
A Multiple-FPGA Parallel Computing

Architecture for Real-time Simulation of

Deformable Objects

A MULTIPLE-FPGA PARALLEL COMPUTING ARCHITECTURE

FOR REAL-TIME SIMULATION OF DEFORMABLE OBJECTS

BY

SEYED BEHZAD MAHDAVIKHAH MEHRABAD, BSc.

A THESIS

SUBMITTED TO THE DEPARTME T OF ELECTRICAL & COMPUTER E GI EERI G

AND THE SCHOOL OF GRADUATE STUDIES

OF MCMASTER UNIVERSITY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF ApPLIED SClE CE

© Copyright by Seyed Behzad Mahdavikhah Mehrabad, Aug 2009

All Rights Reserved

Master of Applied Science (2009)

(Electrical & Computer Engineering)

McMaster University

Hamilton, Ontario, Canada

TITLE:

AUTHOR:

SUPERVISOR:

A Multiple-FPGA Parallel Computing Architecture for

Real-time Simulation of Deformable Objects

Seyed Behzad Mahdavikhah Mehrabad

BSc., (Electrical Engineering)

Sharif University of Technology, Tehran, Iran

Dr. Shahin Sirouspour

NUMBER OF PAGES: xi,125

11

Abstract

In recent years there has been a growing interest in computer-based surgical plan

ning, virtual-reality enabled training of medical procedures, and computer gam

ing all involving non-rigid deformable objects. High-fidelity simulations of haptic

interaction with deformable objects is computationally demanding. The Finite El

ement Method (FEM) is known to produce relatively accurate solution for contin

uum mechanics-based models of soft-object deformation. Linear elastic FE models

require solving a large sparse system of equations. The solution accuracy can be

improved by increasing the resolution of the finite element mesh resulting in a

larger number of equations and hence greater computational complexity. Depend

ing on the mechanical characteristics of the soft-object, to maintain stability and

high fidelity in haptic interaction, the update rate should be in the range of 100

1000Hz. This, for example, means that for a moderately-sized three-dimensional

mesh of 6000 nodes, a set of 18000 linear equations must be solved within 1-10ms.

In this thesis, hardware-based parallel computing is proposed for finite-element

(FE) analysis of soft-object deformation models. In particular, a distributed imple

mentation of the (CG) algorithms on .\' Field Programmable Gate Array (FPGA)

devices connected in a ring configuration is developed. This Parallel architecture

can be utilized to solve the large system of equations arising from FE models at

III

high update rates required for stable haptic interaction. Massive parallelization

of the computations is achieved by customizing the hardware architecture to the

problem at hand and employing a large number of adaptive fixed-point computing

units in parallel. The proposed hardware architecture satisfies three important cri

teria: (i) it meets the haptic rendering timing constraint by enabling an update rate

of 400Hz; (ii) it attempts to simulate as many nodes as possible, given the available

resources on the FPGA devices employed in this work and (iii) it is scalable both

within an FPGA and also across multiple FPGA devices.

This research builds upon our group's earlier work in [1]. In that paper a novel

highly parallelized single-FPGA architecture was proposed for solving system of

equations arising from FEM using Conjugate gradient method. In this thesis, a

multiple-FPGA architecture based on that design has been proposed. The contri

butions in the new multiple-FPGA design can be summarized as follows.

• proposing a novel method for expansion of conjugate gradient (CG) algo

rithm to multi processors.

• a new sparse matrix by vector multiplication unit, performing as the kernel

of our hardware-based CG solver.

• proposing a novel storage format (SMVIS) for storing a vector, pre-multiplied

by an sparse matrix which tremendously reduces the memory required vec

tor storage.

• developing a new memory architecture for storing vectors in the CG algo

rithm, making the design capable of performing vector operations in the CG

IV

algorithm regardless of their lengths.

• developing a novel communication scheme for Inter-FPGA communications

in multiple-FPGA implementation of the CG algorithm.

An implementation of this scalable hardware accelerator on a quad-FPGA sys

tem has enabled real-time simulation of haptic interaction with a three-dimensional

FE model of 6000 nodes at update rate of 400Hz. Both static and dynamic linear

elastic models have been successfully simulated.

v

Contents

Abstract

1 Introduction

1.1 Motivation ..

1.2 Problem Definition

1.3 Thesis Contributions

1.4 Thesis Outline .

1.5 Related Publication

111

1

1

3

6

8

8

2 Literature Review

2.1.1 Soft Object Modeling Methods

2.2 Solvers for Linear Systems of Equations

3 Finite Element Modeling

3.2 Principle of Minimum Potential Energy

3.3 Applying Constraints.

3.4 Dynamic FE Modeling

2.1

3.1

Deformable Object Modeling

Basic Elasticity Concepts

10

10

11

17

22

24

28

36

37

VI

4.2 Fixed-Point Implementation of CG on Multiple FPGAs

4 Conjugate Gradient Algorithm

4.1 Algorithms for Solving Kx = b

5 Multi-FPGA Design Scheme

5.1 An Overview of the Proposed Single-FPGA Design in

5.2 Multiple FPGA Design

5.2.1 Design I

5.2.2 Design II

5.2.3 Scaling up the Number of Nodes on Each FPGA

5.2.4 Scale the New Design to Multiple FPGAs

6 Hardware Architecture

6.1 Analysis of Hardware Limitations

6.2 Data Storage .

6.2.1 Data Storage Formats

6.2.2 Memory Architecture

6.2.3 Memory Architecture for Storing Vectors

6.2.4 Storing K Matrix: Non-zero Values .

6.2.5 Storing K Matrix: Non-zero Indices

6.3 Implementing CG Algorithm On Multiple FPGAs

6.3.1 Sparse Matrix by Vector Multiplication ..

6.3.2 A Highly Parallelized Scheme for SpMxV .

6.3.3 Vector by Vector Multiplication

40

40

42

51

[1] 52

55

59

60

61

65

66

72

73

75

77

83

83

86

89

91

92

92

97

Design III .5.2.5

Vll

6.3.4 Inter-FPGA Communication

6.4 Resource Usage

6.5 Timing Analysis

7 Experimental Results

7.1 Performance Evaluation .

7.2 Hardware-in-the-Loop Haptic Simulation Platform

8 Conclusions and Future Work

Vlll

· 98

· 100

· 102

107

· 107

· 111

115

List of Figures

1.1 An example of employing haptic interfaces for modeling a soft-object.

figure from [2]. .. 2

2.1 ChainMail model representation of 20 object before and after defor-

mation (Figure from Sarah FF Gibson [3]). . . . 12

2.2 Mass spring model of a 20 rectangular shape 13

3.1 Strain-stress characteristics of a linear elastic material 25

3.2 Strain-stress characteristics of a non-linear elastic material 26

3.3 A 20 object with external possible forces applied to it. In this figure,

s represents the surface traction b is the body force fp represents the

point loads fland f2 refer to constraint and non-constraint nodes

of domainil . 27

3.4 Oiscretizing a sphere into tetrahedron elemental shapes. 31

4.1 Static Scaling. original figure with different bitwidths by Ramin Mafi 45

4.2 Changes in the norm of error in fixed point implementation of the

CG as a function of the number of iterations. . . . 48

5.1 The Connection Of MAC Units to Memory Blocks 54

5.2 Matrix Partitioning For Increased Parallelism 55

5.3 Third Level of Parallelization 56

lX

6.10 Data path for K*d multiplication for row (3i-2,:), the same architec-

ture exists for rows (3i-1,:) and (3i,:) for each sub-partition. In this

figure, d..M9k refers to M9ks storing d vector values for sub-partitions. 94

6.11 The K matrix arising from performing FE analysis on an sphere in

our tests 96

6.12 The communication scheme in multi-FPGA architecture. Arrows

show the direction of the data flow. 98

6.13 Portions of d vector needed for each FPGA for performing Kxd mul-

tiplication d vector . 100

6.14 Compilation report for an FPGA in our current design. . 101

7.1 Changes in the norm of error in FPGA result as function of number

of iterations 110

7.2 A transverse section of the spherical mesh associated with the largest

matrix with 5365 nodes in our tests 111

7.3 Error in FPGA solution compared to the real x vector for three dif-

ferent matrix sizes 112

7.4 The block diagram of haptic-enabled simulator with hardware-based

accelerator 113

Xl

Chapter 1

Introduction

1.1 Motivation

In the early 20th century, psychophysicists introduced the word haptics from the

Greek haptesthai meaning to touch in order to label the subfield of their studies

that addressed human touch-based perception and manipulation [5]. In the early

1990s a new usage of the word haptics began to emerge. "The confluence of sev

eral emerging technologies made virtualized haptics, or computer hap tics, possi

ble" [6], [5]. Computer hap tics allows a user to interact with the virtual objects,

receiving kinesthetic, force and tactile feedback. This interaction between user and

the virtual environments is fulfilled using bidirectional human-machine interfaces

called haptic devices which allow users to receive force-feedback based on an in

teraction model. Fig. 1.1 illustrates an example for such haptic interaction with a

virtual soft-object utilizing a haptic device.

Modern computers have the capability for visual and auditory interactions

with their users. The next generation of computer interfaces will add the haptic feel

1

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

Figure 1.1: An example of employing haptic interfaces for modeling a soft-object.
figure from [2]

to the computers, allowing their users to feel and touch the virtual objects. Such

computer interactions have been already developed in simple forms such as vibra

tions and force feedback in computer games using rudimentary joysticks or racing

wheels. The current force feedback in these applications is predominantly from

interaction with rigid objects. Modeling of such interactions is relatively straight

forward and has been extensively studied in the literature [7]. The ultimate form

of computer haptics would involve simulating interactions with both deformable

and rigid objects.

Real-time haptic rendering of deformable objects can be helpful in applications

involving interaction with a non-rigid soft object. It is especially of a great interest

in gaming, surgical training and surgery planning.

In surgical training, having a realistic simulation of biological soft-tissue allows

2

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

surgeon to rehearse operation without exposing the patient to undue risk. This ap

plication of soft-tissue modeling has become more relevant since the emergence of

robotics-assisted in minimally invasive surgery. The novelty of such systems for

most surgeons demands extend training to acquire the required skills. Such train

ing can be enabled by virtual-reality based systems involving hap tics and visual

feedback. Moreover in surgical planning for procedures such as needle insertion,

pre-operative plans usually need to be updated in real time due to soft-tissue de

formations or organ movements during the operation. In such cases, a simulator

can allow the surgeon to examine different task scenarios using the latest informa

tion available and choose the best course of action.

1.2 Problem Definition

Real-time haptic and deformation rendering of soft objects can be challenging

due to massive computations that most be performed within a very short time

to achieve the required high simulation update rate. Violating a minimum update

rate can degrade the quality and accuracy of the simulation and even lead to inter

action instability when haptic feedback is involved. This accentuates the need for

powerful computational engine capable of performing these necessary computa

tions within the permissible time.

Continuum mechanics based models can be utilized to accurately model soft

object deformation. Such a modeling approach will produce boundary condition

Partial Differential Equations (PDEs) which generally do not have a closed-form

solution except in special cases [8]. A numerical method such as the FEM can be

employed to find an approximate solutions for these PDEs.

3

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

between fixed-point and floating point computing. Using floating point represen

tation of numbers will in a high hardware cost, limiting the achievable parallelism.

On the other hand fixed-point implementation will reduce the dynamic range of

values' representation which can be problematic specially for iterative methods

by increasing relative error. This can result in numerical instability. We utilize a

custom fixed-point implementation of the CC algorithm proposed by mafi et.al in

[1]. More details about our fixed-point implementation and it's numerical stability

analysis is given in Chapter 4. In this approach customized fixed-point computing

can greatly increase the parallelism without noticeable decrease in accuracy.

Another problem concerns the scalability of the utilized solver for the system of

equations JeD = b. Accuracy of the FEM, to a large extend, depends on the number

of nodes in FE mesh. For example, typical meshes for biological soft-tissue may

involve several thousand nodes. On the other hand, due to insufficient resources

available on any processor, non of the current available processors (CPUs, CPUs,

FPCAs, etc.) are powerful enough to solve such big set of equations in expected

time frame.

Taking these into account, utilization of multiple-processors for solving such sys

tem of equations is inevitable. The scalability of the hardware architecture for the

solver is important in two senses:

1. The hardware design utilized for doing the computations should be scalable

on multiprocessors.

Thus breaking down the computations involved such that it creates the min

imum overlap among the processors both in data and timing sense is neces

sary. This means that there should be a minimum amount of data needed to

5

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

be shared between the processors for less memory usage on each processor

and moreover to reduce the communication required among them. In ad

dition minimizing the timing overhead requires that the processors should

work such that none of them be idle at any time waiting for results from

other processors.

2. The proposed architecture design should be scalable in a way that it can take

advantage of newer FPGA devices that will have greater amount of on-chip

memory and DSP resources

1.3 Thesis Contributions

The main premise of this work is that the steps involved in the FE simulation of ob

ject deformation can be classified as: (i) performing algorithmically complex but

computationally inexpensive routines; (ii) solving a large linear system of equa

tions. The latter can be delegated to a customized parallel-computing platform

whereas the former can be simply executed on a conventional computer.

In [1], we developed an FPGA-based accelerator for solving a sparse system

of equations using the iterative method of Conjugate Gradient [9]. In this thesis,

the hardware solution will be generalized to a multiple-FPGA configuration with

increased parallelism in order to solve larger FE problems using the Conjugate

Gradient (CG) method.

It is worth mentioning that although this architecture has been developed mainly

for modeling soft-tissues using linear models which result in equations in the form

J(x' = b, it can be also utilized for some non-linear deformation models by solving

6

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

an incremental form of such equations. This incremental form of these equations

can be derived as described in [10].

The main contributions of this thesis are in:

• proposing a novel highly parallelized, scheme for fixed point CG implemen

tation on an FPGA with a new sparse matrix by vector multiplication unit,

vector by vector operation unit and a new memory architecture comparing

to [1].

this design is scalable to multi processors with linear increase in resource

usage by increase in number of FPGAs.

• Proposing a new storage method for storing a dense vector, pre-multiplied

by a sparse matrix (Sparse matrix vector Indexing Scheme(SMVIS)) which

dramatically decreases the memory usage while parallelizing the matrix by

vector multiplication by performing multiplication for some rows at the same

time.

• proposing a novel method for performing the CG method on multiple pro

cessors.

• proposing a novel architecture for implementing multi-processor CG method

on multiple FPGAs. The implementation on 4 Stratix III Altera devices yields

302 Giga Operations per Second and a memory bandwidth of 7.257 TB/s

while doing the matrix by vector multiplication.

7

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

• Designing a novel communication scheme for required inter-FPGA data ex

changes.

1.4 Thesis Outline

The rest of this thesis is organized as follows:

In the Chapter 2 a brief review of the prior work is presented, Chapter 3 intro

duces the finite element method and formulations, Chapter 4 briefly discusses the

fixed-point implementation of the Conjugate Gradient method. In Chapter 5 the

algorithm for the expansion of the design on multiple FPGAs is described. Chapter

6 presents the proposed hardware architecture employed for carrying CG on mul

tiple-PPGAs. Chapter 7 covers the system performance and experimental results

and Finally, the thesis is concluded in Chapter 8 where some possible directions

for future research are also discussed.

1.5 Related Publication

• R. Mafi, S. Sirouspour, B. Moody, B. Mahdavikhah, K. Elizeh, A. Kinsman,

N. Nicolici, M. Fotoohi and D. Madill, "Hardware-based Parallel Computing

for Real-time Haptic Rendering of Deformable Objects" IROS 2008. IEEE/RSJ

International Conference on Intelligent Robots and Systems Volume, Issue, 22-26

Sept. 2008 Page(s):4187 - 4187, Digital Object Identifier 10. 1109/IROS.2008.4651242.

• Ramin Mafi, Shahin Sirouspour, Behzad Mahdavikhah, Brian Moody, Kaveh

Elizeh, Adam Kinsman and Nicola Nicolici, "A Parallel Computing Platform

8

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

for Real-time Haptic Interaction with Deformable Bodies" submitted to the

IEEE Transactions on Haptics(revised).

9

Chapter 2

Literature Review

This chapter presents an overview of related works on real-time modeling of soft

tissue deformation. At first we will have a survey on different deformable body

models described in the literature and as will be explained in we have chosen

FEM based continuum mechanics modeling in our application. This would be fol

lowed by an introduction to different mathematical methods and computational

platforms for real-time FEM based modeling of soft tissue deformation. The last

section will review the efforts done for FEM based modeling of soft tissue by em

ploying multi processors.

2.1 Deformable Object Modeling

In this section some of the most common methods used for deformable body mod

eling are briefly introduced and then we will focus on finite elenlent based contin

uum mechanics based model, which is the core model used for our simulation.

10

M.A.sc. Thesis - B.Mahdavikhah

2.1.1 Soft Object Modeling Methods

McMaster - Electrical Engineering

Deformable object models are used to find the new formation of a deformable body

after applying external or internal forces on it. There has been a considerable re

search in modeling of real-time interaction with non-rigid deformable objects, e.g.

see [11,12]. Generally soft object modeling methods are divided into two groups,

physical based models and non-physical models. Non-physical models are based

on heuristic geometric techniques or use simplified physical principals to obtain

an acceptable model of the tissue. [13,14]. For more details the reader is referred

to [15].

Two popular non-physics based models are:

• Spline modeling: In this approach, both planar and 3D curves and surfaces

are represented by a set of control points. The deformation of the object is

then defines as a function of these control points. By varying the positions

of these points or adding or removing or changing the weight of some of

these points the new formation of the complex objects would be determined

[15,16]. As a result of inaccuracy of this model model due to it's non-physics

base modeling, this model is no longer used [15] .

• ChainMail modeling: In this approach, the soft tissue is represented with

cubic lattices, where each of the cubs an move slightly with respect to its

neighbors and the position of cubes are finally adjusted by minimizing the

total potential energy. ChainMail has very low computational cost but it is

not realistic and imposes severe constraints on what mesh topology may be

used [17]. Moreover, simultaneous multiple contact points in this model

11

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

result in an extensive computational cost for determining the propagation

of the imposed displacements on the elements [11]. Fig. 2.1.1 depicts the

ChainMail model representation of a 2D object.

00 @ EE
Relaxed Maximum Maximum

Compression Stretching

Figure 2.1: ChainMail model representation of 2D object before and after deforma
tion (Figure from Sarah F.F. Gibson [3J).

The physical methods are based on solving the equations from physics prin

ciples or more specifically the theory of elasticity considering material properties.

These models are computationally demanding because they require solving partial

differential equations. Physically based models result in more accurate and realis

tic results. Terzopoulos [1St Waters [19] and Platt [20] showed the advantages of

the physically-based models on previous computer animation techniques [21].

Physical based models can be divided into following categories:

• Mass Spring models

• Linear Green Function (GF) models

• Continuum mechanics-based models

12

M.A.5c. Thesis - B.Mahdavikhah

Mass Spring Models

McMaster - Electrical Engineering

Mass Spring models represent the object with a mesh of nodal concentrated masses

with a network of massless springs connecting the nodes together. Also each nodal

mass is connected to its initial position with a damper element. Fig. 2.2 illus

trates the mass-spring representation of a 2D rectangle. The elastic behavior of the

springs can be changed to match physical properties of the material. The springs

can have linear behavior, but non-linear or volumetric material properties may

also be used [22,23].

