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Abstract

In the passed half century, great improvements have been achieved to make

fiber-optic communication systems overweigh other traditional transmission systems

such as coaxial systems in many applications. However, the physical features

including optic fiber losses, group velocity dispersion (GVD) and nonlinear effects

lead to significant system impairments in fiber-optic communications. The nonlinear

Schr6dinger equation (NLSE) governs the pulse propagation in the nonlinear

dispersive media such as an optical fiber. A large number of analytical and numerical

techniques can be used to solve this nonlinear partial differential equation (PDE). One

of theses techniques that has been extensively used is split-step Fourier scheme (SSFS)

which employs the fast Fourier transform (FFT) algorithm to increase the

computational speed.

In this thesis, we propose a novel lossless SSF scheme in which the fast decay of

the optical field due to fiber losses is separated out using a suitable transformation and

the resulting lossless NLSE is solved using the symmetric SSF scheme with some

approximations. The various symmetric SSF schemes in terms of accuracy for the

given computational cost are compared. Our results show that the proposed scheme
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could lead to one or two orders of magnitude reduction in error as compared to the

conventional symmetric SSFS when the computational cost is fixed. The proposed

scheme can be also used as an effective algorithm for digital backward propagation

(BP) too. Our numerical simulation of quadrature amplitude modulation-16 (QAM-16)

coherent fiber-optic transmission system with digital BP has shown that the bit error

rate (BER) obtained using the proposed scheme is much lower than that obtained

using the conventional SSF schemes.
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1.1 Evolution of Fiber-optic Communications

During the development of telephone networks in the twentieth century, the use of

coaxial cables considerably increased the system capacity. But the

frequency-dependent cable losses limited the bandwidth of systems. The short

repeater spacing (~km), because of the large cable loss, is also a severe drawback of

coaxial-cable systems. Moreover, the bandwidth of the microwave system is limited

due to its relatively lower carrier frequency compared with optical communication

systems. Optical communication systems use high carrier frequency and the usable

bandwidth could be several Tera Hertz. Such systems indeed revolutionized the

telecommunication technology and together with opto/microelectronics, led to the

advent of the "information age". However, during 1950s, there was neither coherent

optical source nor suitable transmission medium. The first problem was overcome in

1960 when the laser was invented. Then a breakthrough occurred in 1970 when the

fiber loss is reduced to 20 dB/km near 1 /-lm wavelength region.

As fiber losses decreasing below 1 dB/km near 1.3 /-lm wavelength region and

InGaAsP semiconductor lasers being developed, the dispersion effects became the

major limit to the first generation of fiber-optic communication systems. This problem

was overcome by the use of single-mode fiber (SMF) [1] in the second-generation
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lightwave systems so that the bit rate reached 1.7 Gb/s and repeater spacing 50 km by

1987.

The drawback of the second-generation lightwave systems described above is the

fibers losses near 1.3)..Lm wavelength region. However, the losses of silica fibers

reduced to 0.2 dB/km near 1.55 )..Lm. Thus, using dispersion-shifted fibers (DSF)

having minimum dispersion near 1.55)..Lm or limiting the laser spectrum to a single

longitudinal mode could overcome the dispersion problem. The best performance was

achieved in combination with theses two approaches leading to 10 Gb/s in 1990 [2].

This is the third-generation lightwave communications.

The fourth generation of lightwave systems introduced the use of optical

amplifier for longer repeater spacing and of wavelength-division multiplexing

(WDM) for higher bit rate, which resulted in the commercial systems with Tera-Hertz

bit rate and 60-80 km repeater spacing.

In the need for higher bit rate, the fifth generation of fiber-optic communication

systems attempted to increase capacity and employed erbium-doped fiber amplifier

(EDFA) to compensate for fiber losses in optical domain without having to do

optical-to-electrical (OE) and electrical-to-optical (EO) conversion in 1989. As the

data increases, the dispersion and nonlinearity management of fiber became more and

more important.
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Figure 1. 1: Pulse broadening due to dispersive effect.

1.2 Limitation of Dispersion and Nonlinearity

Group velocity dispersion (GVD) is incurred due to slightly different propagation

speeds of different frequency components of pulses. The most direct effect from GVD

is broadening of the pulses transmitted. As a result, the pulses overlap as shown in

Figure 1.1, resulting in intersymbol interference (lSI). The impact of the dispersion

can be conveniently described using the dispersion length defined as [3]

(1.1)

where To is temporal pulse width and /32 is the second-order propagation constant.

This length provides a scale over which the dispersive effect becomes significant for

pulse evolution along a fiber.
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Figure 1. 2: Simulation of dispersive effect on Gaussian pulses broadening.

