
A VLSI ARCHITECTURE AND THE FPGA IMPLEMENTATION FOR MULTI-RATE Lope DECODING

A VLSI ARCHITECTURE AND THE FPGA IMPLEMENTATION FOR MULTI-RATE Lope DECODING

By

MARK JOBES, B.A.Sc. (ELECTRICAL ENGINEERING)

MAY 2009

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF McMASTER UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF ApPLIED SCIENCE

© Copyright 2009 by Mark Jobes, B.A.Sc. (Electrical Engineering)

All Rights Reserved

MASTER OF APPLIED SCIENCE (2009)

(Electrical and Computer Engineering)

McMaster University

Hamilton, Ontario

TITLE:

AUTHOR:

SUPERVISOR:

NUMBER OF PAGES:

A VLSI ARCHITECTURE AND THE FPGA
IMPLEMENTATION FOR MULTI-RATE LDPC
DECODING

Mark Jobes, B.A.Sc. (Electrical Engineering)

Dr. Nicola Nicolici

xiii, 114

ii

Abstract

Low density parity check (LOPC) codes are utilized frequently in practice as a

means of forward error control or error detection. This thesis intends to provide a

very large scale integration (VLSI) architecture and corresponding field

programmable gate array (FPGA) based implementation for a multi-rate LOPC

code.

Utilizing inherent properties in the quasi-cyclic parity check matrix

construction for multiple rates, a nested node situation is exploited. This

exploitation produces an architecture that, for this thesis' case study of 802.15-

3c, has area savings in the check node update calculation block of roughly half

the design that would support multiple rates via parallel instantiation of nodes

inside the check node update calculation block.

iii

Acknowledgements

Herein I intend to acknowledge most of the individuals and groups whom have

aided in the development of this work. Firstly I would like to thank the

administrative staff in the ECE department at McMaster University; they greatly

facilitated the process entailed in developing this work.

Next I would like to acknowledge my supervisor Dr. N. Nicolici for his great

patience, guiding wisdom, and no-nonsense approach to life; this work would

have not been at all possible without his help and knowledge.

I would also like to acknowledge Dr. S. Hranilovic and Dr. J.K. Zhang for

their aid in the theoretical aspects of this work; without their clarifications, this

work would have not been possible in the given timeframe.

I would also like to acknowledge my mates in the CADT group for their

endurance of my odd behaviour and for their support. Henry Ko, Adam Kinsman,

Ehab Anis, Zahra Lak, Kaveh Elizeh, Jason Thong, Roomi Sahi, and Phil

Kinsman; thank you.

Finally I would like to acknowledge Dr. N. Nicolici, Dr. S. Shirani, and Dr.

J.K. Zhang for acting as the examination committee for review of this thesis;

thank you for your efforts.

iv

Glossary

Abstraction
- The removal of detail to facilitate design description

Arch itectu re
- Graphical or text based schematic of a design in the sense of the

circuit

Automation
- The handing over of control to computers for management of design

details

CAD, computer aided design,
- Tools for design automation

Check Node
- Container for extrinsic information outside variable nodes

Design space
- The abstract space wherein possible design criteria decisions

produce displacement

Design reuse
- The use of already designed cores in a system to ease the design

process

Design verification
- The comparison of design against specification

Diagnosis

Decode

Encode

- Determining what caused a failed device to fail

- The process of retrieving an information vector from an encoded
vector

- The process of applying an error correcting code to an information
vector

v

.,

FPGA, field programmable gate array
- An ASIC device which may be programmed, via internal SRAM cells,

as to simulate the logic network described by the programmed bit
stream

HDL, hardware description language
- Design language for RTL descriptions e.g. VerilogNHDL

IC, integrated circuit
- Many transistors integrated in a single package, a device

Irregular Code

Layout

- A code wherein the degree of check nodes varies with that of the
variable nodes

- Low level description of a circuit in terms of transistor placements

LDPC, Low Density Parity Check
- An linear block error correcting code wherein the parity check matrix

is sparse

LUT, look up table
- A device with address dependant outputs which can be programmed

Modularity
- Ease of insertion and connection of a module into a system

architecture

Moore's law

Netlist

- An empirical observation of exponential transistor density growth

- A low-mid level description of a circuit in terms of logic gate
connections

Parity Check Matrix
- A matrix used in linear block error correction

Physical layout see layout

Rate
- One minus the ratio of check nodes to variable nodes

vi

Regular Code
- A code wherein the degree of check nodes is constant along with that

of the variable nodes

RTL, register transfer level
- A mid-high level description using register operations

SRAM, Static Random Access Memory
- A type of semiconductor memory that need not be refreshed

periodically, yet content values are still lost in the event of power loss

Scalability
- The measurement of how design complexity changes with input

problem size

Specification
- The formal description of the design requirements for a system

Synthesis
- Transformation of a description to a lower level of abstraction

Synthesis (architectural)
- Behavioural expressions produce RTL

Synthesis (logic)
- Logic equations produce netlist

Testbench
- Stimuli and expected responses used by simulation during verification

Variable Node
- Container for extrinsic information outside check nodes

VLSI, very large scale integrated circuits
- Containing millions of transistors

vii

Contents

., ,

Abstract , , ... , iii

Acknowledgements ... iv

Glossary ... v

Contents .. viii

List of Tables .. x

List of Equations ... x

List of Figures .. xi

Chapter 1 .. 1

1 - Introduction .. 1

1.1 - VLSI Design ... 3

1.1.1 - Design Modularity and Abstraction .. 3

1 .1 .2 - Automation and CAD Tools ... 5

1.1.3 - Implementation Technology .. 6

1.2 - LDPC Codes .. 13

1.2.1 - LDPC Coding Basics ... 14

1.2.2 - Encoding ... 19

1.2.3 - Decoding ... 23

1.2.4 - Matrix Construction .. 29

viii

Chapter 2 .. 36

2 - Prior Art and Related Work .. 36

2.1 - The Design Space ... 36

2.2 - Prior Work on LDPC Decoders ... 42

Chapter 3 .. 55

3 - A New VLSI Architecture and Its FPGA Implementation 55

3.1 - Preliminary Concepts ... 55

3.2 - Node Nesting ... 62

3.3 - Architectures for Node Nesting .. 70

3.4 - Implementation ... 78

3.4.1 - Behavioural ModeL .. 82

3.4.2 - Generic VLSI Architecture ... 83

3.4.3 - Final Implementation and Results ... 89

Chapter 4 .. 99

4 - Conclusion .. 99

4.1 - Advantages .. 100

4.2 - Limitations .. 101

4.3 - Future Work , ... 102

Bibliography .. 103

Index ... 108

ix

List of Tables

Table 2.1: Important Parameters of the LOpe Decoder Design Space [3] 37

Table 3.1: The relative costs for implementing the support for reference inputs
and outputs as to have merge-able nodes .. 77

Table 3.2: A depiction of the cost analysis used for design 89

List of Equations

Equation 1.1: SPA Formulae ... 26

Equation 1.2: UMP Formulae .. 27

Equation 3.1: The formulae for the check-node-update-calculation (a), variable­
node-update-calculation (b), and hard-decision-vector-component-calculation (c) .
.. 56

x

List of Figures

Figure 1.1: A graph of transistor count vs. time from [32]. 2

Figure 1.2: Design flow adopted by this thesis .. 6

Figure 1.3: Symbolic representation of an FPGA. ... 9

Figure 1.4: ASIC design flow redrawn from [42]. , .. 11

Figure 1.5: A general representation of the Tanner graph (left) and parity check
matrix (right) .. 14

Figure 1.6: Complete encoding example using the generator matrix derived from
the parity check matrix .. 20

Figure 1.7: Encoding represented as a system of equations 21

Figure 1.8: A linear block code encoding example .. 22

Figure 1.9: General flow of information for update calculation formulae 25

Figure 1.10: An example of identity matrix permutation for an identity matrix of
size K x K .. 30

Figure 1.11: A general example of base matrix contents 30

Figure 1.12: Illustration of matrix construction method. Note that arrows do not
show all possible data traversal as to simplify the illustration 33

Figure 2.1: A check node architecture from [36] which utilizes SPA as the
decoding algorithm .. 42

Figure 2.2: A check node architecture from [36] which utilizes an augmented SPA
with Reduced-LUTs and Compression Units .. 45

Figure 2.3: A figure from [36] to clarify the reasoning behind the RLUTs 46
xi

Figure 2.4: The SPA formulae reorganization utilized by [36]. 48

Figure 2.5: An example of a UMP based check node update calculation 50

Figure 2.6: A UMP based variable node update calculation block, all wires are q
bits wide .. 51

Figure 2.7: A Check node architecture from [14] which maintains numeric
representation, outside the check nodes, in 2's complement.. 52

Figure 3.1: An example check-node-update-calculation processing block
architecture ... 59

Figure 3.2: The hard-decision-vector-component-calculation and variable-node-
update-calculation in a single architecture as to reuse hardware 61

Figure 3.3: The matrices used in this work's case study [16]. 64

Figure 3.4: The depiction of the macro blocks designed for the case study of this
work ... 65

Figure 3.5: Intelligent Masking Depiction .. 67

Figure 3.6: A depiction of how nodes of degree N1 and N2 can be merged to
produce a merge-able node of degree N1 + N2 ... 72

Figure 3.7: A depiction of how nodes of degree N1, N2, and N3 can be merged to
produce a merge-able node of degree N1 + N2 + N3 ... 73

Figure 3.8: An inefficient inclusion of the Reference Input for the degree-6
example in Equation 3.1 .. 74

Figure 3.9: A ne\AI architecture that \AJi!! support both a reference input and a
reference output (architecture is modified from Figure 3.1) 75

Figure 3.10: Flowchart for design process utilized by this thesis 78

xii

Figure 3.11: Captured output from cygwin running the software backend
behavioural model for a single instance .. 83

Figure 3.12: The general LDPC decoder architecture for implementation in the
proof of concept. ... 84

Figure 3.13: Architecture of worst case scenario Address Dependant Rewire Unit.
.. 86

Figure 3.14: An architecture of the Memory Block Module 87

Figure 3.15: An illustration of a comb-1 block ... 91

Figure 3.16: An Illustration of a comb-3 block ... 92

Figure 3.17: Illustration of the critical path through the general architecture 96

Figure 3.18: Illustration of a possible critical path through the degree-31 macro
node from section 3.2 .. 97

xiii

M.A.Sc. M.N. Jobes - McMaster

Chapter 1

1 - Introduction

Current technology has achieved a level of complexity that would astound almost

any individual from the past. We currently have devices able to perform in mere

seconds what would previously take on the order of years. None of this would be

possible without integrated circuits (ICs) which are solid state devices created in

semiconducting material such as arsenic, germanium, and silicon. Such ICs have

seemingly endless application due to inherent generality; i.e. almost any equation

or algorithm can be equated or modeled using the power of ICs. ICs are

comprised mostly of transistors but some passive components such as resistors

and capacitors have proven useful in some applications. In most practical devices

today the complexity of the ICs utilized is phenomenal and this complexity is only

increasing according to [5]. This increasing tendency could be due to Moore's

Law, a long-term trend of computer hardware where the number of transistors

inexpensively place-able on a chip increases exponentially as time progresses

[5]; a figure graphing this is provided below (re-coloured from [32]) in Figure 1.1.

1

1.1 - VLSI Design M.A.Sc. M.N. Jobes - McMaster

Moore's Law (1959/1.5. Sources: Intel. IBM, TI, Poisson)

1e+14 r---------,-------.------,----------,-------.------,
! ! ! UltraSPARC+? +
! I:. ! IBM Power 4 x '

1 MHz \ 10 MHz 100 MHz \ 1 GHz P_III 0.18 um '7/

1 e+12 ~---------------------------~------------------------- __ + _______________________________ ~------------------- p~m~ .~~h~'~ _
: :: /P-II 0

iii / P-I •
\ \ \ P-Pro ;",

.. iii // P-I ...
is 1 e+-I 0 -------------------------j----------------------------t--------------------------T----------///" 6J6~~ "1 -

tv ! j coJper / i~:~ ¢

i 1 e+08 ---------------------------l---------------,,---------J----,,----------------------~L---------- i~~~ : -8 1 1 / 1 8085 0
~ :: /' 1!l : 8080 ~ * ! Aluminiu!n /. t-. @I ! VLlW 4004 0

~ 1 e+06 ---------------------------j----------------;7+----~--------:-----------+----------------·-----------r~r:~:-~~-~~-~:-:~-~-t-------------
i + / RIS(.T i Superscalar i j i

01/ J I I I

10000 :-------0---;7+-------------------------+----------------------------t---------------------------+-------------------------- ! -------------

/ BJT i CMOS i BiCMOS ! i i
~,/ ~ l \ ~ i

100L----~----~----L----~----~-~

1970 1980 1990 2000
Time [yr]

2010 2020

Figure 1.1: A graph of transistor count vs. time from [32].

In the following sections of this chapter, discussion will be provided on the

general design of Very Large Scale Integration (VLSI) circuits (Chapter 1.1),

along with the modularity and abstraction utilized (Chapter 1.1.2), and the

automation of design steps with use of computer aided design (CAD) tools

(Chapter 1.1.3). Also discussion will be provided on low density parity check

(LOPC) codes (Chapter 1.2), the basics of LDPCs (Chapter 1.2.1), the process of

encoding (Chapter 1.2.2), the process of decoding (Chapter 1.2.3), and the

process of parity check matrix construction (Chapter 1.2.4).

2

1.1 - VLSI Design M.A.Sc. M.N. Jobes - McMaster

1.1 - VLSI Design

To directly design some of today's complex devices at the lower levels are

complex. The transistor and fabrication levels require a vast amount of criteria to

be established and resolved; this could take a single individual as long as his or

her own life span. Thus, to be able to produce the more complex designs of

today, some form of automation along with a consistent design methodology is a

necessity. To create an automation process that could directly take high level

expressions and immediately translate these expressions into fabricated les is a

task that is as daunting, if not more so, when compared to the original problem of

layout or transistor level design; another solution is needed.

1.1.1 - Design Modularity and Abstraction

Modular design allows automation to be used to create solutions automatically

from high level expressions is feasible. By utilizing levels of abstraction, problems

can be broken down into much more manageable sub-problems and then

solutions can be linked together.

Abstraction can be thought of as the process of intelligent sectioning of

stages or modules or simply information as to produce a generalized viewpoint or

3

1.1 - VLSI Design M.A.Sc. M.N. Jobes - McMaster

module or section, in which only the immediately relevant information is

incorporated. For example when organizing a company from the highest level,

one may use levels of abstraction to simplify the payroll and then need only be

concerned with section payroll; leaving the details in each section to be dealt with

by the section supervisor(s).

By chaining different tools, or in other words cascading solutions, across

different levels of abstraction, a design may be produced in a realistic timeframe,

i.e. within the time-to-market. Another important point is that if a sub-problem is

solved, yet needed multiple times, there is a significant reduction in the total

amount of work needed due to the ability of module reuse. This is one of the most

significant features of modular design. Due to the nature of modular design a

sub-problem need only be solved once regardless of the number of times the

sub-problem is needed. This is because the solution can simply be copied and

then it may be linked into the final solution.

The means for the sub-problem solving and later linking of solutions is

encapsulated in the field of design automation. Computers may be used in

tandem with powerful algorithms as to optimise and compile higher level

expressions or languages into the desired lower level expressions or languages;

eventually reaching the lovvest leVel of design. This is the subject of the foiiowing

section.

4

1.1 - VLSI Design M.A.Sc. M.N. Jobes - McMaster

1.1.2 - Automation and CAD Tools

Modular design may seem to be a sufficient solution to the problem of

determining solutions to large scale problems yet is insufficient without the aid of

automation. Truly a sub-problem could be solved and then could be linked into

the larger solution by hand, but since this process is strongiy deterministic (Le.

the input and output problems are bounded in addition to a unique input

consistently resulting in the same corresponding output), automation is possible.

Automation is the solution for when the same set of steps need to be performed

multiple times; this occurs frequently in the scope of IC design, such as when

functions are optimized or netlists processed. Automation also has the advantage

of modularity. For instance an automatic tool need not be holistic; the tool may

only solve part of a sub-problem. This result could then be linked with the other

automation tools necessary for a complete solution to the sub-problem at hand.

Even with all the CAD tools at hand, a means of cascading or linking the

automatically generated data is still required as to produce a design; to perform

this cascading or linking, an order or dependency first need be established. In the

following section a description of the CAD based implementation technology flow

(Le. design order) is provided.

5

:1

1.1 - VLSI Design M.A.Sc. M.N. Jobes - McMaster

1.1.3 - Implementation Technology

In this section of the thesis the flow through the various stages of design

expression, as understood by this thesis, to final implementation is provided.

The various stages of design flow adopted by this thesis are resultant of

the levels of abstraction utilized and the CAD tools available. These levels

include: behavioural modeling, logic synthesis, technology mapping, and

simulation and verification. A figure is provided below as to illustrate this flow,

Figure 1.2, followed by a delineation of the illustrated stages.

Behavioural
Modeling

,
Logic Synthesis

Simulation and
Verification

,

r

Figure 1.2: Design flow adopted by this thesis.

Technology
Mapping

Behavioural modeling, similar to algorithmic synthesis or high-level

synthesis is an automated design process that interprets an algorithmic

6

1.1 - VLSI Design M.A.Sc. M.N. Jobes - McMaster

description and produces the corresponding hardware [30]. The algorithmic

description is of a desired behaviour and the hardware created implements said

behaviour. Initially ANSI C/C++/SystemC code or similar is produced as to

describe the desired behaviour, the code is then analyzed, architecturally

constrained, and scheduled. This produces register transfer level (RTL)

description in a hardware design language (HDL) such as Verilog [45]. This HDL,

with the use of a logic synthesis tool, may then be synthesized to the gate level

for technology mapping.