•Mass-Spring modeling

•

•

•

•

•
Figure 2.2: Mass spring model of a 2D rectangular shape

Therefore for node N of the mesh we can write the equation of motion:

(2.1)

where x, x and x are position, velocity and acceleration of the node respectively,

lV1 denotes the mass connected to node N, F i represents the internal force exerted

to node N from node i which is connected to node N through a spring connector.

Also, Fext is the total external force applied to node N. After assemblage and

writing the equations for all of the nodes in a matrix format we will come up with

Eq. 2.2 for the dynamic case which will reduce to Eq. 2.3 for a static case.

13

M.A.5c. Thesis - B.Mahdavikhah

Linear Green Function (GF) Models

McMaster - Electrical Engineering

One of the earliest approaches introduced in [27] uses Greens functions (GPs) and

fast low-rank updates based on Capacitance Matrix Algorithms. GPs form a ba

sis for describing all possible deformations of a linear elastic model. This method

works based on a huge amount of pre-computations assuming a linear deforma

tion model. It uses a look-up table for different deformations and applies super

position principle. This approach is not suitable for objects with nonlinear elastic

models and for large number of nodes and contact nodes. [27].

Continuum Mechanics Based Models

Constitutive models based on continuum mechanics have been proposed to ac

curately model soft-object deformation [28]. Continuum mechanics provides a

physics based-model for modeling soft object deformation. In continuum mechan

ics a material is known to have definite densities of mass, momentum, and energy

in the mathematical sense. The mechanics of such a material continuum is contin

uum mechanics [29]. Therefore, for such an object the continuum model estab

lishes a set of relationships between the shape of the body, constraints and internal

deformations within this solid and the external forces applied to it. The behavior

of the tissue would be governed by equations arising from continuum mechanics.

Such modeling approach yields partial differential equations involving the defor

mation filed, applied forces to the object, and a set of boundary conditions. These

equations are defined by physical principals such as the laws of conservation of

mass, the balance of momenta and the balance of energy, as well as the constitu

tive equation that mathematically expresses the mechanical property of the body

15

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

material [30]. The continuum equations are obtained by computational methods

for solving the continuum mechanics based equations of the body.

Some of the most common computational methods for finding solution to con

tinuum based models are:

• Finite Difference Method: In this method continuous derivatives in PDEs

are substituted by finite difference equations in related domain. As a result

of this process, the PDEs will reduce to a set of algebraic equations [31]. The

applications of this method are limited because the discretization of objects

with irregular geometry becomes extremely dense. [14]

• Boundry Element Method(BEM}: This approach transforms the integral of

the motion equations for a volume in surface integrals using Green-Gauss

theorem. Thus this method is considerably faster than other modeling meth

ods since it will only deal with 2D equations. One drawback of this method

is that it requires homogeneity of the object [12] which is not always the

case in biological tissue material. Furthermore, it does not allow volumetric

changes to the object which means it can not compute the displacement of

any interior point. So it will be incapable of simulating medical operations

such as cutting or suturing.

• Finite Element Method(FEM}: This method can be used to discretize the

model in the spatial domain in the absence of an analytical solution to such

problems in most cases. This is achieved by partitioning the object into small

elementary shapes and then derive the equations of motion for each element

as a function of the mesh node displacements [32].

FEM is applicable to solve PDEs in irregular grids. In this method the object

16

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

is divided into some elemental shapes e.g. triangles in 2D space or tetrahe

drons in a 3D space, then the formulation for each element is done based

upon the Principle of Minimum Potential Energy. After this step for each el

ement the relation between stress, strain and nodal displacements has been

determined. The next step in FEM is assemblage, in which the equations re

lating the external and internal forces and nodal displacements are derived

for the whole object. Thus the continues problem in 3D spatial domain con

verts to a set of discrete set of unknown position equations [12], which can be

solved more easily by numerical methods. However, the need to manipulate

large matrices and solve large numbers of differential equations imposes per

formance difficulties to apply FEM to real time interactive haptic feedback

applications. [33]. In [34] and [35] interpolation of forces is proposed for

calculation of high rate haptic fedback from a low rate model. The other ap

proach to speed up run-time simulation is to isolate some procedures of the

real-time computation, precompute them and later combine precomputed

results with states of a simplified run-time model [33].

2.2 Solvers for Linear Systems of Equations

For performing the matrix by vector operation on a CPU, the memory bandwidth

limit would be the bottleneck, which lowers the performance of CPU down to 10

33% of their peak performance while doing matrix by vector operation [36]. The

situation is even worse when the matrix is sparse [36].

In general, there has been a prevailing tendency in the research community

towards using algorithmic software-based solutions for addressing the problem

17

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

of real-time object deformation simulation. Notable exceptions to this trend are

a number of papers proposing parallel computing using multiple-CPU computer

clusters [37] or Graphics Processing Units (GPU) [38].

CPU and GPU architectures are bounded by their maximum computational

and memory bandwidth. Their efficiency mainly depends on the implemented

operations. In the case of sparse matrix by vector operations, both computational

and memory bandwidth efficiency are low in GPUs and CPUs [39].(computational

band width refers to the measure of amount of operations a processor can do in

the unit of time).

In the last few years, FPGAs have significantly advanced both in terms of speed

and resources, i.e. the number of arithmetic units, programmable logic cells and

embedded memories. Such solution offers a real advantage over networked paral

lel computers by providing enormous computation power in a compact and rela

tively inexpensive package. Compared with general-purpose GPUs, FPGA-based

custom computing architectures can provide greater parallelism by tailoring the

hardware computing unit to the problem at hand.

In [40], the authors have presented fast algorithms for the solution of large lin

ear equation systems as they typically arise in finite element discretisations. They

used both GPU and FPGA devices for implementing solvers for these systems, us

ing Emulated and mixed precision solvers. The emulation utilizes two single float

numbers to achieve higher precision by using lower precision processing elements,

while the mixed precision iterative refinement computes residuals and updates the

solution vector in double precision but solves the residual systems in single preci

sion using CG or multigrid solver.

18

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

They show that implementation of the emulation technique on GPU is signifi

cantly slower for the PDE problem than the mixed precision iterative refinement

on FPGA.

Elkurdi et al. [41] presented an architecture and implementation of an FPGA

based sparse matrix by vector multiplier (SMVM) for use in the iterative solution

of large, sparse systems of equations arising from FEM applications, their archi

tecture benefits from a hardware-oriented matrix striping algorithm utilizing the

matrix structure. The implemented SMVM-pipeline prototype contains 8 Process

ing elements(PEs) and is clocked at 110 MHz obtaining a peak performance of 1.76

GFLOPS. For 8 GB/s of memory bandwidth typical of recent FPGA systems, this

architecture can achieve 1.5 GFLOPS sustained performance. Mafi [42] proposed

a highly parallelized hardware implementation of CG algorithm. In that design

they utilized a novel fixed point method for representation of floating point num

bers with static and dynamic scaling to mitigate quantization errors. This design

works on a single FPGA and achieves 18 GOPs for implementation on a Stratix II

EP2S60.

It is worth mentioning that hardware-based solutions for sparse matrix by vec

tor multiplication and for solving linear systems of equations have been discussed

in a few previous papers, e.g. see [43,44]. These approaches, which use floating

point operations, are rather abstract and cannot be scaled to solve practical prob

lems using existing FPGA devices. Floating-point implementations have a high

hardware cost, severely limiting the parallelism and thus the performance of the

hardware accelerator. In contrast, the proposed hardware architecture reaches a

19

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

good tradeoff among error, calculation time and hardware cost by using a novel,

modified type of fixed point operations and utilizing fixed-point computing units.

A key novelty of the proposed solution is in its ability to continuously supply data

operands to a large number of computing units within a scalable architecture. The

hardware solver is largely independent of the FE mesh configuration and can be

scaled up based on available FPGA resources to solve problems of larger size.

Due to the properties of computation intensiveness and computation locality,

it is very attractive to implement FEM on multi processors. For this objective two

general approaches can be considered. One is exploiting domain decomposition

methods to subdivide the physical domain into smaller regions or subdividing the

large linear systems into smaller subsystems whose solution can be used to pro

duce a pre-conditioner for the system of equations that results from discretizing

the PDE on the entire domain. [45]. The second is to apply multi processing meth

ods for solving equations from the single level equations, that is performing the

computations involved in single level equations on multiple processors.

Generally all domain decomposition methods, require iteration on solution to sys

tem of linear equations on each sub-domain in order to find the result for interface

nodes, located between two sub-partitions. Aside from convergence issues, this

makes them slower comparing to the second method which only requires one time

of solving a set of linear equations.

Another significant disadvantage of the domain decomposition methods is that

the mesh levels must be generated offline. This prohibits, for example, local mesh

refinement when tissue is cut. [46]

20

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

Ulrike et al. [47] performed the parallel implementation of CG algorithm on

Cedar(4 multiple processor clusters which are connected through an inter connec

tion network). They achieved a speed of 38 milliseconds for 1 CG iteration for

n=255, where n is the dimension of matrix. The performance is worse for a multi

processor architecture with 16 processors working in parallel which diminishing

to 5% of the peak performance of whole system. [36]

A floating point implementation of sparse matrix by vector multiplication on

multi FPGAs has also been proposed by delorimier et al. [36], in this design they

project 1.5 double precision Gflops/FPGA for a single VirtexII-6000-4 and 12 dou

ble precision Gflops for 16 Virtex IIs (750Mflops/FPGA).

In this thesis, a parallel computing platform is proposed that employs multiple

Field Programable Gate Array (FPGA) devices to greatly speed up the calculations

in the FE-based deformation analysis. In the proposed method a customized fixed

point operation proposed by Mafi et al. in [48].

The implementation on 4 Stratix III Altera devices achieves a peak performance

of 302 GOPs(giga operations per second) and a memory bandwidth of 7.257 TB/s

while doing the matrix by vector multiplication.

21

Chapter 3

Finite Element Modeling

As discussed in Chapter 2, for modeling the soft-object deformations, we use Fi

nite Element Method to obtain physical modeling of the object based on continuum

mechanics differential equations. In this chapter the formulation of the Finite El

ement Method will be presented for both static and dynamic simulations. In our

haptic simulator, the user interacts with a virtual object using a force feed-back

haptic interface. The simulation uses a model of interaction to calculate the ob

ject motion/ deformation as well as the interaction force. In an impedance-type

simulation, the haptic device imposes its displacement on the virtual object at the

contact point and in response the deformation of the entire body and interaction

force are computed by the model.

In finite element method we need to take some steps for discretizing the PDEs

governing the object behavior to some linear equations coming from assemblage

of the equations for elemental shapes constituting the object. The steps (quoted

from [49]) are as follows:

22

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

1. liThe continuum is separated by imaginary lines or surfaces into a number of

'finite elements'.

2. The elements are assumed to be interconnected at a discrete number of nodal

points situated on their boundaries. The displacements of these nodal points

will be the basic unknown parameters of the problem.

3. A set of functions is chosen to uniquely define the state of displacement

within each 'finite element' in terms of its nodal displacements.

4. The displacement functions now uniquely define the state of strain within

an element in terms of the nodal displacements. These strains together with

nodal initial strains and the constitutive properties of the material, will define

the state of stress throughout the element and on the boundaries.

5. A system of forces concentrated at the nodes and equilibrating the bound

ary stresses and any distributed loads is determined, resulting in a stiffness

relationship of the form of equation 3.1.

Kx = f (3.1)

This approach is also known as Displacement formulation [50,51].

One of the most important and challenging steps in finite element analysis is the

derivation of the finite element characteristics [52]. In stress and structural anal

ysis, the finite element characteristics can be derived by applying the principle of

minimum potential energy.

This approach will result in the stiffness (or displacement) method, wherein the

23

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

primary unknowns are the nodal displacements.

The material used in this section are mostly borrowed from [28,32,52] and the

reader is referred to them for more details.

3.1 Basic Elasticity Concepts

Generally the term stress in elasticity theory refers to the force per unit area. The

term strain refers to elongation per unit length [52]. An elastic object will return to

its natural shape (the formation it had before applying the force on it) after releas

ing the force being exerted on it, if the applied stress would have been less than its

elastic limit. The elastic objects are divided into two types, linear elastic and non

linear elastic materials. Linear elastic materials have a stress-strain characteristic

as shown in Fig. 3.1 and some non-linear objects have a stress-strain characteristic

as shown in Fig. 3.2. In the following sections first modeling for static linear elastic

models would be presented and then it will be expanded to dynamic modeling of

linear objects.

Kinematic Relations

The modeled tissue will be defined in 3D spatial domain as n. n consists of the

particles with positions x = [xyz] while the tissue is not deformed. n is made by

two partitions, r l and r 2 , where the nodes which are in r l are constraint nodes,

that is before and after deformation their location does not change but nodes in r 2

will be displaced when the object is under stress. These displacements are referred

as u = [uvw]. Therefore, the new position of the particle x after deformation would

24

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

(J)
(J)
Q)
~......

C/)

/
Strain

Figure 3.1: Strain-stress characteristics of a linear elastic material

be x + u.

Fig. 3.3 illustrates a 2D object and its partitions in xy plane. In this figure s

corresponds to surface traction forces, b represents body force and fp shows the

external forces applied to the object. For small deformations stress and strain are

related to each other as:

f)'U f)u
E;cx = - Eyy = -;::)

f)x uy

f)w
Ezz = f)z

f)n f)u

Exy = f).1) + f):c

f)w f)u
Eyz = ~ + -;::)

uy uZ

un ow
E --+-Z.1' - ~1 ::l

uZ uT

(3.2)

Therefore, the relationship between the strain vector E = kc.1; Eyy E.;z f xy Eyz Ezxrr

25

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

(j)
(j)
(1)
l

-+-'
Cf)

Strain

Figure 3.2: Strain-stress characteristics of a non-linear elastic material

and the displacement vector uT = [It U tv] can be expressed as in Equation 3.3,

where the L is known as the strain-displacement matrix.

L matrix is a linear operator and is derived as in Equation 3.4.

E: = Lu (3.3)

0 0 0a.c

0 0 0oy

0 0 a
L= oZ (3.4)

a a 0ay ax

0 a a
az ay

a 0 a
oz aJ'

Hook's law states that the normal stress ~ is proportional to normal strain f in a

26

M.A.5c. Thesis - B.Mahdavikhah

y~

n

"
b

McMaster - Electrical Engineering

s

/1111111/

x

Figure 3.3: A 2D object with external possible forces applied to it. In this figure,
s represents the surface traction b is the body force fp represents the point loads
fland f2 refer to constraint and non-constraint nodes of domainO.

uniaxial state of stress, or :

(Y = EE (3.5)

where E is known as Young's modulus, the elastic modulus or the modulus of

elasticity. Hook's law in this form is of rather limited use. A much more general

version of hook's law is given by Equation 3.6 [49,52].

(3.6)

where D is referred to as the material property matrix, (Y the stress vector, E the

strain vector, EO the self-strain vector, and (Yo the initial or residual stress vector. In

3D the E is defined as before and EO, (Y, (Yo are defined as in Equation 3.7 and the

D for a linear elastic isotropic material is given by [49] as in Equation 3.8. In this

27

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

equation the p represents poisson's ratio. In addition the material property matrix

D is symmetric [52].

(3.7)

1 -It fl It 0 0 0

It 1 - It Ii 0 0 0

D= E It It 1 - It 0 0 0

(1 + I-t)(1 - 2/t)
(3.8)

0 0 0 1-2{l 0 02

0 0 0 0 l-2/1 02

0 0 0 0 0 1-2/1
2

The initial vector 0"0 represents pre-stresses that are known to exist in a material

before it is loaded. The FEM or any other method can not predict these parameters

and they must be determined by analyst. The self-strain vector EO may be a result

of crystal growth, shrinkage or most common temperature changes.

3.2 Principle of Minimum Potential Energy

The total potential energy (II) is defined to be the sum of internal potential energy,

the strain energy (Ui), and the external potential energy from external forces (Ue)

[52], or:

(3.9)

28

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

For conservative systems the loss in the external potential energy is equal with the

work done by external forces.

(3.10)

The principle of minimum total potential energy states that IT must be mini

mum for stable equilibrium, therefore the first variation of the total potential en

ergy (as a result of variation in displacement) should be zero. That is,

(3.11)

Moreover, using the matrix notation form for strain and stress vector for the strain

energy we will have:

(3.12)

As shown in Fig.3.3, generally three types of external forces are applied to the body,

s which represents the surface traction e.g. the hydrostatic pressure (force per unit

area) on the water filled side of a dam, the body force b (per unit volume) and up

to N point loads fp . The first variation of the work done by these three external

forces is

(3.13)

where the body force, b, the surface traction vector, s, the point load fp and the

(6uf are given by Equation 3.14.

29

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

(3.14)
Tfp = [jpx!py!pz]

5uT = [c5u 5v c5W]T

Equations 3.6, 3.11, 3.12, 3.13 will result in

1(6E)T"dV ~1(6ujTbdV + J(6tL)TsdS + t(6u)'"fp (3.15)
. II v S p=l

r(5EfDEdV = r(c5EfDEOclV - r(c5Ef O"odV + l (5ufbd\!
Jv JII Jv JII

,y (3.16)

+1(51lfsdS + I)5uffp

S p=l

Now by discretizing the region into some elemental shapes as in Fig. 3.2, the inte

grations for the object can be interpreted

r i\l r
JII (5EfDO"dV = ~ Jv' (c5EfDO"dV

r ,\[r
Is (5uf sdS = LIs (5vfsclS+

S e=l se

(3.17)

where se and v edenote the surface and volume for an element and M is the

total number of elements. Now we can write Equation 3.15 for each of the finite

elements as in

30

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

m

I
0.5,

'-.
0.5

o

~
~~0.5

/'0
.,>.-/'./ -0.5

-0.5

Figure 3.4: Discretizing a sphere into tetrahedron elemental shapes

(3.18)

Here fp are the external point loads applied to each node of the element.

For a 3D elemental shape e.g the tetrahedron in Fig. 3.4, we can relate the x, y and

z components of the displacement vector u of an element to the x, y and z compo

nents of the displacement vector for each of its nodes using the shape functions N

as follows

31

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

(3.19)

where 'Ui, 'Uj, 'Uk! UIT! are the x components of nodal displacements and in a similar

way elements with v and w in their names are associated with y and z components.

