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Abstract

In this thesis, we discuss a scheme for simulating the real time quantum quench dy­
namics of interacting quantum spin systems within the positive-P formalism. As model
systems we study the transverse field Ising model as well as the Heisenberg model un­
dergoing a quench away from the classical ferromagnetic ordered state. The connection
to the positive-P formalism, as it is used in quantum optics, is established by mapping
the spin operators on to Scwhwinger bosons. In doing so, the dynamics of the interacting
quantum spin system is mapped onto a set of stochastic differential equations (SDEs) the
number of which scales linearly with the number of spins, N, compared to an exact solution
through diagonalization that in the case of the Heisenberg model would require matrices
exponentially large in N. This mapping is exact and can be extended to higher dimensional
interacting systems as well as to systems with an explicit coupling to the environment.
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(1.1.1)

Cl
Introduction

1.1 Motivation

A central model in condensed matter physics is rooted in the celebrated Heisenberg
Hamiltonian [1]:

fI = -J L Si.Sj,
(i,j)

which describes the phenomena of quantum magnetism arising from exchange interactions
between spins in insulating solids. Despite its deceivingly simple form, the Heisenberg
model is a very successful one1. In accordance with the predictions of eq. 1.1.1, antiferro­
magnetic (J < 0) and ferromagnetic (J > 0) ordering have been experimentally observed
in all dimensions and different geometries, such as in Kagome [2,3] or square lattices [4,5]
to name a few.

Due to the macroscopic number of spins, N, in real materials however, solving eq. 1.1.1
(even in 10) exactly, from a theoretical point of view, is a difficult problem because of
the exponential scaling of the Hilbert space. Considering that the number of spins in a
typical solid is to the order of Avogadro's number: N /"oJ 1023, a material consisting of
spin-~ particles would have 2N eigenstates, requiring resources that cannot be met even
with today's most powerful computers. As a result of this predicament, numerous meth­
ods have been developed over the years in a bid to circumvent it. For such lattice-based
models, the most straightforward and brute force approach is by way of exact diagonal­
ization [6-8]. While this method has been developed significantly, exact diagonalization
is still only able to simulate systems of relatively small sizes (/"oJ 20), due to the aforemen­
tioned Hilbert space problem. Standard quantum Monte Carlo techniques yield results
only in the imaginary time domain and requires an explicit analytic continuation to access
real times, a notoriously difficult procedure. In recent years, methods rooted in the den­
sity matrix renormalization group (DMRG) such as TEBD [9] and t-DMRG [10] have been

lsee table 1.1 for variants of the Heisenberg model2 arising from eg. 1.1.1
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developed to study real-time dynamics, but are applicable only to one-dimension. Most
recently, the infinite size TEBD (iTEBD) has been tuned to yield results for the time depen­
dence of the transverse-field Ising model (TFIM) out to surprisingly large times of order
tI In '" 6 - 10 [11]. How well such methods will perform in higher dimensions or in the
presence of a coupling to the environment is presently unclear.

Name I Exchange interaction I Hamiltonian: H:

(1.1.2)

Ising Ix=Iy=O L(i,j) lzSfSj

XXX (isotropic) Ix = Iy = Iz = I
[ ~x ~x ~y ~y ~z ~z]

L(i,j) I Si Sj + S; Sj + Si Sj
[~~ 1 C+ ~ ~ ~+)]=L(;,j) I SfSj +"2 S; Sj + SiSj

Xy Iz = 0
[ ~x ~x ~y~y]

L(i,j) lxS liSj + IySi Sj

xxz Ix = Iy = 6, Iz = I [ ~ ~ ~ C+ ~ ~ ~+)]L(;,j) ISfSj +"2 Si Sj + Si Sj

XYZ (anisotropic) Ix -I=- Iy -I=- Iz r ~x ~x ~rY ~z ~T1L(;,j) Ix S; Sj + IyS i Sj + IZS i Sf
Table 1.1: Different HeIsenberg spm models.

In this thesis, we present a novel idea of overcoming the Hilbert space problem by
employing quantum phase space methods [12]; traditionally tailored towards quantum
optics systems. The upshot of this method is that it in principle allows us to solve both
the real time and imaginary time dynamics for macroscopic system sizes in all dimensions
and geometries, potentially surpassing other traditional techniques mentioned above. The
essence of quantum phase space methods is to rework the complicated dynamics of a quan­
tum mechanical Hamiltonian in such a way that a classical interpretation of the physics
arises. As an example, consider the pioneering quantum phase space method discovered
by Wigner [13, 14] in 1960, known as the Wigner representation. Wigner derived a distri­
bution function, fw called the Wigner function:

1 ]CO iSS
fw(p, q) = - efiPS (q - -Il/J) (l/Jlq + - )ds

27Tn -co 2 2

which had certain characteristics of a classical probability in the sense that

L:fw(p,q)dp = 1l/J(q)12

L:fw(p,q)dq = 11ji(p)12
.

L:fw(P,q)dpdq = 1.

(1.1.3)

(1.1.4)

(1.1.5)

are obeyed [15], where 11ji(p) 12 yields the probability distribution in momentum space and
11ji(q) 1

2 yields the probability distribution in position space. In the Wigner representation,

2



CHAPTER 1. INTRODUCTION

fw (p, q) behaves almost like a joint probability distribution in the momentum, p and posi­
tion, q analogous to a classical canonical ensemble probability distribution. We say almost
because the Wigner function can take on negative values as well and therefore cannot be
interpreted strictly as a phase space probability distribution. Nonetheless, it is a noble
attempt at bridging the gap between classical and quantum physics.

The quantum phase space method that we will be using howevel~ is known as the
positive-P representation (PPR) [16], discovered by Drummond and Gardiner in 1980. The
PPR, like Glauber-Sudarshan's P representation is based upon the bosonic coherent states
which were fashioned by Roy J. Glauber[17] as the most 'classical', quantum mechanical
state. In the PPR, we obtain a classical statistical interpretation of quantum mechanics in
the sense that expectation values of normal-ordered operators3 are replaced by the equiv­
alent statistical expression

(6(ilt ,il)) tr [p6(il,ilt )] (1.1.6)

JO(lX,lX+)P(lX,a+)d2 lXd2a+, (1.1.7)

where P(a, a+) is the positive-P distribution function that plays the role of a joint probabil­
ity distribution function for the complex variables a and lX+. This is made possible by the
existence of correspondence relations which allows one to map the bosonic operators: il, ilt
on to a pair of independent complex variables, a,lX+ (for the single mode case). Normal
ordered operators such as 6(ildg , il) are then mapped on to complex functions: 6(a+, a) in­
stead. Instead of solving the dynamics of the probability distribution function, P(a,lX+) (as
in the Wigner distribution), it is possible to simulate the system dynamics via Ito Stochastic
Differential equations (SDEs) instead.

This is done in the following way. Using the correspondence relations in an equation
of motion for the density operator generally allows one to obtain a Fokker-Planck equation
(FPE). According to the theory of Stochastic calculus [18] then, the FPE can in turn be equiv­
alently described by a set of N, coupled Ito stochastic differential equations (SDEs). This
reduces the dimensionality of the problem to one that scales linearly with N, thereby over­
coming the Hilbert space problem and making many-body physics tractable. The beauty
of utilizing SDEs is that, in the limit of an infinite number of trajectories (I1traj), stochas­
tic averaging of complex phase space functions corresponds to the statistical expression in
eq. 1.1.7 and converges to the exact quantum mechanical expectation value, i..e

tr [p6(il,ilt )] = lim ((O(a,lX+))), (1.1.8)
IltTnj~OO

where ((.) ) denotes a stochastic average and assuming we are dealing with normal-ordered
operator observables. Calculating complicated quantum mechanical expectation values
now reduces to the task of trivial averaging.

The PPR has been traditionally applied to quantum optics applications [19,20], espe­
cially the realm of Bose-Einstein condensates (BECs) [21-23] of late. However, it has not

3This means operators of the form (at)1II (a)" , i.e. all ats appear on the left and all as appear on the right.
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yet to our knowledge been applied to simulating the dynamics of condensed matter spin
systems such as the Heisenberg model. We have therefore picked two 10 simple models
as an initial test bed for this novel idea, i.e. (i) the transverse-field Ising model (TFIM):

A \' A Z A Z \' AX
Ho = - L..JJSiS j -hL..JS;

(i,j) i

and (ii) the transverse field-XXZ anisotropic model (see table 1.1 for other possible models
as well):

(1.1.10)

Instead of viewing (i) and (ii) as materials being described by a single Hamiltonian, Ho

and observing the evolution of the system under the latter, we will take the alternate view
that eq. 1.1.9 and eq. 1.1.10 represent quantum quench systems [24]. That is to say, we wish
to study the dynamics of a system after subjecting it to a sudden change of a parameter
of the system, where by "a sudden change" we mean that this change occurs on a time
scale much shorter than the relevant time scale of the system. Physically this means that
at t < 0, the system is described by some initial Hamiltonian, Hi and at t ~ 0 allowed to
evolve under a different Hamiltonian, Hf . In such quench systems, it is of interest to see if
equilibration (thermalization) into a new eigenstate of Hf occurs or if new nonequilibrium
dynamics arises. Although it is common practice to begin the system in an eigenstate of
the the initial Hamiltonian, it is certainly not essential [25].

If we assume the initial Hamiltonian as an Ising chain, then the parameters we would
like to tune are the transverse magnetic field, h and the measure of anisotropy,/:>;. Such
control over the system is not just theoretical, and in fact can be achieved experimentally
with ultracold two level atoms in optical lattices [26]. These experiments are currently
under development [27, 28]. Using the PPR, we will show that it is possible to simulate the
quantum quench dynamics of (i) and (ii) by employing stochastic differential equations.
We will concern ourselves with both FM J(> 0) and AFM (J < 0) material prepared in
the either the FM ground state: Itt··· t) or the classical AFM Neel state: I t.!-t.!- ... t.!-)
respectively, and observe its dynamics after a magnetic field( (i) and (ii) ) and anisotropic
quench ((ii) only).

This thesis report is outlined as follows. For readers without any background in
stochastic differential equations (SDEs), it is recommended that a detour to appendix A
is made. We have written appendix A in such a fashion that it will provide the reader with
the mathematical background necessary to understand the details of this thesis. In chap­
ter 2, we present a thorough review of the PPR. We will answer the question: "What is the
PPR?" and go through the derivations and certain technical details of the formalism. In par­
ticular, we will show how a master equation can be converted to a FPE and in turn mapped
on a set of Ito SDEs which is our final goal. To reinforce these ideas, we will derive the SDEs
explicitly for the examples presented in [29] and [19]. In chapter 3, we introduce the idea of
Schwinger bosons which allows us to write spin operators in terms of bosonic operators,

4



CHAPTER 1. INTRODUCTION

in preparation for the PPR. We then demonstrate its validity by reproducing the results of
[30]. Finally, in chapter 4, we present our results for the quantum quench dynamics of the
TFIM and the isotropic Heisenberg model for the FM case, from stochastic simulations and
compare them with exact diagonalization results. For the case of AFM interactions, we
simulate the anisotropic Heisenberg model and compare the results once again with exact
calculations. The details of the derivations in chapter 4 have been relegated to Appendix B
and the numerical algorithm used is discussed in Appendix C. Lastly, the conclusion fol­
lows in chapter 5 where we summarize our results and discuss the future direction of our
research.

5
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c::-2------------
What is the positive-P
representation?

The main problem-solving tool or method that is used in our research is known as the
positive-P representation (PPR) and we dedicate this chapter to the technical details of its
derivation and application. The PPR is an exact quantum phase space method that was
originally developed to solve simple quantum optics problems [19, 20, 31] but has lately
shifted focus to the realm of many-body physics, in particular, simulating the dynamics
of Bose-Einstein condensates (BEes) [21, 23, 32]. For instance, Ghanbari et al [21] have
recently applied the positive-P representation to the imaginary time evolution of the Bose­
Hubbard model and successfully calculated finite temperature correlations for up to 11
lattice sites. In a different work [22] , Deuar and Drummond used the PPR to simulate
the real time dynamics of two colliding Bose gases, comprising of up to 150,000 atoms,
by measuring its first-order and second order correlation functions. The PPR has therefore
displayed evidence of being a very effective technique in simulating many-body systems
and deserves some scrutiny.

To provide the reader with some overall idea about the PPR, I will first provide a
summary of how the PPR is used, before indulging in the technical details. This will serve
as a guide for the material presented in this chapter so that is able to see the motivation of its
layout. For readers who are unfamiliar with stochastic differential equations (SDEs) then it
is recommended that a detour to Appendix A is made, where an abridged introduction to
SDEs is provided. This will help familiarize the reader with certain jargon and terminology
used in this branch of mathematics.

Broadly speaking, the PPR is the expansion of the quantum density operator, p, in
terms of bosonic coherent states. The benefit of doing so is that in this form, the equation
of motion for pmay take the form of a Fokker-Planck Equation (FPE) (see section A.1 ),
which can then be mapped onto a set of Ito SDES (see section A), that are more readily
simulated. This is the final goal of using the PPR i.e. being able to derive Ito SDEs that

7
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just as equivalently describe the quantum system, while requiring lesser degrees of free­
dom. This is clearly advantageous in simulating quantum many-body systems, which are
susceptible to the exponential Hilbert space problem. The reader should keep this central
theme in mind while reading this chapter.

In section 2.1, we will first review some properties of bosonic coherent states on which
the PPR is based on [17]. We have decided not to relegate this to an appendix section
for easy access during reading. Readers who are already familiar with bosonic coherent
states can skip ahead section 2.2. In section 2.2, we will review Glauber-Sudarshan's P­
representation which is the the predecessor of the PPR. There, we explain the pitfalls of
the P-representation and why the latter method does not always yield SDEs. This provides
the motivation for the PPR where SDEs can always be derived. From section 2.3- 2.4, the
technical details of the PPR will be examined thoroughly. Finally, we conclude the chapter
by explicitly deriving SDEs for two simple quantum systems, namely the damped har­
monic oscillator [29] and the single-mode interferometer [19], in order to make the PPR
more lucid. Simulation results for the latter example will be showed as well.

