) is along the arc ~ = 1°. 

4 .b) is along the arc ~ = 23° 
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Figure 4 c) 

Ak(T) along the Fermi-surface arc ~=45°. The temperatures 

are: 

........ 
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Table 1 

Temperature dependence of Ak(T) 

T is the temperature m at which Ak reaches a maximum 

No. (e ,4» Ak(O) A
k

(3QO) Tm 
Ak(Tm) 

in deg. 
(O~l Ak to) 

Ak(O) 

SURFACE I 

6' 1 ( t t 1) • I. t ~ 't.OC;u 67 1.ttC? 
2 C C;, 1) • 4~ 1 1.0,1. Sf 1.1t5 
~ (?1, t> • t. :3 I) t.046 f)7 1.1'12 
t. ( 0, 0) • 1121 1..1)54 Se:. t.l1~ 
C' (1"', Il).;- • !t I~ ? '1..043 (;7 1.1'15 
~ ( c 1 ?~) • .2? 1.0::;t. ~ 

r,e:. 1. 115 .. ( 1. C" , ?~) • '''~ 8 t.llll') 68 1.11)6 
Q ( c: ,u:;) .42~ .,.11::;4 66 1.114 
c (1~"~~) • 1. ' .. C; t.1'J50 &':" 1.11}'3 

11) ( 0.1.-:;) • ,~ 2 ~ 1. .·05,+ 66 1.11~ 
11 (l.~,L~) .4~(J !.n!t6 ~I) 1.110 

SURFACE II 

1" ('23, '=I) • 350 '1..042 62 t.072 
1 3 ( ?i'1 ,11) • ~66 , • fl4~ ~1 1.075 
14 ( t S , t 7, • ~E? ' 1..1)48 60 1.080 
t; (?1,1C;) • ~6 ~ t.I)Ct5 00 1.072 
Ie:. (?~,1C;) • ~5~ 1. • 1)"44 t;9 t.O?5 
1'7 ( 1 C? , ? ~) • l~q 1.!J41 60 1.077 
t~ «(,1,?3) • ~E5 t.n"5 5~ 1. 0" 0 
19 (?"t,?l) .~41. t.fl41; 56 1.06'1 
?fJ (17t~~) • ~ 6L. t.051 Sq 1.0~4 
21 (71,~:;) · ,7 t t.n~s. 59 1.0"'0 
22 (2~,~::;) • ~ 41.& 1. 1)4 ~ ')5 1.065 
2~ , (t'7,1.:;) • ~ 55 1. • I)~? 5g t.OQ4 
?4 (?1,1..t;) • lEj:I 1.047 5~ 1.071 
2":; (?~,"'5) • 341 1.0,.5 153 t.OS2 

SURFACE III .. 
?~ {2C?, U .C;i4g ' .• 04Q ~~ , 

1. 1116 
? ... (~t. 1) .• "141 1.1)46 1.1t3 
2~ (~l'; 1) • '4t:: 1.04f! 69 1.117 
213 (~7, 1) .t.2'3 t •. 04~ ~O t.117 
30 (41 , 1) .h1,) 1.044 70 1.12fJ 
"1;1 (4~ , 1) • ~Oq 1.. 04"- 70 -1.120 . 
3'? (31, '1) .53Q· t.046 68 1.113 
:.n ( ~c: , 3) • L 13 t.flf.tS 'SR 1.110 
14 (3 7 , J) • La. 0'" 1..0lt& ~q 1.114 
~~ (,(;. 1, 3) .t..f1? t.045 70 1.11c} 
31i '-. (4\, 5) l c;.,. 1.. OJ+c} 6~ 1.096 · . 3"' (~ ~, C;) .3t:C; 1.04Q 65 1. 1,05 
le (ltc, l) • 37; 1..047 6~ 1.111 

(continued next page) 
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Table 1 (continued) 

Ak (3?O) 
Ak(T ) 

No. (B,4» Ak(O) T .m 
in deg.) m Ak (0) 

Xk(O) ( OK) 

