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Abstract 

Low density parity check (LOPC) codes are utilized frequently in practice as a 

means of forward error control or error detection. This thesis intends to provide a 

very large scale integration (VLSI) architecture and corresponding field 

programmable gate array (FPGA) based implementation for a multi-rate LOPC 

code. 

Utilizing inherent properties in the quasi-cyclic parity check matrix 

construction for multiple rates, a nested node situation is exploited. This 

exploitation produces an architecture that, for this thesis' case study of 802.15-

3c, has area savings in the check node update calculation block of roughly half 

the design that would support multiple rates via parallel instantiation of nodes 

inside the check node update calculation block. 
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Glossary 

Abstraction 
- The removal of detail to facilitate design description 

Arch itectu re 
- Graphical or text based schematic of a design in the sense of the 

circuit 

Automation 
- The handing over of control to computers for management of design 

details 

CAD, computer aided design, 
- Tools for design automation 

Check Node 
- Container for extrinsic information outside variable nodes 

Design space 
- The abstract space wherein possible design criteria decisions 

produce displacement 

Design reuse 
- The use of already designed cores in a system to ease the design 

process 

Design verification 
- The comparison of design against specification 

Diagnosis 

Decode 

Encode 

- Determining what caused a failed device to fail 

- The process of retrieving an information vector from an encoded 
vector 

- The process of applying an error correcting code to an information 
vector 
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., 

FPGA, field programmable gate array 
- An ASIC device which may be programmed, via internal SRAM cells, 

as to simulate the logic network described by the programmed bit 
stream 

HDL, hardware description language 
- Design language for RTL descriptions e.g. VerilogNHDL 

IC, integrated circuit 
- Many transistors integrated in a single package, a device 

Irregular Code 

Layout 

- A code wherein the degree of check nodes varies with that of the 
variable nodes 

- Low level description of a circuit in terms of transistor placements 

LDPC, Low Density Parity Check 
- An linear block error correcting code wherein the parity check matrix 

is sparse 

LUT, look up table 
- A device with address dependant outputs which can be programmed 

Modularity 
- Ease of insertion and connection of a module into a system 

architecture 

Moore's law 

Netlist 

- An empirical observation of exponential transistor density growth 

- A low-mid level description of a circuit in terms of logic gate 
connections 

Parity Check Matrix 
- A matrix used in linear block error correction 

Physical layout see layout 

Rate 
- One minus the ratio of check nodes to variable nodes 
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Regular Code 
- A code wherein the degree of check nodes is constant along with that 

of the variable nodes 

RTL, register transfer level 
- A mid-high level description using register operations 

SRAM, Static Random Access Memory 
- A type of semiconductor memory that need not be refreshed 

periodically, yet content values are still lost in the event of power loss 

Scalability 
- The measurement of how design complexity changes with input 

problem size 

Specification 
- The formal description of the design requirements for a system 

Synthesis 
- Transformation of a description to a lower level of abstraction 

Synthesis (architectural) 
- Behavioural expressions produce RTL 

Synthesis (logic) 
- Logic equations produce netlist 

Testbench 
- Stimuli and expected responses used by simulation during verification 

Variable Node 
- Container for extrinsic information outside check nodes 

VLSI, very large scale integrated circuits 
- Containing millions of transistors 
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Chapter 1 

1 - Introduction 

Current technology has achieved a level of complexity that would astound almost 

any individual from the past. We currently have devices able to perform in mere 

seconds what would previously take on the order of years. None of this would be 

possible without integrated circuits (ICs) which are solid state devices created in 

semiconducting material such as arsenic, germanium, and silicon. Such ICs have 

seemingly endless application due to inherent generality; i.e. almost any equation 

or algorithm can be equated or modeled using the power of ICs. ICs are 

comprised mostly of transistors but some passive components such as resistors 

and capacitors have proven useful in some applications. In most practical devices 

today the complexity of the ICs utilized is phenomenal and this complexity is only 

increasing according to [5]. This increasing tendency could be due to Moore's 

Law, a long-term trend of computer hardware where the number of transistors 

inexpensively place-able on a chip increases exponentially as time progresses 

[5]; a figure graphing this is provided below (re-coloured from [32]) in Figure 1.1. 
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Moore's Law (1959/1.5. Sources: Intel. IBM, TI, Poisson) 
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Figure 1.1: A graph of transistor count vs. time from [32]. 

In the following sections of this chapter, discussion will be provided on the 

general design of Very Large Scale Integration (VLSI) circuits (Chapter 1.1), 

along with the modularity and abstraction utilized (Chapter 1.1.2), and the 

automation of design steps with use of computer aided design (CAD) tools 

(Chapter 1.1.3). Also discussion will be provided on low density parity check 

(LOPC) codes (Chapter 1.2), the basics of LDPCs (Chapter 1.2.1), the process of 

encoding (Chapter 1.2.2), the process of decoding (Chapter 1.2.3), and the 

process of parity check matrix construction (Chapter 1.2.4). 
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1.1 - VLSI Design 

To directly design some of today's complex devices at the lower levels are 

complex. The transistor and fabrication levels require a vast amount of criteria to 

be established and resolved; this could take a single individual as long as his or 

her own life span. Thus, to be able to produce the more complex designs of 

today, some form of automation along with a consistent design methodology is a 

necessity. To create an automation process that could directly take high level 

expressions and immediately translate these expressions into fabricated les is a 

task that is as daunting, if not more so, when compared to the original problem of 

layout or transistor level design; another solution is needed. 

1.1.1 - Design Modularity and Abstraction 

Modular design allows automation to be used to create solutions automatically 

from high level expressions is feasible. By utilizing levels of abstraction, problems 

can be broken down into much more manageable sub-problems and then 

solutions can be linked together. 

Abstraction can be thought of as the process of intelligent sectioning of 

stages or modules or simply information as to produce a generalized viewpoint or 
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module or section, in which only the immediately relevant information is 

incorporated. For example when organizing a company from the highest level, 

one may use levels of abstraction to simplify the payroll and then need only be 

concerned with section payroll; leaving the details in each section to be dealt with 

by the section supervisor(s). 

By chaining different tools, or in other words cascading solutions, across 

different levels of abstraction, a design may be produced in a realistic timeframe, 

i.e. within the time-to-market. Another important point is that if a sub-problem is 

solved, yet needed multiple times, there is a significant reduction in the total 

amount of work needed due to the ability of module reuse. This is one of the most 

significant features of modular design. Due to the nature of modular design a 

sub-problem need only be solved once regardless of the number of times the 

sub-problem is needed. This is because the solution can simply be copied and 

then it may be linked into the final solution. 

The means for the sub-problem solving and later linking of solutions is 

encapsulated in the field of design automation. Computers may be used in 

tandem with powerful algorithms as to optimise and compile higher level 

expressions or languages into the desired lower level expressions or languages; 

eventually reaching the lovvest leVel of design. This is the subject of the foiiowing 

section. 

4 
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1.1.2 - Automation and CAD Tools 

Modular design may seem to be a sufficient solution to the problem of 

determining solutions to large scale problems yet is insufficient without the aid of 

automation. Truly a sub-problem could be solved and then could be linked into 

the larger solution by hand, but since this process is strongiy deterministic (Le. 

the input and output problems are bounded in addition to a unique input 

consistently resulting in the same corresponding output), automation is possible. 

Automation is the solution for when the same set of steps need to be performed 

multiple times; this occurs frequently in the scope of IC design, such as when 

functions are optimized or netlists processed. Automation also has the advantage 

of modularity. For instance an automatic tool need not be holistic; the tool may 

only solve part of a sub-problem. This result could then be linked with the other 

automation tools necessary for a complete solution to the sub-problem at hand. 

Even with all the CAD tools at hand, a means of cascading or linking the 

automatically generated data is still required as to produce a design; to perform 

this cascading or linking, an order or dependency first need be established. In the 

following section a description of the CAD based implementation technology flow 

(Le. design order) is provided. 
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1.1.3 - Implementation Technology 

In this section of the thesis the flow through the various stages of design 

expression, as understood by this thesis, to final implementation is provided. 

The various stages of design flow adopted by this thesis are resultant of 

the levels of abstraction utilized and the CAD tools available. These levels 

include: behavioural modeling, logic synthesis, technology mapping, and 

simulation and verification. A figure is provided below as to illustrate this flow, 

Figure 1.2, followed by a delineation of the illustrated stages. 

Behavioural 
Modeling 

, 
Logic Synthesis 

Simulation and 
Verification 

, 

r 

Figure 1.2: Design flow adopted by this thesis. 

Technology 
Mapping 

Behavioural modeling, similar to algorithmic synthesis or high-level 

synthesis is an automated design process that interprets an algorithmic 
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description and produces the corresponding hardware [30]. The algorithmic 

description is of a desired behaviour and the hardware created implements said 

behaviour. Initially ANSI C/C++/SystemC code or similar is produced as to 

describe the desired behaviour, the code is then analyzed, architecturally 

constrained, and scheduled. This produces register transfer level (RTL) 

description in a hardware design language (HDL) such as Verilog [45]. This HDL, 

with the use of a logic synthesis tool, may then be synthesized to the gate level 

for technology mapping. 

Logic synthesis is the automated design process that interprets a 

description of design in terms of logic specification, such as RTL, and produces a 

structural view of an equivalent logic-level model [30]. An example of this is the 

synthesis of Verilog [45] HDL into a gate-level netlist; a circuit described as a 

netlist wherein the basic building blocks described by the implemented library are 

connected as to produce the desired behaviour [30]. This stage of library binding 

also known as technology mapping is considered the backend of the logic 

synthesis stage [30] and is further outlined in the following. 

Technology mapping is the automated design process that interprets an 

unbound logic network and then binds the network, utilizing a cell-library, to a 

gate-level netiist [30]. An example can be constructed when regarding a 3-input 

AND gate. The AND between two inputs is the binary operation in which the 

7 
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following must be true: AND(O,O)=O, AND(0,1)=AND(1,0)=0, and AND(1,1)=1. 