Logic synthesis is the automated design process that interprets a

description of design in terms of logic specification, such as RTL, and produces a

structural view of an equivalent logic-level model [30]. An example of this is the

synthesis of Verilog [45] HDL into a gate-level netlist; a circuit described as a

netlist wherein the basic building blocks described by the implemented library are

connected as to produce the desired behaviour [30]. This stage of library binding

also known as technology mapping is considered the backend of the logic

synthesis stage [30] and is further outlined in the following.

Technology mapping is the automated design process that interprets an

unbound logic network and then binds the network, utilizing a cell-library, to a

gate-level netiist [30]. An example can be constructed when regarding a 3-input

AND gate. The AND between two inputs is the binary operation in which the

7

1.1 - VLSI Design M.A.Sc. M.N. Jobes - McMaster

following must be true: AND(O,O)=O, AND(0,1)=AND(1,0)=0, and AND(1,1)=1.

The AND between three inputs may be thought of as

AND(AND(input1,input2),inpuh) or as ANO(input1,inpuh,input3). This is indicative

of the nuances between an unbound logic network and a post-mapped bound

logic network. If the unbound equation of a 3-input AND were to be

mapped/bound using a library in which 3-input ANDs did not exist, the equation

would become AND(AND(input1,inpuh),inpuh). Alternatively if 3-input ANDs did

exist in the library then the equation would become AND(input1,input2,inpuh). In

short the stage of technology mapping allows the unbound logic network,

provided by the frontend of the logic synthesis stage, to be mapped to a bound

logic network which utilizes the standard building blocks provided in the

implemented library [30]. An example of a technology to which a design may be

bound is that of a Field Programmable Gate Array (FPGA). FPGAs are devices

that are capable of implementing these logic networks using look-up-tables

(LUTs) as a standard building block in addition to some device specific blocks

such as multipliers, digital signal processing (DSP) blocks, and memory blocks.

LUTs are devices that can have logic functions programmed as functions of the

LUT input; simply LUTs are analogous to truth tables and are discussed in more

detail in section 2.2. An FPGA is iiiustrated beiow in Figure 1.3. Note how the

interconnection of LUTs and other internal blocks can be configured as to have

8

1.1 - VLSI Design M.A.Sc. M.N. Jobes - McMaster

almost any design of compatible complexity. These LUTs are built from static

random access memory (SRAM) cells in FPGAs from Altera and Xilinx, yet logic

may be implemented with different standard cells such as NAND gates. It should

be noted that the number of cells in a FPGA is finite.

Ie Progranul1ab
Basic Logic

Cell

Progranul1able
IntercOlll1ect

10

0

0

0
In
iU

U
10

~ ~ c:::::::J c:::::::J c:::::::J c:::::::J c:::::::J

rtII 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

c:::::::J c:::::::J c:::::::J c:::::::J c:::::::J c:::::::J c:::::::J

1

n
:0
10

G
0

0

'" Extel
Rout lng

mel Chat
r---

10 Pads

Figure 1.3: Symbolic representation of an FPGA.

Once the design has been created or even once modules of a design are

created, it or they may then be simulated as to determine correct functionality.

The purpose of this is to avoid the situation wherein the final design is

implemented and nothing in the design, or only some of the design, functions

correctly. Proper simulation and verification (see Figure 1.2) of a design is a

9

1.1 - VLSI Design M.A.Sc. M.N. Jobes - McMaster

necessity; without proper simulation and verification, errors would be near

impossible to locate. Many simulation tools exist; from timing simulators to event

driven simulators to combinations of both. Once a design is verified the process

to produce in silicon may commence. It should be noted that merely stating

'produced in silicon' is not representative of the great effort required in this stage.

This is discussed in the following.

Once a design is verified to have the correct functionality the scope of the

validation test needs to be recognized; i.e. for a design to function on an FPGA

far from guarantees the successful implementation of the design in an

application-specific integrated circuit (ASIC). This is obvious when noting the

differences amongst the standard cells (i.e. logic gates vs. LUTs) along with the

additional complexity involved in ASIC implementation (i.e. layout, routing, layers,

and masks). The details of the ASIC design steps are shown below in Figure 1.4;

followed by an elaboration of the encompassed steps.

10

_. .,

1.1 - VLSI Design

Prelayout
Simulation

4

Start 1

il
Design Entry

Logic Synthesis
2

M.A.Sc. M.N. Jobes - McMaster

Finish 1

u
Circuit Extraction

8
[Routing 7] q
~-1J-.. --~ ~--~=---~

Placement Postlayout
Simulation

9

Figure 1.4: ASIC design flow redrawn from [42].

In the design entry stage, the circuit to be designed is provided to the flow

as either HDL or simply a schematic. The logic synthesis stage is consistent with

its earlier explanation and as a result produces the gate level netlist. In system

partitioning the large system is divided into ASIC-sized pieces [42]. Prelayout

simulation verifies design functionality and since the design is virtually

represented, hence pre-layout, this stage is far from a formal verification of the

final implementation. Floorplanning arranges the blocks in the netlist onto the

layout of the chip. Placement arranges the cells inside each of the blocks.

Routing interconnects the cells and blocks with wires. Circuit extraction is the

stage wherein the resistive properties of the wires, whose lengths and locations

are resultant from the routing stage, in addition to the capacitive properties, are

11

1.1 - VLSI Design M.A.Sc. M.N. Jobes - McMaster

calculated. Finally postlayout simulation is performed as to determine if the circuit

will still function now that the load parameters determined by the extraction can

be incorporated into the calculations and analysis.

The ASIC design steps earlier elaborated can be utilized as to produce

any digital circuit. In this thesis, these design steps will not be used for an ASIC

targeted device as an ASIC device is not what was intended to be created; i.e. a

chip was not fabricated. Instead the earlier design flow from Figure 1.2 will be

used to create an FPGA implementation of a LDPC decoder with multi-rate

support.

In the following section low density parity check codes will be described

with: the basics in section 1.2.1, the encoding process in section 1.2.2, the

decoding process in section 1.2.3, and the parity check matrix construction in

section 1.2.4.

12

1 .2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

1.2 - LOPC Codes

In the digital world of circuits a single flaw, or bit flip, can cause catastrophic

errors [23]. In an attempt to reduce this loss of information from occurring, error

correcting codes have been developed [23]. The principal concept is that

redundancy is added into the transmitted word as to provide the needed

information for correcting the incorrect bits in the transmitted word (or simply to

detect errors). There are a myriad of means to implement redundancy ranging

from a simple parity check bit (i.e. a single bit that is an XOR function of other bits

in the same word) to a matrix based, or linear block, method. One type of linear

block based error correcting code is the low density parity check code (LOPC

code). Oeveloped by Gallager in the 1960's [11], LOPC codes received little

attention until the invention of Turbo Codes which utilized a similar decoding

concept based on an iterative algorithm [2]. In 1996 Mackay and Neal

rediscovered LOPC codes and realized the significant error correcting capabilities

that LOPC codes could yield [2]. Not only could LOPC codes correct errors but

they were also capacity-approaching codes [10], [11], [15]. Capacity-approaching

codes are those codes whose transmission rates can approach (but never

achieve due to the limitations of the system, i.e. power is attenuated, energy

conserved) the Shannon limit [39] (a theoretical limit devised by Shannon and

13

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

Hartley) over a channel. Channels such as: a binary symmetric channel, binary

erasure channel, or an additive Gaussian White Noise channel [39].

1.2.1 - LOPC Coding Basics

LOPC codes are a subset of the family of codes encompassing all linear block

codes [7] wherein said subset differs in the sense that the corresponding parity

check matrix is sparse, hence the low density, and normally large. The code is

large or simply long, as to achieve the good performance associated with LOPC

codes [39]. LOPC codes are represented either by a Tanner graph (as in [44]) or

simply, and more frequently, by the parity check matrix. The relation of the

Tanner graph (a bipartite graph) to the parity check matrix is described pictorially,

for the general case, below in Figure 1.5.

Not all connections are made,
this general figure shows the
possible connections; the
number of actual connections
is small because the parity
check matrix1 H(is sparse.

The columns
represent variable

nodes

~_~A~ __
('\

X,Y E Z,l';X';m,l';Y,;n [HI'I HI ,2 ••. H::,nl}

Y
Hx,yE{O,l} y:

H 1 Hm,2 •• • Hm,n
If Hx,Y = 1 then variable m,
node X is connected to
check node Y.

The rows
represent

check nodes

Figure 1.5: A general representation of the Tanner graph (left) and parity
check matrix (right).

14

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

Regarding the general Tanner graph in Figure 1.5, the circles represent

the variable nodes (one for each of the bits in the transmitted word, including

redundancy), and the squares represent the check nodes (count depends on

code rate). The concept of nodes may be vague, if so allow variable nodes to be

information storage containers that hold information about the transmitted word

and check nodes to be information storage containers that hold information about

how the transmitted word relates to itself (i.e. how errors are found and potentially

corrected). The matrix to the right of the Tanner graph is the matrix

representation of the same code, its contents either a 1 meaning a connection or

a 0 meaning no connection.

The throughput and design complexity of LOPC codes are a result of only

a few design parameters including: regular vs. irregular codes, the code block

length, code rate, the update formulae complexity and accuracy, the

interconnection density between nodes, the implementable parallelism, and the

number of iterations of the update formulae. These design parameters wi" be

outlined in the following.

If every check node in the LOpe code has the same degree, or number of

connected variable nodes, and every variable node has the same number of

reasons why a regular code would be used, i.e. the consistency in nodal design

15

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

yields a simpler hardware implementation. However in low signal to noise (SNR)

regimes irregular codes [27] have a better performance [3], [18], and [20]. The

higher degree nodes converge faster and then help the lower degree nodes to

converge [18]. Because of this improved convergence, a reduction in total area

relative to performance is experienced when selecting an irregular structure as

opposed to a regular structure. Thusly irregular codes are used more frequently

in industry.

The code block length is the number of bits in the transmitted word

(including the added redundancy); i.e. the number of variable nodes. As the code

block length increases, the LOPC code approaches capacity [3]. The exact

reason why such occurs is out of the scope of this thesis and is addressed in

[11]. However, a simple reason may be portrayed when regarding that, with a

constant overhead or number of redundant bits, there is a reduction in the relative

overhead in the transmitted word as the code block length increases.

The code rate is the ratio of the number of information, or original (pre-

redundancy), bits over that of the code block length. For example with a code

rate of one half, the number of bits added for redundancy is equal to that of the

number of information bits. Alternatively, if the code rate is one third then there

code rate increases, recall this is regarding an irregular LOPC code, irregularity

16

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

decreases [3] yet error correction capability also decreases. The reason why the

irregularity decreases when increasing the rate is because the number of check

nodes in comparison to variable nodes decreases, making it more difficult to

maintain a sparse graph which is a necessity for successful decoding [3].

The update formulae choice and accuracy have a drastic impact on design

performance and complexity. The formulae are used to update the values of the

messages passed between nodes. This is known as a belief propagation

algorithm and is addressed in detail in section 1.2.3. If these messages require

complex calculations to be updated it is obvious why this increases the

complexity of the circuit, especially when recalling that the calculations have to be

done for each node in the code. The impact of the chosen accuracy, or

quantization, of the code is manifested in the update calculation. Even if the

update calculation utilizes the least expensive solution attainable, if the

quantization is larger than necessary to guarantee convergence of the belief

propagation algorithm, a significant portion of area is wasted. Therefore, a

quantization should be chosen in tandem with the update formulae as to achieve

the most resource efficient configuration, for the code in question, that achieves

the desired performance.

TL-.._ :_"-_1"' ______ ... : __ ,J ___ : Lo..._ ___ ... L.. ___ '" _,c __ :_1-1 ___ -1 ______ -I _1- __ 1_
I III:; IIlll:;l ~UIIIII:;~lIUII UI:;II;:)llY UI:; lW1:;1:; I I lIll:: ::il::l UI Va11aU11:: IIUUI::::i ailU 1.,;111::1.,;1\

nodes has an obvious relation to design complexity when regarding that more

17

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

connections essentially entail more wires to route and more values to update and

calculate. As density increases, the degree of each of the nodes will increase

thus increasing the amount of information used for the calculation; this improves

the convergence but also increases design complexity. Also as the density of the

code increases, the sparseness of the code decreases thus degrading the

performance [3].

Regarding implementable parallelism, the commonly accepted concepts

that: increasing parallelism decreases computational time and increases area

(i.e. size of the digital circuit, measured with a standard blocks or even at the

transistor level); and that decreasing parallelism increases computational time

and decreases area, both apply. The main point of concern is how easily the

parallelism may be controlled. If a code has been designed to be hardware

efficient parallelism is facilitated [36]. The codes that seem to be most facilitating

are those of the quasi-cyclic class [6], the reason is because in addition to any

common parallelism (at the algorithmic level) the parity check matrix may be

sectioned into blocks and each block may be processed independently. Practical

applications such as: OVB-S2, WLAN (802.11 n), and WiMAX (802.16e) utilize

quasi-cyclic or augmentations of quasi-cyclic codes see [1], [6], [8], [24], and [33].

The number of iterations that are needed is inversely proportional to the

throughput and is thusly a significant parameter. With a particular code and

18

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

algorithm, if the number of allowable iterations is decreased as to increase

throughput, the quantization must be increased to maintain a comparable

performance [3]. Maintaining the number of iterations to a minimum is desired. To

facilitate this need to minimize iteration count there exist different decoding

schemes such as the layered method where iteration count can be reduced by as

much as a factor of two [15]; addressed later in section 1.2.3.

1.2.2 - Encoding

Encoding techniques have changed greatly since the traditional method of

utilizing a generator matrix, called G in this thesis. G could be derived almost

directly from the parity check matrix, H. Such is done by reducing H into a

particular form via row operations and then, through internal reorganizing, G is

derived; a clear complete encoding example is below in Figure 1.6. It should be

noted that Rx, where x is an integer, is a handle for row x. For example R3 +-­

R1 EBR3 means take rows 1 and 3, bitwise (bit by bit) XOR them and place the

result in row 3.

19

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

Given a partiy check matrix Hr if row operations are performed as to force H into the form:

H' = [_pI I In-ml then

G = [Im I Pl,

where n is the number of variable nodes and rn is the number of check nodes. Note that this is a
binary code thus -P = P.

H = [~
0 1 1 0

~] -+ R3~Rl®R3 ~ [1 0 1 1 0 !] -> swap (R2, R3) => [~
0

1 1 1 0 1 1 1 0 1
1 0 1 1 1 1 0 1 1

[1 0 1 1 0
~]=H.~_PI=[t

0

~] ~ P = [~
1 1] r 0 R3 Rl<:!1R3 ~ i 1 1 0 1 1 1 ~ ~G= ~ 1 1 o 0 0 1 1 0

To encode x = [1 0 OJ

[
100111]

~ x = [1 0 0] 0 1 0 0 1 01 = [1 a a 1 1 1]
a a 1 1 1

TO check residue (for the valid codeword) :
1 0 0
0 1 1

1 1 0
1 0 1 1 1 0

0 1 1
0 0 1
1 1 1

xHT = [1 0 0 1 1 11 1 1 o = [0
1 1 1

o 0] Therefore success, zero residue

0 0
0 1

To check residue (for an invalid word) :
1 0 0
0 1 1

[1 1 0 1 1 11 1 1 0
1 1 1
0 0 1
0 1 a

1
0

= [0 1 11 Therefore fail, non-zero residue

~]

~l

Figure 1.6: Complete encoding example using the generator matrix derived
from the parity check matrix.

Thus regarding the encoding of a linear block code of length N with M

check points, through traditional means with a single processing engine, a

temporal complexity of O(NM) is required [22], as it is the result of a matrix

multiplication of the binary input vector by the generator matrix; note that if M

piOcessing engines were utilized that the temporal complexity would be O(N).

20

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

Modern encoding is rather different, wherein the parity check matrix H is

utilized without a generator; such can be constructed to result in linear temporal

complexity encoding [22], [26]. The method is simple and is illustrated below in

Figure 1.7.

Hl,n] = 0 l
Hm,n] = 0

{

Xl * Hll EB ... EB xn * Hln = O}
~ ~ : ~ '" _ i.e. a system of equations to solve

Xl * Hm,l EB ... EB Xn . Hm,n - 0

Figure 1.7: Encoding represented as a system of equations.

In Figure 1.7, the temporal complexity for solving the set of equations may

seem to be O(NM) but this can be reduced. According to [22], by designing the

parity check matrix to be sparse, the set of equations may be solved immediately

without any reduction or elimination algorithms (no order is implied, order

depends on the particular construction of H). Therefore, with one processing

engine, the temporal complexity may be reduced to O(M), making linear time

encoding of an LOPC code feasible; if M processing engines were utilized the

complexity can be reduced to constant time. A complete example of the encoding

process is shown below in Figure 1.8.

21

.. ,

1.2 - LOPC Codes

with the belm,' initial conditions:

H = [~
0 0 0 1 1

~l x=[xo Xl X2 X3] 1 0 1 1 1
0 1 1 0 1

And using the following:

}{HT = [Xo Xl Xl X3 X4 Xs X6]

Allmols us to set up a system of equations:

M.A.Sc. M.N. Jobes - McMaster

0 0

100
010

1
1 1
0 1
1 1

o = [0 0 0]
1
1

101

20 EEl 23 EfJ Xs EfJ X6 = 0 => Xo = X3 EEl Xs EEl X6
Xl EEl X3 EfJ X4 EEl Xs = 0 => Xl = X3 EEl X4 EEl Xs
X2 EEl X4 EfJ Xs EEl X6 = 0 => X2 = X4 EEl Xs EEl X6

with the above eqations \"'e may substitute xO' Xl' and x2 back into X

And using the below ,ole may wri te X in terms of X (Encoding Complete)
[X3 x4 Xs x6] = [Xo xl Xz X3]

Figure 1.8: A linear block code encoding example.