SURFACE IV 

~" ("q. 7) · s~ 1. '1.04'3 G~ 1..112 
L.O en, ... ) .C;t":l '.04:- '711 1.119 
L..t ( ~ r' , q) • l. g I. t.n",c ""? 1.12'3 
~? (4:;, Q) • l~ E '7 ,.'141. "4 t.l~5 
4~ (31,1;) • :; 2; 1.01+ ? 70 1.111 
~l. (~'7;, 1 5) • l4~4 \.045 71 1..123 
i.e; (1C:,1r;) .471 1.. f)46 7? t. 1.~? 
4~ (L.lJ.,1~) .u.40 t.04C;: ""w, 1.142 
L."" (4 7 ,1-;) .43~ t.flL+? 7-; 1.1!t1 
LQ (~1,;"3) .:. 22 '1.0 ... 2 70 1.1'J<? 
i.0 (3~ ,I? 3) .46~ 1.045 74 1.1'J4 
~o C43,7J) .421 t.n43 7(;, ·1.14k 

51 (4o,2~) ~ 41..~ t.f)4~ 7~ 1.1~7 
S~ (31,'3C:) .t;Ol t.Ot..1 71 i.l06 
t:-:t (~3,7C;) .~E9 '.'1142 ~3 t .122 
5t.. (:~t3. ~':;) .l4!tJ:! 1.fl4~ ':"1.. 1.133 
C;C;: (L~,~t;) • t..1) 4 \.041 7'"1 t. 1.47 
c:r.. (t:l,.~r:) .19~ 1.040 71'; 1. 148 
~ ... (31,Lc;) .;.96 1. • a~ t '11. 1.11C; 
t:;Q C~~.L..r" .471 1. n~ ~ 7~ 1.122 
t::'J ('~::-,L.C;) • .. t.l. 1./')43 1'(: 1.133 
r,ll (t...~,t :;) .loOf) 1.. O~ t ..,7 1.14& 
61 (;3,t'i) .10,' 1..040 78 1.147 
~2 (3~,?~) - .'t~? 1.044 72 t.124 
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at zero temperature, calculated by Leung (1974), we list the 

temperature at which Ak reaches its maximum, and the ratio of 

this maximum value to that at T=O. We give the ratio 

Ak(T)/Ak(O) at 30° as well, as this is typically the maximum 

temperature at which experiments measuring quasiparticle 

properties in aluminum are currently performed (Doezema and 

Koch, 1975). 

From Table I, the maximum increase of Ak over its 

zero-temperature value varies between 6% and 15%, the peaks 

occurring at temperatures which correlate.fairly well with 

the peak height, between 53°K for the lowest maxima and 78°K 

"for the free-electron-like regions where the maximum increase 

of Ak is largest. For comparison, the Einstein model considered 

by Grimvall (1968) would give a maximum in A(T)/A(O) of 1.21 

at a temperature of 0.29 times the Einstein temperature aE • 

On the sections of the Fermi surface labelled I, IX and 

III in figure 2, Akmax/Ak(O) is small, less than 1.12, and .... 
does not vary strongly over a given section. All the higher 

'values are found around the points (53,45) on section IV. 

There is a smooth trend to higher values as one moves away from 

the Bragg planes everywhere except on section II, where 

Akmax/Ak(O) tends to increase as e~ncreases.from the inter

s~ction-wi~ the <i ~ ~) plane down to the (OOl) plane, which 

cuts the Fermi surface at about a = 24°. 

Most of the variation in the temperature dependence 

of Ak may be attributed to the anisotropy in the electron wave-
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functions. Longitudinal phonons contribute more strongly to 

the e~ectron-phonon coupling, as the factor £ • (k'+K -k-K) 
_A - -n' - -n 

is small for normal processes if ~A refers to a transverse 

phonon and n=n'. To the extent that the resulting strong peak 

in a 2F at high frequencies contains the major contribution to 

the effective frequency distribution, Ak(T) approaches the 

Einstein-model value, with a maximum increase of 21% over its 

zero-temperature value. Even for a free-electron model, of 

course, there will be umklapp processes which contribute to a 

transverse-phonon peak at intermediate frequencies. As we 

approach a Bragg plane, however, there is a considerable 

mixing of states with K ~O, which can lead to umklapp processes -n 
at low frequency. Because of the higher density of states at 

