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ABSTRACT

~

Theoretical calculations of thé renormalization of
the electron mass and the guasiparticle lifetime due to the
relectron-phonon interaction are pefformed in aluminum as a
function of poéition on the Fermi surface. The computations
are cgrried out at finite temperature, and, in the case of
the relaxation time, for finite energy above the Fermi surface.

We present a formal developmént.of expressions fo?
the mass renormalization pérameter and lifetime at finite
temperature to second Qrder in the elect{:?;phonon interac-—
tion using'z perturbation-theory approach, which is mathe-
matically simpler, if less elegant, than the usual Greensfunc-
tion method. The behaviour of the resulting integrals is
discusse§ briefly with reference to their numerical evalua-
tion.

Our results for the electron mass renormalization at
finite temperature agree gqualitatively with the expected
variation of the electron wavefunctions on thé Fermi surface.
In terms of the results, the approximate requiremenfé for
experimental obsexvation of the calculated increase in elec-—
tronic effective mass and its anisotropy are discusséd.

A comparison of the calculated temperature dependence
of the quasiparticle lifetime with experiment and with other

*

“theoretical work has important implications for the accuracy of

rd

electroﬂﬁphonon numerical calculations in the low-frequency

A
\

region. ~
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CHAPTER 1

INTRODUCTION

In a normal/méégl in equilibrium, the interaction
between conduction elé;trons near the Fermi surface and
the vibrational modes of the crystal leads to a shift in
enef&y of the electron states, often described as change
in the electronic effective mass, and scatters electrons
between states near the Fermi surface with a characteris-
tic relaxation time. Grimvall (1968) noticed that this

electron-phonon interaction was-distinguished from other

contributions to the effective mass observed in cyclotrqgn

resonance by a significant dependence on temperature. Using /
Greens function methods, he calculated the temperature-
dependent‘électron mass renormalization pafameter A in an
Einstein model and in a more detailed model of sodium. In
1969 Allen and Cohen calculated A(T) in an isotropic model
for® several metals, and found reasonable agreement with the
simultaneous experiments of Sabo on zinc. Recen¥ detailed
éalculations by Leung (1974) ¢f direction~dependent frequency
distributions characterizing the electron~phonon in aluminum
have made possible the present calculation of A as a function
of temperature and of position on the Fermi surface. We

also calculate the lifetime 1, which is closely related theore-



tically and experimentally, as a function of temperature, energy,
and direction. Aluminum is'of interest largely for being a
superconductor which, as a polyvalent metal, is only one step

more difficult to deal with theoretically than the alkalis.

-
o N

We begin in Chapter II by presenting the model of a
metal in which we shall work and develop the fundamental ex-

-

pression describing the electron-phonon interaction. Essentially,

this chapter is a review of methods commonly used in the fie1d£>

-

Features and limitations of the model are discussed with a
view to justifying the approximations of the subsequent
theoretical development.

In the third chapter the expressions for A and T are
derived, using an ordinary perturbation—thebry approach for
its gimpligity. Wilkins (1968) presents such a perturbation-
theory development of an expression for A at zero temperature,
and in an appendix extends it to finite temperature with
intuitive arguments. Here we present a formal developmént
at finite temperature of equations for A and rT.

q?r results are presented in the next chapter. Tﬁe
orientati;n of the coordinates describing positions on the
Fermi surface is explafned in somewhat laborious detail,
but this should be an aid in correlating our points with
the invariably different systems of other installations.
Numerical procedures and diff{culties are described briefly.
We present our results in tables and graphs and discuss their
behaviour. The calculated lifetimes of Tomlinson and Carbotte

{(1976) and those measured experimentally by Doezema and



Wegehaupt (1975) are compared with the present calculations.
Chapter V concludes with a discussion of the impli-
cations of these results to experiments and theoretical

calculations.



CHAPTER II

. ELECTRONS IN A LATTICE

2.1 The Pseudopotential Method

o We are concerned in this work with the effect of the
crystal lattice upon conduction electrons, and more speci-
fically with the electron-phonon interaction. Although the
ion lattice enters into this problem in a fundamental way,
we may use the Born-Oppenheimer theorem to focus our attention
on the electrons, which ta a good approximation obey a Schrd-
dinger equation involving the.ion coordinates only as para-
meters in the potential felt by an electron (Z;man, 1972).
Describing the electron-electron interactions by inclﬁding

a self-consistent interaction energy in the potential, we

arrive at a single-electron equation,

(T + V(r))y(xr) = e (x) (2.1)
where T = —'gé v is the kinetic energy operator, V(r) is
the self-consistent potential seen by an electron at r, and
¥(r) is a single-electron wavefunction with energy eigenvalue €.
The Hamiltonian in (2-1) is not time-independent. The
lattice is free to vibrate, and the potential V(r) follows
the motion of the ions. This time-varying part in the Hamil-

tonian, the electron-phonon interaction, will be discussed in

f\
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subsequent chapters in terms of its effect on the wéngunct ons-~
obtained as solutions to the static part of (2.1). In the re-

mainder of this section we shall rgview the method of pseudo-

-

potentials (Harrison, 1966) which allows the ﬁse ©of familiar -

and convenient techniques for extracting information of ph&si—

\
cal interest from (2.1). / .

We consider a pure metal with the ions at their equi-

libriumtpogitions on a perfect lattice. Taking the potential
L& s ,
.y(E) to be a sum of (identical) single-ion potentials v(r), we

write (2.1) as

7

[T+ I v(z-ED V(D) = ev()  (2.2)
2

for the ions.fixed to their equilibrium positions R This

2'.‘.
equation describes all the electrons. For non-transition

metals such as aluminum, the core electrons are confined to a i

region much less than the size of the unit cell. To a good \\\\\

approximation the core wavefunctions do not overlap into the
regions where the potential due to neighbouring ions is large,
and are essentially unchanged from the wavefunctions of the
free ion. The conduction electron states are épread th;qugh
the crystal, and their gualitative behaviour is strongly
influenced by the distribution of the points-gz aggut’hhich
the potentials are centred.

The translational symmetry of the Hamiltonian in (2.2)

requires that the solutions have the Bloch form (Ziman, 1972)

¥ _1 ik-r |



where uk(g) has the translational symmetry of the crystal; that

—

is

«

o 3
u£(£ + R)) = UE(E) .

The crystal volume Q is explicitly included in (2.3) for norr
malization. We apply periodic bouﬁhary conditions on the crys-

tal to specify the allowed. values of wavevector k. )
¥
The periodicity of u, (r) demands that it be expressable

- !

as the Fourier sum —

€§ . . ik _*x

u?S.(E) = i C,(kle

-

(2.4)

where the sum is over. .reaiprocal lattice vectors g . Putting
™ . .

(2.3) and (2.4) together gives, finally,

’

o> =2 C Rk + k> (275)
- n

We have gone to Dirac notation with the substitution
. ~p

eiE.E .

7z |p>-
Solving the Schrédinger equation (2.2) is equivalent to fin-
ding the expansion coéfficieqts Cn(E) in (2.5).