2.1 Review of Coherent states

Before we dive into the details of the PPR, let us review some properties of bosonic
coherent states [33] which will be instrumental in our understanding of the method. In
this section, we will only cover certain properties of coherent states that are necessary to
understand the details of the PPR. We would like to point out however, that there are many
more properties [29] that have been omitted (for brevity) but this by no means implies that
they are in general unimportant.

1. A coherent state is a quantum mechanical state that is labeled by a complex num­
ber, a E C so that every point in the complex plane represents a unique coherent
state 1. The mathematical definition of a normalized coherent state has the following
equivalent forms:

I. -t
la) = e- 1a aeaa 10), (2.1.1)

which tells us that it can be generated by the action of the annihilation operator at on
the vacuum state 10) or alternatively:

1. 00 all

la) = e- 1a a I~ JnT ln ), n= 0,1,2, ... ,

which expresses it as a superposition of Fock or number states:

2. It is interesting to note that coherent states are often described as the "most classical"
quantum mechanical states as they are minimum uncertainty states. What we mean
by this is that they minimize the Heisenberg uncertainty product, i.e.

IThis is analogous to a continuous position state where every point on the real line represents a position basis
state.

8
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(I;.,x) (I;.,p) = ~, (2.1.3)

where expectation values are taken with respect to IIX) and the position operator, x
and momentum operator ptake the usual definitions:

x= J n (a + at)
2mw

and
A . [2mW (A At)P=lV----,;z a-a.

3. A Coherent state is the eigenfunction of the destruction operator

with a complex eigenvalue IX E C

(2.1.4)

(2.1.5)

(2.1.6)

4. The set of Coherent states are non-orthogonal, which implies that there is a redun­
dancy and we do not need every single Coherent state in the complex plane to form a
complete basis. Using eq. 2.1.2, the overlap of two states IIX) and 1,8) can be calculated
to be

(2.1.7)

or

(2.1.8)

unlike complete orthogonal basis states. For example, if we work with the position
basis (xix') = b(x - x') and every single state on the real line is necessary to span the
Hilbert space.

5. The Coherent states are overcomplete and so an integration of all Coherent states
over the entire complex plane does not yield the identity, instead:

(2.1.9)

which can be seen as a consequence of the property of non-orthogonality in eq. 2.1.7.

6. Using a Coherent state basis, it is possible to express any operator in terms of just
diagonal terms i.e. any operator is determined by its expectation value in all Coherent
states. We can show this by using eq. 2.1.2 to calculate

(2.1.10)

9
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which upon simple differentiation with respect to a: and a:* gives

(2.1.11)

Thus the matrix elements of any operator, t can be expressed in terms of the diagonal
elements of t in the Coherent state basis.

2.2 Glauber-Sudarshan's P-representation

The P-representation can be thought of as the predecessor of the PPR and was origi­
nally developed in 1963 by 2005 Nobel Prize winner, Roy J. Glauber2 [33,34]. It is therefore
worthwhile to spend some time on it as the ideas presented are very analogous to the PPR.

In describing quantum systems, what we are interested in particular, is the density
operator, p as it contains all the necessary information about the system. According to
property 6 in section 2.1, the diagonal matrix elements of any operator in a Coherent state
basis, are all we need to span the operator. Using this property then, we can simply expand
p in terms of a sum of diagonal matrix elements using some distribution function P(a:, a:*):

(2.2.1)

This representation of p is known as the Glauber-Sudarshan P-representation. The benefit
in using the P-representation is in calculating expectation values of normal-ordered opera­
tors as they take the trivial form:

tr(patpaq)

tr (1 d2a:1a:) (a:IP(a:, a:*)atpaq)

1d2a:P(a:,a:*) (a:latPaqla:)

1d2a:P(a:,a:*)a:*Pa:q, (2.2.2)

which makes it tempting to interpret P(a:,a:*) as a probability distribution function, i.e.
P(a:) = (a:lpla:) being the probability of the system occupying the state Ia:). Furthermore,
P (a:, a:*) is normalized as well:

2The nobel prize was attributed to his contribution to the quantum theory of optical coherence

10
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1d2a(ala)P(a)

tr (1 d2ala) (aIP(a))

tr(p)

I, (2.2.3)

where we used the normalization of the trace of p. Howevel~ this interpretation must be
made with reservation. Because of the overcompleteness of the Coherent states, P(a, a*)
is not unique. It is therefore not strictly positive and may even take on negative values, in
which case, it would be incorrect to interpret it as a probability distribution nmction. In
fact, if we were to calculate (alpla) explicitly, we see that:

(alpla) = 1d2Ae-IA-aI2 P(A) (2.2.4)

which implies that P(a, a*) is not the probability of being in a Coherent state la) contrary to
our intuition (since e- 1A - a /

2
is not equal to a delta function: b(A - a)). The P-representation

therefore may prevent us from having a classical statistical interpretation of quantum me­
chanics as seen in eq. 2.2.2, which is the central theme of quantum phase space methods.

2.3 The positive-P representation

In 1980 however, Drummond and Gardiner [16] formulated the positive-P represen­
tation of the density operator which circumvents the problems associated with the P­
representation. Broadly speaking, they expanded the density operator in terms of off­
diagonal elements using the Coherent state basis, effectively doubling the phase space
involved, i.e.:

P= Jd2ad2a+ 1~/a~~:I~*)1 P(a,a+) = 1d2ad2a+ A(a,a+)P(a,a+), (2.3.1)

where A(a,a+) = I({a~rl~*)/ is called the projection operator. While previously in the P­
representation we integrated over one complex variable a, in the positive-P representation
we integrate over two independent complex variables, a and a+. The upshot of this is
that as long as a distribution for the P-representations exists, a corresponding distribution
given by

P( +) = _1_ -la-a+'12/4( (a + (a+)*) IAI (a + (a+)*)) (232)
a, a 47[2 e 2 p 2' ..

does as well [16], where P(a,a+) is real and positive by definition (since Pis a positive­
definite operator) and can therefore be interpreted as a probability distribution3. This dou­
bling of phase space requires that normalization is now given by

3A proof of this can be found in [16] but we will Simply state it here

11
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(2.3.3)

(2.3.4)

instead. Also, the expression for the expectation value of normal-ordered operators is
slightly modified with the replacement IX' -+ IX+ in eq. 2.2.2, i.e.:

tr(patpaq)

Jd21Xd21X+ P(IX, 1X+)(IX+)PlXq,

and we see that just by doubling the phase space, we obtain a quantum phase space method
that allows us to calculate the expectation values of normal-ordered operators, in an anal­
ogous fashion to calculating averages of IX and IX+ statistically, using a probability distribu­
tion function P(IX, IX+).

2.3.1 Master equation to Fokker-Planck equation

The usefulness of the PPR is in calculating the dynamics of a quantum mechanical
system, which is equivalent to solving for the dynamics of the density operator, p. In
general, it is possible to solve for two kinds of dynamics, either in real-time or imaginary­
time (as long as an equation of motion for the latter exists). But for this thesis, we will focus
our discussion on real time dynamics only. The equation of motion for pof a closed system
in real time is given by Heisenberg's equation of motion:

d i [h ]dtP=-"f! H,p, (2.3.5)

and we will show how it is possible to obtain an FPE by using the PPR. This is done by
substituting eq. 2.3.1 into eq. 2.3.5 to obtain:

-~JP(IX,IX+) [H(a,at)A(IX,IX+)

- A(IX, IX+)H(a, aht )] d2IXd21X+, (2.3.6)

which is an operator equation that is usually difficult to solve exactly. We have also made
the additional assumption that our Hamiltonian: H(a, at) consists of bosonic annihilation
and creation operators, which is common in quantum optics systems. For the case that
this assumption holds, there exist correspondence relations which will allow us to write
the master equation in terms of a partial differential equation for IX and IX+ in place of an
operator equation for a and at.

In general, the master equation will contain combinations of aand at on the left hand
side (LHS) and right hand side (RHS) of the projection operator: A(IX,~) and we can in fact

12
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replace them with algebraic operations. The two straightforward correspondence relations
are given by the of action a and at on the LHS and RHS of A(IX,a+) respectively:

aA
(ala)) (a+* 1

(a+* IIX)
aA (2.3.7)

and

Aat IIX) ((a+* lat)
(a+* la)

a+A, (2.3.8)

which can be seen from a direct application of eq. 2.1.6. We can therefore replace a and at
by complex phase space variables IX and IX+ if they act on the LHS and RHS of A(a,IX+)
respectively. If this were not the case however, i.e. A(a, a+)a and atA(IX, IX+) then things
are a little less straightforward. To derive the correspondence relations for the latter case,
we will take our expression for A and use eq. 2.1.1 and the overlap relation in eq. 2.1.7 to
write it explicitly as:

IIX) I(IX+* I
(a+* IIX)

e(ail
t
-aa+) 10) (Olea+il .

We then differentiate eq. 2.3.9 with respect to IX

~ (e(ail
t
-aa+)) 10) (Olea+il

dlX
(at - a+)A(IX,IX+),

and carry out a simple rearrangement to get

t A + 0 AaA=(a +-)A.
oa

(2.3.9)

(2.3.10)

(2.3.11)

On the other hand, by taking the derivative with respect to IX+ and rearranging we get:

A 0 A

Aa = (IX + oa+)A. (2.3.12)

To summarize then, the correspondence relations for the positive-P representation are:

Aat IX+A.
aA IXA.

atA + 0 A

(IX + OIX)A

Aa
o A

(IX + oa+)A. (2.3.13)

13
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which can be thought of as its signature.

2.3.2 Fokker-Planck equation to stochastic differential equations

If were to substitute the correspondence relations. 2.3.13 into the Master equation in
eq. 2.3.5, it is generally possible to convert the latter to the form:

ap
at

(2.3.14)

where in the simple case of a single mode system described by a, we denote tX° = tX, tX l =

tX+. In other words, ex i is used to specify both tX and tX+. Already, this is reminiscent of
a Fokker-Planck equation (FPE) (see section A.2) and we can intuitively identify the first
term A(tX,tX+) as the drift vector and the second term: D(tX,tX+) as the diffusion matrix4 .

The next key step is an integration by parts of eq. 2.3.14 with the assumption that boundary
terms vanish. Let us just focus on the drift term for which an integration by parts yields:

(2.3.15)

A +] J 2 [ + 1 + A +]A(tX, tX ) la=bolllldnries + d tX P(tX, tX )A (tX, tX )A(tX, tX ) la+=bolll1dnries

-JJA(tX,tX+)a~JI [AJlP(tX,tX+)]d2tXd2tX+.

If we have an unbounded phase space, then the first two terms are evaluated at the regions
tX, tX+ --+ 00. We assume that these terms vanish at the boundariess, which is true when we
have a distribution function that decays much more rapidly than the growth of the term
All (tX, tX+)A (tX, tX+) as tX, tX+ --+ 00. The effect of integrating by parts then is the introduction
of a negative sign to the drift term and a transfer of derivatives away from the projection

A +.operator A(tX,tX ), l.e.:

JJP(tX,tX+)AII(tX,tX+) a~IIA(tX,tX+)d2tXd2tX+ = - JJA(tX,tX+) a~JI [AJlP(tX,tX+)] d2tXd2tX+.

(2.3.16)
If we repeat this process for the diffusion term, then we see that there is no change in sign
since we integrate by parts twice. However, the derivatives will also be removed from
A(tX,tX+) and transferred to the remaining terms: DIIVP(tX). The final result is eq. 2.3.14
being converted to:

4We will see later that this does indeed correspond to the drift and diffusion terms of an FPE
SWe will refer to these as boundary terms

14
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from which we can tell that at least one solution that exists is given by:

OP(IX,tt+) = [_~AlI(' +) ~ ~~Dlill(, +)] P(' +)ot OlXrl tt,lX + 2 OIXII Ott ll IX, IX tt, IX . (2.3.17)

Eq. 2.3.17 has the exact form ofthe Fokker-Planck equation (FPE) (see eq. A.U), which by
definition is the equation of motion for a probability distribution function. Since we have
established that P(IX,IX+) in section 2.3 does have the properties of probability distribution
then this interpretation is valid as long as 0 is symmetric and positive semi-definite. The
symmetricality of 0 depends on the form of the master equation whereas its positive semi­
definiteness is automatically guaranteed by use of the PPR as will be shown in section 2.3.3.

Solving the FPE analytically at this point is in general a difficult task and in fact only
feasible for a few special cases [35]. It is however possible to instead map the dynamics
of an FPE onto a set of Ito Stochastic differential equations (SDEs) [18] that are in general
easier to simulate. The equivalent SDEs that describe the evolution of our phase space
variables are given by (see Appendix A):

(2.3.18)

where B is called the noise matrix and is related to the diffusion matrix via the following
factoriza tion:

(2.3.19)

The condition imposed by eq. 2.3.19 grants us the freedom in constructing a noise matrix
with a variable second dimension, N w. Thus if 0 is an N x N matrix then B has dimensions:
N x Nw. Since in eq. 2.3.18, JA- = 1 ... 2N and v = 1 ... Nw, this in turn may result in more or
less independent Wiener increments than the dimensionality of the system, N. The terms
dWII(t) where v = 1 ... Nw are independent Wiener increments or white noise terms with
the statistical properties that

(dWIi(t))

(dWrl (t )dWII (t'))

o
6rlll 6(t - t')dt. (2.3.20)

and can be easily sampled using a gaussian distribution with mean 0 and variance I, i.e.
rv N (0,1) via the relation

dWIi(t) rv VdtN(O,I).

15
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Noise matrix factorization

In general for non-diagonal diffusion matrices, finding the noise matrix B that satisfies
eq. 2.3.19 is not an easy task if we do not have a purely diagonal diffusion matrix, especially
so for the multidimensional case. There are two ways to go about this. The first way utilizes
the symmetry of D, i.e. since

(2.3.22)

then we can write

(2.3.23)

and a straightforward decomposition is given by the square root of the diffusion matrix:

B=JD, (2.3.24)

which can be carried out using common symbolic manipulation software such as Maple or
Mathematica. While this is a straightforward means of calculating the noise matrix, it gen­
erally yields matrices with complicated expressions that makes calculating Stratonovich
correction terms6 a potentially difficult task.