Assuming the pulse width To equals 10 ps (20 Gb/s 20% Gaussian RZ-OOK) and the

second-order propagation constant /3z is -21 psz/km, Lv is approximately 5 km.

Over Lv' as Figure 1.2 illustrates, the transmitted pulses are distorted entirely if there

is no dispersion compensation. There are several approaches for GVD compensation.

Dispersion-compensating fiber (DCF) [4] has the dispersion parameter of an opposite

sign with that of the standard transmission fibers. Figure 1.3 shows a fiber optic

system using DCF. If the transmission fiber is followed by DCF, total accumulated

dispersion is

(1.2)

5
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Figure 1. 3: Block diagram of fiber optic transmission system. SMF=Single-mode Fiber and
DCF=Dispersion-compensation Fiber.

where D
Sfd

and DDCF are dispersion coefficients of standard fibers and DCF,

respectively, and LSfd and LDCF are the fiber lengths of the two types of fibers. In

principle, adjusting DCF's length, the total accumulated dispersion can be set to zero.

For example, the standard fiber has the dispersion coefficient DSfd with the value of

17 ps/nm/km, and DCF has DDCF with -100 ps/nm/km. So 100 km standard fiber

needs 17 km DCF to achieve zero accumulated dispersion.

Another approach is using electronic equalizer at receiving end [5,6] which

employs computational algorithms in DSP to compensate dispersive impairments

through fibers.

In addition, due to large powers needed to increase signal-noise ratio (SNR), the

nonlinear effects in fibers attract more and more attention in modem fiber optic

communications. Here, we primarily focus on nonlinear phase shift (NPS) originating

from self-phase modulation (SPM). The result of SPM is broadening the spectrum of

signals rather than temporal width as GVD does.
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Figure 1.4: Simulation of SPM on spectral broadening.

The mathematical analysis of SPM will be put in Section 2.1. In analogy to dispersion

length, a similar concept called nonlinear length is given by

1
LNL =--,

rPo
(1.3)

where is r nonlinearity coefficient and Po is launch power. Physically, the

nonlinear length indicates the distance at which the nonlinear phase shift reaches to

1 radian. For instance, assume the nonlinearity coefficient r is 3 W-1k:m-1
, the

launch power Po is 10 mW. So LNL is approximately 30 km, which means that
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over 30 km, the spectrum of signals will be broadened to a notable extent. Figure

1.4 shows this clearly.

1.3 Numerical Methods to Solve Nonlinear

Schrodinger Equation

Due to the unavailability of analytical solution of the NLSE, a large number of

numerical algorithms like the inverse scattering method [7], the finite difference

methods [8,9] and the pseudospectral methods [10], can be used to solve this

nonlinear partial differential equation problem. The one that has been extensively

used is split-step Fourier scheme (SSFS) [11] which employs the fast Fourier

transform (FFT) algorithm [12] to increase the computational speed. Typically, the

SSFS can be classified into two bategories known as the asymmetric SSFS and the

symmetrical SSFS. The accuracy of the latter method is one order of magnitude of

numerical step size higher than that of the asymmetrical SSFS. The main idea of

SSFS is to separate the linear and nonlinear parts of the NLSE. For the linear parts

such as dispersion operator, the fast Fourier transform is employed, while with regard

to the nonlinear operation, the ordinary differential equation can be solved

analytically since in each step size, the nonlinear term is assumed to be constant. This

thesis focuses on how the novel technique-the lossless SSFS based on the

conventional SSFS is modified, especially the nonlinear operation, to get greater

8
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accuracy in applications of forward propagation (FP) and to obtain better system

performances in backward propagation (BP) [13].

1.4 Thesis Structure

This thesis deals with a novel SSFS technique and its simulation and application in

fiber-optic communication systems. Chapter 2 introduces the NLSE and explains the

conventional numerical methods used to solve the NLSE, especially the conventional

split-step Fourier scheme (SSFS). Two topics of the conventional SSFS are discussed

and the simulation of fiber-optic system by these techniques is carried out. An error

analysis of unsymmetrical and symmetric SSFS shows the advantage of the latter

scheme.

In Chapter 3, the lossless SSFS is explained theoretically and schematically. The

system structure of the lossless technique used in forward propagation (FP) simulation

is illustrated and the results of normalized mean square errors show its advantage

compared with other conventional SSFSs.

Chapter 4 shows the system structure of the lossless technique in backward

propagation (BP) simulation and the results of bit error rate (BER) indicate that the

novel technique saves the computational costs of the receiving-end DSP under the

same accuracy as the other conventional SSFS.