An approximate solution could be generated by trunca-
ting (2.5) after a finite number of terms; substituting into
(2.2), and solving the resulting matrix equation for the c's
and thé‘eigenvalues €. However, g?e number of terms required
for &n acéurate description gf the true VaVefunction is large.

It would be preferable to begin with a set of basis functions

-



other than simple plane waves, which more nearly approximate
the true electronic eigenstatesi ' : N

Since the conduction-band states must be orthogonal to

P

the Rore statds, Herring (1940) suggested the use of orthogona-

lized plane waves (OPW's), defined by -

-

lo;;wk = |k> - £ |a><alk> (2.6)
- Qa .

where the sum is over all core states |a». The OPW is just a

plane wave minus its projection on the core states, and has

the symmetry demanded by, (2.3), since the core states do. Ex-

panding the electron wavefunction in OPW's gives

|4 > = £ a (k) |oPW >

k+k
= n = =n
=t a (k{]k+e > - L |a><alke >} . (2.7)

n o] o>
The core states are eigenstates of the ‘Hamiltonian with
enerxgies we shall'denote by,sa. Substituting (2.7) into the
Schrodinger equation (2.2), we obtain for a conduction electron
in state ]wk>.-

O - 1
i a_ (k) {(r + i v(z-R))) |k+k > - 2 e, la><alk+c >}

= oy a0 ks> - 3 lav<elkng?) - (2.9)
j

Following Harrison (1966) we take all the core state terms to

the left side and with a little rearrangément write

2

} o :
ﬁ an(g){T + i v(x-R;)) + ﬁ (sgfea)[a><a]}!5f5n>

= ex I ap(o [ktey> . (2.9)



We have treated I |a><a| as a projection operator and separated

a s
it from the ket l5+5n>.

Equation (2.9) may be written in a more transparent'

form, We define the pseudopotential W by

-

. ‘ ) [o) I
Wwix) = ‘1; v(r-R,) + ﬁ (ek—ea)laxal (2.10)

‘and a corresponding pseudowavefunction |¢k> through the

’relation
o> = le> - 2 Ia>’<al¢k> (2.11)
k L k
that is,
l?g = ﬁ a (k) |k+k > | (2.12)

in the above expressions. (2.9) takes the simple form

S
(T+W) 93> = el o> - (2.13)

It is not obvious that we have gained by all this,
as wé have arrived back at a Schrdédinger equation with the
pseudopotential and pseudowavefunction replacing the true po-—
tential and wavefunction. The value of (2.15) in what follows
rests on W being much weaker than the true potential, so that
it may be treated as a perturbation on a (pseudo) electron gas.
This is equivalent to saying that we expect the conduction -
band _wavefunctions to be nearly described by a single, or at

worst a few, OPW's. Using (2.13) allows us to work with a small

number of plane waves, at the expense of employing a complicated
A



!

pseudopotential.
From (2.10) it is apparent that W is an operator rather
than simply a c—number function, and that it depends explicitly

on the energy €y of the state under consideration. Since we

—

- always wo%k at or very near the Fermi energy, the energy depen-

o

dence is not a problem. More serious is the nonlocal operatox
nature of W. The form factor <k|W|k'> contains the producé)
<k|a><a|k'>, and does not depend only on the momentum transfer
k'=-k. Model pseudopotentials have been constructed (see, for
example, Heine and Abarenkov, 1964) which are local and greatlj
simplify subsequent computations. |

It is necessary to introduce the pseudopotential due to

a single ion at the origin, (\

W(r) = Q(r) + I (ek—ea)|a><a| (2.14)
a a—

where the sum is now over the core states of ihe free ion, and
to assume that the full pseudopotential is the sum of single-
ion pseudopotentials centred about all the ions. This approxi-
Aation has already been jﬁstified for the potential term in
(2.10). ﬁnéer the same assumption that the core wavefunctions
are highly localized, the projection operator terms sum in

the same way.

CERL S . A A e o
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2.2 The Electron-Phonon Interaction

We deal in this section with a crystal of N identical
ions in a sea of conduction electrons. Each electron interacts
with each ion through a weak pseudopotential W. Electron-

electron interactions are ignored except for those effects

included as screening terms in W. The ions are—allowed to oscil-

-

late about their equilibriumpositions, and following White (1974)

an expression is derived for the correction to the many-elec-
tron Hamiltonian assuming the lattice dynamical problem has
been solved.

The total pseudopotential is now given by
w(r-R '—1) - (2.15)

with u, the displacement from equilibrium of ion L.  W(f)

acts upon each electron separately. Expressed in the notation

of second quantization it becomes

z l a3r w;(£)<£‘wl£>¢o(£) (2.16)
o

where wz and wc are the usual field operators for an electron’

of spin ¢ at position r. Expanding
Yo () = i <£I¢_}S>cy,

with C the annihilafion operator for an‘'electron in state

ko

|¢k>, and performing the]integral in (2.16) yields the expres-

sion



L <¢,,|W|e >C
kk'c k! k

6Cko ' (2.18)

|~ —+

for the pseudopotential operatox.

Using (2.15) and (2.12) the matrix element is written

as
< > =% 5 &% (' K
¢k'|w|¢k =9 , an, (__ )an(__’)
= = nn )
. T -i(k'+k ,)x
= x I ] adre - M —w(£~5373£) .
. :
L ) x (2.19)

s

Substituting‘z = 57—2_22 into each term of the sum over & gives

for the integral in (2.19) the expression
o
- v —_ - .
i(k'+x_,~k-K_) (§z+32) Q

e 5 <E'+Eno|w]EfEn>

where we normalize the plane waves to the volume per ion,

%, in the single-ion matrix element

<p'|Wlp> = % , ady eTIRY L(y)eRY |

Assuming the ion displacements to be small, we expand the

exponential to first order in the u, and obtain for (2.19)

L

*P
<¢‘.]£l ‘w{¢-]s> = z an' (_15_)<_}£'+511,‘WI_}_§_+_“>

N nn'
* . ' o
— '+ PG § .
Lo tETETRE)
N

. ' i_ - .
x {141 (kK ~koK ) '32} (2.20)
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/

The term which is -independent of v, describes the effect

of the static lattice. Performing the sum over % on this
term provides a factor N and restricts k-k' to a_féciprocal
lattice vector. Using this term together with the kinetic
energy term gives a Schrddinger equation dgscribing the band

structure. Denoting the energy eigenvalues by £, , we can

k

write kinetic plus static~lattice contributions to the total

. . +
Hamiltonian as ;; EE CKUCEO'

=~ L

-

;TQ\?eal with the term involving the displacements Y.
which §&e functions of time, we need to.solve the lattice
dynamiéé.‘We shail simply take the standard result derived,
for example, in Maradudin (1969). In the harmonic approxima-

tion, the ion displacements are given by

1/2 £, (q) ig'R}
u, = (5%1-)‘ g A2 ¥t Jfa ,)  (2.21)

for a crystal containing N ions of mass M. gx(g) and wk(g)
are respectively the normalized polarization vector and fre-
quency of the crystal normal mode with polarization index A
and wavevector q. The phonon operators a+ and a create and
destroy an excitation (phonon) in the appropriate mode. We

L

have the symmetry properties

w, {q) = w, (-q) = w, (g+K)
A A AT (2.22)

*
e, () = g, (q) = g, (gtK)

for each reciprocal lattice vector k. In the Born-von Kirmén

~
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theory, the frequencies and polarization vectors are derived
from a small number ofhinterionic force constants, which may
be determined experimentally by fitting to inelastic neutron
scattering data (Brockhouse et al, 1968). <
Substituting (2.21) into (2.20) and performing the
sum over % gives a factor NG k'=k’ since g is unique only up
to a reciprocal lattice vector? ;he sum over q from (2.21)

may be performed trivially to give, for the phonon contribution

to <¢.. [Wle, >,

) (2.23)

- i ki '
9 ,k:x = Y zR Ry S kTR

* ' ' . —lew
CIoarEDa o) (kyckek)  (2:24)

X <£'+5ﬁ§[w|5}5n>.