The other method of factorization makes use of the ambiguity of second dimension of
B. Note that since D is an N x N matrix then any noise matrix of dimension N x Nw, will
preserve the dimensionality of D. With that being said, it is possible to break up D into Nc

constituents such that:

Nc

D = L D(i).
;=1

(2.3.25)

Of course, one should be strategic in choosing these constituents so that factorizing each
D(i) is a considerably easier task. Mathematically this means finding an N x N1v matrix,
B(i) so that D(i) = B(i)B(i)T. Using this strategy then, the total noise matrix is obviously
given by

(2.3.26)

since

6We will see why this is important later on.
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B(N,)T

B(l)B(l)T + B(2)B(2)T + ... + B(N')B(N,)T

D(1) + D(2) + ... + D(N,)

D (2.3.27)

as required. The benefit of using the square root factorization is that we only require N
noise terms (recall eq. 2.3.18), at the cost of a (usually) much more complicated expression

for the noise matrix. On the other hand, using the latter trick we end up introducing L N~)
noise terms which may be more than N. This increases the stochasticity of the simulations
and may result in larger sampling errors.

2.3.3 Positive-definite Diffusion matrix

As mentioned in section 2.3.2, it is essential for the diffusion matrix to be positive
semi-definite [16] in order to interpret eq. 2.3.17 as an FPE. Only then is it possible to obtain
equivalent Ito SDEs, and we will now show that the doubling of the phase space guarantees
this automatically.

Assuming the factorization of D(aY exists:

(2.3.28)

we can separate the drift vector and noise matrix into its real and imaginary parts explicitly

A(1t )

B(It)

Ax (lt) + iAy (lt)

Bx(lt) + iBy (lt)

(2.3.29)

(2.3.30)

where Ax, A y, Bx, By are real. We then make use of the analyticity of 1\(<<, «+) (see eq. 2.3.9)

7We will abbreviate (a, a+) with a where we see fit
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to make the replacement (where appropriate) i)~/1 H d~ H -idYt in eq. 2.3.17 to get:

JJP(IX) {(A~(IX) + iA~(IX))dlX}I + ~(BxB;

+iByB; + iBxB~ - ByB~)IIV(dlXlldIXV) } A(IX)d2 IXd21X+

JJP(IX) {(AI: (lX)dlXll +iA~(IX)dlX}I) + ~((B,B~)}lV(dlXlldIXV)

+i(ByB;)IIV(dlX}ldIXV) + i(BxB~)IIV(dlX}ldIXV)

- (ByB~Yv (dl\Y dIXV) } A(IX )d2IXd2
1X+

JJP(IX) {(A~(IX)d~ + iA~(IX)( -idYt)) + ~((BxB;)IIV(d~)(d~)

+i(B BT)IIV(-id}l)(dV) + i(B .BT)IIV(d")(-idV)yx y x xy x Y

-(ByB~)IIV( -idYtH -idYt))} A(IX)d2 IXd2
1X+

(2.3.32)

Integrating by parts and removing surface terms yields the following Fokker-Planck equa­
tion:

[
':'IX X () ':'IY A}I() 1 {':'IX ':'IX IICT VeT ':'IX ':'IY }leT VeT-o}lA

"
IX - 0/1 Y IX + 2: o}lovBx Bx + 20

"

ovBx By

+dYdYBy,'eTBVeT}] P(IX) (2.3.33)}I V Y .

Now in this form, the Fokker-Planck equation possesses a positive semi-definite diffusion
matrix in a four dimensional space whose vectors are

(2.3.34)

with drift vector
(2.3.35)

and diffusion matrix

18
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In this form, D(It) is explicitly positive semidefinite8 which is exactly what we wanted to
show, as long as we identify:

B(It) == [:; ~] (It).

The corresponding Ito stochastic differential equations can then be written as :

~ ( It x ) _ ( Ax(lt) ) + ( Bx(It).~(t) )
dt Ity - Ay(lt) By(It).~(t)

or in its more compact form

dlt ~at = A(It) + B(It).~(t),

where a~1) = ItF) + ia~1) = ax + iay and aF) = a~2) + ia~2) = at + iat.

2.4 Calculation of observables

(2.3.36)

The advantage of using SDEs is in the relative ease in calculating normal ordered ex­
pectation values. As mentioned in section 2.3.2, the calculation of quantum mechanical
normal ordered observables is given by the statistical expression in eq. 2.3.4:

(2.4.1)

From the correspondence relations in eq. 2.3.13, we see that there is a direct relation be­
tween the bosonic operators: at and awith a+ and a, respectively. It is no surprise then that
in the limit of an infinite number of trajectories (ntraj), we can get an exact correspondence
between the quantum mechanical average and the stochastic average of their respective
phase space variable functions, i.e.:

where

(atpaq) = lim (((a+)paq)),
ntl'nj-tco

(2.4.2)

ntraj

(((a+)Paq)) = L [(a+)ral] (2.4.3)
1=1

and i labels the individual realization of each trajectory of the phase space function (a+)P aq.
The dynamics of any normal ordered operator can therefore be monitored by numerically
integrating SDEs of the form 2.3.18 and calculating simple stochastic averages. Although
the exact correspondence is achieved in the limit that the total number of trajectories tends
to infinity, in practice it is usually sufficient to use rv 104 - 107 trajectories, depending on
the nature of the problem.

8An n x 11 real matrix, M is said to be positive semidefinite if xT Mx 2: afor aU x E JR. One can show that D(lt)
is positive-semidefinite by showing that xTOx 2: a for any x
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2.5 Example 1: The damped harmonic oscillator

So far, we have carried out a rather general discussion of the PPR with a focus on
the technical details and establishing the proofs of the validity of the formalism. Deriving
SDEs is a fairly standard process and can in fact be broken down into the few steps below:

1. Start with a master equation describing the system of interest.

2. Express p in terms of off-diagonal Coherent state projection operators, A.

3. Substitute the correspondence relations in eq. 2.3.13 into the new master equation

4. Integrate by parts once and ignore boundary terms to obtain an FPE

5. Factorize the diffusion matrix.

6. Map FPE on Ito SDEs

Bearing these points in mind, we will now carry out an explicit derivation of the SDEs
describing a damped harmonic oscillator [29] with frequency, woo Because this is an open
quantum system, the master equation is no longer just given by heisenberg's equation of
motion for p. There will be additional terms in the master equation that take into consid­
eration the damping effects caused by the oscillator's interaction with a bosonic heat bath.
The master equation is given by [29]

dp
dt

-iwo[a\l,p] + ~(2apat - atap - pata)

+,yn(apat + atpa - atap - paat ), (2.5.1)

where 'Y is the damping rate and n is the average number of particles in the heat bath.
Upon substituting the positive-P representation for the density operator, eq. 2.5.1 becomes

JJ{-iwo(ataA - aatA) + ~(2aAat - ataA - Aata)

+'Yn(aAat + atAa - ataA - Aaat )} P(ex)d2 IXd21X+. (2.5.2)

Now if we recall the correspondence relations for A in eq. 2.3.13, we can show the obvious
relations

and

ataA = IX (atA) = IX( OOIX + IX+)A

Aata = IX+ (Aa) = 1X+(_o_ + IX)A
OIX+

aAat = (IX++ OOIX) (Aa) = (IX++ (
0
)(0:+ +IX)A

20
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AAAt _ (d ) (A At) _ (d ') + AAaa - dIX+ + IX Aa - dIX+ + IX IX A, (2.5.6)

which are all the operator combinations that occur in eq. 2.5.1. If we then substitute eq. 2.5.3
to eq. 2.5.6 into eq. 2.3.14, we get the following differential equation:

dp
dt

(2.5.7)

(2.5.8)

(2.5.9)

(2.5.10)

which has the form of eq. 2.3.14 before carrying out partial integration. Note that in
eq. 2.5.9, we have carried out the differentiation of the terms IXA and IX+ A in order to trans­
fer all derivatives onto A. This is a necessary step so that partial integration of eq. 2.5.10
will transfer all derivatives away from A, i.e.

21



Ray Ng - MSc. Thesis

(2.5.11)

with an off-diagonal diffusion matrix

0= [ 0_ I'fl]
I'n 0

that has a trivial noise matrix factorization

(2.5.13)

(2.5.14)

This then allows us to write the corresponding SDEs for IX and IX+ (see eq. 2.3.18) as a
system of linear equations:

(2.5.15)

or explicitly as

dlX -(~+iWO)lXdt-fif(dWl(t)+dW2(t)) (2.5.16)

dlX+ -(~-iWO)IX+dt-fif(dWl(t)-dW2(t)), (2.5.17)

where the white noise terms are delta-correlated in the usual sense since (dWj(t )dWj(t')) =
dt<5(t - t')bjj and (dWj(t)) = O.

2.6 Example 2: single-mode interferometer

For the second example, we will derive the SDES for a single mode interferometer [19]
and present some results from actual numerical simulations. On a side note, this was our
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first exposure to the PPR as we attempted to reproduce the results of [19]. We will not
derive the SDEs in a rigorous way as it is simply a repetitive process that has already been
carried out in section 2.5. Instead, the key equations will be stated without proof so as not
to lengthen this thesis unnecessarily.

The interferometer can be modeled as a harmonic oscillator of frequency w, damped
by linear and non-linear couplings to zero-temperature reservoirs. In the interaction pic­
ture, this is described by the master equation

(2.6.1)

where K is the nonlinear decay rate and 'YK is the linear damping rate. 'Y therefore de­
scribes the ratio between the linear and non-linear damping rates and can be thought of as
a measure of nonlinearity. Once again, we will follow the usual prescription and use the
positive-P representation of the density operator in eq. 2.3.1 to obtain the following FPE9 :

(2.6.2)

The diffusion matrix takes the convenient diagonal form:

[

-KiX2
0= o

with the obvious square root factorization

(2.6.3)

The SDEs that correspond to the Fokker-Planck in eq. 2.6.2 are then given by:

(2.6.4)

dlX (2.6.5)

(2.6.6)

where dWi(t) are Wiener increments. Now for this system, the observable that we are
interested in is the average occupation number of the photon modes: fi = atawhich can be
represented by the function (of phase space variables) n(IX,IX+) = IX IX+. In accordance with

9We will omit the details of the derivation since it is the same as that in section. 2.5)
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the rules of Ito calculus, we can derive an SDE for the variable 11, i.e.

dn dlXlX+ + df31X + dlXdf3
1 z . I

-K(2'1X + f31X )f3dt + I(K)11Xf3dW1(t)

1 z . I
-K( 2,f3 + 1Xf3 )lXdt + I(K) 1 f3lXdWz(t)

-2K (~,n+ nz) dt + iVJ(n (dW1(t) + dWz(t)) . (2.6.7)

In this example, we are lucky in that the SDE for n decouples nicely so that instead of

2,---,----.---.,----,------,---,------,---,---.-------,
«n» --

Sample tra~ 1 __ uu_

Sample IraJ 2 -------­
Sample traj 3 ." ..

Steady state value _._._.-

1.5

\
': ... >If(~:~~;;!~?=~~::::;~~;~~2~¢;,;~'".\>
-0.5 '-----'-----'----'-----'----'----'------'----'----'-------'

o 2 3 4 5 6 7 B 9 10

tau

Figure 2.1: Ensemble average of particle number Re(ll) vs T = 2Kt (solid line) using SDE. 2.6.7 and 15000 trials. Simulation
parameters: ')' = 1.0, dt = 0.02, Nx(O) = 2, Ny(O) = O. Three independent stochastic trajectories (non-solid lines)
are shown with the steady state value given by U,e horizontal line at O.

simulating SDEs for both IX and f3, we only have to simulate one. This is a luxury that does
not usually happen but is not essential, just a matter of convenience. In fact, we could
have just as well derived an Ito SDE for n for the damped harmonic oscillator example in
section 2.5. However, this would have not resulted in a standalone SDE in 11 and therefore
doing so serves no purpose.

In eq. 2.6.7, terms that arise from multiplying the differentials: dlXdf3 scales greater than
dt and does not produce significant terms. It would appear that the rules of ordinary calcu­
lus are obeyed but we would like to emphasize that this is just a coincidence. In general, the
extra dlXdlX+ product may result in additional terms in our Ito SDE and cannot be naively
discarded. For instance, if we get terms that rv dWi (t) ex Idt or rv dWl (t) ex dt then the lat­
ter will modify the original drift terms. For now, we will look at the results obtained from
our simuiation10 for the photon number (PI) in fig. 2.1 which plots the stochastic average

IOExplicit details on the actual numerical algorithm can be found in [19]. The algorithm is wUorh.mately out-
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of (n) = ((IX~)) using 15000 independent trajectories.

In [19], the steady state values when l' < 2 is given by

1-1'
(n(t))ss = -2-

and

(n(t))ss = O.

(2.6.8)

(2.6.9)

when l' ~ 2. We will use these steady state values as a guide that our simulations are
producing correct results. In fig. 2.1, we show three different trajectories as well as the
ensemble averaged result for the case l' = 1.0. Taken individually, independent trajectories
exhibit wild fluctuations and look different from each other, even though they do produce
the expected qualitative behavior. An average of 15000 trajectories however, produces a
smooth curve and the correct asymptotic behavior as predicted by eq. 2.6.8. This illustrates
the idea of stochastic averaging and how it can be used to calculate quantum mechanical
expectation values.

2.7 Generalization of the positive-P representation

Although our discussion carried out so far has been for the single mode case, the PPR
can also be generalized to a system with N-modes, taking the form:

p= JA(IX,IX+)P(IX,IX+)d2iXd2iX+

where the generalized off-diagonal Coherent state projection operator isll :

(2.7.1)

(2.7.2)

and lXi and IXt for i = 1 ... N are independent complex variables. The quantum mechanics
averaged of normal ordered moments are then simply given by an analogous expression:

N N
(TI(a/)Pi(ai)Qi) = JP(IX,~) TI(lXi)Pi(lXnQid2iXd2~

I 1

which is also equivalent to:

dated and was not used to simulate subsequent examples in this thesis.
11 where we have change notation from a to a+ instead.
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So we see that the PPR can be easily generalized to multimode systems and that the
number of variables required to simulate the system scales linearly with N. In this re­
spect, exact many-body dynamics is reduced to a tractable one that is not computationally
exhaustive.