In the above figure the information vector is x and is comprised of 4

information bits: Xo, X1, X2, and X3. The parity check matrix, H, is a rate 4/7 code

having four information bits and a block length of seven; used to produce and

verify the encoded word X. Because there is an bX3 identity matrix in the

beginning of H, the last four bits in the encoded word are copies of the four

22

..
'I

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

original information bits; this is termed systematic and is a property of many

implemented LOPC codes such as in the standard OVB-S2 [8], and WiMAX [17].

It is apparent that allowing the result of the multiplication of the coded word with

the rotated parity check matrix, termed the residue, to equate to a zero vector

greatly facilitates the reordering of equations as to solve the encoding problem.

With a sparse parity check matrix, this approach can be computed with linear

time complexity [26]; far superior to the method of solving xHT=Q as a system of

equations via matrix multiplication which could require O(NM) to compute.

1.2.3 - Decoding

Much of the work in the LOPC code design space focuses on the decoding

algorithm or heuristic. According to [38], optimal decoding of an LOPC code is an

NP-complete problem, there are, however, heuristics based on belief

propagation, wherein the context of the application, are considered optimal [36],

[37]. Belief propagation is an algorithm that utilizes nodes' extrinsic information

(or simply information outside of the node in question) to later make decisions

from information that was propagated through the nodal network. The values that

are propagated are representations of reliability determined from observing the

23

1.2 - LDPC Codes M.A.Sc. M.N. Jobes - McMaster

communication network channel; these values are represented as log likelihood

ratios (LLRs).

The belief propagation algorithm for LDPC decoding has two stages:

update the check node extrinsic information, and update the variable node

extrinsic information. These two steps may be performed in a single iteration

(according to [7] termed: Layered, Turbo or, Gauss-Seidel Decoding) or in two

iterations (termed two-phase message passing (TPMP) and is the traditional

method according to [17], and [47]). The result is that the number of iterations

can change by a factor as much as two [15], [47] when using layered decoding as

opposed to TPMP (the chosen scheme for this thesis as to not incur the

complexity of layered decoding scheduling). One work deserving specific

recognition is that of [47], where a layered decoding scheme is implemented with

a novel use of a delay chain built inside the node update calculation blocks.

Of all the decoding algorithms the Sum Product Algorithm (SPA) [21] is

determined as the most beneficial with regard to only performance [36]. All of the

work cited in this thesis either uses SPA or an augmented flavour of SPA yet all

are Belief Propagation Algorithms. The Belief Propagation Algorithms all follow a

similar algorithmic flow where there is a formula for updating the messages

outputted by the nodes, with an iterative nature, and a formula for producing the

binary vector to be tested for success (i.e. the binary vector passes all parity

24

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

checks). A general example is given below in Figure 1.9; note how a particular

node update is not dependent on itself due to the use of extrinsic information

(except for the test binary vector which includes intrinsic information). Extrinsic

information is information outside of a particular node, whereas intrinsic

information is information inside of a node.

Below are the general forms of all the Belief Propagation Algorithms.

CheckNodeOutput(check node ~ to variable node v)= Formula(all variable nodes connected to c :Fv)

VariableNodeOutput(variable node V; to check node c)= Formula(all check nodes connected to V:Fc)

TestVectorOutput(variable node v)= Formula(all check nodes connected to v)

Connect

Soft Data In

Connected Variable Node LLRs

Variable Node LLR

~vc

Binary Estimation
for Hard Decision

Vector

Check Node LLR

cx.cv

Figure 1.9: General flow of information for update calculation formulae.

25

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

In the above figure a represents the 20 vector of check node (subscript C) to

variable node (subscript V) information, and f3 represents the 20 vector of

variable node (subscript V) to check node (subscript C) information.

There are three main types of Belief Propagation based decoding

algorithms that are commonly utilized: the standard SPA in Equation 1.1 [36], the

Min-Sum algorithm (or equivalently the Uniformly Most Powerful algorithm, UMP)

in Equation 1.2 [7], and the A-Min algorithm. The A-Min algorithm is an

augmentation of UMP that realizes the magnitude of the possible results for a

particular node at a particular output comprises a set of A (two commonly, thus

either the min or 2nd min); such is used to simplify the hardware design

complexity resultant from formulae computation difficulty.

acv = (- n sgnCf3nc)) log (tanh
nEN(c),n=tv

Pvc = ~ amv -L (J2
mEM(v),m=tc

f3 - L 2Yv
v - amv --

(J2
mEM(v)

Equation 1.1: SPA Formulae

26

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

In the above figure for SPA formulae, I3v is the hard decision vector

component for variable node V. N(check node) produces the set of all the

variable nodes connected to the check node argument, and M(variable node)

produces the set of all check nodes connected to the variable node argument.

sgn(x) = {1 for x ~ 0, -1 otherwise}, or simply the sign of the number argument is

equated. When a vector is received, an analogue to digital converter (AOC)

expresses each point in the vector in a fixed point manner where values exist in [-

1, 1] and these data points comprise the soft data in the context of this thesis. Yv

is the soft data from detection for variable node V and a is the noise standard

deviation of the Additive White Gaussian Noise (AWGN) channel in which the

message is transmitted.

aev = { E9 SignBit(Pnc). minlPncl}
nEN(e),n=t=v

2Yv ~
f3ve = (J2 + L amv

mEM(v),m=t=e

2Yv L
f3 =-+ amv

v (J2
mEM(v)

Equation 1.2: UMP Formulae

27

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

In the above figure for UMP, I3v is the hard decision vector component for

variable node V. N(check node) produces the set of all the variable nodes

connected to the check node argument, and M(variable node) produces the set of

all check nodes connected to the variable node argument. SignBit(x) = {1 for x <

0, 0 otherwise} or simply the MSB of a value represented in signed magnitude.

The {} brackets are used to represent a concatenation of two binary words; i.e.

{a,b} produces the new word ab, or {O, 1 01} produces 0101. The EB symbol refers

to the XOR or modul0-2 addition operation over all the 1-bit arguments in the

following parenthesises. Yv is the soft data from detection for variable node V and

a is the noise standard deviation of the AWGN channel in which the message is

transmitted.

The SPA algorithm does result in a higher area due to algorithmic

complexity, yet it also has high performance [3]. The performance relative to area

seems insufficient as to justify said algorithm's use for many of the architectures

amongst the prior art (see section 2.1 - 2.2); none of the prior art utilizes the more

complex formulae without a simplification that results in performance

degradation.

28

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

1.2.4 - Matrix Construction

The construction method of the parity check matrices is essential for the

applicability of this thesis. The construction method must utilize the later

described method of expanding a base quasi-cyclic LOPC code with rate of the

form (R-1 I R) into the set of matrices to be supported (all with rates of the same

form R-1 I R). This construction method can be thought of as the only constraint

that this work requires for applicability. When matrices' rates posses equivalent

'form[s]', as is mentioned in this thesis, it is implied that each individual matrix

rate is expressible in the stated form (Le. 4/7 is not of the form R-1 I R, yet 7/8 is

of said form). To support alternative rates could possibly be done yet this detail

was not explored as the case study had matrices of compatible rate form.

The construction method must utilize a base matrix built from blocks of

cyclically permuted matrices, commonly referred to as quasi-cyclic codes [9],

[39], [46]. The representation of this is given in a matrix form wherein the values

represent the number of cyclic permutations of columns, towards the right, of the

identity matrix; the size of the identity matrix is a design parameter, termed K,

and is out of the scope of this thesis (please see [23] for details and especially

the sections on quasi-cyclic LOpe codes). An example of such a construction

method is shown below in Figure 1.10, wherein the cyclic shifts or permutations

29

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

are illustrated, and in Figure 1.11 wherein a simple base matrix representation is

shown.

1 0 0 0 0 1 0 0
0 0 1 0 0

0 1 0 0 0 0 1 0
0 0 0 1 0

/0 _ /1 _ /2 _
K- K- K- 0 0 0 0 1

0 0 1 0 0 0 0 1
1 0 0 0 0

0 0 0 1 1 0 0 0
0 1 0 0 0

Figure 1.10: An example of identity matrix permutation for an identity matrix
of size K x K.

Variable Variable Variable
Node Node Node

Block 0 Block 1 Block m-l
Check Node laoo laol laom.l

Block 0 K K ... K

Check Node lalO lall la!m.!
Block 1 K K ... K

. ,.

Check Node Ian.! 0 Ian.!! lan.!m.!
Block n-l K K ... K

Figure 1.11: A general example of base matrix contents.

It should be noted that the contents of the base matrix are not necessarily

all cyclic permutations of an identity matrix, some of the contents are filled with

null matrices (Le. all zero matrices). Also in Figure 1.11: aij E~, 0 :::; aij <

K, i,j E ~,O :::; i < n,O :::; j < m, or in other words there exist at most n*m entries

30

1.2 - LDPC Codes M.A.Sc. M.N. Jobes - McMaster

of a with K different possible values [0, K-1]; to perform K cyclic permutations on

a KxK identity matrix results in the original KxK identity matrix. The general matrix

in Figure 1.11 would be for a parity check matrix of size n*k x m*k.

To support multiple rates, more matrices (one for each rate) will be required.

The other rates to be supported will be assumed to be lower rates and the base

matrix will be augmented to generate these matrices; the base matrix is therefore

the matrix utilized for the highest rate desired to be supported. This thesis'

method for augmentation is as follows: the number of check node blocks is

doubled and the permutation values inside the base matrix, in each column, are

copied whilst appending NULL matrices as to fill the entire new matrix. To further

elaborate, the first row of the base matrix will become the first two rows of the

new, lower rate, matrix. The data or contents or permutation values will be copied

only once and then paired with a NULL matrix block, denoted as '--', as to have

one data become two. If one row is to become two then each column permutation

value would need to become the new value for the new first or second row

leaving the other to be the NULL matrix block.

A similar approach to construction, termed 'matrix expansion' is detailed in

[49], yet in [49] the number of variable nodes and check nodes are both scaled by

This is a good approach when rates of other forms need be supported; the focus

31

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

of this thesis is however matrices of form R-1 I R due to the case study

implemented.

An illustration of this thesis' construction method for lower rate matrices'

construction from a single high rate base matrix is shown below, for the general

case, in Figure 1.12. Note how the code block length is constant, a significant

variation to the expansion method provided by [49].

To clarify an important fact, it should be noted that only one of the matrices

is utilized at a time, i.e. a decoder only operates at one rate at a time.

32

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

Below is the base matrix of rate
R-l l~J-l
~ above the matrix of rate l~J r

where R is a temporary variable to demonstrate a relative rate; note

that the two earlier expressions involving R are of the same form.

Variable Variable Variable
Node Node Node

Block 0 Block 1 Block m-I
Check Node IIXoO I IX01 I IXom-1

Block 0 K K \ ... K

Check Node
I IX10 IIX11 \ I IX1m-1

Block 1 K K ... K

... ... 1\ ... \ ."

\ I I
Variable Va\riable / Variable

V
Node ~ode Node

Block 0 Bl ock 1 Block m-I
Check Node IIXoO ~ ... I IXom-1 --

Block 0 K K

Check Node I 1~01 " -- ... --
Block 1

Check Node 1 I IX1m-1 -- -- ...
Block 2 K

Check Node
I IX10

II-
IIX11 ... --

Block 3 K K

...

Figure 1.12: Illustration of matrix construction method. Note that arrows do
not show all possible data traversal as to simplify the illustration.

It should be noted that the decision of the NULL matrix location (i.e. the

first or second row in the new matrix if coming from the first row in the base

matrix) need only be made as to have the degrees of the two new rows be equal.

33

1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster

The row degree is the count number of permutation values across the entire row

due to said values' representations, or simply due to the fact that each permuted

identity matrix has only one '1' in each row regardless of the permutation count; '-
-,

_', or NULL, matrices do not contribute to the degree.

This method of construction apparently allows for a hardware efficient

design as it simplifies interconnection changes across different rates. A similar

design process is used by the case study of this thesis, 802.15-3c, and is further

augmented to include what some could call puncturing; pseudo puncturing as

termed by this thesis. In pseudo puncturing the goal is not to increase rate but

merely to decrease interconnection density, as a result some values are not

copied into the respective lower rate matrices and are simply replaced by NULL

matrices. Many standards could be slightly augmented as to support these

matrix properties such as OV8-S2, or Wi MAX, as they use quasi-cyclic codes in

the base matrix construction.

It should be noted that the form of the rate, i.e. R I R-1, is a result of the

number of check nodes doubling across matrices. To support alternative rates

could possibly be done by having some values propagate to two locations and

other values propagate to a different integer number of locations. This detail was

34

1.2 - LDPC Codes M.A.Sc. M.N. Jobes - McMaster

In the following section this thesis' analysis of prior art and related work

will be detailed with sub sections: first, design space (section 2.1) wherein the

basics of LDPC decoder design space is described along with a cursory

comparison of some prior art; second, architecture art (section 2.2) wherein a

detailed analysis of three state of the art architectures is provided.

35

M.A.Sc. M.N. Jobes - McMaster

Chapter 2

2 - Prior Art and Related Work

LOPC decoders have many design parameters that may lead to device

improvements or shortcomings. In the first section of the following review of

previous work, some key aspects of design parameters will be addressed and

state of the art designs will be compared in a cursory manner. Second, a detailed

analysis of three state of the art architectures is presented.

2.1 - The Design Space

Of all the prior art explored in this review only one work attempted a detailed

comparison of different works across multiple design parameters [3]. When

isolating the main comparison points, or attributes, a table was compiled to

describe the design space as seen by [3]. This table covers many key design

parameters such as: LOPC code design, the decoding algorithm, number of

36

2.1 - The Design Space M.A.Sc. M.N. Jobes - McMaster

iterations, data quantization, and architecture parallelism. The table below (Table

2.1) is a slightly augmented version of the table from [3].

Design VLSI Parameters Communications Service Parameters
Parameters Area Throughput Performance Block Length Code Rate

More edges
More edges

Smaller decrease
increase RAM throughput. Irregular LDPC block length Higher code
area. Higher Lower codes perform reduces

rates reduce
LDPC Code code rate edge/(Rate·VN) better than number of irregularity

flexibilitie -ratio regular LDPC edges and
s increase

increases codes. irregularity
logic area.

throughput.

Optimal
Smaller High code

Larger area block
algorithms rates are

allows for lengths are
Algorithm optimal

perform better more
more

than
more suitable for

decoding
suboptimal

suitable for
suboptimal

algorithms.
ones.

suboptimal
algorithms.

algorithms.
Throughput is More

Larger block Higher code
inverse iterations

Iterations proportional increase
lengths rates

to the number communications
require more require less

of iterations. performance.
iterations. iterations.

Larger area
Increased

Higher code

Quantizatio allows for performance
rates allow

wider for smaller
n quantization with higher quantization

quantization.

Architectur
Increased Throughput Parallelism Larger block
logic area proportional can limit sizes allow

e by higher to communications for higher Parallelism
parallelism. parallelism. performance. parallelism.

Table 2.1: Important Parameters of the LOpe Decoder Design Space [3].

The prior art concerning this work will be analysed and categorized loosely

with respect to the table above in a row by row approach where the design

parameters will be addressed in the order: LOpe code structure, algorithm

design, iteration count, quantization size of the internal data, and finally

architecture parallelism.

37

2.1 - The Oesign Space M.ASc. M.N. Jobes - McMaster

Regarding the portion of the design space that is the LOPC code itself one

may note that, as more edges are added or as the parity check matrix density

increases, area increases and throughput decreases [3]. Most of the previous

work in the scope of this thesis does not focus on altering the LOPC code. The

exception to this is [28], wherein [28] demonstrates a means of code construction

as to alleviate interconnection complexity. Aside of [28], the prior art in the scope

of this thesis that do alter the LOPC code, merely perform row operations on the

code and do not alter the density (such as in [6], [25], and [40]). The purpose for

altering the code through row operations in this way is to alleviate the layered

decoding scheme; this is done by [6], [40]. Recall that the nuances between the

different decoding schemes are described in section 1.2.3. Not all architectures

are produced for a specific LOPC code, in fact in [29] a completely programmable

architecture is provided.

Concerning the portion of the design space which focuses on the

algorithm, a good parameter for comparison across the prior art is realized. There

are three main types of Belief Propagation based decoding algorithms that are

utilized by the prior art: the standard Sum-Product algorithm (SPA), the Min-Sum

algorithm (or equivalently the Uniformly Most Powerful algorithm, UMP), and the

LOPC decoding section of this thesis. To continue, already depicted by Table 2.1

38

2.1 - The Design Space M.A.Sc. M.N. Jobes - McMaster

the SPA algorithm does result in a higher area due to algorithmic complexity, yet

it also has high performance. The optimal performance relative to area seems

insufficient as to justify the use of SPA for any of the architectures amongst the

prior art; none of the prior art utilizes the more complex formulae without a

simplification that results in performance degradation except for [47]. An older

architecture, [47] is an architecture in which the only SPA + layered decoding

scheme is utilized; area is sacrificed for throughput.