The AND between three inputs may be thought of as 

AND(AND(input1,input2),inpuh) or as ANO(input1,inpuh,input3). This is indicative 

of the nuances between an unbound logic network and a post-mapped bound 

logic network. If the unbound equation of a 3-input AND were to be 

mapped/bound using a library in which 3-input ANDs did not exist, the equation 

would become AND(AND(input1,inpuh),inpuh). Alternatively if 3-input ANDs did 

exist in the library then the equation would become AND(input1,input2,inpuh). In 

short the stage of technology mapping allows the unbound logic network, 

provided by the frontend of the logic synthesis stage, to be mapped to a bound 

logic network which utilizes the standard building blocks provided in the 

implemented library [30]. An example of a technology to which a design may be 

bound is that of a Field Programmable Gate Array (FPGA). FPGAs are devices 

that are capable of implementing these logic networks using look-up-tables 

(LUTs) as a standard building block in addition to some device specific blocks 

such as multipliers, digital signal processing (DSP) blocks, and memory blocks. 

LUTs are devices that can have logic functions programmed as functions of the 

LUT input; simply LUTs are analogous to truth tables and are discussed in more 

detail in section 2.2. An FPGA is iiiustrated beiow in Figure 1.3. Note how the 

interconnection of LUTs and other internal blocks can be configured as to have 
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almost any design of compatible complexity. These LUTs are built from static 

random access memory (SRAM) cells in FPGAs from Altera and Xilinx, yet logic 

may be implemented with different standard cells such as NAND gates. It should 

be noted that the number of cells in a FPGA is finite. 

Ie Progranul1ab 
Basic Logic 

Cell 

Progranul1able 
IntercOlll1ect 

10 

0 

0 

0 
In 
iU 

U 
10 

~ ~ c:::::::J c:::::::J c:::::::J c:::::::J c:::::::J 

rtII 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

c:::::::J c:::::::J c:::::::J c:::::::J c:::::::J c:::::::J c:::::::J 

1 .... 

n 
:0 
10 

G 
0 

0 

'" Extel 
Rout lng 

mel Chat 
r---

10 Pads 

Figure 1.3: Symbolic representation of an FPGA. 

Once the design has been created or even once modules of a design are 

created, it or they may then be simulated as to determine correct functionality. 

The purpose of this is to avoid the situation wherein the final design is 

implemented and nothing in the design, or only some of the design, functions 

correctly. Proper simulation and verification (see Figure 1.2) of a design is a 
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necessity; without proper simulation and verification, errors would be near 

impossible to locate. Many simulation tools exist; from timing simulators to event 

driven simulators to combinations of both. Once a design is verified the process 

to produce in silicon may commence. It should be noted that merely stating 

'produced in silicon' is not representative of the great effort required in this stage. 

This is discussed in the following. 

Once a design is verified to have the correct functionality the scope of the 

validation test needs to be recognized; i.e. for a design to function on an FPGA 

far from guarantees the successful implementation of the design in an 

application-specific integrated circuit (ASIC). This is obvious when noting the 

differences amongst the standard cells (i.e. logic gates vs. LUTs) along with the 

additional complexity involved in ASIC implementation (i.e. layout, routing, layers, 

and masks). The details of the ASIC design steps are shown below in Figure 1.4; 

followed by an elaboration of the encompassed steps. 

10 
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Prelayout 
Simulation 

4 

Start 1 

il 
Design Entry 

Logic Synthesis 
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Finish 1 

u 
Circuit Extraction 

8 
[ Routing 7] q 
~-1J-.. --~ ~--~=---~ 

Placement Postlayout 
Simulation 

9 

Figure 1.4: ASIC design flow redrawn from [42]. 

In the design entry stage, the circuit to be designed is provided to the flow 

as either HDL or simply a schematic. The logic synthesis stage is consistent with 

its earlier explanation and as a result produces the gate level netlist. In system 

partitioning the large system is divided into ASIC-sized pieces [42]. Prelayout 

simulation verifies design functionality and since the design is virtually 

represented, hence pre-layout, this stage is far from a formal verification of the 

final implementation. Floorplanning arranges the blocks in the netlist onto the 

layout of the chip. Placement arranges the cells inside each of the blocks. 

Routing interconnects the cells and blocks with wires. Circuit extraction is the 

stage wherein the resistive properties of the wires, whose lengths and locations 

are resultant from the routing stage, in addition to the capacitive properties, are 
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calculated. Finally postlayout simulation is performed as to determine if the circuit 

will still function now that the load parameters determined by the extraction can 

be incorporated into the calculations and analysis. 

The ASIC design steps earlier elaborated can be utilized as to produce 

any digital circuit. In this thesis, these design steps will not be used for an ASIC 

targeted device as an ASIC device is not what was intended to be created; i.e. a 

chip was not fabricated. Instead the earlier design flow from Figure 1.2 will be 

used to create an FPGA implementation of a LDPC decoder with multi-rate 

support. 

In the following section low density parity check codes will be described 

with: the basics in section 1.2.1, the encoding process in section 1.2.2, the 

decoding process in section 1.2.3, and the parity check matrix construction in 

section 1.2.4. 

12 
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1.2 - LOPC Codes 

In the digital world of circuits a single flaw, or bit flip, can cause catastrophic 

errors [23]. In an attempt to reduce this loss of information from occurring, error 

correcting codes have been developed [23]. The principal concept is that 

redundancy is added into the transmitted word as to provide the needed 

information for correcting the incorrect bits in the transmitted word (or simply to 

detect errors). There are a myriad of means to implement redundancy ranging 

from a simple parity check bit (i.e. a single bit that is an XOR function of other bits 

in the same word) to a matrix based, or linear block, method. One type of linear 

block based error correcting code is the low density parity check code (LOPC 

code). Oeveloped by Gallager in the 1960's [11], LOPC codes received little 

attention until the invention of Turbo Codes which utilized a similar decoding 

concept based on an iterative algorithm [2]. In 1996 Mackay and Neal 

rediscovered LOPC codes and realized the significant error correcting capabilities 

that LOPC codes could yield [2]. Not only could LOPC codes correct errors but 

they were also capacity-approaching codes [10], [11], [15]. Capacity-approaching 

codes are those codes whose transmission rates can approach (but never 

achieve due to the limitations of the system, i.e. power is attenuated, energy 

conserved) the Shannon limit [39] (a theoretical limit devised by Shannon and 

13 
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Hartley) over a channel. Channels such as: a binary symmetric channel, binary 

erasure channel, or an additive Gaussian White Noise channel [39]. 

1.2.1 - LOPC Coding Basics 

LOPC codes are a subset of the family of codes encompassing all linear block 

codes [7] wherein said subset differs in the sense that the corresponding parity 

check matrix is sparse, hence the low density, and normally large. The code is 

large or simply long, as to achieve the good performance associated with LOPC 

codes [39]. LOPC codes are represented either by a Tanner graph (as in [44]) or 

simply, and more frequently, by the parity check matrix. The relation of the 

Tanner graph (a bipartite graph) to the parity check matrix is described pictorially, 

for the general case, below in Figure 1.5. 

Not all connections are made, 
this general figure shows the 
possible connections; the 
number of actual connections 
is small because the parity 
check matrix1 H( is sparse. 

The columns 
represent variable 

nodes 

~_~A~ __ 
( '\ 

X,Y E Z,l';X';m,l';Y,;n [HI'I HI ,2 ••. H::,nl} 

Y 
Hx,yE{O,l} y: 

H 1 Hm,2 •• • Hm,n 
If Hx,Y = 1 then variable m, 
node X is connected to 
check node Y. 

The rows 
represent 

check nodes 

Figure 1.5: A general representation of the Tanner graph (left) and parity 
check matrix (right). 

14 



1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster 

Regarding the general Tanner graph in Figure 1.5, the circles represent 

the variable nodes (one for each of the bits in the transmitted word, including 

redundancy), and the squares represent the check nodes (count depends on 

code rate). The concept of nodes may be vague, if so allow variable nodes to be 

information storage containers that hold information about the transmitted word 

and check nodes to be information storage containers that hold information about 

how the transmitted word relates to itself (i.e. how errors are found and potentially 

corrected). The matrix to the right of the Tanner graph is the matrix 

representation of the same code, its contents either a 1 meaning a connection or 

a 0 meaning no connection. 

The throughput and design complexity of LOPC codes are a result of only 

a few design parameters including: regular vs. irregular codes, the code block 

length, code rate, the update formulae complexity and accuracy, the 

interconnection density between nodes, the implementable parallelism, and the 

number of iterations of the update formulae. These design parameters wi" be 

outlined in the following. 

If every check node in the LOpe code has the same degree, or number of 

connected variable nodes, and every variable node has the same number of 

reasons why a regular code would be used, i.e. the consistency in nodal design 
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yields a simpler hardware implementation. However in low signal to noise (SNR) 

regimes irregular codes [27] have a better performance [3], [18], and [20]. The 

higher degree nodes converge faster and then help the lower degree nodes to 

converge [18]. Because of this improved convergence, a reduction in total area 

relative to performance is experienced when selecting an irregular structure as 

opposed to a regular structure. Thusly irregular codes are used more frequently 

in industry. 

The code block length is the number of bits in the transmitted word 

(including the added redundancy); i.e. the number of variable nodes. As the code 

block length increases, the LOPC code approaches capacity [3]. The exact 

reason why such occurs is out of the scope of this thesis and is addressed in 

[11]. However, a simple reason may be portrayed when regarding that, with a 

constant overhead or number of redundant bits, there is a reduction in the relative 

overhead in the transmitted word as the code block length increases. 

The code rate is the ratio of the number of information, or original (pre-

redundancy), bits over that of the code block length. For example with a code 

rate of one half, the number of bits added for redundancy is equal to that of the 

number of information bits. Alternatively, if the code rate is one third then there 

code rate increases, recall this is regarding an irregular LOPC code, irregularity 

16 



1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster 

decreases [3] yet error correction capability also decreases. The reason why the 

irregularity decreases when increasing the rate is because the number of check 

nodes in comparison to variable nodes decreases, making it more difficult to 

maintain a sparse graph which is a necessity for successful decoding [3]. 