2.8 Short lifetimes

In principle, the positive-P representation allows us to simulate the exact dynamics of
a bosonic system and seems to be a very powerful method. However, there is a notorious
problem associated with the method; its short lifetime: tlife' This means that beyond t >
tlife, simulations fail to produce correct results. Because we are simulating SDEs, every
trajectory is completely random and for sufficiently large times, depending on the nature
of the SDEs, there may exist errant trajectories that eventually wander to infinity. The
breakdown of the PPR is quite obvious and takes the form of sudden spikes in trajectories.
If we do indeed use an infinite number of trajectories to calculate stochastic averages then
this would not be a problem. However, since we are in a world with finite computers, this
would be impossible and so we are limited to t < tlife for useful results. For example,
suppose we had a single trajectory that wandered off to an unmanageably large number
of 1040 , then we would require at least 1040 trajectories to neutralize its effect. This type of
error is known as sampling errors and is usually what limits the use of the PPR.

Unfortunately, there is no way apriori to know what tlife will be or how many tra­
jectories are needed to obtain convergence12 . The latter usually ranges from 104 - 107 de­
pending on the problem and the nature of the SDEs, and has to be determined empirically.
The positive-P representation is therefore a method that is particularly useful in simulat­
ing systems where the interesting physics occur at short time scales before sampling errors
dominate.

This issue of numerical spikes has been first investigated thoroughly in [36] where it
was discovered that the cause of divergences was due to the nature of the SDEs itself and
not because of an unstable numerical algorithm. This eventually resulted in the develop­
ment of the gauge-P representation [37] which has been successfully applied in extending
tlife of systems that would otherwise experience early divergences.

In Deaur's [38] PhD thesis, he has examined in detail the causes of singular trajecto­
ries and discovered that divergences occur when nonlinearities arise in either the drift or
stochastic parts of an SDE. This is closely linked to the step in our derivation where we
ignored boundary terms during partial integration of the FPE. If nonlinearities exist, then
it may not be true at all times that boundary terms vanish, in which case we no longer
have a direct correspondence ""lith fhe dynarrdcs of the rnaster equation. Ho\,vever, sLl1.ce
this thesis is based on the 'barebones' application of the PPR, we will not go into details of
this issue. We will however just state a key result of Deaur's [38] thesis that drift and noise
instabilities arise unless the two conditions:

12Convergence here implies a lack of change in numerical results even if we increase the number of trajectories.
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and

(2.8.1)

(2.8.2)
Bk

lim _J_ = 0,
lajl-tco IlXj I

for all k are satisfied. This simple check will give us a good idea if simulation of our SDEs
will be the victim of early peril or not.
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C3-------------
The Schwinger Bosons

As mentioned in chapter I, we wish to apply the PPR to simulate the quantum quench
dynamics of the Heisenberg model:

fI = -} L Si,Sj,
(i,j)

(3.0.1)

which describes either a FM (J > 0) or AFM (J < 0) material. At first glance however,
this does not seem possible since the Heisenberg Hamiltonian in eq. 3.0.1 is expressed in
terms of spin operators S whereas the PPR formalism presented in chapter 2 relies solely
on bosonic annihilation and creation operators, aand at.

S and aare very different classes of operators as they obey different commutation
relations. The bosonic operators obey the commutation relation

(3.0.2)

while the spin operators obey an analogous relation:

where we define

(3.0.3)

S+
S-

SX + iSY
SX - iSY

(3.0.4)

(3.0.5)

as the usual ladder spin operators. In addition to eq. 3.0.3, the other commutation relations
that S must preserve are given by:

29



Ray Ng - MSc. Thesis

(3.0.6)

(3.0.7)

where {i,j,k} = x,y,z and

(3.0.8)

What we need then, is a clever way to map the spin operators onto some combination of
bosonic creation and annihilation operators so that eq. 3.0.3- 3.0.7 still hold. One way of
mapping quantum mechanical spins to bosonic operators is known as Schwinger represen­
tation [39,40] with the correspondence given by:

s+ ---+ I)at s- ---+ I)ta S2 ---+ ~ (ata- I)tl)), , 2

and as required, preserves all the required spin commutation relations:

(3.0.9)

[s+,S-] ---+ [atl),l)ta] = ata - ata ---+ 2S2, (3.0.10)

[S-,S2] ---+ [l)ta,1(ata-l)tl))] = 21)ta ---+ 2S-, (3.0.11)

[s+, S2] ---+ [atl), 1(ata- I)tl))] = 2at l) ---+ 2S+. (3.0.12)

This shows that the physics is unchanged if we introduce two kinds of uncoupled bosons
aand I) to replace a Heisenberg spin, where by uncoupled we mean that they commute:

[AAt] [A At]a,b = b,a = O. (3.0.13)

Since it is trivial to show eq. 3.0.10- 3.0.12, we will just derive the first relation as an exercise,
i.e.

[S+, S-] [atl), I)ta]
atl)l)ta_I)taatl)

ata (1 + I)tl)) - (1 + ata) I)tl)

(ata - I)tl))

2S2
, (3.0.14)

where we have used eq. 3.0.9 and the usual bosonic commutation relations: [at,a] =
[I)i, I)] = 1.

The next question is, how do we know what bosonic state corresponds to the correct
spin state, i.e., we need to determine naand nb such that Ina, nb) == Is, m). For a spin-1 case,
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• a-boson
b-boson

tttt
Figure 3.1: Schwinger representation of spin. This figure demonstrates a spino! chain with four sites, equivalently de­

scribed in terms of Schwinger bosons. A down spin is replaced by an Ii-type boson (light shaded), while an lip
spin is replaced by a /I-boson (dark shaded) .

we can deduce this just by examining the form of the Schwinger operators in eq. 3.0.9.
Suppose we had a particle in the I J,) state, then the action of the raising operator, 5+,
serves to increase its spin by 1 and change it to the I t) state. This operation is associated
with the bosonic operator combination 5+ --7 atb which increases the number of a-bosons
by one and decreases the number of b-bosons by one. On the other hand, the 5- --7 bt a
flips the I t) state onto I J,) and is equivalent to increasing the number of b-bosons by one
and decreasing the number of a-bosons by one. In either case, the total number of particles
is conserved and there is only one type of either a- or b-boson at all times. We can then
intuitively assign:

(3.0.15)

and

(3.0.16)

To verify this, we will apply the projection operator: 52 --7 i (fin - fib) on both I t) =
11,0) and I J,) = 10,1) and see that:

(3.0.17)

and

(3.0.18)

which produces the correct eigenvalues as required. If we have a spin-i particle, then its
two states are now described by either a single a-boson or a b-boson per site as shown
in fig. 3.1. A spin-up state: I t) is the same as having a single a-boson and no b-bosons,
whereas a spin down-state: I J,) is the same as having a single b-boson but no a-bosons. In
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this way, it is possible to replace spin operators with bosonic operators using the Schwinger
boson representation in eq. 3.0.9 thus allowing us to apply the PPR in the usual way.

Admittedly, the argument presented above is not very rigorous and a more precise
treatment of Schwinger representation can be found in [40] or [39]. In general, it is possible
to represent arbitrary spin systems with s > ! using Schwinger bosons. It can be shown
that the general spin s state with projection m is given by

(3.0.19)

where 10) is the vacuum state. Eq. 3.0.19 has the physical interpretation that the state Is, m)
is equivalent to the number state with (s + 111) a-bosons and (s - m) b-bosons. One can
also view a spin with s > ! as being comprised of many spin-! particles. Substituting
s = ! and m = ±~ into eq. 3.0.19 does indeed reproduce the states eq. 3.0.16 and eq. 3.0.15
as required.

Before we proceed, we would like to mention that the Schwinger boson representation
is not the only bosonic mapping available. One mapping we came across which proved
unfavorable was the Holstein-Primakoff transformation [41]. This is because the latter in­
volves a square root term, which is essentially an infinite series that cannot be represented
exactly without some form of truncation. Another mapping which we attempted to use
to derive SDEs was the Dyson-Maleev transformation [42]. This representation required
the presence of a fictitious infinite potential term in order to preserve the correct Hilbert
space. Unfortunately, it was this potential term which rendered numerical simulations of
SDES impractical with extremely short life times. Lastly, we would also like to point out
that Drummond et al [43] developed an analogous formalism to the PPR, using Radcliffe
coherent states [44] instead, but only simulated the classical TFIM, albeit for larger simula­
tion times.

3.1 Example: Bosonic spontaneous emission

The idea of using Schwinger bosons first came to our attention in a resarch article by
Olsen et al [30] in which the PPR and the truncated Wigner approximation [45] (TWA) was
used to simulate the dynamics of spontaneous emission in two-level bosonic atoms. The
system was initialized in an excited state and allowed to decay into a zero-temperature
thermal bath, being described by the master equation

(3.1.1)
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where {ji are the usual Pauli spin matrices and are related to Si by a factor of i, i.e. Si =
i{jil. By redefining K', we can write our master equation in terms of the bosonic operators:

dp K (2AtbA AAbAt AbAt AtbA A AAbAt AtbA)- = - a pa - a a p - pa a .
dt 2

Using the PPR formalism outlined in chapter 2, the following FPE was obtained:

ap
at

(3.1.3)

(3.1.4)

(3.1.5)

In the article, it was shown that D can be factorized to yield a noise matriX, B of the form:

[;~ 0 -iM 0 J~;~ .IFf1 -2-

B = VK 0 ~ V;X+f3+ 0 -iJa+f3+ J~;~ -iV ~;~ (3.1.6)

~M 0 iM 0 0 0
0 ~#f3+ 0 iJa+f3+ 0 0

which immediately yields the Ito SDEs

1We would like to point out that in [30], the following transformation was used:

S+ ---7 abf S- ---7 atb SZ ---7 ~ (btb - ata)
I I 2 '

(3.1.7)

(3.1.2)

and a quick comparison with eq. 3.0.9 tells us that this just reverses the role of a-bosons and b-bosons. This is
nothing more than an issue of notation. Only for the remainder of this section will the mappings in eq. 3.1.2 be
used, and in Chapter 4 we will revert to the notation in eq. 3.0.9. We used the notation in eq. 3.1.2 so that it aligns
directly with the results and equations found in [30].
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Note that even though the diffusion matrix is of dimension 4 x 4, our noise matrix is given
by a 4 x 6 matrix, which means that we have introduced two additional Wiener increment
terms at the expense of a simpler noise matrix. The naive choice would be to take the square
root decomposition to generate a 4 x 4 noise matrix by taking advantage of the symmetry
of D. However, this would leave us with a complicated H, which could make calculating
Stratonovich correction terms more difficult than it already is. If we were to write eq. 3.1.7
as a system of linear SDEs, we get:

d [ 7. ] [
~~+~a

] dt
~~+~a+

(3.1.8)
-~(aa+ + 1)~

-Ha+a + 1)~+

Jf3?
dW1

~M 0 -~M 0 iJ~~+2 dW2

+v'x 0 ~#~+ 0 -~Ja+~+ Jf3;f3 -iJ f3;f3 dW3

1M 0 ~M 0 0 0 dW4

0 ~#~+ 0 ~Ja+~+ 0 0 dWs
dW6

Using eq. A.2.28, the following Stratonovich correction terms were calculated:

Sa
a
-
8

Sa+
a+

8

Sf3
~
8

Sf3+
_ f3+
-8'

(3.1.9)

(3.1.10)

(3.1.11)

(3.1.12)

and the Stratonovich version of eq. 3.1.13 is given by

(3.1.13)

Jf3;f3
dWl l

~M 0 -~M 0 iJ~~+2 dW2

+v'x 0 ~#~+ 0 -~Ja+~+ Jf3? -iJf3;f3 dW3
0

~M 0 ~M 0 0 0 dW4

0 ~#~+ 0 iJa+~+ 0 0 dWs
dW6
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where we have used 0 to denote a Stratonovich SDE.

In this system the obvious observables of interest are given by the population of the
excited and ground states which are represented by the operators Nb = F/& and Na = ata
respectively. The dynamics for these operators are mapped on to the following phase
space variable functions: Nb ~ Nb = f3+ f3 and Na ~ Na = IX+ IX and can be easily simu­
lated. Lucky for us, this problem is simple enough that analytic solutions for the popula­
tion stochastic averages can be worked out, to allow us to compare our simulation results
against them. Let us now derive these expressions. Using Ito calculus and the SDES in
eq. 3.1.13, we can obtain an SDE for Nb:

f3df3+ + f3+ df3 + df3df3+

-~(Na + l)Nbdt + ~Jr-KIX-+-f3-+(dW4 + idW2)f3

K 1
-"2(Na+ l)Nbdt + "2JKIXf3(dW3 + idWdf3+

-K(Na+ l)Nbdt + ~JKlX+f3+(dW4 + idW2)f3

+~JKIXf3(dW3 + idW1 )f3+,

(3.1.14)

(3.1.15)

where we have ignored terms that are of O(dt3/ 2) and also used the fact that (dWidWj) =

oijdt to ignore potential correction terms (arising from df3+df3). If we were to take the
stochastic average of the resulting equation then what we are left with is just:

(3.1.16)

where we have used the property (dWi ) = 0 for all i.

For the stochastic variables Na, the SDE is given by:
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IXdlX+ + IX+ dlX +dlXdlX+

( ~f3+ f3lXdt - ~ V KIX f3(dW3 + idW1) + JKf3
t+ (dWs + idW6)) IX+

+ (~f3+f3IX+dt - ~JKIX+f3+(dW4 - idW2) + JKf37f3
(dWs - idW6)) IX

+ ( ~f3+ f3lXdt - ~ VKIXf3(dW3 + idW1 ) +J Kf3
t+ (dWs + idW6))

x (~f3+f3IX+dt - ~JKIX+f3+(dW4 - idW2) + JKf37f3
(dWs - idW6))

GNaNbdt + ... dW3 + ... dW1 + ... dWs + ... dW6)

+ GNaNbdt + ... dW4 + ... dW2 + ... dWs + ... dW6) (3.1.17)

Nb 2 Nb 2
+K2 (dWs ) + K2 (dW6) ,

so that taking a stochastic average results in

d(Na) K( NaNb)dt + K(~b )((dWS)2) + K(~b) ((dW6)2)

K ( ( NaNb)dt + K( ~b )dt + K(~b) () dt

K((NaNb) + (Nb)) dt, (3.1.18)

where we have again used the property that (dWidWj) = bijdt. If we let NT be the total
number of particles then (even in the mean) we must have

(3.1.19)

and hence

NT = (Na) + (Nb) (3.1.20)

at all times. We see that eq. 3.1.19 is indeed satisfied by adding eq. 3.1.18 to 3.1.16. The
solution of (Nb) is obtained by solving the ordinary differential equation (ODE):

d(~b) = -K ((NaNb) + (Nb)) = K(NT - (Nb) + 1) (Nb)'

where we have used eq. 3.1.20 and which has the solution:
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Fock state
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Figure 3.2: Plot of Nb vs T = Kt: the decay of an N = 1 fock state initially in the excited level. We compare the stochastic
average ((Nb» with the mean field (MF) solution calculated in eg. 3.1.23. Simulation parameters: 4 x 105

trajectories. dT = 0.0001

If we assume that only one atom is initially excited, i.e. Nb (0) = 1, then this further sim­
plifies to:

(3.1.23)

The simulations were carried out using a Stratonovich semi-implicit algorithm [46]
with the results shown in Fig. 3.3 to 3.4 for a variety of initial conditions, namely: the
Coherent state and Fock state. This raises another crucial point regarding the PPR: "How
does one initialize the distribution: P(tX,tX+)?". A pedagogical article which addresses this
issue can be found in [47] but we will review the necessary results in section 3.2.