Some of the prior art does in fact attempt an altered, or simplified/reduced,

flavour of the SPA that reduces area as to improve performance relative to area;

a collection made up of [31], [34], [36], and [37]. Many of the prior arts (Le. [4],

[6], [7], [14], [18], [40], [43], and [48]) use the Min-Sum (or UMP) decoding

algorithm or a scaled flavour of the same algorithm. Such a scheme yields a good

area to performance relation and is what is used by this thesis. The Min-Sum

decoding algorithm can also be further simplified into the A-Min algorithm by

using the value-reuse property of the Min-Sum algorithm; utilized by [12], [13],

[17], [24], [35], and [41]. Algorithm properties and descriptions can be found in

section 1.2.3.

Regarding iteration, or better said iteration count, meaningful comparison

across the prior art is moot, itvhat with [34] implementing both a tvvo phase

approach and layered approach, along with [14], [36], [37], [40], and [48]

39

2.1 - The Design Space M.A.Sc. M.N. Jobes - McMaster

implementing a two phase approach and [4], [6], [7], [12], [13], [15], [17], [18],

[24], [43], and [47] implementing a layered (single phase) approach, the iteration

count can differ by a factor of two, ceteris paribus. This factor is due to the

inherent algorithmic structure of the layered approach and the details of the

layered approach scheme can be found in the LOpe decoding section of this

thesis (section 1.2.3).

The parameter that can drastically affect area and performance is

quantization [3]. Not many of the papers show results for multiple quantizations

as this could result in the need of complete redesign of the architecture. The

common quantization used amongst the prior art seems to be six bits (1 sign, 3 or

4 integer, and 2 or 1 fraction), used by [4], [7], [13], [24], [34], [35], [36], [37], [40],

[43], and [48]. Whereas: 8 bits (1 sign, 4 integer, and 3 fraction) are used by [41];

4 bits (1 sign, 2 integer, and one fraction) by [6], and [47]; and 5 bits (1 sign, 2

integer, and 2 fraction) by [12], [14], [17], and [18].

Architecture parallelism is an influential parameter, it can affect whether or

not a scheme is feasible. What is entailed in adjusting architecture's parallelism is

the scaling of how many processing engines are used. In other words,

architecture's parallelism is simply how many parallel processing nodes are used

to calculate the formula of interest.

40

2.1 - The Design Space M.A.Sc. M.N. Jobes - McMaster

For example if there are 672 nodes to be processed, then updates may be

processed via 672 consecutive uses of the same single engine; the least parallel

case. The 672 nodes may also be processed by 672 parallel engines in one use;

the most parallel case. All the different works commented on thus far have

different levels of parallelism, and in most schemes the parallelism is addressed

in a manner as to be just parallel enough as to produce the desired throughput.

Otherwise the parallelism is constrained by the area, as parallelism has a

significant and direct effect on area and area is expensive. Other art such as [29]

even have the parallelism as a programmable design constraint.

In the following section 2.2 three basic architectures will be compared. The

variation amongst the architectures may seem minimal yet the differences are

significant.

41

_.
'1

2.2 - Prior Work on LOpe Decoders M.A.Sc. M.N. Jobes - McMaster

2.2 - Prior Work on LOpe Decoders

In this section two architectures from [36] and a single architecture from [14] are

presented as prior art and discussed. Below in Figure 2.1 is the first architecture

to be discussed from [36].

Figure 2.1: A check node architecture from [36] which utilizes SPA as the
decoding algorithm.

42

2.2 - Prior Work on LOpe Decoders M.A.Sc. M.N. Jobes - McMaster

In the above figure, the SPA algorithm (Equation 1.1) is implemented for a

check node of degree six. The inputs are for the messages from the six variable

nodes connected to the particular check node c, and message quantization is q

bits. The messages from the six variable nodes (the 13 values) connected to

check node c are passed in, and the messages from c back to the six connected

variable nodes are outputted (the a values). The circled plus blocks are simply

addition blocks. The 4J function (log(tanh(X/2» in Equation 1.1 is implemented

using Look-up-tables, or LUTs. Each of these LUTs has a table of possible

outputs uniquely and consistently determined by the input look up address. For

example, regarding a LUT with four address bits, sixteen, or 24
, different binary

outputs can be programmed as address dependant values. Implementing LUTs

in parallel (i.e. the LUTs all share the same address inputs and the LUTs outputs

are concatenated) allows for multi-bit output; this is what is implied when LUTs

have multi-bit outputs. Hence the degree of inputs for a LUT need not have any

relation to the degree of output. In the case in the earlier figure, Figure 2.1, the

LUT inputs are q-1 bits wide with outputs of the same width. These are later

treated as new values that will propagate through the circuit. The formula

implemented by these LUTs in Figure 2.1 is: 4J(x) = log(tanh(lx/21)) [36], it is

clear that 4J may be substituted in the update formula for check nodes in Figure

1.5.

43

2.2 - Prior Work on LDPC Decoders M.A.Sc. M.N. Jobes - McMaster

The gains of this approach are reflected in the accuracy of the

calculations; see section 1.2.3 for more details on why SPA has such accuracy.

Regarding the accuracy of LUTs is an involved discussion that covers much

theory and thus the analysis of this accuracy is out of the scope of this thesis;

please refer to [36] for more case specific details.

The drawbacks of the approach illustrated in Figure 2.1 are reflected in the

needed area relative to performance. In fact, [36] does recognise this, and as a

result introduces the augmented version of the architecture in which reduced­

look-up-tables, RLUTs, in tandem with compression units, COMPs, are

implemented as to maintain performance and simultaneously reduce area. The

second architecture to be discussed, the architecture for this augmented flavour

is shown below in Figure 2.2.

44

-I

2.2 - Prior Work on LOpe Decoders M.A.Sc. M.N. Jobes - McMaster

J3lc
(q - 3)

ad

J32c a
c2

/33c
a

c3

J34c 1
a

c4

J3sc 1
a

cS

J36c 1

a
c6

Figure 2.2: A check node architecture from [36] which utilizes an
augmented SPA with Reduced-LUTs and Compression Units.

The RLUTs result in acknowledgeable savings in area (described in [36]),

yet the mathematical reasoning of the RLUTs may be unclear; a figure from [36]

is provided for clarification below in Figure 2.3. Note the columns showing the

variation in quantization. What should be noticed is the number of different

possible outputs for each quantization scheme. Regarding the 'Uniform quan'

(uniform quantization) and corresponding 'Decimal value' (simply the function

45

2.2 - Prior Work on LOpe Decoders M.A.Sc. M.N. Jobes - McMaster

4J(LUT input) result in decimal) columns, one can clearly see the standard result

from using a LUT to implement 4J.

LUTinput LUToutput
:i

Decimal value Uniform quan. Variable quan. r Variable quan. II

(X)()()O 3.5(X) 11100 lUOO llloo
(xX)()1 2.375 looll 10011
ooOIO 1.875 01111 Ollll 0111 t
(XXlll 1.5oo 01100 OllOO
(xJlOO 1.250 01010 01010 (HOW
(XIlOl \.125 OIoo! 01001
oollO l.OOO 01000 01Ooo OHX)()
(xllll 0.875 oolll oo111
OH)()() 0.750 ootlO (xll](]
01001 0.625 00101 oolOl
01010 0.5oo oolOO ooloo
OJOU O.SOO (X) I 00
01100 0.375 00011 OOOli
01101 0.375 oooll ()()()U

OHIO 0.375 OOOll OOOIO
01111 0.250 00010
1(x)OO 0.250 00010
lIXJOI 0.250 00010 molO
loolO 0.250 oollO
lool1 0.125 00001 00010
10100 0.125 oo)()l
10101 0.125 (XIOOI 00001
!OlIO 0.125 00001
10111 0.125 Q(XJOI
11O{)0 0.125 00001
11001 0.125 00001 00001
11010 0.125 (){X)()l
11011 0.125 (XXJO! (XIO(K)
111(){) 0.000 (0)00
11101 0.000 00000 00000
11110 o.om oonon
!llll O.(XX) ()()()()O

Figure 2.3: A figure from [36] to clarify the reasoning behind the RLUTs.

What is also apparent is the repetition of outputs. The output '00001' (or

0.125 in decimal) is outputted for nine different input addresses; redundant. The

column 'Variable quan I' shows how some redundant outputs can be dropped,

46

2.2 - Prior Work on LOpe Decoders M.A.Sc. M.N. Jobes - McMaster

with some outputs lost as well (such as 00101, 0.625). What should be clarified is

the number of outputs in each column is always a power of two. This is due to the

inherent nature of the input, being a binary vector of however many bits,

2number of input bits outputs should be generated; repetition may still occur amongst

the outputs. As a result some values are lost and others still repeat; overall

redundancy, however, is still reduced. To support the 16 outputs in the 'Variable

quan I' column would roughly require half the area as that required to support the

'Uniform quan' column. This assumes only LUTs are used, as logic can be built

with other base blocks such as NANOs. The same relation of needed area may

be made between the 'Variable quan I' and 'Variable quan II' columns.

This leads to a complication, the five-bit input shown in the 'LUT input'

column seems to also be the three-bit input for the eight outputs of the 'Variable

quan II' scheme (or the four-bit input for the sixteen outputs of the 'Variable quan

I' scheme). This is a misconception, the table is simply indicative of the 4J

function remapping. The eight values in the 'Variable quan II' column need a

three-bit driver and this is clear when regarding Figure 2.2 (q is six in this

example, i.e. one sign bit and 5 fractional + integer bits). Note how the bitwidths

are smaller at the input and output of the check node calculation block. This is

because the values outside the check node calculation are no longer the extrinsic

47

2.2 - Prior Work on LDPC Decoders M.A.Sc. M.N. Jobes - McMaster

information of the nodes. As a result of the CaMP blocks, the values are now

compressed extrinsic information.

The CaMPs can be thought of as merely a means of converting the q-1 bit

wide results of the RLUTs down to the q-2 or q-3 (depends on variable

quantization scheme I ----+ q-2, and II ----+ q-3) compressed inputs later expected by

connected nodes; i.e. this same pairing of RLUTs at input and CaMPs at outputs

are in both the variable and check node architectures. To facilitate this pairing,

the SPA formula was reorganized by [36] as to have the 4J function calculation

present in both check node and variable node update calculations. This allows all

memory storage to be reduced by a factor of roughly two for the 'I' and four for

the 'II' quantization schemes. The reorganized SPA formulae and original SPA

formulae are shown below in Figure 2.4.

Scv = f1 sgn(f3nc)
l1EN(c),n*v

'\' 2Yv
f3vc = L amv - -;;z

mEM(v),m*c

acv = -scv . I IPCf3nc)
nEN(c).n*v

Scv = f1 sgn(f3nc)
nEN(c).l1*V

Figure 2.4: The SPA formulae reorganization utilized by [36].

In short, [36] seeks to reduce memory storage space and communication fabric

density by compressing the messages stored and passed in the network. Such

48

:1

2.2 - Prior Work on Lope Decoders M.A.Sc. M.N. Jobes - McMaster

an approach is quite novel yet not applicable to this thesis' work due to the thesis'

use of the UMP rather than the SPA.

The architecture from [14] is now addressed as to show how design

choices impact area. Regarding the internal circuitry in the check node update

calculation block for a UMP based implementation it is obvious that these

calculations are more simply implemented with a signed magnitude

representation of internal values. An architecture for UMP based check node

update calculation block is shown below in Figure 2.5; again note how the

internal operation is the minimum function and is more easily implemented with a

signed magnitude numerical representation (the architecture in the figure in fact

expects a signed magnitude representation).

49

2.2 - Prior Work on LOpe Decoders M.A.Sc. M.N. Jobes - McMaster

[q-l'O)

!3ncl
[q-l,Oj [q-2:0]

!3ncl
(q-l:Ol [q-2,O) [q-l:O}

~i !3V3Cl
{Q-l:01 [q-2'Oj

!3V4Cl
[q-l'OI [q-2,O] C(CIV3

{q- :OJ

!3 [q-l,OI
vSc1.

[q-2'O)

!3 [q-l,Oj [q-2'O)
v6cl

[q-2,O] C(CIV5

q-l: !

Figure 2.5: An example of a UMP based check node update calculation.

Alternatively, regarding a UMP based variable node update calculation block, the

preferable numerical representation is 2's complement; refer to Figure 2.6 below,

where internal calculations are additions which are suited for 2's complement

numerical representation (the architecture in fact expects a 2's complement

numerical representation).

50

2.2 - Prior Work on LOpe Decoders

Soft Data y'Vi-----------.

aCl Vi ---4...-----1

aC2Vi -1-----.

aOVi -1----1

M.A.Sc. M.N. Jobes - McMaster

~ViCi
~ViC2
~ViC3

Figure 2.6: A UMP based variable node update calculation block, all wires
are q bits wide.

When selecting the numerical representation implemented outside the

node update blocks, it is important to understand that a conversion between

representations will be needed in one of the calculation blocks; either inside the

check nodes or variable nodes. To choose the check node as the block in which

the conversion occurs is the design choice that [14] has made. The reason why

this choice results in more area as opposed to the alternative is clear when

concerning degrees of nodes. The figure for the architecture in [14] is below in

Figure 2.7.

51

2.2 - Prior Work on LOpe Decoders M.A.Sc. M.N. Jobes - McMaster

Out1

In1 Out2

In Out3

In3
Out4

In4

InS
OutS

InS Out6

Figure 2.7: A Check node architecture from [14] which maintains numeric
representation, outside the check nodes, in 2's complement.

If a particular node (variable or check) is of degree X then 2X conversion

units would be required. X conversion units would be required for the X inputs to

be converted into the preferable numerical representation, the internal calculation

would then be performed, and then X conversion units would be require-d to

convert the X outputs. If the average degree of check nodes was equivalent to

that of variable nodes, the decision of implementing the conversion units in the

check nodes or variable nodes would be trivial; this is not the case in practical

implementation of codes constructed in section 1.2.4.

52

2.2 - Prior Work on LOpe Oecoders M.A.Sc. M.N. Jobes - McMaster

In fact the average degree of check nodes in the higher rate codes, such

as the case study of this thesis (namely the parity check matrices for 802.15-3c),

can be as much as an order of magnitude in decimal (30.5 for check and 3 for

variable).

In general, recalI that the rate of an LOpe equates to one minus the ratio

of check nodes to variable nodes. Thus with any feasible code, i.e. rate less than

one and positive, there are more variable nodes than check nodes. With the

number of connections between nodes constant, i.e. the number of messages

passed back and forth is constant, along with the presence of more variable

nodes than check nodes, it is obvious that the average degree of variable nodes

is less than that of check nodes. Hence, having 2's complement as the numerical

representation of the extrinsic values passed between the variable and check

nodes across iterations of the UMP algorithm results in an architecture with more

conversion units than necessary.

In the folIowing section this thesis' contribution wilI be portrayed with sub

sections: first, preliminary concepts (section 3.1) wherein the basics of Lope

codes will be covered with the focus on the necessary information as to

comprehend section 3.2; second, node nesting (section 3.2) wherein the inherent

__ __ ____ _ : _______ "' _ ... _...J ____J: _ "' _ __ ~ ... : __ A 1'1 A :_ -1 ___ -:1---1.
IIOLUI C' OIIIVII~;:)L IIIOLlIIJC';:) IJVII;:)LI UIJLC'U OIJIJVI UIII~ LV ::It::IJLlVII 1.£."+ 1::1 Ut::::IIJIIUt::U,

third, architectures for node nesting (section 3.3) wherein this thesis wilI present

53

2.2 - Prior Work on LOpe Decoders M.A.Sc. M.N. Jobes - McMaster

comparison of both intelligent and insufficient architectures that provide support

for the node nesting; and fourth, implementation (section 3.4) wherein the design

process adopted by this thesis along with the corresponding results are provided.

54

M.A.Sc. M.N. Jobes - McMaster

Chapter 3

3 - A New VLSI Architecture and Its
FPGA Implementation

One important concept to realize about this work is the generality in its

applicability. To elaborate, assuming that the set of parity check matrices to be

supported are constructed in the same manner as stated earlier in section 1.2.4,

i.e. using a seed matrix and expanding, this work can be applied to provide a

single architecture that can support the created set of matrices in addition to the

base matrix; a specific example will be used to clarify this point later in this

section.

3.1 - Preliminary Concepts

When regarding the formula, or algorithm, for this work's chosen LOpe

decoding heuristic, one can be overwhelmed by the seemingly complex structure.

Recall the chosen heuristic is the uniformly-most-poweiful belief piOpagation

(UMP-BP) algorithm which uses extrinsic information; this point will be clarified

55

3.1 - Preliminary Concepts M.A.Sc. M.N. Jobes - McMaster

later in this section. We show this below for the check-node-update-calculation

(acv) , variable-node-update-calculation (I3vc) , and the hard-decision-vector-

component-calculation (I3v).

a cv = ffi SignBit(PnJ. minlPncl
nEN(c),n:t:v

(a)

f3vc
2Yv L -- + amv
(J2

mEM(v),m:t:c

2Yv I f3 =-+ amv v (J2
mEM(v)

(b) (c)

Equation 3.1: The formulae for the check-node-update-calculation (a),
variable-node-update-calculation (b), and hard-decision-vector-component­

calculation (c).

In the above formulae the subscripts c and v along with the functions

N(check node c) and M(variable node v) are of key importance when trying to

understand which node instance is meant to be processed/calculated. The c

subscript refers to the check node IO/instance, and the v subscript to the variable

node IO/instance. The function NO has an input argument of a particular check

node (c) and returns the set of variable nodes connected to the check node input

argument. Similarly, the MO function has an input argument of a particular

56

3.1 - Preliminary Concepts M.ASc. M.N. Jobes - McMaster

variable node (v) and returns the set of check nodes connected to the variable

node argument. Thusly, the set {n E Nee), n * v} simply equates to the set of

variable nodes that are connected to check node c with the exclusion of variable

node v, and the set {m E Mev), m * e} simply equates to the set of check nodes

that are connected to variable node v with the exclusion of check node c. Yv is

the soft data from detection for variable node v and a is the noise standard

deviation of the AWGN channel in which the message is transmitted.