Moreover N i , N j , NI.; and Nmare the four shape functions. Now if we define u

and ae as in Equation 3.20, we can obtain 3.21, with shape function N defined in

Equation 3.22.

u = [uv wF'
(3.20)

(3.21)

o o i\T.
~\J o o o o o o

N= () 1\ III 0 (3.22)

32

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

combining Equations 3.3 and 3.21, we can define matrix B = LN as the strnin

nodal displacement matrix and therefore:

(3.23)

L is a linear operator and if the shape function N only contains linear functions (in

x y and z) then the B matrix contains constant elements. Thus

(3.24)

and

(3.25)

More over for (i5u)T we will have:

(3.26)

By substituting Equations 3.25 and 3.26 in 3.18 we can get:

The term i5ae represents the first variation of the nodal displacements which must

satisfy the displacement boundary conditions, therefore in any event c5ae is non

zero [52]. So it can be concluded that in general

33

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

Therefore, for a linear elastic material for which Equation 3.6 applies, considering

Equation 3.28, we can write:

(3.29)

Finally, this equation can be written in the form

(3.30)

where

(3.31)

and rna trix K is

(3.32)

V is the volume of the element which for the tetrahedron depicted in Fig. 3.2 is

given by Equation 3.33.

1 ~r:i .l)i Zi

1 1 Xj .l)j Zj
V = "6det

1 XI.: YI.: ::1.:

1 X m Ym Zm

The five elemental force vectors are given by

(3.33)

34

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

(3.34)

Ke is called the elemental stiffness matrix. Now the only remaining step is the as

semblage of the global equations based on the elemental equations. For the global

stiffness and force matrix we have:

K = I: global(K e
)

f = I: global(fe
)

(3.35)

where globalO is a mapping function from element node numbers to global node

numbers. For the tetrahedral elements like the one shown in Fig. 3.2, the global

stiffness matrix can be obtained through following two steps as in Equations 3.36

and 3.37.

K~. K~. Kfk Kfm1.1 I.J

K~. K~. K~k Kj.m
Ke = J.l J .J J. (3.36)

Kk.i Kk· Kk.k Kk.m.J

K~.i K~.j K~.k K~l.m

Using the elemental stiffnes matrices, we can assemble the global stiffness matrix

35

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

as 3.37.

Kl.l K1.2 K1.3 K1.N

K 2.1 K 2,2 K 2 .a K 2.

K= K a.1 K a.2 K a.a K a.N

(3.37)

1\J

K u = L K~,.J I = 1 : iV. J = 1 : i\
e=l

where M is the maximum number of elements and N is the maximum number of

nodes in these equations. J(, J will be assumed a null matrix if element e does

not consist nodes I and J. It should be noted that I and Jindices here refer to node

numbers in global node numbering.

3.3 Applying Constraints

Without the substitution of a minimum number of constraint nodes to prevent

rigid body movements of the structure, it is impossible to solve this system. The

reason is that the displacements cannot be uniquely determined by the forces in

such a situation. This obvious physical fact will interpret as singularity of K ma

trix in mathematics aspect [49]. Therefore, some of the nodes need to be fixed to

predetermined positions. To this end, the global stiffness matrix has to change.

The change is applied by making the corresponding rows and columns to that

node zeros and making the diagonal elements one. Then the force vector should

36

M.ASc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

be modified to reflect the change in stiffness matrix, only the elements of force vec

tor corresponding to the fixed nodes will not change. For example assume that we

want to make il[th node fixed, that is the displacement vector for US = [tlNvNWN]

will be set to zero, in the global stiffness matrix all the elements in the rows and

columns with indexes 3N - 2, 3N - I, 3N should be set to zero except the diago

nal elements which will be set to ones, Equation 3.38 illustrates the changes in K

matrix and f vector after applying changes to row and column 3N.

h'1.l k1.3N - 1 0 il - W~/,;I.3N

K= u=f= (3.38)
h'3N-I.l k3,V -1.3.\'-1 0 h.\'-l - W~;J..:3N-U,\'

0 0 1 0
W i\·

3.4 Dynamic FE Modeling

In static analysis of FE, we came up with the equation Ku = f, hence we neglected

the terms in force resulting from the acceleration and velocity while the general

formula for obtaining the force is:

Mil + Cli + Ku = R (3.39)

Where M, C and K are mass, damping and stiffness matrices respectively and R is

the external load vector defined as

R(t) = F](t) + Fo(t) + Fdt)

37

(3.40)

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

Where F I (t) corresponds to inertia forces, F I (t) = MiL, F o(t) represents the damp

ing forces F o(t) = CiL and F E(t) are the elastic forces, F dt) = K1L. [32]

the decision that which of the dynamic or static models should be used is an en

gineering judgement because dynamic analysis would increase the computational

effort needed to solve the equations. Equation 3.39 is a second order differential

equation with constant coefficients [53,54].

In the following we will describe the Newmark direct integration method which we

have applied in our dynamic simulation.

The Newmark Method

In the Newmark integration scheme the following assumptions are used:

llt+6t = lIt + [(1 - c5)ii t + c5iit+21t].6..t

U'+6t = u t + ut .6..t + [(~ _ Cl)ii t + ci+6t iit].6..e
2

(3.41)

Where ex and c5 are parameters that can be determined to obtain stability and accu

racy. In general these parameters should satisfy the conditions [32]:

c5 ~ 0.5
(3.42)

Cl ~ 0.25(0.5 + 6)2

Newmark originally proposed the trapezoidal rule for unconditionally stable scheme

with c5 = 0.5 and Cl = 0.25.

Also .6..t in the simulation should not be bigger than a certain value .6..tcr in order

to maintain stability. This value is determined by the characteristics of the worst

38

M.A.5c. Thesis - B.Mahdavikhah

element in the mesh.

McMaster - Electrical Engineering

For solving the dynamic equation after finding the K, M and C matrices and de

termining parameter values we form K = K + aoM + ale then at each step of the

simulation we have to do the following tasks [32]:

1. calculate effective loads at time t + f::.t

(3.43)

2. solve displacements at time t + f::.t:

Ku = III 6t

3. calculate accelerations and velocities at time t + f::.t

Where ao to eL7 are defined as:

(3.44)

39

1
a2 =--

cdj"t

1
a3 = --1

20' (3.45)

Chapter 4

Conjugate Gradient Algorithm

As shown in Chapter 3, the application of the FEM to a linear elastic deformation

model will result in a large but sparse system of equations in the form of:

Ku=b (4.1)

In this chapter we will discuss different solvers for such equations and will review

our fixed point implementation of CG algorithm which is based on the method

proposed by Mafi et al. in [48].

4.1 Algorithms for Solving Kx = b

For solving linear systems of equations, in principle, there are two choices: direct

methods and iterative methods, each having some advantages over the other de

pending on the matrix type and application of interest, several direct and iterative

40

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

methods have been developed for solving large and sparse systems of equations

[55,56]. One of the main advantages of iterative methods in the case of sparse

systems is their lower memory consumption since only the non-zero elements of

the matrix need to be stored. This reduces the usage of memory resources from an

0(1\ 2) to O(i\), where 1\ is the size of the matrix. However this is not necessarily

the case in direct methods. For example, direct methods based on matrix factor

ization can lead to the decomposition of a sparse matrix into new matrices which

are not as sparse as the original matrix. Furthermore, iterative methods lend them

selves for hardware-based parallelization better than direct methods [55].

It should also be noted that in haptics applications, even when a linear elastic

model is used, matrix K can change depending on the contact node [1]. More

over, nonlinear FE modeling of deformation can lead to a matrix K which would

be dependent on the deformation X. Therefore, this precludes the possibility of

performing off-line calculations to obtain the inverse matrix or its factorization.

Among the the iterative techniques, the Conjugate Gradient (CG) method is prob

ably the most suitable method for our application. The system of equations gen

erated by the FEM is a sparse, symmetric and positive definite as required by the

original CG algorithm. From a numerical perspective, the CG method is usually

more robust and less computationally intensive than some other more general it

erative methods such as BiCGStab or GMRES [55,57].

41

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

4.2 Fixed-Point Implementation of CG on Multiple FP

GAs

In [1], we proposed an adaptive fixed-point implementation of the Conjugate Gra

dient (CG). Compared to floating-point operations, fixed-point calculations use

significantly less hardware resources allowing for much greater parallelization of

the computations. Static and dynamic scalings were proposed to reduce inaccura

cies due to quantization errors and to avoid data overflows.

In this thesis the same method has been applied for the CG implementation

with increased resolution for vectors and scalars which results in more accuracy of

results. A pseudo-code of the CG algorithm for solving Kx = b for x is given

below. Here #717 is the maximum number of iterations and c is the error tol

erance. Theoretically, getting the results from the CG algorithm requires rn =

lenythofbuecto7', but in our simulation we could obtain acceptable results in less

CG iterations as will be discussed in this section.

1. x = init;

2. b = b/Static_facto1';

3. l' = b - K * x;

4. d = 1';

5. cntT· = 1;

6. 7"7' = 1" * 1';

7. 1"1'0 = ,.r;

%initial guess for solution of Kx=b

%static scaling for b vector

%residue

%initial "search direction"

42

M.A.sc. Thesis - B.Mahdavikhah

8. dyn_factor = 0;

9. dyn-flag = 0;

10. while (1'7' > E
2 * nO & cntr < #m)

McMaster - Electrical Engineering

11. if (rr < dynamic scaling threshold) dyn_flag=l, dyn-lactor=dyn-lactor+1; % apply

ing dynamic scaling

12. 0' = static-lactor * rr / (d' * K * d);

13. Q = (\ «dyn-.ilag; %dynamic scaling effect on 0'

14. x = x + (0' * d) » dyn_factor;

plying dynamic scaling

15. 1'11 = r - 0'/ static_factor * K * d;

16. 7TIl = 1'11' * 1'11;

17. [3 = (l'l'7l/rr) » (2 * dyn-flag);

%update approximate solution, ap-

%update the residue

18. d = rn + .3 * d;

19. l' = 1'11;

20. IT = Tl'1I;

21. if (dyrdlag==l) dyn-llag=O;

22. cnt7· = cntr + 1;

23. end

%update search direction

43

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

For fixed point Implementation of CG algorithm we utilize the same approach as

proposed by Mafi et.al in [1]. The numerical stability and convergence of this

method has been proved in the same reference. In this method two different types

of scaling have been utilized to improve its numerical accuracy, reliability and con

vergence rate. Namely static scaling and the dynal1'lic scaling. In our implementation

the elements of K matrix as well as b vector are defined as 18 bits. x vector elements

have 36 bits. These bit widthes have been chosen considering limitations imposed

by FPGA resources while trying to maximize number of nodes handled by each

FPGA and accuracy of results. More details on choosing bit widthes will be pre

sented later in this chapter.

One can note that without proper scaling, the result of the multiplication Kx with

the given bitwidths for the K and x can easily overflow the 18-bit vector b. To

tackle this problem, the proposed static scaling scheme, vectors b, rand dare

scaled down by static scaling factor 2m . This is performed by scaling down b vector

which is performed in Step 2 of the CG algorithm. To compensate for this scaling

down when updating x vector in Step 12, the value used for a is up scaled with

the static scaling factor. The proper choice of scaling factor m generally depends

on the norm of the actual matrix K. Fig. 4.1 The static scaling method saves us a

huge amount of memory due to less memory bits needed compared to non-scaled

approach for storing the values of the vectors. However it may result in loss of

some bits of data in LSB position for b vector.

Moreover by looking at the pseudo code of the CG, one can observe that as the

algorithm nears the actual solution, the vectors rand d will become smaller down

44

M.A.5c. Thesis - B.Mahdavikhah

x scale

McMaster - Electrical Engineering

Kx scale

¢oo vectors OO¢ b, r, d

memory needed to store the vector components

~ ~
36 bit

36 bit - static-scale

36bit

Before applying static scaling
.. .
Before applying static scaling

.. .
After applying static scaling

.. .

18 bit + static- scale

!,
18 bit

18 bit

Figure 4.1: Static Scaling. original figure with different bitwidths by Ramin Mafi

to the values comparable with quantization errors. Hence as the size of vector be

comes smaller, quantization errors can significantly alter its direction. In the CG

algorithm, the updated d vector in each iteration is supposed to be a new basis

vector for the span of K matrix and by updating x vector, we add the projection of

the actual solution on new d vector direction to vector x. In this algorithm, r vector

is used to find the length of this projected vector.

Therefore, such errors in rand d vector results in x vector updates leading the x to

wrong directions. This will make quantization errors significant. To mitigate this

problem, a dynamic scaling has been employed which scales up rand d when 117'1\

falls down a certain value. This up-scaling of rand d vectors will decrease relative

error in these vectors caused by quantization errors. Finally, for correct update in

x the added vector to x in Step 14 of the pseudo code would be scaled down by the

same factor. For further details on the fixed point CG implementation the reader is

45

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

referred to [42].

The bitwidth selections for the matrix and various vectors in the implementation

of CG are illustrated in Table. 4.1. As will be addressed in Section 6.1, the data

bitwidths have been chosen to be multiples of 9. On the other hand, increase in

data bitwidths will reduce quantization errors and increase accuracy but will in

crease resource usage of the FPGAs,resulting in reduced size of K matrix. For a

compromise between the accuracy of the fixed-point implementation results and

the size of FE mesh we chose the bitwidth for vectors to be 18. Obviously Kd would

need more bits. Due to our experiments to avoid over flows in Kd, it requires 36

bits. Finally the reason to choose 36 bitwidth for x vector is to get more accurate

results from our fixed-point divider unit which calculates 0' and (3 values. For his

objective we up-scale the dividend, resulting in up-scaled 0' and (] coefficients. For

compensation, we should down-scale the resulted Q and (3, But for getting more

accuracy in results, while updating x vector in the algorithm we use the same up

scaled version of C\' in step 14 of the pseudo code. Hence, to avoid overflow in x

vector its bitwidth is chosen to be 36 instead of 18. This will increase accuracy in

x vector by using 9 more M9k memory blocks in our design which is a negligible

increase in resource usage of the FPGA.

The fixed-point CG algorithm for solving system of 1707 equations has been im

plemented using the bitwidth assignment in Table. 4.1 and Matlab's fixed point

toolbox. The error in the result vector is depicted in Table. 4.2 for different number

of iterations. Fig. 4.2 also depicts the change in norm of the error as a function

of the number of iterations. It is observed that after performing 30 CG iterations,

the relative error in x vector drops under 5%. Furthermore, in Chapter 7, monte

46

M.A.sc. Thesis - B.Mahdavikhah

bitwidth
K 18
x 36
r 18
b 18
d 18
Kd 36
rr 64
dkd 64
0: 18
(3 18

McMaster - Electrical Engineering

Table 4.1: Bitwidths assigned for scalars, vectors and K matrix in the fixed-point
implementation of the CG

carlo type simulations have been carried out for test of numerical stability of this

platform. In those tests the dynamic scaling is set to a smaller value which results

in faster convergence before 30 iterations and slower rate afterwards.

It is worth mentioning that for this simulation the initial guess for x vector has

been set to zero, while in haptic simulation in each simulation step we use the

result of the previous simulation step as the initial guess. This starting point for

x vector is often more close to the actual result, and will result in a more precise

answer for x vector in a fixed number of CG iterations. The reason for the last

obtained x vector being a good initial guess for the X vector of the next step is

that, because of the high update rate (100-1000Hz) the deformation changes in the

object caused by the human operator is usually small during a sample time. Thus

the new deformation vector would be close to the deformation vector in the last

simulation step.

47

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

0.14 r----,---,----r----,---,-------,r----,--,-----,

100908040 50 60 70
of iterations

3020
0.02 '--_----'--__-L....__L.-_--L__-L....__L.-_--L__-L...._----'

10

0.04

0.06

o
><

'"..... 0.08
e.....
<lJ

0.1

0.12

Figure 4.2: Changes in the norm of error in fixed point implementation of the CG
as a function of the number of iterations

Preconditioning techniques can be employed to improve the condition number

of the matrix K and ensure that a solution is obtained within the fixed number of

iterations imposed by the real-time response constraint. In [48], the Jacobi precon

ditioning [56] has been applied to the fixed-point CG algorithm. A pseudo-code for

the preconditioned conjugate gradient (PCG) is given below. Comparing the PCG

pseudo code with the CG pseudo code presented in the beginning of this section, it

can been observed that our implementation of the CG algorithm can be enhanced

for working PCG algorithm with no structural changes needed in the design. For

this purpose the main change needed in the hardware-based CG solver is to add

48

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

#iterations 10 20 30 40 50 60 70 80 90 100

Ilxoll 1.895e+5
Ilerrll 23494 12561 10097 8492 6186 5792 5646 5540 5475 5429

Ilerrll/llxoll 1.24e-1 6.62e-2 5.32e-2 4.47e-2 3.26e-2 3.05e-2 2.97e-2 2.92e-2 2.88e-2 2.86e-2

Table 4.2: Simulation results for fixed-point CG algorithm for a K matrix of size
1707*1707.

Step 11 of the PCG pseudo code to the CG, which requires implementation of a

block for updating z vector.

1. x = init;

2. I' = b - Ax;

3. z = p-1r;

4. d = z;

%initial guess for solution of Ax=b

%residue

%ini tial "search direction"

5. cntT = 1;

7. while (cntr < #m)

9. x = x + Ctd;

10. rn = I' - O'Ad;

11. zn = p-1rn;

12. ZTn = znT rn;

%update approximate solution

%update the residue

49

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

13. ,3 = zTn/zT;

14. d = zn + 3d;

15. r = rn;

16. z = zn;

17. ZT = Z1'n;

18. cntr = cnt1' + 1;

19. end

%update search direction

A detailed discussion on numerical stability and convergence of Preconditioned

Conjugate Gradient algorithm(PCG) is offered in [48]. Finally the DSPF CG algo

rithm introduced in this chapter has been chosen as a solver for the equations arose

by applying FEM in our simulation. This solver, as observed by simulation test

results delivers accurate results. Moreover as observed in CG pseudo-code, the

computational bottle neck in this algorithm is the matrix by vector multiplication

which is very desirable for performing parallel computing to speed up the design.

This makes this solver also suitable for being implemented on a parallel hardware

architecture.

50

Chapter 5

Multi-FPGA Design Scheme

In modern FPGA systems several interconnected FPGA chips can reside on a sin

gle board providing an opportunity to increase the level of parallelism beyond

what is achievable on a single-FPGA design. The need for the simulation of high

resolution FE meshes which can be inhibited the limitations of hardware resources

on a single FPGA and justifies a multi- FPGA design approach. In FE analysis, the

size of matrix increases linearly by the number of nodes in the mesh representing

the deformable object. Increasing the number of nodes in mesh results in higher

mesh resolution and an improved approximation of deformation response. On a

single-FPGA design, the architecture resource usage grows linearly by the number

of nodes in the FE mesh. To achieve an acceptable level of accuracy in practical

applications, FE meshes of several thousand nodes may be needed. Unfortunately

even the most advanced FPGA devices today lack the sufficient resources to sim

ulate models of such sizes. A multi-FPGA approach in which several devices con

currently solve the system of equations can remedy this problem One of our main

51

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

goals in this thesis is to develop a multi-FPGA scheme capable of handling an ar

bitrary number of nodes in a mesh through increasing the in number of FPGAs

working in parallel. In particular, a multi-FPGA CG solver is proposed for solving

the system of equation Kx = b in a FE analysis. The multiple-FPGA hardware de

sign presented in this thesis has been achieved after undergoing three fundamental

design evolutions, where the basis for the first evolution has been the single-FPGA

design proposed by Mafi et al. in [1]. Before introducing the new multi-FPGA

architecture design, a brief overview on the single FPGA design on Altera EP2S60

by [1] will be given in this chapter. After this overview each of these three design

evolutions will be discussed in detail.