The update formulae choice and accuracy have a drastic impact on design 

performance and complexity. The formulae are used to update the values of the 

messages passed between nodes. This is known as a belief propagation 

algorithm and is addressed in detail in section 1.2.3. If these messages require 

complex calculations to be updated it is obvious why this increases the 

complexity of the circuit, especially when recalling that the calculations have to be 

done for each node in the code. The impact of the chosen accuracy, or 

quantization, of the code is manifested in the update calculation. Even if the 

update calculation utilizes the least expensive solution attainable, if the 

quantization is larger than necessary to guarantee convergence of the belief 

propagation algorithm, a significant portion of area is wasted. Therefore, a 

quantization should be chosen in tandem with the update formulae as to achieve 

the most resource efficient configuration, for the code in question, that achieves 

the desired performance. 

TL-.._ :_"-_1"' ______ ... : __ ,J ___ : ...... Lo..._ ....... ___ ... L.. ___ '" _,c .... __ :_1-1 ___ -1 ______ -I _1- __ 1_ 
I III:; IIlll:;l ~UIIIII:;~lIUII UI:;II;:)llY UI:; lW1:;1:; I I lIll:: ::il::l UI Va11aU11:: IIUUI::::i ailU 1.,;111::1.,;1\ 

nodes has an obvious relation to design complexity when regarding that more 
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connections essentially entail more wires to route and more values to update and 

calculate. As density increases, the degree of each of the nodes will increase 

thus increasing the amount of information used for the calculation; this improves 

the convergence but also increases design complexity. Also as the density of the 

code increases, the sparseness of the code decreases thus degrading the 

performance [3]. 

Regarding implementable parallelism, the commonly accepted concepts 

that: increasing parallelism decreases computational time and increases area 

(i.e. size of the digital circuit, measured with a standard blocks or even at the 

transistor level); and that decreasing parallelism increases computational time 

and decreases area, both apply. The main point of concern is how easily the 

parallelism may be controlled. If a code has been designed to be hardware 

efficient parallelism is facilitated [36]. The codes that seem to be most facilitating 

are those of the quasi-cyclic class [6], the reason is because in addition to any 

common parallelism (at the algorithmic level) the parity check matrix may be 

sectioned into blocks and each block may be processed independently. Practical 

applications such as: OVB-S2, WLAN (802.11 n), and WiMAX (802.16e) utilize 

quasi-cyclic or augmentations of quasi-cyclic codes see [1], [6], [8], [24], and [33]. 

The number of iterations that are needed is inversely proportional to the 

throughput and is thusly a significant parameter. With a particular code and 
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algorithm, if the number of allowable iterations is decreased as to increase 

throughput, the quantization must be increased to maintain a comparable 

performance [3]. Maintaining the number of iterations to a minimum is desired. To 

facilitate this need to minimize iteration count there exist different decoding 

schemes such as the layered method where iteration count can be reduced by as 

much as a factor of two [15]; addressed later in section 1.2.3. 

1.2.2 - Encoding 

Encoding techniques have changed greatly since the traditional method of 

utilizing a generator matrix, called G in this thesis. G could be derived almost 

directly from the parity check matrix, H. Such is done by reducing H into a 

particular form via row operations and then, through internal reorganizing, G is 

derived; a clear complete encoding example is below in Figure 1.6. It should be 

noted that Rx, where x is an integer, is a handle for row x. For example R3 +-­

R1 EBR3 means take rows 1 and 3, bitwise (bit by bit) XOR them and place the 

result in row 3. 
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Given a partiy check matrix Hr if row operations are performed as to force H into the form: 

H' = [_pI I In-ml then 

G = [Im I Pl, 

where n is the number of variable nodes and rn is the number of check nodes. Note that this is a 
binary code thus -P = P. 

H = [~ 
0 1 1 0 

~] -+ R3~Rl®R3 ~ [1 0 1 1 0 !] -> swap (R2, R3) => [~ 
0 

1 1 1 0 1 1 1 0 1 
1 0 1 1 1 1 0 1 1 

[1 0 1 1 0 
~]=H.~_PI=[t 

0 

~] ~ P = [~ 
1 1] r 0 R3 .... Rl<:!1R3 ~ i 1 1 0 1 1 1 ~ ~G= ~ 1 1 o 0 0 1 1 0 

To encode x = [1 0 OJ 

[
100111] 

~ x = [1 0 0] 0 1 0 0 1 01 = [1 a a 1 1 1] 
a a 1 1 1 

TO check residue (for the valid codeword) : 
1 0 0 
0 1 1 

1 1 0 
1 0 1 1 1 0 

0 1 1 
0 0 1 
1 1 1 

xHT = [1 0 0 1 1 11 1 1 o = [0 
1 1 1 

o 0] .... Therefore success, zero residue 

0 0 
0 1 

To check residue (for an invalid word) : 
1 0 0 
0 1 1 

[1 1 0 1 1 11 1 1 0 
1 1 1 
0 0 1 
0 1 a 

1 
0 

= [0 1 11 .... Therefore fail, non-zero residue 

~] 

~l 

Figure 1.6: Complete encoding example using the generator matrix derived 
from the parity check matrix. 

Thus regarding the encoding of a linear block code of length N with M 

check points, through traditional means with a single processing engine, a 

temporal complexity of O(NM) is required [22], as it is the result of a matrix 

multiplication of the binary input vector by the generator matrix; note that if M 

piOcessing engines were utilized that the temporal complexity would be O(N). 
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Modern encoding is rather different, wherein the parity check matrix H is 

utilized without a generator; such can be constructed to result in linear temporal 

complexity encoding [22], [26]. The method is simple and is illustrated below in 

Figure 1.7. 

Hl,n] = 0 l 
Hm,n] = 0 

{

Xl * Hll EB ... EB xn * Hln = O} 
~ ~ : ~ '" _ i.e. a system of equations to solve 

Xl * Hm,l EB ... EB Xn . Hm,n - 0 

Figure 1.7: Encoding represented as a system of equations. 

In Figure 1.7, the temporal complexity for solving the set of equations may 

seem to be O(NM) but this can be reduced. According to [22], by designing the 

parity check matrix to be sparse, the set of equations may be solved immediately 

without any reduction or elimination algorithms (no order is implied, order 

depends on the particular construction of H). Therefore, with one processing 

engine, the temporal complexity may be reduced to O(M), making linear time 

encoding of an LOPC code feasible; if M processing engines were utilized the 

complexity can be reduced to constant time. A complete example of the encoding 

process is shown below in Figure 1.8. 
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with the belm,' initial conditions: 

H = [~ 
0 0 0 1 1 

~l x=[xo Xl X2 X3] 1 0 1 1 1 
0 1 1 0 1 

And using the following: 

}{HT = [Xo Xl Xl X3 X4 Xs X6] 

Allmols us to set up a system of equations: 

M.A.Sc. M.N. Jobes - McMaster 

0 0 

100 
010 

1 
1 1 
0 1 
1 1 

o = [0 0 0] 
1 
1 

101 

20 EEl 23 EfJ Xs EfJ X6 = 0 => Xo = X3 EEl Xs EEl X6 
Xl EEl X3 EfJ X4 EEl Xs = 0 => Xl = X3 EEl X4 EEl Xs 
X2 EEl X4 EfJ Xs EEl X6 = 0 => X2 = X4 EEl Xs EEl X6 

with the above eqations \"'e may substitute xO' Xl' and x2 back into X 

And using the below ,ole may wri te X in terms of X (Encoding Complete) 
[X3 x4 Xs x6] = [Xo xl Xz X3] 

Figure 1.8: A linear block code encoding example. 

In the above figure the information vector is x and is comprised of 4 

information bits: Xo, X1, X2, and X3. The parity check matrix, H, is a rate 4/7 code 

having four information bits and a block length of seven; used to produce and 

verify the encoded word X. Because there is an bX3 identity matrix in the 

beginning of H, the last four bits in the encoded word are copies of the four 
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original information bits; this is termed systematic and is a property of many 

implemented LOPC codes such as in the standard OVB-S2 [8], and WiMAX [17]. 

It is apparent that allowing the result of the multiplication of the coded word with 

the rotated parity check matrix, termed the residue, to equate to a zero vector 

greatly facilitates the reordering of equations as to solve the encoding problem. 

With a sparse parity check matrix, this approach can be computed with linear 

time complexity [26]; far superior to the method of solving xHT=Q as a system of 

equations via matrix multiplication which could require O(NM) to compute. 

1.2.3 - Decoding 

Much of the work in the LOPC code design space focuses on the decoding 

algorithm or heuristic. According to [38], optimal decoding of an LOPC code is an 

NP-complete problem, there are, however, heuristics based on belief 

propagation, wherein the context of the application, are considered optimal [36], 

[37]. Belief propagation is an algorithm that utilizes nodes' extrinsic information 

(or simply information outside of the node in question) to later make decisions 

from information that was propagated through the nodal network. The values that 

are propagated are representations of reliability determined from observing the 
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communication network channel; these values are represented as log likelihood 

ratios (LLRs). 

The belief propagation algorithm for LDPC decoding has two stages: 

update the check node extrinsic information, and update the variable node 

extrinsic information. These two steps may be performed in a single iteration 

(according to [7] termed: Layered, Turbo or, Gauss-Seidel Decoding) or in two 

iterations (termed two-phase message passing (TPMP) and is the traditional 

method according to [17], and [47]). The result is that the number of iterations 

can change by a factor as much as two [15], [47] when using layered decoding as 

opposed to TPMP (the chosen scheme for this thesis as to not incur the 

complexity of layered decoding scheduling). One work deserving specific 

recognition is that of [47], where a layered decoding scheme is implemented with 

a novel use of a delay chain built inside the node update calculation blocks. 

Of all the decoding algorithms the Sum Product Algorithm (SPA) [21] is 

determined as the most beneficial with regard to only performance [36]. All of the 

work cited in this thesis either uses SPA or an augmented flavour of SPA yet all 

are Belief Propagation Algorithms. The Belief Propagation Algorithms all follow a 

similar algorithmic flow where there is a formula for updating the messages 

outputted by the nodes, with an iterative nature, and a formula for producing the 

binary vector to be tested for success (i.e. the binary vector passes all parity 
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checks). A general example is given below in Figure 1.9; note how a particular 

node update is not dependent on itself due to the use of extrinsic information 

(except for the test binary vector which includes intrinsic information). Extrinsic 

information is information outside of a particular node, whereas intrinsic 

information is information inside of a node. 

