
Performance Simulation with the Coconut 1ulticore Framework
for the Cell/B.E.

Performance Simulation with the Coconut lVlulticore Framework
for the Cell/B.E.

By
Kevin Browne B.Sc. (Hons)

IBM Center for Advanced Studies Fellow

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements
for the Degree

lVlaster of Science

MclVlaster University
© Copyright by Kevin Browne, September 21, 2009

MASTER OF SCIENCE(2009)
COMPUTING AND SOFTWARE

McMaster .UniVersity
Hamilton, Ontario

TITLE: Performance Simulation with the Coconut Multicore Framework for
the Cell/REo

AUTHOR: Kevin Browne B.Sc. (Hons)(McMaster University)

SUPERVISOR: Dr. Christopher Anand

NUMBER OF PAGES: xvii, 136

LEGAL DISCLAIIvIER: This is an academic research report. I, my supervisor,
defence committee, and university, make no claim as to the fitness for any
purpose, and accept no direct or indirect liability for the use of algorithms,
findings, or recommendations in this thesis.

11

Abstract

The multicore revolution in chip design has fundamentally altered the
demands placed on developers. Thread-level parallelism is critical to optimiz
ing software performance on multicore chips. However thread-level parallelism
presents challenges with respect to optimization, safety and program represen
tation. Program models and compiler technologies must act as a bridge from
applications to efficient hardware usage.

Coconut (COde CONstructing User Tool) is an ongoing project at Mc
Master to develop a platform for experimenting with novel ideas in reliable and
high performance code generation, currently targeting the Cell/B.E .. The Co
conut Multicore Framework uses a virtual machine abstraction layer to model
multicore layer parallelism on the Cell/B.E .. The abstraction creates a corre
spondence between ILP and multicore layers of parallelism. The abstraction
also allows us to perform efficient static analysis of virtual machine programs;
with this ability we have developed a tool to automatically check for parallel
bugs in linear time with respect to the atomic virtual machine instructions.

In this thesis we will discuss the creation of a performance simulation
tool developed to simulate the execution of our virtual machine instructions
on a Cell/B.E... The tool has scalability to future many-core architectures,
due to its linearly bounded runtime complexity. The tool allows for Coconut
developers to contrast the performance of different scheduling algorithms. It
provides meaningful feedback as to optimization opportunities by identifying
data transfer latencies which cause execution to stall. The design and perfor
mance testing results of the performance simulation tool are presented.

111

lV

Acknowledgment~

I would like to thank my supervisors Dr. Christopher Anand and Dr. 'Wolfram
Kahl for their wonderful support and guidance throughout my degree. Thanks
to Dr. Anand in particular for encouraging me to discuss my research at many
conferences and workshops. Thanks to Dr. Kahl in particular for introducing
me to the wonderful Monad.

I would like to thank the IBM Toronto Lab Center for Advanced Stud
ies, and Robert Enenkel, for their support of my research work thus far.

I would also like to thank my fellow students in the Coconut project.
In particular Shiqi Cao for teaching me how to Haskell properly, and Gabriel
Grant for coding the wonderful Runtime System.

I would also like to thank my parents, family and friends for their
support and encouragement.

v

VI

Contents

Abstract

Acknowledgments

List of Figures

List of Tables

Acronym Index

1 Introduction
1.1 Document Structure

2 Parallel Computing
2.1 Motivations

2.1.1 Performance Increases
2.1.2 Frequency, Memory and Power 'iValls

2.2 Flynn's Taxonomy .
2.2.1 Single Instruction Single Data (SISD) .
2.2.2 Single Instruction Multiple Data (SIMD)
2.2.3 Multiple Instruction Single Data (MISD)
2.2.4 J\ilultiple Instruction Multiple Data (1tIIMD)

2.3 Parallelism Levels .
2.3.1 Bit-level Parallelism .
2.3.2 Instruction-level Parallelism
2.3.3 Thread-level Parallelism ..
2.3.4 Process-level Parallelism ..

2.4 Task Parallelism vs. Data Parallelism .
2.4.1 Task Parallelism
2.4.2 Data Parallelism

2.5 Memory Classifications .

V11

III

v

xi

XlII

Xv

1
3

5
5
6
7
9

10
10
11
11
13
13
14
17
18
20
20
20
20

-·-:t5.1 Shared Memory
2.5.2 Distributed Memory
2.5.3 Distributed Shared Memory
2.5.4 Uniform Memory Access (UMA) .
2.5.5 Non-Uniform lVIemory Access (NU fA)

2.6 Processing Element Communication .
2.6.1 Computation Bound vs. Communication Bound
2.6.2 Processing Element Coupling
2.6.3 Parallelism Granularity. .
2.6.4 Performance l\!Ieasurement
2.6.5 Network Topologies

2.7 Performance Measurement
2.7.1 Floating Point Operations Per Second (FLOPS)
2.7.2 Benchmarks .

2.8 Multiprocessor Parallelism Software Challenges
2.8.1 Program fodels ..
2.8.2 Program Correctness
2.8.3 Optimal Scheduling.

3 Cell Broadband Engine
3.1 Origins.........
3.2 Hardware Overview ..
3.3 Processor Element Design

3.3.1 PowerPC Processor Element (PPE)
3.3.2 Synergistic Processor Elements (SPE) .

3.4 Communication Architecture Design
3.4.1 Design Overview .
3.4.2 EIB DMA Transfer Behaviour .

3.5 Communication Architecture Performance Analysis
3.5.1 'Main Memory Bottleneck
3.5.2 Communication Pattern BoLtleneck
3.5.3 Performance Tests

3.6 Overcoming the Frequency, Memory and Power \Valls
3.6.1 Frequency Wall
3.6.2 Memory Wall .
3.6.3 Power \Vall .

3.7 Current and Future Variations .
3.7.1 Cell/REo ..
3.7.2 PowerXCell 8i
3.7.3 SpursEngine.

Vlll

21
21
22
22
22
22
23
24
24
25
26
26
26
27
27
28
29
31

37
37
38
39
40
41
42
42
45
49
49

54
57
58
58
58
58
59
59
59

3. 7.~ cell/B.E. 32 SPE Concept Design.
3.7.5 Dual Processor Systems

3.8 Applications...........
3.8.1 Video Game Consoles. .
3.8.2 Cell/REo Blade Servers
3.8.3 Supercomputing..
3.8.4 Cluster Computing
3.8.5 Grid Computing .

60
60
60
61
61
62
63
63

4 Cell/B.E. Program Models, Frameworks and Solutions 65
4.1 Accelerated Library Framework (ALF) 65
4.2 Cell/B.E. Software Development Kit 66
4.3 Cell Superscalar (CellSs) 66
4.4 CorePy.............. 67
4.5 Mercury MultiCore Framework 68
4.6 MPI Microtask 68
4.7 Open Multi-Processing (OpenMP) . 69

4.7.1 Cellgen...... 70
4.7.2 IBM T.J. Watson 70

4.8 RapidMind 70
4.9 Sequoia 72
4.10 SysCellC 72
4.11 Possible Future Models, Frameworks and Solutions 73

4.11.1 Manticore 73
4.11.2 Open Computing Language (OpenCL) 73
4.11.3 r--/lessage Passing Interface (MPI) 74

5 Coconut Multicore Framework 75
5.1 Coconut Project History 75
5.2 Design Overview . 76

5.2.1 Objectives. 76
5.2.2 Description 77
5.2.3 Analysis.. 79

5.3 Components.... 83
5.3.1 Atomic Virtual Operations. 83
5.3.2 Runtime System 86
5.3.3 AVOp Stream Generation 88
5.3.4 Computation Kernels. 89
5.3.5 Verification Tool . . . 89
5.3.6 Performance Simulator 91

IX

-~-- 5.4 Comparison with Other Frameworks 92
5.5 Current Status 94

6 Performance Simulation 95
6.1 Motivation . 95
6.2 Simulator Design Concepts . 98

6.2.1 Simulator Types 98
6.2.2 Simulator Accuracy vs. Speed 99
6.2.3 Parallel Computer Simulation 99

6.3 Similar Tools 100
6.3.1 Multiprocessor Simulators 100
6.3.2 Cell/B.E. Simulators 100
6.3.3 Network Simulators. 101
6.3.4 Alternative Performance Analysis Solutions 102

6.4 Performance Simulator Tool 102
6.4.1 Envisioned Usage 102
6.4.2 Objectives . 106
6.4.3 Design Overview 107
6.4.4 Design Analysis. 122
6.4.5 Implementation and Unit Testing 124
6.4.6 Performance Testing 124

7 Conclusion and Future Work 135

x

List of Figures

2.1
2.2
2.3

2.4
2.5

2.6

2.7
2.8

2.9
2.10
2.11

3.1
3.2

3.3
3.4
3.5
3.6

3.7

5.1
5.2

5.3
5.4

6.1
6.2

6.3

6.4
6.5

Data dependency example
Single Instruction Single Data . .
Single Instruction Multiple Data.
Multiple Instruction Single Data.
Multiple Instruction Multiple Data
Register renaming.
Problem category classification
Dynamic vs. Static Scheduling Algorithms
Task interaction graph example .
Directed acyclic task graph example .
Cannon's algorithm computes block C(i,j) at each processor
P(i,j) .

Cell Broadband Engine Overview
SPE DNIA Transfer Internals
EIB Command Bus
EIB Data Arbiter .
Communication Latency Effect
Inefficient Cycle Communication Pattern
Inefficient Heavy Inter-SPE Communication Pattern .

Coconut Multicore Framework Overview ...
Coconut Multicore Framework Runtime View
Exposed Communication Latency
AVOp partial execution order induction.

Automated Schedule Selection
Simulation Enhanced DAG Scheduling .
Iterative Simulation Result Driven Scheduling
Performance Simulation Design Overview .
All SPEs Executing.

Xl

6
10
11
12
12
17
32

33
34
35

36

39
46
47
48
51
53
54

79
80
81
90

104
105
106
109
112

6.6 Some SPEs Executing, Some SPEs Waiting.
6.7 All SPEs vVaiting
6.8 Data Sharing Communication Pattern
6.9 Simulated Execution Time ..
6.10 AVOps Simulated per Second

Xll

113
113
126
130
131

List of Tables

2.1 Flynn's Taxonomy 9

3.1 Operations/Value Effect on Transfer vs. Computation Time 50
3.2 RAM Capacity Effect on Square Matrix Mult. Problem Size 62

5.1 Parallelism Correspondence
5.2 AVOp Instruction Set

80
85

6.1 Matrix Multiplication Performance Simulation Results 128
6.2 Network Bandwidth Simulation Test 134

Xlll

XIV

Acronym Index

AC Address Concentrator

ALF Accelerated Library Framework

AVOp Atomic Virtual Operation

BID Bus Interface Unit

Cell/B.E. Cell Broadband Engine

Cell/B.E. SDK Cell/B.E. Software Development Kit

CellSs Cell Superscalar

CMF Coconut Multicore Framework

Coconut COde COnstructing User Tool

DMA Direct ~/Iemory Access

DMAC DMA Controller

DSL Domain Specific Language

EIB Element Interconnect Bus

FLOPS Floating Point Operations Per Second

IBM International Business Machines Corporation

IDE Integrated Development Environment

ILP Instruction-Level Parallelism

ID Instruction Unit

xv

LAN Local Area Network

LQCD Lattice Quantum Chromodynamics

LS Local Store

MASS lVIathematical Acceleration Subsystem

MFC Memory Flow Controller

MIC "Memory Interface Controller

MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

MPI r/Iessage Passing Interface

MPMD Multiple Program Multiple Data

ns Nanoseconds

NUMA Non-Uniform Memory Access

OpenCL Open Computing Language

OpenMP Open Multi-Processing

PDT Performance Debugging Tool

PE Processing Element

PPE PowerPC Processor Element

PPSS Power Processor Storage Subsystem

PPU Power Processor Unit

RAW Read-After-Write

SCEI Sony Computer Entertainment Incorporated

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

SOl Silicon on Insulator

XVI

M.Sc. Thesis - Kevin Browne - McMaster - Comp'tLting and Software

SPE Synergistic Processor Element

SPMD Single Program Multiple Data

SPU Synergistic Processor Unit

STI SCEI-Toshiba-IBM

TLB Translation Lookaside Buffer

UMA Uniform Memory Access

VSU Vector Scalar Unit

WAN 'Wide Area Network

WAR Write-After-Read

WAW Write-After-V\rite

XU Fixed Point Execution Unit

XVll

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

XVlll

Chapter 1

Introduction

Since about 2004, chip manufacturers have increasingly turned to multicore
architectures to increase performance. This paradigm shift has been dubbed
the "multicore revolution" [HL08; GNS07]. Diminishing returns from frequency
scaling, a critical technique used to increase processor performance in decades
previous, were a major factor behind this technology shift.

One such architecture is the Cell Broadband Engine (Cell/B.E.), devel
oped by Sony, IBM and Toshiba[KDH+05]. The Cell/B.E. is currently being
used in the Playstation 3[BLK+07], and as such optimal usage of the processor
is of high interest due to the userbase of over 20 million[Son09] . The Cell/B.E.
is particularly interesting to computer scientists, some have referred to it as
revolutionary[Hof06; Gsc07], due to its network-on-a-chip interprocessor com
munication and processor heterogeneity. "While Cell/B.E. is not the first chip
to have either of these properties, it is perhaps the first chip with these features
to be so widely adopted.

These new architectures present novel challenges to software devel
opers wishing to use them safely, optimally and easily. Safety is a diffi
cult challenge due to race conditions that emerge when multiple processors
use shared resources. These parallel bugs are difficult to diagnose using dy
namic runtime tools, due to their occurrence being dependent upon small
timing variations [RDOO] . Static detection of these bugs at compile-time is
an NP-hard problem, assuming the synchronization method is as powerful as
semaphores[Cr.,/ISOl]. Optimization of parallel code is unfortunately no eas
ier, as the general multiprocessor scheduling problem is NP-Complete[KA99].
There is also a lack of consensus as to which parallel programming model is
best to represent a parallel program[ABC+06], with not much research done
to analyze them empirically[HB06].

As a result of the daunting challenges facing developers wishing to take

1

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

------advantage of these new architectures, new programming models and tools
are being developed. For the Cell/REo in particular many tools such as
RapidMind[McC06] and Cell Superscalar[BPBL06], amongst others[CHKW08;
SYR+08; MML07; 01S+06], have been developed to overcome these challenges.

Coconut (COde CONstructing User Tool) is a compiler-technology project
at McMaster, which is currently targeting the Cell/B.E. [AK07c]. Coconut was
inspired largely by a desire to produce software that is both fast and safe, for
applications such as medical imaging. Though strictly speaking it is more of
a research platform than a fully developed commercial solution, Coconut can
be thought of as another solution competing to overcome the challenges of
developing for the Cell/B.E.. Coconut has had great success at delivering safe
and optimal code at the 1LP level on the Cell/B.E.; the Cell/B.E. SDK 3.0
SPU-MASS library currently includes code using Coconut 1LP optimization
techniques that is 4x faster than the alternative S1MD fath library created in
C.

The Coconut Multicore Framework (C1tIF) is the current focus of Co
conut research efforts; it targets multicore level parallelism on the Cell/B.E..
The framework design is made up of a virtual machine abstraction. Atomic
virtual machine instructions execute on each processing element. These in
structions are very high level, with only that information necessary to express
multicore parallelism exposed. The instructions control all processor-level syn
chronization, and execute pre-loaded computations on data to produce results.
The virtual machine and instruction abstraction purposely corresponds with
1LP, so that Coconut 1LP optimization techniques already developed may be
re-used at the multicore level. A key feature of the CMF is the ability to per
form static analysis with linearly bounded complexity, to analyze code safety
and efficiency at compile-time. This has allowed us to design and implement
a verification tool[AK08] capable of checking for parallel bugs; as a result we
have not yet experienced a parallel bug at runtime in our virtual machine
programs thus far.

Performance simulation is a potentially useful tool for the CMF ror
several reasons. Primarily because it allows developers to quickly contrast the
performance of different scheduling algorithms, on a workstation instead of
less easily accessible Cell/B.E. hardware, and with deeper information with
respect to specific execution stalls and transfer latencies that would not be
as easily available with other methods. Other reasons include that we can
simulate theoretical architectures, both to analyze what architectures we may
think should be produced and to be able to meaningfully experiment with
scheduling on future or concept architectures before they become generally
available. Finally, due to the efficient runtime of the performance simulator,

2

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

it may actually become a useful tool in scheduling afgarithms themselves,
as others in the literature have either done themselves or proposed[JSK+06;
CHB07].

The primary goal of this thesis is to present the Performance
Simulator tool created entirely by the author as part of the eMF.
To do this, we will present the design of the simulator itself, as well
as performance testing of the tool.

As part of developing the Performance Simulator, the author played a
role in developing the CMF itself. The author implemented the Verification
Tool after acting as an internal reviewer of its design, as well as helping to
design the virtual machine abstraction and debug its implementation. This
required a great deal of background knowledge and research with respect to
parallel computing, the Cell/B.E. architecture, as well as similar multicore
parallelism solutions targeting the Cell/B.E.. As a result, this thesis will have
a secondary purpose of documenting the research done into these areas as well,
so it may be leveraged by future Coconut project team members.

1.1 Document Structure

In Chapter 2, we discuss parallel computing as a field, and attempt to define
the most important concepts and elaborate on the most important issues.
Those issues most relevant to multiprocessor computing are emphasized.

In Chapter 3, 'vve introduce the Cell/B.E. and overview its design, archi
tectural variants and current usage. Particular attention is paid to the design
of the on-chip communication network, due to its importance in performance
simulation.

In Chapter 4, we survey other multiprocessor program models and solu
tions targeting the Cell/B.E.. Both commercial and research focused solutions
are discussed.

In Chapter 5 we discuss the design of the C1iIF, going over its specifics,
features and advantages. We also contrast the CMF with other Cell/B.E.
program models.

In Chapter 6 we explain the Performance Simulator design and present
performance test results. We also further discuss the motivation to build
the simulator, envisioned usage and some background information regarding
performance simulation specifically.

Finally in Chapter 7 we overview the results of the thesis and suggest
future avenues for Coconut project research based on the thesis results.

3

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

4

Chapter 2

Parallel Computing

Parallel computing is defined as computation which involves multiple simulta
neous computations taking place. Parallel computing is becoming increasingly
relevant to the undergraduate computer science curriculum due to the increas
ing prevalence of multicore and multiprocessor systems that demand more skill
in concurrency-related programming[Fek09]. As a result, the need to modify
the standard computer science curriculum to prepare students to reason about
parallel computing problems has been recognized[Has03]. One problem how
ever, is that there has not yet emerged a clear consensus as to how to properly
classify these new multiprocessor systems that have driven this new interest
in parallel computing[1/Iar07].

As a result of the great confusion regarding parallel computing, that is,
how to classify it what we mean by it, how to teach it and whether it is being
taught properly or taught enough at the undergraduate level, this chapter will
attempt to provide an overview of some of the most important concepts of
parallel computing. Any terminology used by subsequent chapters will then
be clearly defined in this chapter. The chapter will focus on the motivations
for parallelism, the different ways of classifying different aspects of parallel
computing, measuring the performance of a parallel program, and the unique
challenges the parallelism presents.

2.1 Motivations

There are several motivations for parallel computing, mostly relating to the
fact that we would like to be able to compute tasks quicker. It is intuitive that
if one can split a task into several subtasl<:s that can be processed concurrently,
the task could theoretically be completed quicker than it could sequentially.

5

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

.---Amdahl's law, presented in Section 2.1.1, helps to quantify this potential speed
up of parallelization for a given program. The other obvious way to speed up a
computational task would be to process it quicker sequentially. This was what
was done by chip manufacturer's until about 2004, when a series of frequency,
memory and power walls finally forced chip manufacturers to turn to parallel
multicore architectures to increase performance as outlined in Section 2.1.2.

2.1.1 Performance Increases

Only certain portions of a sequential algorithm or program may be parallelized
due to data dependencies. Data dependencies occur when an algorithm
or program portion refers to the data of a preceding program portion. For
instance, in the simple program in Figure 2.1, lines 1 and 2 do not have a data
dependency and could be executed in parallel. In contrast line 3 depends on
the results of lines 1 and 2, and so could not begin execution until both lines
1 and 2 have been processed without the potential for an erroneous result. If
for instance line 3 was executed before line 2, unless Y happened to equal
10, an incorrect Z value would be the result. These hazards arise from race
conditions and are discussed further in Section 2.8.2.

1: X = 4;
2: Y = 10;
3: Z = X + Y;

Figure 2.1: Data dependency example

Amdahl's Law

With the understanding that only certain portions of a program may be par
alleliL';ed, it would be useful to be able to quantify the potential gain from
concurrently executing program fragments that are parallelizable. Amdahl's
Law[Amd67] expresses this concept very simply in Theorem 2.1.

Theorem 2.1 (Amdahl's Law)

1
speed 'up = ----,:;

r + T
p

S n

where rp + rs = 1, n is the number of processors, rs represents the seq'uential
portion of a program and rp represents the parallel portion of a program.

6

M.Sc. Thesis - Kevin Browne - McMaster - Comp'l.lting and Software

Notice that -as n -> 00 we have that the speed up is t = (1!r
p
)'

This is interesting because it tells us that there exists a hard limit on how
much parallelism can help speed up the runtime of a program. At a certain
point, adding more processors is not going to make the program run any faster
according to Amdahl's Law.

Gustafson's Law

The problem with Amdahl's Law is that it implies there is a theoretical point
where adding parallelism will not increase performance, calling the sustainabil
ity of parallel architectures as a means to increase performance into question.
Gustafson's Law was formed in response to Amdahl's Law by noting that
it is virtually never the case that the portion of the code that is sequential
is independent of the number of processors[Gus88]. vVhat this means is that
according to Gustafson's Law, as we scale the number of processors up, the
sequential portion of the program will decrease in size - breaking through the
limitation inherent in Amdahl's Law.

Gustafson's Law is important to parallel computing as a field, because
for a long time pessimism surrounding parallel computing was at least partially
due to Amdahl's Law, and Gustafson's Law helped to end this pessimism[KriOl].
It is presented in Theorem 2.2.

Theorem 2.2 (Gustafson's Law)

speed up = n - rs x (n - 1)

where n is the number of processors, and rs represents the sequential portion
of the program.

2.1.2 Frequency, Memory and Power Walls

The other motivation for parallel computing is that as hardware based on se
quential computation has reached hard physical limits impeding further perfor
mance gains, parallel computation has effectively become necessary for reaping
further performance gains. These hard physical limits are typically referred to
as the frequency, memory and power walls. How the Cell/REo in particular
overcomes these walls is discussed Section 3.6.

Frequency Wall

In order to increase the CPU frequency in modern processors, designers have
been required to make instruction pipelines deeper (see Section 2.3.2 for a brief

7

~ ... - ..-

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

description of instruction pipelining) . The problem is that we have reached
a point of diminishing returns for increasing pipeline depth[SBG+02]. 'When
the number of pipeline stages is increased for the benefit of having the ability
to process more instructions concurrently, it necessarily increases instruction
latencies. \iVhen data dependencies on previous instructions combine with
hard to predict branching behaviour in a program, a performance penalty is
incurred which increases with the depth of the pipeline. At a certain pipeline
depth, the negative effect of these penalties on program performance outweigh
the positive effect of a longer pipeline (especially when power consumption is
also taken into account).

A parallel architecture can overcome this problem by creating hetero
geneous processing elements optimized for situations which involve a heavy
amount of branching and for situations which involve a heavy amount of float
ing point computations. For instance, an architecture with different processing
elements with different pipeline lengths to optimally handle each situation.

Memory Wall

The memory wall refers to the fact that processor speeds have been increasing
faster than memory bandwidth, such that in modern processors DRAM latency
can be measured in the hundreds of CPU cycles[KDH+05]. In his 1997 ACIVI
Turing Award lecture, John Backus used the term "Von Neumann bottleneck"
to refer to the fact that in the Von I eumann architecture the CPU is separated
from memory, and that properly managing the bandwidth of this separation
was key to programming[Bac78]. This essentially identified the potential for
a memory wall, however the issue that caused this potential to be fulfilled
was the divergence in performance between the CPU and memory bandwidth
in unicore architectures. This problem was recognized and popularly identi
fied by William Wulf and Sally McKee in 1994 when they noticed that the
exponential growth in processor speed was far greater than the exponential
growth in memory bandwidth[vV'vI95] . If the trend continued, they realized
that eventually a key impediment to program performance increases would be
memory access latency. This wall would be hit at different times for different
algorithms due to differing memory access characteristics[NIcK04], making a
precise definition of when the memory wall was hit, or will be hit, difficult to
specify in a general sense. 1tIuch effort has been exerted by hardware and algo
rithm designers on optimally using sophisticated hardware, such as multi-level
caches, to lessen the effects of this wall[LR\iV91].

However parallel architectures can effectively alleviate this memory bot
tleneck by using a layered memory structure with asynchronous data trans-

8

M.Sc. Thesis - Kevin BTOwne - McMaster - Computing and Software

feisbetween processing units - allowing for simultaneous data transfer and
computation[Mud06] .

Power Wall

Power density in processors has doubled roughly every 3 years since the early
1970s[SSS+04]. This trend was economically and technically infeasible to
continue. It is economically infeasible because at a certain point consumers
wouldn't be able to afford to run the processors if power consumption increased
exponentially. It is technically infeasible because energy used in processors is
often converted into heat which would at a certain point cause chips to frac
ture; without new technologies or expensive cooling systems (which would also
increase power usage). Indeed, in 2004 Intel cancelled its Tejas and Jayhawk
chips that were set to replace the Pentium 4 for these reasons[BKP07]. This
event, along with Apple switching to Intel chips after its failure to develop
a G5-based laptop, could be considered the microprocessor industry officially
hitting the power wall.

Parallel architecture is capable of breaking through the power wall.
When one considers that power usage scales exponentially relative to increases
in clock frequency, it is correct to conclude that with the same power usage
multiple processors running at a slower frequency could achieve greater per
formance than a single processor running at a higher frequency[Naf06]. Het
erogeneous architectures that specialize processors for certain tasks[KDH+05],
can provide further increases in power efficiency.

2.2 Flynn's Taxonomy

An important point about parallel computing is that it can take place in several
different conceptual forms. In this section we seek to overview a common
terminology for making distinctions between the different forms of parallelism
found in hardware.

Table 2.1: Flynn's Taxonomy
Single Data Multiple Data

Single Instruction SISD SIMD
Multiple Instruction MISD MDVID

9

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

Flynn's taxonomy is a simple but widely used parallel computing
classification proposed by Michael Flynn in 1966[M.J72]. The taxonomy clas
sifies computer architectures according to the amount of data and instruction
streams that are processed concurrently by processing elements (PEs). The
acronyms for Flynn's taxonomy are more typically used in describing a classi
fication and are found in Table 2.1.

2.2.1 Single Instruction Single Data (SISD)

Single Instruction Single Data (SISD) computing occurs when a single
stream of instructions works with a single stream of data. The von Neumann
architecture is an example of SISD, as well as early personal computer mi
croprocessors such as the Intel 8088. The inclusion of a concurrent feature
such as pipelining in an architecture does not preclude a processor from being
categorized as SISD; what matters is that there is one stream of instructions
operating on one stream of data. An example of SISD is shown in Figure 2.2.

Data

data X

Instructions

instr A

Figure 2.2: Single Instruction Single Data

2.2.2 Single Instruction Multiple Data (SIMD)

A single stream of instructions operating on multiple streams of data is called
Single Instruction Multiple Data (SIMD) parallelism; also referred to
as "Vector Processing" in the literature. There are abundant examples of
SIMD parallelism in hardware, dating back to the TI-ASC and CDC Star
100 in the 1970s and the MMX instruction set made popular in the Pentium
chipsets of the 1990s[EVS98]. The Cell/B.E. in particular derives much of
its raw floating point computing power from its SPEs optimized for SIMD
performance[KDH+05]. SIMD is very useful with computations that can be
conceptualized as vectors, such as problems in linear algebra and multimedia
applications. Scheduling code for SIMD processors is a current area of exper-

10

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

tise within the Coconut project[AK07a; Tha06; AK07c]. An example of SIMD
is shown in Figure 2.3.

Data

data X

Instructions

instr A

data Y

Data

Figure 2.3: Single Instruction 1/Iultiple Data

2.2.3 Multiple Instruction Single Data (MISD)

In Multiple Instruction Single Data (MISD) parallelism, multiple streams
of instructions operate on a single stream of data. This type of parallelism is
virtually non-existent in existing hardware[FR96]. It could be useful as a fault
tolerance measure in hardware design, and it has been proposed that MISD
architectures would be ideal for pattern matching on data streams[HSN+04].
An example of MISD is shown in Figure 2.4.

2.2.4 Multiple Instruction Multiple Data (MIMD)

Multiple processing elements asynchronously executing different streams of
data is referred to as Multiple Instruction Multiple Data (MIMD) par
allelism. Networks of workstations under different topologies are an example
of MIMD parallelism[FR96]. Multicore level parallelism is another example of
MIMD parallelism in hardware[AL07]. Scheduling and verifying the correct
ness of MIMD-level parallelism is the newest focus of the Coconut project, and
the focus of this thesis. An example of MIMD is shown in Figure 2.5.

11

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

Data

data X

Instructions

instr A

instr 8

Instructions

Figure 2.4: Multiple Instruction Single Data

Data

data X

Instructions

instr A

Idata:0:strBI
,.-------'-----------,

Data Instructions

Figure 2.5: Multiple Instruction Multiple Data

12

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

Single Program Multiple Data (SPMD)

A subdivision of MIMD parallelism where multiple processing elements execute
different parts of the same program on multiple data streams is defined as
Single Program Multiple Data (SPMD) parallelism[CDG+93].

Multiple Program Multiple Data (MPMD)

Another subdivision of MIMD parallelism is referred to as Multiple Program
Multiple Data (MPMD) parallelism, it occurs when multiple programs
operate on multiple data streams[RSB94].

2.3 Parallelism Levels

The different levels of parallelism that may exist within hardware will be out
lined in this section. Interestingly, the history of the modern microprocessor
can be roughly divided into eras according to which level. of parallelism was
being exploited to increase chip performance at the time[MSVVOO], with in
creases in bit-level parallelism giving way to increases in instruction-level par
allelism followed by the task-level parallelism increases in modern multicore
processors.

2.3.1 Bit-level Parallelism

Bit-level parallelism refers to the parallelism associated with the width in
bits ofregisters in a processor. By going from 16-bit to 32-bit registers, one has
in some cases doubled the computing power by operating concurrently on 32
instead of 16 bits. For instance if one was adding two 32-bit unsigned integers,
in the case of the 16-bit architecture, one would have to add the lowest bits
first, and then the highest afterwards in a separate operation (plus any carry
over from the addition of the lowest bits). If one had the ability to operate on
32 bits in parallel however, this could be done in a single operation. Up until
about 1985, increasing bit-level parallelism was an important way in which
processing power was increased[NISVVOO]. Since this time, the market has
been dominated largely by 32-bit architectures and some 64-bit architectures.
Exploiting other forms of parallelism started to make more sense at this time,
as for most applications 32-bit or 64-bit precision is sufficient.

13

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

2.3.2 Instruction-level Parallelism

Instruction-level parallelism occurs when we execute the instructions of a
sequential binary program concurrently. This form of parallelism takes many
forms itself, with optimizations to exploit it taking place at the hardware level
at runtime, but also by compilers and potentially by crafty programmers. The
period of the late 1980s to the early 2000s is strongly associated with increas
ing levels of instruction-level parallelism as a means to increase performance in
hardware design[MSYYOO]. The different ways in which instructions can exe
cute in parallel will be briefly defined in the remainder of this section, though
it should be noted these are expansive fields of study with much published
research.

Out-of-order Execution

Out-of-order execution occurs when instructions are executed in a different
order than is presented in the compiled binary file of the program. 1 ormally
if an instruction is set to be executed, but its input operands are unavailable,
the instruction will stall and computation will cease until the operands are
available. \iVith out-of-order execution, instructions are first collected in a
queue, and execute when input operands are available. The key point being
that an instruction in the queue that occurs after another instruction in the
queue may be dispatched ahead of it to a processing element for execution; and
so the execution is out-of-order. The results of the instructions are themselves
queued, and are then put into the correct program order as given in the binary
file as more instructions complete. As a result the program appears to have
executed in the correct order, though this may not have been the case. The
speed-up of out-of-order execution derives from hiding the latency of fetching
data for instructions to operate on by executing other instructions where a
stall in execution would otherwise occur.

Data dependencies may prevent out-of-order execution from being pos
sible in all cases. Also, it should be noted that maintaining the behaviour
of hardware exceptions was a key hurdle to overcome in enabling out-of-order
execution to become a more common hardware ability[SP88]. Out-of-order ex
ecution became very common in processors starting in the 1990s, for instance
in the Pentium Pro[KPH+9S] and AMD-K5[Chr96].

Instruction Pipeline

An instruction pipeline allows for multiple instructions to execute concur
rently. The key idea is that each instruction executing concurrently is execut-

14

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

ing a different stage in the set of stages required to execute an instruction.
An instruction pipeline is somewhat analogous to an assembly line in automo
tive manufacturing. Instead of producing one automobile at a time, the steps
are broken down, for instance as: obtain all parts, assemble frame, attach
wheels and place vehicle in truck for shipment. By doing all of these steps
concurrently, a manufacturer could have four cars being built at once instead
of one.

Instruction pipelines in processors divide the processing of an instruc
tion into independent steps. The steps may include: fetch instruction from
memory, decode instruction and read registers, execute the instruction, access
memory, and write the result into a register. In the same way that all the
steps of an assembly line can be run concurrently, so can the stages of an
instruction pipeline. If a CPU were to process one instruction at a time, its
clock frequency would be limited to the time it takes to do all of these steps.
However if a CPU were to use pipelining, its clock frequency could be increased
to the time it takes to do the longest step in the pipeline.

As discussed in Section 2.1. 2, hard to predict branching behaviour limits
the performance of an instruction pipeline. An example of an architecture
which used instruction pipelining is the. Pentium 4[ZR04], which had a 20
stage instruction pipeline.

Superscalar Execution

Superscalar execution works by simultaneously dispatching instructions for
execution. This can be done because the instructions are dispatched to dif
ferent computational units within the processor, for instance an ALU and an
FPU. In order for this to \-vork, the processor hardware has to check for data
dependencies that would create hazards before executing instructions concur
rently. One can see that data dependencies will place an upper bound on the
effectiveness of superscalar execution, with studies showing that for instance
8-way superscalar is likely to provide little benefit[MSVVOO]. It is impor
tant to note that pipelining and superscalar execution could be occurring at
once within the same processor, the instructions could be concurrently sent
to pipelined execution units which also execute instructions concurrently in
different stages.

Early processor designs contributing to superscalar concepts included
the CDC-6600 and IBM-360/91[FB92]. In the 1990s pipeline execution was
found in more mainstream computers, such as the AlvID K5 and the "MIPS
R10000[SS95b].

15

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

Other Important Techniques

Other techniques may be used in conjunction with out-of-order execution,
instruction pipelining and superscalar execution to better exploit instruction
level parallelism. These techniques do not create a new conceptual form of
instruction level parallelism, but instead allow the existing techniques to be
used more effectively.

Register renaming is a technique which removes unnecessary data
dependencies from serial code in order to remove any hazard of running them
in parallel. This allows for instructions which would previously be run in serial
to be run in parallel[SP88]. In Figure 2.6 an example of register renaming is
shown. In this example we see that if instructions 4-6 could be performed us
ing a different register than register 8, it would eliminate the dependency these
instructions have on instructions 0-3, without effecting the correctness of the
results. Eliminating these dependencies allows us to operate on these groups
of instructions in parallel, which reduces the total execution time. Register
renaming is thus a technique which allows us to exploit superscalar execution
(and potentially out-of-order execution) more effectively by removing unneces
sary data dependencies. It turns out that the only dependencies which register
renaming cannot eliminate are read-after-write dependencies[SP88]. Register
renaming can be done by a compiler or by hardware (the first instance of which
being the floating point unit of the IBM 360/91[MPV93]).

Speculative execution and branch prediction are also important tech
niques for helping to exploit instruction level parallelism[GG97]. Speculative
execution refers to execution for which the results may not actually be used.
For example, load instructions may have somewhat predictable behaviour and
the memory locations which they reference may be computed ahead of time.
If the speculative execution turns out to be incorrect, say for instance the load
memory instruction actually references a different address, a stall will be re
quired while the proper computation is executed. Branch prediction refers to
speculative execution where the instructions following a potential path of the
branch are executed. If the speculation is correct, then instructions which have
already entered the instruction pipeline can proceed, otherwise a stall will be
required while the correct instructions begin to execute. Speculative execution
and branch prediction thus help to exploit instruction pipelines in particular.
This is done by speculatively allowing instructions for which we are not certain
we will need the results for to execute, at the penalty of a stall if the specu
lation is incorrect. These techniques are common place in modern processors,
for instance in the Intel Pentium Pro and SUN Ultrasparc[MSVVOO].