5.1 An Overview of the Proposed Single-FPGA De

sign in [1]

This architecture implements the CG algorithm for solving the system of equa

tions generated by the FE model of a deformable object. As already discussed the

bottleneck in computations involved in the CG algorithm is the matrix by vec

tor multiplication where the multiplicand vector is the d vector in the CG pseudo

code given in Chapter 4. To meet the real-time computation requirement, the hard

ware architecture must employ as many number of multipliers as possible in par

allel. However memory bandwidth limitation restricts the amount of data that can

be fed to the multipliers at each clock cycle which prevents exploiting maximum

number of multipliers available on the chip. A simple approach to increase the

memory bandwidth is to replicate memory blocks. However this is obviously not

52

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

a viable solution given the limited amount of on-chip memory and the restricted

bandwidth of off-chip memory access. To mitigate this issue, only the non-zero el

ements of the K matrix are saving a significant amount of memory due to sparsity

of K matrix.

In the proposed architecture, parallelism in matrix by vector multiplication is

achieved at several levels explained in the following.

First Level Parallelization (PL1): An interesting property of the equivalent stiff

ness matrix generated by FEM is that each three(3) rows/ columns of 3i. 3i-1. 3i-2

(for i = 1,· ... 11), have the same indices of non-zero elements. This is due to the

fact that each one of these three rows/ columns are mapped to one node in the

FEM model mesh. A 3D FEM stiffness matrix have a special structure that allows

for three(3) values from three(3) rows belonging to the same node to be processed

in parallel.

Second Level Parallelization (PL2): For further increase in parallelization, while

multiplying each row of the matrix by the vector, the multiplication for several

elements of that row by their corresponding values from the vector is done at the

same time. This increase is determined by the memory bandwidth for reading

non-zero elements of that row of the matrix and the vector. Given the memory

resources of the FPGA device, the maximum number of columns per node that are

processed concurrently is restricted to six(6). Fig. 5.1 depicts the connection of the

multipliers and accumulation (MAC) units with the memory blocks containing the

multiplicand vector and a portion of the sparse matrix. the MAC units are based

on PLl and PL2.

Third Level Parallelization (PL3): As the last level, parallelism is improved by

53

M.ASc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

0"························· .

Matrix Address •.~ NZ Components of Matrix
2x8 bit

.~

M4K

, 12 bit
Values

MAC Unit
MAC Output ~

, ,.
3x32 bit

16 bit

t> Buffer Rec isters I·...... •
-t -t -t -t .-t 16 bit

Values

Vector Address: 2x9 bit
d Vector"",

M4K

SpMxV Sub-Block

Figure 5.1: The connection of MAC units to memory blocks. Figure from [42]

dividing the matrix K into multiple partitions in a row wise manner, each contain

ing several nodes as shown in Fig. 5.2. For each new partition 18 extra multipliers

are required as shown in Fig. 5.3. The multiplicand vector is replicated per each

partition as well.

Obviously a lager number of partitions leads to a higher degree of paralleliza

tion. In the proposed single-FPGA design on EP2S60 device, this number is limited

to five(5) due to the available on-chip memory and multiplier units.

54

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

, x

I
x I 1

x~

~~.:.;,,',....

l· ..~"""~~~'~'"..... '. '. '1l' .

I. '." -:',

'.'~

C--~~__~•._~
Sparse Matrix

x =J
1= I-j

'1=
LJ

=0
=0

Vector Result

Figure 5.2: Matrix partitioning for increased parallelism. Figure from [42]

5.2 Multiple FPGA Design

In [1], three parallelization levels named P L1 to P L3 were utilized to fully employ

the parallel processing capabilities of the FPGA. In this section a generalization of

the hardware architecture to an N-FPGA topology will be introduced increasing

parallelism to four levels.

Dividing the computations among multiple FPGAs results in one more paralleliza

tion level compared to the single-FPGA design. We refer to this as the first level of

parallelization, P L1. The second level of parallelization in the multi-FPGA design,

is equivalent to the third level of parallelization in single-FPGA design by [1]. In

the multi-FPGA design PL2 divides the portion of matrix on each FPGA to L sub

partitions. Therefore, employing the first and second levels of parallelization using

multiple FPGAs yields a total number of V * L sub-partition, performing matrix

by vector multiplication in parallel. Fig. 5.4 depicts how the matrix partitioning

is done for P L1 and Fig. 5.5 illustrates the final partitions of the K, considering

55

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

Matrix Address
Finite State It'

Machine

Node
Counter

SpMxV SpMxV SpMxV
address Sub-Block Sub-Block Sub-Block f--

MAC ~ address

Output

It'

~ Result
Index Vector - Vector

(Corresponding Address. M4Kto the NZ
components)

VMRAM

..........-
Figure 5.3: Third level of parallelization: top-view block diagram of the hardware
based sparse matrix by vector multiplication. Figure from [42]

both P L1 for dividing the matrix between multiple FPGAs and constituting sub

partitions on each FPGA for P L2.

In developing P L1 two criteria must be considered. First, the FPGAs should

work as independently as possible with the least amount of communication among

them. In addition there should be a minimum of data overlap among the FPGAs

to optimize memory usage. This would ensure that the solution can be properly

scaled using the limited memory available on each FPGA. To this end, a partition

ing of the CG algorithm is proposed as shown in Table 5.1 in which superscripts

i 1 ::; i ::; N denotes the ith sub-partition of the corresponding matrices and vec

tors, respectively. Moreover, the arrows between pairs of FPGAs represent steps

involving communication, details of which will be discussed later. As can be seen

in Table 5.1, the computations involved at each step of the algorithm are divided

such that each FPGA only needs to store one out of "v parts of the matrix, i.e. K i

, 1 ::; i ::; j\. Among the vectors in the CG algorithm in Table 5.1, only d and the

56

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

FPGA #1 FPGA #2 FPGA #N

/'1' = ITn

cntl' = cntl' + l
end

_ ... ;=' distribute .3 scalal'

d N = rn N + .3d N

_ ... ;=' send d N • I'ecieue d N - I .. d 1

I,N = rn N

1'1' = I'l'n
Clltl' = cntl' + l
end

== distribute 3 scalar
d 2 = l'n 2 + .3d2

;=' send d 2 .I'ecieve d 3 .. d 1

1'2 = rn 2

1) x = init x = init x = init
2)I,l=b1 -K l x r 2 =b2 _K2 x rN=bN_KNx
3) d 1 = 1'1 d 2 = 1'2 d N = r N

4) send d l . I'ecieve d 2 .d N ;= send d 2 . I'ecieve d 3 .. d 1 ... ;= send d N. I'ecieve d N- 1 .. d 1

5) cntl' = 1 cntl' = 1 cntl' = 1
6) 1'1'[= 1,1\1 1'1'2 = 1,2'1'2 I'I'N = rN'r N

7) accumulate ITi scalar := accumulate I'l'i scalaI' . ;=' accumulate 1'1'; scalaI'

8) distl'ibut IT = L;:l rri scalar ;= distribute IT scalar ... ;= distribute TT scalar
9) while (cntl' < #itl') while (entl' < #itl') while (cntr < #itl')

10) l(d l =](I "d l(d2 = 1(2 " d l(dN = f(N " d

11) dkd j = elT " h"el 1 dkd2 = dT " f(d2 dkd j\, = rlT " Kd'"
12) accumulal.e elkel i scalar ;=' accuTnldate dkd; scalal';=' ... ;=' acc1l11Julate dkdi scalar

13) (\ = zr I (dkd) , where dkel = L ;:[dkdi
14) distl'ibute (\ scalar ;=' distribute (\ scolaI' ;= ... ;= distribute a. scalar
15) xl = xl + nd 1 x 2 = x 2 + a.d 2 x N = x N + nd N

16) rn l = 1,1 - a.Kld rn 2 = 1'2 - nK 2 d rn N = I,N - nKNd

17) I'I'n1 = rn 1 'I'n 1 1'1'112 = rn2 'rn2 I'l'n.v = l'nN'l'n N

18) accumulate lTn, scalaI' ;=' accumulate /'1'ni scalal':= == accllnHtlate I'l'ni scalar

19) distribute I'l'n = L;: I I'l'n, sCCTlar ;= distl'ibute I'l'n scalar = ;= distribute I'l'n scalar
20) (3 = 1'1'11/1'1'

21) distribute 3 scalar
22) d 1 = rn 1 + 3d1

23) send d 1 . I'ecieue d 2 .. d N

24) 1'1 = rn l

25) 1'1' = I'l'n
26) entl' = cn/.r + L

27) elld

Table 5.1: The pseudo-code of CG and partitioning of the algorithm for implemen
tation on j\ FPGAs. This method applies to all 3 Design evolutions.

initial guess for x have to be fully maintained on all FPGAs whereas all other local

vectors are splitted into almost *of their original size to minimize memory usage.

It should be noted that all the steps except those for communication among the

FPGAs are independent of each other and hence can be executed concurrently.

The final multi-FPGA design. presented in this thesis has been achieved after going

through three design evolutions. In the first design our objective was to extend the

design proposed by Mafi et al. [1] foe implementation on a Procstar II FPGA board

with two Stratix II EP2S60 Altera devices, doubling the total number of nodes in

our FE-based simulation.

After accomplishing this, we made the second design for a quad-FPGA board with

57

M.ASc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

FPGA#1

FPGA#2

FPGA#3

•
•
•
•

FPGA#N

~

'\~~
' .,

.. ' ~".. ". :~'" ','

, " , .,,' ~' .
, .
.. ".~

.~~~
.' ... '" " ...~ \ ",.. ~.... ," ~

. ~, '.. ~ ...

. '. '.~" '. " '".
, ,\.;:~~ . '\"~",,

•
:\;~.'~.",~.... , "l '.

, . :'\ '

'.: .
'-------~-~-~-~---"---

Sparse Matrix

Figure 5.4: Portions of K matrix stored on each FPGA for performing first level of
parallelization

four Altera Stratix III EP3SEllO devices. By employing these more powerful FP-

GAs we increased the number of nodes on each FPGA in this step, This required

some changes to the architecture design in order to still meet timing requirements

after increasing the number of nodes on each FPGA. However this design has lim

ited potential for scalability on multiple FPGAs due to its increasing memory usage

on each FPGA by an increase in the number of nodes,

Our third design resolves the issues emerged in the second design by develop

ing a storage format for storage of d vector (SMVIS) and employing a new SpMxV

unit. Each of these design evolutions are briefly introduced in this chapter and the

final design will be reviewed in more details in Chapter 6.

58

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

_0-'-'-'-'-'-

Sub-partition 1

Sub-partition 2

Sub-partition L

_.--.-.-.-.-.-.-.-

Corresponding Portion of Sparse Matrix for FPGA 1 d Vector

Figure 5.5: Partial storage of the vector d for FPGA#l; Note that the corresponding
elements of the vector for each sub-partition is marked by arrows.

5.2.1 Design I

In [1], a custom fixed-point CG algorithm was implemented on a single Altera

Stratix II device using a Gidel ProcStar II board. The board hosts two FPGA de

vices and in the first architecture design the objective is to utilize both of the FP-

GAs.

The first step for developing the multi FPGA architecture to find a method for

the division of computations between the two FPGAs. For this purpose, the dis

tributed CG algorithm for multiple-FPGAs in Table 5.1 is utilized with N = 2.

The first architecture uses almost the same structure for each FPGA as described

in [1].

The First evolution of the multi-FPGA design was successfully implemented on

two FPGAs. This two-FPGA design is capable of doubling the maximum number

of nodes, handled by the single-FPGA design. The double-FPGA deSign, solves a

59

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

system with a maximum number of nodes of 1024 after 60 iterations of CG algo

rithm in almost the same 2ms time frame as needed for the single-FPGA design to

perform 60 CG iterations for 512 nodes. The computation time for the dual-FPGA

design is more or less the same as the single-FPGA design since the time needed

for the communication of d vector in Step 23 of the Table 5.1, the other added

steps in multi-FPGA scheme consume ignorable amount of time. Assuming that

both FPGAs need the same amount of time to finish the matrix by vector multi

plication,they reach to Step 23 of the Table 5.1 at the same time with no overhead

time. In the double-FPGA design, the Steps 22 and 23 in Table 5.1 are combined

for each FPGA by carefully considering the circuit timings. This allows for both

update and communication of d vector on each FPGA to be carried out at the same

amount of time needed for just updating d vector in [42].

5.2.2 Design II

In the second evolution of our multi-FPGA architecture, the goal is to extend the

design to work on a four Altera Stratix III FPGAs, sitting on a Gidel ProcStar III

board.

In this case, we have to both scale up the old design on each FPGA so it can handle

more nodes per FPGA and also scale it to four FPGAs. First we will discuss the

former.

60

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

5.2.3 Scaling up the Number of Nodes on Each FPGA

Scaling up the number of nodes on each FPGA requires scaling up the imple

mented design on each FPGA. The design is almost the same in the single-FPGA

and double-FPGA architectures except for the added communication step in the

double-FPGA design. First we will investigate the expansion of the old architec

ture to the new device, that is migrating from Altera Stratix II (EP2S60) to a Altera

Stratix III (EP3SE100) for a single FPGA design.

The available resources on these two FPGAs are compared in Table 5.2.

Feature I EP2S60 FPGA Device I EP3SE110

M512 RAM Blocks (512 bits + Parity)
M4K RAM Blocks (4 Kbits + Parity)
MRAM Blocks (512 Kbits + Parity)
Embedded Multipliers (18 x 18)
M144K RAM(144 Kbits + Parity)
M9K RAM Blocks(9 Kbits+Parity)

329
255

2
144 896

14
639

Table 5.2: Comparison of Altera Stratix II EP2S60 and Altera EP3SE110 resources

In the design for Stratix III device, the M4K and MRAM RAM blocks in the old

Stratix II device are substituted by M9k and M144k RAM blocks for the new FPGA

respectively. Therefore, for obtaining an optimal architecture for the new device,

the old architecture had to undergo some changes in memory architectures.

For scaling up the old design on each FPGA, in principle, two major changes

are needed. First, because of the increase in the number of nodes on the FPGA, the

memory architecture has to change in order to allow for storage of larger matrix

61

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

and vectors. Second, the matrix by vector multiplication, vector by vector multipli

cation and vector updater units have to change, as will be described later, such that

the new FPGA performs the CG computations for more number of nodes without

increasing the time frame. The rationale behind the first type of changes is obvious.

The second type of changes are needed to curb the linear increase in the computa

tion time on each FPGAs as the number of nodes increases. Another issue is that,

in the single-FPGA design, the amount of resources needed in the single-FPGA

design will increase linearly with the number of nodes, but the improvements in

resources of the new FPGA (EP3SEllO) are not linear comparing to the old FPGA

(EP2S60). That is, the amount of DSP elements, embedded memories and LUTs

do not increase by the same proportion. Therefore, we will not achieve an optimal

architecture on the new devices with just scaling up elements of design. Moreover

as can be seen in Table 5.3, in the new devices there are some structural changes

in the embedded memory blocks and architectures as stated in Table 5.2, which

impose more changes on the design.

To scale up the design to the new FPGA considering all these aspects, a hard

ware architecture is proposed that can process a maximum of 1536 nodes on each

FPGA with the same data widths as in [1], that is 12 bits for K matrix values, 16

bits for all vectors except Kel multiplication result vector which has a 32 bit repre

sentation.

As the second design is a transition step from the single-FPGA design to the

Design III, we will only provide a summery of changes performed compared to

the Design I and we will skip the details.

62

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

The first change required in the old design concerns its memory architecture.

In the new design, vectors utilize three M9Ks instead of one M4K in the old design

order to have the capacity to store values corresponding to 1536 nodes instead of

512 nodes. Moreover due to the larger number of sub-partitions in the new design

and the increased capacity of M9Ks compared to M4Ks, the memory structure for

storing non-zero elements of K matrix has to change. The other change in memory

architecture of the new design is the different configuration of M144k memories

for storing indices of the non-zero elements of K matrix compared to the configu

ration of their counterparts (MRAMs) in the old architecture.

After making proper changes to the memory architecture of the old design to

fit the resources on the new FPGA, we also need to ensure that the computation

timing constraint will not be violated.

The time required for an iteration of the CG algorithm is mainly taken by two types

of operation, namely sparse matrix by vector multiplication and updating x, T and

cl vectors in the Steps 15, 16, 17 and 22 of the main algorithm Table 5.1. To avoid an

increase in the matrix by vector multiplication time, number of sub-partitions in

P L2 is linearly increased in accordance with increase in number of nodes. This will

prevent increase in number of nodes in each sub-partition, So we can get the re

sult of sparse matrix by vector multiplication without consuming any excess time.

Hence, by tripling number of nodes in second design, the number of sub partitions

should be also tripled, that is, it should increase from 5 to at least 15. Our second

design has 16 sub-partitions, which is the maximum number of sub-partitions we

could have due to hardware resources limitations.

63

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

The problem about the second major time consuming type of operations (vec

tor updates) is that with an increase in number of nodes, vector updating times

will increase linearly with increase in size of vectors. In the previous design be

cause of the relatively short length of vectors (3*512), the required time for vec

tor updates was not significant compared to the time consumed by sparse matrix

by vector multiplication. However as the number of nodes grows the vector up

date time also increases, preventing the design from meeting real-time response

requirement.

To address the increase in vector update times due to the longer vector lengthes,

changes are made in memory architecture of vectors. To increase speed of vector

updating we need more bandwidth for reading data from and writing data to vec

tors at each clock cycle. So for each vector instead of instantiating memory blocks

with two read/write ports and 1536 words depth, we use a memory architecture as

depicted in Fig. 6.6. In this architecture, we multiplex a number of (3 in this design)

smallest dual port memory blocks available (for Stratix EPS3E110 this is 512x16

bits for 1 M9K). In each state of updating vectors we can de-multiplex the memory

blocks of the vector and concurrently update these three memory blocks. This mat

ter is discussed further in Section 6.2.2. With this approach the time needed for

updating each vector will be limited to length of the s771allestmemoryblock *2 clock

cycles regardless of the number of nodes involved. Here the constant 2 stands for

one clock cycle for reading the old value and one for writing new value. In the

Altera® Stratix III® EPS3EllO, this time will be 512x2 clock cycles. The method

64

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

for limiting the vector update times to make it independent from number of nodes

is also utilized the next architecture design which will be discussed in details in

Chapter 6.

5.2.4 Scale the New Design to Multiple FPGAs

The extension of the computing architecture to N FPGAs in our approach, in its

simplest form, requires i\ x L full copies of d vector. Meanwhile, extending the

design into i\ FPGAs will increase the length of d vector by rv j\ . This means that

the total memory usage for all vectors in the CG algorithm grows linearly by 1\,

except the required space for d and x vectors which increases by N 2
.