9
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Conclusions are drawn and future work is listed in Chapter 5.
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2.1 Basic Propagation Equation: Nonlinear

Schrodinger Equation

As widely known, Maxwell's equations govern all electromagnetic phenomena with

no exception of optical fields. The governing equation that we employed in this thesis

for propagation of optical fields in single-mode fibers is the nonlinear Schrodinger

equation (NLSE).

In a general form, Maxwell's equations are

aB
Y'xE=-­at '

Y'·B = 0,

(2.1)

(2.2)

(2.3)

(2.4)

where E and H are electric and magnetic field vectors, and D and Bare

electric and magnetic flux densities, respectively, which satisfy the relations given

by

B = lloH+M,

12

(2.5)

(2.6)
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where Go is the vacuum permittivity, f.lo is the vacuum permeability, P is the

induced electric polarization, and M is the induced magnetic polarization which is

zero in optical fibers. In a medium with no free charges such as optical fibers, the

current density vector J J and the charge density p are required to be zero.

Using Maxwell's equation, it can be shown that the evolution of the optical field

envelope in optical fiber is governed by the generalized NLSE [3]:

where r is nonlinear coefficient, TR is related to the slope of the Raman gain, and

(2.8)

For pulses of width Ta greater than and equal to 1 ps such that OJoTa» 1 and

TR/Ta «1, Eq. (2.7) will be simplified to the NLSE

(2.9)

where the three terms on the right side denote fiber losses, linear dispersion and

low-order nonlinearity, respectively. In this thesis, all analysis and results are based on

13
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Eq. (2.9) that ignores high-order dispersive and nonlinear effects. If only the

dispersion considered, Eq. (2.9) can be written as

(2.10)

Taking the FFT of Eq. (2.10), we find

(2.11)

where U is the Fourier transform of U and co is angular frequency. The solution

ofEq. (2.11) is

fj (z, OJ) = fj (0, OJ) exp ( ~ fJ2 OJ2 Z).

Thus, the solution ofEq. (2.10) is

Let us take a single Gaussian pulse. For example,

U(O,T) = exp (- T
2

2 ],

2To

(2.12)

(2.13)

(2.14)

where To is the half-width at 1/e-intensity point. Substituting Gaussian pulse to Eq.

(2.13), we get

14
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(2.15)

From Eq. (2.15), it can be seen that the pulse maintain its Gaussian shape but its width

at z becomes

(2.16)

where LD =Ta2/1.821 is dispersion length. Now, we can see clearly that dispersive

effect broadens the pulse and the extent of broadening is scaled by LD (Figure 1.2).

As with nonlinearity, we consider the equation

where y is nonlinearity coefficient. The solution can be written as

U(z,T) =U(O,T)exp(i¢NL (z,T)),

where the nonlinear phase shift is

¢NL (z,T) = yz·IU(O,Tt,

(2.17)

(2.17)

(2.18)

where U (0, T) is the field amplitude at z=O. If we differentiate the nonlinear phase

shift, the frequency difference is obtained

ow(T)=- a¢NL =-yz. a!U(O,Tt
aT aT

(2.19)

Eq. (2.19) shows us that new frequency components are generated by SPM to broaden

15
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the spectrum of pulses, and that the time dependence of 6rJJ also leads to frequency

chirp.

2.2 The Conventional Split-step Fourier Scheme

The NLSE of Eq. (2.20) is the governing equation to solve the optical field in

nonlinear dispersive media like optic fibers. Here the higher-order dispersion and

nonlinearity are ignored.

au i a2u 1 . I 12-=--fJ. ---aU+lr U Uaz 2 2 az2 2 '
(2.20)

where U denotes longitudinal envelope of optic field; fJ.2' a and rare

second-order dispersion parameter, attenuation constant and nonlinear coefficient,

respectively. To understand SSFS, the NLSE can be written schematically in the form

au (~ .~ ~)az ~ D+a+N U, (2.21)

where D and a are linear operators respectively for second-order dispersion and

fiber loss and N is a nonlinear operator which is proportional to nonlinear

coefficient r and depends on the local optical power IU (T, zt. In mathematical

expression, these operators can be shown as

(2.22)

16
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The analytical solution ofEq. (2.21) is

a
a=-­

2'
(2.23)

(2.24)

U (z + h) =exp (h(jj + ;; + N)).U (z ) , (2.25)

where the three operators are carried out simultaneously on the field as one whole

operator each step.