3.2 Representation of quantum states

The two quantum states that we wish to represent are the (i) Coherent state and the
(ii) Fock state. As mentioned in section 2.3, any density matrix phas the following form of
the distribution function:

(3.2.1)

and can be used to represent different quantum states.

37



Ray Ng - MSc. Thesis

Coherent state

«Nb» (coherent state) -­
MF solution ---un

-----------------------

0.9

0.8

0.7

0.6

~ 0.5z

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8

tau
1.2 1.4 1.6

Figure 3.3: Plot of Nb vs T = xl: the decay of an N = 1 coherent state initially in the excited level. We compare the
stochastic average ((Nb)) with the mean field (MF) solution calculated in eq. 3.1.23. Simulation parameters: 106

trajectories. dT = 0.001

3.2.1 Coherent states

The most convenient case about using the PPR is in constructing a density operator
corresponding to a pure coherent state:

P=!(3)(f3I·

First let us recall the expression for the density operator in the PPR:

(3.2.2)

(3.2.3)

In order to represent the coherent state of eq. 3.2.2, it is obvious that we need the following
PP-distribution:

(3.2.4)

which is easy enough to compute. Numerically this means that using the same complex
conjugate pair, ,8 and ,8* for every stochastic trajectory will generate an initial coherent state
1(3). The values of f3 and f3* are usually chosen to agree with the initial particle number. For
example, suppose we require that (ata) = 11(0) initially. For the single mode case, the num­
ber operator is simply given by fi ---* 1\'+1\' which is constrained to n(O). An obvious choice
for our initial phase space variables would then be I\' = J11TO)e i8 and 1\'+ = J11TO)e- i8

where eE [0,2n).
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Coherent state
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Figure 3.4: Plot of NaNb vs T = Kt: the decay of the correlation rrmction for a system with an initial coherent state in the
excited level. There is no analytic solution available for comparison. Simulation parameters: 4 x 105 trajectories.
dT = 0.001

3.2.2 Fock states

Another quantum state of interest is the Fock state, whose density operator is given
by:

fJ = In)(nl (3.2.5)

where In) is the Fock state representing n quanta i.e. ataln) = nln). The distribution for the
Fock state is obtained by substituting eq. 3.2.5 into eq. 3.2.1 directly and using the change
of variables

IX - (IX+)*
2

IX + (IX+)*
2

This gives:

P(rl,'Y) = ~21(flln)(nlrl)le-hf·Jw)",
4n

where Jwr is the Jacobian for the transformation:

A little algebra shows that we can write eq. 3.2.8 in the separable form:
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where

e-hf f(11-112, n + 1)
7f 7f

(3.2.10)

e-xx"-1

r(x, n) = (n -I)! (3.2.11)

is the Gamma distribution. The normal distribution with 0 mean has the generic form:

(3.2.12)

and a quick comparison of eq. 3.2.12 and eq. 3.2.10 tells us l' can be sampled by setting:

(3.2.13)

where ni == N(O, I), i.e. is a standard normal random variable. 1J-l1 2 on the other hand
is readily sampled by using a Gamma distribution which has a simple yet efficient algo­
rithm [48]. This allows us to sample J-l = Vie i() where z == 1J-l1 2 is sampled from the Gamma
distribution and e is uniform in [0, 27f). Finally, we only need to invert eq. 3.2.6 and 3.2.7
to get the result:

3.3 Discussion

a

a+

(3.2.14)

(3.2.15)

The results for the Nb vs T = Kt are shown in Fig. 3.3 and Fig. 3.2 for an initial co­
herent and Fock state respectively. They do not agree exactly with the mean-field solu­
tion since the latter is just an approximation but do exhibit the same qualitative behavior,
i.e. an exponential decay. In addition, the stochastic solution of the correlation function,
(NaNb) = a+ a{3+ f3 for an initial coherent state is shown in Fig. 3.4. In accordance with the
PPR, (Nb) was calculated by simulating the SDEs for the stochastic variables in eq. 3.1.7
and stochastic averaging the corresponding function: f3+ f3. Similarly for NaNb' the corre­
sponding function is given by a+ af3+ {3.

All three plots show good agreement with the results published in [30] which is a
positive sign that we are on the right track. We would also like to point out the rather short
life times of the simulations, terminating at T rv 0.38 for the initial Fock state and at T rv 1.6
for the initial coherent state. Beyond these time scales, numerical instabilities occur and
our simulations fail to produce accurate results.
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~4 _
Quantum quench dynamics of the
TFIM and anisotropic Heisenberg
model

The Schwinger bosons provide a convenient way of mapping spin operators onto
bosonic operators thereby allowing us to apply the PPR. The two variants of the Heisen­
berg Hamiltonian which we examined were the (i) transverse-field Ising Model (TFIM), (ii)
the isotropic Heisenberg model with an anisotropy of f'../ J = 1.0 and (iii) other anisotropic
Heisenberg system. What we are interested in is being able to derive the SDEs that describe
the dynamics of (i)-(iii). For brevity however, we will focus mainly on the derivations of (i)
but present results for both (i) and (ii) in section 4.3.

4.1 Deriving SDEs for the TFIM

We will view the 10 TFIM model as a material with Ising interactions subject to quan­
tum quench in the x-direction described by the Hamiltonian

(4.1.1)

with J > 0, i.e. FM interactions. This means that at t = 0 a transverse-field is instanta­
neously switched on, which we can write as an interaction of the form: h(t) Li Sf where

h(t) = { h, t ;::: 0
0, t < 0
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Using the Schwinger representation in eq. 3.0.9, the Hamiltonian for the 10 TFIM can be
mapped on to the equivalent bosonic Hamiltonian:

H

(4.1.3)

where i = 0 ... N - I, N being the number of spins in our spin chain, and periodic bound­
ary conditions (PBes) are naturally imposed.

Since we have a closed system, the master equation for pis given by:

ap
at ~ [H,p] . (4.1.4)

To proceed, we use the PPR and express pin the usual way, i.e.

(4.1.5)

where the projection operator is now given by the direct product over projection operators
for different sites:

A(' ~+ fi fi+) = Nrr-l ,o-lai/(at*I,o- I~i/(~;*I
a,a 'fJ'fJ i=O'<Y (a;*lai/ '<Y (~;*I~i/ (4.1.6)

anda= (ao,,,.,aN-l),a+ = (at,·",at_l)'~= (~O'''',~N-l)and~+ = (~t,,,·,~t-l)·
Since there are two types of bosons per site, we have further introduced the complex vari­
ables {~, ~+} E (:, which are the phase space variable associated b. The correspondence
relations in eq. 2.3.13 still applies and at each site, i, we now have:

A At _ + AAai - ai A,

fiiA = aiA,
At A _ + a '
ai A - (a i + aoJA,.,

A a '
Afi i = (ai + --=t=" )A,

aai

Abt = p,+ A
I fJ I

b)1. = ~iA

't' _ + a A

bi A - (~i + d{3i)A

, , a A

Abi = (~i +~ )A
a~i

(4.1.7)

where i = O... N -1. Substituting the correspondence relations in eq. 4.1.7 into the Master
equation in eq. 4.1.4, we obtain the following FPE after integrating by parts and ignoring
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a2
0 a2 a2

0dajdaj diidPj' dPidaj

0 a2
0 a2 a2

D=il
apjapj aa+ap+' ap+aa+

a2 a2 a2
I ] I ] (4.1.10)4n dajdPj' dpjdaj 0 aa+aa+ 0

a2 a2
I ]

a2
0 ait+ap+' ap+aa+ 0

aptapjI ] I ]

Each term in the diffusion matrix, represents an N x N matrix whose matrix elements are

specified by the derivatives themselves. For example the matrix labeled by D(a) = aaa~a
I ]

(located at the top left comer of Din eq. 4.1.10) is given by lXifXj can be explicitly written
out as:

0 IXOfXl 0 fXOfXN-l

IXllXO 0 fXlfX2 0

D(a) = il 0 fX2IXl 0 0 (4.1.11)4n
0 0

fXN-lIXO 0 0

A particular factorization of the diffusion matrix in eq. 4.1.8 results in a noise matrix l

which then gives us a set of Ito stochastic differential equations for 4N of our phase space
variables, i.e.

dfXi (4.1.12)

I For a detailed description on how the D was factorized can be found in Appendix B
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(4.1.14)

df3i (4.1.15)

(4.2.1)

where we have introduced eight 2N x 1 Wiener increment vectors with the usual statistical
properties that (dWj"dWj) = dtbxy t5ij and (dWj") = a where i = 0 ... N - 1 and x, y =
lX,lX+, f3, f3+, f3lX,lXf3, f3+ lX+ ,lX+ f3+ labels each Wiener increment vector. The subscript labels
of the Wiener increment vector is not unique and the labeling scheme2 was chosen simply
for convenience.

4.2 Inclusion of anisotropy

Had we begun with the full anisotropic Hamiltonian:

A_ "[ AZ AZ 1 A+ A_ A_ A+] 1 " [A+ A_jH - L.J -lSi ,Sj - f:,2: (Si Sj + Si Sj) - 2: h(t) LJ Si + Si
(I,J) 1

instead and carried out the same steps as in section 4.1, it can be shown that anisotropy can
be taken into account just by modifying the SOEs of eq. 4.1.12 to eq. 4.1.15 in a trivial way.
The drift terms remain the same with the exception of the following additional terms:

if:,
dlXi +---y;;f3i(n1i- 1 + 1ni+l)dt (4.2.2)

21

df3i if:, (+ + ) (4.2.3)+ 2h lXi 1ni_1 + 1ni+1 dt

dlX+ if:, +(+ + ) (4.2.4)
I - 2h f3i 1ni_1 + n1i+1 dt

df3i if:, +(+ + ) (4.2.5)- 2h lXi 1ni- 1 + 1ni+1 dt

2Note that with the inclusion of periodic boundary conditions: a_I ---+ aN-l and aN ---+ aD spin. However
since there are 2N x 1 Wiener increments, then for e.g. dW:1 = dW{N_l and dW{N = O.
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where the following shorthand mi = ai!3;, m; = a; ~i was used. For the stochastic terms
however, only the mixed derivative diffusion terms (i.e. those containing a~ and a+ ~+)

are modified in the following way

dai rv +~I""£. [-)Jai~i-1-26.~iai-1(''')- )Jai~i+1-26.ai+1f3i(''')] (4.2.6)

d~i rv +~ I""£. [-)J~iai+1 - 26.~i+1aiC .. ) - ) J~ilXi-1 - 26.ai~i-1 (... )] (4.2.7)

dlX; rv +~I""£. [-JJ~t1a; -26.f3;at1(···) - JJ~tt11X; -26.att1~;("')] (4.2.8)

d~; rv +~I""£. [-JJ~;lXtl -26.~t11X;(·.. ) - JJ~;att1 -26.a;~;+1("')] (4.2.9)

where the terms in (... ) represent the same Wiener increment combinations as in eq. 4.1.12
to 4.1.15.

The Ito SDEs we have derived are also able to describe other types of spins mod­
els (see table 1.1) such as the XXX (isotropic case), XY model or even the XYZ model (to
name a few), just by adjusting or including a few parameters. For the last two cases, we
would have to take a trivial generalization in the derivations by introducing two different
anisotropy terms in eq. 4.2.1. A current review article on the quantum quench dynamics of
other variants of the Heisenberg Hamiltonian using other numerical methods can be found
in [24].

4.3 Results and discussion

As an initial test for our formalism, we simulated the FM (J > 0) spin Hamiltonian
for the TFIM (6. = 0) and the isotropic case (6. = 1.0) in eq. 4.2.1 for high (H = 10/nand
low (H = 0.5/nfield values. This was compared to results from exact diagonalization
calculations using a small system with N = 4 spins. The Stratonovich version of the SDES 3

in eq. 4.1.12 to eq. 4.1.15 were simulated using a semi-implicit Stratonovich algorithm as
they are known to exhibit superior convergent properties [46].

To track the dynamics of the system, we calculated the expectation values of all three
spin components at each sitei: (Sj), (57), (Sf). Utilizing the translation symmetry of the
system, we further averaged them over the entire lattice to obtain an average expectation
value of the spin components per site: [5 X

], [5Y] , [52]. These expectation values were cal­
culated using the stochastic averages of their respective phase space functions, i.e.

(4.3.1)

3The Stratonovich correction terms worked out to be zero and hence the Stratonovich form of the SDEs from
eq. 4.1.12 to eq. 4.1.15 have the exact same form as the derived Ito SDEs.
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Figure 4.1: TFIM for N = 4 spins, following a transverse-field quench at IJIii = 0 from hiJ = 0 to hiJ = 0.5, be­
ginning in the FM ground state: Itt ... t). FM interactions assumed: Sigl1(J) = +1. From top to
bottom: plots of [SXj,[SYj,[SZj vs IJlli respectively. The stochastic averages, ((.)) are given by red solid
lines while exact cliagonlization results are represented by the blue dashed lines. Simulation parameters:
l1,raj = 106, dl = 0.001,!'.1J= 0.0. Agreement remains good till approximately IJIii ~ 0.6.
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Figure 4.2: TFIM for N = 4 spins, following a transverse-field quench at tIlh = 0 from /til = 0 to /til = 10.0, beginning
in the FM ground state: Itt ... t). From top to bottom: plots of [S'] , [SY] , [SZ) vs tiltl respectively. The
stochastic averages, ((.)) are given by red solid lines while exact diagonalization results are represented by the
blue dashed lines. Simulation parameters: ntraj = 2 x lOS, dt = 0.001, iii I = 0.0. Agreement remains good and
results are nearly indistinguishable. The simulations diverge at approximately tI Ih = 0.65.