As a result an N-FPGA configuration would not exactly increase the number of

nodes by a factor of N when compared to a I-FPGA architecture. To mitigate this

problem, by proper graph partitioning and node numbering we should guaran

tee that for each partition the range of nonzero elements would be within 5010 of

the full length of the vector. With our node numbering technique and due to ma

trix sparsity this was always the case in our test matrices although for some mesh

shapes it might not work. In this method we start numbering the nodes from a

center node inside the mesh and the numbers of nodes increase by getting farther

from that node and getting near the surface nodes. By this assumption on the ma

trix structure, each sub-partition we will only need less than half of d vector to

generate the corresponding part of J(xcl.

We applied this method on several meshes and all of them satisfied the 50% as

sumption. For instance for the sphere mesh used as an example in this thesis this

65

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

range is about 27%. Thus in our off-line computations for each sub-partition we

find the range of d vector corresponding to the indices of nonzero elements and

send the first and last addresses for this range to the FPGA. Fig. 5.5 illustrates the

parts of d vector needed to be stored for each sub-partition of J(matrix for FPGA#l

which has L partitions in totals.

The proposed approach decreases the memory usage growth of the vector d

to N2/2. Fig. 5.5 illustrates the parts of the vector d needed to be stored for each

sub-partition of the matrix J(for FPGA#l which has L sub-partitions in total.

5.2.5 Design III

Both previous multiple-FPGA designs where mainly utilizing the core architecture

proposed by [1] for single-FPGA design to perform the sparse by matrix multipli

cation. As described in Section 5.2.2, using this scheme for SpMxV will prevent

the design from meeting timing requirements by increase in the number of FP

GAs, for example it limits us to four FPGAs in case of using EP3SE110. In the

third design, we propose a new SpMxV scheme which removes the limitation on

increasing number of FPGAs. This new SpMxV engine will be described in detail

in Chapter 6. In summary new SpMxV architecture:

1. Allows more sub-partitions on each FPGA by utilizing SMVIS (will be intro

duced in Chapter 6 data storage format for d vector.

2. Speeds up the SpMxV operation by utilizing a new method for storing J(* cL

multiplication results.

3. Lowers the multiplier usage for each sub-partition in comparison with the

66

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

old SpMxV unit employed in the single-FPGA design.

The 3rd and last evolution of our multiple-FPGA design, in case of being pro

vided by adequate bandwidth for inter-FPGA communications, will solve a system

of sparse linear equations using the CG method for an arbitrary amount of nodes

on sufficient number of FPGAs. It it worth mentioning that for expansion of the

design to an arbitrary number of FPGAs, the bandwidth for data communication

should linearly grow by an increase in the number of FPGAs. If the bandwidth for

data communication among the FPGAs remains unchanged, the communication

time for exchanging d vector among the FPGAs will linearly grow with increase

in number of FPGAs. Considering limitations on data bandwidth for communi

cations, we will be limited to a maximum of 44 FPGAs in case of utilizing Low

Voltage Differential Signalling (LVDS) for serial communications among FPGAs as

will be discussed later in Section 6.5.

Another issue in the previous designs, affecting timing is the method used for

the storage of sparse matrix by vector results. To efficiently utilize the memory

blocks when storing non-zeros of K matrix, the sub-partitions are chosen such that

they all carry an average number of non-zeros. Therefore the number of nodes in

the last sub-partition of the last FPGA is much more than other sub-partitions due

to the more sparsity of that part of the matrix. In the previous designs, to simplify

the storage of Kd multiplication result, all sub-partitions in an FPGA start the mul

tiplication for the next row just after all of them have finished the multiplication

and storage of their previous rows. This blocks all of the FPGAs until the multipli

cation for the last sub-partition of the last FPGA finishes.

67

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

In the new architecture, a whole new sparse by vector multiplication block is de

signed, solving the problem in the previous designs while making an order of mag

nitude increase in the speed of sparse matrix by vector operation by utilizing 42

sub-partitions instead of 16. Moreover, in the new architecture the data bitwidths

have increased as depicted in Table 5.4 in order to increase the accuracy.

There has been also a new method proposed for storage of d vector in design three,

eliminating the need for storing multiple copies of d vector. This architecture will

be explained in details in Chapter 6. The extension of the computing architecture

to j\ FPGAs in our approach as described in Table 5.1, in its simplest form, requires

L full copies of d vector on each FPGA, where L is the number of sub-partitions

on each FPGA. Meanwhile, extending the design into i\ FPGAs will increase the

length of d vector by rv lY. This means that by an increase in number of FPGAs, the

total memory required for all vectors in each FPGA will remain constant, except

the required space for d vector which increases by N.

The proposed method for saving half of d vector for each sub-partition can mit

igate the problem but will still prevents us from increasing the number of FPGAs

more than a certain number depending on the type of FPGA we are using.

To tackle this problem an indexing method for d vector has been proposed

which will be discussed in detail in Chapter 6. By indexing d vector for each

sub-partition of the matrix we will just have to store the values of d vector corre

sponding to non-zero elements of that sub partition. Thus d vector corresponding

to each sub-partition uses a certain amount of memory resources (one M9K in this

architecture) independent of the number of FPGAs(N).

68

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

Design# Device :\1ax. ~lImber Max. number :'\'umberof limited time for uvectors for Utilizing l'\ewenhanced i\'ew Sp~txV unit Increased
of FrGAs of nodes sub-partitions vector operations sub-partitions SMVlSfor Sp:\1xV re:HlIt decreitsing num. Data

per FPGA per FPGA regardless with half length d vector storage of employed bitwidths
of num. of nodes of full d \'ector storage scheme multipliers

Single-_ X

FPGA EP2S60 I 512 5 X X X X X X

I EP2S60 2 512 5 X X X X X X

If EP3SEI JO ~ 1536 16 ./ ./ X X X X

III EP3SEI JO ~~ 1536 < 42 ./ X ./ ./ ./ ./

Table 5.3: Comparison of important characteristics for different evolutions of the
multiple-FPGA Architectures

To summarize the improvements achieved by different designs, we will have

a comparison between important parameters and characteristics of these different

designs in Table 5.3.

Data bitwidths for Single- Data bitwidths
FPGA and Designs I and II for Design III

K 12 18
x 16 36
r 16 18
b 16 18
d 16 18
Kd 32 36

Table 5.4: bitwidths assigned for vectors and K matrix in the fixed-point imple
mentation of the CG

Table 5.4 illustrates the data bitwidths used for fixed point representation of K

matrix elements and different vectors in different designs. A comparison between

the single-FPGA design and the final multi-FPGA design (Design III) in terms of

timing is given in Table 5.5. The data provided in the table are based on both

designs working for 468 nodes and at a clock frequency of lOOMHz.

69

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

Operation Required time by Design III Required time by
implemented on 4 FPGAs Single-FPGA design

sparse Matrix by
vector multiplication 1236 ns 14249 ns
vector by vector
operations for r and x 10273 ns 9429 ns
vector by vector
operations for d 2264 ns 9409 ns
d vector
communication 8289 ns -
Total stall time for
multi-FPGA design
communications 3008 ns -

Total time for one
CG iteration 25070 ns 33749 ns
Total time for 30
CG iterations 0.7521 ms 1.0125 ms

Table 5.5: Timing comparison between the final multi-FPGA design (Design III)
and single-FPGA design for one CG iteration.

In this table, the times given for multi-FPGA design are based on the timing of

FPGA#l, thus the total stall time for multi-FPGA design represents the total time

in one CG iteration when FPGA#l is ready for communication while the FPGA in

the other side has not reached that point.

It should be noted that as explained in Section 5.2.2, the vector operations,

vector by vector multiplication and vector updates in multi-FPGAs design take a

constant time for all vector sizes, equal to the time needed to update a vector of

size 1536 x 1. Therefore, when the number of nodes on each FPGA is less than

512, this constant time will have negative effect on timing. To investigate this issue

further, in the timing tests for Table 5.5, among two steps which perform vector

70

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

operations, one for updating r and x vectors and the second for updating d vec

tor, we applied two different methods of updating vectors. The former vector by

vector operation, Steps 15 and 16 of the algorithm in Table 5.1, utilizes the new ar

chitecture for vector operations with fixed time for different vector lengths and the

latter, updating d vector in Step 22 of the same algorithm, utilizes the old method

as in the Single-FPGA design with time depending on the vector length. If the sec

ond method was also used for first step of vector operations as welt the total time

for 30 iterations of the CG algorithm would decrease to about 0.5 milliseconds for

the Design III. In the four FPGA design, each FPGA has to perform the calculations

for about 115 nodes.

The results of performance analysis for the new SpMxV unit in Table 5.5 are

very encouraging results. The SpMxV operation using the new multi-FPGA scheme

in Design III requires a tenth of the time used by single-FPGA design.

To summarize, after improvements made on the multiple-FPGA design in three

steps, Design III can be implemented on an arbitrary number of FPGAs devices

satisfying timing requirements for a real-time response as required in haptic appli

cations. The increase in the number of FPGAs would be dependent on the avail

able inter-FPGA communication bandwith. In the next chapter we will discuss this

final architecture in detail.

71

Chapter 6

Hardware Architecture

In this chapter,multi-FPGA hardware architecture denoted as Design III in Chap

ter 5 will be discussed in detail. The CG algorithm is composed of three types of

operations: vector by vector multiplication, vectors-updates and matrix by vector

multiplication. The vector operations, vector by vector multiplication and vector

updates, in Steps 15,16 and 17 of the algorithm in Table 5.1 can be carried out

simultaneously, and are not main of concern in terms of resource usage and com

plexity. It is the matrix by vector multiplication is the bottleneck in the algorithm

both in timing and resource usage and must be made as fast as possible to meet

the timing constraints although performing vector operations is also speeded up

by as described in Chapter 5.

To increase the number of nodes and simulation accuracy, the size of the portion of

K matrix stored on each FPGA should be as large as possible.Moreover for larger

matrices a greater number of multipliers must be utilized to avoid increase in mul

tiplication time. This implies the need for a high memory bandwidth to feed a large

number of multipliers. The data should be stored in memory units efficiently to

72

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

maximize throughput and storage while avoiding data replication and storage of

zero values of the sparse matrix. To summarize, the main challenges for designing

an architecture meeting our application requirements are in:

• designing a data storage format for efficient use of memory resources to in

crease the size of the FE mesh

• utilizing as many multipliers as possible in parallel for SpMxV

• designing a memory architecture with maximum data access bandwidth

• designing an architecture that would be scalable both on each FPGA device

and to multiple FPGAs

• designing the communication scheme for required inter-FPGA data exchanges.

6.1 Analysis of Hardware Limitations

Although the proposed architecture has been designed to work on all FPGA types,

its implementation has been optimized for use on Altera EP3SEII0 and Gidel Proc

Star III board shown in Fig. 6.2. This platform imposed some limitations on the

design as will be discussed shortly.

The resources on the FPGAs provided by Altera [58] are summarized in Ta

ble 6.1. It is worth noting that M9Ks, which are the most significant portion of

the embedded memory blocks on each chip, are the new generation of embedded

memories, substituting M4Ks in former generation of Altera devices. Each of these

73

M.A.sc. Thesis - B.Mahdavikhah

AO(17..01--".uJ
:--~

80(17..01--"o-Y

McMaster - Electrical Engineering

+/- P(36 ..0]

Figure 6.1: Basic two-multiplier adder building block

blocks, contains 9Kbit of data which can be most efficiently used in multiples of 9

bit data words. This would be compatible with 9-bit DSP t.mits.Each Stratix III

EP3SE110 contains 112 DSP blocks [58]. Each of these 112 DSP blocks is composed

of two half DSP blocks and each of these half DSP blocks consists of two funda-

mental building blocks as depicted in Fig. 6.1. Unlike Stratix and Stratix II devices

in which fundamental building block consists of one 18 * 18 bit multiplier, the DSP

block in Stratix III consists of two pairs of 18 * 18 bit multipliers followed by an

adder with 37 bit output result [58], as illustrated in Fig. 6.1. Therefore by using

independent 18 * 18 bit multipliers one can obtain up to 448 multipliers. All 896

18 * 18 multipliers can be fully utilized only in a mulLadd architecture depicted in

Fig. 6.1.

Moreover the overall speed of the architecture would be determined by the

FPGA's logics, if faster logics were utilized or if bigger chips were available for

74

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

JTAG I OSP JTAG I
16 DDR~1

Board Controller+-/- DRAM
and 64MB

Gigabit Ethernet I PCle xB Bridge~ ---+0"- - - r

-
Figure 6.2: ProcStar III system block diagram [4]

implementation, the speed of computations performed in this architecture would

increase.

Another limitation on our design imposed by the Gidel board concerns inter

FPGA communications.

6.2 Data Storage

After going through many design iterations finally the following memory archi-

tecture was chosen. This architecture meets our requirements in terms of data

throughput, capacity for handling large matrices and also ease of scalability. Re

ferring to the CG algorithm in Section 4.2, the following data must be stored on

each FPGA:

• K matrix

75

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

ALMs(Adaptive Logic Modules) 43K
LEs (Logic Elements) 107.5K
M9K Blocks (9Kbit dual port memories) 639
M144 Blocks(144Kbit dual port memories) 16
Mlab Blocks(SRAM memory array blocks) 2150
DSP Blocks 112
18*18 Multipliers 448
Four Multiplier Adder Mode 896
PLLs 8

Table 6.1: EPS3EllO device overview

• d vector

• b vector

• x vector

• r vector

• !(* d result vector (Kd vector)

We will start by storing K matrix here and will go through storage of other

vectors in order. To better utilize of memory resources, only the non-zero values of

the K matrix are stored in a format described later in Section 6.2.1. As mentioned

earlier in Chapter 5, d vector is stored for different sub-partitions, utilizing its own

storage method. In this method in each sub-partition, only elements of d vector

which correspond to non-zero values of the sub-partition are stored. This storage

method will avoid storage of a full d vector for each sub-partition.

76

M.A.Sc. Thesis - B.Mahdavikhah

6.2.1 Data Storage Formats

McMaster - Electrical Engineering

Among the vectors and other data needed to be stored on FPGAs in the implemen

tation of the CG algorithm, K matrix occupies the biggest ratio of the embedded

memory. But fortunately the K matrix arising form the FEM is highly sparse with

ratio of non-zeros of about 3% by our meshing method and using tetrahedral fi

nite elements for meshes with more than 400 nodes [42]. Therefore, for preventing

extra usage of the memory and time for storing and processing zeros we would ap

ply a method for only storing the non-zero elements of K matrix. Before describing

our data storage approach, first we will briefly review some of popular methods

for storage of sparse matrices. These include the Compressed Row, Compressed

Column, and Coordinate Storage Schemes (CRS, CCS, CSS) [59]. Each of these

formats has its own advantage in utilizing specific property of sparsity in matrix,

resulting in different degrees of space efficiency [60].

CRS Format

The CRS format represents a matrix by three vectors, Val, Col and Rowptr. It starts

from the top left of the matrix and goes row by row, storing the non-zero values in

Val vector, the corresponding column index for each non-zero value in Col vector

in the same order and the number of the first non-zero value of each row in Rowptr.

CCS Format

The CCS format is similar to CRS, except that instead of going row by row, it be

gins from the top left corner of the matrix and goes column by column. Therefore,

77

M.A.sc. Thesis - B.Mahdavikhah

2 0

1 1

o 0

3

4

5

McMaster - Electrical Engineering

o

o
o

Figure 6.3: A sample matrix used to demonstrate data storage formats

each sparse matrix will be presented by three vectors of Val, Rowand Colptr. This

method stores the same data for a matrix as CRS format would store for the trans

pose of the matrix.

CSS Format

This method is similar to the CRS method but instead of Rowptr it keeps the row

indices corresponding to all non-zero values stored in Val in vector Row.

To demonstrate how each of these methods work, they are applied to the matrix

shown in Fig. 6.3. The results are as follows.

• CRS format:

Val: [2,3,1,1,4,5]

Col: [0,2,0,1,2,2]

Rowptr:[O,2,5]

• CCS forma t:

Val: [2,1,1,3,4,5]

78

M.A.sc. Thesis - B.Mahdavikhah

Row:[O,l),O),2]

Colptr: [0,2,3]

• CSS format:

Val:[2,3,l,l,4,5]

Col:[O,2,O,l,2,2]

Row:[O,O,l),l,2]

McMaster - Electrical Engineering

The CSS format because of saving indices for both row and column needs more

memory resources. The size of this extra memory becomes significant as the size

of the sparse matrix grows. The CRS and CCS formats require the same amount

of memory to store data. However for Sparse Matrix by Vector multiplication, the

CRS format is more appropriate as it delivers better memory access for data stored

in each sub-partition of the matrix. That is, for performing SpMxV multiplication

considering second level of parallelization in our design introduced in Chapter 5,

we divide the matrix into some sub-partitions and then the multiplication of ma

trix by vector for each of these sub-partitions is performed independently. In the

CRS format, to read values from different sub-partitions of the matrix at the same

time we just have to keep the Val vector and its corresponding Col vector in a sep

arate memory. This would be feasible in the CCS format.

79

M.A.Sc. Thesis - B.Mahdavikhah

Storage Format for K Matrix

McMaster - Electrical Engineering

The method we use for storing K matrix is a modified CRS format, that is, we

represent the matrix by two vectors Val and Col which are the same as their coun

terparts in CRS format. The only difference is that instead of using the Rowptr

vector a zero value is stored at the end of non-zeros of each row.Therefore during

the multiplications we will just have to read the non-zero values from Val in the

same order that they have been stored and multiply them by the values read from

d vector with the indices read from Col vector.

Storage Format For d vector

Performing matrix by vector multiplication for a full (non-sparse) matrix for each

row of the matrix requires the data of the full vector. As already explained in Sec

tion 5.2, to increase the multiplication speed, in this architecture we perform the

multiplication for rows of different sub-partitions of the matrix at the same time

(42 rows in the current implementation).

Due to the difference in patterns of non-zeros in each of rows, a different por

tion of d vector would be needed for the multiplication. This requires storing mul

tiple copies of d vector equal to the number of sub-partitions of the matrix such

that each sub-partition drives the address line of its dedicated d vector by the val

ues it reads from the Col vector as illustrated in Fig. 6.4.

Such approach will waste a huge amount of memory for storing values of d vector

for each sub-partition which will never be accessed in sparse matrix. In partiCll

lar, saving a full copy of d vector for each sub-partition results in usage of a total

80

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

-
~I • • • I

•••I • • •
• • • • • • II

I • • • I
I I• • •

• • • • • •
• • • I • • • ,

• • • • • • • • • ,

• • • • • • • • • I• • • • • • • • • -
/'

I

-c=b-

I
• • •
• • •
• • •

I I I
I
I

• • •
I • • •

L I • • •
I

"- ..
• I,

4: •
~~ .

•
••

X •

rl,~:""
: I

•
•
•

Figure 6.4: Performing sparse matrix by vector multiplication for rows a and 9
concurrently demands reading data from different locations of d vector

number of M9K memories for d vector (d-M9ks) given by:

nvmberoJcl - H9J(s = 3 * 3 * n'Umber
(6.1)

ojsub - partitions *mll71beroJF PGAs

This prevents scaling number of FPGAs by using more and more M9ks as the

number of FPGAs increases.