low frequency for transverse phonons, the resulting increase 

in the coupling to low-frequency phonons can be considerable 

(compare the two distributions in figure 1, the upper one 

representing a point near the (001) plane, the lower one 

coming from a free-electron-like region). We note that the 

anisotropy in Ak(O) follows a much different pattern; Leavens 

and Carbotte (1971) found that much of the variation in the 

zero-temperature value arises from the aniso~opy of the 

phonons. 
", 

In figur~s 5, 6 ,and 7 we plot the lifet~me T against 

angle a along 3 constant-~ arcs. The left-hand plots, labelled 

.a), $how T(E,T=O) for energies 6f 1,2 and 5 meVand the 

right-hand plots display T(E=O,T) for 5°, 10° and 20 o K • 

. . ' 



Figure 5 

The calculated Tk(E,T) plotted along the Fermi surface arc 

$ = 1°. 

S b): 

\ 

Sa): 

E =.0, 3 temperatures: 

5°K 

....... 

T = 0, 3 energies: 

1 meV 

. . . . . . . 2 meV 

5 rneV 
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) Figure 6 

The calculated ~k(E,T) plotted along the Fermi surface arc 

$ = 23 0
• 

6 b) E ::: 0," 3 temperatures: 

....... 

6 a) T = 0, 3 energies: 

1 meV 

. . . . . . . 2 meV 

~ - - - - 5 meV 
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Figure 7 

The calculated Tk(E,T)' plotted along the Fermi surface arc 

~ = 45°. 

7 b) E = 0, 3 temperatures: 

SOK 

....... 

7a) T ::; 0, 3 energies: 

1 meV 

. . . . . . . 2 meV 

- - - - 5 roeV, 

.. 
I 

/ 
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Note that L is plotted on a logarithmic scale; the variation 

with position on the Fermi surface is very large. In general, 

lifetimes are lowest near Bragg planes, in keeping with our 

discussion of the anisotropy of A, ~ince the inverse of the ' 
2 

lifetime is proportional to the low-frequency part of n F. 

Much of the anisotropy tends to disappear at higher 

temperatures an~nergies, but not uniformly as we would 

expect if 1/1' Gere proportional to T3 and E3 on the entire 

Fermi surface. Accordingly, the inverse lifetimes obtained 

were fitted to a general power law over the range 5-10 0 K 

for E=O and 1-3 meV for T=O. The exponents n E and nT of 

the best fit are listed in table 2, along with the slopes 

of the best E3 and 3 fits in the same range, and the values 

of nT obtained by Tomlinson and Carbotte (1976) at IS-points. 

Our exponents are in general not pa~ticularly close to 3, 

nor do they always agree well with the results of Tomlinson's 
... 

essentially similar calculation. Along the ~=45° arc, 

Tomlinson's use of only 4 plane waves might account for some 

differences, particularly near the high-symmetry direction 
, 

(54.7°, 45°). "Tom~inson's F~rmi surface calculation differed 

from Leung's only in detail, but on narrow electron arm 

along ~=lo~ this may have improved his results. 

Doezema and Wegehaupt (1975) have measured quasipar

ticle lifetimes in aluminum by observation"s of transitions 

between surface Landau levels. The technique involves mea-

suring the surface impedance at microwave frequencies of a 
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Table 2 

Parameters of the best fits T-
1 (E,0) 

(lE -1 (IT 
and 0: E I T (0 r) a: T , 

T-1 (E,0) AE 3 , -1 BT3 , = T (O,T) = over the range 1-3 meV, 5-10 o K. 