Below are the general forms of all the Belief Propagation Algorithms. 

CheckNodeOutput(check node ~ to variable node v)= Formula(all variable nodes connected to c :Fv) 

VariableNodeOutput(variable node V; to check node c)= Formula(all check nodes connected to V:Fc) 

TestVectorOutput(variable node v)= Formula(all check nodes connected to v) 

Connect 

Soft Data In 

Connected Variable Node LLRs 

Variable Node LLR 

~vc 

Binary Estimation 
for Hard Decision 

Vector 

Check Node LLR 

cx.cv 

Figure 1.9: General flow of information for update calculation formulae. 
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In the above figure a represents the 20 vector of check node (subscript C) to 

variable node (subscript V) information, and f3 represents the 20 vector of 

variable node (subscript V) to check node (subscript C) information. 

There are three main types of Belief Propagation based decoding 

algorithms that are commonly utilized: the standard SPA in Equation 1.1 [36], the 

Min-Sum algorithm (or equivalently the Uniformly Most Powerful algorithm, UMP) 

in Equation 1.2 [7], and the A-Min algorithm. The A-Min algorithm is an 

augmentation of UMP that realizes the magnitude of the possible results for a 

particular node at a particular output comprises a set of A (two commonly, thus 

either the min or 2nd min); such is used to simplify the hardware design 

complexity resultant from formulae computation difficulty. 

acv = (- n sgnCf3nc)) log (tanh 
nEN(c),n=tv 

Pvc = ~ amv -L (J2 
mEM(v),m=tc 

f3 - L 2Yv 
v - amv --

(J2 
mEM(v) 

Equation 1.1: SPA Formulae 

26 



1.2 - LOPC Codes M.A.Sc. M.N. Jobes - McMaster 

In the above figure for SPA formulae, I3v is the hard decision vector 

component for variable node V. N(check node) produces the set of all the 

variable nodes connected to the check node argument, and M(variable node) 

produces the set of all check nodes connected to the variable node argument. 

sgn(x) = {1 for x ~ 0, -1 otherwise}, or simply the sign of the number argument is 

equated. When a vector is received, an analogue to digital converter (AOC) 

expresses each point in the vector in a fixed point manner where values exist in [-

1, 1] and these data points comprise the soft data in the context of this thesis. Yv 

is the soft data from detection for variable node V and a is the noise standard 

deviation of the Additive White Gaussian Noise (AWGN) channel in which the 

message is transmitted. 

aev = { E9 SignBit(Pnc). minlPncl} 
nEN(e),n=t=v 

2Yv ~ 
f3ve = (J2 + L amv 

mEM(v),m=t=e 

2Yv L 
f3 =-+ amv 

v (J2 
mEM(v) 

Equation 1.2: UMP Formulae 
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In the above figure for UMP, I3v is the hard decision vector component for 

variable node V. N(check node) produces the set of all the variable nodes 

connected to the check node argument, and M(variable node) produces the set of 

all check nodes connected to the variable node argument. SignBit(x) = {1 for x < 

0, 0 otherwise} or simply the MSB of a value represented in signed magnitude. 

The {} brackets are used to represent a concatenation of two binary words; i.e. 

{a,b} produces the new word ab, or {O, 1 01} produces 0101. The EB symbol refers 

to the XOR or modul0-2 addition operation over all the 1-bit arguments in the 

following parenthesises. Yv is the soft data from detection for variable node V and 

a is the noise standard deviation of the AWGN channel in which the message is 

transmitted. 

The SPA algorithm does result in a higher area due to algorithmic 

complexity, yet it also has high performance [3]. The performance relative to area 

seems insufficient as to justify said algorithm's use for many of the architectures 

amongst the prior art (see section 2.1 - 2.2); none of the prior art utilizes the more 

complex formulae without a simplification that results in performance 

degradation. 
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1.2.4 - Matrix Construction 

The construction method of the parity check matrices is essential for the 

applicability of this thesis. The construction method must utilize the later 

described method of expanding a base quasi-cyclic LOPC code with rate of the 

form (R-1 I R) into the set of matrices to be supported (all with rates of the same 

form R-1 I R). This construction method can be thought of as the only constraint 

that this work requires for applicability. When matrices' rates posses equivalent 

'form[s]', as is mentioned in this thesis, it is implied that each individual matrix 

rate is expressible in the stated form (Le. 4/7 is not of the form R-1 I R, yet 7/8 is 

of said form). To support alternative rates could possibly be done yet this detail 

was not explored as the case study had matrices of compatible rate form. 

The construction method must utilize a base matrix built from blocks of 

cyclically permuted matrices, commonly referred to as quasi-cyclic codes [9], 

[39], [46]. The representation of this is given in a matrix form wherein the values 

represent the number of cyclic permutations of columns, towards the right, of the 

identity matrix; the size of the identity matrix is a design parameter, termed K, 

and is out of the scope of this thesis (please see [23] for details and especially 

the sections on quasi-cyclic LOpe codes). An example of such a construction 

method is shown below in Figure 1.10, wherein the cyclic shifts or permutations 
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are illustrated, and in Figure 1.11 wherein a simple base matrix representation is 

shown. 

1 0 0 0 0 1 0 0 
0 0 1 0 0 

0 1 0 0 0 0 1 0 
0 0 0 1 0 

/0 _ /1 _ /2 _ 
K- K- K- 0 0 0 0 1 

0 0 1 0 0 0 0 1 
1 0 0 0 0 

0 0 0 1 1 0 0 0 
0 1 0 0 0 

Figure 1.10: An example of identity matrix permutation for an identity matrix 
of size K x K. 

Variable Variable Variable 
Node Node Node 

Block 0 Block 1 Block m-l 
Check Node laoo laol laom.l 

Block 0 K K ... K 

Check Node lalO lall la!m.! 
Block 1 K K ... K 

. ,. ... . .. . .. 

Check Node Ian.! 0 Ian.!! lan.!m.! 
Block n-l K K ... K 

Figure 1.11: A general example of base matrix contents. 

It should be noted that the contents of the base matrix are not necessarily 

all cyclic permutations of an identity matrix, some of the contents are filled with 

null matrices (Le. all zero matrices). Also in Figure 1.11: aij E~, 0 :::; aij < 

K, i,j E ~,O :::; i < n,O :::; j < m, or in other words there exist at most n*m entries 
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of a with K different possible values [0, K-1]; to perform K cyclic permutations on 

a KxK identity matrix results in the original KxK identity matrix. The general matrix 

in Figure 1.11 would be for a parity check matrix of size n*k x m*k. 

To support multiple rates, more matrices (one for each rate) will be required. 

The other rates to be supported will be assumed to be lower rates and the base 

matrix will be augmented to generate these matrices; the base matrix is therefore 

the matrix utilized for the highest rate desired to be supported. This thesis' 

method for augmentation is as follows: the number of check node blocks is 

doubled and the permutation values inside the base matrix, in each column, are 

copied whilst appending NULL matrices as to fill the entire new matrix. To further 

elaborate, the first row of the base matrix will become the first two rows of the 

new, lower rate, matrix. The data or contents or permutation values will be copied 

only once and then paired with a NULL matrix block, denoted as '--', as to have 

one data become two. If one row is to become two then each column permutation 

value would need to become the new value for the new first or second row 

leaving the other to be the NULL matrix block. 

A similar approach to construction, termed 'matrix expansion' is detailed in 

[49], yet in [49] the number of variable nodes and check nodes are both scaled by 

This is a good approach when rates of other forms need be supported; the focus 
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of this thesis is however matrices of form R-1 I R due to the case study 

implemented. 

An illustration of this thesis' construction method for lower rate matrices' 

construction from a single high rate base matrix is shown below, for the general 

case, in Figure 1.12. Note how the code block length is constant, a significant 

variation to the expansion method provided by [49]. 

To clarify an important fact, it should be noted that only one of the matrices 

is utilized at a time, i.e. a decoder only operates at one rate at a time. 
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Below is the base matrix of rate 
R-l l~J-l 
~ above the matrix of rate l~J r 

where R is a temporary variable to demonstrate a relative rate; note 

that the two earlier expressions involving R are of the same form. 

Variable Variable Variable 
Node Node Node 

Block 0 Block 1 Block m-I 
Check Node IIXoO I IX01 I IXom-1 

Block 0 K K \ ... K 

Check Node 
I IX10 IIX11 \ I IX1m-1 

Block 1 K K ... K 

... ... 1\ ... \ ." 

\ I I 
Variable Va\riable / Variable 

V 
Node ~ode Node 

Block 0 Bl ock 1 Block m-I 
Check Node IIXoO ~ ... I IXom-1 --

Block 0 K K 

Check Node I 1~01 " -- ... --
Block 1 

Check Node 1 I IX1m-1 -- -- ... 
Block 2 K 

Check Node 
I IX10 

II-
IIX11 ... --

Block 3 K K 

... ... ... .. . ... 

Figure 1.12: Illustration of matrix construction method. Note that arrows do 
not show all possible data traversal as to simplify the illustration. 

It should be noted that the decision of the NULL matrix location (i.e. the 

first or second row in the new matrix if coming from the first row in the base 

matrix) need only be made as to have the degrees of the two new rows be equal. 
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The row degree is the count number of permutation values across the entire row 

due to said values' representations, or simply due to the fact that each permuted 

identity matrix has only one '1' in each row regardless of the permutation count; '-
-, 

_', or NULL, matrices do not contribute to the degree. 

This method of construction apparently allows for a hardware efficient 

design as it simplifies interconnection changes across different rates. A similar 

design process is used by the case study of this thesis, 802.15-3c, and is further 

augmented to include what some could call puncturing; pseudo puncturing as 

termed by this thesis. In pseudo puncturing the goal is not to increase rate but 

merely to decrease interconnection density, as a result some values are not 

copied into the respective lower rate matrices and are simply replaced by NULL 

matrices. Many standards could be slightly augmented as to support these 

matrix properties such as OV8-S2, or Wi MAX, as they use quasi-cyclic codes in 

the base matrix construction. 