In symmetric SSFS, one computing step is divided to two sections, in the middle

of which the nonlinearity is lumped. The dispersion operator D operates on the field

~

in both sections as explained in Figure 2.1. If the constant operator a is combined

with D as a whole linear operator, the scheme is named as SSFS with loss in

linearity, that is, scheme 1. Using the symmetric SSFS and ignoring the terms of the

order of h3 and higher, Eq. (2.25) can be approximated as

(2.26)

~ (~ ~) (h~)where L = D +a . Operator exp "2 L can be implemented numerically, using the

fast Fourier transform (FFT).

17
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z
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1----:-- ...-.

I z
--+I

z+2h
Figure 2. 1: Schematic illustration of symmetric SSF scheme 1.

In Figure 2.2, we show the simulation results using scheme 1 and compare the results

between the original input signal and the reference that is SSFS with 0.5 kIn step size.

The simulation system has 100 km long each, 24 fiber spans with 24 amplifiers

followed, and at the receiver end, a dispersion compensator is employed to restore the

optical waveforms distorted by GVD.

18
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Figure 2.2: Real part of optical envelope in the case of (A) I mW launch power and 2 km step

size, (B) 1 mWand 100 km, (C) 10mWand 100 km for scheme 1.
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Figure 2.3: Schematic illustration of symmetric SSF scheme 2.

As Figure 2.2 shows, as the step size increasing (Figure 2.2 (A) and (B», the accuracy

of scheme 1 is decreasing compared with reference. Moreover, when the launch

power is enhanced, the nonlinearity plays a key role in optical transmission and the

pulses (from both reference and scheme 1) are getting distorted, as (B) and (C) in

Figure 2.2 show.

Scheme 2, i.e., SSFS with loss in nonlinearity, keeps the similar form of scheme 1

~

except the position of the loss operator a:

(2.27)

where the new nonlinear operator N I IS the addition of Nand a., i.e.,

N 1= N + a. Figure 2.3 illustrates the execution process of scheme 2.

20
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Figure 2.4: Real part of optical envelope in the case of (A) I mW launch power and 2 km step

size, (B) 1 mWand 100 km, (C) 10 mW and 100 km for scheme 2.
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Figure 2.4 shows the simulation using scheme 2 and compares the results between the

original input signal and the reference that is SSFS with 0.5 km step size. The

simulation system shares the same frame and parameters as scheme 1. As Figure 2.4

shows, as the step size increasing (Figure 2.4 (A) and (B», the accuracy of scheme 2

is decreasing compared with reference. Moreover, when the launch power is

enhanced, the nonlinearity plays a key role in optical transmission and the pulses

(from both reference and scheme 2) are getting distorted (see (B) and (C) in Figure

2.4). Comparing Figure 2.2 (B) and Figure 2.4 (B), we find that the distortion induced

in scheme 2 is more than that in scheme 1.

2.3 Error Analysis of Split-step Fourier Scheme

For asymmetric SSFS, the solution is

U(z+h,T) = exp(hD)exp(hN)U(z,T).

Now set

a=hD, b=hN.

Use the Baker-Hausdorff formula [14], we obtain that

exp(a)exp(b)

=exp{a+b+~[a,b]+~[a-b,[a,b]J+ ...}.
2 12
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It is easy to find that the tenn ~ [a, b] is of second order in h, while the latter tenn
2

_1 [a _b, [a, b]J is of third order in h that could be neglected. Therefore, the
12

dominant error tenn is found to result from

where

Now, set

A(T)=DN-ND.

H b i/32h a
2

. hi 12=a+ =-----2+ZY Uo ,
2 aT

(2.31 )

(2.32)

(2.33)

where the loss operator is left out here for simplicity. According to (2.30), the operator

imposed on the input pulse is labeled as

exp [ hD]exp [ hN] = exp [H+E].

So, using Taylor expansion, we obtain

23
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(
H2 H 3) 1 1

= l+H+-+- +[E+-(E2+HE+EH)+-CE3+HE2+H2E+EH2
2! 3! 2 6

+E2H +HEH + EHE)] + ...

where

~ exp[H]+e, (2.35)

(2.36)

Ignoring the third order tenns and higher, we obtain the dominant second-order error

tenn in asymmetric SSFS

(2.37)

It is worthy to note that the split-step Fourier scheme we are using here is

symmetrized as Eg. (2.26) and Eg. (2.27) show. It is concluded that the local error of

the symmetric SSFS incurred in a single computation step is proportional to third

order of the step size, that is, 0 (h3
), whereas its error counterpart of asymmetric

SSFS has a leading error tenn of second order. At the meantime, it may appear that

the computational cost for symmetric SSFS is more than unsymmetrical SSFS, since

8/2 should be evaluated twice in a section for symmetric SSFS.
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FFT IFFT

lehN 1....2

z

(A)

FFT IFFT

.... ---.
Z

(B)

Figure 2.5: Schematic of symmetric SSFS in (A): original

algorithm and in (B): computational simulation in MATLAB.