We have made use of the symmetry properties (2.22) to obtain
this form. Finally, we substitute into (2.18) to obtain the

electron—-phonon contribution to the Hamiltonian

- + + ’
Heﬁ— E 9k ki CkroCko Bkt 0" -k, (2:25)
ox

Note that gk,k';k = gk',k;A so that He—p is Hermitian.

Given the phonon frequencies and polarization vectors,

and the pseudopotential form factor <p'|w|p>, the electron-

2
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phonon coupling constant It k) may be calculated approximately
by trunéating the expansio; (;.12) of the pseudowavefunction
after a few plane waves. For calculations to second order in
the electron-phonon interaction, the required information on

Ik ,k; A is containéd more compactly in "effective weighted pho-
n;h ;requency distributions" (Leung, 1974). We shall need only

the function
dSk'

2 _ Q L= 2 _ o
aﬁ(w)Fk(w) = ?;;Tjgi § J T;;TT IgEIE'7Al §(w mA(E k')) (2.26)

. \
which contains also the necessary information on the phonon fre-
quencies and the Fermi surface. The integral is over the Fermi

surface, with Sk a surface element. vy = Zk €1 is the electron

velocity.

Leavens and Carbotte (1971) calculated this function in
Al using a single plane wave for the coupling constant and a
spherical Fermi surface. Tomlinson and Carbotte (1976) used four
plane waves for the coupling constant and for the Fermi surface.
Leung (1974) described the Fermi surface with four plane waves,
and used 15 plane Qaves for the electron-phonon interaction.
All took phonon data from a Born-von Kdrmdn fit to inelastic
neutron scattering experiments.

We shall use the functions tabulated by Leung, which
are the most realistic calculatioqs available. For the Fermi
surface he used the parameters of Ashcroft (1963) fitted to

the de Haas-van Alphen data. The coupling constant was calcu-



Figure 1
The dimensionless function a;(w)FB(m), calculated by
Leung (1974), at two points. The upper graph repre-
sents the point 6 = 21°, ¢ = 23° near a Bragg plane,
and the lower graph is at'the point 6 = 53°, ¢ = 45°

in a free-electron-like region.
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-
-

lated with the pseudopgtential form factor computed by Animalu
and Heine (1965) by the method of Heine and Abarenkov (1964).

ai(w)Fk(w) is given at 62 points k on the irreducible 1/48
o; the~Fermi surface as a histogram with 100 bins between
zero and the maximum phonon frequency. Figure 1 shows Leung's
ai(w)Fk(w) as a function of freqfency for two k points. The
s;arp ;éaks at high frequency, and the broader peaks at inter-
mediate frequencies are characteristic of such distributions,
and correspond to Van Hove singularities in the phoﬁon density
of states. Fluctuations from bin to bin which can be seen in
figure 1 are an artifact of the method used to calculate the

distributions in a reasonable amount of computer time, and

are essentially statistical in origin.
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CHAPTER III

QUASIPARTICLE PROPERTIES AT FINITE TEMPERATURE

3.1 Quasipézticles

The appearance of the phonon operators in He—p (2.25)

modifies oué&gicture of electrons in a metal. Instead of a
Fermi sea of electfons in energy eigenstates moving through
a self-consistent potential, we imagine electrons followed
by lattice distortions, cccasionall? scattering off phonons
to new momentum states. The fundamental electron-like exci-
tation of the system, or quasiparticle, is an electron plus
its attendant lattice distortion. It is descffged by a

wavevector k and energy E in general differing from the band

k'

structure energy ¢ We define the self-energy I of the

K
electron by

]
”

15:5 =t E(EE,B_) . (3.1

Since we shall use ordinary perturbation theory, I will corres-
pond to the real part of the complex self-energy which arises
in a Green's function approach (Scalapino, 1969). For conve-

nience, we take Ek and €y to be measured from the Fermi energy

— — —

U, which is not shifted by the electron-phonon interaction.
In magnetic resonance experiments (for example, see

Allen and Cohen, 1969) and other phenomena, the effect of the

17
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-

\\
chdnge in electron energy enters as an extra factor (1 + Ak)

multiplying the appropriate band-structure effective mass.

kk' the electron mass renormalization parameter, is given by

+

CAn(ELK) |

A, = B (3.2)
k x| =0
- = &
Ey = 0 describes a state at the Fermi gnergy. Note that
> e
"k
E, & —— (3.3)
ko Ty

for small Ek’

Individual quasiparticle states are not eigenstates

of the system Hamiltonian, but decay with a characteristic

emitting or absorbing a phonon. The finite relaxa-

-

time 1
kl

—

tion/time ascribes a width to the quasiparticle energies ac-
»

cording to the uncertainty principle. At zero temperature Ty

is infinite for a state at the Fermi energy, but becomes B

rapidly shorter as temperature increases, limiting the range

over which quasiparticle self-energies may be meAsured. Ty

will be calculated in the final section of this nhaptér. -

3.2 The Electron Mass Renormalization Parameter

We derive in this section an expression for Ak(T)
following the approach suggested by Wilkins (1968) . T;éating
the electron-phonon interaction as a perturbation, we obtain
the energy of the mény—particle system at finite tempera\gre,

to second order in He—p’ From this expression, the enerqgy of
i
»
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a_single quasiparticle is extracted, defining the electron
mass renormalization parameter through (3.1) .and (3.2). With

some approximations, Ak(T) is written as An integral over the

- function ai(m)Fk(m) in a form facilitating numerical evaluation.