It should be noted that the form of the rate, i.e. R I R-1, is a result of the 

number of check nodes doubling across matrices. To support alternative rates 

could possibly be done by having some values propagate to two locations and 

other values propagate to a different integer number of locations. This detail was 
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In the following section this thesis' analysis of prior art and related work 

will be detailed with sub sections: first, design space (section 2.1) wherein the 

basics of LDPC decoder design space is described along with a cursory 

comparison of some prior art; second, architecture art (section 2.2) wherein a 

detailed analysis of three state of the art architectures is provided. 
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Chapter 2 

2 - Prior Art and Related Work 

LOPC decoders have many design parameters that may lead to device 

improvements or shortcomings. In the first section of the following review of 

previous work, some key aspects of design parameters will be addressed and 

state of the art designs will be compared in a cursory manner. Second, a detailed 

analysis of three state of the art architectures is presented. 

2.1 - The Design Space 

Of all the prior art explored in this review only one work attempted a detailed 

comparison of different works across multiple design parameters [3]. When 

isolating the main comparison points, or attributes, a table was compiled to 

describe the design space as seen by [3]. This table covers many key design 

parameters such as: LOPC code design, the decoding algorithm, number of 
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iterations, data quantization, and architecture parallelism. The table below (Table 

2.1) is a slightly augmented version of the table from [3]. 

Design VLSI Parameters Communications Service Parameters 
Parameters Area Throughput Performance Block Length Code Rate 

More edges 
More edges 

Smaller decrease 
increase RAM throughput. Irregular LDPC block length Higher code 
area. Higher Lower codes perform reduces 

rates reduce 
LDPC Code code rate edge/(Rate·VN) better than number of irregularity 

flexibilitie -ratio regular LDPC edges and 
s increase 

increases codes. irregularity 
logic area. 

throughput. 

Optimal 
Smaller High code 

Larger area block 
algorithms rates are 

allows for lengths are 
Algorithm optimal 

perform better more 
more 

than 
more suitable for 

decoding 
suboptimal 

suitable for 
suboptimal 

algorithms. 
ones. 

suboptimal 
algorithms. 

algorithms. 
Throughput is More 

Larger block Higher code 
inverse iterations 

Iterations proportional increase 
lengths rates 

to the number communications 
require more require less 

of iterations. performance. 
iterations. iterations. 

Larger area 
Increased 

Higher code 

Quantizatio allows for performance 
rates allow 

wider for smaller 
n quantization with higher quantization 

quantization. 

Architectur 
Increased Throughput Parallelism Larger block 
logic area proportional can limit sizes allow 

e by higher to communications for higher Parallelism 
parallelism. parallelism. performance. parallelism. 

Table 2.1: Important Parameters of the LOpe Decoder Design Space [3]. 

The prior art concerning this work will be analysed and categorized loosely 

with respect to the table above in a row by row approach where the design 

parameters will be addressed in the order: LOpe code structure, algorithm 

design, iteration count, quantization size of the internal data, and finally 

architecture parallelism. 
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Regarding the portion of the design space that is the LOPC code itself one 

may note that, as more edges are added or as the parity check matrix density 

increases, area increases and throughput decreases [3]. Most of the previous 

work in the scope of this thesis does not focus on altering the LOPC code. The 

exception to this is [28], wherein [28] demonstrates a means of code construction 

as to alleviate interconnection complexity. Aside of [28], the prior art in the scope 

of this thesis that do alter the LOPC code, merely perform row operations on the 

code and do not alter the density (such as in [6], [25], and [40]). The purpose for 

altering the code through row operations in this way is to alleviate the layered 

decoding scheme; this is done by [6], [40]. Recall that the nuances between the 

different decoding schemes are described in section 1.2.3. Not all architectures 

are produced for a specific LOPC code, in fact in [29] a completely programmable 

architecture is provided. 

Concerning the portion of the design space which focuses on the 

algorithm, a good parameter for comparison across the prior art is realized. There 

are three main types of Belief Propagation based decoding algorithms that are 

utilized by the prior art: the standard Sum-Product algorithm (SPA), the Min-Sum 

algorithm (or equivalently the Uniformly Most Powerful algorithm, UMP), and the 

LOPC decoding section of this thesis. To continue, already depicted by Table 2.1 
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the SPA algorithm does result in a higher area due to algorithmic complexity, yet 

it also has high performance. The optimal performance relative to area seems 

insufficient as to justify the use of SPA for any of the architectures amongst the 

prior art; none of the prior art utilizes the more complex formulae without a 

simplification that results in performance degradation except for [47]. An older 

architecture, [47] is an architecture in which the only SPA + layered decoding 

scheme is utilized; area is sacrificed for throughput. 

Some of the prior art does in fact attempt an altered, or simplified/reduced, 

flavour of the SPA that reduces area as to improve performance relative to area; 

a collection made up of [31], [34], [36], and [37]. Many of the prior arts (Le. [4], 

[6], [7], [14], [18], [40], [43], and [48]) use the Min-Sum (or UMP) decoding 

algorithm or a scaled flavour of the same algorithm. Such a scheme yields a good 

area to performance relation and is what is used by this thesis. The Min-Sum 

decoding algorithm can also be further simplified into the A-Min algorithm by 

using the value-reuse property of the Min-Sum algorithm; utilized by [12], [13], 

[17], [24], [35], and [41]. Algorithm properties and descriptions can be found in 

section 1.2.3. 

Regarding iteration, or better said iteration count, meaningful comparison 

across the prior art is moot, itvhat with [34] implementing both a tvvo phase 

approach and layered approach, along with [14], [36], [37], [40], and [48] 
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implementing a two phase approach and [4], [6], [7], [12], [13], [15], [17], [18], 

[24], [43], and [47] implementing a layered (single phase) approach, the iteration 

count can differ by a factor of two, ceteris paribus. This factor is due to the 

inherent algorithmic structure of the layered approach and the details of the 

layered approach scheme can be found in the LOpe decoding section of this 

thesis (section 1.2.3). 

The parameter that can drastically affect area and performance is 

quantization [3]. Not many of the papers show results for multiple quantizations 

as this could result in the need of complete redesign of the architecture. The 

common quantization used amongst the prior art seems to be six bits (1 sign, 3 or 

4 integer, and 2 or 1 fraction), used by [4], [7], [13], [24], [34], [35], [36], [37], [40], 

[43], and [48]. Whereas: 8 bits (1 sign, 4 integer, and 3 fraction) are used by [41]; 

4 bits (1 sign, 2 integer, and one fraction) by [6], and [47]; and 5 bits (1 sign, 2 

integer, and 2 fraction) by [12], [14], [17], and [18]. 

Architecture parallelism is an influential parameter, it can affect whether or 

not a scheme is feasible. What is entailed in adjusting architecture's parallelism is 

the scaling of how many processing engines are used. In other words, 

architecture's parallelism is simply how many parallel processing nodes are used 

to calculate the formula of interest. 
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For example if there are 672 nodes to be processed, then updates may be 

processed via 672 consecutive uses of the same single engine; the least parallel 

case. The 672 nodes may also be processed by 672 parallel engines in one use; 

the most parallel case. All the different works commented on thus far have 

different levels of parallelism, and in most schemes the parallelism is addressed 

in a manner as to be just parallel enough as to produce the desired throughput. 

Otherwise the parallelism is constrained by the area, as parallelism has a 

significant and direct effect on area and area is expensive. Other art such as [29] 

even have the parallelism as a programmable design constraint. 

In the following section 2.2 three basic architectures will be compared. The 

variation amongst the architectures may seem minimal yet the differences are 

significant. 
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2.2 - Prior Work on LOpe Decoders 

In this section two architectures from [36] and a single architecture from [14] are 

presented as prior art and discussed. Below in Figure 2.1 is the first architecture 

to be discussed from [36]. 

Figure 2.1: A check node architecture from [36] which utilizes SPA as the 
decoding algorithm. 
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In the above figure, the SPA algorithm (Equation 1.1) is implemented for a 

check node of degree six. The inputs are for the messages from the six variable 

nodes connected to the particular check node c, and message quantization is q 

bits. The messages from the six variable nodes (the 13 values) connected to 

check node c are passed in, and the messages from c back to the six connected 

variable nodes are outputted (the a values). The circled plus blocks are simply 

addition blocks. The 4J function (log(tanh(X/2» in Equation 1.1 is implemented 

using Look-up-tables, or LUTs. Each of these LUTs has a table of possible 

outputs uniquely and consistently determined by the input look up address. For 

example, regarding a LUT with four address bits, sixteen, or 24
, different binary 

outputs can be programmed as address dependant values. Implementing LUTs 

in parallel (i.e. the LUTs all share the same address inputs and the LUTs outputs 

are concatenated) allows for multi-bit output; this is what is implied when LUTs 

have multi-bit outputs. Hence the degree of inputs for a LUT need not have any 

relation to the degree of output. In the case in the earlier figure, Figure 2.1, the 

LUT inputs are q-1 bits wide with outputs of the same width. These are later 

treated as new values that will propagate through the circuit. The formula 

implemented by these LUTs in Figure 2.1 is: 4J(x) = log(tanh(lx/21)) [36], it is 

clear that 4J may be substituted in the update formula for check nodes in Figure 

1.5. 
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The gains of this approach are reflected in the accuracy of the 

calculations; see section 1.2.3 for more details on why SPA has such accuracy. 

Regarding the accuracy of LUTs is an involved discussion that covers much 

theory and thus the analysis of this accuracy is out of the scope of this thesis; 

please refer to [36] for more case specific details. 

The drawbacks of the approach illustrated in Figure 2.1 are reflected in the 

needed area relative to performance. In fact, [36] does recognise this, and as a 

result introduces the augmented version of the architecture in which reduced­

look-up-tables, RLUTs, in tandem with compression units, COMPs, are 

implemented as to maintain performance and simultaneously reduce area. The 

second architecture to be discussed, the architecture for this augmented flavour 

is shown below in Figure 2.2. 
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cS 

J36c 1 

a
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Figure 2.2: A check node architecture from [36] which utilizes an 
augmented SPA with Reduced-LUTs and Compression Units. 