Another key point to finalize before compiling the earlier statements into a

comprehensive explanation is this work's unique notation in the node formula

(Equation 3.1-a). The {} brackets are used to represent a concatenation of two

binary words; i.e. {a,b} produces the new word ab, or {O, 1 01} produces 0101. The

EB symbol refers to the XOR or modulo-2 addition operation over all the 1-bit

arguments in the following brackets. The SignBitO formula returns a one if the

argument is negative and a zero otherwise. It should be noted that said

argument's value is assumed to be represented in a Signed Magnitude format,

therefore the SignBitO formula is a free operation in hardware as it is just the

selection of the MSB. The min function simply returns the minimum value in the

set described by the bounds on the min function which is {n E Nee), n * v} in the

above case.

57

3.1 - Preliminary Concepts M.A.Sc. M.N. Jobes - McMaster

With all that, we may continue on to the example-driven explanation of the

formulae as to later produce the simplified understanding of the formulae;

important to grasp well as to be able to see the hidden simplicity utilized by this

work.

Concerning a particular check node, a particular output is derived from all

the inputs except said output's input counterpart. For example, regarding a

particular check node, C1 in this example, connected to variable nodes: V1, V2,

V3, V4, V5, and V6, six output values will need to be produced from six inputs.

Namely outputs: aC1V1, aC1V2, aC1V3, aC1V4, aC1V5 , and aC1V6 from inputs: ~V1C1,

~V2C1, ~V3C1, ~V4C1, ~V5C1, and ~V6C1. The key to perceiving the subtle simplicity

used by this work is found when focusing on a single output, for the sake of

argument and this example, aC1V1. The MSB of aC1V1 equals the XOR of:

SignBit(~v2c1), SignBit(~v3c1), SignBit(~v4c1), SignBit(~v5c1), and SignBit(~v6c1),

and the magnitude of aC1V1 equals the min of: I~V2C1L I~V3C1L I~V4C1L I~V5C1L and

I~V6C11. Note how the output aC1V1 is in no way directly related to ~V1C1, this is

what is meant by 'output is derived from all the inputs except said output's input

counterpart' and is also implied by the fact that UMP-BP propagates the nodes'

extrinsic information to each update value. Extrinsic information is the information

found outside the node of concem, Le. in the node's connected neighbours. The

circuit to calculate the above example of a check-node-update-calculation is

58

3.1 - Preliminary Concepts M.A.Sc. M.N. Jobes - McMaster

shown below in Figure 3.1. Note q is the word length, solid circles are

connections, and open circles are wire joiners/splitters (see labelled word

lengths).

(XCI'll

[q-l:0]

J3V1Cl
[q-l:O] [q-2:0J

J3V2Cl
[q-l:OJ [q-2:01 [q-l!O]

J3V3Cl
[q-l:O] [q-2:0J

J3V4Cl
[q-l:0J [q-2:0J a'clV3

J3V5Cl
[q-l:0J [q-2:0J

J3V6Cl
[q-l:01 (<<-2:0J a C1V4

q- : j

(XCIVS

q- :

[q-2:0] (XC1V6

(q-l:0]

Figure 3.1: An example check-node-update-calculation processing block
architecture.

Concerning oneself with a particular variable-node-update-calculation

(Equation 3.1-b) and the accompanying hard-decision-vector-component-

calculation (Equation 3.1-c), the same sense of simplicity may be derived as

earlier for the check-node-update-calculation. For variable node V1 connected to

59

3.1 - Preliminary Concepts M.A.Sc. M.N. Jobes - McMaster

check nodes: C 1, C2, and C3; three output values will need to be produced from

four inputs, namely outputs: I3V1 C1, I3v1 C2, and I3v1 C3 from inputs: aC1V1, aC2V1,

aC3V1, and Y'V1 (i.e. 2 * YV1 102
, the scaled soft data input with value assumed to

be represented in 2's complement). Focusing on a single output of this system,

for the sake of argument and this example, I3v1C1, the value of I3V1C1 equals the

sum of: aC2V1, aC3V1, and Y'V1. Again note how the output I3V1C1 is in no way

directly related to aC1V1 and that for the hard-decision-vector-component-

calculation all that needs to be done is the incorporation of aC1V1 (choosing the

sign bit incurs no cost in hardware as it is merely a selection of the most

significant bit (MSB)).

Below in Figure 3.2 for the above example focused on variable node V1,

the correlation between the hard-decision-vector -component-calculation (denoted

as HD where each of the one-bit HDs together form the HD vector) and the

variable-node-update-calculation can be exploited by merging the two

calculations into a single architecture.

60

3.1 - Preliminary Concepts

Soft Data Y'Vl---l--------,

aC1Vl

UC2Vl

aC3Vl

SM ~ 2'sComp

SM~ 2'sComp

SM ~ 2'sComp

M.A.Sc. M.N. Jobes - McMaster

2'sComp~SM

2'sComp~ SM

2'sComp~SM

To HDvector [V1]

~V1Cl
~V1C2
~V1C3

Figure 3.2: The hard-decision-vector-component-calculation and variable­
node-update-calculation in a single architecture as to reuse hardware.

61

3.2 - Node Nesting M.A.Sc. M.N. Jobes - McMaster

3.2 - Node Nesting

With all the above now established, this work's contribution may be

elaborated. The reason why there is the earlier requirement of matrix construction

is to allow for the occurrence of nesting nodes; this can be exploited as to reuse

hardware and thusly save area. Considering the figure of the matrices from the

case study of this work (Figure 3.3), i.e. the parity matrices for 802.15.3c [16],

along with the corresponding arrows, the nesting of nodes is apparent when

focusing on where to the blocks from the rate 7/8 matrix translate, or copy, in the

lower rate matrices.

For example, noting the first-column first-row, in the rate 7/8 matrix, the

value 0 (meaning zero permutations of the 21x21 identity matrix as earlier stated

in section 1.2.4) translates to either the first or second row of the 3/4 rate matrix

(here the 1st), leaving the other block slot (here the 2nd
) filled with zeros. In other

words, if a N-row base matrix is expanded to a 2N-row matrix, the Nth row of the

base matrix becomes the 2Nth and 2Nth -1 rows of the new lower rate matrix.

It should be noted that the row degrees are paired, i.e. the two rows in one

matrix (the first two rows in the rate 3/4 matrix) that are nested in a single row of

the higher matrix (the 7/8 matrix) both have the same degree (not equal to the

degree of the single row, and in fact should be at most half of the degree of the

62

3.2 - Node Nesting M.A.Sc. M.N. Jobes - McMaster

single row due to the pairing); this is depicted in a table to the right of Figure 3.3.

Note that the matrices are obfuscated as to protect the intellectual property and

this does not result in any loss of information directly required to understand this

thesis' work.

To maintain these paired degrees not all the values translate, and as a

result the constructed node macro-blocks are not only comprised of just two sub­

blocks but three. Figure 3.4 uses this concept of nested nodes to construct the

macro-blocks that act as reconfigurable nodes for the multiple rates, and shows

the excess nodes that result from the values that do not translate. The specifics

of the pseudo puncturing which is used to drop values and the rational behind

utilization of this pseudo puncturing is outside of the scope of this thesis and is

not addressed (see [39] for a detailed explanation on LOpe codes and their

construction).

To clarify an important fact, it should be noted that only one of the matrices

is utilized at a time, i.e. a decoder only operates at one rate at a time. Thus to

have nested nodes is beneficial as module reuse normally results in area

savings.

63

3.2 - Node Nesting

Rate 1/2
1 2 3 4 5 6 7 8 9 10 11

Jf~
- - 5 18 - - 3
0 - - - 16 -

(3 - 6 - 7 - 2

I l
- 18 - 0 10
5 18 -
- 0 - - 16 6 -
- - 6 7 - - 2

I 8 18 - 0 - - - 10
9 5 - - - 18 3 -
10 0 16 - 6
11 6 - 7 -
12 - 18 - 0 - 10

13 - 5 18 - - 3
14 - 0 16 - - - 6

15 - 6 - - - 7 2 -
16 18 - - 0 - -

Rate 3/4
1 2 3 4 5 6 7 8 9 10 11

\ 1 0 - - 5 - 18 16 - 3
2 - 18 6 7 - - 0 10 2
3 5 0 - - - 18 16 6 -
4 - 18 6 0 7 - - 10 2
5 5 0 16 - - 18 3 6
6 6 18 - 0 1 - 10
7 - 5 0 18 16 - - 3 6

8 18 6 - - - - 0 1 0 -<

Rate 7/8
1 2 3 4 5 6 7 8 9 10 11

1 0 18 6 5 7 18 16 0 10 2 3
2 5 0 18 6 0 7 18 16 6 10 2
3 6 5 0 18 16 0 1 18 3 6 10
4 18 6 5 0 18 16 0 1 2 3 6

M.A.Sc. M.N. Jobes - McMaster

12113 14115116117118119 20 21 22 23

- 110 I - I - I - I - I - I - 5 -
-

-

-
4

4 -

- 12
4

4
4
-

- 4 -
- 4

r iu - :1 - 12

12 13114115116117118119 20 21 22 23

6 101-1-101-171- 5 4

- 4 12 -
3 I - 4 - -
- 9 4 12

- 1 4 4 -
2 - 4
- - 4 4

10 16 9 1- 1 - 1- 19 1 - 20 12 -

12 13 14115116117118119 20 21 22 23

6 10 9 5 4 12 4
3 0 1 9 4 4 12
2 9 0 7 4 4 4
10 16 5 20 12 4 4

24 25 26 27 28 29 30 31 32
- -

- - - -
- -

- -
4 5 - -

10 - -
19 -

4 - - - -
- - -

- -
- - -

12 - - - -
5 - 7

10 - - - 19
4 19 - 10

4 17 -

24 25 26 27 28 29 30 31 32

4 - 10 5 -
4 - 19 - - -

4 5 10 - 19 - - -
4 19 10 -
5 - - -

11 19 - -
10 - 5 - 7 19

4 19 - 4 - 11 - 10

24 25 26 27 28 29 30 31 32

4 4 10 19 5 10 - -
4 5 4 10 19 19 10 -
12 19 5 4 10 17 19 10
4 10 19 5 4 1 17 19 10

Row
Degree

5
5

5

5
7
7
7

7

6

6

6
6

8

8

8

8

Row
Degree

14
14
15
15
13
13
16
16

Row
Degree

29

30

31

32

Figure 3.3: The matrices used in this work's case study [16].

64

3.2 - Node Nesting M.A.Sc. M.N. Jobes - McMaster

"
Deg 5 Deg 5 Deg 4 Deg 6 Deg 6 Deg 1

Deg 14
./

Deg 13

" r "
Deg 5 Deg 5 Deg 4 Deg 6 Deg 6 Deg 1

Deg 14 Deg 13

"
Deg 1 Deg 5

Deg 29 Deg 31

Figure 3.4: The depiction of the macro blocks designed for the case study
of this work.

To portray by example, the degree-29 macro-block is the single macro-

block needed to support the first row of the rate 7/8 matrix; i.e. one degree-29

block to support the 29 degrees needed. Note that by degree the number of input

65

3.2 - Node Nesting M.A.Sc. M.N. Jobes - McMaster

data is quantified; Figure 3.1 is of degree six. This macro-block is also the only

macro-block needed to support the first two rows of the rate 3/4 matrix, and is

also the only macro-block needed to support the first four rows of the rate 1/2
_.
'I

matrix. Regarding the sub-blocks which may seem unnecessary, the reader

must understand that they are merely a means of providing the degree support

needed, and in fact come from the matrix construction; they are a result of the

values that were not traversed between matrices as discussed earlier. For

example, removing the degree-1 sub-block inside the first level of the degree-29

macro-block would make the degree-29 macro-block an effective degree

14+14=28 and thusly would no longer support the 29 degrees required. The other

reason why the degree-29 macro-block has the degree-1 sub-block is because

there is only one value not traversed from the rate 7/8 matrix's first row to the rate

3/4 matrix's first two rows. Similarly, removing the degree-4 sub-block from one of

the degree-14 sub-blocks would make that degree-14 sub-block only a degree

5+5=10. The other macro-blocks have the same general behaviour/organization

as that of the degree-29 macro-block and, because of this similarity, will not be

elaborated.

It should also be noted that the variable nodes (i.e. the columns in the

matrix) are connected to the same check nodes in all the matrices with some

simple exceptions handled with intelligent masking discussed later. This allows

66

3.2 - Node Nesting M.A.Sc. M.N. Jobes - McMaster

the same variable nodes to be connected to the same macro-blocks as rate

changes, an important attribute of these matrices' construction. Multiplexers for

redirecting node connections at the check-node-update-calculation macro-blocks'

inputs and variable-node-update-calculation blocks' inputs are not needed, and

the simple task of intelligent masking of inputs that do not translate is all that is

needed to be added; Figure 3.5 shows the general idea of this intelligent masking

below.

A

B
• •

Z •

Operation
Computational

Network

Intell:::n;t:~ ~----------------
Jvlask Value

Enable Jvlasking == 0

A
B

• •
Z •

- --- - ------

--~~

Operation
Computational

Network

Ref;t:
.1'----------------­Intelllgent

Jvlask Value Enable Jvlasking == 1

• • •

• • •

Op (B , ... , Z, Re f)
Op(A, ... ,Z,Ref)

Op (A, B, ... , Ref)

U
Note how the impact

of Ref is eliminated

when intelligent

masking is enabled

Op(B, ... ,Z
Op (A, ... , Z

Op (A, B, ...

Figure 3.5: Intelligent Masking Depiction.

67

3.2 - Node Nesting M.A.Sc. M.N. Jobes - McMaster

Intelligent masking is elaborated in the following: regarding check-node­

update-calculation, an input of the largest possible positive number will not affect

the outputs. This is because each output is a minimum function of the respective

inputs, so the input of the maximum possible value will have no effect; the sign bit

has the same situation with an input of O. To further express in other words, the

outputs' MSBs are derived from an XOR network of sign bits and a value of 0

XOR x will equate to x thus the sign bit is not affected. In the case of the

magnitude of the output, the value is derived from the inputs' minimum, thus an

input of the maximum possible number would not affect the output. Similarly,

regarding the variable-node-update-calculation, an input of zero will not affect the

outputs as x+O=x. Using this intelligent masking allows for simpler connections to

the check-node-update-calculation-macro-blocks, and for variable-node-update­

calculation blocks' hardware to be shared across matrices. This attribute of lining

up also leads to the reason why this creation of macro-blocks is only done for the

check-node-update-calculation.

A similar pattern exists when regarding the variable-node-update­

calculation, although to exploit this pattern would not result in a significant gain in

organizational simplicity. The reason why is clear when considering the case

study and the fact that the number of different degrees that need to be supported

for the variable-node-update-calculation is only four, and in fact the number of

68

3.2 - Node Nesting M.A.Sc. M.N. Jobes - McMaster

degree-4 variable nodes is much higher than the number of degree-1 or 2 or 3

nodes. Recall the number of variable nodes is larger than that of the number of

check nodes (see end of section 2.2). Thus with the number of messages passed

between nodes constant, the degree of the check nodes is higher on average

than that of the average degree of variable nodes (see end of section 2.2). Also

to have a nested situation as do the check nodes, the variable nodes would have

to increase in count and they do not. Thus a macro-block system is not

implemented for the variable-node-update-calculation.

69

-. -I

3.3 - Architectures for Node Nesting M.A.Sc. M.N. Jobes - McMaster

3.3 - Architectures for Node Nesting

Next to be clarified is the means of creating these check-node-update-

calculation macro-blocks. The basic architecture shown in Figure 3.1 would not

support merging, i.e. the joining of sub-blocks. To be able to create an

architecture that could support merging, we need to first readdress the outputs of

the check-node-update-calculation macro-blocks. Recall the earlier example with

check node C1, connected to variable nodes: Vi, V2, V3, V4, V5, and V6, where

the MSB of OC1V1 equals the XOR of: SignBit(~v2c1), SignBit(~v3c1), SignBit(~v4c1),

SignBit(~v5c1), and SignBit(~v6c1), and the magnitude of OC1V1 equals the min of:

I~V2C1 \, I~V3C11. I~V4C11. I~V5C11. and I~V6C11. Consider that we intend to add a single

degree to this degree-6 node making an effective degree-7 node. The output

OC1V1new-degree7 would equal, if the reader would recall the earlier notation used to

express the formula for the check-node-update-calculation, {SignBit(oc1V10Id-

degree6) XOR SignBit(~Deg1) , min(loc1v1 old-degree61.1~Deg11)}.

Thus, one may think of an output as {XOR (of all the nodes of interest

MSBs), min (of all the nodes of interest magnitudes)}. Hence, to provide a

reference that would be {XOR (of all the nodes' MSBs in another block), min (of

all the nodes' magnitudes in another block)} allows the incorporation of the other

70

3.3 - Architectures for Node Nesting M.A.Sc. M.N. Jobes - McMaster

block's information. This reference may then be treated as another degree to

incorporate.

Using that fact, we may allow two nodes to be merged if both nodes have

output and input reference values. Hence, the l3oeg1 value as a reference would

then be the {XOR (of all the MSBs in the node that l3oeg1 comes from), min (of all

the magnitudes in the node that l3oeg1 comes from)}, i.e. l3oeg1 node's 'output

reference', and would act as the 'reference input' value to the degree-6 node. The

degree-6 node would also need to provide a 'reference out' in the same manner

to be the l3oeg1's node 'input reference' for the nodes to be fully merge-able.