However, this seeming problem is easily overcome by the technique illustrated in

Figure 2.5.

The first half dispersion operation of the current step can be combined with that

of the second half of the previous step. Thus, within every step, FFT and inverse FFT

are evaluated only once, which is same as that for unsymmetrical SSFS. To

summarize, symmetric SSFS can take, with no doubt, the place of the asymmetric

scheme with low error and the same computational cost. As follows, we will find out

the error and prove it is proportional to h3
•
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U(z+h,T) =exp(hi3)exp(hN)U(z,T). (2.38)

The formally exact solution of Schrodinger equation has been given by Eq. (2.25).

~

For simplicity, we temporarily neglect the loss operator a, just keeping the

dispersion and nonlinearity operator D and N, as Eq. (2.39) shows.

U( z+h,T) =exp [ h(i3 + N)JU(z,T). (2.39)

For symmetric SSFS, the solution is

Now, set

......
a=hD, b=hN.

Use the Baker-Hausdorff formula, and prove Eq. (2.40), we obtain that

(2.41)

Let us set

c=b+ a +~[b ::]+_1[b-:: [b ::]]. (2.43)
2 2 '2 12 2" 2

26



M.A.Sc - Xiao Deng

So, Eq. (2.42) becomes

McMaster - Electrical and Computer Engineering

Using

and

we obtain

[ a] 1 1b - =-ba--ab
, 2 2 2'

[
a [ a ]] 1 1 1 1 1b-- b - =-bba-bab--aba+-aab+-baa+-abb
2"2 2 2 4 4 2'

(2.45)

(2.46)

alII 1 1 1 1 1
c=b+-+-ba--ab+-bba--bab--aba+-aab+-baa+-abb (2.47)

2 4 4 24 12 24 48 48 24'

[
a ] 1 1 1 1 1 ( 4)- c =-ab--ba+-aba--aab--baa+O h
2' 2 2 4 8 8 '

[!!..-c [!!.. c]] =!bba -~bab+O(h4
)

2 ' 2' 2 2 '

and Eq. (2.3.7) becomes

(2.48)

(2.49)

(
1 1 1 1 1 1 )exp a+b+-bba--bab+-aba--aab--baa+-abb+ ... . (2.50)

12 8 12 24 24 24

Therefore, the dominant error term is found to result from
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where

(2.51 )

Let us set

Taylor expansion of the exponential operator on the RHS ofEq. (2.54) leads to

(H E)2 (H E)3
exp[H +E] =l+(H +E)+ + + + +...

2! 3!

(
H2 H3) 1 1= l+H+-+- +[E+-(E2+HE+EH)+-(E3+HE2+H2E+EH2
2! 3! 2 6

+E2H +HEH +EHE)]+ ...

~ exp[H]+e,

where

Here we only considered the terms proportional to h3 ,so e is simplified as

28
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Comparing Eg. (2.37) and Eg. (2.56), we find that the error is proportional to h3
III

symmetrical SSFS whereas it is proportional to h2 in asymmetric SSFS.

2.4 Conclusion

After error analysis of the two types of SSFS, the symmetric SSFS possesses an error

of third order in h whereas the asymmetric SSFS has a second order error in h.

Combining loss operator with dispersion operator, this symmetric SSFS is named as

scheme 1. In simulation ofNRZ pulses, scheme 1 gives smaller distortion than

scheme 2 in which loss operator is combined with nonlinear operator.
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Chapter 3
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The Novel Lossless Split-step

Fourier Scheme And Its

Application In Forward

Propagation
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3.1 Theory of the Lossless Split-step Fourier

Scheme

The optical field envelope decreases exponentially with distance due to fiber loss. To

separate the rapid change in optical field due to loss, we use the transfonn

(3.1)

By extracting exponential loss, the NLSE governing the new field variable is changed

Substituting Eg. (3.1) into Eg. (2.9), we obtain the NLSE in the lossless fonn

(3.2)

where y' = y. exp (-az) is the effective nonlinear coefficient that is dependent on z.

Eg. (3.2) can be written as

(3.3)

where ]:h denotes iy 'Itp12 . It can be easily shown that the energy E = ~qJ12 dt of the

new field tp remains constant as a function of distance z. However, the effective

nonlinear coefficient yl decreases exponentially with distance. In contrast, from Eg.