The RLUTs result in acknowledgeable savings in area (described in [36]), 

yet the mathematical reasoning of the RLUTs may be unclear; a figure from [36] 

is provided for clarification below in Figure 2.3. Note the columns showing the 

variation in quantization. What should be noticed is the number of different 

possible outputs for each quantization scheme. Regarding the 'Uniform quan' 

(uniform quantization) and corresponding 'Decimal value' (simply the function 
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4J(LUT input) result in decimal) columns, one can clearly see the standard result 

from using a LUT to implement 4J. 

LUTinput LUToutput 
:i 

Decimal value Uniform quan. Variable quan. r Variable quan. II 

(X)()()O 3.5(X) 11100 lUOO llloo 
(xX)()1 2.375 looll 10011 
ooOIO 1.875 01111 Ollll 0111 t 
(XXlll 1.5oo 01100 OllOO 
(xJlOO 1.250 01010 01010 (HOW 
(XIlOl \.125 OIoo! 01001 
oollO l.OOO 01000 01Ooo OHX)() 
(xllll 0.875 oolll oo111 
OH)()() 0.750 ootlO (xll ](] 
01001 0.625 00101 oolOl 
01010 0.5oo oolOO ooloo 
OJOU O.SOO (X) I 00 
01100 0.375 00011 OOOli 
01101 0.375 oooll ()()()U 

OHIO 0.375 OOOll OOOIO 
01111 0.250 00010 
1(x)OO 0.250 00010 
lIXJOI 0.250 00010 molO 
loolO 0.250 oollO 
lool1 0.125 00001 00010 
10100 0.125 oo)()l 
10101 0.125 (XIOOI 00001 
!OlIO 0.125 00001 
10111 0.125 Q(XJOI 
11O{)0 0.125 00001 
11001 0.125 00001 00001 
11010 0.125 (){X)()l 
11011 0.125 (XXJO! (XIO(K) 
111(){) 0.000 (0)00 
11101 0.000 00000 00000 
11110 o.om oonon 
!llll O.(XX) ()()()()O 

Figure 2.3: A figure from [36] to clarify the reasoning behind the RLUTs. 

What is also apparent is the repetition of outputs. The output '00001' (or 

0.125 in decimal) is outputted for nine different input addresses; redundant. The 

column 'Variable quan I' shows how some redundant outputs can be dropped, 
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with some outputs lost as well (such as 00101, 0.625). What should be clarified is 

the number of outputs in each column is always a power of two. This is due to the 

inherent nature of the input, being a binary vector of however many bits, 

2number of input bits outputs should be generated; repetition may still occur amongst 

the outputs. As a result some values are lost and others still repeat; overall 

redundancy, however, is still reduced. To support the 16 outputs in the 'Variable 

quan I' column would roughly require half the area as that required to support the 

'Uniform quan' column. This assumes only LUTs are used, as logic can be built 

with other base blocks such as NANOs. The same relation of needed area may 

be made between the 'Variable quan I' and 'Variable quan II' columns. 

This leads to a complication, the five-bit input shown in the 'LUT input' 

column seems to also be the three-bit input for the eight outputs of the 'Variable 

quan II' scheme (or the four-bit input for the sixteen outputs of the 'Variable quan 

I' scheme). This is a misconception, the table is simply indicative of the 4J 

function remapping. The eight values in the 'Variable quan II' column need a 

three-bit driver and this is clear when regarding Figure 2.2 (q is six in this 

example, i.e. one sign bit and 5 fractional + integer bits). Note how the bitwidths 

are smaller at the input and output of the check node calculation block. This is 

because the values outside the check node calculation are no longer the extrinsic 
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information of the nodes. As a result of the CaMP blocks, the values are now 

compressed extrinsic information. 

The CaMPs can be thought of as merely a means of converting the q-1 bit 

wide results of the RLUTs down to the q-2 or q-3 (depends on variable 

quantization scheme I ----+ q-2, and II ----+ q-3) compressed inputs later expected by 

connected nodes; i.e. this same pairing of RLUTs at input and CaMPs at outputs 

are in both the variable and check node architectures. To facilitate this pairing, 

the SPA formula was reorganized by [36] as to have the 4J function calculation 

present in both check node and variable node update calculations. This allows all 

memory storage to be reduced by a factor of roughly two for the 'I' and four for 

the 'II' quantization schemes. The reorganized SPA formulae and original SPA 

formulae are shown below in Figure 2.4. 

Scv = f1 sgn(f3nc) 
l1EN(c),n*v 

'\' 2Yv 
f3vc = L amv - -;;z 

mEM(v),m*c 

acv = -scv . I IPCf3nc) 
nEN(c).n*v 

Scv = f1 sgn(f3nc) 
nEN(c).l1*V 

Figure 2.4: The SPA formulae reorganization utilized by [36]. 

In short, [36] seeks to reduce memory storage space and communication fabric 

density by compressing the messages stored and passed in the network. Such 
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an approach is quite novel yet not applicable to this thesis' work due to the thesis' 

use of the UMP rather than the SPA. 

The architecture from [14] is now addressed as to show how design 

choices impact area. Regarding the internal circuitry in the check node update 

calculation block for a UMP based implementation it is obvious that these 

calculations are more simply implemented with a signed magnitude 

representation of internal values. An architecture for UMP based check node 

update calculation block is shown below in Figure 2.5; again note how the 

internal operation is the minimum function and is more easily implemented with a 

signed magnitude numerical representation (the architecture in the figure in fact 

expects a signed magnitude representation). 
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[q-l'O) 

!3ncl 
[q-l,Oj [q-2:0] 

!3ncl 
(q-l:Ol [q-2,O) [q-l:O} 

~i !3V3Cl 
{Q-l:01 [q-2'Oj 

!3V4Cl 
[q-l'OI [q-2,O] C(CIV3 

{q- :OJ 

!3 [q-l,OI 
vSc1. 

[q-2'O) 

!3 [q-l,Oj [q-2'O) 
v6cl 

[q-2,O] C(CIV5 

q-l: ! 

Figure 2.5: An example of a UMP based check node update calculation. 

Alternatively, regarding a UMP based variable node update calculation block, the 

preferable numerical representation is 2's complement; refer to Figure 2.6 below, 

where internal calculations are additions which are suited for 2's complement 

numerical representation (the architecture in fact expects a 2's complement 

numerical representation). 
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Soft Data y'Vi-----------. 
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aC2Vi -1-----. 

aOVi -1----1 
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~ViCi 
~ViC2 
~ViC3 

Figure 2.6: A UMP based variable node update calculation block, all wires 
are q bits wide. 

When selecting the numerical representation implemented outside the 

node update blocks, it is important to understand that a conversion between 

representations will be needed in one of the calculation blocks; either inside the 

check nodes or variable nodes. To choose the check node as the block in which 

the conversion occurs is the design choice that [14] has made. The reason why 

this choice results in more area as opposed to the alternative is clear when 

concerning degrees of nodes. The figure for the architecture in [14] is below in 

Figure 2.7. 

51 



2.2 - Prior Work on LOpe Decoders M.A.Sc. M.N. Jobes - McMaster 

Out1 

In1 Out2 

In Out3 

In3 
Out4 

In4 

InS 
OutS 

InS Out6 

Figure 2.7: A Check node architecture from [14] which maintains numeric 
representation, outside the check nodes, in 2's complement. 

If a particular node (variable or check) is of degree X then 2X conversion 

units would be required. X conversion units would be required for the X inputs to 

be converted into the preferable numerical representation, the internal calculation 

would then be performed, and then X conversion units would be require-d to 

convert the X outputs. If the average degree of check nodes was equivalent to 

that of variable nodes, the decision of implementing the conversion units in the 

check nodes or variable nodes would be trivial; this is not the case in practical 

implementation of codes constructed in section 1.2.4. 
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In fact the average degree of check nodes in the higher rate codes, such 

as the case study of this thesis (namely the parity check matrices for 802.15-3c), 

can be as much as an order of magnitude in decimal (30.5 for check and 3 for 

variable). 

In general, recalI that the rate of an LOpe equates to one minus the ratio 

of check nodes to variable nodes. Thus with any feasible code, i.e. rate less than 

one and positive, there are more variable nodes than check nodes. With the 

number of connections between nodes constant, i.e. the number of messages 

passed back and forth is constant, along with the presence of more variable 

nodes than check nodes, it is obvious that the average degree of variable nodes 

is less than that of check nodes. Hence, having 2's complement as the numerical 

representation of the extrinsic values passed between the variable and check 

nodes across iterations of the UMP algorithm results in an architecture with more 

conversion units than necessary. 

In the folIowing section this thesis' contribution wilI be portrayed with sub 

sections: first, preliminary concepts (section 3.1) wherein the basics of Lope 

codes will be covered with the focus on the necessary information as to 

comprehend section 3.2; second, node nesting (section 3.2) wherein the inherent 

__ ........ __ .......... ____ ............. _ ...... : _______ "' ...... _ ... _...J ____ ... ..J: ..... _ "' _ __ ~ ... : __ A 1'1 A :_ -1 ___ -:1---1. 
IIOLUI C' OIIIVII~;:)L IIIOLlIIJC';:) IJVII;:)LI UIJLC'U OIJIJVI UIII~ LV ::It::IJLlVII 1.£."+ 1::1 Ut::::IIJIIUt::U, 

third, architectures for node nesting (section 3.3) wherein this thesis wilI present 
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comparison of both intelligent and insufficient architectures that provide support 

for the node nesting; and fourth, implementation (section 3.4) wherein the design 

process adopted by this thesis along with the corresponding results are provided. 
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Chapter 3 

3 - A New VLSI Architecture and Its 
FPGA Implementation 

One important concept to realize about this work is the generality in its 

applicability. To elaborate, assuming that the set of parity check matrices to be 

supported are constructed in the same manner as stated earlier in section 1.2.4, 

i.e. using a seed matrix and expanding, this work can be applied to provide a 

single architecture that can support the created set of matrices in addition to the 

base matrix; a specific example will be used to clarify this point later in this 

section. 