To avoid storing multiple full copies of d vector, a custom storage format, Sparse

Matrix Vector Indexing Scheme (SMVIS) is introduced in this thesis. In this format

the d vector corresponding to each subpartition is represented by 2 vectors, Val

and Ind. These two vectors are formed by the following algorithm:

We start from the left most column of the sparse matrix which is going to be

multiplied by a full vector and go column by columnDuring this procedure, a

non-zero value exists in a column, the number of the column will be stored in Ind

81

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

vector and the value of the corresponding value of d vector will be stored in the

Val vector. This search will continue until the last column of the matrix.

The following example shows how this method works for the matrix and vector

depicted in Fig. 6.5.

2 0 3 0
I

1 1 4 0
I

0 0 5 0
I

Q
~

-2

-3

-4

Figure 6.5: The sample matrix and vector used to demonstrate SMVIS format

• Val:[-1,-2,-3]

Ind:[0),2]

Using SMVIS format for each sub-partition, we only have to store the ele

ments of d vector which correspond to non-zero elements of K matrix in that

sub-partition. In our implementation of the CG on 4 FPGAs each having 42 sub

partitions and each handling 1536 nodes (K matrix of size 18000*18000), SMVIS re

duces M9K usage on each FPGA for storing d vector from 42*4*3*3+4*3d = 1548

to 42 + 42 * 3 + 4 * 3 * 3 = 204 M9ks. It is worth mentioning that each EPS3E110 has

a total number of 639 M9K embedded memory units.

82

M.A.5c. Thesis - B.Mahdavikhah

6.2.2 Memory Architecture

McMaster - Electrical Engineering

In order to solve the system of equations K * x = b using the CG algorithm, the

following vectors have to be stored in embedded memory blocks of the FPGA: b,

x, f, Kd and Val vectors for the CRS representation of K matrix (NZ_val'ues), Ind

vector for CRS representation of K matrix (N Z_indices), Val and Ind vectors for

SMVIS representation of d vector for each sub-partition (d and cLinclices), and a

full copy of d vector (d_full).

As explained in Chapter 5, the maximum number of nodes handled on each FPGA

in this design is 1536. As our mesh is defined in a 3D domain, each node of the

mesh will have three corresponding values in vector b for x, y and z coordinates

and a 3*3 corresponding block in K matrix. Therefore, all vectors on each FPGA

would have 1536 * 3 elements for x, y and z coordinates of 1536 nodes except

N Z _Inclices and cLinclices.

In order to increase the memory bandwidth for performing SpMxV and vector op

erations (vector by vector multiplication and vector updates), the vector for each

dimension is stored in a separate memory block like the one in Fig. 6.6. In other

words, each of these vectors is stored in three memory blocks, for the x, y and z

components respectively.

6.2.3 Memory Architecture for Storing Vectors

Vectors b, f have similar memory structures depicted in Fig. 6.6.

Each of these vectors utilizes three memory blocks, for x, y and z coordinates,

83

M.A.sc. Thesis - B.Mahdavikhah

adda[8.0J

"_bl17:01

McMaster - Electrical Engineering

data_b_l_demVltl17;OI

Figure 6.6: Memory architecture for one dimension (out of x, y or z) of vectors,
wiring for port a (inputs and outputs with" _a" term in their names) has been
depicted in this figure and port b has similar wirings. Ports with names including
"data_" are input ports and those with term"q_" are output ports

84

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

where a memory block consists of three M9ks, each configured as 512 words of 18

bits. The three M9ks have been multiplexed such that they work as one memory

block with 1536 words depth. As illustrated in Fig. 6.6, this memory block also

has demultiplexed inputs and outputs, denoted names including term" _demux"

such that while performing vector updates, the read/write operation is performed

concurrently for these three memory blocks, reducing the time needed to update

the vectors. depth. As illustrated in Fig. 6.6. In this figure, the inputs and outputs

with the term"_mux" included in their names denote these multiplexed inputs

and outputs.

Vectors x and Kd have the same architecture as rand b vectors unless theirs data

width is 36 bits instead of 18 bits depicted in Fig. 6.6.

Moreover, on each FPGA, we have to store a d vector for each sub-partition

using SMVIS format. Using the SMVIS format for vector storage for in SpMxV

multiplication, the length of vector will always be equal or less than the number of

non-zeros in the matrix. Hence after allocating three M9ks for storing non-zeros of

each sub-partitions as described in Section 6.2.4, allocating three M9ks for d vector

corresponding to each sub-partition would be reasonable. Taking into account that

this vector will also have three elements for x, y, and z coordinates, we will need

3*42 M9ks for storage of d vector.

Another vector that we have to store on each FPGA is a full copy of d vector

(d_full). This vector is needed for calculating elT * ltd in Step 11 of the CG algorithm

in Table 5.1. The full copy of d vector on each FPGA is also required for vector

updates in Steps 15, 16, 17 and 22 of the algorithm. Vector d_full will have a sim

ilar structure to that of band r vectors with the difference that it utilizes 12 M9ks

85

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

(number of FPGAs*3) in order to store the union of d vectors corresponding to all

FPGAs.

Finally, vector N Z _indices whose architecture will be later described in Section

6.2.5, and employ one M9k with 512 words depth and 18-bit data width for storing

Table 6.2, summarizes the memory allocation for all vectors needed to be stored

for the CG implementation on each FPGA.

I M9K Usage I M144 UsageVector

b vector 3*3=9 a
x vector 3*3*2=18 a
r vector 3*3=9 a
kd vector 3*3*2=18 a
NZ_values vector 42*3*3=378 a
N Z _In dices vector a 42/3=14
d vector 42*3=126 a
d_1ndices vector 42 a
d_full vector 4*3*3=36 a
Total memory usage 636 14

Table 6.2: A summary of memory usage by different vectors on each FPGA for the
multi-FPGA architecture with a maximum capacity of 1536 nodes on each FPGA

6.2.4 Storing K Matrix: Non-zero Values

K matrix is stored using a modified CRS format. In our scheme two vectors are

used to represent K matrix, N Z _values vector which is stored in NZ-M9ks and

86

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

NZ_indices vector, which is stored in 14 m144ks. NZ_values vector for each sub-

partition require nine M9ks. A connection between nodes numbered i and j in the

3D mesh results in a 3*3 block of non-zeros in the K matrix, i.e. the elements shared

among rows 3i - 2, 3i - 1 and 3i and columns 3j - 2, 3j - 1 and 3j. The K matrix

structure will be further discussed in Section 6.3.2.

We employ this structural property of K matrix to increase the bandwidth for read

ing values from K matrix as well as speed of the SpMxV in the following way:

Since the non-zero values of the K matrix appear in 3*3 blocks as depicted in

Fig. 6.7, all non-zero elements would have indices in the form of (k,l) where (3 *

i - 2 ~ h: ~ 3 * i), (3 * j - 2 ~ l ~ 3 * j) and (1 ~ i. j ~ 11) resulting in 9 different

combinations of indices.

Therefore, for each sub-partition we will utilize nine M9ks, corresponding to these

• • • • • •
• • •

I
• • •• • • • ••

I • • • • • •
• • • • • •

i • • • • • •
!
I • • • I • • • • • •• • • • • • • • •• • • • • • • • •

• • •• • • I

c----t---I ··· !
• • •
• • •
• •• I

Figure 6.7: 3*3 non-zero blocks for a matrix representing a mesh with 6 nodes

nine index combinations. In this memory architecture as illustrated in Fig 6.8, each

of the three consecutive rows (3i - 2, 3i - 1 and 3i, (1 ~ i ~ 11.)) would have a

87

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

bundle of three M9ks for storing its non-zero values.

M9ks storing
elements of
x coordinate

~

add_a[8:0)

add_b[8:0)

M9ks storing
elements of
y coordinate. ~

M9ks storing
elements of
z coordinate

~

Q_a[I1QI ace. aJ8c; Q_af1101 .00_';:80: Q_at 11 O] 0 ct> s:
~ ro (!)

q.b(1 7 OJ oll<XI_~80j (Lb{1701 ao<J2["O: q)l{ I1OI (f) 3 7'

ct>
(f)

"
dalaA17OJ awA17 01

"
W ::J (f)

;;; O'al.l_0I170] l!.It.a_o{11OJ ;;; ~ enG
~ ! ",eo_a ~ ~ j - o ::J.
~

~
<:; -.,::J

f2 f2
.. '8010 "'e<>D

~ ~
~ <0

'f

~ ~ ~ !'- ...
~ ~data low(3;·2) a{53.01

-" -" -" dataJow[3>2Lb{53.0)

4l(lllAI:lO] Q_dlllel aooA80J <LaL1T 01 ~_.![8-Q; lLa{11 01 0 ct> s:
~ ro (!)

!..ocUlI.8~J Q_b{1701 .oa_tl{<30J lLb{l7GJ ~_o{8~O: o)l{1101 (f) 3 7'

ct>
(f)

eal.lAl7il; ;: c.u_,;;{ITil! ,
"

ea!.l_~170; W ::J (f)

§ ,. wOd.lu_t.{17'Jj
;;;

c~t.I_ojI70l
;;; ;;;

~t.a_o{I1O: -->.

1 1 1 !
;;; 1 - o ::J.

...~;I

~
-.,::J

~ ¥ Mer_I) ~ "'ell_O ~ ~ <0
~ 'f

~
... !'- ,

~ ~dala~ " 10W[3;·1 La[5J.01'"-" '" '" $data low(3;·I) b[53:0)

acll_..{80; lLa{ITal olOO_"iHl: Q_a11101 ~A60: Q_al1TOI 0 ct> s:
~oo_Dl8.9: .,.,_o{IlOJ ~J>l.8_ul ~ ro (!)

Q_b(1701 tLb{1101 Q_bl l7OI 3 7'(f)
(f)

oal.l_..[170} aald_alll(\! cataA170J s;> ct>
g fr ::J (f)

C'''14_tl{I1OJ
;;; ;;; Clata_t{I1Q) ;;; e<lld_o{170: u>o
j ;;; i j ~ a

~ o ~.... ·et>a .lc '4"en_il .. 'ef\a ,
.. 'ef\D ~ ;,: "'ef'_b " ~ "'en 0 ~ ~ -.,::J

<0

~ ~ ~
!'- ~ 'f
~

~ da!a_ro.\{3iLa[530J.2 0
W m ::;

d"aJow(3iLb{53.0]

Figure 6.8: Memory architecture for storing NZ_values vectors of each subpartition

In addition, we perform the SpMxV for each three consecutive rows 3i - 2,

3i - 1 and 3i (1 ~ i ~ n) concurrently. Therefore three sets of xyz non-zero M9ks

are needed to store non-zeros for three rows of each sub-partition, which would be

88

M.A.5c. Thesis - B.Mahdavikhah

three M9ks.

McMaster - Electrical Engineering

6.2.5 Storing K Matrix: Non-zero Indices

As described in Section 6.2.1, to store K matrix we need another vector called Col,

which is used to drive the address lines of M9ks storing d vector while performing

the SpMxV. Recalling that we are utilizing another storage format for d vector, the

elements of dJull vector are stored in d vector of each sub partition in a particular

order depending on the location of non-zero values of that subpartition.

Hence, for addressing the proper element of d vector to be multiplied by a non

zero value of the sparse matrix, the values stored in nz_indices of M144k Rams are

not really the values stored in Col vector of the CRS format, instead, they are the

mapped version of those values to make them correspond to the right address of

the M9K storing d vector. For example when we have a non-zero value in Column

5 of the matrix, instead of storing 5 as the corresponding index for that non-zero in

j\ Z _indices vector, by using d_indices vector, we find the address of M9k storing d

vector which stores the value of d_full vector corresponding to that non-zero value

and store it in N Z _indices vector. This mapping is done off-line after performing

CRS and SMVIS on K matrix.

After obtaining the values for T\r Z _indices of all sub-partitions, we store them in

M144k Rams using the following architecture.

In the general form of this architecture with L number of sub-partitions, the

number of M144ks used to store NZ_indices equals ~. In particular, there are 14

M144ks in our implementation with 42 sub-partitions on each FPGA.

89

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

The reason for this is getting enough bandwidth from M144ks in the current design

with EPS3E110 FPGA devices, which is described in more details as follows.

As will be explained in Section 6.3.2, while performing SpMxV, at each clock

cycle we need to read two indices for d vector of each sub-partition. Therefore we

need to read L * 2 indices in each clock cycle to feed the address lines for d vectors

of all L sub-partitions. Thus in the case of using a two-port memory block for each

sub-partition, a total of L M144ks. On the other hand, our calculations show that

the maximum number of sub-partitions on a design that fits on a Stratix EP3SEllO

is 42. This requires 42 M144ks, while on each device we have a total of 14 M144ks.

Therefore, to have enough bandwidth to read sufficient amount of data in each

clock cycle, by utilizing 14 M9K Rams, we store three index values for three sub

partitions in each address of one M144k. To accomplish this, the following memory

architecture for M144ks is proposed.

The i th M144k keeps the Col values for three sub-partitions, 3i + 2, 3'i + 1 and 3i as

depicted in Fig. 6.9. Thus while performing the SpMxV we can read 2*3* 14 = 2*42

values from M144ks and hence 3 * 2 * 42 = 6 * 42 values from d M9ks for 42 sub

partitions or 6 values for each sub-partition.

The proposed memory architecture enables a fast and memory efficient im

plementation the CG algorithm. Using the proposed memory architecture, each

Stratix III EPS3EllO can process up to 1536 (3*512) nodes, when each row of the

sparse matrix can have up to an average number of 39 non-zeros in each row.

This is how we obtained this number of non-zeros(39): 1536 nodes are processed

on each FPGA, so each partition has to process an average number of 1536/42 37

nodes. According to the memory allocation for NZ-M9ks, the non-zero values of

90

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

T T
Jt ~

demux muxbar ",,[8:0).... < [8:0]> <[8:0]>
add a[11:0

"" ,
q a[26:0]

add b[11 :0] q_b[26:0]

N 7_lndicES

data a[27:0]

data b[27:0]

wren a

wren b

indices for sUb-partition[3*i+2] indices for sUb-partilion[3*i+1] indices for sub-partition[3*i]

I

M144K i

Figure 6.9: Memory architecture for nz_indices storage in M144k rams. Ports in
cluding the term "data_" in their names are input ports and those with IIq_" are
output ports

these 37 nodes has to be stored on three M9ks which results in the capacity for

storing 3 * 512/37 39 non-zeros per row of the K matrix.

6.3 Implementing CG Algorithm On Multiple FPGAs

The implementation of the CG on each FPGA follows the steps in the algorithm in

Table 5.1, except in Steps 10 and 11, as well as Steps IS, 16, and 17. Due to no data

dependency among many of the steps of the algorithm, they can be performed

concurrently on all FPGAs. In this section the hardware architecture designed for

performing these steps will be described in details.

91

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

6.3.1 Sparse Matrix by Vector Multiplication

The sparse by matrix multiplication unit is the most resource and time consuming

block in the implementation of the CG algorithm. To minimize the memory usage

by this block we employ the storage schemes in store d vector and K matrix. We

also propose a highly parallelized scheme to increase the throughput of the SpMxV

unit in order to reduce the time needed for completing the operation.

6.3.2 A Highly Parallelized Scheme for SpMxV

In the proposed architecture, the SpMxV kernel exploits four different levels of par

allelization. The first and second levels of parallelization (PLl and PL2), described

in Chapter 5, are created by employing multiple FPGAs and dividing the corre

sponding portion of K matrix on each FPGA to some sub-partitions. It is worth

noting that in this design the number of sub-partition in P L2 is variable and is

limited by the available memory and multiplier resources on device. For example

for Implementation on EPS3EllO, number of sub-partitions on each device can be

any value::; 42.

Further parallelism can be achieved by carefully investigating the data structure of

K matrix as follows .

• Third level of parallelization (PL3): K represents the stiffness matrix of the

3D FE mesh of the soft object to be modeled. Connections between each pair

of nodes would result in a 3 * 3 block of non-zero elements in the matrix as

illustrated in Fig. 6.7.

92

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

Consequently in SpMxV operation in line of 10 of the CG algorithm in Table

5.1, these three rows will fetch the same values of d vector. Therefore we can

do the multiplication for these three rows in parallel resulting in the third

level of parallelization (PL3). Moreover, this special structure of K matrix

decreases memory usage by enabling us to store non-zero indices for only

one out of each three consecutive rows of K matrix.

• Fourth level of parallelization (PL4): Finally, we can increase the paralleliza

tion further by performing the multiplication for 6 non-zero values of each

row by d vector at the same time. The number 6 has been chosen due to a

memory bandwidth limitation and is the maximum number of non-zero ele

ments from each row and from d vector that can be read at one clock cycle.

Taking these into account and to use as many DSP blocks in parallel as possi

ble, the data path for matrix by vector multiplication is designed as illustrated in

Fig. 6.10.

!(* d data path

In the proposed memory architecture, during the SpMxV, at each clock cycle for

each row which is undergoing multiplication by d vector, a maximum of six non

zero values from K matrix and six corresponding values from d vector can be read.

Hence considering the P £4, each row requires six 18 * 18 multipliers at each clock

cycle for performing multiplication for these six pair of values from the row and

the d vector. Also, as already mentioned in Section 6.1, to utilize all available 896

18 * 18 multipliers, they should be used in a mvlLCLcLcL configuration as depicted in

Fig. 6.1.

93

M.A5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

NZ M9K
Q..' 18

18

36 x_coordinate

36

NZ_lndices M144k d M9k
odd_' r='L~'I'~:OJ~----",,,,,-,,0'-J
odd , ""'L""'bl.""':O)c.......r~.dd~l'-1

Q..'

'Lb
da:a.
da:.ab

data &

NZ M9K
odd_O ~--,..::Q..:::.a ..,

NZJndices M144k d M9k
add_O 'La[8.0] add 0 ---Q..'

~:,' r'L-b\.-:O,----,.----"''''''"',,'-J L:!'L,,::.b__---'

....... da~ a
e.a~ b

NZ M9K
odd_O ,...:Q..=-. --,

Q..b

y coordinate+ -

36
+r---:3"'"6----'

Row(3i·2,:Laccumulalor

36

d M9k
--Q..'

Q..b

Figure 6.10: Data path for K*d multiplication for row (3i-2,:), the same architecture
exists for rows (3i-1,:) and (3i,:) for each sub-partition. In this figure, dM9k refers
to M9ks storing d vector values for sub-partitions.

94

M.ASc. Thesis - B.Mahdavikhah

Saving K*d Results

McMaster - Electrical Engineering

The K*d multiplication is designed such that at each clock cycle, the multiplication

for 42 rows of 42 sub partitions is done concurrently. For saving results of each

row by vector multiplication two scenarios could be considered. One is that all

sub-partitions start the multiplication for one row together and when all of them

have finished, the whole process is stopped until the results of all 42 sub-partitions

are stored. The multiplication for the next row can resume afterwards. In the

second scenario is that each sub-partition acts independently while performing

multiplication and the results of each sub-partition would be buffered and stored

during the K*d multiplication process. The second scenario is more complicated

and needs more hardware resources (more LUTs and registers for implementing

shift register and buffering data). However it increases the number of nodes that

can be processed on the device for the following reason.