16

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

Processing Element 1 Processing Element 2 -,..-

0: R8 = MEMORY[460]
1: R8 = R8 x 4

execution 2: R8 = R8 - 2
length =7 3: MEMORY[460] = R8

4: R8 = MEMORY[461]
5: R8 = R8 + 5
6: MEMORY[461] = R8

+ApplyRegister
Renaming

Processing Element 1 Processing Element 2

0: R8 = MEMORY[460] 4: R9 = MEMORY[461]
1: R8 = R8 x 4 5: R9 = R9 + 5

execution 2: R8 = R8 - 2 6: MEMORY[461] = R9
length =4 3: MEMORY[460] = R8

Figure 2.6: Register renaming

2.3.3 Thread-level Parallelism

In contrast to instruction-level parallelism, where instructions from a single
stream of instructions are executed in parallel, thread-level parallelism oc
curs when more than one stream of instructions from the same program (or
process) are executed concurrently[ACVP06]. The definition of what consti
tutes thread-level parallelism beyond this is less clear. Partially because what
differentiates a thread, process and program is dependent upon the hardware
and operating system of the machine. On a single core machine, a multi
threaded program does not necessarily have threads executing concurrently,
but instead multiple threads forked from the same program may take turns
executing individually (time-sliced). However on a multicore or multiproces
sor machine, a multithreaded program may have each thread assigned to a
different core or a different processor, in which cases threads could be execut
ing concurrently. It should be noted that even though in the case of a single

17

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

core the threads do not execute concurrently" they'--share access to common
resources, and from the point of view of the programmer who may not have
control over how hardware and the operating system is switching between
threads, they might as well be concurrently executing. \Ale say this because
the programmer will have to worry about the same issues as they would if the
threads were executing concurrently.

Thread-level parallelism is also the first level of parallelism whose effi
ciency and correctness is largely dependent upon software and the program
mer, and not by hardware. With instruction-level parallelism, optimizations
are often made by a compiler or programmer with knowledge of the under
lying hardware, but concurrency based hazards are protected against at the
hardware level. 'With thread-level parallelism however, not only is optimiza
tion highly dependent upon skilled program implementation, often at the level
of program source code and not at the automated level of the compiler, but
hazards due to concurrent execution must be handled by the programmer
as well. Competition between threads for resources, thread synchronization
overhead, context-switching overhead and sometimes conflicting performance
vs. correctness goals all must be considered by a programmer[JFL98]. This
makes optimizing and verifying the correctness of thread-level programming a
particularly difficult problem for programmers[ACVP06].

Advantages of multithreaded programs include increased performance
on multicore or multiprocessor systems[EngOO] . As well, multithreaded pro
grams allow for computation heavy tasks to run on a thread separate from
another thread which handles user I/O, which prevents the entire program
from freezing from the vantage point of the user and improves performance by
overlapping I/O and computation[JFL98].

Examples of architectures and operating systems capable of thread
level parallelism are common in modern computer systems. For example,
Intel Core Duo processors running Windows XP are capable of thread-level
parallelism[ACVP06].

2.3.4 Process-level Parallelism

Process-level parallelism, 'which occurs in multiprocessing systems, is the
parallelism that occurs when we have two processes or programs executing
concurrently[HN097]. It is different from thread-level parallelism in the sense
that in thread-level parallelism the concurrent streams of instructions are
forked from the same process[ONH+96]. Process-level and thread-level paral
lelism can both occur in multicore systems, but only process-level parallelism
can occur when the multiple CPUs of a machine architecture do not share re-

18

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

sources that may be required for thread-level parallelism" sucllas a cache. This
can happen when the multiple CPUs are not on the same chip, but instead we
have multiple processes interacting across an Ethernet network. One way to
distinguish multiprocessor architectures is by the symmetry of the processors.
Different classifications of multiprocessor hardware can also be made based on
the type of communication infrastructure between the processors.

Processor Symmetry

The processing elements in a process-level parallelism capable multiprocessor
system do not necessarily have to be the same, or have access to the same
system resources.

A symmetric multiprocessing system is one in which two or more
(identical) processors have equal access to the same memory[CG08], some
times referred to as homogenous multiprocessing. It is characterized by the
ability of a computing system with multiple processors to treat them like a
single processor[IYOO]. The Intel Core 2 Duo is an example of a symmettric
multiprocessor[CG08] .

In contrast an asymmetric multiprocessing system, sometimes re
ferred to as heterogeneous multiprocessing, is one in which the multiple proces
sors have different characteristics such as resource access, performance, power
consumption and instruction sets[Mar07]. There is no such requirement that
an asymmetric multiprocessor is able to treat its multiple processors as a sin
gle processor. An example of an asymmetric multiprocessor is the Tensilica
Xtensa LX, which allows individual cores to be configured differently before
processing different applications[Mar07].

Multiprocessor Architectures

1/Iultiprocessor architectures themselves are roughly classified into different
categories based on the way in v,Thich the CPUs communicate. Multicore
systems, though containing multiple processors, are referred to as such because
the multiple processors are contained on the same physical chip[Mar07]. In
contrast systems referred to as multiprocessor systems are generally those
"with levels of communication between processing elements that are higher
up than chip-level. These different levels of communication can themselves be
more abstractly described to classify different types of multiprocessor systems,
and this is clone so in Section 2.6.2.

19

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

2.4 Task Parallelisln vs. Data Parallelism

Parallel computing can also be divided conceptually into two very broad cat
egories: task parallelism and data parallelism. This section will outline what
is meant by this distinction.

2.4.1 Task Parallelism

Task parallelism, also referred to as functional parallelism[GP95], focuses
on concurrent execution of tasks with multiple processes or threads on mul
tiple computing nodes, operating on the same or different data, with explicit
communication between the computing nodes[SSOG93]. An example of a task
could be a C language function for matrix multiplication. Task parallelism
can be thought of as a way of looking at parallelism, where we look at a
computation as a series of interacting, perhaps order dependent tasks. This
can take place at different layers in hardware, with the process/thread level
of parallelism in hardware being a potential layer for task parallelism. One
could also consider task parallelism at the level of a disturbed system, with
each processing element executing a task. The important idea in considering
task parallelism is that the task, and dependencies and interactions between
tasks, is the emphasis of reasoning about concurrency.

2.4.2 Data Parallelism

In contrast to task parallelism, data parallelism is parallelism where there
is concurrent execution of the same task on data, and with identical tasks the
focus is then on the distributed nature of the data[HS86]. Data parallelism
thus roughly equates to SIMD parallelism. As with task parallelism, data
parallelism can occur at different levels of hardware. Data parallelism can be
said to occur if a single thread or process, or multiple threads or processes,
operate on the same or different data, from the same or different source. The
key point concerning data parallelism is that we reason about the distribution
of data, as the task is known to be the same across all processing elements.

2.5 Memory Classifications

Memory in parallel computing systems can be classified in several ways, per
haps most importantly as shared or distributed memory. The way in which the

20

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

memory of a parallel computer works qefif-leS which types of parallel computa
tion are possible. A hybrid between shared and distributed memory exists and
is called distributed shared memory. The type of memory model may effect
which algorithms are possible, and whether processing elements access data in
uniform time or not.

2.5.1 Shared Memory

In a shared memory system, all of the processing elements have access
to the same shared memory address space[PZOL01]. An example of such a
system would be a dual core microprocessor where each core has access to
the same large block of random access memory. Scalability is a problem with
shared memory systems, as it increases the effects of the memory wall dis
cussed in Section 2.1.2. Adding additional processing elements to access the
same shared memory won't increase performance if the pipeline bandwidth
is already completely consumed fulfilling the data requirements of existing
processing elements. The fact that memory is shared between two cores or
computational units, does not necessarily imply that some lower-level of mem
ory is shared, such as cache. Examples of shared memory processors include
the Intel Pentium D, where two cores don't share a cache, or the Intel Core
Duo where the two cores do share a cache[FVP06].

2.5.2 Distributed Memory

In a distributed memory system, each of the processing elements can ac
cess only a portion of the total system memory. For instance each processing
element could have its own local memory. If a processing element wishes to
operate on data located in another processor's private memory, the data is ex
changed through some communication mechanism. As large shared memory
systems are expensive to build, an advantage of distributed memory systems is
that they have a significant cost-performance advantage over shared memory
systems[CK88]. The performance of distributed memory systems also scales
better when increasing the number of processing elements as discussed in Sec
tion 2.1.2. Hovvever the systems are considered much harder to program for
than shared memory systems, as for instance one cannot have shared mem
ory data structures[KMVR90]. A distributed memory system's performance
can also be highly dependent upon effective usage of whatever communica
tion mechanism exists between processing elements[CK88]. The BlueGene/L
supercomputer is an example of a system with distributed memory[AAA+02].

21

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

2.5.3 Distributed Shared Memory

Distributed shared memory systems have processing elements with pri
vate memory that can also access memory shared between processors. This
shared memory access can be implemented through hardware, or it can be
done through some software abstraction to give the illusion of physically shared
memory[NL91]. Distributed memory systems can offer the advantage of shared
data structures (and thus portability with code programmed for shared mem
ory architectures), while allowing for scalability by alleviating the memory wall
hardware bottleneck. An example of a software level abstraction to provide
for shared memory access in a distributed system would be the OpenSSI single
system image clustering system which allows a cluster of computers to share
resources such as memory[LGV+05].

2.5.4 Uniform Memory Access (UMA)

Uniform memory access (UMA) parallel computing systems have the
property that the time to access data is not affected by its location in shared
memory or by the processing element requesting the data[ZSLvV92].

2.5.5 Non-Uniform Memory Access (NUMA)

In contrast, non-uniform memory access (NUMA) parallel computing
systems have the property that the location of the data accessed relative to
the processing element can have an order of magnitude effect on the time
required to access the data[BTK06].

2.6 Processing Element Communication

An understanding of communication between processing elements is very im
portant to the effective usage of a parallel computing system[KPP06; BCG+95;
JGf-/IR07; CK88]. The communication time requirements, and not the compu
tation time requirements, may actually be the constraint on the performance
of an algorithm, this distinction is discussed in Section 2.6.1. In Section 2.6.2
we discuss classifications of the distance between different processing elements
on a network, which can have an order of magnitude effect on communication
times between processors, determining which algorithms may be practical. The
terminology commonly used to describe different algorithm types according to
the communication required for their functioning is discussed in Section 2.6.3.
Performance measurement of communication networks is described in terms

22

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

of latency or throughput: which are defined in Section 2.6.4. The different
network topologies found within parallel computing systems are discussed in
Section 2.6.5.

2.6.1 Computation Bound vs. Communication Bound

As outlined in Section 2.1.2, algorithms executing on a von I eumann architec
ture, or a parallel computing variant of it, must necessarily transfer data from
somewhere in memory to the processing element(s) in order to operate on it.
The importance or unimportance of this transfer of data to the algorithm's
execution time is referred to as a bound. These concepts are important in
the sense that they convey where the greatest speed up of the algorithm may
potentially come from - optimizations in data transfer or optimizations in the
computation.

Computation Bound

An algorithm is said to be computation bound (also referred to as computa
tionally bound, or CPU bound) if the execution time is primarily determined
by the computation required, and not the communication of data[RPKOO].
\Nhether an algorithm is computationally bound or not for a given implemen
tation may depend greatly on the architecture for which it is implemented.
For instance, an algorithm could have a small memory bandwidth require
ment, and a large computational throughput requirement, which would tend
us to classify it as a computationly bound algorithm. But if we were to run
this algorithm on a distributed system spread across the world, the primary
constraint to execution time may become the communication cost due to in
creased transfer latencies.

Communication Bound

Conversely an algorithm is said to be communication bound (also referred
to as I/O bound or memory bound) if the execution time is primarily deter
mined by the communication time of data to processing elements, and not
the computation of data[RPKOO]. An algorithm is a likely candidate to be
considered communication bound when the input data requirements of the
algorithm cannot be transfered to processing elements as quickly as they can
be processed by those processing elements.

23

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

----- 2.6.2 Processing Element Coupling

Process-level parallelism in particular is often referred to as either tightly cou
pled or loosely coupled according to the communication distance and resources
shared between processors, though it could perhaps be more accurately de
scribed as a spectrum from tight to loose.

Tightly Coupled

A tightly coupled multiprocessor system is one in which the CPUs commu
nicate at the level of the system bus or some other on-chip network such as a
token ring or crossbar switch[BLS9; Gen02]. The ways in which these proces
sors communicate with each other, and the resources that they share access to
(for instance different I/O devices), varies from system to system[vVo104]. The
processors should have access to a global memory space, even if it is through
an abstraction in a memory hierarchy[BLS9]. Multicore processors (some
times called chip-level multiprocessors) are thus considered tightly-coupled
multiprocessor systems, an example of which would be the AMD Opteron
architecture[CH07].

Loosely Coupled

A loosely coupled multiprocessor system is one in which the multiple CPUs
are contained in standalone computers (standalone in the sense that they do
not have access to a global memory space in RAM or other shared resources)
and these computers are connected by some network above the bus-level, such
as high speed fiber networks[SS9Sa] . These networks are an order of magnitude
or two slower than those of tightly coupled systems[Gen02]. Loosely-coupled
multiprocessor systems are also referred to as clusters. An example of a loosely
coupled multiprocessor system would be a Linux Beowulf cluster[Gen02].

2.6.3 Parallelism Granularity

Parallel algorithms have different levels of 'granularity' with regard to the
communication requirements (i.e. data dependencies) between the processing
elements and the size of the data involved. As with the notion of processor
coupledness, the notion of granularity is likely best perceived as a spectrum
over algorithms and not fixed categories.

24

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

Fipe -Grained Parallelism

Parallel algorithms with high communication overhead per processing element
and that operate on smaller quantities of data are an instance of fine grained
parallelism[And92; CG08]. Algorithms with fine grained parallelism thus
map well to more tightly coupled processors such as vector processors[AJ88].

Coarse Grained Parallelism

In contrast, parallel algorithms which operate on larger quantities of data and
with lower communication overhead per processing element are an instance of
coarse grained parallelism[And92; CG08]. As expected, algorithms with
this property naturally map well to more loosely coupled parallel architectures
such as vvorkstation clusters[AJ88].

Embarrassingly Parallel

Embarrassingly parallel algorithms are those for which the tasks to be run
in parallel are essentially completely independent tasks, with little if any data
dependencies (and thus communication) between them[lVIMSC99]. Algorithms
with this property map well to the most extreme loosely coupled parallel ar
chitectures, such as the SETI@home project[GcSS+05].

2.6.4 Performance Measurement

The performance of a communication network for a parallel system can be
described in terms of latency and throughput, depending on which aspect of
performance one wishes to describe.

Latency

Latency is the time that it takes for a single action within the network to
occur[AP07b]. An example of latency would be the time it takes for a trans
fer of data from one processing element's local storage to another processing
element's local storage to complete.

Throughput

Throughput, also known as bandwidth, is the quantity of data transferred
per unit of time[AP07b]. An example of throughput in an architecture would
be having a network component capable of 100 GEls of inbound data transfers.

25

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

2.6.5 Network Topologies

Communication between processing elements in a parallel computing system
can occur over many different network topologies. For instance buses and
crossbar switches have been used by initial multicore systems for communica
tion between cores and cache banks[ABC+06]. In contrast the Internet and its
heterogeneous network of networks structure is effectively the topology of the
SETI@home project[GcSS+05]. Other network topologies may include ring,
star, tree or mesh.

Within a parallel computing system different topologies may be used for
different purposes. For instance in the IBM BlueGene/L a tree network is used
for global communication of messages to all other processing elements, and a
higher bandwidth ring network is used for point-to-point messages[ABC+06].

2.7 Performance Measurement

Measuring the performance of a parallel computing system is possible in several
ways. FLOPS is a measurement of the theoretical performance of a parallel
computing system and is described in Section 2.7.1. There exist benchmarks
for empirically measuring performance of parallel machines, and these are
mentioned in Section 2.7.2.

2.7.1 Floating Point Operations Per Second (FLOPS)

FLOPS stands for Floating point Operations Per Second, it is used to describe
how many floating point operations a computing system can perform in a sec
ond. For example, if each processing element in a 3 processor system was capa
ble of 20 billion floating point operations per second, we would say the system
is capable of a theoretical peak performance of 60 gigaFLOPS (or GFLOPS). It
is a metric often used in scientific computing in particular[Smi88]. FLOPS is
the measurement used to rank theoretical peak performance by top500. org,
which ranks the top 500 supercomputers in the world.

The performance of algorithms on systems relative to one another is of
obvious interest, but one cannot simply divide the floating point operations
required by an algorithm by the FLOPS of each computer system to obtain
the relative performance of an algorithm. Computing system characteristics
such as communication bandwidth and the number of processing elements, as
well as characteristics of the algorithm such as data dependencies which neces
sitate sequential execution, prevent this from being the case. For example, an
algorithm 'which allows for a maximum of two parallel threads of execution 'will

26

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

not benefit from operating on a machine with three 20 GFLOP processing ele
ments relative to an otherwise equal machine with two 20 GFLOP processing
elements. This shortcoming leads to alternative models of comparing machine
performance such as analytical model ling or benchmarks.

2.7.2 Benchmarks

Benchmarks capable of evaluating parallel performance are numerous and in
clude SPLASH[SWG92], SPEComp[ADE+01], Perfect Benchmarks[CKPK90],
Parkbench[HLOO], LIr PACK[DLP03] and EuroBen[vdS93]. Benchmarks have
been created because it is desirable to have a single performance metric to com
pare machines[CKPK90]. Empirical benchmark results are reliable and feasible
relative to attempting to analytically compare performance, which is consid
ered infeasible due to machine complexity[CKPK90]. Different benchmarks
target different types of parallel computing systems. For instance SPEComp
targets mid-sized parallel servers[ADE+Ol], where as SPLASH targets shared
memory multiprocessor systems[SvVG92]. It is noteworthy that the LINPACK
benchmark is used to rank supercomputers on top500. org[DLP03].

Existing benchmarks have been described as inadequate[ADE+01]. For
example, the creators of the SPLASH benchmark have described it as inappro
priate to use SPLASH as a definitive and quantitative benchmark to demon
strate one machine is superior to another[SvVG92]. The founders of EuroBen
state that they believe it is not possible for a single measurement to character
ize the performance of high-performance parallel architectures, describing the
goal itself as evasive and ambiguous due to the variability of both potential
problem spaces and different target architectures[vdS93].

2.8 Multiprocessor Parallelism Software Chal
lenges

lVIultiprocessor computing presents several challenges from the perspective of
software. Important challenges include how 'best' to represent a parallel pro
gram as is discussed in Section 2.8.1, hmv to ensure correctness of parallel
programs as is discussed in Section 2.8.2 and how to optimally schedule soft
ware on a parallel computing system as discussed in Section 2.8.3. Overcoming
these challenges is not exclusively a matter of problem solving, but also iden
tifying and exploiting useful trade-offs between these challenges. For instance
by increasing the ease of program expressability in a given model, we may

27

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

lose potential optimization opportunities. Similarly, by allowing for more op
timization we may lose opportunities to ensure safer software. These tensions
will also be discussed.

2.8.1 Program Models

The issue of how to model a parallel program is a contentious one among
researchers, some hold strong beliefs about which model is easiest despite a
lack of empirical analysis in the literature[HB06]. The issue of which parallel
programming model is 'best' is also not as simple as which model is 'easiest' to
program in; a tension exists between programmer productivity and implemen
tation efficiency[ABC+06]. One parallel program model may sacrifice imple
mentation efficiency in exchange for higher safety and ease of programmability,
for instance.

The most popular parallel program model at present is message-passing
using the ~/IPI specification[HB06]. The MPI specification is language-inde
pendent, it can be implemented as a set of functions in an API. It allows
for both collective and point-to-point communication between processing el
ements, and is particularly dominant in distributed ~omputing environments
[SKP06]. It is low-level in nature, in the sense that the programmer manu
ally implements communication between processing elements. The creators of
MPI themselves specifically do not claim that it is uniformly superior to other
models, citing advantages of universality, expressivity, ease of debugging and
performance[GLS94]. The dominance of MPI is primarily attributed to its per
formance, which comes at the cost of an increased burden on the programmer
[ABC+06].

An important distinction by which parallel program models may be
distinguished is whether they allow for implicit parallelism, explicit parallelism
or some combination. Implicit parallelism occurs by having a compiler or
compile-time tool automatically parallelize a computation expressed in some
language[UK88]. In contrast explicit parallelism occurs when a program
model provides constructs specifically for allowing the programmer to create
and manage concurrency[Fre96]. For a program model to be considered purely
implicit, one would expect that no additional parallel language features would
be required to help a compile-time tool exploit parallelism. Hybrid program
models exist that may incorporate aspects of implicit and explicit parallelism.
RapidMind is somewhat of a hybrid model, in the sense that a compiler handles
portability to different architectures but that aspects of parallelism are made
explicit to the developer[MWHL06].

Different models may be more suitable to different architectures or ex-

28

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

elusive to different architectures. For instance OpenMP[DM98] assumes a
uniform shared memory in its execution model, which raises issues of scala
bility to larger distributed memory systems[CCZ04]. Researchers have specu
lated that the heavy demand that more communication-explicit models such
as NIPI places on programmers will cause the model to breakdown as fu
ture architectures begin to demand synchronization over thousands of pro
cessing elements[ABC+06]. This could be problematic, as models which ab
stract away hardware features, such as the number of processors or com
munication between them, are widely considered to be insufficient with re
spect to performance[Dei05]. Though less-specific and increased abstraction
of the problem should allow for optimization techniques to find efficient map
pings to hardware, fulfilling this potential is considered an open research
problem[ABC+06].

2.8.2 Program Correctness

Multiprocessor programs have the burden of various synchronization errors in
addition to those bugs possible in a sequential program. These synchronization
errors may come in the form of race conditions or deadlocks. Race conditions
generally occur due to a lack of synchronization, while deadlocks generally
occur due to too much synchronization[RDOO].

Race conditions occur when multiple simultaneously executing pro
cesses attempt to access a shared state without synchronization[FA99]. Race
conditions are widely considered to be very common and difficult to diag
nose errors in multiprocessor programming[FA99; CMSOl]. The reason it is
sometimes very important for multiple simultaneously executing processes to
synchronize when accessing a shared state is due to the hazards created by
data dependencies.

A hazard is what occurs when a parallel computing system attempts
to simultaneously execute multiple instructions containing a read-after-write
(RAv\), write-after-read (WAR) or write-after-write (vVAvV) data dependency
[LR97]. A RAvV data dependency occurs when a variable in a sequential pro
gram is first read from and then written to. If when simultaneously executing,
the write instruction executes before the read instruction, the resulting pro
gram state may be incorrect. Similar thinking leads one to see that WAR and
WAvY data dependencies may also lead to incorrect program state if simul
taneous execution of the instructions were to occur, making these situations
hazards as well. Sections of an algorithm with these hazard-causing data
dependencies must be executed sequentially and atomically (i.e. without de
pending on operations executed by another processor), and are referred to as

29

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

critical sections[I M92].
Race conditions with a hazard can be referred to as critical race

conditions, requiring synchronization to avoid indeterminate program state.
Race conditions without a hazard, those where the multiple simultaneously
executing instructions only read the shared state, may be called non-critical
race conditions because even without synchronization indeterminate state
will not arise.

The reason race conditions are considered so difficult for a programmer
to debug is because their occurrence depends on small timing variations [RDOO] .
As a result, it may be difficult to reproduce the conditions in which a race con
dition bug arose in order to diagnose and fix the exact problem. The hazards
that race conditions introduce may be mitigated by detecting race conditions
either statically at compile-time or with development tools dynamically at
runtime.

Semaphores are a relatively powerful form of synchronization intended
to prevent race conditions, amongst other synchronization methods. An effi
cient solution to statically detect race conditions is improbable for a program
using semaphores, as static detection of race conditions is NP-hard for pro
grams that contain multiple semaphores[CMSOl]. Efficient heuristics have
been developed for the case of a program with multiple semaphores, and effi
cient exact algorithms for race condition detection have been developed for the
case that the method of synchronization is weaker than semaphores[LKN96] .
RacerX is one example of a static tool used to detect race conditions[EA03].
Unfortunately dynamic methods of detecting race conditions would require the
ability to monitor every memory access, making them impractical[CMSOl].

Many different synchronization methods exist to eliminate race concli
tions, including semaphores, barriers, monitors and non-blocking synchroniza
tion methods[HFM88; Din89]. An implemented synchronization object that
eliminates simultaneous access to shared data is referred to as a mutex, for
providing mutual exclusion[NHOO]. Semaphores essentially work by having
two functions which are called before and after a program accesses data shared
between processes - the first function waits until the semaphore is made free
and the other function frees the semaphore[Din89]. Barriers work by hav
ing a point in source code, the barrier, which a group of threads must all
reach before any can go past it to force synchronization at that point[HFM88].
Monitors are objects consisting of variables only accessible to methods of the
object; these methods are accessed with the condition that only one process
may access them at any given time[Din89].

Unfortunately, these attempts to eliminate race conditions may lead to
a state referred to as a deadlock, where no thread can advance because every

30

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

thread is waiting for a lock to be released by another thread[FA99]. For in
stance, if a programmer forgets to have a thread unlock a shared resource, one
thread may wait forever for that resource, which may have a cascading effect
across all threads. Many non-blocking synchronization methods have been
developed to get around the possibility of deadlocks, however they depend on
various hardware-level atomic operations which mayor may not be supported
from architecture to architecture[}./Ioi97]. Deadlocks themselves may be de
tected by various tools, including the RacerX tool capable of detecting race
conditions[EA03].

2.8.3 Optimal Scheduling

In the general case multiprocessor scheduling problem we don't consider prop
erties specific to the algorithm that is being scheduled when scheduling it.
In contrast one can consider problem specific scheduling algorithms that are
designed to schedule for specific problem domains such as matrix multipli
cation. One can imagine hybrid scheduling algorithms that are capable of
general scheduling but may also incorporate algorithm-specific information or
properties in making scheduling decisions, h(~rwever these will not be discussed.
Assumptions about the architecture of the multiprocessor system can also vary
across different scheduling algorithms.

General Multiprocessor Scheduling Problem

The general multiprocessor scheduling problem is an NP-Complete problem
of great interest to computer scientists. It should be noted that there are
known simplifications of the multiprocessor scheduling problem that absolve
it of the NP-Complete property and allow for polynomial time solutions, but
that these simplifications are largely impractical in useful real world scheduling
scenarios[KA99] .

The problem in its most basic categorization can be stated as, "Given
a number of processors p and a set of tasks T where each task ti has a given
length li, what is the minimum possible time required to schedule all tasks in
T on p processors without tasks overlapping?'. This version of the problem
does not take into account constraints such as temporal dependencies between
tasks, data requirements of tasks, processor heterogeneity and data storage
limitations of processors. Outside of some special cases these constraints can
be expected to increase the difficulty of the problem.

The general multiprocessor scheduling problems tends to categoriza
tion based on additional problem property assumptions that usefully narrow

31

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

,----
the focus of problems to be considered for algorithm creators. The scheduling
problem can be subdivided into different categories, and it is prudent to do so.
Even though ideas for solving one category of the problem may be relevant in
another, algorithms targeting a specific variant of the problem can potentially
work or be designed better under more limited assumptions. The categoriza
tion we present here is similar to that presented by Kwok and Ahmad[KA99].
Figure 2.7 outlines the relative classification of the different problem categories
we will discuss.

Multiprocessor Scheduling

Dynamic Scheduling Static Scheduling

Job Scheduling Scheduling and Mapping

Directed Task Graph Task Interaction Graph

Figure 2.7: Problem category classification

The problem of multiprocessor scheduling can be subdivided broadly
into static and dynamic scheduling[KA99]. In static scheduling tasks are
scheduled to processors at compile time. The scheduling characteristics, such
as task processing time, task dependencies and communication times are often
known before the scheduling algorithm executes. A disadvantage of static
scheduling is that one may have to 'guess' these numbers[GP85]. Often times
a scheduling algorithm designer or user will have to test out tasks and measure
execution times to have the algorithm produce good schedules.

In dynamic scheduling tasks are scheduled at runtime, and the schedul
ing characteristics may be unknown before and during program execution[AG91].
vVe should note that dynamic scheduling can in some sense be thought of as a
series of static scheduling decisions. As a result, in particularly 'bursty' prob
lem spaces where periods of scheduling are followed by relatively large periods
of computation, static scheduling heuristics may still be relevant. There is
also a tension between overhead in scheduling tasks and processing the tasks

32

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

themselves. A dynamic scheduler that produces efficient schedules may it-:
self be inefficient - potentially removing the gains of the efficient schedules it
produces.

vVhether static or dynamic scheduling is optimal in particular circum
stances depends on the trade-off between having better information as to
the state of the program when making a scheduling decision, as in dynamic
scheduling, or having more time, and presumably processing power, to make
the decision, as in static scheduling. In static scheduling, this increased pro
cessing power could be used to analyze more of the task subgraph to be sched
uled, for instance. This trade-off example is illustrated in Figure 2.8.

Processing Elements Processing Elements

Dynamic Scheduling Algorithm

-u
.2.
<1l
~o
::J

\

\
I
I
I
I
I
I

T28 /

:/

T7

Projected ,
Execution : T1

Information :,,,,,,,,,,,

Distortion (
Possible

"Slower"
Compile-time Static Scheduling Algorithm

Scheduling
Decisions

/

/

Larger or I
Entire I
Subgraph I
May Be
Analyzed I
During I
Scheduling
Decision I

\
\

Subgraph
Analyzed
During
Scheduling
Decision

Precise
Execution
Information

)

Subgraph
NOT
Analyzed
During
Scheduling
Decision

"Faster"
Run-time
Scheduling
Decisions

\
I

I
I
J

I

!@)
,,,,,,

I

I
I
I
I
\

,
T1 :,

m ,
1il
n
S
o'
::J

Figure 2.8: Dynamic vs. Static Scheduling Algorithms

\iVithin both static and dynamic scheduling one can further subdivide
the multiprocessor scheduling problem. One can look at what has been referred
to as the scheduling and mapping problem[KA99] where tasks interact
and/or depend on one another. In contrast one can look at the case where tasks
do not interact or depend on one another (referred to as job scheduling). Job

33

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

scheduling is widely thought of as an exclusively dynamic scheduling problem,
though it could be considered a static scheduling problem as well, as the dashed
line in Figure 2.7 indicates.

Figure 2.9: Task interaction graph example

Again within the scheduling and mapping problem, one can usefully
. further subdivide the problem into task interaction graph scheduling and
task precedence graph scheduling. Task interaction graph scheduling in
volves scheduling a graph where nodes represent tasks and vertices represent
required interprocess interaction[Bok81]. All tasks are considered to be exe
cuting simultaneously, there is no order between different tasks, as is shown in
Figure 2.9. The aim of the scheduling algorithms is to minimize program com
pletion time through a proper mapping of tasks to processors. For instance,
by taking advantage of processor specific efficiencies for given tasks, and by
minimizing communication costs [Sto77] .

Task precedence scheduling dealing with directed acyclic graphs, or
DAG scheduling, stretches back almost 50 years to Bu's scheduling algorithm
[Hu61]. In DAG schedulin<T algorithms, tasks are represented by nodes in a
graph, and edges represent dependencies between tasks. Tasks do not start
until all the tasks that they depend on complete. Tasks and edges can have
weights representing computation and communication costs. An example of a
DAG to be scheduled and its node and edge weights is given in Figure 2.10.

Problem Specific Scheduling Algorithms

Multiprocessor scheduling algorithms may be built to schedule a particular
algorithm. By focusing a scheduling algorithm on a particular problem do
main, one can utilize properties unique to the problem domain to further

34

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

11

7 14

Figure 2.10: Directed acyclic task graph example

optimize performance. A simple example of this is Cannon's algorithm for
matrix multiplication[LRF97].

Cannon's algorithm uses a 2D grid of processors. It is assumed they
are connected in such a way that the processors directly above, beneath and
beside one another communicate more efficient than non-adjacent processors.
Algorithm 1 is a pseudocode version of Cannon's Algorithm.

Algorithm 1 (Cannon's Algorithm) Assume n = height(A) = height(B) =
width(B) = width(A), and that we have an n x n grid of processors P. Each
pTOcessor P (i, j) will be left with the reSltlt submatrix C (i, j) at the algorithm's
completion.

1. Each P(i,j) pTOcessor beings with block submatrix A(i,j) and B(i,j).

2. Circular shift submatrices: i-th row of A i positions left, j-th col'ltmn of
B j positions up.

3. Nlultiply submatrices at each process P i .j .

4. Circular shift A (i, j) submatrices left·

5. CircltLar shift B(i,j) submatrices ltpwards.

6. Repeat steps 3-5 for the remaining submatrices.

35

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

~--- I
I

I
Bl:,j)

~
Ali,:)

~ ~")
-

1,J

t
Figure 2.11: Cannon's algorithm computes block C(i,j) at each processor
P(i,j).

An illustration of the algorithm is given in Figure 2.11. This algorithm
uses the structure of the matrix multiplication operation and its input and
output data, as evident in the way it continually redistributes data amongst the
processors for matrix multiplication. In a system where communication costs
are expensive enough to bottleneck performance when sending and receiving
data from a central source, this efficient circular shifting of the data could
optimize performance.

:Many other multiprocessor matrix multiplication algorithms exist, such
as Broadcast-i\lIultiply-Roll[HlJT93], SUlVDVIA[GvV97], PUMMA[CDvV94], as
well as many multiprocessor scheduling algorithms specific to certain prob
lem domains. The important point is that problem specific multiprocessor
scheduling algorithms can leverage problem domain knowledge to optimize
performance.

36

Chapter 3

Cell Broadband Engine

The Cell/B.E. is the current target platform for Coconut and the ideas dis
cussed in this thesis. This chapter will give a brief background of the Cell/B.E. 's
origins, an overview of the hardware itself followed by an analysis of each major
component, current applications of the Cell/B.E., current and expected future
versions of the architecture, as well as an explanation as to how the Cell/B.E.
overcomes the frequency, memory and power walls discussed in Section 2.1.2.
It is important to note that the hardware specifics discussed in this Chapter
are for the original Cell/REo architecture, with variants discussed specifically
in Section 3.7.

3.1 Origins

The Cell/REo 's existence originated from discussions between Sony, Toshiba
and IBM in the summer of 2000 which occurred as a result of the interest
of Sony Computer Entertainment Incorporated (SCEI) in an architecture ca
pable of delivering 1,000 times the computational power of the Playstation
2[KDH+05]. It was decided then that traditional architectures would not meet
this need and as a result a more holistic design approach was used, incorpo
rating ideas from vvider fields of study than typical in processor design phases,
such as software programming models. The eventual performance objective
for the Cell/REo turned out to be 100 times the computational power of the
Playstation 2, and in IvIarch 2001 the SCEI-Toshiba-IBIvI (STI) Design Center
was opened in Austin, Texas to develop the technology at the cost of roughly
$400,000,000 USD.

37

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

3.2 Hardware Overview

As a result of the more holistic design process and ambitious goals, the Cell/REo
has a unique design that is regarded as revolutionary[Hof06; Gsc07]. This
hardware overview is based on the IBM produced and publically available
Cell Broadband Engine Programming Tutorial[IB~il08c], as well as the paper
"Introduction to the Cell multiprocessor" [KDH+05].

The Cell/B.E. is a heterogeneous network-on-a-chip multicore archi
tecture, containing nine processors on a single chip connected by a high
bandwidth memory coherent bus. The heterogeneity is due to the two different
types of processing elements: the PowerPC Processor Element (PPE) and
the eight Synergistic Processor Elements (SPE). The processing elements
have been designed with optimal performance of different tasks in mind. The
PPE is primarily targeted towards control processing of the SPEs and rela
tively branch heavy code, and as such is responsible for managing the SPEs
and is intended to run the operating system. The SPEs are primarily targeted
at data-heavy high performance SIMD floating point computations. Though
technically capable of running an OS, SPEs are not intended to do so. The
SPEs each contain a Local Store (LS) for data and code, as well as their
own program counters, and as such even though the PPE must spawn SPE
threads for execution they can be conceptualized as independent processors.
The processors execute asynchronously from one another; as such much de
sired synchronization between concurrently executing SPE and PPE threads
must be handled explicitly in software.