3.1 - Preliminary Concepts 

When regarding the formula, or algorithm, for this work's chosen LOpe 

decoding heuristic, one can be overwhelmed by the seemingly complex structure. 

Recall the chosen heuristic is the uniformly-most-poweiful belief piOpagation 

(UMP-BP) algorithm which uses extrinsic information; this point will be clarified 
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later in this section. We show this below for the check-node-update-calculation 

(acv) , variable-node-update-calculation (I3vc) , and the hard-decision-vector-

component-calculation (I3v). 

a cv = ffi SignBit(PnJ. minlPncl 
nEN(c),n:t:v 

(a) 

f3vc 
2Yv L -- + amv 
(J2 

mEM(v),m:t:c 

2Yv I f3 =-+ amv v (J2 
mEM(v) 

(b) (c) 

Equation 3.1: The formulae for the check-node-update-calculation (a), 
variable-node-update-calculation (b), and hard-decision-vector-component­

calculation (c). 

In the above formulae the subscripts c and v along with the functions 

N(check node c) and M(variable node v) are of key importance when trying to 

understand which node instance is meant to be processed/calculated. The c 

subscript refers to the check node IO/instance, and the v subscript to the variable 

node IO/instance. The function NO has an input argument of a particular check 

node (c) and returns the set of variable nodes connected to the check node input 

argument. Similarly, the MO function has an input argument of a particular 
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variable node (v) and returns the set of check nodes connected to the variable 

node argument. Thusly, the set {n E Nee), n * v} simply equates to the set of 

variable nodes that are connected to check node c with the exclusion of variable 

node v, and the set {m E Mev), m * e} simply equates to the set of check nodes 

that are connected to variable node v with the exclusion of check node c. Yv is 

the soft data from detection for variable node v and a is the noise standard 

deviation of the AWGN channel in which the message is transmitted. 

Another key point to finalize before compiling the earlier statements into a 

comprehensive explanation is this work's unique notation in the node formula 

(Equation 3.1-a). The {} brackets are used to represent a concatenation of two 

binary words; i.e. {a,b} produces the new word ab, or {O, 1 01} produces 0101. The 

EB symbol refers to the XOR or modulo-2 addition operation over all the 1-bit 

arguments in the following brackets. The SignBitO formula returns a one if the 

argument is negative and a zero otherwise. It should be noted that said 

argument's value is assumed to be represented in a Signed Magnitude format, 

therefore the SignBitO formula is a free operation in hardware as it is just the 

selection of the MSB. The min function simply returns the minimum value in the 

set described by the bounds on the min function which is {n E Nee), n * v} in the 

above case. 
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With all that, we may continue on to the example-driven explanation of the 

formulae as to later produce the simplified understanding of the formulae; 

important to grasp well as to be able to see the hidden simplicity utilized by this 

work. 

Concerning a particular check node, a particular output is derived from all 

the inputs except said output's input counterpart. For example, regarding a 

particular check node, C1 in this example, connected to variable nodes: V1, V2, 

V3, V4, V5, and V6, six output values will need to be produced from six inputs. 

Namely outputs: aC1V1, aC1V2, aC1V3, aC1V4, aC1V5 , and aC1V6 from inputs: ~V1C1, 

~V2C1, ~V3C1, ~V4C1, ~V5C1, and ~V6C1. The key to perceiving the subtle simplicity 

used by this work is found when focusing on a single output, for the sake of 

argument and this example, aC1V1. The MSB of aC1V1 equals the XOR of: 

SignBit(~v2c1), SignBit(~v3c1), SignBit(~v4c1), SignBit(~v5c1), and SignBit(~v6c1), 

and the magnitude of aC1V1 equals the min of: I~V2C1L I~V3C1L I~V4C1L I~V5C1L and 

I~V6C11. Note how the output aC1V1 is in no way directly related to ~V1C1, this is 

what is meant by 'output is derived from all the inputs except said output's input 

counterpart' and is also implied by the fact that UMP-BP propagates the nodes' 

extrinsic information to each update value. Extrinsic information is the information 

found outside the node of concem, Le. in the node's connected neighbours. The 

circuit to calculate the above example of a check-node-update-calculation is 
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shown below in Figure 3.1. Note q is the word length, solid circles are 

connections, and open circles are wire joiners/splitters (see labelled word 

lengths). 

(XCI'll 

[q-l:0] 

J3V1Cl 
[q-l:O] [q-2:0J 

J3V2Cl 
[q-l:OJ [q-2:01 [q-l!O] 

J3V3Cl 
[q-l:O] [q-2:0J 

J3V4Cl 
[q-l:0J [q-2:0J a'clV3 

J3V5Cl 
[q-l:0J [q-2:0J 

J3V6Cl 
[q-l:01 (<<-2:0J a C1V4 

q- : j 

(XCIVS 

q- : 

[q-2:0] (XC1V6 

(q-l:0] 

Figure 3.1: An example check-node-update-calculation processing block 
architecture. 

Concerning oneself with a particular variable-node-update-calculation 

(Equation 3.1-b) and the accompanying hard-decision-vector-component-

calculation (Equation 3.1-c), the same sense of simplicity may be derived as 

earlier for the check-node-update-calculation. For variable node V1 connected to 
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check nodes: C 1, C2, and C3; three output values will need to be produced from 

four inputs, namely outputs: I3V1 C1, I3v1 C2, and I3v1 C3 from inputs: aC1V1, aC2V1, 

aC3V1, and Y'V1 (i.e. 2 * YV1 102
, the scaled soft data input with value assumed to 

be represented in 2's complement). Focusing on a single output of this system, 

for the sake of argument and this example, I3v1C1, the value of I3V1C1 equals the 

sum of: aC2V1, aC3V1, and Y'V1. Again note how the output I3V1C1 is in no way 

directly related to aC1V1 and that for the hard-decision-vector-component-

calculation all that needs to be done is the incorporation of aC1V1 (choosing the 

sign bit incurs no cost in hardware as it is merely a selection of the most 

significant bit ( MSB)). 

Below in Figure 3.2 for the above example focused on variable node V1, 

the correlation between the hard-decision-vector -component-calculation (denoted 

as HD where each of the one-bit HDs together form the HD vector) and the 

variable-node-update-calculation can be exploited by merging the two 

calculations into a single architecture. 
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Soft Data Y'Vl---l--------, 

aC1Vl 

UC2Vl 

aC3Vl 

SM ~ 2'sComp 

SM~ 2'sComp 

SM ~ 2'sComp 
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2'sComp~SM 

2'sComp~ SM 

2'sComp~SM 

To HDvector [V1] 

~V1Cl 
~V1C2 
~V1C3 

Figure 3.2: The hard-decision-vector-component-calculation and variable­
node-update-calculation in a single architecture as to reuse hardware. 
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3.2 - Node Nesting 

With all the above now established, this work's contribution may be 

elaborated. The reason why there is the earlier requirement of matrix construction 

is to allow for the occurrence of nesting nodes; this can be exploited as to reuse 

hardware and thusly save area. Considering the figure of the matrices from the 

case study of this work (Figure 3.3), i.e. the parity matrices for 802.15.3c [16], 

along with the corresponding arrows, the nesting of nodes is apparent when 

focusing on where to the blocks from the rate 7/8 matrix translate, or copy, in the 

lower rate matrices. 

For example, noting the first-column first-row, in the rate 7/8 matrix, the 

value 0 (meaning zero permutations of the 21x21 identity matrix as earlier stated 

in section 1.2.4) translates to either the first or second row of the 3/4 rate matrix 

(here the 1st), leaving the other block slot (here the 2nd
) filled with zeros. In other 

words, if a N-row base matrix is expanded to a 2N-row matrix, the Nth row of the 

base matrix becomes the 2Nth and 2Nth -1 rows of the new lower rate matrix. 

It should be noted that the row degrees are paired, i.e. the two rows in one 

matrix (the first two rows in the rate 3/4 matrix) that are nested in a single row of 

the higher matrix (the 7/8 matrix) both have the same degree (not equal to the 

degree of the single row, and in fact should be at most half of the degree of the 
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single row due to the pairing); this is depicted in a table to the right of Figure 3.3. 

Note that the matrices are obfuscated as to protect the intellectual property and 

this does not result in any loss of information directly required to understand this 

thesis' work. 

To maintain these paired degrees not all the values translate, and as a 

result the constructed node macro-blocks are not only comprised of just two sub­

blocks but three. Figure 3.4 uses this concept of nested nodes to construct the 

macro-blocks that act as reconfigurable nodes for the multiple rates, and shows 

the excess nodes that result from the values that do not translate. The specifics 

of the pseudo puncturing which is used to drop values and the rational behind 

utilization of this pseudo puncturing is outside of the scope of this thesis and is 

not addressed (see [39] for a detailed explanation on LOpe codes and their 

construction). 

To clarify an important fact, it should be noted that only one of the matrices 

is utilized at a time, i.e. a decoder only operates at one rate at a time. Thus to 

have nested nodes is beneficial as module reuse normally results in area 

savings. 
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Rate 1/2 
1 2 3 4 5 6 7 8 9 10 11 

Jf~ 
- - 5 18 - - 3 
0 - - - 16 -

( 3 - 6 - 7 - 2 

I l 
- 18 - 0 10 
5 18 -
- 0 - - 16 6 -
- - 6 7 - - 2 

I 8 18 - 0 - - - 10 
9 5 - - - 18 3 -
10 0 16 - 6 
11 6 - 7 -
12 - 18 - 0 - 10 

13 - 5 18 - - 3 
14 - 0 16 - - - 6 

15 - 6 - - - 7 2 -
16 18 - - 0 - -

Rate 3/4 
1 2 3 4 5 6 7 8 9 10 11 

\ 1 0 - - 5 - 18 16 - 3 
2 - 18 6 7 - - 0 10 2 
3 5 0 - - - 18 16 6 -
4 - 18 6 0 7 - - 10 2 
5 5 0 16 - - 18 3 6 
6 6 18 - 0 1 - 10 
7 - 5 0 18 16 - - 3 6 

8 18 6 - - - - 0 1 0 -< 

Rate 7/8 
1 2 3 4 5 6 7 8 9 10 11 

1 0 18 6 5 7 18 16 0 10 2 3 
2 5 0 18 6 0 7 18 16 6 10 2 
3 6 5 0 18 16 0 1 18 3 6 10 
4 18 6 5 0 18 16 0 1 2 3 6 
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Figure 3.3: The matrices used in this work's case study [16]. 
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" 
Deg 5 Deg 5 Deg 4 Deg 6 Deg 6 Deg 1 

Deg 14 
./ 

Deg 13 

" r " 
Deg 5 Deg 5 Deg 4 Deg 6 Deg 6 Deg 1 

Deg 14 Deg 13 

" 
Deg 1 Deg 5 

Deg 29 Deg 31 

Figure 3.4: The depiction of the macro blocks designed for the case study 
of this work. 