The values of Tomlinson & Carbotte (1976) were fitted from 5-9°K. 
A a 

No. (6,4» 10 9 S-l/ (lE 106 5-1/ (IT aT 
in deg. meV3 oK3 (Tomlinson) 

SURFACE I 

1 ( 1 t 1> .2'3 ;;t • .,"" 1.E:6 3.t4 
? ( <?, t) • 1. Q ~ ~.r,o ?.65 3 .'17 
~ (?1, 1) • k ~ q ~.~., Q.J2 ,·3.~O 

4 ( c, q) • t ~ ~ 2."0 7.8 7 
(17, q) • t.. f) E ~. u. 0 6.~O 

~ ( c.? ~) .1'3 ? ? .. ? ?p~ . , 
-: (1C:,?~) • 5 ~ ~ ~.?~ ~.L7 
~ ( c , ~;). .1 7 13 ~. ~ 2 7.;'1 
a fl1,V=) .?~E 3.0Q 4."'1 

10 ( '?,L.'5) .1-'1 ~.~~ Z.C:O 3.r.7 
11 (1~,(.5) • '+ ~E 1. A4 14.1) 2.q7 

SURFACE II 

l' (?3, 0) t.3E: 3 • ., n t'S.8 3.59 
11 (21,1 t) t.?r, ~.~7 16.2 l.Se} 
14 (1S,1?) • <3 1= ~. ~., 1~.1) 3.62 
IS (21,1:;) 1.~~ ~ "'0:: v;. I) 3.GIS .. , 

1~ (2~,1C::) 1.14 :>,99 16.8 3.33 
1" ( 1 g,? ~) .0 f) 2 3.g" 12.4 4 •. 05 
lQ (2t,(''t) t. ?~ ~. to.l} 16.7 3 ;56 
lq ( 23 t 2 ~) 1. 18 1. ':! 0 t7.6 3.2g 
20 (17"~?) • ~ 12 2. g"- g.?t.. ~ .51 
~t (?1,~:;) 1.10 "'. ~'5 17.6 3.r. q 
?~ (?"t,~c:\ 1.Ll 3. 0 ~ 18.4 3.2!l 
?'l (1-,1..;) .4 Jq ~. ?S 8.1)4 3.?r, 4.:'1:7 
2t.. {?1,lo.'5) t. 1.~ ~. ~5 17.13 3. Lt 2 
?!: (2~,!.5) t ""9-. ;:>.84 23.11 3.04 "3.fJ9 • i 

SURFACE III 

tie: (?Q, 1) .563 1. t'l 8.84 3.77 2.37 
~ .. (31, t) 1.08 > ~.f}3 14.3 3.?S 3.11 
2$! (3~, 1.) .c;~4 ~.L&.>S 7.-8 ~.G6 
2" n-:o, 1) .::;C;~ 4.'=i' 7.6'S 4.22 4.-ZQ 
~n (1.1 t 1) ,_ ... "' 2 S.Ile: 6.62 4.54 
~t (he: , 1) .~89 4.01 6." n 4."36 3.tS 
~'? . ( 31 , J) .q.51 3.4'? 12.4 3.51 
3~ C~~ , 1) .71)0 3.113 g.-q4 3.44 
3L. (~":'", ~) .r,21 3 • ., u. ~. 24 3. 7 1 
3«: ( Ll t 3) .ff3<; 3. a I) 8.34 ~.6S 
3~ (41, ") .'"'E:3 2.~1') 12.~ 2.13~ 
3"' (h3, :;) .6 ""e ~. ~5' to.4 2.·6 :3 
3q ( L.~ , :t) .5O~ 3.~7 .,. ?".3 '3.76 

(continued next page) 
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Table 2 (continued) 

A B 
(9,4» 10 9 -1 10 6 -1 No. S a E S aT aT 
in deg. 3 PK 3 meV (Tomlinson) 