The Element Interconnect Bus (EIB) is the mechanism through
which the processing elements communicate, providing data transfer as well
as signal and mailbox mechanisms to facilitate interprocessor communication.
The EIB uses a ring structure between processing elements for transferring
data, and a tree structure for issuing commands. Each of the SPEs contains a
Memory Flow Controller (MFC) capable of requesting Direct Memory
Access (DMA) transfers from the EIB, which in turn carries out the transfer
request by communicating with the transfer target. In the case of inter-SPE
transfers, this is done with the other SPE's MFC. In the case of data transfers
bet"veen the SPE and off chip main memory, a Memory Interface Con
troller (MIC) provides the interface between the EIB and main memory.
The I/O Controller acts as the interface between the EIB and I/O devices,
including possibly another Cell/B.E. processor. It is split into two separate
configurable elements, IOIFO and IOIFl.

At a clock speed of 3.2 GHz the Cell/B.E. has a total theoretical peak
performance of 14.6 GFLOPS double precision or 204.8 GLFOPS single preci-

38

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

sion. An overview diagram'o1 the Cell/B.E. architecture is presented in Figure
3.1.

PPU

PPE

SPE

SPE

SPE

SPE

IL1 Instr CacheI
chel

PPSS

EJI MIC 1L1 Data Ca

L/
SPU MFC MFC SPU

I Lsi I- - ILS I
SPU MFC MFC SPU

I Lsi I- - ILS I
SPU MFC m MFC SPUiii

I Lsi - l- lLS I
SPU MFC MFC SPU

I Lsi - l- lLS I
/'-'-.

101FO I 101F1

Cell BE Interface (I/O Controller)

SPE

SPE

SPE

SPE

Figure 3.1: Cell Broadband Engine Overview

In Section 3.3 the different processing elements of the Cell/RE. will
be described in more detail. As communication between processing elements
is vital to performance in multiprocessor settings[KPP06; BCC+95; JCMR07;
CK88], we undertook a thorough literature search of information pertaining
to the EIB and the related interface unit's design and performance. The
results of this search (presented in Section 3.4) were used in the design of the
Performance Simulator tool (presented in Chapter 6) developed for the CMF.

3.3 Processor Element Design

The heterogeneity of the Cell/B.E. allows for processors to specialize perfor
mance towards certain tasks, increasing total system performance. The PPE
is specialized towards branch-heavy code and is described in Section 3.3.1, the

39

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

------SPEs are specialized towards raw floating point operation performance and
are described in Section 3.3.2.

3.3.1 PowerPC Processor Element (PPE)

The PPE is a dual-threaded, general purpose 64-bit PowerPC-Architecture
compliant RISC processor.

The PPE is actually made up of two units: the Power Processor
Unit (PPU) and the Power Processor Storage Subsystem (PPSS). The
PPU handles execution of instructions, and the PPSS handles internal memory
requests from the PPE as well as external communication with processors or
I/O devices. A conventional cache hierarchy is supported, with 32KB first
level instruction and 32KB first-level data caches included in the PPU and a
512KB second-level cache included in the PPSS.

Power Processor Unit (PPU)

The PPU can be thought of from the standpoint of a programmer as a dual core
processor with two independent processing units. Two simultaneous threads of
execution are supported, with most non-system-level resources such as caches
and queries shared by the state of both execution threads. Two simultane
ous threads of execution are part of the reason the PPE is suited for OS-like
functions such as behaving as a server to SPE clients. Another reason is the
inclusion of branch prediction, which is absent from the SPEs. The PPU con
tains the complete set of 64-bit PowerPC registers, allowing for programs writ
ten for PmverPC architectures to generally execute without modification. The
PPU contains an Instruction Unit (IU) for instruction fetch, decode, branch,
issue and completion, a Fixed Point Execution Unit (XU) for load and store
instructions and a Vector Scalar Unit (VSU) for vector and floating-point in
structions.

The PPU pipeline depth is 23 stages, bucking a trend of increasing
pipeline depths, such as the 31-stage Pentium 4 pipeline[ZHNB06].

Power Processor Storage Subsystem (PPSS)

The PPSS contains the 512KB second-level instruction and data cache, various
queues and the Bus Interface Unit (BIU) to handle requests to the EIB.
The second-level cache allows for software control over cache resources via
replacement-management tables.

40

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

3.3.4 --S-ynergistic Processor Elements (SPE)

The SPE is a 128-bit RISC processor built with a new instruction-set designed
for data-rich compute-intensive media applications demanding high floating
point operation performance. The SPE itself is split into two components: the
Synergistic Processor Unit (SPU) contains the LS and is responsible for
computation and the aforementioned MFC is responsible for communication
with the EIB.

Synergistic Processor Unit (SPU)

The SPU includes 128 registers, all of them 128-bits wide, as well as the LS
responsible for storing both instructions and data. This large register file
allows instructions to be ordered to hide instruction execution latencies, part
of the reason the SPE is particularly efficient with regard to floating point
performance. The instruction set implemented by the SPU is new, and is
referred to as the SPU Instruction Set Architecture - it is purpose built for
the Cell/B.E. architecture.

The SIMD instructions allow for different element widths, importantly
2 x 64-bit double precision and 4 x 32-bit single precision. Two instructions per
cycle may be issued, with one slot for floating-point operations, and the other
for loads and stores, branches and byte permutation operations. The single
precision SIMD instructions take six cycles and are fully pipelined, whereas
the double precision SINID instructions have a maximum issue rate of one
instruction per seven cycles. This is the reason for the disparity in single pre
cision and double precision floating point operation performance. The figure
of 25.6 GLFOPS of single precision performance comes from the fact that sin
gle precision multiply-add instructions count as two floating point operations,
and as a result we have 8 x 3.2 X 109 = 25.6 X 109 GFLOPS.

The LS is un-translated and unprotected storage when accessed by its
SPU. The SPU issues DMA instructions to transfer data to and from the LS
from main memory. The LS has a 256KB capacity for both data and code. This
means that proper utilization of LS space through small computational kernels
operating on appropriate sizes of data is key to deriving optimal performance
from the Cell/B.E..

Memory Flow Controller (MFC)

The ~IIFC is responsible for SPE communication with the rest of the chip as it
physically connects to the EIB. DMA transfers, signaling and mailbox mech
anisms are provided to facilitate communication. The MFC allows for DMA

41

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

transfers to be concurrent with execution on the SPU, which gives software
the ability to hide data transfer latency with computation. This process and
the internals of the IvIFC will be discussed in more detail in Section 3.4.

3.4 Communication Architecture Design

The communication architecture is important to the overall performance of the
Cell/RE., and as a result both its design and performance has been extensively
studied in the literature[KPP06; CS06; JGMR07; CRDI07; VKJ+07; AP07b;
AP07a]. In this section we will outline the design of the EIB in Section 3.4.1,
as well as present an examination of the behaviour of the EIB during DMA
transfers in Section 3.4.2.

3.4.1 Design Overview

The description and understanding of the Cell/B.E. communication architec
ture's design and behaviour presented in this section is derived particularly
from the work of Thomas Ainsworth and Timothy Mark Pinkston in t~is

area[AP07b; AP07a], and that of Michael Kistler, Michael Perrone and Fab
rizio Petrini[KPP06].

As the communication architecture is closely coupled to the notion of
memory architecture in the Cell/REo one point should be made about the
CeH/B.E. and its memory structure: main storage is the effective address space
that includes main memory, each SPE's LS, and memory mapped registers.
So when we speak of transfers between main memory and SPEs, it is helpful
to understand that these transfers are occurring in the same effective-address
space. This also means that the Cell/B.E. can be described as a distributed
shared memory architecture, as discussed in Section 2.5.3.

Communication takes place over the EIB, with each of the PPE, eight
SPEs, MIC, IOIFO and IOIF1, containing a BIU as an interface to the EIB.
Each of the components connected to the EIB is capable of transferring 25.6
GB/s, both inbound and outbound, for a total of 51.2 GB/s cumulative in
bound and outbound bandwidth. The exception to this is the I/O controller,
whose two components IOIFO and I01F1 together have a peak bandwidth of
25 GB/s outbound and 35 GB/s inbound. This bandwidth is actually config
urable between the two units, such that one unit could have 15 GB/s inbound
and 15 GB/s outbound and the other 20 GB/s inbound and 10 GB/s out
bound. The cumulative theoretical bandwidth of the EIB is not found simply
by multiplying the bandwidth of these units however, as will be explained.

42

_...-

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

Three main types of communication are supported over the EIB:

• Signal communication

• Mailbox communication

• DMA transfers

Signal and mailbox communication are meant to be low latency signal
ing mechanisms for synchronization between the processing elements. DMA
transfers are meant for transfer of blocks of data and are the only method
supported of moving data from an SPE's LS to and from main memory. Exe
cution at each processing element, SPE or PPE, continues concurrently after
communication requests have been made. In the case of the SPE, requests
are handled by the SPE's MFC, in the case of the PPE, requests are handled
by the PPE's PPSS. This allows for code execution to hide data transfer and
communication latency.

Signal communication is supported by two 32-bit signaling channels in
each SPE, Sig-l otify_1 and Sig_Notify_2. The SPE can read its signals with
the read-blocking SPU channels SPU_RdSigNotify1 and SPU_RdSigNotify2.
These channels are written to by the PPE or another SPE using memory
mapped addresses. The communication of the signal data itself occurs in the
same way as a DNIA transfer does over the EIE. However the signal channels
allow for easier group communication between processors due to an ability to
treat write operations as logical OR operations, allowing for message accumu
lation.

As with signal communication, mailbox communication occurs over the
EIB in the same way as a DMA transfer. Each SPE has two write-blocking
outbound single-entry mailboxes, and a read-blocking inbound four-entry mail
box. Mailboxes have a 32-bit length. The PPE performs writes to and reads of
memory-mapped addresses to use an SPE's mailbox. Mailbox communication
is more suited towards point-to-point server-client style communication than
group communication.

DMA transfers can be up to 16KB length, by a multiple of 16 bytes, as
well as 1,24 or 8 byte lengths. All packets of data sent over the EIB are 128
byte length, and are sent pipelined as 8 16-byte fragments. Thus if a transfer is
greater than 128-bytes in length, it must be sent in multiple packets. 'n"ansfer
latency is improved if the size of the transfer is a multiple of 128-bytes, and
if the effective and local storage addresses are 128-byte aligned. vVhen DMA
commands are issued, a 5-bit Tag Group ID is assigned by software, allowing
for the completion status of a specific DMA transfer to be checked on, or

43

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

waited on, later in execution. Several categories of DMA transfer commands
are worth mentioning.

There exists in the form of a single DMA command, a DMA list com
mand which can request a list of DMA transfers, up to 2048, for a maximum
of 32IvIB of data transfer to or from the LS specified by a single command.
The list itself must be stored in the LS.

There also exist fence and barrier commands which allow software to
affect the order in which packet transfers for DMA transfers are carried out.
In the absence of these mechanisms, when multiple D fA transfer commands
have been issued, the individual packets of data required to fulfill the com
mands will be transfered out of order with respect to the order the commands
were issued in, when possible and beneficial. A fence DMA transfer command
will have the effect of ordering the command against all preceding commands
in a tag group, such that it will not begin its packet transfers until all preced
ing commands have completed. A barrier command will order the command
against all preceding and succeeding commands in the tag group. There also
exists a barrier command that will order the command against all previous
and succeeding commands, regardless of the tag group.

Finally also worth mentioning are the DMA transfer synchronization
commands which are designed to support more complex synchronization be
tween elements. The getllar command when issued sets a reservation on a
specified area of main storage by modifying a synchronization variable. If an
other SPE or PPE then modifies this synchronization variable, the reservation
is lost. A P1LtllC command that attempts to write to the memory location will
only work if the SPE issuing it has the reservation. If the SPE has lost its
reservation, then it must issue another getlIar command for the location before
it can write to it with a putllc command.

The EIB operates at 1.6 GHz, half the clock frequency of the pro
cessing elements. Data transfer over the EIB is lossless and pipelined, and
takes place over four 16-byte width rings, 2 running clockwise and 2 running
counter-clockwise. In addition to the four rings, the EIB also contains a shared
pipelined command bus which has a tree network structure connecting all el
ements, as well as a pipelined central data arbiter which has a star network
structure connecting all elements. Each of the rings is capable of 3 concurrent
data transactions as long as they do not overlap. This may lead one to believe
that the EIB bandwidth would be 1.6 x 109GHz x (3 x 4) x 16B = 307.2GB/s.
It turns out that this is not the case due to snooping capability limitations of
the command bus, 'which allows for only 8 concurrent data transactions across
the four rings.

44

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

3.4.2 EIB DMA Transfer Behaviour

The way in which the three networks internal to the EIB work together to
perform data transfers can be explained best by looking at how a DMA transfer
occurs on an SPE, as shown in Figure 3.2. DMA transfers are referenced from
the perspective of the SPE, as either puts in the case of an outbound transfer
or gets in the case of an inbound transfer. vVhen an SPE issues a DMA get
or put operation, it first uses its channel interfaces to put the command into
the MFC's DMA Controller (DMAC). Specifically, the command is put
into the DMAC's MFC SPU command queue, which is for commands issued
by the SPE. The MFC proxy command queue is for commands issued by other
elements such as the PPE or MIC. The MFC SPU command queue has 16
slots, and the proxy command queue has 8 slots, though IBM documentation
recommends this specific size not be assumed by software. These queue sizes
are important however, as an attempt to insert a command into a full queue
will result in performance degradation.

Once inside the SPU command queue, the DMAC will eventually se
lect the command for processing. The protocol the DMAC uses for selecting
commands could not be found in public documents, but we are told that com
mands in the SPU command queue will take priority over those iil the proxy
command queue and that the DMAC alternates between get and put com
mands. When a command is selected for processing, a command bus request
is put onto the BIU queue. Before the command is put onto the BIU queue,
two things could happen to it. If the command is a DMA list command, the
DMAC will request a list element from the local-store interface, and when
this list element is returned the command entry is updated. The command
must then be reselected in order to send a bus request to the BID. The other
possibility is that the command requires address translation, in which case
the DMAC queues the command to the MMU for translation from a Transla
tion Lookaside Buffer (TLB). Once again after the command is processed, it
must be reselected by the D~/IAC for processing. The command will remain
in the DMAC command queue until all of the necessary packet transfers (i.e.
command bus requests) have been completed, at which point the command is
removed from the queue.

Commands for data transfer issued by a component's BIU are accepted
by the command bus, shown in Figure 3.3, ,,,hich is responsible for distributing
commands, setting up transactions and handling coherency. Each unit has a
limited number of commands that may be issued to the EIB at a single time,
and this is controlled via a token mechanism. vVhen a BIU issues a command to
the command bus, the command bus holds the token. The BIU can only issue

45

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

EIBSPE LS
Issue

get or put
Command

MFC Request

Channel List
- Element

Interface 25.6 GB/s
Inbound

and

DMAC BIU 25.6 GB/s
SPU putbouna

Command Data
Queue Transfer

from EIB
Data Rings

to LS

Select
Command

for
Proxy Processing

Command
Queue

Issue and

Translate Recieve

Address Bus Request
with

Command

!MMUI
Bus

Figure 3.2: SPE DMA Transfer Internals

(or accept) commands if it has available tokens. While the EIB can support
up to 64 requests from each element, only the MIC supports this maximum,
as all other elements (such as an SPE's MFC) support only 16 outstanding
requests.

The command bus connects to each BID with an Address Concentrator
(AC), which form a tree structure with root node ACO. Together the ACs
provide round robin access to the command bus, with two levels of priority.

46

M.Sc. Thesis - Kevin Browne - McMaster ~ Computing and Software

Data
Rings

LS

SPU

f------l BIU

LS

SPU

f------l BIU

LS

SPU

f------l BIU

SPU SPU SPU SPU

LS LS LS LS

BIU BIU BIU

Command
Bus

AC3 AC2 AC1 AC2

ACO

LS

SPU

Figure 3.3: EIB Command Bus

The MFC has highest priority, and all other bus elements are of lower priority,
but of equal priority to each other. vVe could not find in the literature the exact
level of priority the "[vIlC has over other bus elements, but we suspect it to be
enough priority to fully utilize the 1iIIC bandwidth given the well understood
potential of main memory access to act as a bottleneck to performance.

The command bus can initiate one coherent transaction (with respect
to main memory) every two bus cycles, and a non-coherent transaction every
bus cycle. This design feature, combined with the pipelined nature of the EIB
data transfer rings is what limits the maximum number of in-flight transfers to
eight. This also gives the EIB an overall bandwidth limitation of 204.8 GB/s.
The coherent-only transfer bandwidth is 102.4 GB/s. SPE-SPE transfers are
non-coherent, whereas transfers involving the PPE, lvIIC or 1/0 Controller (in
the case of multiprocessor Cell/B.E. configurations discussed in Section 3.7.5)
are coherent. Non-coherent transactions may be interleaved with coherent
transactions, to ensure that at each bus cycle a ready transaction is initiated.

After the command bus initiates a transaction, the next step is for the
data arbiter, shown in Figure 3.4 to select one of the 4 data rings to carry out
the packet transfer. The data arbiter has the same two-priority-level round

47

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

Data
Rings

LS

SPU

LS

SPU

LS

SPU

LS

SPU

,.--
SPU SPU SPU SPU

LS LS LS LS

BIU BIU BIU

"U r r OJ (5
"U N C :;;C 0

(5:;: OJ
(5 C "Tl......

Figure 3.4: EIB Data Arbiter

robin access scheme as the command bus. The data arbiter will always select
one of the two rings that allows for the shortest path for the data transfer. In
other words, packets will always transfer along the shortest path, no more than
6 hops along BID connections to the EIB. Hops will be used to refer to packet
transfer path length. This matters because one can imagine scenarios where
the longest transfer path may have lower latency due to a high level of traffic
over the shortest path, but the EIB will still not allow for the longer transfer
path. Each data ring can support a new transaction every 3 bus cycles so
long as the paths do not overlap. This combined with the 8 hop packet length
is what allows us to say that an EIB data ring may support 3 simultaneous
transfers.

Once the data arbiter selects a ring and the packet transfer is made,
the final step in a DMA transfer is the receiving of the packet by the BID. In
the case of an SPE, this is done by having the BID transfer the packet to the
MFC in one cycle, and in the next cycle the MFC transfers the data into the
SPE's LS.

48

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

3.5 Communication Architecture Performance
Analysis

_.---

The performance of the EIB is critical to the performance of the Cell/B.E.
in many problem spaces. This is due to the limited on-chip communication
bandwidth relative to computational power, particularly with respect to main
memory bandwidth. The purpose of this section is to analyze the perfor
mance of the EIB as a communication architecture, in order to illuminate the
importance of the EIB to overall chip performance.

3.5.1 Main Memory Bottleneck

The main memory bandwidth provided by the MIC is a performance bottle
neck for the Cell/B.E., referred to as the bottleneck to the performance of
most algorithms[VKJ+07]. This bottleneck will be illustrated by examining
the amount of data re-use necessary to prevent the bottleneck from impacting
performance, to give the reader an appreciation of the severity of the problem.

Dongarra et al. describe the problem of "main memory access rate"
in the following clear and concise way[BLK+07]. The main memory of the
Cell/B.E. is accessed through the MIC, with a peak theoretical outbound
transfer rate of 25.6 GB/s. The performance of a single SPE is 25.6 GFLOPS
for single precision floating point operations. As single precision floating point
values require 4 bytes to represent, this means that in order to hide transfer
latency with computation in the case of a single SPE streaming data from
main memory, one would have to perform four floating point operations on
each value. Now considering that in reality we have 8 SPEs executing at 25.6
GFLOPS, this would require 8 x 4 = 32 floating point operations per floating
point value transferred out from main memory to hide the latency. This metric
is referred to as computational intensity by others in the literature[vVSO+07].
This is pointed out by the team as being a particular problem for sparse sci
entific computing operations, limiting the chip to 12o/c of its theoretical peak.
This also means that as we use more SPEs in a server-client communication
style there is a definite potential for decreasing rates of return on perfor
mance. vVhich in turn raises concerns about the scalability of the Cell/REo
architecture, if main memory access bandwidth cannot scale with the number
of SPEs.

To take another look at the problem we consider matrix multiplication.
IBM and Sony researchers were able to show that they were able to get close
to the theoretical peak performance (204.8 GFLOPS) of the Cell/REo for

49

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

-----single precision matrix multiplication (512 x 512 anci 1024 x 1024 size), 201
GFLOPS of performance were achieved[CRDI07]. Through double buffering
to hide latency, the MIC was not a significant bottleneck to performance.

This should not be too surprising, given an analysis of the problem. As
suming we use 64 x 64 block sizes for the matrix, then supplying all 8 SPEs with
2 (A and B) single precision floating point (4 bytes) input matrix blocks would
require 8 SPEs x 2 input matrices x 4 bytes x (64 x 64) block size = 643 bytes
of data transfer from the MIC. Given that the MIC is capable of 16 bytes of
outbound data transfer per bus cycle, and that the bus executes at 1.6 GHz, we
have a main memory transfer rate of 16 bytes x (1.6 x 109) cycles per second =
25.6 x 109 bytes per second. One computes that it takes 643 bytes / (25.6 x
109

) bytes per second = 10,240 nanoseconds to transfer the required data
out to the SPEs. As n x n square matrix multiplication requires n3 op
erations, and SPEs each have 25.6 GLOPS performance in single precision,
we get that it takes 643 operations / (25.6 x 109) operations per second =
10,240 nanoseconds for each SPE to perform the matrix multiplication. In
other words, it takes exactly as much time to send the data for processing as
it does to process it, which means through a buffering mechanism we should
be .able to easily hide the latency of data transfers. This explains why ma
trix multiplication should indeed not cause the MIC to be a bottleneck to
performance.

Table 3.1: Operations/Value Effect on Transfer vs. Computation Time
Operations Computation (Transfer / Potential La-
per Value Time (ns) Computation) tency Hiding

Time
32 10,240 1 100%
16 5,120 2 50%
4 1,280 8 12.5%
1 320 32 3.125%

This is consistent with the idea that it takes 32 operations per single
precision floating point value to hide the latency in the case of 8 SPEs, as
643 operations / (2 x (64 x 64)) values = 32 operations per value. But if we
were to hold the data requirement of 2 64 x 64 blocks constant, but decrease the
amount of computation required, vve find that communication rapidly becomes
a constraint to performance. This is not unreasonable, as matrix multiplication

50

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

trans.

Execution

,---I__I 1__.............. w\
,----,c.-----,-------,I I~--------I compo

32
operations I

value

I.U MFC
a..
C/)

SPU

Communication
Latency Hidden

Communication
Latency Hidden

compo

4
operations I

value

I.U MFC
a..
C/)

SPU

1'---_----'1 1,-----------, trans................. w\.
G D

Communication
Bound

Execution

Communication
Bound

Execution

Figure 3.5: Communication Latency Effect

has cubic time complexity (implying heavy re-use of at least one input value),
and many useful algorithm kernels (such as search or sort kernels) will not have
such high computational complexity. If we reduce the amount of operations
per value to 4, "ve find that computation will only take ((64 x 64) x 2) x
4 operations I (25.6 x 109) operations per second = 1,280 nanoseconds. Now
it takes eight times as long to transmit the data as it does to process it, and
communication can no longer be hidden to such a degree through buffering.
As a result, presumably only 12.5% of communication cost could be hidden
through buffering. This results in a communication bound execution time due
to main memory access latency, and the effects of this are shovm in Figure
3.5. The effect on the ratio between transfer and computation time for several
operations per value scenarios is shown in Table 3.1.

It should also be stated that main memory access may be less than
the 25.6 GB/s provided by the MIC due to the need for the NIlC to ac-

51

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

cess a memory bank to get the actuaCdata, exasperating the problem fur
ther. When describing the performance of the MIC, the same IBM and Sony
researchers[CRDI07] tell us that memory operations such as refresh and scrub
bing typically reduce bandwidth to about 24.6 GB/s. The authors also tell
us that if streaming read and write requests to the MIC are intermingled, the
effective bandwidth may drop to roughly 21 GB/s.

As one can see through this example, main memory bandwidth through
the MIC is a significant potential bottleneck to performance, unless perhaps
data is somehow re-used sufficiently.

3.5.2 Communication Pattern Bottleneck

In order to cut down the amount of data that must be transfered from main
memory, one may be tempted to share data amongst the SPEs in some form.
Perhaps by sharing input values, or perhaps by passing intermediate values
from SPE to SPE in a sort of pipeline style computation. These ideas may
indeed be effective at alleviating the critical main memory bottleneck. How
ever without consideration of the communication pattern between processing
elements, inefficient transfer times could theoretically result.

As an illustrative example of an inefficient communication pattern, con
sider the case of all 8 SPEs simultaneously sending 2 or more 16KB blocks of
data to their counter-clockwise neighbour. This would cause both of the 2
counter-clockwise EIB data rings to become saturated with data transfers,
where as the clockwise EIB data rings would have completely unused band
width. As each ring is only capable of 3 simultaneous transfers, and each SPE
would be attempting 2 or more transfers simultaneously, only 6 transfers of
the 16 or more attempted transfers could execute simultaneously, capping po
tential bandwidth at 153.6 GB/s. This despite the fact that the EIB is capable
of 8 simultaneous transfers and 204.8 GB/s of bandwidth. So bandwidth is
already negatively impacted by this arrangement without considering other
factors.

Now if one considers additional transfers and communication from the
~/IIC to each of the SPEs, one can reason that 4 of the SPEs will receive data
over the saturated data rings, and 4 of the SPEs will receive data over the
unsaturated data rings, given the 6 hop shortest path rule. The MIC transfers
will take priority over SPE transfers due to the design of the data arbiter, and
so the SPE-SPE transfers occurring over the already saturated rings will be
further impacted. For example, if the MIC attempts to send its maximum
amount of 25.6 GB/s outbound data to an SPE over an already saturated ring
direction, this will limit bandwidth available to the SPE-SPE transfers to 128

52

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

GB/s assuming absolute priority of MIC trCj,Ilsfers over SPE-SPE transfers.
The described situation is illustrated in Figure 3.6, with 'cycle transfer rates'
referring to those transfers occurring as a cycle of SPE-SPE transfers.

-+-.,.. ., I

I I

OJ 0
C 'T1

0

t t
I I

OJ 0
C 'T1.....

A A
I I

..J I

- _I

~

SPUSPUSPUSPU

s:
()

Unsaturated
Bandwidth LS LS LS LS

~. ~ BIU f- -- - BIU f- _ __ BIU f- l B- 1-U4-----.

1'1 ~ r YY ?11- -- - ~o 'f'i'f- -- - ~« 1{-.. - 0"'.A"~-"-r'
,----,--.----.-'-'-.I...-l...., !! 1-.':::::-.::.::-.::::-.::::-.:::::::::::'_..1 L.~::-.::::-.:::::::=::::::-.::'._..1 L.~.::::-.::::-.::=::-.::::-.:::::L..i::g ~::::; OJ ;..1 + {>
c c: i i No Effect On Cycle Transfer Rates

'----'---'-------'-...r-.t--,+r' II I
OJ 6l...I...~.,.~.~~~~..tr~~.s!.~.~~.'.?~~ ..~~~~~ ..'!.~.~.~.~.!~.r ..~~.~~.~.t>
C i i ,----.---.--,-------------
"., I ~ ~b~ sl~aE~:r:; l& ~~ ~l b~ && ><

vi)I= BIU -=--=: BIU ==: BIU ===: BIU
I /~I-------fo----i----r-i------r------t--1-------l

Saturated LS LS LS LS

Bandwidth SPU SPU SPU SPU

Figure 3.6: Inefficient Cycle Communication Pattern

Another possibility is that 2 SPEs are communicating heavily, with 2
or more transfers occurring simultaneously and constantly in both directions.
It is expected that the inbound and outbound bandwidth limits of each SPE's
BIU would become saturated. These SPEs would also consume half of the
available bandwidth on the 4 rings connecting them. Assuming fair allocation
of the rings to data transfers, which according to EIB documentation can be
expected, this could theoretically negatively impact the transfer rates between
units not related to these 2 SPEs. This is because the shortest path transfer
design feature of the EIB which prevents transfer paths greater than 6 hops
will send the DMA transfer packets along the shortest path and not necessarily
the path \vith the most available bandwidth.

This situation is illustrated in Figure 3.7, with the shortest communi
cation path between 2 SPEs containing the already heavily loaded EIB rings.
Though technically the bandwidth of the data rings could support precisely
the maximum amount of transfers occurring over the 4 data rings between the
4 SPEs (102.4 GB/s), if any other data transfers from the 1tIIC or any other

53

M.Sc. Thesis - Kevin Browne - McMaster - Comp'uting and Software

computational unit we-~ attempting to use these rings increased communica
tion latencies would be expected. Locating heavily communicating SPEs out
of each other's shortest-distance packet transfer paths is thus a good practice
for optimizing communication bandwidth usage; overlapping paths may be
expected to cause performance degradation.

SPU SPU SPU SPU

LS LS LS LS
- - --+

~ - - --+ f----BIU BIU BIU BIUrr I- ---

~I- - --

11 ?i
-0 r- r- OJ OJ 0
-0 N BIU bandwidth saturating

C 'i1C C SPE-SPE transfers 0

11 Following shortest-path rule,
r rbandwidth between two

~ OJ unrelated SPEs may be OJ 0
() C negatively impacted. C 'i1......

U: dJBIU BIU BIU BIU- -
LS LS LS LS

SPU SPU SPU SPU

Figure 3.7: Inefficient Heavy Inter-SPE Communication Pattern

An awareness of the EIB's topology with respect to SPE and other
element's relative positions thus seems important to preventing communication
transfer latency from being a larger cause of performance degradation than
necessary. It is disappointing then to learn that the current API does not allow
the programmer to know the physical location of the SPEs and to control the
layout[JGMR07].

3.5.3 Performance Tests

)\IIuch actual performance testing of the EIB has been done in the literature
[KPP06; JGMR07; CRDI07; VKJ+07]. A survey of some of these results is
useful to appreciate the non-theoretical real-world capabilities of the EIB.

54

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

Cell Broadband Engine,AtCfiitecture and its first implementation
A performance view

In the paper "Cell Broadband Engine Architecture and its first implementa
tion - A performance view", IBM and Sony researchers performed tests on
the SPE to SPE DMA transfer abilities of the Cell/RE., performed on an ac
tual Cell/REo running in a hypervisor mode without an OS[CRDI07; Da109].
Each SPE of the 8 available SPEs was paired with another SPE, and one
of the SPEs was made to perform streaming writes to the other SPE which
performed streaming reads, and vice versa. The test was performed 7 times,
pairing different SPEs with each other to evaluate the effectiveness of differ
ent communication patterns. In 5 of the 7 tests, near peak bandwidth was
achieved with an aggregate EIB bandwidth between 186 to 197 GB/s (91%
to 96% of peak bandwidth). Only 1 of these 5 tests achieved 186 GB/s, with
the rest achieving 197 GB/s. It is curious that this test is the only test where
none of the communication paths overlap, and yet it has lower bandwidth than
others where paths do overlap.

The remaining 2 tests had significantly less bandwidth. In one case
where the SPEs are furthest apart at 6 hops, the bandwidth achieved was
only 78 GB/s (38% of the theoretical peak). Because only one transfer may
happen on each ring (due to the overlapping of transfer paths), we would have
a peak bandwidth expectation of 102.4 GB/s. The authors suggest that the
bandwidth was limited beyond this due to limitations in the arbiter design. In
the other badly performing case, 95 GB/s of bandwidth (46% of theoretical
peak) is achieved when the SPEs are five hops away from each other, and
because of path overlap transfers on the same ring are still prevented from
taking place.

These tests tell us a few useful things. Firstly, that even under ideal
conditions where the maximum bandwidth should be achievable, the EIB falls
short of its theoretical peak, but still gets 90% or more of the theoretical
peak. Secondly, that if paths overlap in such a manner as to prevent simul
taneous data transfers, significant performance degradation may result. I ote
that these experimental results are presented in Table 6.2, we compare our
Performance Simulator tool against them to verify its accuracy.

Cell Multiprocessor Communication Network: Built For Speed

In the paper "Cell Multiprocessor Communication Network: Built For Speed" ,
several tests involving SPE to SPE and SPE to main memory communication
performance provide useful information about the EIB[KPP06]. The tests were

55

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

.---
performed on an experimental evaluation board, and were correlated with re-
sults from an internal version of the IBM Full-System Simulator which includes
performance models for the MFC, EIB and memory subsystems. They say
that the correlation between the simulator and hardware results was "good"
and that the simulator allowed them to observe system behaviours that would
otherwise be impossible to observe. Though not a performance test, this in
formation about how the tests were conducted tells us that it is possible to
performance model the EIB and related components in software and to gather
useful information from doing so.

Firstly, the latency and bandwidth for get and put DMAs to another
SPE from an SPE, and to main memory from an SPE, were tested and pre
sented in graphs (preventing the precise numerical results from being presented
here). Two things stick out, one that for transfer sizes below the packet length
of 128-bytes, we have exactly the same performance. And though noteworthy,
it is expected, because we know that packet sizes are 128-bytes regardless of
the data size actually being transferred. Also we notice that the latency of
gets from main memory is about 1,100 nanoseconds compared with about 750
nanoseconds for puts to main memory and gets and puts to another SPE. This
seems to confirm that memory bank access itself may bottleneck the potential
outbound performance of the MIC.

Another series of tests compares get and put bandwidth to and from
another SPE's LS, and to and from main memory, but for batches of DMA
commands ranging from a single DMA to 32 DMAs before waiting for DMA
completion. In these tests again it is the DMA get from main memory that
lags in performance, with between roughly 15 GB/s to 18 GB/s of bandwidth
being achieved, which scales upwards with larger batch sizes. The other gets
and puts achieve from about 22 GB/s to about 25 GB/s of bandwidth, again
scaling with the larger batch size.

The next test was a "hot spot" test, examining what would happen if
some or all SPEs targeted another SPE's LS or targeted main memory, with
either streaming gets or puts. In the case of gets and puts to another SPE's LS,
near peak performance of about 25.6 GB/s is achieved. Interestingly, in the
case of gets from the MIC, in the case of a single SPE we again see much less
than the desired 25.6 GB/s outbound MIC performance, with performance
of about 17.5 GB/s. However in the case of 2 or more SPEs issuing gets
from main memory, the performance jumps to the expected 25.6 GB/s! And
strangely it is puts to main memory which achieve worse than the theoretical
peak in this situation with only about 24.5 GB/s of performance in the case
of 8 SPEs. These results are referred to as counterintuitive by the authors.

Another series of tests were performed to examine how different pat-

56

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

terns of cpminunication would perform. In the complement pattern, each SPE
executes a sequence of transfers to a fixed target SPE which is determined by
complementing the bit string identifying the source SPE. This pattern achieved
virtually optimal EIB bandwidth at 200 GB/s (98% of theoretical peak). This
shows that under the right conditions the EIB is capable of performance ex
tremely close to its theoretical peak. The pairwise pattern was also tested,
where each SPE i communicates with its logical neighbour i + 1. The authors
note that the SPEs are not necessarily adjacent physically in hardware. In the
case of a put operation to facilitate the DMA transfer, the performance was 40
GB/s worse than in the case of a get operation to facilitate the DMA transfer
which was itself very near peak performance at about 195 GB/s. The authors
tell us that this is explained by the fact that gets have better contention res
olution properties than puts under heavy loads. Another case referred to as
uniform communication was tested where each SPE randomly targeted an
other SPE's LS for DMA transfer. This resulted in very poor EIB bandwidth
of 80 GB/s.

Returning to the "hot spot" test, in the case of puts to main memory
and gets from main memory, the author's show us a graph of the distribution
of latency times for each individual DMA transfer. The distribution shows an
average of about 5.6 microseconds, with a worst case latency of about 13 mi
croseconds. This tells us that the transfer latency may vary for similar transfers
with the same source and target destination, with perhaps a 200% or greater
transfer time difference. It is also tells us that the network is reasonably fair
even under these extreme conditions, in the sense that no single DMA trans
fer was held up in transit to an extreme degree (orders of magnitude greater)
relative to other transfers. In other words, even under strained conditions, we
shouldn't expect vastly divergent transfer times for similar transfers.

3.6 Overcoming the Frequency, Memory and
Power Walls

The Cell/REo overcomes the frequency, memory and power walls through its
unconventional design. The fact that the Cell/B.E. does overcome these major
walls to performance is part of the reason Coconut has decided to target the
Cell/B.E. and so will be briefly reviewed. The explanation here is derived from
the Cell/REo Programming Tutorial[IBM08c].

57

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

3.6.1 Frequency Wall

The frequency wall is overcome by heterogeneity between the SPEs and the
PPE. The SPEs each have a large registry file, which allows for more in-flight
instructions, and eliminates the overhead involved with out-of-order instruc
tion execution. The SPEs also have local storage, which allows for memory
transfers to occur concurrently with computation, and eliminates the overhead
of speculation. The PPE in contrast is built to execute two threads simultane
ously, eliminating the overhead of trying to optimize for single-thread perfor
mance. By specializing the PPE and SPE processing elements, the overhead
of certain features normally desired in a more general processing element can
be eliminated, which allows for higher frequency.