(2.9), it can be shown that the energy ]u1 2
dt of the actual field decreases
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U(T_,z)---->...o<.O_~

IU(T,zt

z

z

y(z)

z

zy(z)

(A) (B)

Figure 3.1: Schematic of optical power and nonlinear

coefficient in the case of (A) scheme 1,2 and

(B) scheme 3.

exponentially with distance, but the nonlinear coefficient remains constant (see Figure

3.1). The allocation scheme of loss and the dependence of nonlinearity on z is the

difference between the three schemes and the potential improvement brought by

scheme 3. Ignoring the terms of order h3 and higher, the solution of Eq. (3.3) is

given by [3]
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t, Z +h)

z+h

h

2

Nonlinearity

h
2

Dispersion

/
1--

z

1 h~
iheff exp(-az )1q.>1

2 h~ 1 u(
-D -D ..:r--- r---

1 e 2 e e2
1 z

U.(t.,.~)

Figure 3.2: Schematic illustration of symmetric SSF scheme 3.

The integral in Eq. (3.4) can be written as

z+h z+h

fHI (s )ds = iy f exp(-as )lqJl 2
ds (3.5)

Now, we make an approximation that qJ is roughly constant in the interval [z, z+h] .

In other words, IqJI2
in Eq. (3.5) can be taken out of the integral, i.e.,

z+h

fHI (s )ds =iyheff .exp(-az) 'lqJ(z)1
2

• (3.6)

where

l-exp(-ah)
heJJ = .

a
(3.7)

This new scheme is shown in Figure 3.2 and we call it lossless SSFS (scheme 3).
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Figure 3.3: Relation of effective step size h-eff and step size h for SSF scheme 3.

Note that when h« 1/a, heff ~ h, and when h» 1/a, heff ~ 1/a. Figure 3.3 gives

out the relation between h~ff and h. From Eq. (2.26), we see that the nonlinear

phase accumulated from z to z+h is proportional to h for scheme 1 whereas it is

proportional to hejf ~ 1/a when h» 1/a for the scheme 3. This implies that larger

h can be used for scheme 3 for the given nonlinear phase. Typically, nonlinear phase

accumulated over h should be much smaller than 1C radian and it can be shown

that the larger nonlinear phase accumulated over h leads to more errors.

This scheme is advantageous over scheme 1 and scheme 2 for the following

reason. For scheme 1, optical power IUl2
decreases exponentially with distance. The

nonlinear operator at different computational steps has samples of the exponential
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function. When h is large, error increases because of the rapid changes caused by

the exponential function. In contrast, in lossless SSFS, the exponential function is

analytically integrated as shown in Eq. (3.6), and IlJf is roughly constant in the

interval [z, z+ h] because of energy conservation. In next section, we compare the

three schemes for forward propagation.

3.2 System Structure Used in Forward

Propagation

In this section, we compare the various split-step Fourier schemes for a coherent

fiber-optic transmission system shown in Figure 3.4. We assume that the coherent

receiver is ideal and ignore the laser phase noise.

Sigii1"l

I-Las-orHMZM ~~~".
Fiber

Amp.

Coherent
Receiver

Dispersion
Compensation

Figure 3.4: Block diagram of a coherent fiber-optic transmission system.

MZM=Mach-Zehnder Modulator, Amp.=Amplifier, and LO=Local

Oscillator.

The following parameters are assumed: bit rate is set 20 Gb/s, the operating

wavelength is 1550 run, the fiber dispersion coefficient D has the value of 17
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ps/nm/km, the fiber loss is equal to 0.2 dB/km and nonlinear coefficient r is set 1.1

w- I
kIn-I. The laser output is modulated by non-retum-to-zero-phase-shift keying

(NRZ-PSK) signal using a Mach-Zehnder modulator. The fiber-optic link consists of

24 fiber spans 100 km long each. 24 inline amplifiers compensate the fiber loss

exactly. In this section, we tum off the amplifier spontaneous emission (ASE) of the

amplifier. A pseudo-random bit sequence (PRBS) with length of i 2 _1 is simulated.