Assuming that two nodes both have reference inputs and outputs they may be

merged as shown below in Figure 3.6; the OP block is simply {XOR (two inputs'

MSBs), min (two inputs' magnitudes)}. Note how OP blocks are used as to have

the merged-node be merge-able itself. This is done as to have the new 'macro'

node design support recursive nesting; i.e. each of the two internal blocks could

be drawn as the block in where they reside and this pattern can repeat.

71

3.3 - Architectures for Node Nesting M.A.Sc. M.N. Jobes - McMaster

Values Nl+N2 x q Nt x q Values Values Ni ~ q N.l+Na x q Values
In ' In out Out

Refe.rence ~:Reference 1 x q

In out /

I---r--I Reference
Out

Va1ues Na x q
out 1----:>"/ '---+---l

~ference ~ •.. Refer~~~.I-_l/X.:..../q_-+-_---l

Figure 3.6: A depiction of how nodes of degree N1 and N2 can be merged to
produce a merge-able node of degree N1 + N2.

For the case of merging 3 nodes, each with reference inputs and outputs

is a more complex case and is shown below in Figure 3.7.

72

3.3 - Architectures for Node Nesting M.A.Sc. M.N. Jobes - McMaster

Ref lxq
In+

€(
lxq . - . - - lxq

OP'J---I--,.'-' -I B<O.£e.:ierice .. Reference t---:r'----+
In-- ~o OUt

lxq
~----~-----~IOP

• - __ -00'-- ---_-_ ----_"-1 , .. ·C... _ .. -_.. 1

'

.. F}-------:~,<-}=I-I i;;f~r~Mi~~.i~!.;~~OU~et:.·~r~q-------+---'
I-n :-~- _ ~--

l.xq

Figure 3.7: A depiction of how nodes of degree N1, N2, and N3 can be
merged to produce a merge-able node of degree N1 + N2 + N3.

Providing these reference input and outputs can incur unnecessary

additional cost if not done consciously. For example, if we wish to provide support

for a reference input (recall the MSB and magnitudes are calculated

independently, see Equation 3.1), each of the outputs can be updated with the

reference input just before they are outputted as shown below in Figure 3.8.

73

-i

3.3 - Architectures for Node Nesting

~V1C1 [q:....-l_:001 ~----""[q_-2......;:OJ'-----1H_"

~V2C1 [q1..:-1::,:.::o,J Q---.:;[q-=--2_:0-=-.J --4I-L/
~V3C1 [q-l:0J [q-2:0J '-------4--"--j--+-j-----t-'

~V4C1 [q,-=-l:;.::0-'-j-J +!Cl---"--'----"--'---,

~V5C1 [q:....-l_:O'-!-J t+l{J-"-'---;

~V6C1 [q>-=-l:;.::0-'-j-J ++l--Kr'-=,

q_lth bit

Reference Input
MSB

M.A.Sc. M.N. Jobes - McMaster

o [q-2:0J Reference Output
Magnitude

[q-l:0J

[q-l:0J

[q-l:0J

[q-l:0J

[q-l:0J

[q-l:0J

q-l th blt

Figure 3.8: An inefficient inclusion of the Reference Input for the degree-6
example in Equation 3.1.

This is an inefficient approach as there is another approach which requires less

additional minimum units (i.e. the repeating sub-block with the multiplexer and ~

unit) and XOR units for inclusion of the reference input.

74

-,
-j

3.3 - Architectures for Node Nesting M.ASc. M.N. Jobes - McMaster

To include the reference output, one needs only to tap the correct wires

and add an additional minimum unit; the cost for the MSB of the reference out is

free. The more efficient inclusion of the reference input, with the same means of

inclusion of the reference output, is shown below in Figure 3.9.

13'11C1 [°_-1_'0
0
1 __ I_O-_2'_Ol_--ft-_f':>

13'1201 [0_-1_,°-10-__ 1°_-,_,°_1 --*I-i

Reference Input
Magni tude _~[q-=':2'~Oj-l=::;1t1~

Reference Output
r [q-2,OJ Magnitude

13'1301 [0-1 ,0 [0-2 ,01 '---+--"--+--+-+-----1-1-------'

13'1<01 1°:...-
1_'°+1+0-_---.

I3V5C1 [0_-1_'0-++1-10-_-,

~V6Cl [q-l:0 [q-2:0 -..,--,,,,

~-~~£Yer-e4nc-e-~'~
Input MSB

q-l=bi'C

<Xc!Vl

iq-l:O]

{Q-l:01

O:CIV3

Iq-l:O]

{q-l.:O}

ClC1V5

{Q-.1:01

Figure 3.9: A new architecture that will support both a reference input and a
reference output (architecture is modified from Figure 3.1).

Apparently, there is a cost incurred whilst adding the support for these

reference inputs and outputs and such is depicted in Table 3.1 which conforms to

the arrangement in Figure 3.4. It should be noted that the cost gains are relative

75

3.3 - Architectures for Node Nesting M.A.Sc. M.N. Jobes - McMaster

to the simple implementation solution. To elaborate, say that one needed to

support one degree-29, two degree-14 and four degree-5 nodes. Referring to

Table 3.1 costs of nodes without the overhead of the reference inputs/outputs

may be determined (i.e. columns 'Cost of XORs' and 'Cost of Mins', where a

single standalone node of degree-29 costs 57 XORs and 88 minimum units, or a

single degree-14 costs 27 XORs and 39 minimum units). To have the 'simple

implementation' would be the architecture wherein all the needed nodes exist in

parallel, i.e. to have a degree-29 node, two degree-14 nodes, and four degree-5

nodes is a cost of 1x57 + 2x27 + 4*9 = 147 XORs and 1x88 + 2x39 + 4x9=202

minimum units. Alternatively, by using the reconfigurable nature of this work's

nodes, a single degree-29 macro-block would be needed and would only cost 73

XORs and 87 minimum units; a savings of 50% XOR count and 57% minimum

unit count. The details for all the savings are in Table 3.1, note that savings are

not shown for the sub-blocks as they are not the macro blocks and are only

building blocks.

76

-j

3.3 - Architectures for Node Nesting M.A.Sc. M.N. Jobes - McMaster

.<:: Q) .<::-iJ .<:: Q) .<::-iJ
4-l 4-l-iJC 4-l-iJ..-l (I] 4-l 4-l-iJC 4-l-iJ..-l (I]

o (I] o -.-I 0 o -.-I -.-I tJ> o (I] o -.-I 0 o -.-1-.-1 tJ>
Degree -iJP:; ;3:~ ;3: ::l C -iJ C

;3:..-l ;3: ::l C
-iJ -iJ p:J • .--1 o'P -iJ ..: -iJ p:J -.-Io'P (1]0 (I] (I] (I] (I] i> ~ oil (I] (I] (I] (I] i> oX 0P:;4-l 0P:;4-l III OC4-l OC4-l III

U U 0 Q) UOQ) en U U -.-I Q) U-.-I Q) en
XP:; XP:; :<:P:; :<:P:;

4 7 8 - - 6 9 - -
5 9 10 - - 9 13 - -
6 11 12 - - 12 16 - -
7 13 14 - - 15 20 - -
8 15 16 - - 18 23 - -

13 25 26 (12+12}+7=31 - 36 44 (16+16) +7=39 -
14 27 28 (10+10+8}+7=35 - 39 47 (13+13+9) +7=42 -
15 29 30 (14+14}+7=35 - 43 52 (20+20}+7=47 -
16 31 32 (16+16}+3=35 - 46 55 (23+23) +3=49 -
29 57 58 35+35+3=73 50 88 104 42+42+3=87 57
30 59 60 35+35=70 59 91 107 47+47=94 60
31 61 62 31+31+10+3=65 52 95 112 39+39+13+3=94 56
32 63 64 35+35=70 62 98 115 49+49=98 63

Table 3.1: The relative costs for implementing the support for reference
inputs and outputs as to have merge-able nodes.

77

3.4 - Implementation M.A.Sc. M.N. Jobes - McMaster

3.4 - Implementation

When engineering a complex design, one must recognise that an organized

approach to such a large problem is essential. In accordance with this we put

forth the following flow chart of the chosen design process shown below in Figure

3.10.

Verified

Verify Behaviour

Behaviour Fails

Determine Algorithms

and Flow of Data

Produce a Backend

Behavioural Model in

high level language (C)

cr.: ~~......~ [l
W Verify Functionality

~~
Verified

Output Fails

~ ~ I.-"~c>~ ProduceHDLin

t <l~<~ 6P~c: -::--:--r>n
U Verify Functionality

r Compile HDL and k l "odu" b;"'",m '0 j ~.
program FPGA

~ <r~"1 T«IBe,,",;I,

Verified

Figure 3.10: Flowchart for design process utilized by this thesis.
78

3.4 - Implementation M.A.Sc. M.N. Jobes - McMaster

To outline the steps:

- Determine algorithm and flow of data

o The algorithm needs to be established. It is determined by

researching what is currently in the public domain; algorithm

decision is based on what could be the most hardware efficient

solution. Final decision of algorithm was with UMP.

o The needed flow of data, here the message passing structure, is

a good indication of needed complexity for the datapath; fewer

complexes are beneficial.

Produce a backend behavioural model in a high level language; C

programming language as in [19]

o The reason why a high level language such as C is used is to

alleviate the process of debugging and coding; runtime is not of

major concern as long as runtime is on the order of seconds to

minutes.

o The backend must also output the necessary data files for the

test bench which runs later in the design flow.

79

3.4 - Implementation M.A.Sc. M.N. Jobes - McMaster

- Verify functionality

o Simply ensure that the decoding is successful, and if not, then

debug until the verification passes; use output files to determine

bugs in the code.

- Produce Hardware Description Language (HDL) at Register Transfer

Level (RTL); Verilog HDL as in [45]

o Translate as much C code as possible into Verilog, exploiting

the similarity in dataflow. The advantage of a behaviour model's

similarity in dataflow when compared to that of the hardware

implementation is appreciated in this step.

o Produce the remaining needed modules along with a top level

organization of the modules.

- Verify functionality

o Utilize a test bench (written specifically for this design or if time

permits have test bench generated automatically from the

backend) to verify functionality; upon failure, debug until failure

does not occur. The test bench must test enough cases as to

correctly verify functionality. Lucky cases must not be accepted

as proof of functionality.

80

3.4 - Implementation M.A.Sc. M.N. Jobes - McMaster

- Compile HDL and produce bitstream to program FPGA

o Now that the design is verified, the HDL is compiled as to create

a bitstream that will program the FPGA so the following step

may be performed.

- Verify behaviour

o The complete and correct behaviour of the design is tested. This

will verify if the FPGA implementation operates correctly.

o If the behaviour is incorrect in any way, observation tools may

be utilized to probe internal signals in the FPGA-implemented

design as to determine the inconsistencies from that of the test

bench.

- Finish

o If all is functional, design is complete to the scope of this thesis.

81

i

i

3.4 - Implementation M.A.Sc. M.N. Jobes - McMaster

3.4.1 - Behavioural Model

To be able to verify the operation and functionality of the final design, and even to

be able to debug the first draft of the design, a software-based behavioural model

is required; already depicted in the design flow of this work in Figure 3.10.

There are two main approaches that can be used as to produce the

software behavioural model: a pure software model may be derived as to simply

compute the necessary calculations and operations with coding optimized for an

instruction machine (i.e. the computer running the code), or a 'closer to hardware'

model may be derived that also computes the necessary calculations and

operations, yet with behaviour (i.e. how the data is organized and moved around)

closer to that of the final hardware implementation.

The advantage of the earlier approach is that the code will run fast and the

conceptual portion of the design can be proven. Yet such an approach does not

yield as closely matching debug data (for the hardware debugging) as does the

later approach, which is so closely related to the hardware design to be

debugged. Captured output of the software backend behavioural model is shown

below in Figure 3.11 as demonstration of the backend program flow.

82

3.4 - Implementation M.A.Sc. M.N. Jobes - McMaster

Figure 3.11: Captured output from cygwin running the software backend
behavioural model for a single instance.

3.4.2 - Generic VLSI Architecture

There are many possible ways to utilize this work's contribution in the

chosen case study as a proof of concept. The generic architecture for the

decoder is shown below in Figure 3.12.

83

3.4 - Implementation M.A.Sc. M.N. Jobes - McMaster

Address­r-----------4 --------~--__.1 Dependant

Addresses

Data Out

Memory

Block

Module

Variable-Node­
Update-Calculation

Processing Block

Check-Node­
Update-Calculation

Processing Block

Rewire Unit

Figure 3.12: The general LOpe decoder architecture for implementation in
the proof of concept.

The parameters driving the variety of possible resultant constructions of

the above generic architecture mostly manifest in the number of Variable and

Check Node-Update-Calculation engines in each Processing Block, along with

the Memory Block Module. The other sub modules also experience alterations

as the different schemes are explored, yet these differences are moot when

compared to the needed alterations for the earlier stated blocks. Let us clarify

some of the sub modules that have not yet been discussed in detail.

84

:1

3.4 -Implementation M.A.Sc. M.N. Jobes - McMaster

The Main Address Control Unit is the centre of the datapath control in this

device. It will control all the addressing and muxing in the entire decoder and will

also control the evaluation of the Hard-Decision-Vector-Component-Calculation.

The Hard-Decision-Vector-Component-Calculation Processing Block

simply takes in the individual results from the Hard-Decision-Vector-Component­

Calculation in the Variable-Node-Update-Calculation Processing Block, compiles

them into a single word, and tests residue; the result is reported back to the Main

Address Control Unit.

The Address-Dependant Rewire Units are particular to this work's

approach to decoding and are resultant from both how the matrix to be supported

is constructed along with how the memory is organized. In particular, a set of q

2:1 MUXs is needed for every value that is not translated between matrices and a

maximum of q 2: 1 MUXs is needed in addition for each input to the Variable­

Node-Update-Calculation Processing Block for some schemes. A worst case

scenario architecture wherein L different inputs are rewired to L different outputs

is provided below in Figure 3.13. This is assuming three as the max number of

possible different inputs (selections from the bus of all inputs) selected. Note that

not every output need be a selection of one of three inputs. In fact, the number of

different inputs that one output may be is directly related to the chosen

configuration of the general architecture in Figure 3.12 in addition to being related

85

3.4 - Implementation M.A.Sc. M.N. Jobes - McMaster

to the parity check matrices implemented by the decoder. The number of inputs

can vary from 2 to as many as 5 as design configurations are explored;

architecture configurations are elaborated in section 3.4.3.

Address Dependent Control (From Main Address Control)

Lx2

Input Values

Possible Value 1 q
0

Possible Value 2 q
1 q

Possible Value 3 q

• • • • • •
Possible Value 1 q

0

Possible Value 2 q
1

Possible Value 3 q

IIIII

0

1

• • •

V

Output Values

loutput 01

q
loutput L-11

III I

Figure 3.13: Architecture of worst case scenario Address-Dependant
Rewire Unit.

86

3.4 - Implementation M.A.Sc. M.N. Jobes - McMaster

The Memory Block Module is the wrapped module containing all the

storage for the messages that are passed. Internal organization is simply a

collection of parallel smaller memories as to meet the large bandwidth

requirement, along with some simple internal data dropping via the individual

memory write enables (necessary for the data dropped through 'pseudo

puncturing', see section 3.2). An architecture for this memory stacking as to boost

bandwidth is provided below in Figure 3.14.

;--------:;r----.I Write Address

;

; ; Write Address ,
Write Address ; Write Address

J ;.-----------
Read Address - -/ - - ... - - - - - - - - - - Read Address

RAM Sub­
Block 1

Data In -~-{ 1-r...'::.....-~---+lData In

Sub-

q

Data Out i-+----7'Co--{ }-----"c-"- Data Out
Clock ----eF-------~~ q

Figure 3.14: An architecture of the Memory Block Module.

It should be noted that the above figure is assuming a bandwidth of L input words

of length q to be written and L output words of length q to be read each clock

cycle; L ::::: 366 in the final implementation and is discussed in section 3.4.3. The

variable J is resultant from the number of addresses in the sub blocks, i.e. the

87

3.4 - Implementation M.A.Sc. M.N. Jobes - McMaster

number of locations to where data of width q may be written, and is equal to

ceiling(log2(number of addressable memory locations in one RAM Sub-Block».

Hence for 7 addresses (the chosen organization for this thesis' implementation),

J=3.

The Variable-Node-Update-Calculation Processing Block is the processing

block that which contains all the parallel instances of the variable node

processing blocks; the quantity is a design constraint and is addressed in the

following section 3.4.3.

The Check-Node-Update-Calculation Processing Block is the processing

block that which contains all the parallel instances of the macro check node

processing blocks; the quantity is a design constraint and is addressed in the

following section 3.4.3.

The general architecture in Figure 3.12 is too general as to use to directly

create the final design; the level of parallelism still needs to be addressed and is

done in the following section 3.4.3.

88

3.4 - Implementation M.A.Sc. M.N. Jobes - McMaster

3.4.3 - Final Implementation and Results

When implementing this thesis' contribution in the case study (IEEE

802.15.3c LOPC Rate 1/2, 3/4, and 7/8 matrices), there is still some design to

address concerning the parallelism to be applied to the Check-Node-Update-

Calculation and Variable-Node-Update-Calculation Processing Blocks. To

achieve the needed throughput as detailed by the case study of this thesis, i.e.