3.6.2 Memory Wall

The Cell/B.E. combats the memory wall through its 3-level memory hierarchy
consisting of main storage, local stores on each SPE and the large registry file
of each SPE. The multi-layered memory hierarchy allows for programmers to
keep data close to where it is being used with creative algorithms exploiting
data locality, similar to cleverly written sequential programs targeting shared- .
memory multicore systems with a cache hierarchy. However an added benefit of
the Cell/REo memory hierarchy is that its network-on-a-chip design allows for
more in-flight data transfers than conventional processors. More simultaneous
transfers with more memory bandwidth allows for more hiding of memory
latency. The programmer-controlled asynchronous DMA transfers the SPEs
are capable of allows for the programmer to handle this latency-hiding.

3.6.3 Power Wall

The power wall is also overcome by the heterogeneity of the processing ele
ments. By allowing processor elements to focus on specific tasks, the overhead
of including optimizations for other tasks is eliminated, increasing the power
efficiency of the chip.

3.7 Current and Future Variations

A look at what variations of the Cell/REo architecture currently exist, as
well as potential future iterations is prudent. Given the investment in the
architecture by the parties involved, it would not be unreasonable to imag
ine that the architecture will continue to be improved and enhanced into the

58

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

future. A CeH/B.E. Technology Roadmap featured in a past Roadrunner re
lated presentation[Koc07] notably makes reference to a concept Cell/B.E. vari
ant with 32 SPEs, though the architectures on the roadmap should be taken
as "estimations only and subject to change without notice" according to the
slides.

3.7.1 Cell/B.E.

The original Cell/RE. architecture has already been outlined in this chap
ter. The Cell/B.E. contained in the Playstation 3 is notable for having only
6 accessible SPEs. This is because one SPE is disabled to increase wafer
yields (even if that SPE is not defective), and another SPE is set aside for OS
functionality[BLK+07]. The Cell/RE. \-,as also reduced to 65nm SOl (Silicon
on Insulator) in 2008, from the original 90nm, with a further decrease to 45nm
expected in 2009.

3.7.2 PowerXCell 8i

The PowerXCell 8i variant of the Cell/B.E. architecture addresses the defi
ciency in double precision floating point performance of the first Cell/B.E..
The PowerXCell 8i has an increased peak performance of 102 GFLOPS for
double precession[SKGF08], over 7x the performance of the Cell/RE.. The
PowerXCell8i also supports industry-standard DDR2 SDRANI memory, which
allows for cost efficiency and memory capacities of up to 32GB in dual proces
sor configurations[CHKW08]. The consequences of increasing RANI capacities
for Cell/B.E. based systems are illustrated in Section 3.8.2.

3.7.3 SpursEngine

'While not considered a direct decedent of the Cell/B.E. [Shi07], it is worth
noting that Toshiba has developed the SpursEngine as a media oriented co
processor targeted towards consumer electronics. The processor uses 4 SPEs
and operates them at a lower clock frequency 1.5 GHz, producing 48 GFLOPS
performance. As the processor does not contain a PPE, which is vital to the
Coconut l\!Iulitcore Framework design, the SpursEngine will not be a target of
the CMF in the future.

59

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

3.7.4 Cell/B.E. 32 SPE Concept Design

This potential future architecture is not confirmed, but it has appeared in IBM
Cell/B.E. Technology Roadmaps since 2007 as a "concept" design expected in
2010-2011[Koc07]. This concept architecture would have 32 SPEs, 2 PPEs and
have 1 TFLOPS of single precision floating point performance. No information
is given as to the EIB memory bandwidth.

This information is useful, as it confirms that IBM is at least thinking
about Cell/B.E. architectures with 4x the cores of current chips. This suggests
that developers and programming models should plan for an exponentially
increasing number of cores into the future. This dramatic increasing of cores
may exasperate the problem of limited bandwidth from main memory. The
situation of increased computational power not being matched by increases
in memory bandwidth has already played out in single core systems[WM95;
BLK+07], and so we are very mindful that it may continue to do so in network
on-a-chip architectures.

3.7.5 Dual Processor Systems

Though not a separate variant of the Cell/REo per se, dual processor Cell/B.E.
systems can be thought of as a variant of the Cell/B.E. processor on the level
of software. By connecting two Cell/B.E. systems as discussed in Section 3.4,
developers effectively have 16 accessible SPEs[BvVSF06]. This however comes
at the cost of a new communication constraint to deal with in the sense that
the BIC connecting the two chips has a limited bandwidth, making chip-to
chip communication a potential performance bottleneck. As dual processor
systems are standard in Cell/REo Blade Servers (see Section 3.8.2), optimal
scheduling in dual processor systems is an important problem.

3.8 Applications

The applications that the Cell/B.E. is intended for and being used in should
in part guide the development of any programming model. vVith applications
in video game consoles, blade servers, supercomputing, cluster computing and
distributed computing it is clear that Cell/REo has caught on in the areas
it was intended for - those involving parallel high performance floating point
calculations. \Ne find that on the more tightly coupled level of video game
consoles and supercomputers, linear algebra operations, game engine related
algorithms and molecular dynamics simulation algorithms are of particular

60

11;J.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

interest. As we go into cluster and grid computing environments more suit
able for loosely coupled and embarrassingly parallel problem spaces, we find
applications in astrophysics and bioinformatics to be of particular interest.

3.8.1 Video Game Consoles

As discussed, the Cell/B.E. is currently being used in the Playstation 3 video
game console[BLK+07]. Playstation 3 sales were at over 20 million units by
December 31st, 2008[Son09]. The Playstation 3 has relatively limited RAM
at 256 Megabytes, and this limitation is a constraint on potential scheduling
algorithms (discussed in Section 3.8.2).

Game engine related algorithms and linear algebra operations for graph
ics related processing are thus of particular value in considering Cell/B.E.
scheduling on the Playstation 3.

3.8.2 Cell/B.E. Blade Servers

Another application for the Cell/B.E. has been in IBM BladeCenter blade sys
tems targeted at clients with high performance computing needs. Th~ Blade
Center systems use two Cell/B.E. processors in a dual processor configuration.
The first BladeCenter systems, QS20 and QS21 used the original Cell/B.E. ar
chitecture with relatively poorer double precision floating point performance
and maximum RAM capacities[IBM06; IBM08a]. The QS21 BladeCenter sys
tem had a maximum capacity of 2 Gigabytes of RAM. The QS22 BladeCenter
however uses the PowerXCell 8i variant discussed in Section 3.7.5, also in a
dual processor configuration, and thus has the expected increase in double pre
cision floating point performance as well as a vastly expanded RAM capacity
- up to 32 Gigabytes[IBM08b].

Effect of Increased Memory Capacity

The PowerXCell 8i variant and related QS22 BladeCenter greatly increase the
problem sizes that can be efficiently calculated \,vith the Cell/B.E. architecture.
\i\Tith the Playstation 3 and earlier BladeCenters, if the problem size grew
beyond the capacity of the relatively limited RAM, expensive operations to
hard disk or other storage would be required. However with the new RA1/1
capacity increases vastly greater problem spaces can be efficiently computed
without expensive disk access.

For instance looking at the simple but illustrative problem of dense
square matrix multiplication, the RAM capacities of the systems give limita-

61

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

tions to the size of the matrices A,B and C that could be kept in main memory
at once without some sort of swapping between disk and RAM taking place.
Assuming all of the RAM was available for data, which would not be the case
in practice as space would be needed for code, a simple division of the floating
point memory capacity by 3 followed by a square root of the result gives the
largest matrix size that could be computed without disk access being neces
sary. The result of this calculation is shown in Table 3.2 for several systems
and memory capacities.

Table 3.2: RAM Capacity Effect on Square Matrix Mult. Problem Size
RAM 32-bit Float Capacity MaxN ~

Playstation 3 256 Megabytes 6.710 x 107 4730
QS20 1 Gigabyte 2.684 x 108 9459
QS21 2 Gigabytes 5.368 x 108 13377
QS22 32 Gigabytes 4.294 x 109 53509

The problem size capabilities of a computing system are of interest to
developers of a programming model such as the CJVIF, as an indication of just
what problems may be computed on the computing system. Observations
about main memory as a limiting factor to computing problems of a given size
on the Playstation 3 have been made by others[BLK+07].

3.8.3 Supercomputing

The Cell/B.E. is used in the IBM Roadrunner supercomputer at the Los
Alamos National Laboratory, which was the first supercomputer to sustain
1 PFLOPS of performance[Top08]. Compute nodes in the system consist of
four PowerXCell 8i variant Cell/B.E. processors and two AMD Opteron dual
core microprocessors. The Cell/B.E. processors act as accelerators, which
contribute over 96% of the theoretical 1.3 peak PFLOPS[SKGF08].

The Roadrunner has been built for the U.S. Department of Energy
for the purpose of simulating the aging of nuclear materials to evaluate the
reliability and safety of the American nuclear arsenal. As a result, molecular
dynamics simulation algorithms targeted to the Cell/B.E. are of particular
value.

62

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

3.8.4 Cluster Computing

The Cell/REo is being used in cluster computing, for example Astrophysi
cist Gaurav Khanna created a cluster of 8 Playstation 3 consoles for super
massive black hole simulation[Gar07]. Terrasoft Solutions also sells clusters of
6 or 32 Playstation 3s, with Yellow Dog Linux pre-installed[BLK+07]. Ter
rasoft Solutions has also built a facility for bioinformatics research related to
gene-finding and sequence alignment, containing roughly 2500 Playstation 3
consoles[SKST08]

Cluster computing is as of yet a less prominent usage of the Cell/B.E.
architecture relative to the Playstation 3, Roadrunner and Folding@Home
(talked about in Section 3.8.5). This may have to do with problems of us
ing the Playstation 3 as a cluster node[BLK+07]. These problems being the
main memory access rate of the Cell/RE., network interconnect speed, main
memory size, programming difficulties and the relative lack of double precision
floating point performance on the Playstation 3.

3.8.5 Grid Computing

Grid computing with the Cell/B.E. is perhaps most famously exemplified by
the Folding@Home distributed computing project for protein folding[SKST08].
This along with the Terrasoft Solutions work in bioinformatics discussed in Sec
tion 3.8.4 suggests that optimal bioinformatics related algorithms, particularly
in embarrassingly parallel problem sets, are potential problems a programming
model may be designed around as possible use cases.

63

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

64

Chapter 4

Cell/B.E. Program Models,
Frameworks and Solutions

The purpose of this chapter is to review the existing program models, frame
works and solutions that target the Cell/B.E.. Though likely not a completely
exhaustive list of the available solutions, a review is useful to put the Coconut
Multicore Framework discussed in Chapter 5 into context of similar tools, as
we do in section 5.4. .

4.1 Accelerated Library Framework (ALF)

The Accelerated Library Framework (ALF), developed by IBM and Los Alamos
National Laboratory researchers, consists of an API which is built to assist in
the development of parallel applications for Cell/B.E. systems and systems
like Cell/RE.[CHKW08]. ALF is actually included as part of the Cell/B.E.
SDK[IBTvI07b]. ALF works by dividing a program into portions taking place
on a host processor (the PPE in the case of the Cell/RE.) and those taking
place on an accelerator processor (the SPEs in the case of the Cell/B.E.).

A host runtime library and accelerator runtime library are provided
to the developer. \1\ ork is divided into a control process which executes on
the host, and computational kernels which execute on the accelerators. The
ALF API is used to write the computational kernels, and these computational
kernels are responsible for performing the actual computing work (e.g. floating
point calculations). By creating tasks and defining execution orders and task
dependencies, an ALF runtime can then manage these tasks, do scheduling
optimization, take care of data movement by using double buffering, and can
handle errors. This split bet-ween computational kernels and data movement

65

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

----allows developers to focus at the low-level ILP level of computational kernels
or the level of tasks at the multicore MPMD level[IBM07a].

The performance of ALF appears to be more suited to some problems
rather than others, as poor performance was reported for a Jacobi algorithm to
solve a 2D Poisson equation, inefficient communication was to blame, though
the same author notes that it is well suited for other problems[Hi107]. For
example, a Lattice Quantum Chromodynamics (LQCD) library was ported to
the Cell/B.E. with success using ALF as one programming model amongst
others[Spr07] .

4.2 Cell/B.E. Software Development Kit

The Cell/REo SDK is the standard programming model for development on
the Cell/B.E. provided by IBM[IBM07b], which includes different compilers,
libraries, code examples and other tools. The Cell/B.E. SDK is the most
low-level programming model, essentially made up of an API for imperative
languages and a standard supportive tool chain.

.A GNU tool chain is provided which contains compilers targeting the
PPU and SPU for the C, C++ and Fortran languages. The IBM XL CIC++
compiler is included, it is a high-performance cross-compiler that has been
optimized for the Cell/B.E .. Libraries are included to provide a standard low
level API for developers to use hardware specific features, such as the SPEs.
Notable libraries include the SPE Runtime Management Library for access
to SPEs, the SIMD Math library for short vector math functions, and the

fathematical Acceleration Subsystem (MASS) libraries which contain math
ematical intrinsic functions optimized for the Cell/B.E. Tools such as the IBNI
Full-System Simulator and Performance Debugging Tool (PDT) are included.

IBM Eclipse serves as the Integrated Development Environment (IDE)
for the SDK; it integrates tools for ease of use and greater productivity, such
as the GNU tool chain, debugging tools and F\l1l-System Simulator. Eclipse
also provides the expected syntax highlighting and GUI overview of program
constructs that are found in source code.

4.3 Cell Superscalar (CellSs)

The Cell Superscalar (CellSs) programming model was created by Barcelona
Supercomputing Center researchers[BPBL06]. The model aims to allow de
velopers to modify existing C code with simple CellSs annotations, and then

66

M.Sc. Thesis - Kevin BTOwne - McMaster - Computing and Software

a source-to-source compiler compiles that code to target the CelljB:~-with
separate PPE and SPE C files that are then themselves compiled to binary
code. The C code with CellSs annotations is essentially sequential code, with
parallelism handled automatically - ease of use in taking advantage of the
Cell/B.E. is the key objective.

Functions in C code are annotated such that they are specified as tasks
to be executed on SPEs. A task dependency graph is then constructed by a
runtime library, with task scheduling and data dependencies handled by the
runtime system itself. Data locality is exploited by the scheduling algorithm,
to try to reduce the amount of transfers required between SPEs and main
memory, and amongst SPEs. A subgraph of the task dependency graph is
considered at each step, with the ready nodes (those ready to execute) and a
subgraph of each of them analyzed to take advantage of data locality.

A performance example involving matrix multiplication "vas shown to
scale very well with the number of SPEs, but a Cholesky factorization example
did not scale as well due to highly connected dependency graphs and the usage
of six different tasks at different levels of granularity. Other researchers looking
at using CellSs for QR factorization have said that due to the handling of task
scheduling on the PPE, it was not competitive performance-wise with their
own solutions[KD09].

It seems that the key advantage of CellSs at present is in its ease of
use relative to hand optimizing for performance. Though not initially tar
geting other architectures, the creators believe the model generic enough to
target other multicore architectures, and this is very likely true and another
advantage of this approach.

4.4 CorePy

CorePy is a Python package that allows one to create and execute SPE pro
grams for the Cell/B.E. from Python (as well as PowerPC and VMX pro
grams). It is an open source project, developed by Chris Mueller, Andrew
Friedley and Ben Ivlartin, and is released under the BSD license[M1tIL07].

The motivation to provide a Python package that allows for Cell/B.E.
development is that a scripting language like Python increases developer pro
ductivity. Productivity is increased by the large standard libraries of Python,
by the more concise syntax relative to lower-level languages, and by being able
to rapidly edit and execute code. In comparison to a C code tool chain, with a
much less expansive standard library and lower-level language constructs, this
argument seems particularly valid.

67

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

The package allows one to run .existiIlg SPE programs from Python
and to create new SPE programs. Synthetic programming, which involves
generating instruction sequences from a higher level language, is one approach
behind CorePy, with Python acting as a meta-language. The authors also
show that it is possible to implement a lightweight interactive SPU debugger
completely in Python; this may allow the productivity increases of a scripting
language to be beneficial in the often tedious debugging process.

4.5 Mercury MultiCore Framework

The MultiCore Framework (MCF) created by Mercury Computer Systems re
searchers is an API to assist in programming heterogeneous multicore software,
targeting the Cell/B.E.[BCG+06]. A manager program executes on the PPE
and distributes work to worker threads executing on SPEs. The important
abstractions in the Mercury MCF are distribution objects and channels. Dis
tribution objects define the dimensions of the data for the manager program
in main memory and the data for workers in local stores. Channels connect
worker memory to manager memory, and require a distribution object to be
created. Through these abstractions, the Mercury MCF is able to organize
multicore parallelism without having a developer have to deal with hardware
specific details.

4.6 MPI Microtask

Message Passing Interface (MPI) Microtask is a programming model proposed
by IBNI researchers at the Tokyo Research Laboratory[OIS+06]. In this pro
gramming model, the developer partitions the application into a series of mi
crotasks, with communication handled by the popular MPI explicit communi
cation model[HB06]. These microtasks are expected to execute on the SPEs
and perform computationally intensive work, and a special supportive micro
task executes on the PPE to handle aspects such as control-intensive functions
and I/O processing. A preprocessor then divides the microtasks into basic
tasks (blocks of computation with no communication except for the beginning
and end). This allows a streaming model to be formed, and the preprocessor
can optimize scheduling by clustering basic tasks with strong dependencies
together.

The benefits of the NIPI r./Iicrotask model include that it frees a devel
oper from having to worry about managing the local store. The NIPI com
munication model is well known; this may shorten the learning curve for a

68

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

new developer. The model also hides hardware qetaiIS from the programmer,
which could be beneficial for portability. Finally, the explicit exposed commu
nication allows scheduling algorithms to analyze dependency information for
optimization purposes.

The researchers were able to use an initial prototype of the model to
compute LU decomposition, ID FFT and matrix multiplication problems. The
results are described as promising, but that further work on the clustering al
gorithm would be desirable. Though this work is well referenced, at this time
it does not appear to have been taken beyond this initial prototype implemen
tation.

4.7 Open Multi-Processing (OpenMP)

Open iVIulti-Processing (Open~dP) is an industry standard API for supporting
shared memory multiprocessing on multiple platforms[DM9S]. Many different
architectures from workstations to supercomputers are supported, along with
Windows or Unix operating systems. Languages the API supports include C,
C++ and Fortran. OpenMP is well supported by industry, and is notable for
its high portability.

OpenMP is at its core a standardized API for expressing shared-memory
parallelism, much like MPI is a (de facto) standard API for expressing mes
sage passing parallelism. OpeniVIP is made up of the following parts: con
trol structure, data environment, synchronization and a runtime library. The
control structures govern the flow of control of a program; the set available
with Open111P was designed to be minimalist. Data environment refers to the
scope of variables, which can be made private or shared, amongst other types.
Synchronization refers to the synchronization methods made available, both
implicit and explicit. The runtime library is made up of functions to assist
with parallelism, such as functions for setting the mode that a program should
run in, as well as standard environment variables which assist in applications
which need a portable runtime environment.

Even though OpenMP supports shared memory multiprocessing, and
the Cell/REo is a disturbed memory architecture, developers have attempted
to support OpenMP for Cell/B.E. for the obvious reasons of its wide use and
support. Support for OpenMP on Cell/B.E. means existing code can be re
used, and developers can use a programming model they may already know
very well[CCZ04].

69

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

4.7.1 Cellgen ,

Cellgen is a partial implementation of OpenMP for the Cell/B.E., created by
Virginia Tech researchers [SYR+08]. Cellgen is available as open source under
the GPL[Sch09].

Parallel sections of code are identified by developers, who then must
annotate data as either private or shared. One difference between OpenMP
and Cellgen is that in Cellgen shared variables are classified as either in, out
or inout variables. These classifications denote whether the data is either
input data, output data or input and output data with respect to the local
stores. Cellgen then uses this information to automate data transfers to ensure
proper data locality. Cellgen also notably unrolls loops in an effort to hide data
transfer latency.

Cellgen parallelizations were compared against hand-coded paralleliza
tions of the same problem. Cellgen parallelization was competitive with hand
coded parallelization in the case of a memory bandwidth benchmark developed
by the researchers, and in the case of a Bayesian phylogenetic interference
method which uses a Markov chain Monte Carlo sampling method to con
struct phylogenetic trees from DNA and AA sequences.

4.7.2 IBM T.J. Watson

An implementation of OpenMP for the Cell/B.E. "vas done by researchers at
IBM T.J. Watson Research[OOS+08]. The implementation works by having a
compiler transform OpenIVIP constructs in source code into intermediate code
which calls functions in an associated runtime library. The runtime library
provides the synchronization and thread management functions necessary to
support OpenMP for the Cell/B. E.. This compiler is itself built on top of the
IBM XL compiler; existing code in the XL compiler for supporting OpenMP
on AIX multiprocessor machines with Power processors was leveraged in their
implementation. Performance testing of the implementation was done using
several standard benchmarks. The performance testing shovved satisfactory
speed-up for many applications, but some limitations in the current imple
mentation (such as static buffer optimization) caused poor performance in
some cases.

4.8 RapidMind

RapidMind is a ·Waterloo, Ontario based company, founded by Michael McCool
and Stefanus Du Toit, that provides a commercial multicore solution that

70

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

targets the Cell/B.E. in additiOIfto CPUs: The RapidMind Development
Platform[McC06]. The company has its origins in the Sh project[MT04] at the
University of Waterloo, which targeted programmable CPUs. The company
was notably acquired by Intel in August of 2009[Sha].

The platform interface is exposed to the user via C++ header files and
having the developer link to a library. A user specifies parallel computations
using three C++ types: Values, Arrays and Programs. Values and Arrays are
data containers, Programs execute instructions, instructions that may include
control flow. Though primarily a data-parallel SIMD model of parallelism,
the inclusion of control flow in Program types allows for task-parallel SF~'lID

parallelism as well. Rapid~/[ind is made such that developers do not have to
throwaway existing sequential single core code, but instead rewrite C++ ap
plications to RapidMind types and automatically gain multicore performance
on a variety of platforms.

RapidMind becomes embedded in the compiled application, and man
ages program execution at runtime, automating and optimizing tasks such
as load balancing and synchronization. The platform is portable to differ
ent target architectures, such as Cell/RE., NVDIA CPUs or x86 processors.
The platform also provides runtime performance monitoring diagnostics. The
platform takes care of parallel safety - race conditions and deadlocks cannot
occur.

The advantages of RapidMind are very clear from a developer's point
of view. Rather than having to completely rewrite existing code for every new
multicore platform, or rewriting in a new and different parallel language, it
allows for very quick performance gains on multicore architectures with rela
tively simple modifications to existing code. This is obviously a major gain, as
the problems of synchronization safety, optimization for different architectures
and ease of program expression are all significantly alleviated if not eliminated.
Rapidl\lIind is reported as having performance results that were twice as good
for a quaternion Julia set renderer compared to the best known existing version
done with the Cell/REo SDK code[Mon08]. The main advantage of Rapid
l\IIind however seems to be purely economical, in that it requires much less
development effort to achieve roughly the same or better performance than
one can with hand tuned code.

A disadvantage of RapidMind is that there is potential for vendor lock
in in that once a developer has converted their programs to work with Rapid
f\/Iind, they could become very dependent on RapidMind for future perfor
mance gains, which is an obvious concern. \iVhile a developer could in theory
Svvitch from RapidMind to another platform in a reasonable amount of time,
this would still impose an obvious cost.

71

M.Sc. Thesis - Kevin Browne ~ McMaster - Computing and Software

4.9 ---Sequoia

Sequoia is a programming language developed by Stanford researchers which
targets the Cell/B.E., amongst other architectures[FHK+06]. The main idea
behind Sequoia is to allow the developer to explicitly control the movement of
data throughout the different levels of a machine memory hierarchy. Architec
ture memory hierarchies are abstracted as trees of memory, which also expose
how data is transferred in the hierarchy.

Tasks are the main construct of Sequoia, they operate within a specific
memory space on data located only in the memory space, and perform side
effect free computation with call-by-value parameters. Passing arguments to
tasks is how a developer expresses data movement in the system - it is the
only means to do so. Tasks can only communicate with other tasks by calling
child subtasks or returning a result to a parent task.

To perform matrix multiplication, a task (referred to as a leaf task) may
take in subblocks of a matrix and perform multiplication. IvIeanwhile another
parent task (referred to as an inner task) will call the leaf task repeatedly
and through its call-by-value parameters pass the appropriate matrix multi
plication blocks. Task instances are then mapped to different levels of the
memory hierarchy. When mapping this matrix multiplication program to the
Cell/B.E., the leaf tasks would execute on the SPE and the parent task would
execute on the PPE. The Sequoia compiler is a source-to-source compiler that
given a Sequoia program and mapping specification for a target machine would
output C code. In the case of the Cell/RE., sets of C files for the PPE and
SPE would be output.

Sequoia has been performance tested against existing implementations
of algorithms such as SGEMIvI and FFT3D - the resulting performance was
competitive. As of August 2009, Sequoia had been implemented (compiler and
a runtime system) for the Cell/REo and for distributed memory clusters[Lab09].
An alpha version is expected to be made public soon.

4.10 SysCellC

SysCellC is a Cell/B.E. software solution by INPG researchers, it is a proposed
design flow to automate the transformation of programs expressed in SystemC
to implementations targeting the Cell/B.E.. SystemC is an open source system
design language[MRR03], and it effectively becomes the high level language
in which programs under this model are expressed in by the developer. Sys
temC allows one to express machine architectures as hierarchies of computa-

72

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

tion modules, andcommunication channels. Multiple programming models are
supported by SystemC, including streaming models. Using a streaming model,
a kernel would correspond to a computation module and a stream would cor
respond to a communication channel. The SystemC programs created by a
developer are eventually converted to C code files for the PPE and SPE, after
some intermediate scheduling using profiling results of the SystemC code. An
interesting point is that these C code files are actually architecture indepen
dent, as :MPI primitives used for communication and synchronization hide all
of the architecture dependent code.

4.11 Possible Future Models, Frameworks and
Solutions

Some other models, frameworks and solutions are worth mentioning. These
include those programming models which are not yet fully implemented or not
yet targeting the Cell/B.E., but which may in the future.

4.11.1 Manticore

Manticore is a research project being conducted by researchers at the Uni
versity of Chicago and Rochester Institute of Technology, the aim of which
is to create a functional language for parallel programming[FRR+07]. \iVhat
sets Manticore apart from other parallel languages is that it attempts to sup
port parallelism at multiple levels. Implicit mechanisms are used to exploit
fine-gain parallelism, and explicit mechanisms are used to exploit coarse-grain
parallelism. While Nlanticore is not targeting Cell/B.E. yet to our knowledge,
it would very likely be suitable for Cell/REo and similar architectures.

4.11.2 Open Computing Language (OpenCL)

Open Computing Language (OpenCL) is a framework and open standard
that allows for developers to execute their code across heterogeneous parallel
computing platforms[Mun08]. Kernels are the basic unit of execution and writ
ten in a language resembling C99 with extensions. An API is also provided to
manage the parallel execution. An OpenCL implementation for Cell/B.E. is re
portedly described to be "in the works" but with no specified date of availabil
ity; others have taken to implementing a minimal subset of OpenCL[1\JIcNI09].

73

M.Sc. Thesis - Kevin Browne - lI/icMaster - Computing and Software

4.11.3 Message Passing Interface (MPI)

MPI is an obvious candidate as a programming model for the Cell/B.E., as
along with OpenMP it is a de facto industry standard for expressing paral
lelism. A problem with porting an MPI application to the Cell/B.E. is the
limited local store size of each SPE[KJS+07]. If the application size exceeded
the size of the local store, some sort of mechanism to bring code into the local
store as it is needed would be required. A partial implementation of core fea
tures of MPI 1 has been done by a group of IBM, Florida State University and
Sri Sathya Sai University researchers[KSK+07]. MPI was also used as part of
the MPI Microtask[OIS+06] and SysCellC[MRR03] solutions.

74

Chapter 5

Coconut Multicore Framework

In this chapter the present state of the Coconut 1tlulticore Framework will be
outlined, including the design objectives, an overview of the framework, and
descriptions of individual components. A comparison is also made with other
available frameworks and solutions discussed in Chapter 4.

5.1 Coconut Project History

The Coconut project is an on-going compiler technology research project at
McMaster University[KAC06; ACK+04; AK07c; AK07b; AK08]. Its inspira
tion is derived from the current state of high-performance signal processing
software development for medical imaging applications. At present program
mers will often have to make low-level optimizations to account for higher-level
model characteristics which themselves may have a high rate of change. This
is an undesirable situation with respect to software development economics,
as well as code optimization and safety.

The primary goal of Coconut is to remedy this situation, and others like
it, by providing a coherent path from mathematical specification to verified
and highly optimized machine code[KAC06]. This goal is achieved by Coconut
at present through the usage of Domain Specific Languages (DSLs) tuned to
different levels of abstraction, which are then compiled into optimal and par
allel code to various target instruction sets and architectmes[ACK+04]. The
parallelism leveraged thus far by Coconut has been ILP[AK07b]. The DSLs
themselves are embedded 'within Haskell code[AK08; PCK07], the language in
which the vast majority of Coconut technologies have been implemented. The
instruction set initially targeted was PowerPC+Altivec due to its popularity
in signal processing applications. In recent years with the shift of the project

75

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

towards the Cell/B.E., the SPU Instruction Set has been targeted[AK07c].
This technique of compilation from higher-level DSL abstractions to

lower-level target languages has been successful in real-world software - the
Cell/B.E. SDK 3.0 SPU-MASS library currently includes code using Coconut
ILP optimization techniques. For comparison, the library is 4x faster than the
alternative SIMDMath library created in C.

The high abstraction of Haskell in which DSLs are implemented allows
for quick prototyping of new ideas within Coconut that would not be possible
otherwise. Though the DSLs themselves require some domain-expertise, and
to work with them requires Haskell programming skills, this has not stopped
undergraduate mathematics students from being able to make meaningful con
tributions to Coconut.

'With the ILP layer of Coconut having reached a mature enough state to
produce industrial-quality code, the focus of the project has shifted towards the
multicore layer of parallelism, initially targeting the Cell/B.E.[AK08; AK07b].
The framework developed specifically for the multicore layer of parallelism to
be discussed in this chapter is tentatively being referred to as the Coconut
Multicore Framework (CMF).

5.2 Design Overview

In this section the objectives of the CMF will be reviewed in Section 5.2.1,
followed by a high-level description of the design in Section 5.2.2 and a justifi
cation for the design in Section 5.2.3. More detailed and technical descriptions
of the individual components of the CMF are found in Section 5.3.

5.2.1 Objectives

The design objectives for the ClvIF are purposely similar to the ILP layer
of Coconut. The two main objectives of optimal and safe code remain the
most critical, as well as the goal of providing a clear path from mathematical
specification to code. Part of providing this clear path involves being able to
generate code based on mathematical specifications to different target archi
tectures, even though the Cell/B.E. is the only target architecture for now. As
Coconut has a wealth of optimization capability at the ILP layer, an auxiliary
goal is to create an abstraction that would allow us to leverage these capa
bilities at the SPMD multicore layer. The target applications remain signal
processing software and similar problem domains.

76

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

5.2.2 Description

The design chosen to fulfill these goals is a virtual machine model. This means
that each processing element, in the case of the Cell/REo each SPE, runs a
program which executes virtual instructions. These virtual instructions are
referred to as Atomic Virtual Operations (AVOps). The PPE has the job
of starting up each of these virtual machine threads on the SPEs. The program
made up of the virtual machines executing on each SPE and the PPE thread
that manages their startup is known collectively as the Runtime System.

The Runtime System loads computational kernels onto each SPE's local
store at the start-up of each virtual machine thread, as well as the initial
batch of AVOps. As AVOps are being executed sequentially and in-order by
the virtual machine, they are double buffered in from main memory to the
SPE's local store. The AVOps include operations for loading data from main
memory, sending data to main memory, sending and receiving data or signals
from other SPEs, and importantly, executing the pre-loaded computational
kernels against data located on the SPE's local store. The purpose of allowing
signals between SPEs, aside from regular data transfers, is to allow one SPE
to signal another using a lightweight mechanism that it is ready to receive a
data transfer.

So for example, if using the CMF one wanted to perform a matrix
multiplication against two blocks of data small enough to fit onto a single
SPE's local store, the computation would proceed as follows. First one would
need a computational kernel capable of performing the matrix multiplication
given two blocks of data, the kernel would be expected to produce a third
output result block of data. Then a simple stream of AVOps would be needed,
the stream "vould need to include operations to load the blocks of data from
main memory, wait operations to ensure the completion of the input block
loads, an operation to execute the pre-loaded matrix multiplication kernel
against the input blocks, and an operation to send the result data back to
main memory. Giving the runtime system the kernel, the stream of AVOps,
as well as some basic configuration information including information such as
input data sources, would then allow the computation to occur. Computations
involving multiple SPEs and communication between them would obviously
require streams of AVOps and relevant data and kernels for these SPEs as
well.

The computational kernels themselves that carry out operations locally
on each SPE given input data blocks, such as linear algebra computations, are
generated at compile-time by whichever means the developer desires. They
can be created using C, or they can be created using the ILP layer of Coconut,

77

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

it is of no consequence to the Runtime System's operation.
The generation of AVOp streams for each of the SPEs can similarly

be done however the developer desires, the Runtime System will operate cor
rectly as long as the streams of AVOps match the proper specification. A
longer term goal of the CJ\!IF is to create DSLs for specific problem domains
from which streams of AVOps may be generated, given a problem specifica
tion. This is only one envisioned method of generating AVOp streams. An
other possible method considered for future implementation is a framework
for scheduling loops represented using imperative sequential language con
structs. Yet another possibility is to implement directed acyclic graph schedul
ing algorithms[KA99], and to provide functions for generating the graphs that
are to be scheduled for different problem domains. One of the most critical
envisioned ways to generate AVOps is to apply existing ILP optimization tech
niques within Coconut at the multicore level of parallelism, as the CMF can
be considered analogous to ILP parallelism. At the time of writing, AVOps
are being generated by Haskell programs written for specific problem domains.

Though a key design feature of the CMF is the separation of ILP and
multicore layers of parallelism, a longer term goal of the Coconut project is to
increasingly merge code generation for the tw~ layers of parallelism. Such that
given a single high level mathematical problem specification, a safe and opti
mized executable can be created with both ILP and multicore layers generated
separately by the respective layers of Coconut.

Another key design feature of the CMF is that at present the AVOp
streams are generated in their entirety at compile-time. There are also no
AVOps for branching (and as a consequence, looping). The execution order
itself, due to the asynchronous execution of SPEs (and thus asynchronous ex
ecution of each virtual machine), is necessarily a partial execution order. This
also means that the CJ\!IF in its current form is targeting specifically those
problems which can be scheduled in their entirety at compile-time. Though it
should be noted that it is still possible to have dynamic decision making em
bedded within a CNIF program, through branching within the computational
kernels.

One side-effect of generating the entire AVOp stream at compile-time
is that we can then perform linear-time static analysis of the program. A
Verification Tool[AK08] has been built that can check for possible deadlocks
or race conditions to ensure that neither exists, and this is documented in
more detail in Section 5.3.5. A performance simulation tool has also been
built that can simulate the execution of AVOp streams on the Cell/RE., to
provide compile-time feedback that can be used to evaluate the suitability of
different schedules quickly. This tool is documented extensively in Chapter 6,

78

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

and discussed briefly in Section 5.3 along with the other system components, as
it is the most substantial individual contribution to the project by the author.

The way in which the various components of the CMF fit together
to ultimately produce output data is shown in Figure 5.1. An example of
what the system looks like at runtime, performing an operation like matrix
multiplication, from the perspective of the PPE, an SPE and main memory,
is shown in Figure 5.2

Input
Data

Kernels

Bug
Report

Simulation
Report

Figure 5.1: Coconut Multicore Framework Overview

5.2.3 Analysis

The Cr·/IF virtual machine abstraction design composed primarily of the Run
time System and AVOp streams was designed as such for several reasons which
are worth outlining.

ILP Correspondence

One critical gain experienced with the CMF abstraction is that due to its sim
ilarity to ILP, it is possible that existing Coconut ILP optimization techniques
could also be used at the multicore level. In fact, one can see in Table 5.1 that
the entiTe system itself is an analogy to IL? Techniques developed for the ILP

79

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

SPE LS I Input Data I

~~ LoadMem
Matrix

WaitDMA
Multiplication

Runtime
I

RunComp
Kernel

System StoreMem

\J
...