We take the system Hamiltonian to be ’ ”
N
. FBZ _ .
H= ¥ n_ (g +u) + L n_Hwu (q) + H__
E (3.4)
= Hg + Ho_
with A, =clc _ and A . = al .a he number operators
ko ko ko gi g,A g

for electrons and phonons. To second order in‘He_p, the energy

)
Eg of a state |[g> of the N-electron system is

2
<qlu | £>] -
_ ={0) : | <g] e-p
Eg Eg + <g|He_p|g> + g (07 (0) (3.5)
g £
with /1
(0) _ ) )
Eg - <g|H0‘g>
The sum is over a complete set of states [f>. Since Ho p

contains one phonon operator per term in (2.25), the diagonal

, matrix element <g|He_élg> vanishes. Using (2.25) we expand

2 2 t +
<giH £> = z <
l gl e_pl l Kk ! lg}_{.‘ 'J_C..;AI glc.}f.loclc_o(al’_c_"_}i'1A+a}_(_.—.]£'k)lf>
A oA
¢ (3.6)
x <f|(a ral el ¢ lg>
k-k', "“k'-k,\ ko k'o!97 -
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Only the terms involving a phonon creation operator in one

matrix element and a phonon annihilation operator in the other

5o
survive, giving
2 _ L
l<glug_,1£>17 = I lag x; NES glck o ka®k-k ' Al £
ox , .
< T :
x \fla-_£,'kckocgolg> (3.7)
T t T
t <910 O A BBl g 3Gy Crrale

The first term is zero %nless the energy denominator in (3.5)

is €, ,~g, + ﬁNX(EfK'); similarly, for the second term, the

k' "k
‘energy denominator must be €178 ~ Alw, (k'-k). Since we can
avoid a reference to EéO) in the denominator we may perform
the sum over f, treating I |[f><f| as a unit operator. With

£

the aid of the commutation and anticommutation relations for

boson and fermion operators, we obtain from (3.5)

, <gliy g A Iy g0y l9>
Eg = <glHylg> + ki' I €&, (kK"
ax R (3-8)
<glﬁ (l—n )(1+nk. -k, k)|g> |
+ b
_}S_\ s'}_c.-vhw)‘ (x'-X)

It is now straightforward to calculate the energy of
the system in,equilibriﬁh at temperature T by replacing matrix
elements in- the state.|g> by averages in the grand canonical

ensemble, defined as (Pathria, 1972)

¢
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. ~B(Hj-uN)
A~ _Tr O e N :
<0> = —FE_ (3-9)
0
Tr e

B = l/kBT' where kB is Boltzmann's éonstant, the trace opera-
tion is denoted by Tr, and N is the total number operator
for electrons; the chemical potential is zero for phonons.

The trace may be evaluated in a complete set of states
ko and ngA of the electron
and phonon number operators. Providing ) is a function of the

characterized by their eigenvalues n

number operators, each term is simply a function of the occu-
pation number eigenvalues. It is a standard trick to trans-
form the sum ovef all possible sets of number eigenvalues to

a product of sums over possible occupation numbers of each state.

For exainple, for one of the terms in (3.8) we obtain

~B§e -Bne .
I ne k'c 1 (1-m)e ko
~ _f\ ~ = n
Dyrg (1) Mg ra” ~Bne,, o ~Bne,_
L e = L e =
n n
I ne
x n=0
o —Bnﬁwx(ﬁ-&')
X e
n=0

since all other factors cancel out. The electron occupation
number n may take the values 0 and 1, so those sums are trivial-
ly performed. The sums over the phonon occupation number n

are, in the denominator, a geometrig series, and in the numera-

tor, the derivative of a geometric series, and may be evaluated
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analyticakly. It is apparent that each electron number opera-

tor ﬁko in (3.8) gives rise to a factor

Be _
f£le) = (e £+ 17t (3.11)
£ A ,
and each phonon operator ngk yields a factor
Bﬁw)\(g) -1
N(wx(q)) = (e - 1) . (3.12)

For the energy EN(T) of the N-electron system in equilibrium
at temperature T we finally obtain
FBZ

I (gtm)f(e) + I 4w, (QIN(w, ()
ko = = gA

Ey (T)

" 2 £le ) (1-£(e)IN (0, (k")
k',kial o

(3.13)

EE,—ethwA(EfE )

z
kk'
2y

£(e) 1) (1= (e )) 14N (w) (k' k)

+ - T }.
€ i, (k k)

— ——

To extract from this the energy-:due to a particular quasi-
particle state, we consider the change in EN due to a variation
in the average occupation <3E0,> or f(eR) of a state po', that

is
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GEN(T)
ER(T) = ‘Sf-(_EE_) -~ M .
(1-£ (e, )IN(w, (k~p))
= + 1% —
p KA gg,&;k EE—EE+th(k—p)
(1-£(g))) [1+N(w, (p-k)) ]
* rs - (3.14)
EB eﬁ—ﬁwx(g k)
f(sE)N(wA(E-g)) f(eg)[1+N(wA(5-B))]
+ — —- + — - }
EE EE-ﬁwk(B k) EE 55+ﬁmA(5 p) 7

We have subtracted p so as to measure EE from the Fermi level,
and have dropped the sum over o since we are considering a
state of particular spin when we take the derivative. In ob-
taining the form of the last two terms, we have used the
symmetry of the coupling constant, g&"57k = g£'&,;A.

The expression (3.14) may be explained in a straight-
forward way. We can think of the electron-phonon interaction
as inducing virtual scattering of an electron from one state
to another and back, with the emission and absorption of a
phonon (not necessarily in that order). Each scattering vertex
gives a factor of the electron-phonon coupling constant, and
we divide by the energy difference_between the original and
virtual .states in the usual perturbation-theory fashion. If
we put an electron in state p,it scStters to‘all states k,
giving the first two terms in the sum over states in (3.14)..
The factor l—f(ek) describes the Pauli-principle requirement

that the state k be empty. The first term describes the
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’

absorption of a phonon by the electron in state p, bringing in
the phonon occupation factor. In the second term, the electron
emits a phonon, giving rise to spontaneous emission and stimu-
lated emission (the factof N(wl)) terms. By fillingﬂtbe
state p, we alter slightly the energy of the other statesk
by forbidding transitions to state p. fhis contribution is
described by the final two termé. . )
Treating (3.14) in this way as a perturbatioﬁ;theory
expression involving the single-particle states suggests the
substitution EE + EE in the energy denominators, equivalent
to using Brillouin-Wigner perturbation theory in place of
the Rayleigh-Schrddinger method. 1In this way we sum higher-
order terms without extra work, and reproduce the Green's
function result for the real part of the self-energy (Scala-
pino, 1969). Collecting terms with similar denominators in
(3.14), and using the phonon symmetry wA(g) = wA(-S) : We

now write

I(E, B) = E, - ¢

, f(ek)+N(mA(g—5))
12 5=

= . |g (3.15)

]il El]‘_i_iA
1-£ (£, ) +8 (0, (p-K))

Efek+ﬁml(2—§)

} .

+

ER"ek - fiw, (p-k)

We change the sum over k to an integral with the substitution

—

ATV,

as, de
ijk
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where dSk is an area element in k-space of a surface of con-

stant Ek. €k

dicular to the constant-energy surfaces, or parallel to v, .

is integrated from -y to « along paths perpen-

k

We want the correction to the energy to be real, so the prin-
cipal value of the integrals is assumed.