3.3 Error Analysis and Method Comparison

To compare various SSF schemes, we define the normalized mean-square error as

where .Slgi,olll denotes the output obtained usmg the SSF scheme i, i=1,2,3, and

sigref.olll is the reference output obtained using SSP scheme 1 with very small step

size corresponding to a nonlinear phase ¢NL of 0.0001 radian. For such a small

step-size all the three schemes provide the same output.
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Figure 3.5: Normalized mean-square errors for raised-cosine NRZ signals in

the case of (A) 1 mW, (B) 2 mW, (C) 3 mW and (D) 5 mW launch power
over24xl00km. D=17ps/nm/km, y=1.1 W-I km-I.
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Figure 3.6: Normalized mean-square errors for raised-cosine NRZ signals in
the case of 5 mW launch power over 24x100 km. D=2 ps/nm/km, Y=1.1

W-'km- I .
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• scheme 1

T scheme 2

• scheme 3
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step size (km)

Figure 3.7: Normalized mean-square errors for raised-cosine NRZ signals in
the case of 5 mW launch power over 24 x 100km. D=17 ps/nm/km, 'Y =2.5 W- l

km-l.

Figure 3.5 shows the normalized error as a function of the step size h for

various schemes at different launch powers. As can be seen, when the step size is very

small, the error is negligible for all the schemes (e < 10-2
). However, when the step size

is large, the normalized error for the lossless SSFS (scheme 3) is much lower than the

other schemes. In fact, when the step size is 100 km and launch power is 1 mW, the

error for the lossless scheme is 100 times lower than scheme 1.

The launch power for Figure 3.6 and Figure 3.7 is 5 mW. In Figure 3.6,

dispersion is reduced to 2 ps/nm/km. All other parameters are the same as those in

Figure 3.5. In this case we see that, error is 910 times lower than scheme 1 when step

size is 100 km. In Figure 3.7, r is increased to 2.5 W-1km-I . All other parameters
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are the same as those in Figure 3.5. Now, we see that the error is 7 times lower than

scheme 1 when step size is 100 km.

3.4 Conclusion

Mathematical transformation and approximations make the lossless SSFS (scheme 3)

advantageous over the other two conventional SSFSs (scheme 1 and 2). In forward

propagation, the novel lossless SSFS gives the least error which is 100 times lower

than scheme 1. In the range of relatively large step size (40 km-l 00 km), the trend of

the error curves appears flat, which means that even if the amplifier spacing (100 km)

is employed as one step size, the normalized mean squared error is quite small in the

examples considered here. A large step size will greatly reduce the running time of

computers, especially when a large number of symbols are simulated. In next chapter,

we will see its significance in computational cost savings for DSP compensation

scheme.
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The Lossless SSFS in Backward

Propagation
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4.1 System Structure
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In direct detection systems, receiver has only the knowledge of the amplitude or

power of the received signal, but the phase information is lost. In contrast, in a

coherent fiber-optic system, the receiver has the full knowledge of the received

field-both amplitude and phase. Therefore, it is possible to avoid the deleterious

effects such as dispersion and nonlinearity using digital BP [13]. In digital BP, fiber

transmission process is entirely reversed: fiber parameters such as a, /32 and y

are replaced by a fictitious fiber in digital domain with parameters -a, -/32 and -y,

respectively. The amplifier with gain G is replaced by an attenuator with loss 1/G.

Typically, the NLSE is solved in electrical (digital) domain with the above parameters

using the conventional SSFS. Since computation should be done online, the

computational speed should be larger than the symbol rate. Therefore, it is desirable

to search for new algorithms that solve the new NLSE faster without losing accuracy.

Alternatively, for the given computational cost (or speed), it is desirable to lower the

error. In Chapter 3, we have seen that lossless SSFS has the lowest normalized error

and therefore, it could be speculated that ifthe lossless SSFS is used
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Figure 4.1: Block diagram of BP compensation

MZM=Mach-Zehnder Modulator, Amp.=Amplifier, LO=Local

BP=Backward Propagation.

system.

Oscillator,

for digital BP, BER is lowered. To prove this, we have carried out the numerical

simulations of the coherent fiber-optic transmission system with the digital BP. A

PRBS oflength 213 -1 is used to generate QAM-16 data. This data is transmitted over

the fiber-optic link described in Chapter 3. At the receiver, digital BP at a symbol rate

of 25 GBaud (see Figure 4.1) is used to reverse the effects of dispersion and

nonlinearity. An electrical filter with 3 dB bandwidth of 0.2 THz is used. Amplifier

ASE is turned on with noise figure 4.8 dB. For the forward propagation, we have used

SSF scheme 1 with a nonlinear phase ¢NL of 0.0001 radian.
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4.2 Error Analysis and Method Comparison

For the digital BP, we have used all the three schemes and compared the BER

obtained using each ofthree schemes in Figure 4.2. As can be seen, when the step size

is large, the BER is lower by an order of magnitude or more for SSF scheme 3 as

compared to scheme 1.
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Figure 4.2: BER along step sizes for 25 Gbaud raised-cosine NRZ-QAM-16

over 14x 100 km at launch powers of (A) -3 dBm, (B) -1 dBm, (C) 1 dBm,

and (D) 3 dBm.