\... IOutput Data I Input data loaded onto SPE,
processed by preloaded

SPE',AVOp\ ~.", "d """Id'"Starts
stream '\'"01 book to m,;o m.mo~

SPE
buffered into

threads
local storage

PPE
I- AVOp \ Input Output Main

Streams Data Data
Memory

Runtime

LJSystem

-

Figure 5.2: Coconut Multicore Framework Runtime View

layer, in particular those which are designed for software pipelining, such as
the MultiLoop[AK07c], can then be applied to blocked-data algorithms at the
multicore level with little to no modification necessary. The key difference is
that at the ILP level, hardware hides execution order of the instructions but
maintains order independence, whereas at the multicore level the soundness
of the parallelism and synchronization will be left up to software. This is not
foreseen as a major problem however, due to the static analysis abilities of the
CMF which allow us to verify the soundness of synchronization.

Table 5.1: Parallelism Correspondence
Instruction Level Parallelism Multicore Level Parallelism

CPU Chip
Execution Unit Core

Register Buffer/Signal
Load/Store Instruction DMA
Arithmetic Instruction Computational Kernel

80

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

Exposed Parallelism

The AVOps expose important aspects of parallelism by abstracting away all
but the necessary information. This exposure is illustrated in Figure 5.3, where
we first notice that a vVaitSignal AVOp will not complete execution at least
until the associated SendSignal has been executed (not including the trans
mission time of the signal itself). vVe then know that in order to schedule
optimally, we wish to have the SendSignal execute as far temporally ahead
of when the vVaitSignal is expected to execute as possible, as otherwise the
vVaitSignal will stall, impeding execution. The same thinking applies to the
SendData and WaitData pair in Figure 5.3. This pattern of one SPE sig
naling another to indicate that it is ready to receive a data transfer is an
important pattern in our virtual machine abstraction. It captures how SPEs
work asynchronously in between the communication occurring to synchronize
transfers, rather than stalling further computation completely to co-ordinate
communication.

Waitsignal
SendData

other
operations

WaitDMA

sendsignal

other
operations

WaitData

Figure 5.3: Exposed Communication Latency

Portability

The Runtime System itself can be implemented on different architectures.
At present the only implementation is for the Cell/B.E.. However for fu
ture iterations of the Cell/B.E., as well as similar network-on-a-chip multicore
architectures, existing infrastructure for the specification and generation of
AVOp streams can still be leveraged despite having to re-implement the Run
time System on a new target architecture. This is in some sense similar to
how the ILP layer of Coconut, while initially targeting PowerPC instruction

81

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

/--
sets, was able to quickly be targeted towards the SPU Instruction Set of the
Cell/REo 's SPEs. The virtual machine abstraction gives us the ability to
target new architectures quicker than otherwise possible by re-using relevant
problem specification and scheduling optimization techniques.

Strong Parallelism-Level Distinction

The separation of layers of parallelism, that is, ILP parallelism within the pure
function computational kernels (i.e. no communication or synchronization),
and multicore level parallelism embedded within the AVOp streams, allows
for the developer to focus on the problems independently. This is beneficial
as it allows developers to specialize at creating optimization techniques for
a specific layer of parallelism. Indeed in the work that has been done thus
far on Coconut towards MRI and linear algebra problems, we have been able
to productively have one developer work exclusively on the multicore layer of
parallelism while another developer works simultaneously on generating the
ILP optimized computational kernels.

Static Compile-Time Analysis (Safety and Simulation)

The ability to perform static analysis allows us to automatically check for
parallel bugs, and to do performance simulation, at compile-time. As a re
sult of the Verification Tool, the Coconut team has thus far not encountered a
parallel bug at runtime. When constructing the initial Runtime System we en
countered parallel bugs, and we encounter parallel bugs at compile-time when
the Verification Tool alerts us of them. But we have not encountered, as was
discussed in Section 2.8.2, those time consuming and expensive race condition
bugs that occur based on small variations in timing. This obviously creates a
large increase in productivity, as no parallel debugging is required. This also
has the effect of freeing the developer to focus on optimization, rather than
creating more conservative algorithms with respect to safety, at the expensive
of runtime efficiency. For safety-critical applications that could benefit from
network-on-a-chip parallelism, such as MRI and other signal processing prob
lem domains, the CMF provides a competitive advantage over other systems
that do not offer such high safety.

The Performance Simulator allows one to quickly compare the simu
lated runtime of different algorithms, saving the developer from having to do
full system tests and thus allowing for increased productivity. The ability to
identify particular bottlenecks flagged during the simulation is also beneficial
when trying to optimize scheduling.

82

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

A trend of increasing usage of static compile-time analysis toolsin
industry has been noticed[WMZ+08], with popular tools such as Coverity,
FindBugs and JLint being used to find defect patterns in code that are likely
errors. The CMF is therefore able to offer static compile-time analysis features
are not only useful, but also increasingly used and expected of development
environments.

5.3 Components

In this section, we overview the various GMF components in more detail. In
Section 5.3.1 in particular, we go over all the different AVOps themselves in
more detail.

5.3.1 Atomic Virtual Operations

The AVOps are executed asynchronously on each SPE, and are double buffered
in to each SPE's local store by the Runtime System. Each AVOp and its
arguments are 128-bits (16 bytes) in length. The first byte identifies the AVOp
itself, with remaining bytes defining any AVOp arguments. Each AVOp is
decoded by the SPE's Runtime System thread, and its prescribed functionality
is then carried out, similar in concept to Java Bytecodes[VRCG+99]. The
AVOp streams at present are produced as plain text line delimited output by
Haskell AVOp generator functions for readability purposes, and the Runtime
System can then convert them to the internal 128-bit format. The AVOps
themselves are detailed in Table 5.2.

It should be noted that there exists an "Exit Program" AVOp that is
simply appended to each AVOp stream. Its only function is to let the SPE
Runtime System thread know that it can stop interpreting AVOps.

It is also expected that in future iterations of the Runtime System,
AVOps and kernel functions will be loaded into the SPE explicitly by AVOps
defined by the user (LoadNIemory AVOps). This functionality has for now
been handled by SPE Runtime System threads for the sake of simplicity, but
as the CMF targets more difficult problems perhaps requiring multiple or
many computational kernels, it is desirable to give the AVOps direct control
over which computational kernels are present as well. Giving the AVOps the
responsibility for double buffering in the AVOps is also desirable as it will
make all communication explicit in the AVOps.

83

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

AVOp LoadMemory
Arguments: LocalStoreAddress DataLength GlobalAddress DMATag
Description The SPE issues a DMA get command, to transfer the data

of length DataLength located in main memory at address
GlobalAddress in the local store address LocalStoreAd-
dress. The DMATag can be checked by a \iVaitDMA in-
struction to ensure transfer completion, which for instance
makes it safe to use the transferred data in a computation.

AVOp: StoreMemory
Arguments: LocalStoreAddress DataLength GlobalAddress DMATag
Description: The SPE issues a DMA put command, to transfer the data

of length DataLength located on the local store of the SPE
at address LocalStoreAddress to main memory at address
GlobalAddress. The DNIATag can be checked by a Wait-
D:MA instruction to ensure transfer completion, which for
instance makes it safe to use the local storage address for
the result of a new computation (knowing that the result
that was once there is no"" safely in main memory).

AVOp: WaitDMA
Arguments: DMATag
Description: Executed on the SPE from which the transfer was initiated,

this AVOp will stall execution until the DMA transfer with
the tag DMATag has completed. This allows one to ensure
transfer completion, and thus safety to use resources asso-
ciated with the transfer, such as the data transferred itself
or the memory involved in the data transfer.

AVOp: SendData
Arguments: LocalStoreAddressL DataLength SPEID LocalStoreAd-

dressE DataTag DMATag
Description: The SPE issues a DlIIA put command, to transfer the data

of length DataLength located on the local store of the SPE
at address LocalStoreAddressL to the local store of the
SPE identified by SPEID at address LocalStoreAddressE.
The tag DMATag is used by the SPE executing the Send-
Data instruction to ensure that the transfer has completed.
The DataTag is used by the remote SPE to check that the
transfer has completed, using a vVaitData AVOp.

I WaitData

I AVOp:

84

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

Arguments: LocalStoreAddress DataTag
Description: Executed on the target of a SendData AVOp executed on

another SPE, the AVOp will stall execution until the DMA
transfer with tag DataTag has completed. The DataTag is
made sure to be transferred after the block of data has been
transferred using fencing commands. Ensuring completion
of the transfer allows for safe usage of the data.

AVOp: SendSignal
Arguments: SPEID SignalID
Description: The SPE issues a command to modify the signal register

of another SPE with ID SPEID, using its memory mapped
address. The SignalID itself is a single bit set within a 32-
bit register, which is then merged with the existing signals
through an OR operation. If the SignalID bit is already
set in the signal register, then a potential parallel bug may
occur, as the SignalID should have been consumed by a
vVaitSignal AVOp before this new signal arrived.

. AVOp: WaitSignal
Arguments: SignalID
Description: Stalls AVOp execution and repeatedly reads the signal reg-

ister on the SPE the AVOp is executed on until the signal
bit SignalID is set by an associated SendSignal AVOp.

AVOp: RunComputation
Arguments: ComputationID [LocalStoreA ddressI) [LocalStoreAddress 0)

[Parameter)
Description: Executes a computational kernel, pre-loaded to the SPE's

local store at the Runtime System start up, identified by
ComputationID. The computation is run with input blocks
identified by a list of local store addresses LocalStoreAd-
dressI, and produces output identified by a list of local
store addresses LocalStoreAddressO. The Parameter argu-
ment is a list of any necessary parameters, such as data
sizes to assist the kernel in executing. Importantly, the
computational kernel is a pure function operating on data
local to the SPE (i.e. all communication is explicit v\ ithin
the AVOp streams).

Table 5.2: AVOp InstructlOn Set

85

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

5.3.2 Runtime System

The Runtime System is written in assembly language (on the SPU) and
Python[Lut96] on the PPU, and was implemented by McMaster undergraduate
student and Coconut research group member Gabriel Grant.

The Runtime System is executed from a command prompt, and expects
as input a specifically formatted text file which gives the following information:

• Binary file location(s) which contain raw input data

• Binary file location in which to store output data

• Size of input, output data files

• Pre-compiled computational kernel file locations

• AVOp stream file locations

The AVOp stream files, one for each SPE involved in the computa
tion, are converted into the binary 128-bit per AVOp structure expected by
the Runtime System. The binary input files are loaded into main memory,
sequentially using the sizes of the files as offsets into a global.memory space,
that the Runtime System then corresponds to the global memory addresses
referenced by the AVOps. So if one was doing a single precision matrix mul
tiplication, involving 64x64 matrices, then the first matrix A would be stored
between memory addresses a to 16383, and the second stored between mem
ory addresses 16384 to 32767, assuming the files containing the input data
were specified to the Runtime System in that order. The output data files
sequentially make up the rest of the global memory space. In the case of the
64x64 matrix multiplication during execution the memory space occupied by
C would be from 32768 to 49152, and this memory would be dumped to the
binary output file by the Runtime System upon execution completion.

Once the Runtime System begins execution, the following will take
place in sequence:

1. Configuration file is interpreted

2. AVOps are converted to 128-bit Runtime System internal representation

86

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

3. Input data is loaded into ma,in memory from binary files

4. SPE Runtime System threads are launched

5. Kernels and first block of AVOp streams are pre-loaded to SPEs

6. SPEs begin executing and continually buffering in respective AVOp streams
until complete

7. Output data is written to binary output files

It is up to the user to then interpret the binary output files however they
desire, just as it "vas up to the user to create the input data however they desire.
In practice the Coconut research team has used the umPy[MSL+07] extension
in Python to create input data and interpret output data with relative ease.

The AVOp streams themselves can be generated however the user de
sires, as is discussed in Section 5.3.3, and the same is true of the computational
kernels (SPU Instruction Set assembly code). The configuration file required
by the Runtime System to specify all these objects is for now manually created
by Coconut developers, however automatically generating this file is of course
possible as part of the AVOp stream and computational kernel generation
process.

The AVOp streams are buffered into the SPEs using two 16KB buffers.
As AVOps are 16B length, this means a 16KB DMA transfer from main mem
ory to the SPE is initiated after every 1024 AVOp instructions to buffer in the
next set of AVOp instructions. The set of AVOps immediately next should
have already been loaded at this point, unless those 1024 instructions were
able to execute before the load could complete. While theoretically this is
possible, as it only takes about 100 cycles for an AVOp to be interpreted and
executed (not including time waiting for transfer completion or executing com
putational kernels), in practice this should never occur as executing kernels
and data transfer latencies will take up non-trivial amounts of time.

As was discussed in Table 5.2, the signaling mechanism of the CiVIF is
implemented using each SPE's signal register. 'When a signal is sent using a
SendSignal, what is happening is that the SPE sending the signal is performing
an OR operation on the memory mapped signal register of the receiving SPE.
Each bit of the signal register identifies a different signal, from 0-31. If two

87

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

SPEs were -r(;' send the same signal, and they were both to be OR'd into the
signal register, than there would be no way for the accompanying WaitSignal
AVOps to realize that two signals had arrived and a deadlock would result.
Luckily the Verification Tool discussed in Section 5.3.5 checks that exactly this
situation will not occur.

The Runtime System uses DataTags and a WaitData instruction to
check on a receiving SPE that a data transfer from a remote SPE has com
pleted. When the SendData AVOp is executed on the sending SPE, it takes a
DataTag, a number from 0-31, as an argument. A fence instruction is used to
ensure that the DataTag is sent only after all of the packets required to send
the actual data have completed. This ensures that the DataTag will arrive
at the receiving SPE only after the data block transfer has been completed.
As such, vVaitData instructions with a DataTag argument will stall until that
particular DataTag has been written.

DataTags are an abstraction to deal with the issue that an SPE which
did not initiate a transfer is unable to check a DMATag to ensure that transfer's
completion. In the case of an SPE executing a LoadMemory, StoreMemory or
SendData AVOp, the SPE is initiating the transfer, and checking for transfer
completion merely involves executing an SPU instruction to check that the
DMA transfer with the given DMATag has completed. DMATags come num
bered 0-29, as DMATags 30-31 are reserved by the Runtime System to ensure
safety in loading in the AVOps into the buffers and the computational kernels.

5.3.3 AVOp Stream Generation

The generation of AVOp streams themselves is an ongoing topic of research
for the Coconut project. At present AVOp streams are created using gener
ator functions in Haskell, which given specific problem parameters, such as
input data dimensions, generate streams of AVOps for that problem domain.
Other AVOp stream generation methods are being considered for future im
plementation, including loop scheduling, DAG scheduling and ILP Coconut
layer techniques.

One thing that is common to all techniques however, due to the corre
spondence purposely made between ILP and the CMF is a need to treat re
sources such as local storage memory space, signals, DataTags and DivIATags
much like one does registers in ILP. It is up to the programmer to assign these
resources so that they don't overlap, just as a compiler does registers in ILP.

88

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

5.3.4 Computation Kernels

Computational kernels are pure functions, with no communication with other
SPEs embedded within them. All of the real computational 'work' takes place
within these kernels. 'While computational kernels may be developed using
any means, be it by implementing C code functions or by hand coding them in
assembly, the Coconut project has focused specifically on developing kernels
using the ILP layer of Coconut. This work began in earnest in the summer of
2009, with several undergraduate Coconut researchers developing kernels for
signal processing applications.

5.3.5 Verification Tool

The Verification Tool was implemented by the author as a Haskell module,
based on the algorithm defined in a chapter of the book "Process Algebra
for Parallel and Distributed Processing" [AK08], written by Coconut research
team founders Anand and Kahl. A full explanation of the algorithm behind
the Verification Tool is beyond the scope of this thesis, but an overview of the
key ideas is instructive.

Firstly, our claim that the Verification Tool is able to check for situa
tions where parallel bugs may occur (race conditions or deadlocks) in linear
time is theoretically sound. Our virtual machine abstraction does not con
tain instructions which allow for access to non-local memory (the data must
be transferred to local memory explicitly by an instruction), and this means
that we do not use mutexes as a synchronization method. 'While it may be
an NP-hard problem to check for race conditions in a program using multiple
semaphores[CMSOl], our synchronization method is weaker than semaphores,
and thus it is theoretically sound that an algorithm to detect parallel bugs is
possible[LKN96]. The Verification Tool is able to return the location of the
error within the AVOp streams, and the type of error.

The Verification Tool requires several assumptions about the AVOp
streams in order to function correctly. Firstly, the AVOp streams themselves
must be presented to the algorithm as a single list of pairs (SPEID, AVOp), re
ferred to as the presentation order. A program is considered locally sequential if
every (SPEID1, SendSignal SPEID2 SignalID) is followed by a corresponding
(SPE2, WaitSignal SignalID), and every (SPEID1, SendData SPE2 LocalStore
Address DataLength LocalStoreAddress DMATagID DataTagID) is followed
by corresponding (SPEID2, WaitData DataTagID) and (SPEID1, WaitDMA
DMATagID) instructions. The Verification Tool requires its input to be lo
cally sequential, and it verifies that a program is order independent. A program

89

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

is order independent if given the same input (in main memory) all possible
execution orders produce the same output (in main memory).

The reason we discuss all possible execution orders, is because the
AVOps themselves define a partial execution order, with the locally sequential
presentation order the Verification Tool uses being one possible total execution
order. The execution order of AVOp streams is a partial order because only the
AVOp streams for each individual SPE are total orders, we know for certain
that each AVOp in an SPE's stream of AVOps will be executed sequentially.
However the only guarantee that one instruction on an SPE will execute be
fore or after another comes from pairs of Send and Wait instructions, be they
signals or data transfers. We know that if one SPE signals another, and the
other SPE waits for that signal, that all of the instructions on the signaling
SPE before the signal was sent will have executed before all of the instructions
on the receiving SPE after the signal was received. This situation is visualized
in Figure 5.4. In this way, AVOps induce a partial execution order across all
SPEs.

SPED AVOp Stream

r------------------,
I I

: Execute BEFORE :
: SPEl WaitSignal
I

'-------------------

SendSignal Sig2 SPEI

Execute after
SendSignal,

order relative
to SPEl AVOps

unknown

SPEI AVOp Stream
.....................

ifxecute befor~
WaitSignal,

order relative •
to SPEO AVOps .i

unknown
................

WaitSignal Sig2
r------------------I
I I

: Execute AFTER :
: SPEO SendSignal :
I I
I I

Figure 5.4: AVOp partial execution order induction

A quick example of how the Verification Tool works is given as follows.
If given a locally sequential program, two identical signals (e.g. 4) are being
sent by SendSignal operations from two different SPEs, to the same SPE,
we may have a synchronization issue. If both signals arrive before the first
WaitSignal on the receiving SPE, that \iVaitSignal will consume the signal, and
with no incoming signal to set the appropriate signal bit of the signal register,
the second vVaitSignal will stall indefinitely and deadlock the system. If the

90

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

. sigimls arrive in the wrong order, the wrong information may be conveyed. For
example the SPE receiving the signal may send data to an SPE believing that
it is safe due to the signal being received, when it may not be safe, as it was
the wrong signal, or rather the signal from the wrong SPE, that was received.

The Verification Tool filters for such a situation by checking the SendSig
nal operations targeting the same SPE with the same signal. It does so by
checking, when encountering a SendSignal, that the last vVaitSignal to have
consumed the particular signal on the receiving SPE, is guaranteed to have
executed before this SendSignal will execute. If this were not the case, it is
possible that two SendSignal instructions sending the same signal will be tar
geting the SPE in a window in which they could conflict. It is possible to
check for a guarantee that the SendSignal will execute after the last time a
vVaitSignal consumed a signal, because the Verification Tool keeps track of
the partial execution order induced by the AVOps as it sequentially checks
the presentation order. If this property cannot be guaranteed, then an error
is reported by the Verification Tool and the SendSignal will be flagged.

In this way, a single linear pass through the AVOps in the presenta
tion order, constructing a partial execution order and keeping track of possible
state, the Verification Tool is able to filter out the possibility of such synchro
nization errors.

The Verification Tool can also check for other properties to ensure a
lack of parallel bugs. For instance, when checking a RunComputation instruc
tion, the Verification Tool can check the memory locations of the inputs to
the computational kernel. If a vVaitDMA or vVaitData instruction has not
confirmed the arrival of the data, which is part of the state kept track of by
the Verification Tool, then an error can be flagged at the RunComputation,
as it is possible that data has not yet arrived.

The Verification Tool is able to do all of this with linear-time com
plexity, firstly because it requires only a single pass through the presentation
order of AVOps. But also because there is a limited amount of possible state
that can exist, and thus needs to be checked or updated, at any step of the
algorithm checking a single AVOp. This important property allows for scala
bility. As processing elements in future netvlork-on-a-chip systems scale into
the hundreds or thousands, if the algorithm were exponential in complexity
runtime would quickly become infeasible.

5.3.6 Performance Simulator

The Performance Simulator, which just as the Verification Tool executes with
linear time complexity, provides a compile-time metric with which to com-

91

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

pare the performance of different AVOp streams. The main benefit of this is
increased programmer productivity, as the more time consuming full system
testing to compare algorithms becomes much less necessary. The data from
performance simulation includes information on where specific latencies were
problematic (i.e. caused a VVait AVOp to stall), which is more illuminating
information than is available with a full system test. The full details of the
Performance Simulator are presented in Chapter 6.

5.4 Comparison with Other Frameworks

There are many similarities and differences between the CMF and the other
frameworks targeting Cell/B.E. that were discussed in Chapter 4. As the
CNIF at present is not a completely developed end-to-end solution, in the
sense that AVOp generation is still an active area of work, it is difficult to
make a full comparison. In the sense that at the level of the virtual machine
abstraction, communication and tasks are done explicitly through AVOps and
computational kernels. However at future higher-levels of the CMF for AVOp
generation, tasks and communication may not be explicit, they m~y possibly
be generated implicitly from a higher-level specification. An effective and pop
ular way of comparing programming models is to contrast which aspects of the
system, such as synchronization, task creation, task mapping, data distribu
tion and communication, are either explicit or implicit[ABC+06; SYR+08]. At
the layer of the virtual machine abstraction, basically everything is explicit,
however as we move to higher-level AVOp generation techniques an obvious
goal will be to make some of these properties implicit to make programming
with the CMF easier. \iVith this said, we can still make some meaningful
comparisons between the CNIF and existing models.

Though it is theoretically possible to create a method of translating
programs written in a traditional imperative language to an AVOp represen
tation, this is not planned. Such a system could work by translating the par
allelism of the imperative language into an abstract intermediate format, and
then further translation to our AVOp streams. As it is however, the CMF is
somewhat unique in that it does not attempt to plug-in to existing languages.
Many solutions, and many of the more popular solutions, such as RapidMind
and OpenNIP, attempt to augment existing imperative languages with APIs or
new abstractions to wedge easier multicore parallelism into existing systems.
Due to the commercial focus of these frameworks, this should not be surpris
ing given the issue of software development economics. The CMF joins other
frameworks spawned from more academic environments, such as Sequoia and

92

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

CorePy, which perhaps are less inclined to consider the cost of abandoning
legacy code, in moving away from imperative code and towards higher-level
abstractions.

One property common to the CMF and many other models, such as
ALF and the Mercury MLF, is a clear separation of the levels of parallelism.
In the CMF all ILP parallelism is contained in the computational kernels, and
all multicore level parallelism is expressed by the AVOp abstraction. The ALF
developers note, as we have, that this has the benefit of allowing developers
to specialize[IBM07a]. The usage of the PPE as a controlling thread that is
responsible for farming out work to the SPEs is also a common feature to
virtually all programming models, but this is likely due to the design of the
Cell/B.E..

A design that takes into account portability concerns is common to
many of the other models, for example RapidMind and API type solutions
such as Openf\/IP, OpenCL and MPI. The authors of those models created for
Cell/B.E. specifically, such as CellSs, make a point to suggest that their model
should be portable to other architectures. The virtual machine abstraction is
how the CMF intends to achieve portability. That this is a common concer·n
factored into model designs is not surprising, given processor lifecycles and the
desire to leverage existing parallelization technologies rather than build them
from scratch for each architecture.

'What makes the CMF unique is the virtual machine abstraction, and
particularly the correspondence with ILP parallelism that goes along with this
abstraction. The CMF should allow for easier translation of ILP optimization
techniques to the multicore level than competing frameworks. The virtual
machine abstraction, and the exposure of parallelism, allows for verification
and simulation to take place. The ability to formally verify correctness and
to simulate execution is not unique to the CMF, but we suspect they can be
done in a more computationally efficient manner than other frameworks.

The fact that the CMF does not yet have control-flow mechanisms at
the multicore level, and the fact that AVOp streams are generated in their
entirety at compile-time limits what problems the CMF can handle to those
which can be statically scheduled at compile-time (that is without some cre
ative embedding of control-flow at the level of computational kernels). tvlost
competing frameworks do not have this restriction, they either allow dynamic
creation of new tasks at runtime or multicore level control-flow. This limits the
problem domains appropriate for the CMF relative to most other frameworks.

93

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

5.5 Current Status

The current status of the CMF may be of interest to the reader. The Run
time System has been implemented and unit tested. AVOp generation has
been achieved using generator functions in Haskell. Correctness tests for ma
trix multiplication parallelizations have been executed, demonstrating that
the Runtime System itself is functioning correctly. An immediate future goal
includes performance testing of the Runtime System on signal processing prob
lem domains using computational kernels generated by the ILP layer of Co
conut.

94

Chapter 6

Performance Simulation

The Performance Simulator has been designed, implemented and tested by
the author as part of his contribution to the CMF. In this chapter we will go
over the motivation to build the Performance Simulator, some general con
cepts behind the design of parallel system simulators, as well as some similar
performance analysis tools. The Performance Simulator design is explained,
and an overview of the implementation and testing is given. Performance test
ing of the Performance Simulator is also performed in order to demonstrate
the potential effectiveness of the tool to compare the efficiency of different
algorithms.

6.1 Motivation

There are several motivations to build a performance simulator for the CMF
that are worth outlining. The most important reason to build a performance
simulator is that it allows for quick, compile-time analysis of an AVOp pro
gram's runtime, allowing us to quickly compare different schedules. The moti
vations to simulate performance for parallel applications specifically have been
noted in the literature by Eric A. Brewer and 'William E. vVheil[BvV93], we
go over these arguments first as they still hold today. These arguments in
clude that workstations are cost effective and available relative to more scarce
multiprocessor hardware, that simulation is repeatable, that simulation can
measure everything and record all state, that simulation is non-intrusive and
finally that simulation is versatile. Another argument in favour of simulation
that we suggest is that it may also be used as a tool to actually help perform
scheduling, and not just as a compile-time tool for programmers to evalu
ate existing schedules. Key arguments against simulation are that it is too

95

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

slow and too inaccurate, we will refute these arguments with recent literature
suggesting otherwise.

Firstly simulation is advantageous because access to a physical multi
processor system is not required during development. Though Coconut has
relations with IBM through the Center for Advanced Studies program at IBM
Toronto, which allows us access to QS22 Cell/B.E. Blade Servers, these ma
chines must be booked in advance in order to ensure exclusive usage during
testing. Performance Simulation allows us to check code performance anytime,
without exclusively booking a limited resource. We can then better utilize the
time that we do book on Cell/B.E. Blade Servers. This is obviously a more cost
effective usage of resources, as Cell/B.E. Blade Servers are significantly more
expensive in hardware cost and power consumption than client workstations.
Though testing on a Playstation 3 is as cost effective as client workstations, the
fact that it only has 6 SPEs, limited main memory and a lack of double preci
sion performance makes it relatively less appealing for testing performance of
certain problems[BLK+07].

Another advantage of simulation is that it is exactly repeatable, un
like runtime execution. The entire state of the system during simulation can
be known, and it can be repea~ed or done piecemeal, to track down desired
information about execution. The utility of this is similar to step-through de
bugging tools available for sequential code; indeed simulation can be used to
debug code[GG74]. The problem with monitoring dynamic execution is that
the safety of parallel programs depends on small timing differences[RDOO],
tracking state may have side effects which effect these small timing differences,
skewing the meaning and accuracy of results. Note that because our Verifica
tion Tool filters out the possibility of parallel bugs, the usage of step-through
simulation as a debugging tool is not an advantage for the CMF specifically.

Simulators also have the advantage of being able to measure virtually
every aspect of state. Aspects such as network contention, which are diffi
cult or impossible to measure at runtime, may be simulated and observed.
Indeed, when using the IBNI F\l1l-System Simulator, researchers have noted
that it has allowed them to view aspects of execution otherwise impossible to
observe[KPP06]. The results of simulators can be logged, and visualized in a
human-friendly format, such as concurrent state graphs, where problems are
more easily exposed[BW93].

As was alluded to, simulation also has the benefit of being non-intrusive.
Performance profiling at runtime, by for instance keeping track of the state
of program execution while it executes, introduces intrusion effects. Though
these effects can be mitigated by compensating for measurement overhead, on
some level runtime performance profiling can never be sure if it is measuring

96

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

the objective truth of program execution (as it would be without profiling),
as profiling itself cannot entirely prevent itself from obfuscating what "true
execution" would be[MS04]. Simulation completely eliminates the problem of
intrusion effects, though the accuracy of the results is still a concern.

Simulation is also versatile, in the sense that code may be simulated on
multiple target architectures, or even theoretical architectures that do not yet
exist. Simulation of execution on theoretical architecture has yielded useful re
sults in the literature, for instance to expose algorithm problem areas[CHV04].
Simulation was used in the design of the NUMAchine multiprocessor by Uni
versity of Toronto researchers in the mid-1990s, to explore different architec
tural trade-offs [ea95] . The ability to simulate theoretical architectures is of
particular interest to Coconut as a research group, as concept architectures,
though not yet confirmed to be put into production, have appeared on a IBM
Cell/REo Technology Roadmap[Koc07]. The ability to fine-tune algorithms
through simulation before these architectures are available to the public could
give Coconut and the CMF a competitive advantage over competing solutions.
It could also shorten the time gap between the availability of new hardware
and the efficient usage of that hardware.

'While all simulation advantages thus far have already been cited by
Brewer and Weihl, one additional advaritage 'vve believe simulation provides
is the ability to use it as part of a scheduling algorithm to optimize multi
processor performance. An example of using performance simulation, or at
least static performance prediction, as part of a scheduling algorithm, is the
Titan scheduler[JSK+06]. This scheduler uses the PACE toolkit, along with
a genetic algorithm, to optimize scheduling. The fitness function relies on
PACE runtime predictions to evaluate the desirability of schedules, allowing a
genetic algorithm iteratively applied to an initial set of schedules to optimize
performance.

One final argument in favour of simulation is that just as static anal
ysis tools are becoming increasingly prevalent[vVNIZ+08], and thus perhaps
in the future expected as part of any development solution, one can foresee a
trend towards standar'dized static performance prediction. For instance it has
been proposed that performance model ling based on simulation be specified
in UIvIL[Bl\!I03], due to the ability of simulation to increase development effi
ciency. As a result, we are motivated to build a simulator to keep the CNIF
competitive over the long term. The existence of such a tool in development
solutions may eventually be expected by developers.

Though potential disadvantages of simulation are cited as being that
it is too slow and too inaccurate[B\t\T93], we do not foresee these being an
issue for our Performance Simulator. Vlfe do not believe that the accuracy of

97

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

-----simulated performance relative to real execution performance to, be an issue,
because there is much evidence of reasonably accurate simulation. The perfor
mance predictions made by the PACE toolkit are noted as having a 5% average
error[JSK+06]. Specifically with respect to simulating the Cell/B.E., the IBM
Full-System Simulator was noted to produce results that were "good" [KPP06].
A performance model for the Cell/REo has also been created and successfully
validated against results executed on real hardware[WSO+07]. Due to the
high-level of abstraction the CMF operates on, we are not very concerned
about the slow speed of simulation. Though low level instruction set simula
tion is slow, when higher-level abstractions are used simulation that is both
fast (150x faster than an instruction set simulation) and accurate (less than 6%
error) have been reported[CHB07]. As our AVOps are a relatively high-level
abstraction with only the most important features of parallelism exposed, we
believe that fast simulation should be possible for us as well.

6.2 Simulator Design Concepts

It is useful to briefly review some issues in simulator design, such as the dif
ferent types of simulators, the contention between accuracy and speed, and
the issues specific to parallel computer simulation, to give our Performance
Simulator's design some context.

6.2.1 Simulator Types

The following classification of the different types of simulators is derived from
"The Efficient Simulation of Parallel Computer Systems" [CDJ+91]. Note that
the computer executing the simulation is referred to as the host computer,
while the computer being simulated is referred to as the target computer.

Instruction-level simulation is when a host computer simulates at
a high level of detail the effect of executing instructions on the target com
puter. This is a highly accurate form of simulation; the level of detail to 'which
target computer instructions are simulated could be taken down to the physi
cal hardware if desired. The problem with instruction-level simulation is that
hundreds of host computer instructions could be required to simulate target
computer instructions, which may become too inefficient to be practical for
large programs.

Distribution-driven simulation is when probabilistic models are
used to model the behaviour of a program, and simulation occurs through
statistical approximation. It is typically used for high-level comparisons of

98

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

different parallel architectures. Its appeal is derived from the fact that it eUm..<-"
inates the need to simulate both the large amount of instructions on each
processing elements of a parallel computer, and the need to simulate the com
munication occurring between processing elements.

Trace-driven simulation occurs when a trace of program execution
on a computer with the same instruction set as the target computer is used
to simulate execution on a target architecture. The drawback of this method
is that it requires a computer with the same or similar instruction set as
the target computer. The problematic and hard to reproduce small timing
variations that make parallel programs hard to debug, also make trace-driven
simulation ineffective for simulating parallel computer systems as these small
timing differences can effect when and what events occur[DG90].

Execution-driven simulation is when a host computer executes the
instructions to be simulated directly on the host. Precise timing information
of target instruction execution is lost compared to instruction-level simulation,
but the target architecture specific timing information can still be accounted
for with a high degree of accuracy. The appeal of execution-driven simulation
is the high performance gains that are achieved in exchange for relatively small
losses in accuracy. The scalability of execution-driven simulation due to its
relative efficiency makes it better suited than instruction-driven simulation for
parallel architecture simulation.

6.2.2 Simulator Accuracy vs. Speed

The contention between simulation accuracy and simulation speed is a critical
issue in simulator design; researchers often attempt to find fair trade-offs to
achieve desired levels of accuracy and speed[CHB07; DPA99; DG90]. In gen
eral what can be observed is that simulating at higher levels of abstraction as
opposed to simulating the precise effect of target machine instructions leads
to improved simulator speed by orders of magnitude, at a relatively small cost
to accuracy.

6.2.3 Parallel Computer Simulation

Parallel computer simulation introduces the issue of scalability as the num
ber of processing elements may reach into the thousands, and a need to sim
ulate or predict the performance of communication networks between pro
cessing elements[CDJ+91]. In order to be scalable, parallel computer simula
tors will simulate based on runtime assumptions about more coarse grained
objects, such as blocks of instructions, as opposed to individual assembly

99

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

instructions[HMS+09]. Network simulation is itsJf a field of study[Bar93;
Kes88; YKJ02], with similar trade-offs between accuracy and speed depending
upon the level of abstraction. The reason the communication network's per
formance must also be simulated or predicted is that during parallel computer
simulation processor-interaction points will occur, where a processing ele
ment's execution is dependent upon the action of another processing element,
or communication to or form another processing element[CDJ+91].

6.3 Similar Tools

In this section we briefly overview some similar tools to our Performance Simu
lator, including multiprocessor simulators, Cell/B.E. simulators, network sim
ulators as well as some alternative solutions for performance analysis.

6.3.1 Multiprocessor Simulators

Multiprocessor simulators target different types of parallel architectures (based
on the communication network), and may themselves execute in serial or par
allel. LAPSE is a simulator that executes in parallel, and targets message
passing networks[DHN94]. MaxPar is a simulator that targets shared mem
ory systems without caching, and executes in serial[CSY90]. Simulators that
target shared memory systems with cache-coherent shared memory include
PROTEUS[BDCW92], TANGO[DG90] and vVWT[MRF+OO], with vV\iVT ex
ecuting in parallel.

Many multiprocessor simulators, such as PACE[JSK+06] and vVARPP
[HMS+09] amongst others[CHB07], feature the ability to configure network,
hardware, operating system or application models. In more recent literature,
simulators with high runtime efficiency are being used to assist in schedul
ing algorithms themselves[JSK+06], or are being considered by the authors
for usage in a'utomatic algorithm design space exploration[CHB07]. This can
be seen as a natural extension of the role of simulation, instead of having a
programmer use the results of simulation to find optimization opportunities
or compare algorithms, this process itself can be made automatic.

6.3.2 Cell/B.E. Simulators

The Cell/B. E. has an official IBM Full-System Simulator that is available as
part of the Cell/B.E. SDK[JB07]. The simulator allows one to simulate both
single processor and dual processor Cell/B.E. systems. The simulator also has

100

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

different modes, one which places an emphasis on speeg t6~provide increased
interactivity to developers, and one which provides slower but cycle accurate
simulation.