With a few remarks on the vari;tion of the integrand in
k-space, we may separate the two integrations over area and
energy for the states p of interest. We shall subsequently dis-
cover that the self-energy ! is non-zero only for states within
a phonon energy or so of the Fermi enerqgy, so we restrict our
attention to states p near the Fermi surface. The largest con-

tribution to (3.15) comes from states k for which the energy

denominators are small, that is, for €1 within a phonon energy

of EE. Because we have restricted p to the region near the
Fermi surface, this implies that only states k within a phonon
energy or two of the Fermi energy will contribute significantly

to L. As we integrate over ¢ along a direction perpendicular

kl

to the constant-energy surfaces, we may therefore disregard
contributions from the regions where k differs from the Fermi

wavevector by more than about m/vk x k. {in magnitude) or
Hw ~
2(gp+n)

therefore interested in |k| within about .25% of its Fermi-

£
kf for a free-electron system. For aluminum, we are

surface value. Obviously, we may perform the integral over €

regarding as constant such factors as lvkl which vary with k
scale of the magnitude |k|.
The coupling constant gE ks and the phonon frequency
P

w, (p~k) both vary on the scale of |p-k| as we change k. How-
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ever, we may disregard the regions where p-k is small com-
pared to |k|. 1In the long-wavelength limit, w(g) =« g and-the
pseudopotential form factor goes to a constant non-zero value.

By (2.24), =« |p-k| as k+p, cancelling the 1/w di-

lg |2
psKiA
vergence of N(w). The number of states contributing to (3.15)

for a particular value of {p-k| and ¢, is proportional to |p-k]

k

at small momentum transfer, and so we may treat p-k as being

sufficiently large that it does not vary much as g, varies

-

It

between about * huw.

..

We have finally arrived at the point where we may per-
form the integration over energy treating “A(ETE)' gE Y and
r ’

6k as constant. The phonon factors now vanish since they may

be taken outside the energy integral, and.
= 1 1, _
J;AquIX‘*'Y + ;C-:i’— = 0

where, of course, we are taking principal values, and the
range of integration may be extended from -u to -» for the

2
energies EE of interest.

We are left with, from (3.15)

ds
Q 2 2
I(E_,p) =
( p p) (2“)3 j&ﬂvla' IgE').i7)‘l

f(e) 1-£f (€)
X de{z=—— + = —}.
! EE e+, EE e~Huw, (p-k

(3.16)

-

Making a change of variables ¢ - —EE+s in the first term and

€ Ep-e in the second, and using the relation f£f(x) = 1-f(-x)

gives for the energy integral ﬂ
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dE

€ - 4fw, (p-k)

At EE = 0 the integrand vanishes, so L(0,p) = 0. With (3.1),
this implies that the Fermi energy is not shifted by the elec-
tron-phonon interaction. The numerator f(e—EE)-f(e+EE) is
non-zero and constant for ¢ between tEE and zero elsewhere,
with a rounding of the corners to a distance ~ kBT. As E
increases above a few times the maximum phonon frequency, the
integral, and thus the self-energy,falls off like l/EE. We
can therefore evaluate the surface integrél in (3.16) over the
Fermi surface for all EE of interest, rather than over the

surface € = EB. Introducing the factor

[ dwsé (w-w, (p=k)) = 1
0

into (3.16) and using the definition (2.26), we obtain

oo o0 ’
L(E,p) = K [dw a;(w)FE(m) [ ge £Le-E)-f(eFE) (3.17)

e -Hw

-~
” In this expression the self-energy depends separately
on the energy E (measured from the Fermi level) of a quasi-
particle and on the position p on the Fermi surface closest
to the actual quasiparticle wavevector. By restricting p to
the Fermi surface, we have introduced a fractional error of

the order of a phonon energy divided by the Fermi energy, ~ 1%

at most.
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A

Using (3.2) and (3.17) we obtain an expression for the

mass renormalization parameter,

[oe]

- 2 £' (¢)
AE(T) = 28 dw aE(w)FB(w) [ de P 53.18)

0 -0
daf (€)
de y

fied in treating E and p as independent variables. [ varies

where f' (e) = Even in taking derivatives we are justi-

with p on the scale of a Fermi wavevector, and with E on the

scale of phonon and thermal energies. ZEE is a (renormalized)

Fermi velocity, so the term %% g% which we haﬁg—ignored is

of the order of the ratio of the sound velocity to the Fermi

velocity, again v 1%, times the term %% which has been re-

tained.

The behaviour of (3.18) will be discussed more fully
in the next chapter when we outline the calculations, but we
shall point out here that at T=0 the function f'(e) becomes

the Dirac delta 6(c), so we obtain at zero temperature

. o

_ dw (2 0
AE(O) = 2 ” o (w)FR(m). (3.19)

B

This is the familiar expression appearing in the work of

Leavens and Carbotte (1971) and of Leung (1974) on the aniso-

tropy of the electron-phonon interaction in aluminum.

)
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3.3 The Quasiparticle Lifetime

A quasiparticle near the Fermi energy does not re-
main in the same state indefinitely, but scatters via the
electron-phonon interaction to states nearby in energy, with
the emission aor absorption of a phonon. The decay rate is
described in a Green's function approach (Fetter and Walecka,
1971) by the imaginary part of a complex self-energy, obtained
by subtracting ié from EE in (3.16), where & is a positive
infinitesimal. We shall use an approach based on the Fermi
golden rule, after Wilkins (1968).

Again we begin with an N-electron system in state |g>.

By the golden rule, the decay rate from this state is given by

2 2
\ ,}j r =3-’1 |<g[He_p|f>16(Eg—Ef). (3.20)

Since we a;e interested in a system at (or near) equilibrium

at temperature T, we again average over states |g> in the

grand canonical ensemble. We can proceed exactly as we did in
evaluating the self-energy, replacing energy denominators with
energy 6~functions. We obtain an expression analogous to the
expression (3.13) for the total system energy. This averaged
decay rate, which we label req' refers to the equilibrium distri-
bution over®states in the ensemble, and must be zero. Invoking
the detailed balance condition, we may require ﬁore specifi-
cally that the ensemble-averaged occupancy of each particle

state be constant in time. If we now alter slightly the

\

v
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occupancy of state p, the decay of the system to new states 1s
entirely due to scattering to and from state p, and we may
identify the relaxation rate %L-with the functional derivative
dfeq/df(cg). Compagg this witE (3.14) , where the guasiparticle
energy was equated with the derivative 6EN/6f(cE) - u. Without

trudging through the same mathematics twice, we write from

inspection of (3.15),

1 2m

‘ 2
= == I |g_ . ,I7{If(e )+N(w, (p-k))]
TE 11 KA pPrki X k A
x 6(EE_€E+ﬁw*(E-E)) (3.21)
+

[1=£ (e) ) #N (w, (p-k) 16 (E =) o, (p-k)) ).