SURFACE IV 

~o ( ?; t, -, 1.1.1 ~.1.fI 1t..9 3.35 
t.1} (33, 7) • ~ 11" ~ • ., t 1.1 .. (} ~.79 
l..1 (1t:, q) .JOe: ~. 4r; 15.,28 ~.1t 
1...(' (4'-", 9) .25~ ~.~~ J.fj~ 4.4.15 
41 (~1 ,1 5~ 1. :;;' 2 .. 4n 22.S 2.71 
LL. (1~,1C:) ."'7~ ~.21:' g.Q'3 3.23 
4t; (~~,1r.;) .271;; 2.QQ 4.cO 3.59 
417- (43,1;) .133 5. ~4 1.<39 4.24 
L."7 (4 7 ,1C:;) .142 4.St! t. <; 2 3.9g 
LQ <:H,2~) 1. h ~ 2.415 21.6 2.73 
4Q C~~,23) .24'"" Z.-~~ 4.23 3.51 
C;:11 (43, ?~) .1=1. 5.12 t.tlR. 4.18 
C;t ....,{.L.q,? ~) .14 E 4.1".7 t.gll 3.9 t 
52 (31,:-t3) t. 53 2.'i~ 20.1:\ 2.85 
C:1 (1~,~~j) .~t~ 1.'"J9 1{). ? 3.33 
~(~ (Jc,3:;) .24q 3.11 4.10 3.73 
5:; (4~,3,) .1L.~ r;.4~ t.a? 4.20 
c::,:. ("51 , ~ C;:) .t~E 

.., • t g 1. L. S 4.o~ , ,,- (J1 ,L~) l.hl ?c;~ 20.? 2.75 2. ~3 
CR (33,£.'5) .~22 3.30 «:.26 3.34 
1::0 C3t:,L.C;) • '"Pq ?89 't.Et 3."'6 4.00 
E-IJ (43,t.C;) .t4Q 5.47 t. Po 3 4.19 4.35 
E:t (C3,t 5) .1~1 -:0.'" 0 1..46 4.St:; 3.23 
E? (~3,2~) • 7 ~1 3.40 9.1Q 3.~7 

.. 
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sample with a magnetic field aligned parallel to the surface. 

Transitions are induced between states of an electron pinned 
, .. 

1 to the surface by the e~xB force. From the position and width 

of peaks in the magnetic field derivative of the surface 

resistance (the experiments are performed at constant micro-

wave frequency) and a detailed knowledge of the band structure, 

the eleotron mass renormalization parameter and the lifetime 

can be inferred. Unlike other magnetic-resonance techniques, 

which involve averaging around an orbit, the surface-Landau 

level experiments give point values, or at least averages 

over a small rectangle on the Fermi surface. Doezema and 

Koch (1975) give a fuller discussion of the method. 

Table 3 gives the results of Doezema and Wegehaupt 

-1 3 
for L (E=O,T)/T, as well as our and TOmli~sor's calculated 

values. Their experiments were performed b~~en 2° and 20o K, 
3 '" and they report that the T law was obeyed at all 3 points, 

. whereas we found exponents of 2.6, 1.8 and 4.7 (~rom table 2). 

The agreement with experiment in'table 3 is good at (1 0 ,1°), 

a factor of 2 at (13,45), and a, factor of 2.5, at (53,45).-

The second point was close to the Bragg plane, where the life

time varies rapidly; the factor of 2 does not necessarily 

represen~ a seve;~iSagreement. At (53,45), however, we are 

in the centre of a large free-electron-like region, and the 

discrepancy is significant. The low value of the calculated 

l/L and its rapid (T4 • 7 ) increase with temp~rature may indicate 

tpat a ,reduced weighting of the first few frequency bins as an 

artifact of the calculation is at fault. . 
" 
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Table 3 

A comparison of our coefficients B = <T- l (O,T)/T3> with the 

experi;mental results of Doezema and Wegehaupt (1975) and with 
< Gl 

. the values they inferred from Tomlinson! s x-esults at SOK • 

c 

(6,CP) 
in deg. 

(1,1) 

(13,45)'" , 

(53,45) 

• 

B (expt.) 

4.1±.3 

31 ±-3 

3.9±.3 

_ l 

.. 

B (our calc) 

(~O 6 S~1 IOK3 ) 

" 

3.6 

14 

1.5 

• < 

B(Tomlinson) 

3.4 

21 

1.4 

, " 
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CHAPTER V 

CONCLUSION 

.Our failure to find at most points the T3 and E3 

scattering rate dependence which ought to arise as a"conse-

guence of our model is the most striking feature of the re

sults presented. Although the cube law does not necessarily 

apply for all electron states in a polyvalent metal, we found 

.; . a much more rapid rise even in free-electron-like regions, 

and in any case, Doezema and Wegehaupt (1975) have obierved 

the T3 la~ to be valid experimentally a~ fairly representa~ 

tive pOints. 
. 