An internal version of the IBM Full-System Simulator appears to exist
[KPP06], which includes performance models for the EIB, MFC and memory
subsystems. It is not clear if this internal version of the simulator includes
features not accessible in the version included as part of the SDK, but the
results were reported as having a good correlation to real hardware.

Cell/REo simulation has been reported outside of IBM, by researchers
at Lawrence Berkeley National Laboratory [WSO+07]. Using the Mambo
[BPE+04] cycle accurate full system simulator and a Cell/REo performance
model, Cell/REo performance was successfully predicted for applications such
as stencil computations and sparse matrix-vector multiplication. The per
formance model is not specified precisely, but we are told that static timing
analysis is performed on code snippets that execute only on the data of an
SPE's local store (the same concept as computational kernels in the CMF).
vVe are also told that the DMA transfer latencies are modelled by taking
into account resource constraints and assuming a fixed cost to start-up DMA
transfers (1000 cycles). The model is able to accurately predict Cell/B.E. per
formance compared to execution on physical hardware. The authors suggest
that Cell/B.E. performance prediction is "far easier than traditional super
scalar architecture". Interestingly, the researchers also simulated execution on
a theoretical Cell/B.E. with improved double precision throughput.

6.3.3 Network Simulators

We are interested in network simulation because the Cell/B.E. is a parallel
computer with a communication network, and that communication network's
performance must be accurately modelled for simulation to be accurate. Some
network simulators are purpose built for Local Area Netv,Tork (LAN), vVide
Area Network (WAN) or peer-to-peer network simulation, others allow the
user to configure network properties. The issue of scalability, and the issue of
contention between accuracy and efficiency, are as important as they are in
multiprocessor simulation.

NetSim is one example of a network simulator, it was developed to
simulate LAN (Ethernet) performance, and is a sequentially executed discrete
event simulator[Bar93]. REAL is a network simulator which targets VvA
networks for simulation, simulation of thousands of nodes is possible using a
distributed version of the software[Kes88]. OverSim is an example of a peer
to-peer network simulator which uses discrete event simulation[BHK07].

101

M.Sc. Thesis ~ Kevin Browne - McMaster - Computing and Software

-----Other network simulators, such as Ns-2, feature the ability to specify
network topology, protocols and routing algorithms[YKJ02]. Network-on-a
chip architectures have been simulated using this software, in an attempt
to evaluate network-on-a-chip design options. OPNET is another simulator
that actually provides a complete development environment to specify net
work topologies, simulate and then to conduct performance analysis[Cha99].

6.3.4 Alternative Performance Analysis Solutions

Alternative solutions exist for performance analysis, notably static profile
based prediction tools that do not rely on simulation, and performance profil
ing tools that record the behaviour of software as it actually executes.

Results for runtime performance profiling tools can be reported in var
ious ways, as a log of events or as a statistical summary of events. Particular
concerns with runtime performance profiling is that they may introduce intru
sion effects due to their need to sample execution state[MS04]. An example
of a runtime performance profiling tool is XenMon, created to monitor and
profile Xen-based virtual environments[GGC05].

Static profile-based prediction methods[CG94; DBOO] use performance
profile information about how frequently certain blocks of code are executed,
combined with execution times of these blocks, to compute projected perfor
mance for a larger program.

6.4 Performance Simulator Tool

The design of the Performance Simulator is given in this section, including its
envisioned usage and objectives, to give context to the design decisions that
have been made.

6.4.1 Envisioned Usage

The critical reason to develop the Performance Simulator was to provide Co
conut developers with feedback to help optimize and contrast generated AVOp
schedules. However while developing the Performance Simulator, we realized
it had potential to be integrated into our development environment as a tool
to automatically select an AVOp schedule from amongst several generated
by competing heuristics. F\lrthermore, the Performance Simulator could be
used as a tool to enhance scheduling algorithms themselves. These latter two

102

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

potential usages fall out from the linel;tr-tYine complexity efficiency of our Per
formance Simulator.

Schedule Optimization Feedback for Developers

The envisioned usage of the Performance Simulator is first and foremost as
a tool to allow Coconut developers to quickly and meaningfully compare the
performance of different AVOp schedules from a workstation, without having
to access a Blade Server. One might reasonably ask why it is not sufficient
to execute the Runtime System and AVOp streams on the IBM Full-System
Simulator, which can be executed on a workstation. Though this is a pos
sibility, it has several disadvantages. The IBM Full-System Simulator is less
convenient to use than a tool that we can integrate directly into our software.
The results are also less meaningful than what our Performance Simulator can
provide, as we can log information about simulated execution that corresponds
to each individual AVOp instruction abstraction. For instance by operating
at the level of the AVOp abstraction, our Performance Simulator can easily
log exactly how long a specific AVOp 'Wait instruction will stall, information
which is particularly useful to developers looking for optimization opportu
nities. As memory access is considered the performance bottleneck for most
algorithms on Cell/B.E. [VKJ+07], the ability to detect these stalls and our
ability to reduce or eliminate them is of particular interest.

Automated Schedule Selection

]\/10re ambitious usage of the Performance Simulator includes the possibility of
integrating it into the process of AVOp generation, such that it automatically
selects the best of several competing schedules. As multiprocessor scheduling is
an NP-complete problem[KA99], we cannot expect to create algorithms that
produce provably good solutions in provably good runtime (where provably
good runtime is defined as polynomial time). Instead heuristics and approxi
mation algorithms must be used. These algorithms may have the property that
solutions may not necessarily be optimal, they may only be "good". These al
gorithms may also not be able to produce good results for all inputs; for some
particularly challenging inputs the algorithms may produce very slow sched
ules. As a result it may be prudent to schedule AVOps using multiple heuris
tics that are applied to a common high-level mathematical problem description
(in keeping with the goal of Coconut of providing a solution from high-level
specification to optimized machine code). The resulting AVOp streams could
then be applied to the Performance Simulator, and the optimal result could

103

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

---be selected. This usage scenario is depicted in Figure 6.1

High-Level
Mathematical Specification

Schedule
A

Schedule
B

Performance Simulator

Schedule
D

r--------------- ------ ---
I

~ Es~0 Results B Results C e:
~-------------------------~

Optimal
Result

Figure 6.1: Automated Schedule Selection

Simulation Enhanced Scheduling Algorithms

An even more ambitious usage of the Performance Simulator would be to in
tegrate it within scheduling algorithms themselves. This idea is only made
possible by the efficient runtime of our Performance Simulator; indeed others
who have integrated or propose integrating simulation into scheduling algo
rithms also use efficient simulators. The Titan scheduler discussed in Section
6.1 which uses simulation results to drive a fitness function in a genetic al
gorithm working on a population of schedules is one such example[JSK+06].
Other researchers with simulation technology orders of magnitude faster than
instruction set simulation have expressed interest in creating automatic de
sign exploration techniques to discover solutions in the design space, using
simulation as a method of quickly evaluating potential solutions[CHB07].

104

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

We foresee P9tetitial uses for the Performance Simulator in scheduling
algorithms as well. As proper cost information, such as data transfer latency
costs and kernel execution costs, is critical to scheduling algorithms (for in
stance DAG scheduling algorithms[KA99]), there is an opportunity to use the
Performance Simulator to accurately project the runtime cost of making differ
ent scheduling moves. In this way greedy algorithms could be formed, making
optimal moves from the task graph to be scheduled to AVOp streams. This
scenario is shown in Figure 6.2.

To Be
Scheduled Scheduled

SPU 0

m
m

SPU 1

m
x
m
n
e
rT
o'
::J

Performance Simulate Possible Moves

SPU 0

m!
m
rn

/~
SPU 1 SPU 0 SPU 1

~iJI~iiJ
... : ...

~Gr:~~i1y Select
~tMove

To Be
Scheduled Scheduled

SPU 0

m
m
rn

SPU 1 ,,,,
'm
'x'm'n
'e
'rT, _.
,0
,::J...

Figure 6.2: Simulation Enhanced DAG Scheduling

Another possibility closer in form to the Titan scheduler, is a scheduling
algorithm that when given an initial schedule(s), applies simulation and uses

105

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

-~--- the result(s) along with the initial schedule(s) to create new and improved
schedules. This iteration could be stopped once certain conditions are met,
such as a desired level of efficiency achieved known to be within theoretical
possibility, or when a certain number of iterations have occurred. Algorithms
could identify stalls in the result data, and possibly apply techniques to re
arrange the schedule to try to reduce their occurrence and/or severity. This
scheduling possibility is shown in Figure 6.3.

Schedule iteratively modified Modified
Schedule

Performance
Simulator

Simulation
Results

Scheduling
Algorithm

-------------------J---------------------

Figure 6.3: Iterative Simulation Result Driven Scheduling

6.4.2 Objectives

'While formal software engineering style requirements are beyond the level
of specification desired for an exploratory concept tool like our Performance
Simulator, we did have certain objectives in mind when designing the tool.
These objectives include high efficiency, versatility, scalability and reasonable
accuracy.

One objective is that the tool have a linearly bounded complexity, as
a single pass through the (albeit merged) AVOp streams was enough for the
Verification Tool. This should be similar with the Performance Simulator,
as in both cases there is a bounded amount of state that is possible while
evaluating any given AVOp, as the Cell/REo itself is bounded by resources
such as limited local stores, signals and DMATags. The fact that state is

106

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

bquncreci means that there is also a bounded amount of analysis that could
realistically occur on the state, this bounded amount of analysis will not scale
with the number of AVOps. As such, O(n) linearly bounded time complexity
should be possible, even if each AVOp evaluation contains some polynomial
time algorithms, they are still applied to a bounded amount of state.

Versatility is an objective in the sense that we want to be able to
simulate theoretical Cell/B.E. architectures. A high degree of modularity is
how we hope to achieve this - by separating simulation algorithms (AVOp
execution and network simulation), computation execution time definitions
and network bandwidth configuration, it should be possible to quickly alter
components from one architecture's simulation to another. This should allow
us to simulate future architectures more quickly, by only having to modify
what is necessary and leveraging existing simulator code where possible. This
should also allow us to explore different potential architectures for advantages
and disadvantages.

Scalability is a concern closely coupled to high efficiency and versatility.
vVe want the Performance Simulator to be efficient enough that it can be
scaled to not only the concept 32 SPE Cell/REo architecture[Koc07], but also
potentially architectures with thousands of processing elements. This objective
is achieved not only through efficient runtimes, but a runtime complexity that
does not grow exponentially with the number of processing elements or the
number of AVOp instructions.

Accuracy is another objective of the Performance Simulator; however
we note that the primary goal of the tool is to allow a Coconut developer to
contrast the effectiveness of different algorithms. If a developer can recognize
that an algorithm's schedule is superior to that produced by its alternatives,
then we are content with this level of accuracy. vVe desire simulator results that
are close to physical hardware execution performance; this goal is secondary
however to being able to use the tool for comparing schedule efficiency.

6.4.3 Design Overview

In this section we will explain how the algorithms that make up the Perfor
mance Simulator work, including a discussion of key design decisions as well
as a breakdown of the modules involved. V\e should note that this iteration
of the simulator was implemented specifically for the single processor 8 SPE
Cell/B.E. architecture, but due to the design of the simulator, it is easy to sim
ulate 6 SPE Cell/REo architecture with very little modification, and possible
to simulate dual processor 16 SPE Cell/B.E. Blade Servers with reasonable
modifications. An overview of the Performance Simulator modules and data

107

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

flow is found in Figure 6.4, it will be referenced as we explain the design.
The nanosecond is the unit of time that is used to record runtime

performance of individual SPEs, the entire AVOp program, as well as the
latencies of individual data transfers. This decision was made because the
SPEs and PPEs execute at 3.2 GHz, where as the EIB command bus executes
at 1.6 GHz[AP07b; AP07a]. Nanoseconds thus have the advantage of not being
tied to anyone component's clock frequency, and of not having to be converted
to a unit of time as clock cycles likely would be before being reported to the
user as runtime performance.

Firstly, to model the execution of AVOp instructions themselves, it
would be unnecessary for reasonable prediction accuracy, and computationally
prohibitive, to simulate them on the level of the SPU Instruction Set. Instead
after a review of the Runtime System implementation, we compute that each
AVOp instruction will take approximately 100 SPU cycles (or 0.3125 nanosec
onds) to be interpreted by the SPU and to execute. This does not include time
spent waiting by the instruction for a DNIA transfer to complete or signal to
arrive, nor does it include the time to execute computational kernels in the
case of the RunComputation AVOp. This AVOp configuration is implemented
as a function, and represented by AVOp Execution Cost Function in .Figure
6.4.

The model ling of the cost of executing computational kernels that
are executed by the RunComputation AVOp is similarly done by a function,
mapping from computational kernels to runtimes expressed in nanoseconds.
This decision was made for several reasons. Firstly, because we are likely to
be generating computational kernels with the ILP layer of Coconut, it is also
likely that at this step we can output expected runtimes of these kernels on
an SPE. Even if this were not the case, or if we were to create computational
kernels without Coconut, this would not be a major impediment. Either static
timing analysis could be performed to effectively determine kernel execution
time[WSO+07], or the kernels could be executed on SPEs to determine the
execution time. If the runtime of the computational kernel is not static, that is
it conditionally depends on the input, this is more difficult for the simulator to
take into account. At this point the computational kernel's runtime would have
to be profiled and the function mapping from kernels to runtimes would become
based on statistical estimates. This is not foreseen to be a major issue for the
effectiveness of the Performance Simulator as a tool, considering the image
processing and linear algebra applications that the CMF is initially targeting.
The Kernel Cost Function found in Figure 6.4 represents the function that
must be provided by the developer, along with the associated AVOp streams,
to perform simulation.

108

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

,m m \ m __ ,
Performance
Simulator

Figure 6.4: Performance Simulation Design Overview

'While model ling computational kernels this way provides a tremen
dous performance gain, as no actual computation takes place, an important
consequence of this design decision is that our simulator does not actually
compute the result of the computation it is simulating. This would normally
be a high price to pay, as one of the main advantages of parallel machine simu
lation is the ability to debug programs by stepping through execution[BvV93].
Debugging capabilities are however noticeably absent from our Performance
Simulator objectives listed in Section 6.4.2. This is because our Verification
Tool already assures that program results \-vill be independent of execution
order[AK08], and as a result we have not yet had to deal with a parallel bug

109

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

in our AVOp streams.
The next design decision to be explained is perhaps the most crucial to

the functioning of the Performance Simulator. Simulating AVOp instructions
on a single SPE cannot be done in isolation of the simulation of AVOps on
other SPEs, firstly because communication between SPEs such as signaling
and data transfers will have an effect on SPE runtimes. But also because even
in the case that SPEs do not interact with one another via signaling or data
transfers, they will still have an effect on each other's runtime through their
interaction with main memory. Packets for data transfers from the MIC to
SPEs are distributed to SPEs in a round robin priority, so the amount of data
other SPEs are transferring to and from main memory will directly effect the
rate of transfer, and thus transfer latencies, of a given SPE.

This interaction amongst processing elements is of course to be ex
pected in parallel computer simulation, it is effectively the issue of processor
interaction points discussed in Section 6.2.3. What is unique about our AVOps
is that they simulate such a high level, with all computation effectively tucked
away in computational kernels, that the AVOps themselves become atomic
communication operations. This makes the execution of virtually every AVOp
a processor-interaction point, through the binding of 0PE data transfer perfor
mance to EIB performance. This is true in the sense that an AVOp initiating
a data transfer will very likely slow down the data transfers of other SPEs
due to EIB bottlenecks. Even vVait AVOps that recognize the completion of
transfers can be thought of as processor-interaction points, in the sense that
recognizing the completion of a transfer frees up EIB transfer capabilities and
speeds up other data transfers possibly involving other SPEs. It is the round
robin switching between transfer packets, as opposed to some sort of transfer
queue where all packets of a transfer on the EIB are delivered before another
transfer proceeds, that creates this high level of processor interaction.

As a result a critical decision was made to simulate the AVOp streams
with the following principle: we always simulate the next AVOp set to execute
globally across all SPEs relative to where the EIB has already been simulated,
and we always simulate the EIB up to the execution of this AVOp if it has not
been already and we do this until all AVOps have been executed. The current
runtime of each SPE and the EIB is kept track of separately as the simulation
progresses. However because simulation of the SPEs is so dependent upon EIB
simulation, this becomes a simulation 'floor', in that AVOps are not simulated
until the EIB has been simulated up the AVOp, and the EIB is not simulated
past a point unless all AVOps that need to be simulated at that point or before
it have been.

This helps to ensure accurate simulation, as at every point that an

110

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

AVOp is executed, all of the process-interaction that may effect this AVOp's
execution will have already been accounted for. Now this next AVOp to be
simulated may cause interactions with future AVOps on other SPEs. Deter
mining which AVOp is next to execute globally is a process made trickier by
the fact that an SPE could be stalling execution as part of a Wait AVOp,
waiting for the completion of either a data transfer or signal. Note that be
cause signals are implemented as Dt\iIA transfers at the hardware level, we will
simply refer to them as data transfers as well from now on. In the case of a
'Wait AVOp, simulating the AVOp is not just a matter of accounting for the
effect on SPE runtime (as it is for RunComputation AVOps), or starting up
a new data transfer. Simulating the AVOp perhaps means stalling execution
of the SPE until the associated transfer or signal has completed, if it has not
completed already.

We cannot simply "jump ahead" the SPE's runtime to the point where
the data transfer has been completed, because it is possible that before this
time more process-interaction effects will occur that will have an effect on
the transfer rate of the 'Wait instruction's associated transfer. vVe might
project that at the current level of EIB network activity, the v\ ait transfer
will complete in 10,000 nanoseconds. However if at 5,000 nanoseconds two
other transfers were to complete, and at 8,000 nanoseconds another transfer
were to complete, this would result in an inaccurate simulation as these trans
fer completions may speed up the transfer rate of the transfer originally in
question. Furthermore, it may not even be possible to project the completion
time of a vVait instruction, as it is possible that the associated transfer has not
even been initiated by another AVOp yet. This is a possibility because SPEs
execute asynchronously, there is no guarantee that a vVait instruction will ex
ecute after its associated transfer AVOp has been executed. Thus information
about the transfer needed to attempt to project latency, such as transfer size,
is unavailable at this point in the simulation.

Vve therefore maintain an SPE state as part of our simulator, and an
SPE is either executing or waiting for the completion of a transfer (in the
case that we have simulated a \iVait AVOp's execution, but that its associated
transfer has not yet completed). When we attempt to follow the principle of
executing the next AVOp set to execute globally across all SPEs, we are faced
with three situations:

1. All SPEs are executing.

2. Some SPEs are executing, some SPEs are waiting for transfer completion.

111

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

3. All SPEs are waiting for transfer completion.

In the situation that all SPEs are executing, illustrated in Figure 6.5,
determining which SPE should be simulated next is easy. One simply simulates
the AVOp on the SPE whose time to execution relative to the EIB's present
runtime is shortest, and simulates the EIB up to the point where this AVOp
is executed if it is not simulated to this point already. It is possible that the
EIB has itself been simulated to this point, because if two or more AVOps are
equally far behind in execution, we arbitrarily pick which AVOp to execute
because we know the other(s) will be executed next anyway, and at this point
we would simulate the EIB up to the point where that AVOp was executed.
'When the simulation first starts, this situation exists, as all SPEs are executing
and are all at equal runtime with the EIB.

c
o

'';:;
~
u
QJ
X

UJ

.... Executi n~
SPEs

1 2 345 678
Time to
Execute .'

..····waiti~g···..
SPEs

Time to
Execute

Figure 6.5: All SPEs Executing

The case in which some SPEs are executing and some SPEs are waiting
for transfer completion is trickier. Because we always want to simulate the next
AVOp set to execute globally, we have to determine if that AVOp will be one
belonging to the executing SPEs or one belonging to the waiting SPEs. To do
this, we project whether the first waiting SPE to have its transfer complete
will have its transfer complete before the first executing SPE is set to execute
its AVOp. So as a result we simulate the EIB up to the point that either
one of the transfers for which an SPE is waiting completes, or until the time
that the first executing SPE is set to execute. This way, if we do find that
an SPE waiting for a transfer has had that transfer complete before the first
executing SPE is set to execute, then we know to simulate the AVOp on that
\~Taiting SPE (and we conveniently have simulated the EIB up to that point, as
desired). If we find that no transfer with an SPE waiting for its completion has
completed before the time that the first executing SPE is set to execute, then

112

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

we simulate the AVOp on that executing SPE, and again we have conveniently
simulated the EIB up to that point. This situation is depicted in Figure 6.6.