We take P to be near the Fermi SP{face, and change the sum to

3

an integral

9 dSk ©
r - — de -
k (2n)3 -KIVEI k
FS —co
where the §é-functions in (3.21) restrict k to the region of
the Fermi surface and by arguments similar to those used in

deriving (3.16) we may perform the two integrations indepen-

dently. Again we introduce the factor

x

G(m—wA(E-E))dm = 1
0

and after performing the enerqgy integral, obtain
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= 27 dw ag(w)FE(w){2N(w)+f(ﬂw+E)+f(<lfw~E)}- (3.22)

It is of interest to estimate the behaviour of the
relaxation gime at low temperature and energy. N(w) falls off
exponentially for #iw above about 2kBT, as the Fermi functions
do for #lu greater than |E| + kgT- Only the low-frequency
part of aé(w)?g(w) will be significgnt in the region of low
E and T. Since the phonon frequencies wx(g) are zero for
g equal to a reciprocal lattice vector, the low frequency con=
tributions in (2.26) arise from those portions of the Fermi
surface integral where k-k' is close to some X. The fre-
qguencies mk(i) are evenly distributed in g-space and propor-
tional to |qg| at low frequency. Within a mode A, the frequency
will be constant as k' moves about k in a closed curve whose

perimeter will be proportional to w, if the phonon anisotropy

A

does not change rapidly as frequency increases. As was

argued earlier, |gk,k,;xl2 is also proportional to wx(£—§')

in the low—frequen;y~regions. We should expect a;(u)Fp(w) to

vary as wz at ‘sufficiently' low frequencies, although it is

hard to estigate quantitatively what range this will encompass

in polyvalent metals, which have Umklapp processes across the

Fermi surface at zero phonon frequency for certain points k.
Taking (3.22) at T=0 and E small but positive, and

defining the step function 6(x) as equal to 1 for positive x

and zero for negative x, we have
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1 2
TE0 dw w” 68 (E-iw)
0 LY
which implies, since T1(E,0) = 1(-E,0) ,
D
- 1 - 3

for small |E]|.

If we set E=0 in (3.22) the weight function in curly
brackets Becomes a function of ﬁw/kBT only, so for T sméll,

?75%57,“ J w? 9(%%%)dw

' 0
since the exponential decrease of g at large argument allows us
to ignore the contributions to the integral in the regions where
wz is a bad approximation to the true distribution. Setting
Eﬁ% + x gives a definite integral in x whose value is indepen-
dent of T, with a factor (kBT/ﬁ)3 in front. So at low tempera-

tures,
4

1 . w3
(o, ~ T - (3-24)

It is worth noting that experiments cannot be per-
formed at T=0 or in general at E=0. We shall simply state
that the dominant effect of allowing E and T to be simulj
taneocusly non-zero is to add a constant to the right hand side

of relations (3.23) and (3.24). The proof involves making
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an appropriate change of variables for each function in (3.22)
and examining the resulting terms in the regions E >> kBT and

>> E.
kBT E



CHAPTER 1V

CALCULATIONS AND RESULTS

+

4.1 The Aluminum Fermi Surface

We discuss in this chapter the formulae developed
in Chapter III for A and 1 and the methods used to evaluate
them numerically. The results are presented at a few tem-
peratures and energieé as a function of position on the Fermi
surface. We list the values at 62 points in k-space of a few
parameters describing Ak(T) and Tk(E,T) in regions acces-
sible to expefiment. w;ere such ;xist, experimental values
.and previous calculations are compared with the present
results.

We begin by presenting a map (Fig. 2) of tﬂe irre-~
ducible 1/48th of the ;ermi surface as calculated by Leung
(1974) from Ashcroft's (1963) parameters. 6=0 is a cube edge,
8=45°, ¢=0 a facéddiagonal,-and 0=54.7°, ¢=45° a body dia-
génal: (Aluminum has a face—éentred cubic structure.) In
certain directions £he Fermi surface does not exist, with
empfy and filled states being separated by a Bragg plane in
these regions. On our map (Fig. 2) the Fermi surface is

divided in this way into four sections. Sections I and IV

form a hole surface in the second band when reduced back to

34
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Figure 2

Irreducible 1/47'th of the Al Fermi surface. 1In the
‘shaded regions the Fermi surface does not exist. §=0°
is a cube edge, 8=45°, ¢=0° is a face diagonal, and

6 = 54.7°, ¢ = 45° is a body diagonal.
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the {irst Brillouin zone. The remaining pieces comprise an
electron-surface 'monster' in the third band. We refer to

Harrison (1966) for a fuller discussion of the Fermi-surface e

shape.
R Section I and the upper edge of section II intersect
the (; ; ;) plane.§ Between the points W and U which lie

in directions 6=26.6°, ¢=0° and 6=19.5°, ¢$=45° respectively,
the planes ( ) and (00l) intersect. The lower edge of
section II and the upper edges of sections III and IV end

at the (001l) plane. Along the boundary of the 1/48'th from W to
the point K in the direction 6=45°, ¢=0° the (l 1 %) plane

intersects the (2 -5 ) plane. The left-hand edge of surface

IV and the right-hand edge of surface III are bounded by

this (% —% %) plane. At about 6=32°, section III is divided
into two parté as the upper piece bends inward to cut the

(2 —L ) plane, and the lower piece curves outward to the (001)
plane. The 62 points at which Leung's distributions are calcu-
lated are distributed over all 4 sections with a concentration
near the Bragg planes, where the electronic properties may
be expécted to vary rapidly.

With these remarks as an aid to orienting the reader

in momentum space, we proceed to a description of the calcula-

tions.
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4.2 The Computations

For the>purpose of numerical calculation, the formula

(3-18) for A(T) may be written in the more convenient form

A (T) = 2 do az(m)F (w) {1 - x}e{xgx } . (4.1)
B R - < (1+e®) %) x-Bha)

- Q0

We have substituted Be -+ x and written

1 - 1 X _
x-fHlw ~ Phw (x—ma - 1)

in order to extract a factor % from the energy integral. It
will simplify the logic of the computer programs to deal
with the dimensionless guantities %? and ffw.

To evaluate the integral

o0
[ xexdx

(1+e) 2 (x-Bhw)

»

,(4.2)
/ -—c0

as a function of Sfw, we must consider the behéviour of the
integrané. We are only interested in the principal value but
the singulaiity at x = BHlw has an unhealthy effect on conver-
gence of numerical algorithms. It may be removed by integra-
ting the sum of the contributions from either side of x = ffiw
over half the range of the integral (4.2). More explicitly,
we substitute x - Bfiw + y for x > ffiw and x - Bfiw - -y .

.

for x < BRilw, to obtain
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xe™dx _ dye ( (Bhwty)eY
(1+e™) 2 (x-gtiw) Y (L+eP0YY) 2
S 0
(Bﬁw+y)ey )
- ] 4.3
(L+ePho—Y)2 (4-3)

Because of the cancellation of terms at y=0, the inte-
grand on the right hand side is finite everywhere, which faci-
litates the nuéerical integration. An accuracy of 3 digits in
A was deemed sufficient in view of the limitations of the
available distributions az(m)F(w) (and of possible experiments)
which reéuires that the integral (4-3) be calculatéd to an
accuracy of 10_3. In practice it was calculated to a precision
of 10—5, requiring less than a doubling of computer time for
- the integration subroutine and avoiding some problems of
spurious convergence of the algorithm for small values of Rlw.
The range of integration was truncated at a value above which the
contribution of the éxponential tail could be assumed to be
" negligible, and the resulting definite integral wés evaluated
on the McMaster CDC 6400 computer using Simpson's rule. Con-
;;rgence to within 10—5 was obtained after 5 or 6 iterations
(a total of 33 or 65 points at which the integrand was evalua-
ted). A hundred evaluations of the integral (4.3), sufficient
to calculate A at one value of temperature from (4.1), re-
qguired about a second of computer time. Because .of the histo-
gram nature of the tabulated funétions ai(m)Fk(mi, a simplg

discrete sum was used for the frequency integration, with w



Figure 3 a)