(4.3.2)

(4.3.3)

The initial state of the system was taken to be the classical ferromagnetic state: I tt
t) and the dynamics were observed for tJ /11 ~ 0 during which a transverse field is

applied. The results for the TFIM are shown in Fig. 4.1 and Fig. 4.2 for different field
strengths while the results for the isotropic (t./J = 1.0) model are shown in Fig. 4.3 and
Fig. 4.4. Both models show good agreement with exact diagonalization calculations.

The only drawback of the PPR is that the simulations are usually valid only for rel­
atively short lifetimes (roughly tJ /11 rv 0.45 - 0.65 for the models examined) before sam­
pling errors caused by diverging trajectories take over. In Fig. 4.1 for example, the onset of
the effects of diverging trajectories can be seen at around tJ/11 rv 0.58 where a deviation of
the SDE results and exact calculations begin to appear. However, for the time scales where
the simulations remain finite, it does yield good results.

One should not be alarmed as this is a common problem associated in using the PPR
(as mentioned in section 2.8) and can be attributed to the nature of the SDEs derived and
not due to a non-converging numerical algorithm [31,36,49]. In fact, Deuar[38] examined
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Figure 4.3: Isotropic Heisenberg model for N = 4 spins, following a transverse-field quench at II I Ii = 0 from 11 I I = 0.0
to III! = 0.5, beginning in the FM ground state: I tt ... t}. FM interactions assumed: sign(J} = +1. From
top to bottom: plots of [SII, [SY] , [5'1 vs IIIii respectively. The stochastic averages, ((.}) are given by red solid
lines while exact cliagonlization results are represented by the blue dashed lines. Simulation parameters: ntraj =
106, dl = 0.001,611 = 1.0. Agreement remains good and results are nearly inclislinguishable. The simulations
cliverge at approximately IIIii ~ 0.45.

this issue thoroughly when applying the PPR to the exact dynamics of many-body systems.
If we abide by Deuar's findings strictly ( d. eq. 2.8.1 and 2.8.2), we see that there are no
drift and noise divergences present in the SDEs in eq. 4.1.12 - 4.1.15. However, we suspect

drift terms of the form rv iXi [(=j=nf+1 ±nf+1) + (nf_1 ±nf-l)]' where Xi = lXi,lXt,(3,(3+
can be problematic. This is because if we take into consideration the translational symme­
try of the system, then we can approximately say that

(4.3.4)

which now clearly exhibits offending terms [38] that cause trajectories to escape to infinity,
since now dXi rv Xf [... ]dt + ... (see eq. 2.8.1 and eq. 2.8.2).

One should not discount the PPR however. In 2005, the gauge-P representation [37,38,
49-51] was developed to specifically deal with such drift instabilities. In the gauge-P rep­
resentation, arbitrary gauge functions, {gd can be introduced into the SDEs whose effect
is a modification of the deterministic evolution. This can be done at the expense of intro­
ducing another stochastic variable, [2 (in A), which manifests itself as a weight term when
calculating stochastic averages. To be more specific, using the gauge-P representation[37],
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Figure 4.4: Isotropic Heisenberg model for N = 4 spins, following a transverse-field quench at IJln = 0 from hlJ = 0.0
to hlJ = 10.0, beginning in the FM ground state: Itt ... t)· FM interactions assumed: sign(J) = +1. From
top to bottom: plots of [5 X

] , [5Y) , [5'] vs IJ/n respectively. The stochastic averages, ((.)) are given by red solid
lines while exact cliagonlization results are represented by the blue dashed lines. Simulation parameters: n'raj =
las, dl = 0.001,61J = 1.0. Agreement remains good and results are nearly indistinguishable. The simulations
cliverge at approximately IJ In ~ 0.45.

the Ito SOEs are altered such that:

dO.

(At - gkBjk) dWk

0. (Vdt +gkdWk) '

(4.3.5)

(4.3.6)

where summation over k is implied and V is the constant term that may appear, after one
substitutes the correspondence relations into an equation of motion for fJ.

The gauge-P representation has been very successful in simulating the dynamics of
many-mode bose gases [21, 22, 52] partly because such systems result in neat diagonal
noise matrices that are easier to handle as seen in eq. 4.3.5. However, it is obviously not as
straightforward to apply it in our case as we have a much more complicated non-diagonal
noise matrix. This makes calculating Stratonovich correction terms messy even with the
help of Mathematical software, thus being impractical for numerical simulations. We be­
lieve that the application of the gauge-P is possible in principle but requires a bit more
thought for Heisenberg systems if using the Schwinger boson approach.

4.3.1 Finite size effects

The main advantage of the PPR is its abilities to overcome the Hilbert space problem
and this thesis would be missing a crucial element if we did not discuss this. We first
demonstrate the capabilities of the PPR at simulating large system sizes by showing results

51



Ray Ng - MSc. Thesis

0.40.30.20.1

-0.0004
-0.0008 L-.__~__--L ~__....L__--+- L-__......:.__---1..______J

o

-0.3

-0.5 I----+-----+---+-----+-----+----f------+-----+--=~

0.0004

~
-0.1

0.1

0.3

0.5 're--_i3k=-----r---~----.--~---,...---~-----r--___,

0.3

0.1

1Q -0.1

-0.3

-0.5 t------<f-----/::::;eiil'l'l'---iiBt;;:-----..:;::~-.....--~~::.::....--+---__li

tJIli

Figure 4.5: Isotropic Heisenberg model following a transverse-field quench at tlln = 0 from hI! = 0.0 to hiI = 10.0,
beginning in the FM ground state: Itt ... t). FM interactions assumed: sign(J) = +1. From top to bottom:
plots of [5 X

), [5Y) , [521vs tl In respectively. The stochastic averages, «.)) arefor N = 4: ( ), N = 10: (
--e-- ), N = 100: (---'-), while exact diagonlization results for N = 4 are represented by the black solid line.

Simulation parameters: n~~t) = lOS, n~~tO) = 2 x lOS, n~~:=I00) = 5 x Hr, dt = 0.001, M I = 1.0. Agreement
remains good and finite size effects are negligible. The simufations diverge at approximately tTIn ~ 0.45.

for the FM isotropic Heisenberg case at a field value of h/J = 10, prepared in the initial FM
state as in Fig. 4.4. As expected, we do not observe any finite size effects within the life time
of the stochastic simulations even with a chain consisting of 100 spins. The simulations
are compared against the exact diagonalization results for an N = 4 system and exhibit
identical real time evolution of the spin components as expected for a 10 chain with FM
interactions, i.e. finite size effects are negligible.

This is not the case for a 10 AFM (sign(J) = -1) however. In order to verify that finite
size effects do exist, we performed N = 4 and N = 10 exact calculations for the anisotropic
AFM with different values of anisotropy: D./ J. Two sample exact calculations are shown in
Fig. 4.6 and Fig. 4.7 respectively for D./J = -0.8 and D./J = -1.5. For the AFM Heisenberg
Hamiltonian, the system is initialized in the classical AFM Neel state: I t-J,. ... t-J,.). An
immediate observation is that increasing the value of D., reduces the time: t finite, which we
define as the time that significant finite size effects are noticeable. A natural thing to do
in order to take advantage of the SDES we have derived, is to increase the value D./J such
that tlife < t finite, thus allowing us to explore the finite size effects of macroscopically large
systems at smaller t finite'

We observe finite size effects through the same observables as in eq. 4.3.1 to eq. 4.3.3.
However for the initial Neel state, it is necessary to take into consideration the alternating
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beginning in the AFM Neel state: IH ... H). AFM interactions assumed: sign(J) = -1. From top to bottom:
plots of [S'} , [SY] , IS'] vs IIIf! respectively. The exact calculations for the N = 4 (solid black lines) and N = 10
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0.5

0.3

~
0.1

-0.1

-0.3

-0.5 I--~===:t::=~+----+----+---+----t---I
0.05 -----_

-o.o~ -----------------------___________________ ___-------------
~ -0.1

-0.15

-0.2

-0.25 1----+----+------+---+-----<----+:====:;:::=----1
a 1--------=--=--=---:.:.:--.:::--------------------------------------------------

'k -0.04

-0.08

-0.12
a 0.5 1

tJ/Ii

1.5 2

Figure 4.7: Anisotropic Heisenberg model following a transverse-field quench at II If! = 0 from hiI = 0.0 to hi I = 10.0,
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(dashed red lines) are compared. We observe I/ini" I If! ~ 0.5 for a given anisotropy of 6IJ ~ -1.5
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sign of spins when calculating the averaged spin components4, i.e.:

(4.3.7)

(4.3.8)

and

(4.3.9)

Increasing 6/Jhowever has the adverse effect of decreasing tlife significantly. Thus
while it is possible to simulate macroscopically large system sizes, we find that the SDE
simulations diverge much sooner than t finite. Fig. 4.8 reinforces our claim that t finite de­
creases with 6/J as no finite size effects are observed up to tJ /n = 1, in sharp compar­
ison to Fig. 4.5 and Fig. 4.6. Our last effort to observe finite size effects was to increase
6/J to -1.2 with hopes that tlife > t finite. As seen in Fig. 4.9, our simulations do not
survive beyond t finite' Since t finite depends on the anisotropy 6/ J, increasing the sys­
tem size while possible will result in tlife of the same order. In general, we find that
t 6/J ----7j. tlife'j. tfinite such that tlife < tfinite' This thwarts our efforts on examining
finite size effects for the AFM case. We suspect the following points as possible culprits:

1. The 6 terms in the SDEs (see section 4.2) may contain drift instabilities as well, how­
ever we are unsure of what gauge functions to employ to cull them

2. The initial distribution for the initial AFM state may be much broader than that of
the FM state and as the distribution broadens due to the diffusion term in the FPE,
the boundaries of phase space are more likely to be explored, resulting in numerical
spikes.

Furthermore, we find that using an initial Neel state results in poor convergence for
the observable: [SX] as seen in Fig. 4.8, compared to an initial FM ground state and it is
likely that we have used an insufficient number of trajectories in our simulations. Simu­
lations employing a larger number of trajectories than 106 are currently being run but will
unfortunately not complete within the time of this thesis' writing. Nevertheless, we have
demonstrated the applicability of the PPR to AFM systems.

4Note that there is no need to account for a sign change for the observable: [Sxl
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Figure 4.9: Anisotropic Heisenberg model following a transverse-field quench at IJ /h = 0 from h/J = 0.0 to h/J = 0.5,
beginning in the AFM ground state: I t.J. ... t.J.). AFM interactions assumed: sign(J) = -1. From top to
bottom: plots of [5'], [5Y] , [5Z

] vs IJ /h respectively. The stochastic averages, «.)) are for N = 4:( -<>- )and
N = 10:( __ ), while exact diagonalization results are for N = 4: (black solid lines) and N = 10: ( ).

Simulation parameters: nlZt) = 106,nlZtO
) = lOS,dl = 0.001,6/J= -0.8. Finite size effects are unnoticeable

at Iii!' I /h ~ 0.4.
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Conclusion

The main thrust of this research was to illustrate how the real-time quantum quench
dynamics of spin systems can be simulated via the use of SDEs. The number of spins in a
real system are macroscopically large and therefore generally impossible to solve numer­
ically, let alone analytically. We embarked on a novel approach to solving the dynamics
of such spin systems by using the quantum phase space method known as the PPR. The
PPR is only applicable to Hamiltonians comprising of bosonic annihilation and creation
operators and so to proceed, it is necessary to have a bosonic representation of the spin
operators. We found that the most convenient way of doing this was to use Schwinger
representation of spin.

In doing so, we showed that substituting the PPR for the density operator and the
correspondence relations into the Master equation yields an FPE, after integrating by parts
and ignoring boundary terms. This FPE can then be equivalently represented in terms of a
set of coupled complex Ito SDEs. The number of SDES scales linearly with N, thereby mak­
ing the simulation of such many-body systems tractable. In this formalism, the quantum
mechanical expectation values of normal-ordered operators can be replaced by stochastic
averages (in the limit that an infinite number of trajectories are used) of their corresponding
complex phase space functions, which are much simpler to calculate.

In this thesis, we first simulated the quench dynamics of the average spin components,
[5 X

] , [5Y] , [52], for two variants of the Heisenberg model, i.e. the TFIM and the isotropic
Heisenberg model. Our stochastic simulation results were verified against exact diagonal­
ization calculations to show good agreements. In both instances, we assumed ferromag­
netic interactions, J > °in eq. 4.1.1 and at t < 0, initialized both models in the classical
ferromagnetic ising chain ground state: Itt ... t). At t 2: 0, the transverse-field and
anisotropy was turned on and the system allowed to evolve.

In order to observe finite size effects of the lattice, we simulated the quantum quench
dynamics of the AFM anisotropic Heisenberg model beginning in the classical Neel state.
Using exact diagonalization calculations, we demonstrated that finite size effects can be
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expected at a certain time scale: t fillite' which has been empirically shown to depend on
the anisotropy: 111 J. In general making 111 J more negative, decreases t fillite as well as the
tlifetill1e' Unfortunately, the relation is such that tjilliteJ In > tlijeJ In for all values of 111 J.
Our bare simulations are therefore unable to detect finite size effects of the lattice. Within
the time scales of tlife however, they do indeed produce good agreement with the exact
calculations. We would finally like to point out that initializing the system in a Neel state
requires much more trajectories than the classical FM state to attain convergence, however
we are still unclear as to why this is the case.