Figure 4.3 shows the BER vs launch power for various step sizes. When the launch

power is very small, the system operates in the linear regime and all the three schemes

have the close performance. The performance degradation is caused by the poor SNR.

When the launch power is large, the performance is limited by nonlinear effects.

When the step size is small (Figure 4.3. (A)), the difference between scheme 2 and

scheme 3 is small. However, small step size lowers the computational speed and at

larger step sizes (Figure 4.3. (B) and (C)), the optimum BER is significantly lower for

the SSF scheme 3. From Figure 4.3. (A)-(C), it can be seen that tolerance to

nonlinearity decreases as the step size in digital BP increases.
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Figure 4.3: BER vs launch powers at step sizes of (A) 20 lan, (B) 50 lan and (C)

100 lan. Transmission distance=1400 lan. D=17 ps/nm/lan.

47



M.A.Sc - Xiao Deng McMaster - Electrical and Computer Engineering

Figure 4.4 also shows the BER vs launch power for various step sizes. But the

dispersion parameter D is changed from 17 ps/nm/km to 5 ps/nmlkm. The results

are qualitatively same as the that shown in Figure 4.3. However, now the transmission

distance at which the BER is in the range of 10-4 to 10-3 is reduced to 600 km from

1400 km. The reduction in transmission reach can be explained as follows: the

deterministic nonlinear distortion such as SPM, IXPM and IFWM can be completely

undone by the digital BP if the step size is very small (ideal BP). However, the

nonlinear interaction between signal and amplifier noise such as that leading to

nonlinear phase noise can not be compensated by even ideal BP. It is known that the

variance of nonlinear phase noise can be greatly reduced if the fiber dispersion is

large [15,16]. Therefore, when dispersion is relatively small (5 ps/nmlkm), the

nonlinear phase noise becomes the dominant impairment leading to shorter

transmission reach.
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Figure 4.4: BER vs launch powers at step sizes of (A) 20 km, (B) 50 km and (C)

100 km. Transmission distance=600 km. D=5 ps/nm/km.
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Figure 4.5: Nspan along step sizes in the case of each method optimized to

Figure 4.5 shows the number of fiber spans over which the data can be transmitted

before the BER reaches the forward error correction (FEe) threshold 2 x 10-3 for the

various digital BP schemes. Each span is 100 km-long single-mode fiber. Each point

in Figure 4.5 is obtained by optimizing the launch power to the fiber. As can be seen,

the transmission reach can be significantly enlarged using the proposed lossless

technique.
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4.3 Conclusion
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In backward propagation, the novellossless SSFS shows the best system performance

and compensates the nonlinear effect more effectively in the range oflarge launch

power. When the computational cost is fixed, we found that the BP using the lossless

SSFS teclmique gives the least BER. Alternatively, to achieve a given BER, lossless

SSFS technique has the lowest computational cost.
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Conclusions and Future Work
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In this thesis, we have compared two types of SSF schemes in terms of accuracy and

speed, and proposed a novellossless SSFS for the simulation as well as mitigation of

nonlinear impairments. The modified lossless SSFS succeeded to achieve better

performances in simulation of fiber-optic communication systems. The analytical

integration of the nonlinear operator in the new scheme plays the key role in reducing

numerical errors. For a 20 Gb/s, NRZ-PSK coherent fiber-optic forward transmission,

the normalized mean-square error of the new approach is 100 times lower than

scheme 1. Even though at small step size's simulation, the difference of the errors

from the three schemes are not clearly big, the modified scheme gives out a better

result at large step sizes. As the compensation algorithm to solve inverse NLSE in BP

implementation, the lossless SSF scheme provides remarkably lower BER for the 25

GBaud NRZ-QAM-16 coherent fiber-optic communications in contrast to the other

conventional SSFSs. Also, in the nonlinear regime at large launch power, the BER

obtained from the proposed scheme is lower than that obtained from the other

methods indicating the nonlinear impairments can be compensated better using the

novel scheme. In this way, the computational overhead of receiving-end DSP will be

greatly reduced for the given accuracy.

With regard to the future work, it needs to be seen if the new lossless technique

can help when various frequency channels are added in wavelength-division

multiplexing (WDM) systems. Moreover, when the step size is made larger than
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amplifier spacing, it needs to be seen if the lossless technique is still advantageous

over the other conventional SSFSs.
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