Calculated Ak(T)/lk(O).plotted against temperature for 4

points (6,¢) as follows:

(1°,1°)
....... (21°,1°)
- - = = (17°,35°)

—e=e-.- (23°,45°)

Figure 3 b)

Calculated Ak(T)/Ak(O) vs. temperature for 4 points
(6,¢):

L4

(45°,1°)
....... (41°,50°)

- - - - (53°,45°)

—ememe= {(31°,45°)

.
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values taken to be at the centres of the histogram bins.
Evaluating expression (3.22) for the relaxation time
was much simpler, as only a single integration, over frequency
w, is involved. Again the frequency inte%;gpion was. performed
simply by summing over the 100 values of w at which the distri-
butions are given. However,since the statisiical factors %n
(3.22) can vary rapidly with w at low temperatures, it was
necessary to average them over the width of each histogram bin
(rather than simply taking the value at the centre of the bin)
in order to obtain t as a reasonably smooth function of E and

T.
'f;“

4.3 Results

Y

In Fig. 3a) and b) we display Ak as a function of

temperature, normalized to unity at T=0, for 8 points Xk on

the Fermi surface. The overall shape of the curves is a general
feature of sﬂﬁi’calculations, and was first diséussed by Grimvall
(1968) in an Einstein model. Starting From T=0, Ak rises to

a maximum at about 65°K in our aluminum calculatio;s, then falls
off gradually, going to zero like T—z at high temperatures.

It is apparent from fig. 3, however, that quantitative differen-
ces in behaviour exist between different states k on the Fermi
surface. This anisotropy in Ak(T) is displayed in another

- —

way in fig. 4a), b) and c), in which Ak(T) at three temperatures

is plotted as a function of angle 6 along three constant-¢ arcs.
Table I lists a few numbers which chaxacterise the
;Emperature~dependent mass enhancement at each of the 62 points

.

on the irreducible 1/48'th. In addition to the values of lk



Figure 4

Ak(T) plotted along constant-¢ arcs on the Fermi surface.

The temperatures are:

0°K
* & & o ® o @ 30°K
-~ - - - 50°K

h

L

Figure 4 a) (lower graph) is along the arc ¢ = 1°.

4 b) is along the arc ¢ = 23°



41

&S

(bap) ¢ .o7bue

- > b .. A
j e // " e o—
~ -
) ~ -~
= ~ N
~
o mnﬁ- ” .
N
L
-
/ *
| PN
- 19° 9t
ofT He




Figure 4 c)

Ak(T) along the Fermi-surface arc ¢=45°. The temperatures

are:

0°K

ceesees 30°K

: - - - - 50°K
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Table 1

Temperature dependence of Ak(T)

—

is the temperature at which A

reaches a maximum
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Table 1 (continued)
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at zero temperature, calculated by Leung (1974), we list the

temperature at which A, reaches its maximum, and the ratio of

k

this maximum value to that at T=0. We give the ratio
Ak(T{/Ak(O) at 30° as well, as this is typically the maximum
t;mpera:ure at which experiments measuring gquasiparticle
properties in aluminum are currently performed (Doezema and

Koch, 1975).

From Table I, the maximum increase of Ak over its

zero—temﬁérature value varies between 6% and 15%, the peaks
occurring at temperatures which correlate fairly well with
the peak height, between 53°K for the lowest maxima and 78°K

‘for the free-electron-like regions where the maximum increase

of A, is largest. For comparison, the Einstein model considered

k

—

by Grimvall (1968) would giye a maximum in‘A(T)/A(O) of 1.21
at a temperature of 0.28 times the Einstein temperature GE.

On the sections of the Fermi surface~}abelled I, II and
III in figure 2, Akmax/kk(OQ is small, less than 1.12; and
does notnva:ystrongly ovzi a given section. All the higher
‘values are féund arouﬁd the points (53,45) on section IV.
There is a smooth trend to higher wvalues as one moves away from
the Bragg planes everywhere except oﬁ section II, where
Akmaiflk(O) tends to increase as 6 "increases from the inter-

section with the (% %-%) plane daown to the (001) plane, which

— ——

cuts the Fermi surface at about 6 = 24°.
Most of the variation in the temperature dependence

of A, may be attributed to the anisotropy in the electron wave-

k
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functions. Longitudinal phonons contribute more strongly to
thé electron-phonon coupling, as the factor Ek'(§f+5n.—575n)
is small for normal processeé if € refers to a transverse
phonon and n=n'. To the extent that the resulting strong peak
in azF at high frequencies contains the major contribution to
the effective frequency distribution, Ak(T) approaches the
Einstein-model value, with a maximum in;rease of 21% over its
zero—-temperature value. Even for a free-electron model, of
course, there will be umklapp processes which contribute to a
transverse-phonon peak at intermediate frequencies. As we
approach a Bragg plane, however, there is a considerable
mixing of states with 5n#0, which can lead to umklapp processes
at low frequency. Because of the higher density of states at
low frequency for transverse phonons, the resulting increase
in the coupling to low-frequency phonons can be considerable
(compare the two distributions in figure 1, the upper one
representing a point near the (001) plane, the lowe; one N
coming from a free-electron-like region). We note that the
anisotropy in lk(O) follows a much different pattern; Leavens
and Carbotte (1571) found that much of the variation in~the
zero-temperature value arises from the anisofropy of the
phonons.

In figures 5, 6 and 7 we plot the 1ifetimeur against
\angle 8 along 3 constant-¢ arcs. The left-hand plots, labelled
.a), show T(E,T=0) for energies of 1, 2 and 5 meV and the

right-hand plots display T(E=0,T) for 5°, 10° and 20°K.



Eigure 5

The calculated rk(E,T) plotted along the Fermi surface arc

5 b): E =.0, 3 temperatures:
5°K
...... . 10°K -
R - - - = 20°K
AN
Sa): T = 0, 3 energies:
1 meV

essesee 2 MmeV

- = = = 5 meV
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/ Figure 6

The calculated Tk(E,T) plotted along the Fermi surface arc

¢ = 23°.
6 b) ' E = 0, 3 temperatures:
5°K
....... 10°K
- - - - 20°K
6 a) T = 0, 3 energies:

1l meV
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Figure 7

The calculated Tk(E,T)‘plotted along the Fermi surface arc

—

$ = 45°,
7 b) E = 0, 3 temperatures:
5°K
> ® & & 0o ¢ o 10°K
- - = = 20°K
7a) T = 0, 3 energies:
1 meV
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Note that 1 is plotted on a logarithmic scale; the variation

with position on the Fermi surface is very large. In general,

lifetimes are lowest near Bragg planes, in keeping with our

discussion of the anisotropy of A, since the inverse of the

lifetime is proportianal to the low-frequency part of uZF.