The main drawback of the positive-P representation however, is its notoriously short
life time, tlife, which prevents us from obtaining useful results beyond a certain time. For
the TFIM and the isotropic Heisenberg model, we found a bare application of the PPR to
have tlifeJ In rv 0.45 - 0.65, whereas for anisotropic AFM chains beginning in the Neel
state, tlifeJ In was reduced to < 0.4 depending on the value of 111 J. We suspect that this
is due to drift instability terms present in the SOEs that cause trajectories to make large
excursions into the boundaries of phase space within this time scale. If this was the case,
then the neglect of boundary terms which we made after the step of partial integration is
no longer valid and the entire formalism breaks down.

5.1 Future work

5.1.1 Extension of tUfe: gauge-P representation and diffusion gauges

An obvious future direction of our research involves applying the gauge-P represen­
tation in a bid to extend simulation life times. The gauge-P representation was formulated
for the exact purpose of dealing with drift instabilities (see section 4.3). In fact, we have
looked into this and carefully chosen appropriate gauge functions, that we believe will sup­
press the drift divergences for the TFIM case. As all our simulations have to be carried out
with the Stratonovich version of SOEs, it is necessary to be able to calculate Stratonovich
correction terms. For our non-diagonal complicated looking noise matrix, this is no longer
a trivial task and is still currently under research. For the anisotropic case however, we
have yet to come up with reasonable gauge functions and is another point of interest.

Another possible way to overcome the aforementioned problem is by using diffusion
gauges [31]. This method takes advantage of the ambiguity of the noise matrix in order
to reduce sampling errors. It is not clear to us at the moment how to use this explicitly
but Plimak et al [31] has shown remarkable results using diffusion gauges to extend tlife

of the real time dynamics of an anharmonic oscillator. If the gauge-P representation is suc­
cessful, we intend to tackle more complicated problems such as 20 lattices with different
geometries, and presumably preparing the system in different initial states with antiferro­
magnetic exchanges.
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CHAPTER 5. CONCLUSION

Figure 5.1: Schematic diagram of the Heisenberg spin system coupled to isolated single mode bosonic baths.

5.1.2 Heisenberg spin-boson Model

Another interesting problem which we intend to look into, is the generalization of the
spin-boson model to extended systems. The traditional spin-boson model [53] explores the
dynamics of a single spin coupled to its environment which could be modeled as either a
bath of harmonic oscillators or spins. However, there has not been any research exploring
the dissipative dynamics of an extended system, such as the Heisenberg model, coupled
to its environment (see fig. 5.1). The work we have presented in this thesis provides a
starting point for this problem and allows a simple generalization of the Hamiltonian to
include a bosonic bath to describe a Heisenberg spin-boson model. As a first attempt, we
will assume that the spins are coupled to their own single-mode baths as shown in fig. 5.1
and is described by a Hamiltonian which takes the form:

PI = - JL: Si,Sj - h L:Sf + L:Wia(i)ta(i) + gi L:Sf (a(i)t + a(i)) ,
(i,j) i i 2 i

where gi is measures the coupling of the i-th spin to its bosonic bath. SDEs including the
single mode bath have already been derived but have yet to be numerically simulated.

5.1.3 Dynamics in imaginary time.

The last possible extension of this project would be the simulation of the system in
imaginary time. Formally, one assumes the system to be described by a statistical mechan­
ical ensemble, such as the canonical ensemble and derive an equation of motion for p in
imaginary time (or inverse temperature) T = 1/ f3. By evolving the system in T, it allows us
to obtain the equilibrium statistics of the system at lower temperatures. This technique has
been successfully applied by Ghabari et al [21] on the Bose-Hubbard model. They assume
an unnormalized grand canonical ensemble, i.e.:

(5.1.2)
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where K = fI - fiN, and evolve it in T according to the equation of motion:

ap = _~ [aKT A]
aT 2 aT ,p +'

where [... , ... ]+ stands for an anticommutator. Also, note that eq. 5.1.3 holds, provided

that [~~,K] is true.

5.2 Final remarks

We present extremely preliminary results in this thesis as it was only recently that we
successfully implemented the Schwinger bosons with the PPR. Nonetheless, we are very
optimistic in the potential capabilities of this approach. Should the gauge-P representation
manage to extend simulation life times, the PPR presents itself as a potential state-of-the­
art method that may surpass traditional methods and easily overcome the Hilbert space
problem. At the very least, it will allows us to explore the dissipative dynamics of extended
spin systems, which has never been done before.
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An abridged introduction to
stochastic differential equations

This Appendix provides a brief review of Fokker-Planck equations (FPEs) and stochas­
tic differential equations (SOEs) and explains how a correspondence between them exist.
As this is a central theme of the PPR, it is worthwhile to spend some time familiarizing
oneself with the mathematics. To make things less technical, most of the examples in this
chapter will be carried out in ID with their multi-dimensional generalization simply stated.
The theory of SOEs and FPEs is by no means trivial and we will only provide the bare es­
sentials necessary to understand this thesis. The interested reader can refer to standard
mathematical textbooks such as [35] (which is dedicated solely to the Fokker-Planck Equa­
tion) and [18] (which is an introductory text on SOES) for a more detailed and rigorous
treatment.

A.I The Fokker-Planck equation

The Fokker-Planck Equation is simply defined as an equation of motion for a condi­
tional probability density P(x, tlxo, 0) and has the generic form:

(A.l.l)

where Xi = (Xl, X2,· . . , XN) is a vector of n random variables. A(x) is called the drift vector
and O(x) is called the diffusion matrix which is semi positive-definite and symmetric by
definition. In principle, if one is able to solve for the probability distribution: P(x, tlxo, 0)
subject to the initial condition x(t = 0) = Xo then it would be possible to calculate the
expectation values of any arbitrary function of X, f(x) for all times, using the formula:
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(A1.2)

What we are interested in calculating in particular, are moments of arbitrary order:
(rr;:l Xi)l1 j for all times where ni indicates the order of the moment of the variable Xi.
Using eq. A1.2, this is given by the formula

N N
(IT(x;)l1 j

) = JdxP(x, tlxo,O) IT(Xi)l1 j

;=1 i=l

A.I.I The one-dimensional FPE

(A1.3)

One can imagine that solving an FPE can prove to be a highly non-trivial task and it is
not always possible to find an analytic solution. As we will see there are ways around this,
but to gain some physical insight regarding the FPE, we will just examine the 10 case and
omit unnecessary mathematical details which can be found in [29]. Let us begin by stating
the 10 version of eq. A1.l:

ap(x) [a 1 02
]

-- = --A(x) + --O(x) P(x).at ax 2 ax2
(A1.4)

What we would like to do is to illustrate the physical relevance of A(x) and D(x). First we
will calculate the mean of the random variable, x which is given by

(x(t)) = J: dxP(x, t)x

and obeys the equation of motion

(A1.5)

d
dt (x(t)) J

co d
dX-

d
P(x, t)x

-co t

J
co a 1 Jco 02

- -co dx ax [A(x)P(x, t)] x + 2: -co dx ax2 [D(x)P(x, t)] x

i: A(x)P(x, t)dx

(A(x)),

(A1.6)

(A1.7)

where we substituted eq. A1.4 into eq. A1.4 and performed an integration by parts. We
also made the assumption that P(x, t) and its derivatives vanish sufficiently rapidly at
x ---+ 00 so that boundary terms can be safely ignored. If we vv"ish to proceed explicitly, we
need to specify the drift term of the FPE. However, we can already see that the evolution
of the mean of the distribution P(x, t) depends solely on A(x) (i.e. D does not appear).
This explains why A(x) is called the drift term, i.e. it is the term that causes a "drift" in the
peak1 of the probability distribution. As an explicit example, let us consider the case of a

1Location of the mean
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linear FPE which is defined to have: A(x) = Ax and D =constant. The solution for the
mean value of x can be obtained by solving eq. A1.6, which is obviously given by

(x(t)) = (x(O))eAt . (Al.8)

For a linear FPE then, a constant A causes an exponential decay (A < 0) or growth (A > 0)
of the value of (x) thereby causing a shift in the distribution with time.

On the other hand, the physical interpretation of the diffusion term can be made clear
by calculating the width of the distribution which is quantified by the variance, (0-2(t)) :

(A1.9)

We can carry out a similar calculation as in eq. Al.6 for the second moment of x to get:

= 100

dxdP(x, t) x2

-00 dt
= 2(xA(x)) + (D(x)).

Using eq. A 1.10 then, we can derive an equation of motion for (0-2(t)):

(A1.10)

:t [(x2) - (x)2]

2(xA(x)) - 2(x) (D(x)) + (D(x)). (Al.11)

For simplicity, if we imagine a probability distribution centered initially at x(O) = 0
and no drift term (A = 0), we see that:

d 2
dto-(t) = (D(x)), (A1.12)

which implies that the evolution of the width of the distribution depends on the D(x),
hence the name "diffusion matrix". For a linear FPE (i.e. constant D and A(x) = Ax),
eq. A1.11 has the solution (see [29]):

(0-(t)2) = 0-(0)2e2Af - (~) (1- e2At ) (A1.B)

and for the case of an initially sharp distribution where (0-(0)) = 0, we see that the time
evolution of the width of the distribution depends on a competition between D and A. For
D > 0, A < 0, D acts as a source for fluctuations and causes broadening as is intuitively
expected for a "diffusion term".

A.2 Stochastic differential equations

So far we have seen that an FPE describes the dynamics of the conditional probability
distribution, P(x, t) of a random variable, x. Once solved, it allows us to calculate the time
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dependent average value (x( t)), which can be interpreted as the average of repeated sam­
plings from independent experiments. An interesting question to be raised is: Is it possible
to find a set of differential equations whose solutions generate independent trajectories of
x(t), representative of a single, unique experimental observation. In which case, it would
allow us to get around the arduous task of solving an FPE, thus providing the motivation
of using stochastic differential equations. The SDEs provide an equivalent way of describ­
ing the FPE in the sense that averages calculated from either method are identical. We
will examine SDEs in more detail in A.2.1 where we carry out a brief review of stochastic
differential equations before examining their correspondence with the FPE.

A.2.1 What is an SDE?

We are all surely familiar with the concept of an ordinary differential equation (ODE),
for example in 10

dx(t) = A(x(t), t)dt (A.2.1)

which has a well-defined trajectory2 in time, regardless of how many times we choose to
numerically simulate x(t). We will therefore call A(x(t)) in eq. A.2.1 a deterministic term.
An SDE on the other hand, comprises of two components, namely a deterministic term,
A(x(t)) and a noise term, B(x(t)), and takes the general form:

dx(t) = A(x(t))dt + B(x(t))dW(t). (A.2.2)

(A.2.3)

dW(t) introduces irregularity in the system by acting as a source of fluctuations, whose
properties are only defined probabilistically. This means that we need to specify its mean,
variance and correlations with noise terms at different times. This issue will be addressed
in section A.2.2.

For an SDE then, the same initial condition: x(O) will result in an infinite number
of realizations of x(t) due to the random (or stochastic) nature of dW(t). Individually,
each trajectory has little significance, and what we are interested in is an average over
many equally-weighted trajectories called a stochastic average. Using SDEs, the stochastic
averages are computed using the simple formula:

(L~t Xi(t))
((x(t))) = N '

exps

where Xi(t) represents different realizations of x(t) trajectories and Nexps is the total num­
ber of trajectories we are averagulg over3 . What we are looking for then is to define stochas­
tic noise fluctuations dW(t) such that the following correspondence can be made:

(O(X(t)))FPE = ((O(x(t)))) (A.2.4)

2 Assuming the same initial condition is used, of course.
3 ote that we denote stochastic averages with: ((.)) instead of single brackets. (.) may be used for stochastic

averages as well but it will be apparent from the context in which it is used
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where O(x(t)) is any function of x(t). If this were possible, then one could simply work
with SDEs like eq. A.2.2 which is usually much simpler than solving an FPE. Especially
since the latter usually involves complicated multi-dimensional partial differential equa­
tions which are not usually analytically accessible and difficult to solve even on computer.

A.2.2 The Wiener increments

It turns out that the increments dW(t) that we are interested in (see eq. A.2.2), are
known as Wiener increments or white noise terms which have the following statistical
properties:

(dW(t))

(dW(ti)dW(tj))

(A.2.5)

(A.2.6)

In the multi-dimensional case, where we have a vector of Wiener increments, dW(t)
(dW1(t), dW2 (t), ... ) instead, we have the relation:

(dWi(t))

(dWk(tj)dW/(tj))

a
o(ti - tj)Okl dt.

(A.2.7)

(A.2.8)

We can calculate the variance of dWj at a given time, t using eq. A.2.7 and eq. A.2.8 to
get:

(A.2.9)

which tells us that Wiener increments can be easily simulated if we are able to generate a
random variable with mean a and variance dt, or in terms of a standard normal distribu­
tion: N(O,1)4:

dWi(t) = N(O,dt) rv VdtN(O, 1)

where we have used the property of normal random variables that:

aX + b rv N(ap + b,a2c?)

(A.2.10)

(A.2.11)

given that X rv N(p, 0-2 ). Fortunately, generating standard normal random variables in
computers can be done quickly and trivially, as numerous algorithms are available.

A.2.3 Ito vs Stratonovich SDEs

Stochastic differential equations are quite different from ODEs, not only because of the
inclusion of stochastic noise terms as in eq. A.2.2. Unlike ODES, depending on the instant
in time, Ti

4We denote a normal variable using the convention N(fl, (/2) where}1 is the mean and (/2 is the variance.
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(A.2.12)

where IX E [0,1], at which we evaluate the noise terms of SDEs, will generate quantitatively
and possibly qualitatively different results. IX = 1 corresponds to the explicit case and
IX = acorresponds to the fully implicit case i.e., an Euler-type approach. Suppose we are
dealing with ordinary differential calculus, and now consider the differential equation of
somevariablex(t),t E [to,tN]:

dx(t;) = X(ti + t>t) - x(t;) = A(X(T;))t>t, (A.2.13)

where we break up the time domain into N equal time slices of length t>t = (tN - to) IN.
Also, let us evaluate the RHS of eq. A.2.13 at the instant in time: Ti = t; + IXt;, which lies
in the interval [ti' t;+l]' Regardless of the value of IX E [0,1], the trajectory of x(t) does
not change. Different values of IX results in different numerical schemes with higher order
error corrections in dt but does not affect the quantitative or qualitative behavior of the
trajectory. Therein lies the difference. In stochastic calculus, different choices of IX will
result in completely different behaviors both quantitatively and possibly qualitatively. Let
us illustrate this point with a simple example.