.... Executi ng
SPEs

Waiting··· ..
SPEs

c
o
''':;
:::l
U
(])
><

LU

1 568
Time to
Execute

',- . 2

~~~!~~!~ ....,
Determine
first transfer
to complete :'

Time to
Execute

Figure 6.6: Some SPEs Executing, Some SPEs 'Waiting

The situation that all SPEs are waiting for a transfer to complete is
shown in Figure 6.7. In this situation we simply simulate the EIB until the
first transfer for which an SPE is waiting completes. We then simulate the
execution of the next AVOp on that SPE, knowing that we have simulated
the EIB up to the point that the AVOp was simulated. A legitimate concern
with this approach is that the AVOps may contain a deadlock parallel bug,
and execution of simulation could itself deadlock. This is a fair point, but
because the Verification Tool can be used to filter AVOps to ensure safety
before simulation, it is not of particular concern. One small point to make
is that it is possible that multiple SPEs could have their transfers complete
at the same time, but the AVOp to simulate can just be selected arbitrarily
in this situation (as the other SPE's AVOps will be selected for simulation
immediately next anyway, with no effect on the end result of the simulation) .

c
o

''':;
:::l
U
(])

><
LU

.... Executing··· ..
SPEs

Time to
Execute

: ., ,. ', .

5

Waiting··· ..
SPEs

r----~

11234 1

~I 5 6 7 8 1
'- 1

Determine
first transfer
to complete ,:

Time to
Execute

Figure 6.7: All SPEs vVaiting

113



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

The key overarching algorithm of the Performance SimulatoL can-;ow
be formed by combining the logic that we have gone over for each of these
three scenarios. Algorithm 2 presents this algorithm as pseudo code, with
the details of simulating individual AVOps and simulating the EIB left for
further explanation. Algorithm 2 is the Performance Simulation Algorithm
component of Figure 6.4.

Algorithm 2 (Performance Simulation Algorithm) Note that the sim
ulation is complete when all A VOps have been sim1tlated.

repeat until simulation complete
if (all SPEs are executing) then

find an SPE with minimum runtime
simulate the EIB up to this SPE's runtime
simulate next A VOp on this SPE

else if (all SPEs are waiting) then
simulate EIB until first transfer with an SPE waiting is complete
simulate A VOp on this SPE

else if (some SPEs are waiting and some SPEs are executing) then
find an.SPE with minimum runtime X
simulate EIB until first transfer with an SPE waiting is complete

OR until the minim1Lm runtime X
if (EIB simulated to minimum nmtime X) then

simulate A VOp on SPE with minimum runtime X
else

simulate A VOp on SPE waiting for completed transfer

As mentioned, simulating an AVOp involves adding the runtime cost
of executing the AVOp, derived from a function mapping AVOps to runtime
costs, to an SPE's simulated runtime. The other aspects of simulating an
AVOp's execution depend on which type of AVOp we are simulating. The
AVOps are broken down into three different types:

1. Transfer initiation AVOps

2. vVait AVOps

3. Computation AVOps

114



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

The transfer initiation AVOps are LoadMemory, StoreMemory, Send-,
Data and SendSignal. The wait AVOps are vVaitDMA, vVaitSignal and vVait
Data. The only computation AVOp is RunComputation. We can then deal
with what is required to simulate each type of AVOp separately.

The simulation of Computation AVOps, that is RunComputation in
structions, is very simple. vVe use the function provided to the simulator
by the user which maps computational kernels to runtimes, and we add the
resultant runtime to the SPE's current runtime within the simulation. We
identify which computational kernel the RunComputation is executing by the
RunComputation instruction's Computation argument.

To simulate transfer initiation AVOps, we create the network transfer
on the I etwork Simulator, which simulates the EIB. The Network Simulator
provides a transfer creation function to facilitate this. The size of the transfer
is determined by the size argument of the AVOp initiating the transfer, with
adjustments for packet size (128-bytes) made if the size is not divisible by
128-bytes. Signals do not have a size argument, and are assumed to be a
single packet DMA transfer. Transfers on the simulator need to be uniquely
identified, so that we can recognize when transfers associated with specific
wait AVOps have completed. vVe use the arguments of the transfer initiating
AVOp to build a unique identifier for each transfer. For example in the case
of a SendSignal AVOp, the unique identifier would become the signal and
target SPE. I ote that the same unique identifier may be used many times in
a simulation, it is unique for the time it is being used. 'vVe know it is unique
for the time it is being used, because if it were not, it would imply that the
AVOps are attempting a transfer that would be indistinguishable from other
transfers. For instance if two signals with the same signalID, are being sent
to the same SPE. This type of situation could cause a parallel bug such as a
race condition or deadlock, as the waiting SPE would not know which transfer
or signal is which. The Verification Tool filters out the possibility of these
situations occurring.

The simulation of vVait AVOps first requires us to check with the Net
work Simulator to see if the associated wait has completed. 'v\ e use the ar
guments of the \t\Tait AVOp we are simulating, along v"ith the SPEID that it
is being simulated on, to construct the unique identifier for the transfer. 'vVe
then check a completion set that the Network Simulator maintains, to see if
the transfer has completed. If it has, then the 'vVait AVOp will not stall, and
\\ e simply pull the transfer out of the Network Simulator's completion set, and
the SPE remains in an executing simulation status. If it has not, then we set
the SPE to a waiting for transfer completion status. The next AVOp on this
SPE will be simulated when the transfer completes, as explained by Algorithm

115



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

2.
Now that we have reviewed how different types of AVOps are simulated,

we summarize this logic in the pseudo code of Algorithm 3. Algorithm 3
corresponds to the AVOp Simulation component of Figure 6.4.

Algorithm 3 (AVOp Simulation) This algorithm implements the simula
tion of AVOps mentioned in Algorithm 2.

function simulateA VOp (speID, AVOp) :
find A VOp execution cost using A VOp Execution Cost Function
add A VOp execution cost to runtime of SPE speID
if (type(AVOp) == computation) then

find computation cost using Kernel Cost Function
add computation cost to runtime of SPE speID

else if (type(A VOp) == transfer initiation) then
formulate unique transferID from A VOp arguments
create network transfer on Network Simulator

else if (type(A VOp) == wait) then
formulate transferID from A VOp arguments
check Network Simulator completion set for transferID
if (transferID is not in completion set) then

set SPE speID to waiting

The Performance Simulator keeps track of when all transfers complete
relative to when the transfer's associated wait instruction is executed. If a wait
instruction executes before the transfer completes, that is execution stalls to
wait for the transfer to complete, we refer to the difference in time between
the two events as latency. If a wait instruction executes after the transfer
completes, the SPE does not stall, and we refer to the difference in time
between the two events as leadency. The Performance Simulator can record all
occurrences of latency and/or leadency, or it can be made to record one or the
other, and at different levels of severity. We record latency because these stalls
represent obvious opportunities to improve total execution time. The reason
we record leadency occurrences is because if an SPE is receiving data before
it needs it, from a shared resource such as main memory that other SPEs are
transferring to and from, then it may be contributing to the severity of latency
of transfers for other SPEs. By eliminating leadency of transfers associated
with shared resources, we could reduce the latency of other transfers associated
with the shared resource while the transfer with leadency is occurring. This

116



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

could speed up total runtime, at no cost to the SPE for \yhichthe leadency
was eliminated.

The raw simulation results include the execution time of each SPE, the
execution time of the system as a whole (defined as the maximum of all SPE
execution times), and the latency and leadency experienced by wait instruc
tions. These results are stored in a data structure, and a report generating
function allows for output to a file for more user friendly consumption. These
are the Report Result Generator and Simulation Report of Figure 6.4.

~etvvork Sinnulator

The simulation of the EIB network is a simulator unto itself. 'What we ulti
mately wish to simulate is how long it will take transfers to occur. Several
different approaches were considered:

• Assume best or worst case transfer times

• Discrete event simulation

• Continuous mathematical model

The problem with best or worst case transfer times, is that though
they may be quick to compute, they are wildly inaccurate. For instance, if
one outbound transfer from the r./IIC was occurring to an SPE's NIFC, that
transfer could be expected to occur at 25.6 GB/s. However due to round
robin packet scheduling, if each SPE's :MFC was requesting 10 transfers from
the MIC (i.e. main memory), then an individual transfer could be expected to
occur at 0.32 GB/s. By assuming best or worst case transfer times for every
transfer, far too much accuracy would be lost.

Discrete event simulation is appealing due to its potential ability to
model EIB performance very accurately. 'With discrete event simulation, we
could model each individual component and protocol of the EIB, such as model
ling each BID and simulating each packet of an individual transfer. The biggest
problem with discrete event simulation is that it vvould be far too expensive to
compute. Another problem with discrete event simulation is that we simply
don't know enough about the EIB functionality to simulate it at that level of
detail, the information that would be required is not publicly available to our
knowledge.

Vve do know enough about the EIB's design to build a continuous math
ematical model, that is a model that would analyze network traffic to deter
mine reasonably accurate transfer rates but would not simulate individual

117



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

----packets or the functioning of individual EIB components. 'vVe believe that a
continuous mathematical model can provide reasonably accurate simulation
times. Knowing that transfer packets are distributed in round robin priority,
with a layer of priority for the MIC above all other transfers, is the critical
piece of information that allows us to build an accurate model. This is a
middle ground that we feel is an appropriate mix of accuracy and speed

As has been discussed in Algorithm 2, the EIB simulator is expected
to function in two different modes. It must be able to simulate until the first
transfer on a waiting list has completed, and it must be able to simulate until
either the first transfer on a waiting list has completed or until a certain time
has been reached.

The EIB network simulator thus maintains lists of transfers, a comple
tion list to denote transfers that have been completed, and a waiting list to
denote transfers that are waiting for completion. This information is kept in
a broader network status data structure, that also includes the current simu
lation time (relative to the start of simulation), the current simulation mode,
and the status of all transfers on the network. This network status data struc
ture can be edited by the performance simulation algorithm, by for instance
adding a unique transferID to the waiting list or changing the transfer mode.
Once the network status is set up, the network simulation is then 'executed'
with an execute function.

The transfer status in the network status data structure refers to whether
a transfer is in-flight, that is its packets are being transferred at a given trans
fer rate over the EIB, or whether it is in start-up, where this is defined to
be the SPE-internal transfer start-up behaviour that was discussed in Section
3.4.2. This start-up behaviour is modelled as a fixed cost of 57.1875 nanosec
onds, based on literature of such EIB transfer start-up costs[AP07b; AP07a].
Vie are not the first to model start-up transfer costs of the EIB as a fixed
value and the packet transferring phase as a rate of transfer, others have done
so to successfully optimize the use of static buffer~ for DMA transfers on the
Cell/B.E.[CS06]. The fact that others have published successful results model
ling transfer behaviour in this way suggests our approach is not unreasonable.
These researchers did not however extend their model beyond a single SPE,
which we must do for our simulation to be useful.

Transfers that are in-flight may effect the transfer rate of other trans
fers, due to the two-level priority round robin packet scheduling protocol that
we assume will provide fair access to net"vork bandwidth. This assumption ap
pears to be sound, as even in tests of EIB performance in situations of heavy
contention which may be expected to expose unfair/divergent transfer laten
cies, vastly divergent transfer times did not result[KPP06]. Transfers that are

118



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

not in-flight, that are still being process~d ii1ternally by the SPE and have
not yet been placed in the BID command queue for a packet transfer as was
discussed in Section 3.4.2, are assumed to have no effect on transfer rates be
cause they are not yet requesting access to the command bus or data arbiter
to perform a packet transfer. As a result, when simulating EIB transfer rates
we must re-calculate transfer rates every time that a start-up transfer changes
phase to an in-flight transfer, after the prescribed start-up time has elapsed.

Determining transfer rates of in-flight transfers is done using Algorithm
4. The reasoning behind this algorithm requires further explanation. vVe know
that the EIB has a total bandwidth of 204.8 GB/s, but that we can't simply
divide this bandwidth by the total number of transfers to establish transfer
rates. This is because specific network resources, such as the IvIFC of each SPE,
also have specific bottlenecks much lower than 204.8 GB/s. For instance, even
though 204.8 GB/s of bandwidth may be available, if all transfers on the EIB
are inbound or outbound from main memory, then total bandwidth available
for these transfers will actually be 25.6 GB/s, the bandwidth of main memory.
Similarly, we know that only six simultaneous transfers are possible on two
of the four rings in a given direction. As such, if all transfers on the net
work were going counter-clockwise or all were going clockwise, the bandwidth
available would only be 153.6 GB/s. Network resources with bandwidth lim
itations include inbound and outbound main memory (25.6 GB/s), inbound
IvIlC and MFC (25.6 GB/s), outbound MIC and MFC (25.6 GB/s), ring di
rections clockwise and counterclockwise (153.6 GB/s), and the command bus
(204.8 GB/s). Also, keeping in mind Figure 3.3, ring connections from each
BID to each BID have a limited transfer rate in each direction of 51.2 GB/s
(25.6 GB/s on each of two rings in a direction).

Putting aside higher priority MIC transfers for a moment, the way we
distribute network bandwidth is to assume that network resources such as
MFCs or data rings, following the fair distribution of a round robin protocol,
will distribute bandwidth evenly to all transfers involved with that resource.
So if we have ten transfers that are using a specific NIFC's outbound band
width of 25.6 GB/s, we will assume that they would each receive 2.56 GB/s of
bandwidth assuming no other transfers on the network. VVe determine trans
fer bandwidth by iteratively finding the most contentiously allocated network
resource, that is the network resource that when we assume fair allocation
of its remaining bandwidth would result in transfers with the slowest relative
transfer rates. We then allocate this bandwidth to these transfers, and repeat
this until the bandwidth of all transfers has been determined. \f\lhen we allo
cate bandwidth to transfers, potential bandwidth of all components involved
in the transfers is reduced by the transfer rate of the transfers involved for

119



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

.---each transfer. , For instance, if two outbound MIC transfers, targeting two
different MFCs, were being allocated 12.8 GB/s of bandwidth each, then the
MIC's outbound bandwidth would be reduced from 25.6 GB/s to zero and
each MFC's inbound bandwidth would be reduced by 12.8 GB/s, the data
rings involved would have their bandwidth reduced as well as the EIB itself
(i.e. the command bus).

The reason we allocate bandwidth iteratively to the most heavily con
gested network components is that it allows us to maximize potential transfer
bandwidth while respecting the bandwidth limits of all individual components
involved. If one were to allocate bandwidth to transfers without taking into
account specific network resource limitations, impossible transfer times could
result. If one were to allocate transfers to anything but the transfers of the
most congested component first, then the transfer rates that would result may
not be the maximum possible transfer rates assuming fair allocation. For in
stance, if we had the situation of two outbound NIlC transfers targeting two
different SPE's MFCs, then it is clear that the MIC becomes the bottleneck.
If we were to assume that either MFC were the bottleneck to its respective
transfer, we would allocate 25.6 GB/s of bandwidth to that transfer, but the
MIC only has 25.6 GB/s of outbound transfer. This approach results in either
inaccurate or impossible transfer times. Allocating bandwidth to the most
contentious components is necessary to establish proper transfer times.

Algorithm 4 (EIB Thansfer Rate Determination Algorithm) Two-level
priority of round robin scheduling favours MIC transfers, so they are calculated
first.

1. Distribute main memory bandwidth evenly to MIC transfers

2. Identify the network resource bottleneck with the most contention

3. Dist7'ibute available bandwidth evenly to transfers associated with the bot
tleneck

4. Repeat 2-3 until all transfers have bandwidth allocated

Another key point about Algorithm 4 is that because the MIC transfers
have priority over all others, before we go into the phase of iteratively detect
ing the most contentious network component and distributing bandwidth, we

120



M.Sc. Thesis - Kevin Browne - McMaster - COTri,puting and Software

distribute the MIC ban.dwiafh evenly to its respective transfers. Main mem
ory, what the MIC provides access to, has a bandwidth of 25.6 GBls for both
inbound and outbound transfers, compared to the MIC's bandwidth of 25.6
GBls for inbound transfers and 25.6 GBls for outbound transfers. So though
EIB protocols dictate that MIC transfers have highest priority it is actually
main memory that effectively becomes the bottleneck that is first accounted
for.

Another idea that allows us to use Algorithm 4 is that we are able to
determine which network components will be effected by a network transfer
using the six-hop maximum transfer path rule discussed in Section 3.4.2. If
a transfer between BIDs is less than six-hops away from one another, we can
establish the exact path every packet will take, and thus the exact rings that
will be used for the transfer. In the case of a transfer whose path is six
hops in length, two transfers paths are possible. Though this assumption
is admittedly without documentation of its correctness in the literature, we
assume that transfer paths will be used according to how congested they are
relative to the alternative path, as this seems reasonably intuitive. So for a six
hop transfer whose clockwise path intersects that of ten other transfers and
whose counter-clockwise path intersects that of five other transfers, we assume
it will use its counter-clockwise path 2/3 of the time and its clockwise path
1/3 of the time.

Finally, we know from EIB performance testing that if transfer paths
overlap with a heavy amount of transfers occurring, for instance each SPE
streaming transfers to and from the SPE six hops away from it[CRDI07], that
total EIB bandwidth can go down to roughly 80 GB/s[KPP06]. This has to
do with the limitations of the data ring arbiter design[CRDI07], and the fact
that transfers can only proceed simultaneously on a ring if their paths do not
overlap. vVe do not have enough information to know how exactly EIB perfor
mance degrades, but multiple tests show a lower threshold of performance of
about 80 GBls, for situations that are unrealistic and unlikely to ever occur
in real software. Though extraordinarily unlikely that all BIDs would stream
data constantly in six hop maximum length paths that overlap, we do still try
to provide a mechanism to account for this situation. Before applying Algo
rithm 4, we lower the total bandwidth of the command bus according to how
much overlapping network activity is occurring. An interchangeable function
maps network activity, such as the maximum amount of overlapping transfers
or the maximum number of components that are connected via transfers with
overlapping paths, to a penalty of reduced command bus bandwidth. In its
current implementation a simple linear function is used to degrade perfor
mance according to the maximum number of components that are connected

121



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

-via transfers with overlapping paths.
Now when simulating the EIB in the mode to identify the first waiting

list member to complete, we simulate the EIB incrementally. Every time a
transfer's phase changes, either from start-up phase to in-flight phase, or from
in-flight to complete (where it is then placed in the completion list), we stop
and re-calculate transfer rates as these will be effected. A new in-flight transfer
could slow down the transfer rate of other transfers, the absence of a now
completed transfer could speed up the transfer rate of other transfers. So we
simulate the EIB incrementally until a transfer phase change. VVe can calculate
how much of each transfer has occurred in between each phase change by
multiplying the transfer rate by the time it took to reach the phase change. Vie
do this until a transfer that is a waiting list member is put into the completion
list (i.e. when its phase is the one to change).

In the other mode, where we simulate the EIB to either the first waiting
list member to complete, or to some specified time, we simply add a conditional
to stop simulation if that given time has been reached before a transfer phase
change.

The performance simulation algorithm can check the network status
data structure, particularly the completion list and waiting list, to see what
transfers have completed. Information with respect to total transfer time is
recorded when transfers are sent to the completion list, and is used to establish
the amount of stalling due to transfer latency.

The bandwidth of each network component, transfer start-up costs and
the command bus performance degradation penalty function, are all very easily
modifiable network simulator properties, and so we represent these as the
Network Configuration module in Figure 6.4. The logic presented here to
simulate EIB performance corresponds to the Network Simulator module of
Figure 6.4.

6.4.4 Design Analysis

A few consequences of the Performance Simulator design described in Section
6.4.3 are worth going over. Firstly, the simulation is normally deterministic:
the result of a simulation given the same AVOps and Kernel Cost Function
will be the same every time. No random values are used in calculations, no
user input is taken in and no control-flow exists in the AVOps. In Algorithm
2, there may be cases where two AVOps must be simulated at the same point,
and though we do simulate one AVOp and then the other, the effect as far as
simulation is concerned is no different. It is as if they executed simultaneously
as far as the effect on simulation is concerned. This determinism is a result of

122



NI.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

metic,uloUSfy accounting for processor-interaction points, by always simulating
the next AVOp set to execute globally across all SPEs relative to where the
EIB has already been simulated. The only way that non-determinism could
be introduced at present is if the Kernel Cost Function mapped kernels to
random runtime values (likely with some statistical probability).

Another consequence of the Performance Simulator design is that we
should in fact see a linearly bounded runtime complexity. This is because
only one pass through the AVOps is required for simulation, with changes to
simulation state being made to execute each AVOp. These changes may not
always require the same work computationally, if many transfers are occurring
on the EIB network, then more analysis will be required to determine transfer
rates. But only so many signals, DMATags, DataTags and local storage space
exist. As a result there is only so much state change for each AVOp, and
only so much calculation to determine state change. vVe can expect that the
Performance Simulator will have linearly bounded performance as the same
communication pattern or scheduling algorithm scales upwards and increases
the number of AVOps. However from scheduling algorithm to scheduling al
gorithm we can expect a variation in simulation runtime for the same number
of AVOps due to the different levels of analysis required to perform changes
in simulation state.

One fine point about the current Performance Simulator design is that
it does not account for the effect of AVOp streams being buffered into each
SPE's local store by the Runtime System. Recall from Section 5.3.2 that the
Runtime System double buffers in 1024 AVOps (or 16KB worth of data) every
1024 AVOps. In the present Runtime System implementation, this is done
implicitly by the Runtime System and not explicitly by AVOps. For now
accounting for AVOp stream buffering has been left out of the Performance
Simulator, because the future plan is for AVOps to explicitly handle loading in
of AVOp buffers for computation using LoadMemory AVOps. If we decide not
to do this, it is simply a matter of having the Performance Simulator simulate
a 16KB transfer after every 1024 AVOps have executed on an SPE.

A few aspects about network performance are also not accounted for in
the model. As was discussed in Section 3.4.2, the MFC's DMAC contains an
SPU command queue and a proxy command queue. An attempt to insert a
new transfer into a full queue will result in transfer performance degradation.
As the SPU command queue is of size 16, and the proxy command queue
is of size 8, if transfer requests by an SPE exceed 16 or transfers requested
from an SPE exceed 8, the Performance Simulator will not account for this
degradation. The reason we chose not to account for this is because modelling
on this level would require more computation for something that we are unsure

123



----.-

M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

how to model precisely, for what we perceive to be little gain. vVe aren't told
in the EIB literature exactly how performance will degrade, so it is difficult to
model with certainty. One possible model ling of the situation would be that
transfers could not enter the in-flight stage until they have entered this queue.
We consider it to be an unlikely situation in practice that so many transfers will
be occurring simultaneously into or out of a given SPE's LS. Furthermore, the
Verification Tool is actually capable of filtering for and flagging the possibility
of this situation occurring in the partial execution order.

Another aspect of performance not taken into account by the Perfor
mance Simulator is main memory performance, in the sense that 25.6 GB/s of
performance is not always possible. Researchers have noted that performance
can degrade to 21 GB/s in the case of intermingled reads and writes[CRDI07].
Others have noted main memory performance below 25.6 GB/s in the case of
a single SPE issuing batches of DMA gets from main memory[KPP06] We do
not wish to model hard'ware at this level due to the computation this would
impose on simulation, and we cannot do so accurately due to our lack of knowl
edge about the component's functionality, so we do not account for this main
memory degradation with our Performance Simulator.

6.4.5 Implementation and Unit Testing

The Performance Simulator was implemented in Haskell[PCK07], as with the
Verification Tool and AVOp stream generation functions created thus far. This
allows for smooth integration of the various tools, as simulation and veri
fication can be automatically done as part of the process of AVOp stream
generation. The Performance Simulator components and Network Simulator
components are implemented as separate modules, with monads used due to
the high amount of state in each algorithm.

Unit testing is automated with a test harness implemented as a Haskell
module. 'White box testing is done to ensure each AVOp is simulated correctly.
Black box testing is done to ensure correct simulation of some situations that
could be considered difficult to simulate correctly, for example every SPE
signaling every other SPE.

6.4.6 Performance Testing

To demonstrate that the Performance Simulator meets its core objectives we
perform several performance tests. The most important motivation to building
a simulation tool as part of the G~lIF was to allow developers to compare the
efficiency of different algorithms in a reasonably accurate manner. For this

124



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

reason we compare the simulation results of several different types of AVOp
streams for performing matrix multiplication. We also perform a test focused
on the Network Simulator aspect of the Performance Simulator, comparing our
result to a very similar test conducted by other researchers on real hardware.

Matrix Multiplication Comparison Test

The purpose of this test is to demonstrate that the Performance Simulator
can identify the difference in performance for different AVOp schedules and
computational kernel implementations of the same basic problem. We choose
matrix multiplication as it is a problem of much interest to researchers[KAD09;
SHW+08; CRDI07; Ear08]; it forms the basis of many other linear algebra
problems. vVe assume that we have two different computational kernels, ca
pable of performing matrix multiplication on 64 x 64 blocks of data, one im
plemented with the standard algorithm with O(n3 ) complexity, and an im
plementation of the Strassen algorithm with O( n2

.
807

) complexity[Str69]. vVe
aim to perform a parallelized block matrix multiplication on matrices of sizes
512 x 512,1024 x 1024 and 2048 x 2048. Two different types of AVOp schedules
are created to accomplish this, one which uses a simple double buffering mech
anism to load input data onto the SPEs to perform the block multiplication,
and one in which SPEs share input blocks to reduce the bottleneck on main
memory.

In the case of both AVOp schedules, the double buffering schedule and
the data sharing schedule, a block matrix multiplication is being performed. In
both schedules, each 64 x 64 block Ci,j is computed on a single SPE by loading
in the appropriate blocks Ai,Ln and BLn,j and accumulating the resulting
multiplication in Ci,j by way of a matrix-multiplication-add computational
kernel. In both schedules, all SPEs will compute the exact same number of
Ci,j blocks. The input matrix sizes have been fixed to ensure this is the case,
for simplicity. In the case of the double buffering schedule, we simply overlap
the execution of each computational kernel with loads for the input data blocks
required by the next computational kernel.

In the case of the data sharing schedule, we only double buffer in the
Ai,j blocks required for each computational kernel's execution. For the Bi,j
blocks we perform some systolic data sharing amongst SPEs to alleviate the
bandwidth pressure on main memory. Starting from the first matrix multipli
cation kernel, we load on the required Bi,j block. However for the next seven
matrix multiplication kernels on each SPE, an SPE gets the input Bi,j block
from the SPE logically next to it, in a pipe-like fashion. For every eighth
matrix multiplication kernel executed on each SPE, we load a Bi,j block from

125



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

main memory again, before repeating the pattern of sharing Bi,j blocks. The
appropriate Ai,j block must be loaded on to be multiplied against each Bi,j

block, and the SPEs involved must be computing appropriate Ci,j blocks which
involve the same Bi,j blocks in their computation. A moments thought about
the block matrix multiplication algorithm, and how the same column of B is
multiplied against n rows of A (assuming square n x n block matrices), should
allow one to see how this sharing is possible. As each of our test matrix sizes
is a multiple of 8 x (64 x 64), we have for simplicity fixed the input sizes such
that this sharing can take place throughout the entirety of the schedule, as
with our n x n block matrices n is always divisible by 8, the number of SPEs.
The communication pattern is visualized in Figure 6.8. The purpose of this
more involved communication pattern is to reduce the main memory bottle
neck that was discussed in Section 3.5.1, the more data we can share amongst
the SPEs the less we have to draw from main memory and slow down other
transfers in the process.

Figure 6.8: Data Sharing Communication Pattern

Two different computational kernels are used with each of these AVOp
schedules, one of which implements the traditional O( n3

) complexity matrix
multiplication algorithm (i.e. Ci,j = ~;=1 Ai,kBk,j)' As was discussed in
section 3.5.1, assuming we have 64 x 64 matrices this algorithm would require
643 = 262144 floating point operations. As an SPE has 25.6 GFLOPS of
performance, we would expect an implementation of this kernel to execute in
10,240 nanoseconds.

The second computational kernel simulated is one which implements
the Strassen algorithm[Str69], which through a series of operations on subma
trices is able to achieve a lower complexity of O(n2

.
807

) [GSvdG95]. Assuming

126



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

64 x 64 size matrices, this would lead to approximately 642.807 = 117475 float
ing point operations being required to execute a Strassen matrix multiplica
tion kernel. An implementation should then have a runtime of approximately
4, 589 nanoseconds. Keep in mind that we are not attempting to parallelize
the Strassen algorithm itself across all SPEs as others have done[Ear08], we are
simulating a kernel implementation of it which executes on a single SPE. The
numerical stability of the Strassen algorithm is not guaranteed in the general
case, the matrices involved must be well-conditioned, and for this reason other
researchers have not, thus far, implemented it on the Cell/B.E.[SHvV+08].

For each matrix multiplication kernel (cubic complexity and Strassen)
and for each AVOp scheduling algorithm (double buffering and data sharing),
we performed simulations for matrices of size 512 x 512, 1024 x 1024 and
2048 x 2048. The tests were done 5 times each, so the execution time of the
Performance Simulator itself could be averaged (the simulated execution time
is the same across all test runs). In Table 6.4.6, we present the simulated
execution time measured in nanoseconds, the runtime of the simulator itself
measured in seconds, the number of AVOps simulated, the AVOps simulated
by the Performance Simulator per second and the nanoseconds of execution
simulated per second of simulator runtime.

Cubic Complexity Kernel/Double Buffering AVOp Schedule
Input Matrix Size 512 x 512 1024 x 1024 2048 x 2048
Simulated Execution 715637.2 5492765.0 43239664.0
Time (Nanoseconds)
Runtime of Simulator 0.557 2.777 19.808
(Seconds)
Number of AVOps 2688 20992 165888
AVOps Simulated per 4825.85 7559.24 8374.80
Second
Nanoseconds Simulated 1284806.46 1977949.23 2182939.42
per Second

Cubic Complexity Kernel/Data Sharing AVOp Schedule
Input Matrix Size 512 x 512 1024 x 1024 2048 x 2048
Simulated Execution 757565.6 5859873.0 46198156.0
Time (Nanoseconds)
Runtime of Simulator 1.1878 8.3504 65.217
(Seconds)
Number of AVOps 4032 31744 251904

127



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

AVOps Simulated per 3394.51 3801.49 3862.55
Second
Nanoseconds Simulated 637788.85 701747.58 708375.98
per Second

Strassen Kernel/Double Buffering AVOp Schedule
Input Matrix Size 512 x 512 1024 x 1024 2048 x 2048
Simulated Execution 704288.4 5438928.0 42830080.0
Time (Nanoseconds)
Runtime of Simulator 0.591 3.014 22.167
(Seconds)
Number of AVOps 2688 20992 165888
AVOps Simulated per 4548.22 6964.83 7483.56
Second
Nanoseconds Simulated 1191689.34 1804554.74 1932155.01
per Second

Strassen Kernel/Data Sharing AVOp Schedule
Input Matrix Size 512 x 512 1024 x 1024 2048 x 2048
Simulated Execution 418681.9. 3152965.8 24536674.0
Time (Nanoseconds)
Runtime of Simulator 1.316 9.732 68.655
(Seconds)
Number of AVOps 4032 31744 251904
AVOps Simulated per 3562.97 3261.82 3669.13
Second
Nanoseconds Simulated 318050.67 323979.22 357390.93
per Second

Table 6.1: Matrix Multiplication Performance Simulation
Results

The first thing to notice is that the results seem to conform rather well
with expectations of actual runtime. Matrix multiplication, in the traditional
case of the cubic complexity algorithm, is a computationally intense problem
that should be computation bound on the Cell/RE.. That is that it should
be possible for communication costs to be hidden more or less in their entirely
with computation, as was discussed in Section 3.5.1. As such we would expect
performance in the range of 204.8 GFLOPS; others in the literature executing

128



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

code similar to our cubic complexity double buffered solution, without the
overhead of the AVOp and Runtime System abstraction, were able to achieve
about 201 GFLOPS[CRDI07]. Our cubic complexity double buffered solution
was able to achieve 187.54 GFLOPS in the 512 x 512 case, 195.48 GLOPS
in the 1024 x 1024 case, and 198.66 GLOPS in the 2048 x 2048 case. These
numbers were obtained by dividing the number of floats required for cubic
complexity matrix multiplication by the simulated execution time of these
test cases. Though we do not have execution results of our own or in the
literature to compare the rest of the test cases to, these numbers seem very
reasonable given the overhead of AVOps and the Runtime System and we can
begin to state with some confidence that our simulator is reasonably accurate.

The results also seem to accurately simulate the differences in algorithm
execution time that we would expect. The execution times of each algorithm
are depicted in Figure 6.9, where CC = cubic complexity, S = Strassen, DB
= double buffering and DS = data sharing. 'vVe observe that in the case of
the cubic complexity kernel, the data sharing AVOp schedule is actually out
performed by the less complex double buffering AVOp schedule. It is in fact
the worst performing solution. This may seem surprising as the data sharing
AVOp schedule was meant as an optimization, in that it alleviates the main
memory bottleneck. The problem with applying this optimization in the case
of the cubic complexity kernel is that the problem was already computation
bound. This means optimizations to speed up main memory data transfers,
such as the data sharing AVOp schedule, should not provide a performance im
provement. 'vVhat happens instead is that the overhead of executing AVOps to
perform these data sharing transfers actually causes performance degradation.
This makes sense, as the data sharing algorithm requires 5 AVOps to transfer
a block of data from one SPE to another (SendSignal, 'vVaitSignal, SendData,
WaitData, WaitDNIA) where the double buffering algorithm requires 2 AVOps
to transfer a block of data from main memory (LoadMemory, WaitDrvIA).

Continuing to look at simulated execution times, we observe that the
Strassen kernel and double buffering AVOp schedule test case only slightly
outperforms the cubic complexity kernel and double buffering AVOp schedule
case and performs far worse than the Strassen Kernel and data sharing case.
Though the Strassen kernel has a far shorter runtime relative to the cubic
complexity kernel, it is not surprising that it only marginally outperforms the
cubic complexity kernel in the case of the double buffering AVOp schedule.
Recall from Section 3.5.1 that there is exactly enough computation time in
a cubic complexity matrix multiplication kernel to hide the communication
latency. So though we describe the problem as computation bound because
communication latency is hidden, it is as close as possible to being a com-

129



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

Simulated Execution Times

50000000 ~~~-""""~~---"""""-~_"'!!""-~__---"'I
45000000

'" 40000000
E
i= 35000000
50
'5 -g 30000000
u 0

~ ~ 25000000
w 0
-g iii 20000000 .
1OE..
~ 15000000 .

en 10000000

5000000 .

o·~-~

512x512 1024x1024

Matrix Size

2048x2048

-+- CC I DB -0- CC I OS S I DB . S I OS

Figure 6.9: Simulated Execution Time

munication bound problem. This is why we do not see a large performance
increase by switching from a cubic complexity kernel to a Strassen kernel in the
case of double buffering AVOps, the bound becomes communication as soon as
we make shorter computation runtime. It does improve marginally however,
and this can be explained by the overhead of the AVOp and Runtime System
abstraction. Though theoretically computation exactly hides communication
costs, in practice the additional expense of interpreting and executing AVOps
would make computation costs slightly more expensive than communication
costs. As such the large decrease in computation cost provided by the Strassen
kernel would be expected to improve runtime by that slight expense, and this
is exactly what we observe.

Finally the fact that the case of the Strassen kernel and data sharing
AVOps far outperforms all other test cases is completely expected. As dis
cussed the Strassen kernel turns the problem into one that is communication
bound, and if we then alleviate the main memory bottleneck by sharing data
amongst SPEs we decrease data transfer latencies and improve performance.

130



i\!I.Sc. Thesis - Kevin Browne ~ McMaster - Computing and Software

The fact that these results are entirely consistent with what is expected
when compared to one another provides evidence that the Performance Simu
lator meets its primary objective to allmv a Coconut developer to contrast the
effectiveness of different algorithms. What makes these test cases particularly
interesting is that gi','en a situation where the bound to program performance is
essentially both communication and computation, we were able to demonstrate
that schedules with optimizations aimed at only one of these bottlenecks to
performance had only a small effect on performance, either positively or neg
atively. However we were also able to demonstrate that by combining the
alleviation of the computation bottleneck (Strassen kernel) together with alle
viation of the communication bottleneck (data sharing AVOp schedule), large
performance gains could be expected.

AVOps Simulated per Second

..---- -- ----&

9000 .,...-~~~~~~~~~~-~~~~~~~-~~.........,

8000·

7000·

6000 .

~ 5000 .

~ 4000 .

3000

2000 .

1000 .

o
512x512 1024x1024

Matrix Size

2048x2048

-+-- CC / DB -0- CC / DS S / DB S / DS

Figure 6,10: AVOps Simulated per Second

Another core objective for the Performance Simulator was that it be
linearly bounded to the number of AVOps, as the Verification Tool is, for
purposes of scalability to future architectures and so that its efficient runtime
may open up opportunities to use the tool more acti"ely in making scheduling
decisions. In order to test that the Performance Simulator does in fact have
linearly bounded runtimes with respect to AVOps, we observed the runtime
of the Performance Simulator itself for each test case, vVe then divided the

131



NI.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

number of AVOps for each test case by the runtime of the Performance Simula
tor, to give us the number of AVOps simulated per second. If the Performance
Simulator is linearly bounded with respect to AVOps than we would expect, as
the number of AVOps increases as the matrix size of each test case increases,
for the number of AVOps simulated per second to either remain the same
or perhaps increase. Observing the graph of AVOps simulated per second in
Figure 6.10, this is precisely what we observe. It is not unexpected that differ
ent combinations of AVOp streams and computational kernels have different
AVOp per second processing speeds; different patterns of AVOp streams will
require different amounts of simulation processing as the machine state being
simulated is different. That in all cases vve observe linearly bounded runtimes
as AVOps increase serves as evidence that though runtime may be effected by
particular simulation schedules, the Performance Simulator itself is of linearly
bounded runtime complexity.

One other observation worth making is with respect to the nanoseconds
of execution simulated per second of simulator execution. oticing that it is
difficult to spot any meaningful pattern in this statistic brings up an interest
ing point. In contrast to other possible simulators where it may be natural
and interesting to compare the units of 'real time' it takes to simulate units
of 'execution time', it does not make sense to do so with our Performance
Simulator. This is because computational kernels embed so much potential
simulated execution time, and at such a cheap cost. One could have an AVOp
stream that consisted entirely of a single RunComputation instruction, exe
cuting a kernel that simulates hours of execution. However because simulating
the kernel's execution is just a matter of applying a function that maps kernels
to execution times, simulation could be done instantly. As such, for our Per
formance Simulator tool such a metric comparing simulated execution time to