At 5°K, t~e thermal e~ergy kBT is equivalent to a 

little more than 100 GHz, which is the spacing in frequency 

of the points at which a2 F is tabulated. The thermal factors 

in (3,.22'), eff~VelY' "limit 'to ~he fir~t 5 or 6 bins the 

P9rtion o~ which is significant in the scattering rate at 
, . 

this temperature. Leung's. (1974) calcul~tio~ wa~ not designed 

ly for accurapy in the low frequency regions of 

ere a relatively small number of phonons ~n-

erform ~e integral over k' in the definition 

(2.26) he used a 2°x\2° mesh of points; there is a direct . . . 
trad~-of~ betw~en the fineness ,of the me~h and the computer 

time r~quired. For a typ~cal position on the 1/4S'th, tbis 

. . 

.... " 
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would correspond to a rectangle of about kplJO by k p/50. 

Taking into account the shape of phonon dispersion curves in 

general, we estimate the frequency of the first normal-process 

phonon contributing to the sum to be roughly 1125 of the 

maximum phonon frequency; that is, it will fall into the 4th 
~ 

bin or thereabouts. There are, of course, umklapp processes 

and coupling to tran~yerse phonons at lower frequencies, but 

a graininess on about this scale should be eA~ected if only 

small regions of the k' sum contribute at low frequencies. 

In fact, many of the tabulated distributions are zero in the 

first bin. 

While the remarks do not reflect on the accuracy of 

these distributions for calculating parameters, such as A, 

which are affected by phonons of a broad range of frequencies, 

they probably identify the reasons for the undesirable be-

haviour of the scattering rate. The agreement (within a 

factor of 2) of the actual value of liT with experimental 

measurements seems reasonable in light of this. It is likely 

that improved values would result if a much finer mesh could 

be used for the k' integration in calcu~ating a 2F, at least 

for those regions which contribute low-frequency phonons. T,o 

use a very fine mesh over the~~ntire Fermi surface would result 

in a large and unnec~ssary increase in computer time. 
, 

As we have mentioned[~he calcu1ation of Ak(T) is 

largely immune to inaccuracies in the low-frequency part of 

the dist4ibutions, and our results ought to be good. We know 
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of no experimental determination of Ak at elevated tempera

tures in AI, although such measurements have been performed 

on other materials using cyclotron resonance (Goy and Castaing, 

1973; Saba, 1969). The surface-Landau-level technique, which 

avoids the more or less undesirable orbital averages of other 

magnetic resonance methods, has been used by Doezema and 

Wegehaupt (1975) to obtain Ak in aluminum at low temperatures, 

and could give measurements at higher T. It is evident from 

figure 3 that temperatures on the order of 50 0 would be ~eeded 

to observe the anisotropy in Ak (T)/Ak (0) I although at 30° a 

more or less isotropic 4.5% increase in A should be visible. 

A higher microwave frequency than the 36 GHz used by Doezema 

and Wegehaupt to measure scattering rates at 20 0 K would be 

necessary, from the requirement that the microwave energy 

be larger than the ~/T broadening of the energy levels. From 

the present calculations, the lifetime broadening at 50 0 K would 

correspond to a frequency of about 40 to 200 GHz. Doezema and 

Koch (1975) report that the resonances disappear at 2000-3000 

GHz due to a vanishing of the transition matrix element, an 

effect which would likely be enhanced at higher temperatures 

by the rapid increase of the resistivity and resulting increase 

in skin depth. There would not necessarily be sufficient 

resolution to observe the anisotropy seen in our calculations. 

The energy dep,sndence of T k may be observed by varying 

the ex,citing frequensy or by observing higher-order transitions 

(Gantmakher, 1972). However, it is connected clos~ly to the 

tempe~ature dependenc.e and may not be of much additional interest. 
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