Consider the following stochastic differential equation 5 for Xi

or

dX; = X;+l - Xi = A(X;)dt + B(X;)dWi

X;+l = Xi + A(X;)dt + B(X;)dW;

(A.2.14)

(A.2.15)

where the subscript i denotes the i-th time step. This SDE corresponds to the choice IX = a
and is known as an lt~ SDE. The noise term, B(Xi) is a function of X; and therefore depends
only on the variables, Xj and dWj for j = 0 ... i-I which are all independent of present
noise term, dWi. Thus for an Ito SDE, the stochastic average of Xi is easy to calculate:

d(X;) (A(Xi))dt + (B(Xi)dW;)

(A(Xi))dt + (B(X;))(dWi)

(A(X;))dt (A.2.16)

where we have used the statistical independence of B(X;) and dWi as well as eq. A.2.7 in
the second line of eq. A.2.16.

Now if we were to evaluate the noise term of the SDE in eq. A.2.14 at the mid-point
interval (corresponding to IX = 1/2) however, then we cannot make a similar assumption
that (B(X;+~)dW;) = (B(X;+~))(dWi) since B is now being evaluated at a slightly later

5Note that we will denote the ;-th time step with a subscript for brevity, so X(til == Xi and Similarly dW(ti) =

dWi
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time and are no longer statistically independent of dWi. The choice IX = 0.5 corresponds to
another type of stochastic different equation, called the Stratonovich SDE, and is given by:

(A.2.17)

Our goal now, is to express the Stratonovich SOE in terms of Xi and Xi+1 so that stochastic
averaging as in eq. A.2.16 is possible. To proceed, let us approximate B(Xi+l/Z) by first
using linear interpolation to write:

1
Xi+1/ Z = Xi + '2 (Xi + Xi+l)

and use it to expand B(Xi+1/z) to first order in Xi, i.e.

(A.2.18)

(A.2.19)

Substituting eq. A.2.19 into eq. A.2.17 then gives:

Xi+1 = Xi + [A(Xi)] dt + [B(Xi) + ~ (Xi+l - Xi)] dWi·

We may, in addition use an Euler-type approximation that

and substitute eq. A.2.21 into eq. A.2.20 to solve for Xi+1 explicitly to get:

(A.2.20)

(A.2.21)

(A.2.22)

where we have used the following abbreviation for the derivative, i.e. ~(Xi) == B'(Xi).

Now, what we need is to keep terms that are of order dt only. Since on average
(dW(t)Z) = dt (d. e.q. A.2.8) then in this sense, we can say that dW rv Idi. Thus the
term A(Xi)B'dtdWi in eq. A.2.22 is actually of order dt3/ Z and can be neglected. On the
other hand, the term B(Xi)~B'(Xi)dWlis of order dt and cannot be neglected. Finally we
arrive at the result:

Xi+1 = Xi + dtA(Xi) + B(Xi)dWi + B(Xi)~B'(Xi)dWf,

which upon averaging becomes
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and is clearly different from the result obtain from the Ito SDE in eq. A.2.16 in the sense
that there is a modification of the drift term such that

(A.2.25)

...
I

A.2.4 Ito vs Stratonovich calculus

Another key difference between Stratonovich and Ito SDEs is that they obey different
rules of calculus. Stratonovich SDEs obey the rules of conventional calculus

d(XY) = X 0 dY + Y 0 dX (A.2.26)

where X and Yare stochastic variables and 0 defines Stratonovich differential equations
whereas Ito calculus obeys slightly different rules:

d(XY) = YdX + XdY + dXdY. (A.2.27)

(A.2.28)

For Ito calculus, it is important to keep the extra product of differentials: dXdY which
is normally neglected in conventional calculus. This is because, we have to be careful not
to neglect terms of order dWl which may result from dXdY as they scale like rv dt in the
mean (c.f. section A.2.3). In general, however, Stratonovich SDEs are preferred over Ito
SDEs because Stratonovich numerical algorithms are known to exhibit stronger convergent
properties [46]. Although the SDES that correspond to the FPE are of Ito form6, we should
not despair as it is possible convert an Ito SDE to a Stratnovich SDE and vice versa by
modifying only the drift term using the relation (for the multi-dimensional case):

A Strat = Alto - ~ \' B.(x)~B(x)
I I 2 LJ kJ :Ix lJ .

j,k a k

We see that eq. A.2.28 does indeed yield the same correction term as in eq. A.2.25 for the
10 case. On the other hand, there is no change to the noise terms. To put it explicitly, the
following multidimensional Ito SDE

and Stratonovich SDE:

dX = AStrat (X)dt + B(X) 0 dW

(A.2.29)

(A.2.30)

will produce the same results where AStrat and Alto are related through eq. A.2.28 and
the 0 indicates that B has to be evaluated at the midpoint interval of each time interval

Ti E [ti, ti+lJ·

6This will be shown in section A.2.5
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A.2.5 Calculation of averages

For an Ito SDE, we found that the mean obeys the equation of motion in eq. Al.6, i.e.

d
dt (Xt) = (A(Xt)). (A2.31)

Using the rules of Ito calculous (see eq. A2.27) we can then calculate the time evolution of
Xt using the standard definition of an Ito differential (eq. A2.14):

d(xf) d(Xt x Xt)

XtdXt + XtdXt + dXtdXt
2Xt(A(Xt)dt + 2B(Xt)dWt + B(Xt)2dWf

+A(Xt)2dt2+ 2B(Xt)A(Xt)dtdWt (A2.32)

which upon stochastic averaging and keeping terms that are only of order dt becomes:

or

2(XtA(Xt))dt + (B2)(dW(t)2)

2(XtA(Xt)))dt + (B(Xtf)dt (A2.33)

(A2.34)

These are exactly the results that were obtained from using the ID FPE in eq. A1.5 and
eq. Al.10 provided we make the distinction:

(A2.35)

For a system of equations that are higher dimensions however, we get the generalized
condition:

(A.2.36)

Simply put, the probabilistic dynamics generated by an FPE with drift vector A(X(t)) and
diffusion matrix D(X(t)) will be the same as the that generated from a stochastic averaging
of trajectories governed by the Ito SDE:

dXt = A(Xt)dt + B(Xt)dW(t) (A2.37)

as long as the factorization in eq. A2.36 exists. This establishes the correspondence be­
tween the FPE and its corresponding Ito SDE. The conversion between an Ito SDE and its
Stratonovich counterpart can be obtained using eq. A2.28.
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Noise matrix derivation for TFIM

In chapter 4, we did not explain in detail how the diffusion matrix was factorized
as we conveniently mentioned that "... a particular factorization of the diffusion matrix in
eq. 4.1.8 ... ". The details were relegated to this section so as to not distract the reader from
the technical details but does not imply that it is a trivial process. Let us now go through
this step in the derivation in more detail. Recall the FPE for TFIM:

CJP(iX,iX+j,$+)
dt
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By inspecting eq. B.O.l, the diffusion matrix (which is a 4N x 4N matrix), has matrix
elements that are specified by the functions associated with their derivatives. Obviously,
calculating the noise matrix is not a trivial task and comprises the bulk of the analytical
work. Instead of simply taking the straightforward B = y'j5 choice, we used the trick
mentioned in 2.3.2 and decomposed our diffusion matrix into eight different constituents,
i.e.:

(B.0.2)

where the obvious choice for these constituents would be

(Da
)i,i+l = (Da) l' = iJ

1+ ,I 4h IXiIXi+l

(Dtl) i,i+l
- (Dtl) - iJ
- i+U - 4n~i~i+1

(Da+) = (Da+) = iJ + +

i,i+l i+1,i 4h IX i IX i+1

(Dtl+) U+l = (Dtl+) = iJ + +

i+U 4n~i ~i+1

(Dtl
a
) i,i+l = (Dtla) =

iJ
1+1,1 4h IXi~i+l

(Datl) U+1 = (Datl) =
iJ

1+1,1 4n ~iIXi+1

(Dtl+a+) . = (Dtl+a+) . = iJ + +

1,1+1 1+1,1 411 IX i ~i+1

(Da+r) . = (Da+tl+). . = iJ + +

1,1+1 1+1,1 4h~i IX i+1'

The idea is that instead of factorizing one complicated diffusion matrix, D we can instead
factorize eight relatively simpler looking noise matrices, i.e. solving BX (B X

) T = DX. To
make things slightly more transparent we will write out the general form for the first con­
stituent, i.e. x = IX:

a IXolXl a IXoIXN-l

IXIIXo a IXIIX2 a
a IX2IXl a a 0 0 0

D a =!l a a (B.O.3)
411

IXN-I IXo a a
0 0 0 0

0 0 0 0

L 0 0 0 0 J

where 0 represents an N x N null matrix. If it were possible to find BX for all x, then the
total noise matrix takes the form of eq. 2.3.26.

Unfortunately, using the obvious choice JBX would still be messy and it would appear
that we have not made things any easier. However, we can apply the same trick once more
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and decompose each D X into N subconstituents: {DJ' j = O... N - 1}. Once again taking

the x = IX matrix as an example, the intuitive way of choosing the subconstituents is:

D lt
Dg + Df + ... + D~_l (B.0.4)

0 IXOIXI 0 0 0 0
IXllXO 0 0 0 IXllt2

if if
0 + ... +

411 + 411 lt2ltl

0 0 0 0 0

0 ltOltN-l

0
if

(B.O.5)
411

IXN-llt 0

where the only non-trivial matrix elements of DJ are given by

(Dj)i,i+l = (Dj)i+l,i = ltjltj+l' (B.0.6)

Each subconstituent diffusion matrix Df can then be individually factorized. This reduces
the original problem to the much more trivial problem of factorizing matrices of the fol­
lowing form:

D' = [~ ~]

for which we can easily show that either

B' = [-,jX/2 -i,jX/2]
-,jX/2 i,jX/2

or

B" = [-,jX/2 i,jX/2]
-,jX/2 -i,jX/2

(B.0.7)

(B.0.8)

(B.0.9)

satisfies the necessary relation in eq. A.2.35. Now, granted that the decomposition for each
Df exists, we can write eq. B.0.4 as:

(B.0.10)
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so that using eq. 2.3.26 again, the total noise matrix for D LY takes the obvious form:

B' ~ [ ~g
I I I I +1 ]B

LY ... BLY . .. (B.O.11)1

(
~

I I I
obviously satisfying eq. A.2.35, with the only non-zero elements being:

( BLY
)

J j,2j+l

( BLY
)

J j+1,2j

( BLY
)

J j+l,2j+l

where j = 0 ... N -1. As an explicit example, the N = 4 case of eq. B.O.11 is shown below:

- JIXQIXI -iJIXQlXl 0 0 0 0

- JIXQIXI +iJIXQlXl -JIX I IX2 -iJIX I IX2 0 0

BLY=~~
0 0 -JIX I IX2 iJIX I IX2 - J IX 21X3 -iJ1X21X3

0 0 0 0 -J1X21X3 iJIX21X3

0 0 0 0

-JIXQIX3 -iJIXQ IX3

0 0
0 0

-JIXQIX3 +iJIXQ IX3

0 0

o 0

(B.O.12)

which is an 4N x 2N matrix with most elements being trivial. This noise matrix would
therefore introduce 2N independent Wiener increments (see section. A.2.2) can be stored
as the components of the Wiener increment vector: df,l-r. In this fashion, the noise terms
for the SDEs in eq. 4.1.12 to eq. 4.1.15 can be derived. If we label dWLY in the conventional
wayl then:

1The labelings for dWap, dwpa ,dWP+,,+ and dW·+P+ does not follow the usual convention and can be deduced
from the corresponding noise terms in eq. 4.1.12 to eq. 4.1.15
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dWo
dWf

dWC<N-l

and the resulting stochastic terms only contribute to dtX, i.e.:

(B.a.B)

(B.0.14)

where we assumed "periodic boundary conditions" for the Wiener increment vectors in the
sense that dW_ i = dW2N - i where i E [0, N -1].
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(CO.1)

I CAppendix _

Numerical algorithm

The Stratonovich semi-implicit algorithm is known to have strong convergent proper­
ties [46] compared to the numerical methods for Ito SDEs. Thus the Stratonovich version
of the SDEs derived were numerically solved instead. We now provide an outline of an al­
gorithm which is surprisingly trivial. The simulations produced required a self-consistent
type algorithm as the SDEs given are all expressed in Stratonovich form. The latter form
implies that we need to evaluate the noise matrix, Ii at the midpoint of each time interval.
Although Stratonovich SDEs does not require us evaluate the drift terms at the midpoint,
we will do so anyway as it provides a more accurate calculation. More explicitly, the semi­
implicit Stratonovich differential equation is given by:

y(t+h) -y(t) = h [a[y(t+ ~)] +b[y(t+ ~)]~(t)],

where ~(t) rv N(O, 1/dt) = VdtN(O, 1) and we are evaluating the RHS at midpoint values.
The problem is that we have no idea what the value of y(t + ~) is, i.e. its future value at half
a time step. The best we can do then is approximate this value and iterate till convergence
is reached. We therefore write an SDE for the midpoint value as

or

In eq. CO.3, we take the Taylor expansion as out first approximation so that

(CO.2)

(CO.3)

h
~ y(t) + 2.y' (t)

h
y(t) + 2. (a[y(t)] + b[y(t)]~(t)).

Yl
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where Yl denotes that our first approximation for y(t + ~). Now substitute this back into
eq. CO.3 to get

h h
y(t + "2) = y(t) + "2 [arYl (t)] + b[Yl (t)~(t)]] (CO.5)

and y(t + g) becomes our new estimate: Y2. This generates a self-consistency condition
that gives us better and better estimates the more iterations we have. For the purposes of
the simulations in this paper, three iterations are more than enough for good agreement.
One difference to note is that, we have written the noise terms in terms of the gaussian
variables with mean 0 and variance Jcrt. Recall:

dW(t) = W(t + dt) - W(t) = ~(t)dt

and since
dW(t) rvN(O,dt) = vdtN(O, 1)

then
1

~(t) = jJ";N(O, 1).
vdt

Our SDEs which were defined to be of generic form

diX = A( iX, ~)dt + B(iX, ~)iW(t)

can be written as

instead.
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