802.15.3c, a table was produced as to determine the best configuration via

internal relationship; Table 3.2 shows this below

C "" E-< E-< 0 C +' -fJ -fJ . .-j 0 ::l-" - ::> "'x.-i ",::>.-i
'" ::l .~ 3 ~ c

x ..:I
Comb >'-fJ 'j ~UNS-I{/} ::>.-i .-i .~ ~ ~

0...:1.0 0. 0.
H '" -w.g~~~~ z '" -fJ '"

.,-1.IJ S • .-j.<!
Block o N

U '" -fJ ::l-fJ -fJ 0 -fJ ::l 0 -fJ0> +' .w tfI·r-!
"' • .-j u ... ~gu~7~ .-i 0 0.0 "'.-i U ~ o..U '" ::l ro (f) ::1 ro

Count '" C ",,'" •• E-< CE-< ~ .0 0
'" C 0

.-i 0 r-I O °t9
Z '" -fJ S-I..c:NOO rl N H '" H ~ui; 0> H .<!-fJ _ ~N-fJ ~H-fJ ~.<! ... E-< • .-j N N E-< E-<

0 :;:

1
21Addr x

44 515 9868 54511 1 1 1 1 (29+30+31+32)
7Addr x

3 (29+30+31+32) 14 1620 27416 157407 2.7783 2.8876 3.1456 0.90
x 3

3Addr x
7 (29+30+31+32) 8 2835 61438 363199 6.2260 6.6629 5.5049 1.17

x 7
lAddr x

21 (29+30+31+32) 4 5670 180100 1083471 18.251 19.876 11.01 1. 73
x 21

Tab!e 3.2: A depiction of the cost analysis used for design.

89

3.4 - Implementation M.A.Sc. M.N. Jobes - McMaster

To explain Table 3.2, there are 4 possible arrangements that can be

chosen for the levels of parallelism applied to the general architecture in Figure

3.12. The first option would use one block of the variable node / check node

processing engines in the Variable and Check Node-Update-Calculation

Processing Blocks; hence the comb block count equalling one. What is meant by

one 'block' is one set of the four (degree-29, degree-3~, degree-31, and degree-

32) check-node-macro-blocks described in section 3.2, along with the 32

variable-node-update-calculation blocks needed to have the bandwidth line up

(i.e. if as much as 29+30+31+32=122 values need to be processed, as many as

32 4-input variable-node-update-calculation blocks are needed).

The elaboration of the check-node-update-calculation block of a single

block (comb-1) and a three block (comb-3) are illustrated below in Figure 3.15

and Figure 3.16 respectively. Note that the comb blocks are the check node and

variable node blocks and as a result the comb block has one set of outputs for

check updates and one set of outputs for variable node updates; see Figure 3.12

and note the large MUX. Also, the Rewire block is an abbreviation of the

Address-Dependant Rewire Unit.

90

.. -,

3.4 - Implementation

Node Data In

Oeg14

Oegl

Deg29

[oegsloeg 8)
Oeg16

(oeg8Ioeg 8]
OeglS Oeg16

Deg30 Deg32

Node Data Out

M.A.Sc. M.N. Jobes - McMaster

UH~

(Rewire J

~
Intellegent

Masking Block

Variable Node Block

• • of degree 4 •
L\I':>ri':>hl<Ll\lnrla I'll"

Variable Node Block

of degree 4

(Rewire)

~
Node Data Out

• • • x32

Figure 3.15: An illustration of a comb-1 block.

91

3.4 - Implementation

Oop 00g5

Deg29 Deg31

~
Oeg16

~
Oeg16

Deg30 Deg32

Node Data Out

M.A.Sc. M.N. Jobes - McMaster

Node Data In
I

Node Data In

Rewire

Intellegent
Masking Block

Variable Node Block

• •• of degree 4

Variable Node Block

of degree 4

~
[Rewire

~
Node Data Out

••
• x32

t

ck

de Block

ee4

• • • x32

t
ck

de Block

ee4

••
• x32

Figure 3.16: An Illustration of a comb-3 block.

To cover all of the needed space for all the traversing messages we need

a memory organization that has 21 different addresses for 29+30+31+32 different

instantiations (each memory would have a bitwidth equal to q in Figure 3.9, which

92

3.4 - Implementation M.A.Sc. M.N. Jobes - McMaster

equals the chosen bitwidth for the decoder which is eight in this design). This is

because the case study's design parameter K (see Figure 1.10) is equal to 21.

The throughput for this choice is dependant on the number of iterations.

Because the number of iterations for the variable and check node updates are

equal, along with the 21 addresses to process + 1 clock cycle (cc) for latency,

44cc are required to process 672 bits (the codeword block length). A throughput

of 672 bits 1 44cc * estimated clock of 270MHz (the estimated clock is assumed

to be 10x the fastest allowable clock for the FPGA implementation) or simply 515

Mb/s is experienced with the costs of 98682:1 MUXs 154511 LUTs.

Although the performance gap between ASICs and FPGAs has been

improved down to 3.5x over the past few years, as was accepted in IEEE

Transactions on Computer Aided Design in 2006, because our delays vary due to

routing and random logic (i.e. comparators, XOR gates, muxes) in the FPGA we

choose the FPGAIASIC ratio, in terms of clock period, to be 10x.

It can be seen that the first design which satisfies the throughput constraint

of 1 - 2 Gb/s, comb-3, also has a relative gain over the first design option, comb-

1; a useful fact due to the more parallel designs' (i.e. comb-7 and comb-21) low

chance of fitting on the chosen FPGA and the less parallel design having

in~llffiri~nt thrnllnhnllt ... v_ ... ___ II'" __ :;,.If""_ ...

93

3.4 - Implementation M.A.Sc. M.N. Jobes - McMaster

When implementing the second design option along with all the needed

peripherals, the following resource usage is needed on the Cyclone II

EP2C70F896C6 FPGA (compiled with Quartus II 7.2 Student Edition): 1 PLL;
:;

47,080 Logic Elements; 693 Registers; and 29,568 bits of memory. The actual

memory needed is only 20,496 bits and results in a memory bandwidth of

(29+30+31+32) * 3 * 8bits = 2,928 bits/cc (i.e. 122 * 3 = 366 different 7 address

memory blocks). Note that the usage was determined on Quartus II V7.2-203

SP2 and that the critical path delay is 35.792 ns experienced on the path from:

the Memory Block Module through the Check-Node-Update-Calculation

Processing Block and back through the multiplexer to the Memory Block Module.

This path is illustrated as it traverses through the general architecture in Figure

3.12 below in Figure 3.17.

The design was also implemented on a Stratix II EP2S180F1508C5 as to

be able to compare the area and critical path of the chosen implementation

scheme vs. the basic parallel implementation. As a result the chosen

implementation has a resource usage of: 36,162 Adaptive LUTs (ALUTs), 700

registers, and 29,568 bits of memory; a register to register critical path of 34.55

ns (28.94 MHz), through the same path as in Figure 3.17, is experienced. The

registers, and 29,568 bits of memory; a register to register critical path of 33.51

94

3.4 -Implementation M.A.Sc. M.N. Jobes - McMaster

ns (29.85 MHz), through the same path as in Figure 3.17, is experienced. Recall

the only difference between these two implementations is that the Check-Node­

Update-Calculation Block developed by this thesis is replaced with a functionally

equivalent block wherein the nodes of various degrees are simply instantiated in

parallel. The reason why another device was used was due to the fact that the

parallel version did not fit on the Cyclone II device. The Stratix II device was used

as to be able to compare the two approaches properly. These numbers suggest

that for a cost of (1 - 28.94/29.85) = 3% reduction in throughput (recall the

bandwidth is the same in terms of cc so clock rate directly relates to throughput),

an area savings of (1 - 36162/48093) = 24.8% is experienced. Please note that

these numbers are relative to themselves and as a result the saving percentages

cannot be guaranteed, they are however fairly indicative of the expected savings.

95

-I

3.4 - Implementation

Memory

Blocl<

Module

Data In

M.A.Sc. M.N. Jobes - McMaster

Figure 3.17: Illustration of the critical path through the general architecture.

The reason why the critical path traverses through this path is clear when

recalling the combinational complexity incurred in the Check-Node-Update-

Calculation Processing Block as a result of the nested node design. What were

once simple connections between input and output (i.e. in a single base node,

there is no reference input, so the output can be directly determined by the inputs

alone) are now weaved chains of dependency. In other words, regarding Figure

3.6, the output of the degree N2 node is dependant on the degree N2 input and

reference input. The reference input of the degree N2 node is dependent on the

inputs to the degree N1 node. Hence, the weaved chain expression earlier said is

96

~I

3.4 - Implementation M.A.Sc. M.N. Jobes - McMaster

derived from the some-what 'zigzag' paths that data may traverse with one such

path being: Inputs ~ degree N1 inputs ~ degree N1 reference output ~ degree

N2 reference input ~ degree N2 output. As levels of nesting increase this 'zigzag'

path increases in length resulting in an increase in the register to register critical

path length. A detailed illustration of the degree-31 macro block (see section 3.2)

is provided below in Figure 3.18 with a possible critical path highlighted (due to

some internal symmetry this is subject to change as the final routing inside the

FPGA will truly determine the critical path).

31 x q 31 x q
Values+-...,.....:..s~~_....::;;;Z;H~F~:==:~~~~ ____ --=-=-=-c~,.--+Values

In Out

18 x
, q

rxq

lxq
.. Re~E!tenc~ 1---:,<-----*"--1-----'

~ ~ Out

18 x
, q

Figure 3.18: Illustration of a possible critical path through the degree-31
macro node from section 3.2.

97

3.4 - Implementation M.A.Sc. M.N. Jobes - McMaster

It should be noted that in the implemented design, in the Cyclone II device,

the 29,568 bits of memory are needed only due to the limitations of the FPGA

utilized. To continue, 7 addresses * (29+30+31+32) * 3 * 8 bits is only 20,496 bits

of memory, but because not all memory address/width configurations are

possible (the limitation of the FPGA) there is some wasted space. This wastage

could be avoided in an ASIC implementation as the standard library could be

much larger and could contain more flexible memory configurations.

98

M.A.Sc. M.N. Jobes - McMaster

Chapter 4

4 - Conclusion

In this thesis we have discussed the application of nodal exploitation in the

context of low density parity check, LOPC, codes. Chapter 1 provided the

necessary foundation for understanding the basics of LOPC codes, along with the

encoding, decoding, and construction of LOPC codes. Chapter 2 analyzed the

current architectures in the public domain and related these designs via a

consistent comparison table created by [3], in addition to providing a detailed

analysis of three state of the art architectures design attributes. Chapter 3

explained the details involved in decoding LOPC codes and provided

architectures and a general methodology for building nodal processing blocks in

which a significant relative savings of area is experienced when compared to the

alternative of the parallel instantiation of nodes. This utilizes the inherent nesting

of nodes in the parity check matrices resultant from the matrices' construction

method (Chapter 1.2.4). Also provided by Chapter 3 is the design methodology

utilized by this thesis and the results of the final implementation of the LOPC

decoder for multi-rate support of the parity check matrices in this thesis' case

study, namely 802.15-3c.

99

4.1 - Advantages M.A.Sc. M.N. Jobes - McMaster

4.1 - Advantages

As more wireless devices are built, more advanced coding schemes are

desirable as to fully benefit from the advancements in said devices. One aspect

of the wireless coding schemes is that of multi-rate support; channel parameters

can change greatly if the wireless application is to be utilized in short range (Le.

people can walk past operating devices and greatly change the channel

parameters forcing an alternative rate to be used as to be able to get the best

code performance for the new channel). Accepting that multi-rate support is a

necessity this thesis' work can greatly contribute to the design of LOpe decoders.

This work has potential to reduce the needed area for a LOpe decoder

that needs to operate at multiple rates. The matrix construction necessary for this

work is simple and commonly accepted in standards such as WPAN. Thus this

thesis' work may be applied to a myriad of LOpe parity check matrices used in

industry and may have the potential to create a new branch of code design which

even further facilitates nodal nesting structure exploitation. Also, as described by

section 4.3, this work may be applied to a family of algorithms in which the

desired form is present; see section 4.3 for more details.

100

4.2 - Limitations M.A.Sc. M.N. Jobes - McMaster

4.2 - Limitations

The work in this thesis does prove helpful in the scope of multiple rate support.

Yet if only a single rate is desired, the exploitations utilized by this work are moot

and thusly this work does not apply to such a situation. Alternatively if the number

of rates to be supported by the decoder comprises a long list, the nodal

exploitation has only been verified to support the rates of the form (R-1)/R where

RE 171land R>1. The additional complexity for supporting other rate forms could

negatively impact the area gains for the rates that are of a different form (i.e. 5/7

is not of the form (R-1)/R, thus to have a macro node support this rate likely

requires more complexity). In other words if matrices of varying rate forms need

be supported the macro nodes may have a more complex structure. To support

alternative rates could possibly be done by having some values propagate to two

locations and other values propagate to a different integer number of locations.

This detail was not explored as the case study had matrices of compatible rate

form. This additional complexity is not required if all the design parameters can

be controlled (i.e. matrix construction), for then we are able to design the code

foundation, or set of matrices to be supported, as to even improve the final

norfnl'rYI<:lnf"O
1" •• " 'V, IJlg) 1"',,-,.

101

4.3 - Future Work M.A.Sc. M.N. Jobes - McMaster

4.3 - Future Work

There is a factor about this work which has not yet been addressed. These

extensions to this work are elaborated below.

Concerning the formulae for the node update calculations and recalling

that the key attribute was the fact that each output would only be a function of all

the inputs except said output's counterpart, this work's applicability may be

extended to any algorithm of said nature wherein different degrees need support.

This is assuming that the formula or formulae to be processed are symmetric, i.e.

F(A,B,C) = F(B,C,A), and separable, i.e. F(A,B,C) = F(A) n F(B) n F(C) such as

addition, the max function, or the min function. Regarding Figure 3.6 allow the

'OP' calculation blocks to be the operation performed by the algorithm which we

desire to implement and allow the sub-blocks to be built in a similar pattern as

they are in the macro-block.

Also, with intelligent node grouping as to minimize interconnection

complexity, the same hardware may be used to process a collection of grouped

nodes separately or as a single node via the reference values regardless of

internal computation (assuming the algorithm is of the earlier assumed form). In

future work the possible applications would be explored in other possible fields,

such as hardware acceleration and information theory.

102

M.A.Sc. M.N. Jobes - McMaster

Bibliography

[1] Daisuke Abematsu, Tomoaki Ohtsuki, Sigit PW Jarot, Tsuyoshi
Kashima. Size Compatible (SC)-Array LOpe Codes. IEEE VTC-2007,
pp.1147-1151.

[2] C.H. (Kees) van Berkel. Multi-Core for Mobile Phones. IEEE Proc.
DA TE 2009, pp. 262-267

[3] Torben Brack, Frank Kienle, Norbert When. Disclosing the LDPC Code
Decoder Design Space. IEEE Proc. DATE 2006, pp. 200-206

[4] T. Brack, M. Alles, T. Lehnigk-Emden, F. Kienle, N. Wehn, N.E.
L'lnsalata, F. Rossi, M. Rovini, L. Fanucci. Low Complexity LDPC Code
Decoders for Next Generation Standards. IEEE Proc. DA TE 2007, pp.
331-336

[5] D. Brock, G. Moore. Understanding Moore's Law Four Decades of
Innovation. Online Publication, Chemical Heritage Foundation, 2006

[6] Zhiqiang Cui, Zhongfeng Wang, Youjian (Eugene) Liu. High-Throughput
Layered LDPC Decoding Architecture. IEEE Trans. VLSI 2009, VOL.
17, NO.4, pp. 582-587

[7] John Dielissen, Andries Hekstra, Vincent Berg. Low Cost LDPC
Decoder for DVB-S2. IEEE DA TE 2006, pp. 1-6

[8] European Telecommunications Standards Institude (ETSI). Digital
Video Broadcasting (DVB) Second generation framing structure for
broadband satellite applications; EN 302307 V1.1.1. www.dvb.org.

[9] M. Fossorier. Quasi-Cyclic Low-Density Parity-Check Codes From
Circulant Permutation Matrices. IEEE Trans. Inf. Theory 2004, vol. 50,
pp. 1788-1793

[10] M. Franceschini, G. Ferrari, and R. Raheli. Does the performance of
LDPC codes depend on the channel? IEEE Trans. Communication
2006, pp. 2129-2132

103

Bibliography M.A.Sc. M.N. Jobes - McMaster

[11] R. G. Gallager. Low density parity-check codes. IRE Trans. Inf. Theory
1962, pp. 21-28

[12] F. Guilloud, E. Boutillon, and J.L. Danger. A-Min Decoding AlgOiithm of
Regular and Irregular LDPC Codes. 3nd International Symposium on
Turbo Codes and Related Topics, Brest, France, pp 451-454, Sept.
2003

[13] Kiran Gunnam, Gwan Choi, Weihuang Wang, Mark Yeary. Multi-Rate
Layered Decoder Architecture for Block LDPC Codes of the IEEE
802.11n Wireless Standard. IEEE ISCAS 2007, pp. 1645-1648

[14] Kiran K. Gunnam, Gwan S. Choi, Mark B. Yeary, Mohammed
Atiquzzaman. VLSI Architectures for Layered Decoding for Irregular
LDPC Codes of Wi Max. IEEE ICC apos 2007, pp. 4542-4547

[15] D. Hocevar. A Reduced Complexity Decoder Architecture via Layered
Decoding of LDPC Codes. IEEE SIPS 2004, pp. 107-112

[16] IEEE, Part 15.3: Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for High Rate Wireless Personal Area
Networks (WPANs): Amendment 2: Millimeter-wave based Alternative
Physical Layer Extension IEEE P802.15.3c/DOO-2003

[17] Marjan Karkooti, Joseph R. Cavallaro. Semi-Parallel Reconfigurable
Architectures for Real-Time LDPC Decoding. IEEE ITCC 2004, pp. 571-
585

[18] Marjan Karkooti, Predrag Radosavljevic, Joseph R. Cavallaro.
Configurable LDPC Decoder Architectures for Regular and Irregular
Codes. Springer JSPS 2008, pp. 73-78

[19] B. Kernighan, D. Ritchie. C Programming Language. Prentice Hall PTR,
2 ed., April 1988, ISBN-13: 978-0131103627

[20] F. Kienle, T. Brack, and N. When. A synthesizable IP Core for DVB-S2
LDPC Code Decoding. IEEE DATE 2005, pp. 100-105

104

Bibliography M.A.Sc. M.N. Jobes - McMaster

[21] F. Kschischang, 8. Frey, and H. Loeliger. Factor Graphs and the Sum­
Product Algorithm. IEEE Trans. Inf. Theory 2001, vol. 47, pp. 498-519

[22] Z. Li, L. Chen, L. Zeng, S. Lin, and W. Fong. Efficient encoding of low­
density parity-check codes. IEEE Trans. Communication 2006, pp. 71-
81

[23] S. Lin and D. J. Costello, Jr. Error Control Coding: Fundamentals and
Applications. Prentice-Hall, 2nd edition, Upper Saddle River, NJ., 2004.