Much of the anisotropy tends to disappear at higher

temperatures and-energies, but not uniformly as we would

expect if 1/71 re proportional to 3 and E3 on the entire

Fermi surface. Accordingly, the inverse lifetimes obtained

were fitted to a general power law over the range 5-10°K

for E=0 and 1-3 meV for T=0. The exponents e and O of

the best fit are listed in table 2, along with the slopes

of the best E3 and 3 fits in the same range, and the values
% obtained by Tomlinson and Carbotte (19763 at 15.points.

Our exponents are in general not particularly close to 3,

of

nor do they always agree well wi£h the results of Tomlinson's
essentially simiiar calculation. Along the ¢=45° arc,
Tomlinson's use of only 4 plane waves might account for some
differences, particularly near the high-symmetry direction
(54.7°, 45°). _Tomlinsbn's Fermi surface calculation differed
from Leuné's only in detail; but on narrow electron arm
along ¢=1°, this may have improved his results.

Doezema and Wegehaupt (i975) have measured quasipar-
ticle lifetimes in aluminum by observations of transitions
between surface Landau levels. The technique involves mea-

suring the surface impedance at microwave frequencies of a
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5-10°K.
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sample with a magnetic field aligned parallel to the surface.
Transitions are induced between states of an electron pinned
to the surface by the evxB force. From the position and width
'of peaks in the magnetic field derivative of the surface
resistance (the experiments ére éerformed at constant micro-
wave frequency) and a detailed knowledge of the band structure,
the electron mass renormalization parameter and the lifetime
can be infgrred. Unlike other magnetic-resonance techniques,
which involve averaging around an orbit, the surface-Landau
~ level experiments give point values, or at least averages
over a small rectangle on the Fermi surface. Doezema and
Koch (1975) give a fuller discussion of the method.

Table 3 gives the results of Doezema and Wegehaupt
for r_l(E=O,T)/T3, as well as our and Tomlinson's calculated
values. iheir experiments were performed ggizgen 2° and 20°K,
and they report that the T3 Taw was obeyedwgt all 3 points,
" whereas we found exponents of 2.6, 1.8 and 4.7‘(from table 2).
The agreement with experiment in table 3 is good at (1¢,1°),
a factor of 2 at (13,45), and a factorxr of 2.5 at (53,45).-
The second point was close to the Bragg plane, where the life-
time varies rapiély; the factor of 2 does not ngcessarily
represent a severgsﬁisagreement. At (53,45), however, we are
in the centre of a large free-electron-like region, and the
discrepancy is significant. The low vélue of the calculated
1/t and its rapid (T4’7) increase with temperature may indicaée
that a reduced weighting of.the first few frequency bins as an

artifact of the calculation is at fault.
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Table 3

A comparison of our coefficients B = <r-l(0,T)/T3> with the
experimental results of Doezema and Wegehaupt (1975) and with

. 14
the values they inferred from Tomlinson's results at 5°K.

(é,¢) B (expt.) B (our calc) B (Tomlinson)

in deg. (3,06 S,"'l/°K3)
»

(1,1) 4.1%.3 3.6 | 3.4
(13,45) " 31 +°3 .14 21
(53,45) 3.9%.3 ' 1.5 1.4

L
’ .
» « ’ ' .
- | 6, ‘
. . +
° .



CHAPTER V

CONCLUSION

.Our failure to find at most points the T3 and E3

scattering rate dependence which ought to arise as a conse-
quence of our model is the most striking feature of the re~
sults presented. Although the cube law does not necessarily
épply for all electron states in a polyvalent metal, we found
a much more rapid rise even in freg—electron—like regions, “°
and in any case, Doeézema and Wegehaupt (1975) have ob%erved
the T3 law to be valid experimentally agkf fairly representa;
tive points. ’
At 5°ﬁ, the thermal energy kgT is equivalent to a

little more than 100 GHz, which is the spacing in frequency
of the p9ints at which aQF is-tqbulated. The thermal factors

‘ ' -
in (3.22) effeg¥ively limit to the first 5 or 6 bins the

- pertion off a ' F which is significant in the scattering rate at

this teﬁperature. Leung's. (1974) calculation was not designed

iy\for accuracy in the low frequency regions of

tribute. .. erform the integral over k' in the definition

. {2.26) he used a 2°x2° mesh of points; there is a direct

L4
b

traée-off_between the fineness .of the mesh and the.computer

time'kéquitéd. For a typical position on the 1/4é'th, this

55
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would correspond to a rectangle of about kF/30 by kF/SO.
Taking into account the shape of phonon dispersion curves in
general, we estimate the frequency of the first normal-process
phonon contributing to the sum to be roughly 1/25 of the
maximum phonon frequency; that is, it will fall into_ the 4th
bin or thereabouts. There are, of course, umklapp processes
and coupling to transyerse phonons at lower frequencies, but
a graininess on about this scale should be expected if only
small regions of the k' sum contribute at low frequencies.
In fact, many of the tabulated distributions are zero in the
first bin.

While the remarks do not reflect on the accuracy of
these distributions for calculating parameters, such as 2,
which are affected by phonons of a broad range of frequencies,
they probably identify the reasons for the undesirable be- .
haviour of the scattering rate. The agreement (within a
factor of 2) of the actual value of 1/1 with experimental
measurements seems reasonable in light of this. It is likely
that improved values would result if a much finer mesh could
be used for the k' integration in calculating azF, at least
fgr those regions which contribute low-frequency phonons. To
use a very fine mesh over theégntire Fermi surface would result
in a large and unnecessary increase in computer time.

As we have méntioned[}the calculation of Ak(T) is
largely immune to inaccuracids in the low—frequenc; part of

the distributions, and our results ought to be good. We know
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of no experimental determination of X, at elevated tempera-

k

tures in Al, although such measurements have been performed
on other materials using cyclotron resonance {(Goy and Castaing,
1973; Sabo, 1969). The surface-Landau-level technique, which
avoids the more or less undesirable orbital averages of other
magnetic resonance methods, has been used by Doezema and

Wegehaupt (1975) to obtain A, in aluminum at low temperatures,

k

and could give measurements at higher T. It is evident from
figure 3 that temperatures on the order of 50° would be needed
to observe the anisotropy in Ak(T)/Ak(O), although at 30° a

more or less isotropic 4.5% i;Ereas; in A should be visible.

A higher microwave frequency than the 36 GHz used by Doezema
and Wegehaupt to measure scattering rates at 20°K would be
necessary, from the requirement that the microwave energy

be larger than the 4i/1 broadening of the energy levels. From
the present calculations, the lifetime broadening at 50°K would
correspond to a frequency of about 40 to 200 GHz. Doezema and
Koch (1975) report that the resonances disappear at 2000-3000
GHz due to a vanishing of the transition matrix element, an
effect which would likely be enhanced at higher temperatures

by the rapid increase of the resistivity and resulting increase
in skin depth. There would not necessarily be sufficient
resolution to observe the anisotropy seen in our célculations.

The energy dependence of T, may be observed by varying

k

—

the exciting frequency or by observing higher-order transitions
(Gantmakher, 1972). However, it is connected closely to the

temperature dependence and may not be of much additional interest.
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