For an efficient use of NZ M9ks, matrix partitioning is performed such that non

zero values are evenly distributed in IV * 42 sub-partitions where.\ is the number

of FPGAs. Depending on the pattern of non-zeros in the K matrix the number

of rows of the matrix in different sub-partitions will be different. For example,

with our meshing algorithm applied to a sphere, the pattern of the non-zeros in

the K matrix is as illustrated in Fig. 6.11. It can be seen that the sparsity of the

last sub-partition is much more than those in the middle part of the matrix. For

example the number of rows for the last partition of last FPGA is about 12 times

more than the average number of nodes in other sub-partitions for a the stiffness

matrix of a sphere with 569 nodes used in our tests. (this increases with an increase

in the number of nodes) greater than the maximum number of rows in all other

95

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

partitions. Hence using the first method for saving results would increase the time

of the whole process in three ways,

1. The time needed for the multiplication of i Lh row of each partition would

be equal to the time needed for the multiplication of the i Lh row of the sub-

partition with maximum number of nonzero element.

2. After finishing multiplication for a row we need to stop the multiplication

process and save the 42 results generated by 42 sub- partitions.

3. Due to inequality in the number of rows in different sub-partitions, the most

sparse partition of the matrix will have less non-zeros in each row and more

number of rows. Therefore it will be halted by other partitions after finishing

the multiplication for each of its rows and when other partitions are done the

whole process would be blocked until this partition finishes multiplication

for all of its rows.

'000

6000

8000

'0000

'2000

"000

16000"------...,..,--,---,~...J-__...J------c~~~

o 2000 '000 6000 8000 '0000
rz = 673413

Figure 6.11: The K matrix arising from performing FE analysis on an sphere in our
tests

96

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

According to this reasoning the second method for saving multiplication results

is employed in this thesis. In this scenario, a 42 bit register (write-req) keeps track

of all partitions which have finished multiplication of one row and another module

at each clock cycle goes through this list and finds the next partition for which the

results should be stored. Then a third block writes the results on XYZ M9k (XYZ

M9ks store the K*d multiplication results).

6.3.3 Vector by Vector Multiplication

An increase in the number of nodes on each FPGA also increases the length of

vectors on each of them, elongating the time needed for vector by vector multipli

cations linearly by the number of nodes on each FPGA. This can slow down the

iterations of the CG and eventually violate the real-time response requirement.

In order to improve the scalability of the design, vectors are stored such that de

pending on an input named demllx/mux bar, as illustrated in Fig. 6.6, they can

be utilized both as one dual port memory block with 1536 words depth or three

dual port M9ks with 512 words depth. The latter gives us more bandwidth for

read/write operations on the vectors. In vector by vector multiplication modules,

thesememory units are used in unpacked mode. In this case vector by vector mul

tiplication will take 2*512 clock cycles regardless of length of vector.

The memory architecture for vectors in our implementation with vector length of

1536 will save 4*512 clock cycles in vector vector multiplication time. This is rather

significant considering that about 17 * 512 clock cycles are needed to complete one

iteration of the CG iteration.

97

M.A.sc. Thesis - B.Mahdavikhah

6.3.4 Inter-FPGA Communication

McMaster - Electrical Engineering

The communication among the FPGAs is arranged in a ring configuration shown

in Fig. 6.12. This configuration was chosen in order to obtain the maximum band

width possible for inter-FPGA communications, considering the physical connec

tions between FPGAs on the Gidel ProcStar III board as depicted in Fig. 6.2. This

parallel communication scheme utilizes a bandwidth, given in bits/clock cycle by

Equation 6.2 if 18-bit data words were used to represent d vector.

l\ x (3 x 18 + [log2(number of nodes)]) (6.2)

In this formulation 3* 18 stands for the bits needed for sending three elements of

d vector for three coordinates and log2(number of nodes is the bandwidth needed

of sending index for these three values.

FPGA
#N

"'l

FPGA 1
#N-1

FPGA
#1 J, FPGA

#2

FPGA
#3

Figure 6.12: The communication scheme in multi-FPGA architecture. Arrows
show the direction of the data flow.

There are essentially three types of data exchange in the distributed CG algo

rithm depicted in Table 5.1. The partitions of the vector d are updated on each

FPGA in Steps 4 and of 23 of the algorithm in Table 5.1 according to the data flow

98

M.A.5c. Thesis - B.Mahdavikhah

FPGA #1 FPGA #2

McMaster - Electrical Engineering

FPGA #N

1) se.nd d 1. reciel'e d N _ send d 2 . reClt;Ve ell _ _ send d N . reciet'e d N - 1

2) st:lldd N . reciel'ed N - 1 ~ sendd1,recielled N -- _ sendd N - l . reciclIed N - 2

N~l) sendd 3
. ,-ecieved 2 ----.,. sendd 4

, rc:cieued 3 - ... - sendd 2
, recieued 1

Table 6.3: Algorithm used for communicating updated d vector.

FPGA #1 FPGA #2 FPGA #3 FPGA #:-1

1)
2)

:-1-2)
N-I) receive L i~2 scolari

send scala 1"2 - receive sCaf(II'2

send (.5COICI/'2 + .scalar;j) - ...

... - receil'L L: (~21 scalarj

... send L ;':=2 .scala";

Table 6.4: Algorithm used for accumulating a scalar partially calculated on FPGAs
and send it to FPGA#l.

presented in Table 6.3. Since the matrix partitions per FPGA are balanced in terms

of non-zero components, it takes almost the same time for all the FPGAs to reach

to the state of updating vector d in line 23 of the algorithm. The second type of

data communication occurs in Steps 7, 12 and 18 of the algorithm where the par

tially calculated results of the inner vector by vector multiplications are exchanged

among the FPGAs using the scheme depicted in Table 6.4. Finally in Steps 8,14 and

19, the scalar values TTTI, CI' and 6 which are calculated in FPGA#l are transmitted

to all other FPGAs as illustrated in Table 6.4. The resource cost and computation

and communication time for these scalar values are relatively negligible.

In the proposed scheme, as shown in Fig. 6.13, each FPGA requires only a

portion of vector cl that is associated with nonzero elements of its corresponding

part of matrix K. This can reduce the communication time for d by transmitting

only that portion of it in each FPGA.

99

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

FPGA #1

1) send scalar
2)

N-1)

FPGA#2

~ receive scalar
send scalaT

FPGA#N

~ rece'l,ve scalCL7'

Table 6.5: Algorithm used for distributing a scalar from FPGA#l to all other FPGAs

FPGA1~

FPGA2!~

,

X

"IX
7f

/

/

"

Sparse Mal'"

•
•

FPGAN 1__· ~~-- " I
dVeclor

Figure 6.13: Portions of d vector needed for each FPGA for performing Kxd mul
tiplication d vector

In the current design, due to ProcStar III board limitations, for communica

tions between FPGAs, we are using a parallel communication with a bandwidth

of 14Gbps for each FPGA.

6.4 Resource Usage

The resource usage of each FPGA in the current design is 82% of logics, 90% of the

memory bits and 95<JC of the DSP blocks on device.Fig. 6.14 depicts the compilation

result generated by Quartus II software for FPGA #1.

100

M.A.Sc. Thesis - B.Mahdavikhah

Flow Status

Quartus II Version

Revisioh Narne

Top·le,/e[Entity N;;dlle

Family

Device

Timing Models

Met timing r~quirements

Logic utili~ati(ln

Combinational p,LUTs

tv! emory ,6.LUTs

Dedicated logic registers

Totdt registtw,

Totql'pins

Total virtllal pins

Total bll~ck memory bits

DSP block 18-bit elements

Total PLLs

TotarDLLs

McMaster - Electrical Engineering

Successfl.ll . Fri Aug 14 1B: 25:56 2009

8.0 Build 215 OS/29/2008 SJ Full Version

fpga1

f/:'Q.;'I,1'

Strati:~ III
EP3SE110F1152C2

Preliminary

No

68577 / 85200 (80 %)

o/ 42.600 I 0 %J

19.767 I' 85200 (23 %)

19972

736 ,I. 744 (99 %1
a
7.402.864/8.248.320190 %1
852 1896 (95 %)

2,1 8 (25 %1
0/410%)

Figure 6.14: Compilation report for an FPGA in our current design

The list of significant resources used by the design is as given in Table 6.6 and

Table 6.7. Table 6.6 lists design units with major DSP usage and number of 18 *18

multipliers employed by each of them. As expected, the most of the multipliers

are dedicated for performing SpMxV. It is worth mentioning that the multipliers

used for the SpMxV and those employed for calculating err * J(cl work together in

parallel while performing Steps 10 and 11 of CG algorithm in Table 5.1. Table 6.7,

shows the usage of embedded memory blocks by different vectors in the design.

101

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

module 18*18 multipliers
K*d 756=6*3*42
dT * J(* d 12=3*4
vector~-vector 36=2*3*3*2
Total number of multipliers 804

Table 6.6: 18*18 bit multiplier blocks used on each FPGA

number of M9ks number of M144ks
NZ_values 378=3*3*42 0
d vectors 126=3*42 0
d_full 36=4*3*3 0
d-I ndices 42 0
b vector 9=3*3 0
x vector 9=3*3 0
r vector 18=2*3*3 0
Kd vector 18=2*3*3 0
iYZ_Indices 0 14
Total memory usage 636 14

Table 6.7: Embedded memory usage by different vectors on each FPGA

6.5 Timing Analysis

The time required for performing one iteration of the CG iteration is mainly spent

on three steps of the algorithm: K*d multiplication, Vector By Vector Multiplica

tion, and d Vector Communication. In the following we will discuss each of these

steps. The calculated times here are for the design with four FPGAs, each handling

up to 1536 nodes and with 42 sub-partitions.

102

M.A.5c. Thesis - B.Mahdavikhah

K*d multiplication

McMaster - Electrical Engineering

The time needed for K*d multiplication depends on the size and sparsity of the

matrix. However, employs 42 sub-partitions the current architecture which is

bounded by not the rate Kd vector elements become ready, but by the rate at which

the results are written to Kd vector. Therefore, the time needed for performing

K*d multiplication is almost equal to the time needed for writing 1536 values to

Kd vector which is 1536 clock cycles.

Vector By Vector Multiplication

As discussed in Section 6.3.3, the time required for two vector by vector multi

plication steps in Table 5.1 is 2*2*512 clock cycles. The first is for the vector by

vector multiplication in Steps 15, 16 and 17 of the algorithm which are carried out

simultaneously and the second is for Step 22.

d Vector Communication

The communication time for scalar value clkcl, a, !Tn and (j are negligible as send

ing each scalar takes three clock cycles including the time needed for hand shaking.

So we will just consider d vector communication time.

For our current implementation on ProcStar III board, in a worst case scenario

when the design is working for 4*1536 nodes this time will be 1536 clock cy

cles for each of three communication steps in Table 6.3. Therefore, the total time

needed for communication among the FPGAs would be 3*1536=9*512 clock cy

cles at each CG iteration. This can be compared to 1536(for SpMxV)+2*2*512(for

103

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

vec*vec)=7*512 clock cycles for all other tasks in one CG iteration.The time needed

for communications will increase almost linearly with increase in the number of

FPGAs. For example the total time for one CG iteration while using 10 FPGAs

would be 9*1536(comm.time)+7*512 clock cycles. Therefore, the communication

time will be the limiting factor for increasing the number of FPGAs in this imple

mentation.

In general with the current bandwidth for parallel communication among FPGAs

, the total number of clock cycles for performing one CG iteration will be (N

1)*1536+7*512 clock cycles. Here N is the total number of FPGAs.

To avoid increase in communication time by increase in the number of FPGAs,

the communication bandwidth should increase linearly by the number of FPGAs.

There are two options for communications, parallel and serial. The parallel com

munication bandwidth is limited by the number of I/O pins available on the FPGA

which depends on the FPGA and its packaging. The Stratix III EP3SEllO FPGA

device in 1152 pin package has 780 pins for inter-FPGA data communication [58].

Hence, we can have a maximum of 22 FPGAs in case of utilizing all 780 IO pins

of the FPGA for communications. The other method for data exchange among FP

GAs is serial communication. This can be attained by exploiting high speed serial

communication capability on Stratix III devices.These devices provide up to 132

full duplex 1.25 Gbps true LVDS channels (132 Tx + 132 Rx) on the row I/O banks,

which yields 165 Gbps bandwidth for communications.

Hence, in principle the design can be expanded on 44 FPGAs without increasing

in the time required for performing CG calculations comparing to our current 4

FPGA design. It should be noted that the high-speed serial data transmission is

104

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

Step Number of clock cycles
SpMxV 3*512
Vector operations 2*2*512
d vector communication 3*3*512
Total clock cycles for 1 CG iteration 8192

Table 6.8: Number of clock cycles required by most time consuming steps of the
CG iteration operating for 6000 nodes.

not supported by Gidel Procstar III board.

Based on the implementation using parallel communication, for a maximum of

6000 nodes (18000*18000 K matrix), we will require a total time of 3*512(forSpllh;V)+

2*2 *512(foT'Uec *vecnrultiplications) +3*3 *512(fo7'Corn nwnicat'ions) = 16 *512 =

8192 clock cycles for each iteration of CG method. And as will be described the

maximum frequency (fmox) of the circuit is 100 MHz, this will result in 0.08192 ms

for each CG iteration.

In Table 6.8, the number of clock cycles for important steps of the CG algorithm

for our implementation on four Altera Stratix III EP3SEllO devices are given. In

this table, vector operation refers to vector updates and vector by vector multipli

cations performed in Steps 15, 16, 17 and 22 of the CG algorithm in Table 5.1.

The Critical Path and Maximum Clock Rate iI/LaX

For the current design the fmo.r calculated by Quartus II software classic time an

alyzer is 100 MHz. This maximum frequency is determined bY~L) where themax pd

ma~;(tpd) is the maximum propagation delay time for all pathes in the FPGA. For

105

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

this design the critical path (the path with the maximum propagation delay) is

the path for K*d multiplication which is depicted in Fig. 6.10. This path contains

three combinational circuits including an 18*18 multiplier, and three signed num

ber adders. One of these adders performs 18-bit by 18-bit addition of results from

multiplication of two consecutive non-zero values in x coordinate (or y), the sec

ond signed adder is utilized for addition of two 36-bit values from x and y coor

dinates, finally, a third signed adder sums up the result of the second adder, with

the summation result of z-coordinate and "row(3i-2,:)-accumulator" as depicted in

Fig. 6.10.

The hardware architecture proposed in this chapter has been successfully im

plemented and tested on a Gidel ProcStar III board hosting four Stratix II EP3SEII0

devices. However, for processing more number of nodes, the design can be scaled

up to be implemented on multiple FPGA devices or on newer devices with more

hardware resources. In case of utilizing more powerful FPGAs, number of sub

partitions on each FPGA should be scaled up to avoid elongation in SpMxV op

eration time. This can be performed by increasing the number of sub-partitions

which is defined as a constant in our HDL code.

In the following chapter the experimental results and performance of this architec

hue to accelerate CG computations is studied. To provide more practical results,

our hardware-based CG solver has been integrated into a hardware-in-the-loop

haptic simulator. Chapter 7 will present the set up for this haptic simulator for

simulating interactions with a deformable object.

106

Chapter 7

Experimental Results

This chapter presents the experimental results for the implementation of the CG al

gorithm on a Gidel ProcStar III board, with four Altera Stratix III EP3SE110 FPGA

devices. The performance of the new multi-FPGA architecture is compared with

the single-FPGA design in [1] and some other conventional processors. The exper

imental setup for hardware-in-the-loop platform for real time haptic simulation of

soft-object deformation will be also presented in this chapter.

7.1 Performance Evaluation

The proposed multi-FPGA hardware-based accelerator for the CG algorithm has

been implemented on a Gidel ProcStar III development board with i\ = 4 Altera

Stratix III EP3SE110 FPGA devices. The system can find the solution to the sys

tem of equations arising from a 3D FE mesh of up to 600D nodes at an update

rate of 400Hz. The current quad-FPGA implementation with P L2 = 42 utilizes

756 18 * 1 multipliers per FPGA for SpMxV multiplication. In addition 96 1 * 1

107

M.A.Sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

multipliers are used in parallel for vector-vector and scalar-vector multiplications

in the implementation of the CG algorithm. This leads to an SpMxV kernel that

operates at a rate of 302.4 Giga Operations Per Second (GaPS). In Table 7.1, the

performance of the proposed architecture has been compared with three different

microprocessors used in the experiments conducted by Goumas et al. [61] and also

the single-FPGA design proposed by Mafi et.al in [1]. The last column of the ta-

ble provides a comparison between the average results in the fourth column to

the speed of computation in our proposed architecture. As illustrated by the com

parison results, our new multi-FPGA architecture yields a high speed-up over the

microprocessors. This is achieved due to the massive parallelism of computations

using customized fixed-point implementation.

The improvement in the rate of operation compared to the single-FPGA design

in [1] is due to the utilization of multiple FPGAs as well as the new SpMxV unit

and the SMVIS format for d vector storage. These changes in the multiple-FPGA

design will allowing a greater number of multipliers concurrently compared to the

single-FPGA design.

Processor Clock Speed L2 Cache Average operations per second XSlower

Woodcrest 2.6 GHz 4MB 495.53 MFLOPS x232
Netburst 2.8GHz 1MB 297.88 MFLOPS x387
Operton 1.8 GHz 1MB 273.72 MFLOPS x421
Single-FPGA design by [1] 100 MHz - 18 GaPS x16.8
quad-FPGA architecture 100 MHz - 302 GaPS xl

Table 7.1: Comparative performance of SpMxV kernel on general-purpose
CPUs [61], the single-FPGA design proposed in [1] and the proposed multi-FPGA
hardware accelerator.

In the following, the experimental results form implementation of the final

multi-FPGA architecture (Design III) are presented. For performing these tests,

108

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

the Gidel Procstar III board has been installed on PCI Express local bus of a PC,

Therefore exchanging data with the FPGAs are performed via the PCI.

To establish numerical stability of our Fixed-point CG implementation, the

Monte Carlo simulations has been performed using a moderately sized matrix

1707 * 1707 with condition number of 2873. The simulation has been carried out

for 30 runs of the algorithm with random initial x vector. The results of average

relative error in x vector for different number of iterations in the CG algorithm is

depicted in Fig. 7.1. According to these results, after performing 30 iterations

of the CG algorithm the decrease in Ilerroril will not be significant by increase in

number of iterations. The reason is that as the error becomes smaller, the elements

of the r vector in the CG algorithm will become smaller, increasing the effect of

quantization errors. Therefore 30 is a good choice for the number of iterations for

the CG solver in terms of achieved accuracy and computational cost.

Fig. 7.3 shows the result of solving J(*2; = b for K matrices with sizes 1707* 1707

(for 569 nodes), 7455 * 7455 (for 2485 nodes) and 16095 * 16095 (for 5365 nodes) re-

spectively. Fig. 7.2 depicts the mesh associated with the third matrix with 5365

nodes. In these tests the initial value of x vector has been zero. Table 7.2 compares

these three tests in terms of K matrix properties and accuracy of results.