[24] Chih-Hao Liu, Shau-Wei Yen, Chih-Lung Chen, Hsie-Chia Chang,
Chen-Yi Lee, Yar-Sun Hsu, Shyh-Jye Jou. An LDPC Decoder Chip
Based on Self-Routing Network for IEEE 802.16e Applications. IEEE
JSSC 2008, VOL. 43, NO.3, pp. 684-694

[25] G. Liva, E. Paolini, and M. Chiani. Simple Reconfigurable Low-Density
Parity-Check Codes. IEEE Trans. Communication 2005, vol. 9, pp. 258-
260

[26] Jin Lu, Jos'e M. F. Moura. Linear Time Encoding of LDPC Codes.
http://arxiv.org/abs/0810.2781, 2008

[27] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V.
Stemann. Practical loss-resilient codes. IEEE Trans. Inf. Theory 2001,
vol. 47, pp. 569-584

[28] M. Mansour and N. Shanbhag. High-Throughput LDPC Decoders. IEEE
Trans. VLS/2003, pp.976-996

[29] M. Mansour and N. Shanbhag. A Novel Design Methodology for High­
Performance Programmable Decoder Cores for AA-LDPC Codes.
Springer JVSP 2005, vol. 40, pp. 371-382

[30] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw­
Hill, 1994, ISBN: 0-07-113271-6

[31] Marghoob Mohiyuddin, Amit Prakash, Xiang Wu, Adnan Aziz. A
Reconfigurable Fabric and Associated CAD Algorithms for Multirate
LDPC Decoding. 39th Asilomar Conference SSC 2005, pp. 718-722

105

-.
• j
i
I

Bibliography M.A.Sc. M.N. Jobes - McMaster

[32] C. Kopp. Moore's Law and its Implication for Information Warfare. 2000

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

A. Morello and V. Mignone. DVB-S2: The Second Generation Standard
for Satellite Broad-Band Services. IEEE Proc. 2006, vol. 94, pp. 210-
227

Stefan MOiler, Manuel Schreger, Marten Kabutz, Matthias Alles, Frank
Kienle, Norbert When. A Novel LDPC Decoder for DVB-S2 IP. IEEE
DATE 2009, pp. 1308-1313

Akiyuki Nagashima, Yuta Imai, Nozomu Togawa, Masao Yanagisawa,
Tatsuo Ohtsuki. Dynamically Reconfigurable Architecture for Multi-Rate
Compatible Regular LDPC Decoding. IEEE APCCAS 2008, pp. 705-708

Daesun Oh, Keshab K. Parhi. Low Complexity Decoder Architecture for
Low-Density Parity-Check Codes. Springer JSPS 2008, DOl
10.1007/s11265-008-0231-5

Daesun Oh, Keshab K. Parhi. Low Complexity Implementations of Sum­
Product Algorithm for Decoding Low-Density Parity-Check Codes. IEEE
SIPS 2006, pp. 265-267

In-Cheol Park, Se-Hyeon Kang. Scheduling Algorithm for Partially
Parallel Architecture of LDPC Decoder by Matrix Permutation. IEEE
ISCAS 2005, pp. 5778-5781

T. Richardson. Modern Coding Theory. Cambridge University Press,
ISBN 0521852293, 2008

Jin Sha, Zhongfeng Wang, Minglun Gao, Li Li. Multi-Gb/s LDPC Code
Design and Implementation. IEEE Trans. VLS12009, vol. 17, pp. 262-
268

Xin-Yu Shih, Cheng-Zhou Zhan, Cheng-Hung Lin, An-Yeu (Andy) Wu.
An 8.29 mm2 52 mW Multi-Mode LDPC Decoder Design for Mobile
WiMAX System in 0.13 IJm CMOS Process. IEEE JSSC 2008, vol. 43,
pp.672-683

M. Smith. Application-Specific Integrated Circuits. Addison Wesley.
1997. ISBN: 0201500221

106

Bibliography M.A.Sc. M.N. Jobes - McMaster

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Yang Sun, Marjan Karkooti, Joseph R. Cavallaro. VLSI Decoder
Architecture for High Throughput, Variable Block-size and Multi-rate
LDPC Codes. IEEE ISCAS 2007, pp. 2104-2107

R. M. Tanner. A recursive approach to low complexity codes. IEEE
Trans.lnf. Theory 1981, vol. 27, pp. 533-547

D. Thomas, P. Moorby. The Verilog® Hardware Description Language.
Springer 2002. 5th ed., ISBN-13: 978-0387849300

Jun Xu, Lei Chen, Lingqi Zeng, Lan Lan, and Shu Lin. Construction of
low-density parity-check codes by superposition. IEEE Trans.
Communication 2005, vol. 53, pp. 243-251

E. Yeo, P. Pakzad, B. Nikolic, V. Anantharam. High Throughput Low­
Density Parity-Check Decoder Architectures. IEEE GLOBCOM 2001,
vol. 5, pp. 3019-3024

Luoming Zhang, Lin Gui, Youyun Xu, Wenjun Zhang. Configurable
Multi-Rate Decoder Architecture for QC-LDPC Codes Based Broadband
Broadcasting System. IEEE Trans. Broadcasting 2008, vol. 54, pp. 226-
235

H. Zhong and T. Zhang. Design of VLSI implementation-oriented LDPC
codes. IEEE VTC 2003, pp. 670-673

107

Index

A

Abstraction' V, vii, viii, 2, 3, 4, 6

Additive White Gaussian Noise' 27,
28,57

Algorithm(s)/Algorithmic . xi, 1,4, 7,
13,17,18,19,21,23,24,25,26,
28,36,37,38,39,40,42,43,53,
55,79, 100, 102, 104, 105, 106

Analogue to Digital Converter' 27

ANSI· 7

Application-Specific Integrated
Circuit(s)' vi, xi, 10, 11,12,93,98

Architecture(s) . i, ii, iii, v, vi, ix, xi, xii,
xiii, 28, 35, 36, 37, 38, 39, 40, 41,
42,44,45,48,49,50,51,52,53,
55,59,60,61,70,75,76,83,84,
85, 86, 87, 88, 90, 94, 96, 99, 103,
104, 106, 107

Attenuation' 13

Automation' V, viii, 2, 3, 4, 5, 7, 8

108

M.A.Sc. M.N. Jobes - McMaster

B

Behaviour/Behavioural' iv, vii, ix, xiii,
6,7,66,79,80,81,82,83

Belief Propagation . 17, 23, 24, 25,
26,38,55

Binary· 8, 14,20,24,28,43,47, 57

Bipartite . 14

Bit(s) . vi, xii, 13, 15, 16, 19, 22, 28,
40,43,47,48,51,57,60,68,93,
94,98

c

Capacity' 13, 16

Chaining . 4, 24, 96

Channel' 14,24,27,28,57,100,
103

Check· iii, v, vi, vii, x, xi, xii, 2, 12,
13,14,15,17,18,19,20,21,22,
24,25,26,27,28,29,30,31,33,
34,38,42,43,45,47,48,49,50,
51,52,53,55,56,58,59,66,68,
69,70,84,86,88,89,90,93,94,
95,96,99,100,103,104,105,
106, 107

Chip(s) . 1, 11, 12, 105

Index

Circuit(s)· v, vi, 2, 7,11,12,13,17,
18,43,58,105

Code(s) . iii, v, vi, vii, viii, xi, 2, 7, 12,
13,14,15,16,17,18,20,21,22,
23,29,32,34,36,37,38,52,53,
63,80,82,99,100,101,103,104,
105, 106, 107

Communication· 24, 48, 103, 105,
107

Complexity· vii, 1,3,9, 10, 15,17,
20,21,23,24,26,28,38,39,55,
72,78,79,96,101,102,103,104,
106, 107

Computer Aided Design (CAD) . v,
viii, 2, 5, 6, 105

Computer(s) . i, ii, v, 1,2,4, 82, 93

Connection· vi, 7, 15,25,27,28,43,
48,56,58,59,66,70

Conservation . 13

Construction· iii, viii, xi, 2, 8,12,21,
29,31,32,33,34,38,52,53,55,
62,63,66,67,85,99,100,101,
107

Containment· v, vii, 15, 87, 88

Correction· vi, 10, 13, 15, 17,75,81

109

M.A.Sc. M.N. Jobes - McMaster

Creation· 1,3,7,10,12,31,55,68,
70,81,88,99,100

D

Decoding· i, ii, v, viii, xi, 2,12,13,
17,19,23,24,26,36,37,38,39,
40,42,55,80,85,99,103,104,
105, 106

Design· iii, v, vi, vii, viii, ix, x, xi, xii,
2,3,4,5,6,7,8,10,11,12,15,
17,18,21,23,26,29,34,35,36,
37,38,41,49,51,54,65,71,78,
79,80,81,82,86,88,89,93,94,
96,98,99,100,101,103,105,
106, 107

Deterministic· 5

Device(s) . v, vi, 1,3,8,12,36,85,
95,98,100

E

Encoding· v, viii, xi, 2, 12, 19,20,
21,22,99,105

Energy· 13

Error(s)· iii, v, vi, 10, 13, 15, 17, 105

Expression· vii, 3, 4, 6, 33, 96

Extraction . 11

Index

Extrinsic· v, vii, 23, 24, 25,47, 53,
55, 58

F

Fabrication· 3

Field Programmable Gate Array(s) .
i, ii, iii, vi, ix, xi, 8, 9, 10, 12, 55, 81,
93,94,97,98

Floorplanning . 11

Function(s) . 5, 9, 10, 12, 13, 43, 45,
47,48,49,56,57,68,102

Functionality· 10, 11, 80, 82

G

Gate(s) . iii, vi, 7, 8, 10, 11, 93

Gaussian . 14, 24, 27

Graph· xi, 2, 14, 15, 17

H

Hardware· vi, xii, 1,7,16,18,26,
34,57,60,61,62,68,79,80,82,
102, 107

Hartley· 14

Heuristic(s) . 23, 55

110

M.A.Sc. M.N. Jobes McMaster

I

IEEE 802.15-3c . iii, 34, 53, 99

Implementation· i, ii, iii, viii, ix, xiii, 6,
7,8,10,11,12,13,16,23,24,32,
43,44,46,49,51,52,54,55,69,
76,78,80,81,82,84,86,87,89,
93,94,98,99,102,106,107

Information· v, vii, xi, 4, 13, 15, 16,
18,22,23,24,25,26,48,53,55,
58,63,71,102,106

Integrated Circuit(s) . vi, vii, 1, 3, 5,
10, 106

Intrinsic· 25

Irregular· vi, 15, 16,37,104

Iterative/lteration . 13, 19,24,37,39,
89

L

Language(s) . vi, 4, 7, 79, 80,104,
107

Layered· 19, 24, 38, 39, 103, 104

Layout· vi, 3, 10, 11

Level(s) . vi, vii, 1, 3,4, 6, 7, 8, 11,
18,41,66,79,80,88,90,97

Index

Library· 7, 8, 98

Likelihood . 24

Limit(s) . i3, 37

Limitation . 98

Linear' vi, xi, 13,14,20,21,22,23,
105

Logic' vi, vii, 6, 7, 8, 10, 11,37,47,
93, 94

Look Up Table(s) . vi, xi, 8, 10, 43,
44,45,46,47,89,93,94

Low Density Parity Check· i, ii, iii, vi,
viii, ix, x, xiii, 2,12,13,14,15, 16,
21,23,24,29,35,36,37,38,40,
42,53,55,63,84,89,99,100,
103, 104, 105, 106, 107

M

Matrix/Matrices' iii, vi, viii, xi, xii, 2,
12,13,14,15,18,19,20,21,22,
29,30,31,32,33,34,38,53,55,
62,63,64,65,66,68,85,89,99,
100,101,103,106

Methodology' xi, 3,13,19,21,23,
24,29,31,32,33,34,99,105

Min-Sum' 26, 38, 39

111

M.A.Sc. M.N. Jobes - McMaster

Modular· vi, viii, 2, 3, 4, 5

N

Netlist(s) . vi, vii, 5,7, 8, 11

Network(s) . vi, 8, 23, 48, 68, 104,
105

Node(s)/Nodal . iii, v, vi, vii, ix, x, xi,
xii, xiii, 15, 16, 17,23,24,25,26,
27,28,30,31,33,34,40,41,42,
43,45,47,48,49,50,51,52,53,
56,57,58,59,60,61,62,63,66,
68,70,71,72,73,76,77,84,85,
88,89,90,93,94,95,96,97,99,
100, 101, 102

Noise' 16, 27, 28, 57

o

Optimal/Optimize' 5, 23,37,39,82

p

Parallelism' iii, 15, 18, 37, 40, 41,
43,76,87,88,89,90,93,94,99,
104, 106

Parameter(s) . x, 12, 15, 18,29,36,
37,38,40,84,93,100,101

Index

Parity' iii, vi, xi, 2, 12, 13, 14, 18, 19,
20,21,22,24,29,31,38,53,55,
62,86,99,100,103,104,105,
106,107

Partitioning . 11

Placement· 11

Postlayout· 12

Prelayout . 11

Prior Art· ix, 28, 35, 36, 37, 38, 39,
40,42

Problem(s) . vii, 3, 4, 5, 23, 78

Process' iv, v, xii, 2, 3, 4, 5,7,8, 10,
12,18,21,34,41,54,56,78,79,
90,93,102,106

Propagation· 17,23,24,34,43,58,
101

Q

Quasi-Cyclic' iii, 18, 29, 34, 103

R

Rate(s) . iii, 12, 13, 15, 16, 22, 29,
31,32,33,34,37,53,62,63,65,
67,95,99,100,101,107

112

M.A.Sc. M.N. Jobes - McMaster

Ratio(s) . vi, 16, 24, 37, 53, 93

Reduction' xi, 4,13,16,19,21,37,
39,44,45,47,48,95,100,104

Redundancy· 13,15, 16,46

Regular· vii, 15,37,104,106

Representation' xi, xii, 9,11,14,15,
21,24,26,28,29,49,50,51,52,
53,57,60

s

Scale/Scalability' iii, vii, 2, 5

Shannon' 13

Simulation' vii, 6, 10, 11

Sparseness' vi, 14, 17, 18, 21, 23

Storage' 15, 48, 87

Sum Product Algorithm' x, xi, xii, 24,
26,27,28,38,39,42,43,44,45,
48,49

Symmetry· 14,97,102

Synthesis' vii, 6, 7, 8,11,105

System(s) . v, vi, vii, xi, 11, 13, 21,
23,60,69,106,107

Index

Systematic . 23

T

Tanner' xi, 14, 15, 107

Temporal· 20, 21

TheorylTheoretical . iv, 13, 44, 102,
103, 104, 105, 106, 107

Throughput· 15,18,37,38,39,41,
89,93,95, 103, 105, 107

Timeframe' iv, 4

Tool(s) . v, viii, 2, 4, 5, 6, 7, 10,81

Transistor(s) . vi, vii, xi, 1,2,3,18

Translation' 3, 62, 63, 67, 80

Transmission' 13,15,16,27,28,57

Two Phase' 39

113

M.A.Sc. M.N. Jobes McMaster

u

Uniformly Most Powerful' x, xii, 26,
27,28,38,39,49,50,51,53,55,
58, 79

Utilization' iii, xi, xii, 1,2, 6, 8, 12,
13,17,18,20,21,23,26,28,29,
31,32,38,39,42,45,48,58,63,
78,80,81,83,98,99,100,101

v

Variable' v, vi, vii, x, xii, 15, 16, 17,
24,25,26,27,28,30,31,33,43,
46,47,48,50,51,52,53,56,58,
59,60,61,66,68,70,84,85,87,
88,89,90,93,107

Vector' v, x, xii, 20, 22, 24, 26,27,
28,47,56,59,60,61,85

Verification' v, vii, 6, 10, 11, 80

Verilog . vi, 7, 80,107

Very Large Scale Integration' i, ii, iii,
vii, viii, ix, 2, 3, 37, 55, 83, 103,
104, 105, 106, 107

Index

w

White Noise· 14

Word(s) ·4, 13, 15, 16,22,28,30,
40,57,59,62,68,85,87,96,101

M.A.Sc. M.N. Jobes - McMaster

114