real time is not as valid a metric as it could be for other lower-level (though
more powerful) simulators.

Network Simulation Performance Test

As a critical element of the Performance Simulator is successful simulation of
the EIB network of the Cell/B.E., a performance test targeted towards the Net
work Simulator component is prudent. vVe test the Performance Simulator by
checking against performance tests already published in the literature[CRDI07].
The authors of the paper "Cell Broadband Engine Architecture and its first
implementation - A performance vie'w" ran a set of experiments in which pairs
of SPEs streamed data to one another; the results of this paper were reviewed
in Section 3.5.3.

132



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

vVe reproduced this test with AVOps, pairing the same SPEs against
the same SPEs and streaming data to one another, and then measuring the
performance. Table 6.2 compares the results of our simulation testing to the
experimental results on real hardware. Note that as was discussed in Section
6.4.3, before applying Algorithm 4 to determines transfer rates, the total band
width of the command bus itself (i.e. the EIB) can be lowered by optionally
detecting and penalizing poor network traffic scenarios. vVe implemented a
basic bandwidth linear penalty function which penalizes command bus per
formance based on how many unique transfer paths are overlapping, and how
many network components are involved in overlapping paths. With this, we
were able to identify and closely approximate the effects of the poor traffic
configuration scenarios that were found in the experiments on real hardware,
as can be seen in Table 6.2.

vVe stress that we are not claiming that \ve can identify or simulate
exactly which network traffic scenarios will cause EIB bandwidth to drop well
below peak performance. However given a traffic scenario which we know
will result in poor network performance, we can identify it and account for it
during simulation.

For the majority of the test cases, where the original experiments pro
duced 197 GB/s of bandwidth, we came very dose at 196.5 GB/s. For the
outlying case where real hardware experiments produced 187 GB/s, there is
not an abundance of overlapping transfers, so the simulation still came in at
196.5 GB/s. This could be accounted for by penalizing specifically this traffic
pattern, but as this pattern may have simply been an aberration from the
norm, and its lack of performance is not as severe as the other cases, we did
not make a specific point to account for it.

133



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

Table 62' Network Bandwidth Simulation Test..

Test Configuration
EIB Bandwidth Simulated

[CRDI07] Bandwidth

SPE1 f-7 SPE3, SPES f-7 SPE7, 186 196.S
SPED f-7 SPE2, SPE4 f-7 SPE6

SPED f-7 SPE4, SPE1 f-7 SPE5, 197 196.S
SPE2 f-7 SPE6, SPE3 f-7 SPE7

SPED f-7 SPE1, SPE2 f-7 SPE3, 197 196.S
SPE4 f-7 SPE5, SPE6 f-7 SPE7

SPED f-7 SPE3, SPE1 f-7 SPE2, 197 196.S
SPE4 f-7 SPE7, SPES f-7 SPE6

SPED f-7 SPE7, SPE1 f-7 SPE6, 78 76.8
SPE2 f-7 SPES, SPE3 f-7 SPE4

SPED f-7 SPE5, SPE1 f-7 SPE4, 9S 93.2
SPE2 f-7 SPE7, SPE3 f-7 SPE6

SPED f-7 SPE6, SPE1 f-7 SPE7, 197 196.S
SPE2 f-7 SPE4, SPE3 f-7 SPE5

134



Chapter 7

Conclusion and Future Work

In conclusion, this thesis has documented the Performance Simulator tool
created for the Coconut Multicore Framework (CMF) which targets the mul
ticore layer of parallelism of the Cell/B.E .. This thesis has also documented
the CMF itself and a literature review of relevant parallel computing, the
Cell/B.E. and alternative Cell/B.E. program models. Performance testing of
the Performance Simulator presented in Section 6.4.6 indicate that it meets
its intended objectives of being a scalable, versatile and efficient compile-time
method for comparing the performance of different CMF AVOp streams on
Coconut developer workstations.

The Performance Simulator is a basically 'complete' tool in that it has
met its original design objectives. However some of the more ambitious us
ages envisioned for the tool should be investigated, in particular its usage in
scheduling algorithms themselves. As its runtime has been verified through
performance testing to be computationally efficient, these ambitions seem in
creasingly sound. The Performance Simulator should also be extended to
simulate AVOp execution on dual processor Cell/B. E. systems.

Future work on the CMF is required with respect to the generation of
AVOp streams from higher-level constructs. Until this work is done, the CMF
cannot be considered a fully complete developer to assembly code solution for
the Cell/B.E. or other multicore architectures.

The generation of computational kernels from the ILP level of Coconut
has held back performance testing of the CMF. However further performance
analysis of the Performance Simulator against real results would be very help
ful in determining that the tool is in fact simulating accurately. As these
computational kernels become available, such performance testing of both the
GMF and Performance Simulator must take place.

One feature relatively unique to the CMF is a high assurance of parallel

135



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

correctness, with a verified and peer reviewed algorithnlhaving been made
publicly available[AK08]. Though other solutions may either make assurances
of parallel safety or provide functionality to ensure parallel safety, a published
mechanism for how parallel safety is verified is atypical. It would be desirable
to build on this success, by continually building new verification mechanisms
for new constructs brought into the CMF. For example, verification of any
future loop representation of AVOp streams.

We propose on the basis of the literature search conducted of alter
native Cell/REo frameworks and models, that future research efforts for the
CNIF should focus on utilizing the correspondence between the virtual ma
chine abstraction and ILP. Firstly because it is unlikely that in the near term
a research project with the resources of Coconut can realistically compete as
a general multicore solution with commercially developed and industry sup
ported frameworks such as OpenMP, OpenCL and RapidMind. But also be
cause this ILP correspondence is a feature unique to the CMF, and is an area
which the Coconut team at present has a relatively high level of expertise.
Due purely to its uniqueness, this line of research may also be of particular
interest to the parallel computing community at large.

136



Bibliography

[AAA+02] NR Adiga, G Almasi, GS Almasi, Y Aridor, R Barik, D Beece,
R Bellofatto, G Bhanot, R Bickford, M Blumrich, AA Bright,
J Brunheroto, C Ca§caval, J Casta nos, VV Chan, L Ceze, P Co
teus, S Chatterjee, D Chen, G Chiu, TM Cipolla, P Crumley,
KM Desai, A Deutsch, T Domany, MB Dombrowa, W Donath,
M Eleftheriou, C Erway, J Esch, B Fitch, J Gagliano, A Gara,
R Garg, R Germain, lI1E Giampapa, B Gopalsamy, J Gun
nels, M Gupta, F Gustavson, SHall, RA Haring, D Heidel,
P Heidelberger, LM Herger, D Hoenicke, RD Jackson, T Jamal-

. Eddine, GV Kopcsay, E Krevat, MP Kurhekar, AP Lanzetta,
D Lieber, LK Liu, M Lu, M Mendell, A Misra, Y Moatti, L Mok,
JE Moreira, BJ Nathanson, 111 Newton M Ohmacht, A Oliner,
V Pandit, RB Pudota, R Rand, R Regan, B Rubin, A Ruehli,
S Rus, RK Sahoo, A Sanomiya, E Schenfeld, M Sharma,
E Shmueli, S Singh, P Song, V Srinivasan, BD Steinmacher
Burow, K Strauss, C Surovic, R Swetz, T Takken, RB Tremaine,
111 Tsao, AR Umamaheshwaran, P Verma, P Vranas, TJC Ward,
M Wazlowski, VV' Barrett, C Engel, B Drehmel, B Hilgart, D Hill,
F Kasemkhani, D Krolak, CT Li, T Liebsch, J Marcella, A Muff,
A Okomo, Iv1 Rouse, A Schram, M Tubbs, G Ulsh, C \iVait, J vVit
trup, 111 Bae, K Dockser, L Kissel, MK Seager, JS Vetter, and
K Yates. An overview of the BlueGene/L supercomputer. In
Supercomputing '02: Proceedings of the 2002 AeM/IEEE confer
ence on S'upercomputing, pages 1-22, Los Alamitos, CA, USA,
2002. IEEE Computer Society Press.

[ABC+06] K. Asanovic, R. Bodik, B. Catanzaro, et al. The landscape of
parallel computing research: A view from berkeley. Technical re
port, University of California at Berkeley, 2006. Technical Report
1 o. UCB/EECS-2006-183.

137



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

[ACK+04] Christopher Kumar Analld~ Jacques Carette, "Wolfram Kahl,
Cale Gibbard, and Ryan Lortie. Declarative assem
bler. SQRL Report 20, Software Quality Research Labo
ratory, McMaster University, October 2004. available from
http://sqrl.mcmaster.ca/sqrLreports.html.

[ACVP06] G. Amit, Y. Caspi, R. Vitale, and A.T. Pinhas. Scalability of mul
timedia applications on next-generation processors. Multimedia
and Expo, 2006 IEEE International Conference on, pages 17-20,
July 2006.

[ADE+01] Vishal Aslot, Max J. Domeika, Rudolf Eigenmann, Greg Gaert
ner, Wesley B. Jones, and Bodo Parady. SPEComp: A new
benchmark suite for measuring parallel computer performance.
In WON/PAT '01: Proceedings of the International Workshop on
OpenMP Applications and Tools, pages 1-10, London, UK, 2001.
Springer-Verlag.

[AG91] Ishfaq Ahmad and Arif Ghafoor. Semi-distributed load balancing
for massively parallel multicomputer systems. IEEE Tmns. Softw.
Eng., 17(10):987-1004, 1991.

[AJ88] R. Agra\o\al and H.V. Jagadish. Partitioning techniques for
large-grained parallelism. Computers, IEEE Tmnsactions on,
37(12):1627-1634, Dec 1988.

[AK07a] Christopher Kumar Anand and "Wolfram Kahl. Code graph trans
formations for verifiable generation of SIMD-parallel assembly
code. In Andy Schi..irr, Manfred Nagl, and Albert Zi..indorf, edi
tors, Applications of Cmph Tmnsformations with Industrial Rel
evance, Third Intl. Symp., ACTIVE 2007, Participants' Proceed
ings, pages 213-228 2007.

[AK07b] Christopher Kumar Anand and Wolfram Kahl. A domain-specific
language for the generation of optimized SIMD-parallel assembly
code. SQRL Report 43, McMaster University, May 2007. available
from http://sqrl.mcmaster.ca/sqrl_reports.html.

[AK07c] Christopher Kumar Anand and 'Wolfram Kahl. Multiloop: Effi
cient software pipelining for modern hardware. In CASCON '07.
Proc. 2007 Conference of the Center for Advanced Studies on
Collabomtive Research, pages 260-263, New York, 2007. ACM.

138



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

[AK08] Christopher K. Anand and VVolfran'i1Zahl. Synthesising and veri
fying multi-core parallelism in categories of nested code graphs. In
Michael Alexander and vVilliam Gardner, editors, Process Algebra
for Parallel and Distributed Processing. Chapman & Hall/CRC,
2008.

[AL07] Anant Agarwal and Markus Levy. The kill rule for multicore. In
DAC '07: Proceedings of the 44th annual conference on Design
automation, pages 750-753, New York, Y, USA, 2007. ACM.

[Amd67] Gene M. Amdahl. Validity of the single processor approach
to achieving large scale computing capabilities. In AFIPS '67
(Spring): Proceedings of the April 18-20, 1967, spring joint com
puter conference, pages 483-485, New York, NY, USA, 1967.
ACM.

[And92] Birger Andersen. Fine-grained parallelism in Ellie. J. Object
Oriented Program., 5(3):55-62, 1992.

[AP07a] Thomas vVilliam Ainsworth and Timothy Nlark Pinkston. On
characterizing performance of the cell broadband engine element
interconnect bus. In NOCS '07: Proceedings of the First Interna
tional Symposium on Networks-on-Chip, pages 18-29, Washing
ton, DC, USA, 2007. IEEE Computer Society.

[AP07b] T.vV. Ainsworth and T.NI. Pinkston. Characterizing the Cell EIB
on-chip network. Micro, IEEE, 27(5):6-14, Sept.-Oct. 2007.

[Bac78] John Backus. Can programming be liberated from the von Neu
mann style? A functional style and its algebra of programs.
Comm. ACM, 21(8):613-641, 1978.

[Bar93] B. Lewis Barnett, III. An ethernet performance simulator for
undergraduate networking. SIGCSE Bull., 25(1):145-150, 1993.

[BCG+95] Prithviraj Banerjee, John A. Chandy, Manish Gupta, Eugene VV.
Hodges IV, John G. Holm, Antonio Lain, Daniel J. Palermo,
Shankar Ramas'v' amy, and Ernesto Suo The paradigm compiler
for distributed-memory multicomputers. Computer, 28(10):37
47, 1995.

139



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

[BCG+06] Brian B6~as, Robert Cooper, Jon Greene, Michael Pepe, and
Myra Jean Prelle. Multicore framework: An API for program
ming heterogeneous multicore processors. Technical report, Mer
cury Computer Systems, Inc., 2006.

[BDCW92] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook,
and William E. Weihl. PROTEUS: a high-performance parallel
architecture simulator. In SIGMETRICS '92/PERFORMANCE
'92: Proceedings of the 1992 ACM SIGMETRICS joint inter
national conference on Measurement and modeling of computer
systems, pages 247-248, New York, 1 Y, USA, 1992. ACM.

[BHK07] 1. Baumgart, B. Heep, and S. Krause. OverSim: A flexible overlay
network simulation framework. In IEEE Global Internet Sympo
sium, 2007, pages 79-84, May 2007.

[BKP07] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to
manage energy and temperature. 1. ACM, 54(1):1-39, 2007.

[BL89] B.L. Bodnar and A.C. Liu. Modeling and performance analysis
of single-bus tightly-coupled multiprocessors. Computers, IEEE
Transactions on, 38(3):464-470, Mar 1989.

[BLK+07] Alfredo Buttari, Piotr Luszczek, Jakub Kurzak, Jack Dongarra,
and George Bosilca. SCOP3: A rough guide to scientific com
puting on the PlayStation 3. version 1.0. Technical Report UT
CS-07-595, Innovative Computing Laboratory, University of Ten
nessee Knoxville, May 2007.

[BM03] Simonetta Balsamo and Moreno Marzolla. A simulation-based
approach to software performance modeling. SIGSOFT Softw.
Eng. Notes, 28(5):363-366, 2003.

[Bok81] S.H. Bokhari. On the mapping problem. Computers, IEEE Trans
actions on, C-30(3):207-214, l\!Iarch 1981.

[BPBL06] Pieter Bellens, Josep 1\11. Perez, Rosa M. Badia, and Jesus
Labarta. CellSs: a programming model for the cell be architec
ture. In SC '06: Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, page 86, New York, NY, USA, 2006. ACM.

[BPE+04] Patrick Bohrer, James Peterson, f.,IIootaz Elnozahy, Ram Raja
mony, Ahmed Gheith, Ron Rockhold, Charles Lefurgy, Hazim

140



M.Sc. Thesis - Kevin BTOwne - McMaster - Computing and Software

Shafi Tarun Naktii7'Rick Simpson, Evan Speight, Kartik Sudeep,
Eric Van Hensbergen, and Lixin Zhang. Mambo: a full system
simulator for the PowerPC architecture. SIGMETRICS Perform.
Eval. Rev., 31(4):8~12, 2004.

[BTK06] Rainer Butchy, Jie Tao, and \iVolfgang Karl. Automatic data lo
cality optimization through self-optimization. In Self-Organizing
Systems, pages 187-201. Springer Berlin / Heidelberg, 2006.

[BW93] Eric A. Brewer and 'William E. Weihl. Developing parallel appli
cations using high-performance simulation. In PADD '93: Pro
ceedings of the 1993 ACMjONR workshop on Parallel and dis
tributed debugging, pages 158-168, New York, NY, USA, 1993.
ACM.

[BvVSF06] C. Benthin, 1. vVald, M. Scherbaum, and H. Friedrich. Ray trac
ing on the Cell Processor. Interactive Ray Tracing 2006, IEEE
Symposium on, pages 15-23, Sept. 2006.

[CCZ04] David Callahant, Bradford L. Chamberlaint, and Hans P. Zi
maj. The Cascade high productivity language. Proceedings of
the 9th International Workshop on High-Level Parallel Program
ming Models and S'upportive Environments (HIPS 2004), pages
52-60, 2004.

[CDG+93] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, and K. Yelick. Parallel programming
in Split-C. Supercomputing '93. Proceedings, pages 262-273, Nov.
1993.

[CDJ+91] R. G. Covington, S. Dwarkadas, J. R. Jump, S. Madala, and J. B.
Sinclair. The efficient simulation of parallel computer systems.
International Journal in Computer Simulation, 1:31-58, 1991.

[CDvV94] Jaeyong Choi Jack J. Dongarra, and David \i\. vValker. Pumma:
Parallel universal matrix multiplication algorithms on distributed
memory concurrent computers. Technical report University of
Tennessee, 1994.

[CG94] Brad Calder and Dirk Grunwald. Reducing indirect function call
overhead in c++ programs. In POPL '94: Proceedings of the

141



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

21st ACM SIGPLAN-SIGACT symposium on Principles of pro
gramming languages, pages 397-40S, New York, NY, USA, 1994.
ACM.

[CGOS] Michael Creel and William L. Gaffe. Multi-core CPUs, clusters,
and grid computing: A tutorial. Comput. Econ., 32(4):353-3S2,
200S.

[CH07] P. Conway and B. Hughes. The AMD Opteron Northbridge Ar
chitecture. Micro, IEEE, 27(2): 10-21, March-April 2007.

[Cha99] Xinjie Chang. Network simulations with OPNET. In Simulation
Conference Proceedings, 1999 Winter, volume 1, pages 307-314
vol. 1, 1999.

[CHB07] Eric Cheung, Harry Hsieh, and Felice Balarin. Framework for fast
and accurate performance simulation of multiprocessor systems.
In HLDVT '07: Proceedings of the 2007 IEEE International High
Level Design Validation and Test Workshop, pages 21-2S, Wash
ington, DC, USA, 2007. IEEE Computer Society.

[CHKWOS] Catherine H. Crawford, Paul Henning, Michael Kistler, and Cor
nell ·Wright. Accelerating computing with the cell broadband
engine processor. In CF '08: Proceedings of the 2008 conference
on Computing frontiers, pages 3-12, New York, NY, USA, 200S.
ACM.

[Chr96] D. Christie. Developing the AIvID-K5 architecture. Micro, IEEE,
16(2):16-27, Apr 1996.

[CHV04] Chen-Yong Cher, Antony L. Hosking, and T. N. Vijaykumar.
Software prefetching for mark-sweep garbage collection: hard
ware analysis and software redesign. In ASPLOS-XI: Proceedings
of the 11th international conference on Architectural S1.lpport for
programming languages and operating systems, pages 199-210,
New York, NY, USA, 2004. ACM.

[CK8S] David Callahan and Ken Kennedy.
distributed-memory multiprocessors.
puting, 2(2):151-169, 19S5.

142

Compiling programs for
The Journal of Supercom-



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

[CKPKQO] 'George Cybenko, Lyle Kipp, Lynn Pointer, and David Kuck.
Supercomputer performance evaluation and the Perfect Bench
marks. SIGARCH Comput. Archit. News, 18(3b):254-266, 1990.

[CMS01] Steve Carr, Jean Mayo, and Ching-Kuang Shene. Race condi
tions: a case study. J. Comput. Small Coll., 17(1):90-105, 200l.

[CRDI07] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell broadband
engine architecture and its first implementation: a performance
view. IBM 1. Res. Dev., 51(5):559-572, 2007.

[CS06] Tong Chen and Zehra Sura. Optimizing the use of static buffers
for dma on a cell chip. In In The 19th International Workshop on
Languages and Compilers for Parallel Computing (LCpe 2006,
2006.

[CSY90] Ding-Kai Chen, Hong-Men Su, and Pen-Chung Yew. The im
pact of synchronization and granularity on parallel systems.
SIGARCH Comput. Archit. News, 18(3a):239-248, 1990.

[Da109] Jason Dale. Re: Cell be eib, 2009. personal e-mail correspon
dance.

[DBOO] Evelyn Duesterwald and Vasanth Bala. Software profiling for hot
path prediction: less is more. SIGARCH Comp1d. Archit. News,
28(5):202-211, 2000.

[Dei05] Steven J. Deitz. High-level programming language abstractions for
advanced and dynamic parallel computations. PhD thesis, Uni
versity of Washington, Seattle, WA, USA, 2005. Chair-Snyder,
Lawrence.

[DG90] Helen Davis and Stephen R. Goldschmidt. Tango: A multipro
cessor simulation and tracing system. Technical report, Stanford
University, Stanford, CA, USA, 1990.

[DHN94] Phillip M. Dickens, Philip Heidelberger, and David M. Nicol.
A distributed memory LAPSE: parallel simulation of message
passing programs. SIGSIM Simul. Dig., 24(1):32-38, 1994.

[Din89] Anne Dinning. A survey of synchronization methods for parallel
computers. Computer, 22(7):66-77, 1989.

143



./III.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

[DLP03] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. The LIN
PACK benchmark: Past, present, and future. concurrency and
computation: Practice and experience. Concurrency and Com
putation: Practice and Experience, 15:2003, 2003.

[DM98] Leonardo Dagum and Ramesh )\l1enon. OpenMP: An industry
standard API for shared-memory programming. IEEE Comput.
Sci. Eng., 5(1):46-55, 1998.

[DPA99] Murthy Durbhakula, Vijay S. Pai, and Sarita Adve. Improv
ing the accuracy vs. speed tradeoff for simulating shared-memory
multiprocessors with ILP processors. In HPCA '99: Proceedings
of the 5th International Symposium on High Performance Com
puter Architecture, page 23, Washington, DC, USA, 1999. IEEE
Computer Society.

[ea95] Z. Vranesic et al. The NUMAchine multiprocessor. Technical
report, Technical Report CSRI-324, 1995.

[EA03] Dawson Engler and Ken Ashcraft. Racerx: effective, static detec- .
tion of race conditions and deadlocks. In SOSP '03: Proceedings
of the nineteenth A CM symposium on Operating systems princi
ples, pages 237-252, New York, NY, USA, 2003. ACM.

[Ear08] Tyler J. Earnest. Strassen's algorithm on the cell broad-
band engine. Department of Computer Science and Electrical
Engineering, University of Maryland Baltimore County, 2008.
http://www.mc2.umbc.edu/papers.

[EngOO] Ralf S. Engelschall. Portable multithreading - the signal stack
trick for user-space thread creation. In In Proc. USENIX Tech.
ConI, pages 239-250, 2000.

[EVS98] Roger Espasa, Mateo Valero, and James E. Smith. Vector archi
tectures: past, present and future. In 1CS '98: Proceedings of the
12th international conference on Supercomputing, pages 425-432,
New York, NY, USA, 1998. ACM.

[FA99] Cormac Flanagan and Martin Abadi. Types for safe locking. In
ESOP '99: Proceedings of the 8th European Symposium on Pro
gramming Languages and Systems, pages 91-108, London, UK,
1999. Springer-Verlag.

144



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

[FB92] E.S.T. Fernandes and F.M.B. Barbosa. Effects of building blocks
on the performance of super-scalar architectures. Computer Ar
chitecture, 1992. Proceedings., The 19th Annual International
Symposium on, pages 36-45, 1992.

[Fek09] Alan D. Fekete. Teaching about threading: where and what?
SIGACT News, 40(1):51-57, 2009.

[FHK+06] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight,
Larkhoon Leem, Mike Houston, Ji Young Park, Mattan Erez,
Manman Ren, Alex Aiken, 'William J. Dally, and Pat Hanrahan.
Sequoia: programming the memory hierarchy. In SC '06: Pro
ceedings of the 2006 A CM/IEEE conference on S'upercomputing,
page 83, New York, NY, USA, 2006. ACM.

[FR96] Michael J. Flynn and Kevin VV. Rudd. Parallel architectures.
ACM Comput. Surv., 28(1):67-70, 1996.

[Fre96] Vincent VV. Freeh. A comparison of implicit and explicit parallel
programming. 1. Parallel Distrib. Comput., 34(1):50-65, 1996.

[FRR+07] Matthew Fluet, Mike Rainey, John Reppy, Adam Shaw, and
Yingqi Xiao. Manticore: a heterogeneous parallel language. In
DAMP '07: Proceedings of the 2007 workshop on Declarative as
pects of multicore programming, pages 37-44, New York, NY,
USA, 2007. ACM.

[FVP06] Franz Franchetti, Yevgen Voronenko, and lIIarkus Piischel. Fft
program generation for shared memory: Smp and multicore. In
SC '06: Proceedings of the 2006 ACM/IEEE conference on Su
percomputing, page 115, New York, NY, USA, 2006. AC1/I.

[Gar07] Bryan Gardiner. Astrophysicist replaces
supercomputer with eight playstation 3s,
2007. http://www.wired.com/techbiz/it/news
/2007/10/ps3_supercomputer;'

[GcSS+05] Ralf Gruber, Marie christine Sawley, Basile Schaeli, Ali Tolou,
and Marc Torruella. Towards an intelligent grid scheduling sys
tem. In Parallel Processing and Applied Mathematics, LNCS
3911, pages 751-757. Springer Verlag, 2005.

145



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

[Gen02] ·Wolfgang Gentzsch. Grid computing: A new technology for the
advanced web. In IWCC '01: Proceedings of the NATO Ad
vanced Research Workshop on Advanced Environments, Tools,
and Applications for Cluster Computing-Revised Papers, pages
1-15, London, UK, 2002. Springer-Verlag.

[GG74] S. vV. Galley and Robert P. Goldberg. Software debugging: the
virtual machine approach. In ACM '74: Proceedings of the 1974
annual ACM conference, pages 395-401, New York, NY, USA,
1974. ACM.

[GG97] Jose Gonzalez and Antonio Gonzalez. Speculative execution via
address prediction and data prefetching. In ICS '97: Proceedings
of the 11 th international conference on Supercomputing, pages
196~203, New York, NY, USA, 1997. ACM.

[GGC05] Diwaker Gupta, Rob Gardner, and Ludmila Cherkasova. Xen
Mon: QoS monitoring and performance profiling tool. Technical
report, HP Laboratories Palo Alto, 2005.

[GLS94] \t\Tilliam Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI:
portable parallel programming with the message-passing interface.
MIT Press, Cambridge, MA, USA, 1994.

[GNS07] Michael T. Goodrich, Michael Nelson, and Nodari Sitchinava.
Sorting in parallel external-memory multicores. Technical report,
University of California, Irvine, 2007.

[GP85] D.D. Gajski and Jib-Kwon Peir. Essential issues in multiprocessor
systems. Computer, 18(6):9-27, 1985.

[GP95] Milind Girkar and Constantine D. Polychronopoulos. Extract
ing task-level parallelism. ACM Trans. Program. Lang. Syst.,
17(4):600-634, 1995.

[Gsc07] Michael Gschwind. The cell broadband engine: exploiting multi
ple levels of parallelism in a chip multiprocessor. Int. J. Parallel
Program., 35(3):233~262, 2007.

[GSvdG95] Brian Grayson, Ajay P Shah, and Robert A. van de Geijn. A high
performance parallel strassen implementation. Technical report,
University of Texas at Austin, Austin, TX, USA, 1995.

146



J./f.Sc. Thesis - Kevin Browne - J.//cMaster - Computing and Software

[Gus88] John 1. Gustafson. Reevaluating amdahl's law. Commun. ACM,
31(5):532-533, 1988.

[GW97] Robert A. Van De Geijn and Jerrell Watts. Summa: Scalable
universal matrix multiplication algorithm. Technical report, Con
currency: Practice and Experience, 1997.

[Has03] David A. Hastings. Experience teaching hands-on parallel com
puting at a small college. 1. Comput. Small Coll., 18(3):62-67,
2003.

[HB06] Lorin Hochstein and Victor R. Basili. An empirical study to com
pare two parallel programming models. In SPAA '06: Proceedings
of the eighteenth annual ACM symposium on Parallelism in al
gorithms and architectures, pages 114-114, New York, NY, USA,
2006. ACM.

[HFM88] Debra Hensgen, Raphael Finkel, and Udi Manber. Two algo
rithms for barrier synchronization. Int. 1. Parallel Program.,
17(1):1-17, 1988.

[Hi107] J. Hill. Scientific programming on the cell using alf. Technical
report, Technical Report from the HPCx Consortium, 2007.

[HLOO] Tony Hey and David Lancaster. The development of parkbench
and performance prediction. Int. J. High Perform. Comput.
Appl., 14(3):205-215, 2000.

[HL08] ~/Iaurice Herlihy and Victor Luchangco. Distributed computing
and the multicore revolution. SIGACT News, 39(1):62~72, 2008.

[HIJT93] Steven Huss-Iederman, Elaine M. Jacobson, and Anna Tsao.
Comparison of scalable parallel matrix multiplication libraries.
In in Proceedings of the Scalable Parallel Libraries Conference,
Starksville, J./IS, pages 142-149. Society Press, 1993.

[HMS+09] S. D. Hammond, G. R. Mudalige, J. A. Smith, S. A. Jarvis, J. A.
Herdman, and A. Vadgama. vVARPP: a toolkit for simulating
high-performance parallel scientific codes. In Simutools '09: Pro
ceedings of the 2nd International Conference on Simulation Tools
and Techniques pages 1-10, ICST, Brussels, Belgium, Belgium,
2009. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

147



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

[HN097] Lance Hammond, Basem A. Jayfeh, and Kunle Olukotun. A
single-chip multiprocessor. Computer, 30(9):79-85, 1997.

[Hof06] Hans Peter Hofstee. Real-time supercomputing and technology
for games and entertainment. In SC '06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 199, New York,
NY, USA, 2006. ACM.

[HS86] VV. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms.
Commun. ACM, 29(12):1170-1183,1986.

[HSN+04] A. Halaas, B. Svingen, M. Nedland, P. Saetrom, Jr. Snove, 0.,
and O.R. Birkeland. A recursive MISD architecture for pattern
matching. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 12(7):727-734, July 2004.

[Hu61] T. C. Hu. Parallel sequencing and assembly line problems. Op
erations Research, 9(6):841-848, 1961.

[IBM06] IBM. IBM BladeCenter QS20, 2006. http://www-
03.ibm.com/technology/ splash/qs20/pdf/qs20_datasheet.pdf.

[IBM07a] IBM. ALF for Cell BE Programmer's Guide and API Reference,
2007.

[IBNI07b] IBM. Software development kit for multi-core acceleration version
3.0., Oct. 2007.

[IBM08a] IBM. IBM BladeCenter QS21,
2008. ftp://ftp.software.ibm.com/commonj
ssi/pm/sp/n/bld03006usenjBLD03006USEN.PDF.

[IBNI08b] IBM. IBM BladeCenter QS22,
2008. fip:/ jftp.software.ibm.com/commonj
ssi/pmjspjn/bld03019usen/BLD03019USEN .PDF.

[IBM08c] IBM. Software development kit for multicore acceleration: Pro
gramming tutorial, 2008. Version 3.0.

[IYOO] Felix P. Muga II and \iVilliam Emmanuel S. Yu. A proposed topol
ogy for a 192-processor symmetric cluster with a single-switch de
lay, 2000. Proceedings of the First Philippine Computing Science
Congress, Manila, Philippines.

148



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

[JB07] C. R. Johns and D. A. Brokenshire. Introduction to the cell
broadband engine architecture. IBM 1. Res. Dev., 51(5):503-519,
2007.

[JFL98] Minwen Ji, Edward W. Felten, and Kai Li. Performance mea
surements for multithreaded programs. SIGMETRICS Perform.
Eval. Rev., 26(1):161-170,1998.

[JGMR07] D. Jimenez-Gonzalez, X. Martorell, and A. Ramirez. Performance
analysis of cell broadband engine for high memory bandwidth ap
plications. Performance Analysis of Systems and Software, 2007.
ISPASS 2007. IEEE International Symposium on, pages 210-219,
April 2007.

[JSK+06] Stephen A. Jarvis, Daniel P. Spooner, Helene N. Lim Choi Keung,
Junwei Cao, Subhash Saini, and Graham R. Nudd. Performance
prediction and its use in parallel and distributed computing sys
tems. Future Gener. Comput. Syst., 22(7):745-754, 2006.

[KA99] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms
for allocating directed task graphs to multiprocessors. ACM Com
put. Surv., 31(4):406-471,1999.

[KAC06] Wolfram Kahl, Christopher Kumar Anand, and Jacques Carette.
Control-flow semantics for assembly-level data-flow graphs. In
vVendy MacCaull, Michael vVinter, and Ivo Di.intsch, editors,
RelMiCS 2005, volume 3929 of LNCS, pages 147-160. Springer,
2006.

[KAD09] Jakub Kurzak, \iVesley Alvaro, and Jack Dongarra. Optimizing
matrix multiplication for a short-vector simd architecture - cell
processor. Parallel Comput., 35(3):138-150, 2009.

[KD09] Jakub Kurzak and Jack Dongarra. QR factorization for the cell
broadband engine. Sci. Program., 17(1-2):31-42,2009.

[KDH+05] J. A. Kahle, N. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy. Introduction to the cell multiproces
sor. IBM Journal of Research and Development, 49(4/5):589-604,
July/September 2005.

149



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

-~~

[Kes88] Srinivasan Keshav. REAL: A network simulator. Technical re-
port, University of California at Berkeley, Berkeley, CA, USA,
1988.

[KJS+07] Arun Kumar, Naresh Jayam, Ashok Srinivasan, Ganapathy
Senthilkumar, Pallav K. Baruah, Shakti Kapoor, Murali Krishna,
and Raghunath Sarma. Feasibility study of MPI implementation
on the heterogeneous multi-core cell be architecture. In SPAA
)01: Proceedings of the nineteenth annual A CM symposium on
Parallel algorithms and architectures, pages 55-56, New York,
NY, USA, 2007. ACM.

[KMVR90] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting
shared data structures on distributed memory architectures. SIG
PLAN Not., 25(3):177-186,1990.

[Koc07] Ken Koch. Roadrunner system overview, October 2007.
http://www.lanl.gov/ roadrunner/ rrperfassess. shtml.

[KPH+98] K. Keeton,' D.A. Patterson, Yong Qian He, R.C. Raphael, and
W.E. Baker. Performance characterization of a quad pentium
pro SMP using OLTP workloads. Computer Architecture) 1998.
Proceedings. The 25th Annual International Symposium on, pages
15-26, Jun-1 Jul 1998.

[KPP06] NIichael Kistler, Michael Perrone, and Fabrizio Petrini. Cell mul
tiprocessor communication network: Built for speed. IEEE Mi
cro, 26(3):10-23, 2006.

[Kri01] S. Krishnaprasad. Uses and abuses of amdahl's law. 1. Comput.
Small Coll., 17(2):288-293, 2001.

[KSK+07] Arun Kumar, Ganapathy Senthilkumar, NIurali Krishna, Naresh
Jayam, Pallav K. Baruah, Raghunath Sharma, Ashok Srinivasan,
and Shakti Kapoor. A buffered-mode MPI implementation for
the Cell BE processor. In ICCS )01: Proceedings of the 7th in
ternational conference on Computational Science) Part I, pages
603-610, Berlin, Heidelberg, 2007. Springer-Verlag.

[Lab09] Standford University Computer Systems Laboratory. Sequoia,
2009. http://www.stanford.edu/group/sequoia.

150



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

[LGV+05] R. Lottiaux, P. Gallard, G. Vallee, C. Morin, and B. Boissinot.
OpenMosix, OpenSSI and Kerrighed: a comparative study. Clus
ter Computing and the Grid, 2005. CCGrid 2005. IEEE Interna
tional Symposium on, 2:1016-1023 Vol. 2, May 2005.

[LKN96] Hsueh Lu, Philip N. Klein, and Robert H.B. Netzer. Detect
ing race conditions in parallel programs that use one semaphore.
Technical report, Brown University, Providence, RI, USA, 1996.

[LR97] Daniel Leibholz and Rahul Razdan. The alpha 21264: A 500 mhz
out-of-order execution microprocessor. In COMPCON '91: Pro
ceedings of the 42nd IEEE International Computer Conference,
page 28, 'Washington, DC, USA, 1997. IEEE Computer Society.

[LRF97] Hyuk-Jae Lee, James P. Robertson, and Jose A. B. Fortes. Gen
eralized cannon's algorithm for parallel matrix multiplication. In
ICS '91: Proceedings of the 11th international conference on Su
percomp1.ding, pages 44-51, New York, NY, USA, 1997. ACM.

[LRvV91] Monica D. Lam, Edward E. Rothberg, and Michael E. vVolf.
The cache performance and optimizations of blocked algorithms.
SIGOPS Oper. Syst. Rev., 25(Special Issue):63-74, 1991.

[Lut96] Mark Lutz. Programming python. O'Reilly & Associates, Inc.,
Sebastopol, CA, USA, 1996.

[Mar07] Grant Martin. A Power and Energy Perspective on MultiProces
sors. Springer Netherlands, 2007.

[McC06] NI. D. r-./lcCooi. Data-parallel programming on Cell BE and the
GPU using the Rapidmind development platform. GSPx Multi
core Applications Conference, 2006.

[McK04] Sally A. McKee. Reflections on the memory wall. In CF '04:
Proceedings of the 1st conference on Computing frontiers, page
162, New York, NY, USA, 2004. ACM.

[McM09] Robbie McMahon. OpenCL on the
tion 3. Loyola University Chicago,
http://sites.google.com/site/openclps3/project-proposal.

playsta
2009.

[M.J72] Flynn M.J. Some computer organizations and their effectiveness.
IEEE Trans. on Comp., C-2l:948-960, 1972.

151



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

[MML07]

[MMSC99]

[Moi97]

-----C. Mueller, B. Martin, and A. Lumsdaine. CorePy: High-
productivity Cell/REo programming, 2007. In Proc. 1st
STI/Georgia Tech vVorkshop on Software and Applications for
the Cell/B.E. Processor.

Berna L. Massingill, Timothy G. Mattson, Beverly A. Sanders,
and Timothy G. Mattson Intel Corporation. Patterns for paral
lel application programs, 1999. Proc. 6th Pattern Languages of
Programs Workshop (PLoP99).

IV1ark Moir. Practical implementations of non-blocking synchro
nization primitives. In PODC '97: Proceedings of the sixteenth
annual ACM symposium on Principles of distributed computing,
pages 219-228, New York, NY, USA, 1997. ACM.

[Mon08] N1atthew Monteyne. RapidMind multi-
core development platform, 2008.
http://www.rapidmind.net/pdfs/vVP_RapidNIindPlatform.pdf.

[M~V93] Mayan Moudgill, Keshav Pingali, and Stamatis Vassiliadis. Reg
ister renaming and dynamic speculation: an alternative approach.
In MICRO 26: Proceedings of the 26th annual international sym
posium on Microarchitecture, pages 202-213, Los Alamitos, CA,
USA, 1993. IEEE Computer Society Press.

[MRP+OO] Shubhendu S. Mukherjee, Steven K. Reinhardt, Babak Palsafi,
Mike Litzkow, Mark D. Hill, David A. 'Wood, Steven Huss
Lederman, and James R. Larus. vVisconsin Wind Tunnel II: A
fast, portable parallel architecture simulator. IEEE Concurrency,
8(4):12-20,2000.

[N1RR03] vVolfgang Muller, Wolfgang Rosenstiel, and Jiirgen Ruf, editors.
SystemC: methodologies and applications. Kluwer Academic Pub
lishers, Norwell, MA, USA, 2003.

[N1S04] Allen D. Malony and Sameer S. Shende. Overhead compensation
in performance profiling. In In Proceedings of the 10th Interna
tional Euro-Par Conference on Parallel Processing {Euro-Par 04,
pages 119-132. Springer-Verlag, 2004.

[MSL+07] Kent-Andre Mardal, Ola Skavhaug, Glenn T. Lines, Gunnar A.
Staff, and Asmund Odegard. Using Python to solve partial dif-

152



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

ferential equations. Computing in Science and Engg., .9(3}:48~51,

2007.

[MSVVOO] Silvia M. Miiller, Per Stenstrom, NIateo Valero, and Stamatis
Vassiliadis. Parallel computer architecture. In Euro-Par '00:
Proceedings from the 6th International Euro-Par Conference on
Parallel Processing, pages 537-538, London, UK, 2000. Springer
Verlag.

[MT04] lVIichael McCool and Stefanus Du Toit. Metaprogramming GPUs
with Sh. AK Peters Ltd, 2004.

[Mud06] Jayaram iVIudigonda. Addressing the memory bottleneck in packet
processing systems. PhD thesis, University of Texas at Austin,
Austin, TX, USA, 2006. Adviser-Vin, Harrick M.

[Mun08] Aaftab j\!Iunshi. OpenCL - parallel computing on the GPU and
CPU, 2008. http://s08.idav.ucdavis.edu/munshi-opencl.pdf.

[MvVHL06] Michael D. McCool, Kevin Wadleigh, Brent Henderson, and Hsin
Ying Lin. Performance evaluation of GPUs using the Rapid
iVIind development platform. In SC '06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 181, New York,
NY, USA, 2006. ACM.

[Naf06] S. Naffziger. High-performance processors in a power-limited
world. VLSI Circuits, 2006. Digest of Technical Papers. 2006
Symposi1Lm on, pages 93-97, 0-0 2006.

[NHOO] Kazunori Nishihara and Takaai Hiramatsu. Condition vari
able to synchronize high level communication between processing
threads, February 2000.

[NL91] B. Nitzberg and V. Lo. Distributed shared memory: a survey of
issues and algorithms. Computer, 24(8):52-60, Aug 1991.

[NNI92] Robert H. B. Netzer and Barton P. Miller. What are race con
ditions?: Some issues and formalizations. A CN! Lett. Program.
Lang. Syst., 1(1):74-88, 1992.

[Ors+06] M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and T. Nakatani.
NIPI JVIicrotask for programming the cell broadband engine pro
cessor. IBM Syst. J., 45(1):85-102, 2006.

153



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

---Kunle Olukotun, Basem A. N'ayfeh, Lance Hammond, Ken Wil-
son, and Kunyung Chang. The case for a single-chip multipro
cessor. SIGOPS Oper. Syst. Rev., 30(5):2-11, 1996.

Kevin O'Brien, Kathryn O'Brien, Zehra Sura, Tong Chen, and
Tao Zhang. Supporting OpenMP on cell. In IWOMP )07: Pro
ceedings of the 3rd international workshop on OpenMP, pages
65-76, Berlin, Heidelberg, 2008. Springer-Verlag.

[PCK07] Gabriele Program Chair-Keller. Haskell '07: Proceedings of the
acm sigplan workshop on haskell workshop, 2007.

[PZOL01] S. Parthasarathy, M. J. Zaki, NI. Ogihara, and W. Li. Paral
lel data mining for association rules on shared memory systems.
Knowl. Inf. Syst., 3(1):1-29, 2001.

[RDOO] Michiel Ronsse and Koen De Bosschere. Non-intrusive on-the-fly
data race detection using execution replay, Nov 2000. In Proceed
ings of Automated and Algorithmic Debugging.

[RPKOO] S.K. Raman, V. Pentkovski, and J. Keshava. Implementing
streaming SIMD extensions on the Pentium III processor. Mi
cro, IEEE, 20(4):47-57, Jul/Aug 2000.

[RSB94] S. Ramaswamy, S. Sapatnekar, and P. Banerjee. A convex pro
gramming approach for exploiting data and functional paral
lelism on distributed memory multicomputers. Parallel Process
ing) 1994. ICPP 1994. International Conference on, 2:116-125,
Aug. 1994.

[SBG+02] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban,
P.N. Strenski, and P.G. Emma. Optimizing pipelines for power
and performance. Microarchitecture) 2002. (MICRO-35). Pro
ceedings. 35th Annual IEEE/ACM International Symposium on,
pages 333-344, 2002.

[Sch09] Scott Schneider. Cellgen, 2009. http://people.cs.vt.edu/ sc
schnei/cellgen/.

[Sha] Agam Shah. PC 'World - Intel acquires software company Rapid
Mind. http://www.pcworld.com/artic1e/170632/inteLacquires
_software_company_rapidmind. html.

154



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

[Shi07] Tomonori Shindou. How far haq cell dna been passed on?
interview with toshiba spursengine developer, October 2007.
http://techon.nikkeibp.co.jp/english/NE\tVS_EN/20071017/140756/.

[SHW+08] T. Schneider, T. Hoefler, S. \tVunderlich, T. Mehlan, and
\tV. Rehm. An optimized ZGE~/IM implementation for the Cell
BE. In Proceedings of the 9th Workshop on Parallel Systems and
Algorithms (PASA), Feb. 2008.

[SKGF08] Sriram Swaminarayan, Kai Kadau, Timothy C. Germann, and
Gordon C. Fossum. 369 tflop/s molecular dynamics simula
tions on the Roadrunner general-purpose heterogeneous super
computer. In SC '08: Proceedings of the 2008 ACM/IEEE con
ference on Supercomputing, pages 1-10, Piscataway, NJ, USA,
2008. IEEE Press.

[SKP06] Sayantan Sur, Matthew J. Koop, and Dhabaleswar K. Panda.
High-performance and scalable mpi over infiniband with reduced
memory usage: an in-depth performance analysis. In SC '06:
Proceedings of the 2006 ACM/IEEE conference on Supercomput
ing, page 105, New York, NY, USA, 2006. ACM.

[SKST08] Vipin Sachdeva, lVIichael Kistler, Evan Speight, and Tzy
Hwa Kathy Tzeng. Exploring the viability of the cell broad
band engine for bioinformatics applications. Parallel Computing,
34(11):616 - 626, 2008. High-Performance Computational Biol
ogy.

[Smi88] J. E. Smith. Characterizing computer performance with a single
number. Commun. ACM, 31(10):1202-1206, 1988.

[Son09] Sony. Unit sales of hardware (since april 2006), 2009.
http://www.scei.co.jp/corporate/data/bizdataps3_sale_e.html.

[SP88] J.E. Smith and A.R. Pleszkun. Implementing precise inter
rupts in pipelined processors. Computers, IEEE Transactions
on, 37(5):562-573, lVlay 1988.

[Spr07] J. Spray. Lattice QCD on the cell pro-
cessor. University of Edinburgh, 2007.
http://www2.epcc.ed.ac. uk/msc/dissertations/dissertations
0607/8991210-27b-d07rep1. 2. pdf.

155



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

[SS95a] Brian Sclunldt and V. S. Sunderam. Empirical analysis of over
heads in cluster environments. Concurrency: Practice and Expe
rience, 6:1-32, 1995.

[SS95b] J.E. Smith and G.S. Sohi. The microarchitecture of superscalar
processors. Proceedings of the IEEE, 83(12):1609-1624, Dec 1995.

[SSOG93] Jaspal Subhlok, James M. Stichnoth, David R. O'Hallaron, and
Thomas Gross. Exploiting task and data parallelism on a multi
computer. SIGPLAN Not., 28(7):13-22, 1993.

[SSS+04] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, vVei
Huang, Sivakumar Velusamy, and David Tarjan. Temperature
aware microarchitecture: Modeling and implementation. A CM
Trans. Archit. Code Optim., 1(1):94-125, 2004.

[Sto77] H.S. Stone. Multiprocessor scheduling with the aid of network
flow algorithms. Software Engineering, IEEE Transactions on,
SE-3(1):85-93, Jan. 1977.

[Str69] V. Strassen. Gaussian elimination is not optimal. Numerical
Mathematics, 13:354-356, 1969.

[SvVG92] Jaswinder Pal Singh, vVolf-Dietrich vVeber, and Anoop Gupta.
SPLASH: Stanford parallel applications for shared-memory.
SIGARCH Comput. Archit. News, 20(1):5-44, 1992.

[SYR+08] Scott Schneider, Jae-Seung Yeom, Benjamin Rose, John C. Lin
ford, Adrian Sandu, and Dimitrios S. Nikolopoulos. A comparison
of programming models for multiprocessors with explicitly man
aged memory hierarchies. In PPoPP '09: Proceedings of the 14th
A CM SIGPLAN symposium on Principles and practice of parallel
programming, pages 131-140, New York, NY, USA, 2008. ACM.

[Tha06] Vlolfgang Thaller. Explicitly staged software pipelin-
ing. Master's thesis, McMaster University, Department
of Computing and Software, 2006. http)/sqrl.mcmaster.ca/
-anand/ papers/ThalierMScExSSP pdf.

[Top08] Top500.org. Jaguar chases Roadrunner, but cant grab top
spot on latest list of "vodds top500 supercomputers, 2008.
http://www. top500.org/lists/2008/11/press-release.

156



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

[UK88] A. K. Uht and J. ,F. Kalen. On the combination of hardware and
software concurrency extraction methods. SIGMICRO Newsl.,
19(1-2):53-57, 1988.

[vdS93] Aad J. van der Steen. The benchmark of the EuroBen group.
In Computer benchmarks, pages 165-175. Elsevier Science Pub
lishers B. V., Amsterdam, The Netherlands, The Netherlands,
1993.

[VKJ+07] M. K. Velamati1, A. Kumar, N. Jayam, N. G. Senthilkumar, P. K.
Baruah, R. Sharma, S. Kapoor, and A. Srinivasan. Optimization
of collective communication in intra-cell MPI, 2007.

[VRCG+99] Raja Vallee-Rai, Phong Co, Etienne Gagnon, Laurie Hendren,
Patrick Lam, and Vijay Sundaresan. Soot - a java bytecode op
timization framework In CASCON '99: Proceedings of the 1999
conference of the Centre for Advanced Studies on Collaborative
research, page 13. IBM Press, 1999.

[vVM95] \iVm. A. \iVulf and Sally A. McKee. Hitting the memory wall:
implications of the obvious. SIGARCH Comput. Archit. News,
23(1) :20-24, 1995.

[vVMZ+08] Qianxiang Wang, Na Meng, Zhiyi Zhou, Jinhui Li, and Hong Mei.
Towards SOA-based code defect analysis. In SOSE '08: Pro
ceedings of the 2008 IEEE International Symposium on Service
Oriented System Engineering, pages 269-274, vVashington, DC,
USA, 2008. IEEE Computer Society.

[vVo104] \iVayne \iVolf. The future of multiprocessor systems-on-chips. In
DAC '04: Proceedings of the 41st annual conference on Design
automation, pages 681-685, New York, NY, USA, 2004. AC 1.

[\iVSO+07] Samuel vVilliams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry
Husbands, and Katherine Yelick Scientific computing kernels on
the cell processor. Int. J. Parallel Program., 35(3):263-298, 2007.

[YKJ02] Yi-ran Sun, Shashi Kumar, and Axel Jantsch. Simulation and
evaluation of a network on chip architecture using. In Proc.,
IEEE NorChip Conference, 2002.

157



M.Sc. Thesis - Kevin Browne - McMaster - Computing and Software

[ZHNB06] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz.
Super-scalar RA.M-CPU cache compression. In ICDE '06: Pro
ceedings of the 22nd International Conference on Data Engineer
ing, page 59, 'Washington, DC, USA, 2006. IEEE Computer So
ciety.

[ZR04] Jingren Zhou and Kenneth A. Ross. Buffering databse operations
for enhanced instruction cache performance. In SIGMOD '04:
Proceedings of the 2004 ACM SIGMOD international conference
on Management of data, pages 191-202, New York, NY, USA,
2004. ACM.

[ZSLW92] S. Zhou, M. Stumm, K. Li, and D. \Nortman. Heterogeneous
distributed shared memory. IEEE Trans. Parallel Distrib. Syst.,
3(5):540-554, 1992.

158