Number of nodes in mesh Size of K matrix Condition number of K matrix~

569
2485
5635

2.873*10:1
1.972*105

1.22*106

0.055
0.064
0.073

Table 7.2: A comparison between K matric properties and error in results for three
tests of the CG solver

109

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

0.3,------,------,----,------,------,------,

0.2

-:::-

g
Q)

= 0.15

0.1

353015 20 25
of iterations

10
0.05 L.-__--'----__--'- '---__--'----__---'-__-----'

5

Figure 7.1: Changes in the norm of error in FPGA result as function of number of
iterations

As expected, increasing the number of nodes will result in less accuracy of re

sults. The reason is that by increasing the number of nodes, the condition number

of the K matrix will grow, defecting the convergence of the CG algorithm. In the

tests performed with three different matrix sizes, for the 1707 *1707 matrix, condi

tion number is 2873, in the second case with the size of matrix equal to 7455 *7455,

it equals 1.972 *106 and finally for 5365 nodes in the mesh, the condition number of

stiffness matrix is 1.221 *106
. This issue can be mitigated by employing precondi

tioned CG algorithm (PCG) instead of CG, which will result in better convergence

rate and therefore more accurate results specially for larger K matrices. A brief

overview of PCG algorithm, the pseudo code for performing PCG using jacobi

preconditioning, and its difference with CG in terms of implementation has been

presented in Chapter 4. Furthermore, a detailed discussion on numerical stability

110

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

-0.5· ..

o

0.5
.. '

0.8
0.6

0.4
02

o
-0.5

0.5

o

Figure 7.2: A transverse section of the spherical mesh associated with the largest
matrix with 5365 nodes in our tests

and convergence of Preconditioned Conjugate Gradient algorithm(PCG) is offered

in [48]. improving our iterative solver core from CG to PCG will be a matter of

future work.

7.2 Hardware-in-the-Loop Haptic Simulation Platform

The proposed implementation of CG algorithm has been employed as the com

putational engine for modeling soft objects using FEM. The simulation platform

used in our experiments is illustrated in Fig. 7.4. This haptic-enabled simulator

consists of a custom 3DOF haptic interface, a Quanser QPA linear current ampli

fier, Quanser Q4 hardware-in-the-loop data acquisition board, a Gidel ProcStar III

111

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

,10' Km.trix of size 1701'1707, COIl~I"n number=21173
1,'-'---,----,----,---,----,----,----rr========il

<;

~ -05

-1
0
'----,-,L::-----:c

2OOO
:'-::------:::'m,.,-----

4aIl
::L:--------:::',.,-----:-:':::-----=:-----=

Veclor ..dices
Kmain, of Size 16095'1E095, COMIIOll (XJmber=I221ElJ2

.10'---~2OJ::----400:-=----:EllJ~---=~':-----cI=IlJJ::-----c~--=-----:::'::::---~llm

Veclor ..dices
Kmain, of siz, 74":6'1455, CondllOO (XJrOO,r=I97220

_I '----"------'-----"-----'-------'----'-----'------c"-,-,----=-'
o <{OJ &(OJ am frOJ 100:0 12000 10c00

Veclor~dlces

Figure 7.3: Error in FPGA solution compared to the real x vector for three different
matrix sizes

development board with four Altera Stratix III EP3SE110 FPGA devices, and a

3.0GHz Pentium R(D) with 4.0 GB RAM using a Matrox Millennium PCle P650

graphics card. The FPGA board communicates with the PC through the PCI bus

interface to receive the vector b. The matrix K is assumed to be constant (except

for changes due to a variable contact node for which changes in K matrix are per

formed inside the FPGA) and hence is loaded once at the beginning of the simula-

tion process.

In this simulation when the operator holds the robot end-effector in his hand, this

end-effector can be moved in the 3D space freely while it is out of the region where

112

M.A.sc. Thesis - B.Mahdavikhah

Graphics &

Collision Detection i
i

McMaster - Electrical Engineering

f!lIrtlovllre PllItform for Compl/ling KI/=b

Figure 7.4: The block diagram of haptic-enabled simulator with hardware-based
accelerator.

our virtual soft object is located. The position of the robot's end-effector is con

tinuously sent to the PC with a frequency of 1KHz. Once the end effector enters

the region defined as the internal space for the soft object, a collision detector unit

will trigger the process of calculations of deformations of the object and amount

of force feedback. At this point, the b vector and the number of the contact node

would be sent to the FPGA via the PCI bus. Afterwards, the calculated x vector

by the FPGA will be passed to the graphics unit for generating the new deformed

shape of the object and the force vector will be sent to the robot.

The control process runs at a rate of 400Hz under Quanser's Windows real-time

extension QuaRC and is the communication hub amongst the haptic interface, the

hardware-based accelerator, and the graphics and collision detection unit.

OpenGL is used for graphics rendering and collision detection which are per

formed on the GPU of the graphics card at a rate of 33Hz. The results of haptic ex

ploration experiments with both static and dynamic linear elastic FE models have

been very encouraging. The system can provide users with a realistic and reliable

113

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

haptic and deformation feedback for objects with different mechanical properties.

114

Chapter 8

Conclusions and Future Work

Real-time FE-based soft tissue modeling is computationally demanding. Perform

ing huge amount of computations involved in FE-based modeling requires a highly

parallelized architecture for meeting timing requirements, especially in applica

tions requiring high resolution, large FE meshes such as those in medical training

systems in medical applications. This accentuates the need for parallel process

ing when none of the available processors are capable of handling FE-meshes with

high enough resolution.

In this thesis, a highly parallelized multiple-FPGA implementation of the CG

algorithm was proposed for solving the system of equations arising from FE mod

els of soft-object deformation. The current implementation of this design on four

Stratix III EP3SE110 devices achieves up to a peak of 302 Giga Operations Per

Second (GOPS). The proposed hardware architecture employs customized fixed

point operations in order to maximize the parallelization for the computations.

The hardware architecture is fairly independent of the FE mesh structure and can

be scaled for deployment on multiple-FPGA devices with various capacities. The

115

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

current communication scheme for inter-FPGA communications, connects them in

a ring configuration with a custom parallel communication design. This commu

nication scheme provides fastest possible data exchange rate among FPGAs while

hiring all available bandwidth on the board.

Increasing the number of nodes in FE mesh is possible by employing a suffi

cient number of FPGAs. Each of the FPGAs can handle up to a certain number of

nodes depending on the FPGA devices in use. For the FPGA employed in our im

plementation, Stratix III EP3SE110, this is 1536 nodes per FPGA. Scalability of this

design on multiple FPGA devices will have a negligible effect on the utilized hard

ware resources of each FPGA. This was achieved by exploiting the sparsity of the

FE-based equations through new data storage methods for the matrix and vectors

in the CG algorithm. The only limitation on the number of FPGAs in this design

is the data bandwidth for inter-FPGA communications. Provided a non-adequate

communication bandwidth, the CG solver will still work but it can lead to more

time required for communications.

The implementation of the proposed architecture on a quad-FPGA system has

enabled real-time haptic/ deformation of simulation a 3D linear elastic FE model

with 6000 at an update rate of 400Hz.

The future work in short term will involve developing our CG-based solver

to work under PCG algorithm to improve the numerical accuracy of the solver.

Employing domain decomposition methods for performing multi processing with

less communications cost can be another subject of future work. This would re

quire investigating on the issues arisen by domain decomposition methods, like

116

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

the convergence time due to more CG iterations required and updating the FE

mesh. In addition, haptic-enabled simulation of cutting, needle insertion, soft

object to soft-object contact, as well as nonlinear deformation behavior using the

proposed hardware-based accelerator can be pursued in future.

117

Bibliography

[1] R. Mafi, S. Sirouspour, B. Mahdavikhah, and et al., "Hardware-based parallel

computing for real-time haptic rendering of deformable objects," in INTU

ITION 2008 Conference, Turin, Italy, 2008.

[2] Computer Vision Group, University of Leeds, Retrieved 20 May 2004 from http :

/ /www.comp.leeds.ac.nk/uision/meclicaLV Es.html. Gidel, Jan,2008.

[3] S. F. Gibson, "3d chainmail: A fast algorithm for deforming volumetric ob

jects," in Proceedings of the 1997 Symposium on Intemctive 3D Graphics, pp. 149

154, 1997.

[4] ProcStar III Data book Version 1.0, Gidel Ltd., Jan 2008.

[5] K. Salisbury, F. Conti, and F. Barbagli, "Haptic rendering: Introductory con

cepts," IEEE Computer Graphics and Applications, vol. 24, no. 2, pp. 24-32,2004.

[6] M. Srinivasan and C. Basdogan, "Haptics in virtual environments: Taxon

omy, research status, and challenges," Computers and Graphics, vol. 21, no. 4,

pp. 393-404, 1997.

[7] S. D. Laycock and A. M. Day, "A survey of haptic rendering techniques,"

Computer Graphics Fomm, vol. 26, no. I, pp. 50-65,2007.

118

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

[8] O. S. Lanru Jing, Fundamentals of Discrete Element Methods for Rock Engineering:

Theory and Applications. Elsevier, August 2007.

[9] J. Shewchuk, "An introduction to the conjugate gradient method without the

agonizing pain," in Technical report, School of Computer Science, Carnegie Mellon

University, 1994.

[10] Y. Zhuang, Real-time simulation of physically realistic global deformations. PhD

thesis, 2000. Chair-John Canny.

[11] U. Meier, O. Lpez, C. Monserrat, M. Juan, and M. Alcaiz, "Real-time de

formable models for surgery simulation: A survey," Computer Methods and

Programs in Biomedicine, vol. 77, no. 3, pp. 183-197,2005.

[12] A. Nealen, M. Muller, R. Keiser, E. Boxerman, and M. Carlson, "Physically

based deformable models in computer graphics," Computer Graphics Forum,

vol. 25, no. 4, pp. 809-836,2006.

[13] A. S.Misra and K.T.Ramesh., "Force feedback is noticeably different for linear

versus nonlinear elastic tissue models," Proceedings of the Second Joint Euro

Haptics, pp. 519-524, 2007.

[14] 1. peterlik, Haptic Interaction with Deformable Objects. PhD thesis, 2006. PhD

Thesis Proposal.

[15] S. Gibson and B. Mirtich, "A survey of deformable modeling in computer

graphics," in Technical Report No. TR-97-19, Mitsubishi Electric Research Lab.,

Cambridge, MA, 1997.

119

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

[16] D.C.Popescu and M.Compton., "A model for efficient and accurate interac

tion with elastic objects in haptic virtual environments," GRAPHITE 03: Pro

ceedings of the 1st internat. con! on Computer graphics and interactive techniques,

pp.245-250,2003.

[17] H.-W. Nienhuys and A. F. van der Stappen, "Combining finite element defor

mation with cutting for surgery simulations," EUROGRAPHICS 2000, 2000.

[18] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, "Elastically deformable

models," in Proceedings of the 14th Annual Conference on Computer Graphics and

Interactive Techniques, pp. 205-214, 1987.

[19] K. Waters and D. Terzopoulos, "A physical model of facial tissue and muscle

articulation," in Proceedings of the First Conference on Visualization in Biomedical

Computing, pp. 77-82, 1990.

[20] J. C. Platt and A. H. Barr, "Constraint methods for flexible models," Computer

Graphics (SIGGRAPH88), vol. 22, no. 4, pp. 279-288, 1988.

[21] H. Delingette, S. Cotin, and N. Ayache, "A hybrid elastic model for real-time

cutting, deformations, and force feedback for surgery training and simula

tion," Visual Computer, vol. 16, no. 8, pp. 437-452, 2000.

[22] H. D. Stphane Cotin and N. Ayache., "Efficient linear elastic models of soft

tissues for real-time surgery simulation," in Technical report, INRIA, 1998.

[23] Y. Lee, D. Terzopoulos, and K. Walters, "Realistic modeling for facial anima

tion," in Proceedings of the 22nd Annllal Conference on Computer Graphics and

Interactive Techniques, pp. 55-62, 1995.

120

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

[24] J. K. H. P K. Z. P K. Bhat, C. Twigg and S. Seitz., "Estimating cloth simu

lation parameters from video," ACM SIGGRAPH/ Eurographics Symposium on

Computer Animation, pp. 37-51, 2003.

[25] G. S. G. Bianchi, B. Solenthaler and M. Harders., "Simultaneous topology and

stiffness identification for mass-spring models based on fern reference defor

mations," MICCAI 2, pp. 293-301, 2004.

[26] C. Basdogan and M. Srinivasan, "Haptic rendering in virtual environments,"

K. Stanney (Ed): Virtual Environments HandBook, Lawrence Erlbawn Associates,

pp. 117-134,2002.

[27] D. James and D. K. Pai, "A unified treatment of elastostatic and rigid con

tact simulation for real time hap tics," Haptics-e, the Electronic Journal ofHaptics

Research, vol. 2, no. I, 2001.

[28] M. Bro-Nielsen, "Finite element modeling in surgery simulation," Proceedings

of the IEEE, vol. 86, pp. 490-503, March 1998.

[29] Y. Fung., A First Course in Continuum Mechanics. Prentice-Hall, Englewood

Cliffs, N.J., 1994.

[30] C. K. P Boresi, A. P, Elasticity in Engineering Mechanics. Wiley, 2000.

[31] J. Raamachandran, Boundary and Finite Elements. Narosa Publishing House,

New Dehli., 2000.

[32] K. J. Bathe, Finite Element Procedures. Prentice Hall, 1996.

121

M.A.sc. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

[33] S. P. Jian Zhang and J. Dill, "Haptic subdivision: an approach to defining

level-af-detail in haptic rendering," in Proceedings of the 10th Symp. On Haptic

Interfaces For Virtual Envir. and Teleoperator Systs., 2002.

[34] M. C. Cavusoglu and F. Tendick, "Multirate simulation for high fidelity haptic

interaction with deformable objects in virtual environments," in Proceedings

of the 2000 IEEE International Conference on Robotics and Automation, pp. 2458

2465,2000.

[35] Y. Zhuang and J. Canny, "Haptic interaction with global deformations," in

Proceedings of the IEEE International Conference on Robotics and Automation,

pp. 2428-2433, 2000.

[36] M. deLorimier, Floating-Point Sparse Matrix-Vector Multiply for FPGAs. Califor

nia Institute of Technology Pasadena, California, 2005. Master's Thesis.

[37] X. Wu, T. G. Goktekin, and F. Tendick Lecture Notes in Computer Science,

vol. 4791, pp. 124-133, 2004.

[38] Z. A. Taylor, M. Cheng, and S. Ourselin, "Real-time nonlinear finite element

analysis for surgical simulation using graphics processing units," Medical Im

age Computing and Computer-Assisted Intervention, vol. 4791, pp. 701-708,2007.

[39] G. C. L. Buatois and B. Lvy, "Concurrent number cruncher an efficient

sparse linear solver on the gpu," in High Pelformance Computation Conference

HPCC07, Houston: United States (2007), 2007.

122

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

[40] D. G. R. STRZODKA and S. TUREK "Performance and accuracy of hardware

oriented native-, emulated- and mixed-precision solvers in fem simula

tions," in INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND

DISTRIBUTED SYSTEMS, 2006.

[41] E. S. D. G. W. J. G. Yousef Elkurdi, David Fernandez ., "Fpga architecture and

implementation of sparse matrixvector multiplication for the finite element

method," in Computer Physics Communications(178), pp. 558-570, 2008.

[42] R. Mafi, Hardware-based Parallel Computing for Real-time Simulation of Soft

object Deformation. DEPARTMENT OF ELECTRICAL and COMPUTER ENGI

NEERING AND THE SCHOOL OF GRADUATE STUDIES OF MCMASTER

UNIVERSITY, 2008. Master's Thesis.

[43] L. Zhuo and V. K. Prasanna, "Sparse matrix-vector multiplication on fpgas,"

in Proceedings of the 13th International Symposium on Field-Programmable Gate

Arrays, pp. 63-74,2005.

[44] J. Sun, G. Peterson, and O. Storaasli, "Sparse matrix-vector multiplication de

sign on fpgas," in Proceedings of 15th Annual IEEE Symp. on Field-Programmable

Custom Computing Machines, pp. 349-352, 2007.

[45] P. B. Barry Smith and W. Gropp, Domain Decomposition. Cambridge University

Press, 2004.

[46] X. Wu and F. Tendick, "Multigrid integration for interactive deformable

body simulation," in S. Cotin and D. Metaxas (Eds.): ISMS 2004, LNCS 3078,

©Springer-Verlag Berlin Heidelberg 2004, pp. 92-104.

123

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

[47] U. Meier and R Eigenmann, "Parallelization and performance of conjugate

gradient algorithms on the cedar hierarchial-memory multiprocessor," in As

sossiations for computing machinery (ACM) Issue 7 Vol.26, pp. 178-188, 1991.

[48] B. M. B. M. K. E. A. K. Ramin Mafiy, Shahin Sirouspoury and N. Nicoliciy, "A

parallel computing platform for real-time haptic interaction with deformable

bodies," in IEEE Transactions on Haptics, Submitted, 2009.

[49] O. C. Zienkiewicz and R L. Taylor, The Finite Element Method, Vol. 1, 4th Edi

tion. McGraw-Hill Book Company, 1989.

[50] RW.Clough, "The finite element in plane stress analysis," in Proc.2nd ASCE

Con! on Electronic Computation, Pittsburg, Pa., 1960.

[51] RW.Clough, The Finite Element method in structural machanics, Chapter 7 ofstress

analysis. Wiley, 1965.

[52] F. L. Stasa, Applied Finite Element Analysis for Engineers. Holt, Rinehart, and

Winston, 1985.

[53] L.Collatz, The numerical treatment of differential equations. Springer-Verlag,

1966.

[54] S. H. Crandall, Engineering Analalysis. McGraw-Hill book Company, New

York, N.Y., 1965.

[55] G. Karniadakis and R K. II, Parallel Scientific Computing in C++ And Mpi: A

Seamless Approach to Parallel Algorithms and Their Implementation. Cambridge

University Press, 2003.

124

M.A.5c. Thesis - B.Mahdavikhah McMaster - Electrical Engineering

[56] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition. SIAM, 2003.

[57] K. H. Huebner, D. L. Dewhirst, D. E. Smith, and T. G. Byrom, The Finite Element

Method for Engineers, 4th Edition. Wiley, 2001.

[58] Stmtix III Device Handbook, Volume I, Altern Corporation, July 2008.

[59] J.1. f. C. S. K. L. Wong, "Iterative solvers for system of linear equations," 1997.

[60] G. G. F. Smailbegovic and T. D. U. S. Vassiliadi, Computer Engineering Labo

ratory, "Sparse matrix storage format," In Proceedings of the 16th annual work

shop on circuits, systems and signal processing, pp. 445-448, Nov,2005.

[61] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris, "Un

derstanding the performance of sparse matrix-vector multiplication," in Pro

ceedings of the 16th Euromicro Conference on Parallel, Distributed and Network

Based Processing (PDP 2008), pp. 283-292, 2008.

125