To portray by example, the degree-29 macro-block is the single macro-

block needed to support the first row of the rate 7/8 matrix; i.e. one degree-29 

block to support the 29 degrees needed. Note that by degree the number of input 
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data is quantified; Figure 3.1 is of degree six. This macro-block is also the only 

macro-block needed to support the first two rows of the rate 3/4 matrix, and is 

also the only macro-block needed to support the first four rows of the rate 1/2 
_. 
'I 

matrix. Regarding the sub-blocks which may seem unnecessary, the reader 

must understand that they are merely a means of providing the degree support 

needed, and in fact come from the matrix construction; they are a result of the 

values that were not traversed between matrices as discussed earlier. For 

example, removing the degree-1 sub-block inside the first level of the degree-29 

macro-block would make the degree-29 macro-block an effective degree 

14+14=28 and thusly would no longer support the 29 degrees required. The other 

reason why the degree-29 macro-block has the degree-1 sub-block is because 

there is only one value not traversed from the rate 7/8 matrix's first row to the rate 

3/4 matrix's first two rows. Similarly, removing the degree-4 sub-block from one of 

the degree-14 sub-blocks would make that degree-14 sub-block only a degree 

5+5=10. The other macro-blocks have the same general behaviour/organization 

as that of the degree-29 macro-block and, because of this similarity, will not be 

elaborated. 

It should also be noted that the variable nodes (i.e. the columns in the 

matrix) are connected to the same check nodes in all the matrices with some 

simple exceptions handled with intelligent masking discussed later. This allows 
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the same variable nodes to be connected to the same macro-blocks as rate 

changes, an important attribute of these matrices' construction. Multiplexers for 

redirecting node connections at the check-node-update-calculation macro-blocks' 

inputs and variable-node-update-calculation blocks' inputs are not needed, and 

the simple task of intelligent masking of inputs that do not translate is all that is 

needed to be added; Figure 3.5 shows the general idea of this intelligent masking 

below. 

A 

B 
• • 

Z • 

Operation 
Computational 

Network 

Intell:::n;t:~ ~----------------
Jvlask Value 

Enable Jvlasking == 0 

A 
B 

• • 
Z • 

- --- - ------

--~~ 

Operation 
Computational 

Network 

Ref;t: 
.1'----------------­Intelllgent 

Jvlask Value Enable Jvlasking == 1 

• • • 

• • • 

Op ( B , ... , Z, Re f ) 
Op(A, ... ,Z,Ref) 

Op (A, B, ... , Ref) 

U 
Note how the impact 

of Ref is eliminated 

when intelligent 

masking is enabled 

Op( B, ... ,Z 
Op (A, ... , Z 

Op (A, B, ... 

Figure 3.5: Intelligent Masking Depiction. 
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Intelligent masking is elaborated in the following: regarding check-node­

update-calculation, an input of the largest possible positive number will not affect 

the outputs. This is because each output is a minimum function of the respective 

inputs, so the input of the maximum possible value will have no effect; the sign bit 

has the same situation with an input of O. To further express in other words, the 

outputs' MSBs are derived from an XOR network of sign bits and a value of 0 

XOR x will equate to x thus the sign bit is not affected. In the case of the 

magnitude of the output, the value is derived from the inputs' minimum, thus an 

input of the maximum possible number would not affect the output. Similarly, 

regarding the variable-node-update-calculation, an input of zero will not affect the 

outputs as x+O=x. Using this intelligent masking allows for simpler connections to 

the check-node-update-calculation-macro-blocks, and for variable-node-update­

calculation blocks' hardware to be shared across matrices. This attribute of lining 

up also leads to the reason why this creation of macro-blocks is only done for the 

check-node-update-calculation. 

A similar pattern exists when regarding the variable-node-update­

calculation, although to exploit this pattern would not result in a significant gain in 

organizational simplicity. The reason why is clear when considering the case 

study and the fact that the number of different degrees that need to be supported 

for the variable-node-update-calculation is only four, and in fact the number of 
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degree-4 variable nodes is much higher than the number of degree-1 or 2 or 3 

nodes. Recall the number of variable nodes is larger than that of the number of 

check nodes (see end of section 2.2). Thus with the number of messages passed 

between nodes constant, the degree of the check nodes is higher on average 

than that of the average degree of variable nodes (see end of section 2.2). Also 

to have a nested situation as do the check nodes, the variable nodes would have 

to increase in count and they do not. Thus a macro-block system is not 

implemented for the variable-node-update-calculation. 
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3.3 - Architectures for Node Nesting 

Next to be clarified is the means of creating these check-node-update-

calculation macro-blocks. The basic architecture shown in Figure 3.1 would not 

support merging, i.e. the joining of sub-blocks. To be able to create an 

architecture that could support merging, we need to first readdress the outputs of 

the check-node-update-calculation macro-blocks. Recall the earlier example with 

check node C1, connected to variable nodes: Vi, V2, V3, V4, V5, and V6, where 

the MSB of OC1V1 equals the XOR of: SignBit(~v2c1), SignBit(~v3c1), SignBit(~v4c1), 

SignBit(~v5c1), and SignBit(~v6c1), and the magnitude of OC1V1 equals the min of: 

I~V2C1 \, I~V3C11. I~V4C11. I~V5C11. and I~V6C11. Consider that we intend to add a single 

degree to this degree-6 node making an effective degree-7 node. The output 

OC1V1new-degree7 would equal, if the reader would recall the earlier notation used to 

express the formula for the check-node-update-calculation, {SignBit(oc1V10Id-

degree6) XOR SignBit(~Deg1) , min(loc1v1 old-degree61.1~Deg11)}. 

Thus, one may think of an output as {XOR (of all the nodes of interest 

MSBs), min (of all the nodes of interest magnitudes)}. Hence, to provide a 

reference that would be {XOR (of all the nodes' MSBs in another block), min (of 

all the nodes' magnitudes in another block)} allows the incorporation of the other 
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block's information. This reference may then be treated as another degree to 

incorporate. 

Using that fact, we may allow two nodes to be merged if both nodes have 

output and input reference values. Hence, the l3oeg1 value as a reference would 

then be the {XOR (of all the MSBs in the node that l3oeg1 comes from), min (of all 

the magnitudes in the node that l3oeg1 comes from)}, i.e. l3oeg1 node's 'output 

reference', and would act as the 'reference input' value to the degree-6 node. The 

degree-6 node would also need to provide a 'reference out' in the same manner 

to be the l3oeg1's node 'input reference' for the nodes to be fully merge-able. 

Assuming that two nodes both have reference inputs and outputs they may be 

merged as shown below in Figure 3.6; the OP block is simply {XOR (two inputs' 

MSBs), min (two inputs' magnitudes)}. Note how OP blocks are used as to have 

the merged-node be merge-able itself. This is done as to have the new 'macro' 

node design support recursive nesting; i.e. each of the two internal blocks could 

be drawn as the block in where they reside and this pattern can repeat. 
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Values Nl+N2 x q Nt x q Values Values Ni ~ q N.l+Na x q Values 
In ' In out Out 

Refe.rence ~:Reference 1 x q 

In out / 

I---r--I Reference 
Out 

Va1ues Na x q 
out 1----:>"/ '---+---l 

~ference ~ •.. Refer~~~.I-_l/X.:..../q_-+-_---l 

Figure 3.6: A depiction of how nodes of degree N1 and N2 can be merged to 
produce a merge-able node of degree N1 + N2. 

For the case of merging 3 nodes, each with reference inputs and outputs 

is a more complex case and is shown below in Figure 3.7. 
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Ref lxq 
In+ 

€( 
lxq . - . - - lxq 

OP'J---I--,.'-' -I B<O.£e.:ierice .. Reference t---:r'----+ 
In-- ~o OUt 

lxq 
~----~-----~IOP 

• - __ -00'-- ---_-_ ----_"-1 , .. ·C... _ .. -_.. 1 

' 

.. F}-------:~,<-}=I-I i;;f~r~Mi~~.i~!.;~~OU~et:.·~r~q-------+---' 
I-n :-~- _ ~--

l.xq 

Figure 3.7: A depiction of how nodes of degree N1, N2, and N3 can be 
merged to produce a merge-able node of degree N1 + N2 + N3. 

Providing these reference input and outputs can incur unnecessary 

additional cost if not done consciously. For example, if we wish to provide support 

for a reference input (recall the MSB and magnitudes are calculated 

independently, see Equation 3.1), each of the outputs can be updated with the 

reference input just before they are outputted as shown below in Figure 3.8. 
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q_lth bit 

Reference Input 
MSB 
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o [q-2:0J Reference Output 
Magnitude 

[q-l:0J 

[q-l:0J 

[q-l:0J 

[q-l:0J 

[q-l:0J 

[q-l:0J 

q-l th blt 

Figure 3.8: An inefficient inclusion of the Reference Input for the degree-6 
example in Equation 3.1. 

This is an inefficient approach as there is another approach which requires less 

additional minimum units (i.e. the repeating sub-block with the multiplexer and ~ 

unit) and XOR units for inclusion of the reference input. 

74 



-, 
-j 

3.3 - Architectures for Node Nesting M.ASc. M.N. Jobes - McMaster 

To include the reference output, one needs only to tap the correct wires 

and add an additional minimum unit; the cost for the MSB of the reference out is 

free. The more efficient inclusion of the reference input, with the same means of 

inclusion of the reference output, is shown below in Figure 3.9. 

13'11C1 [°_-1_'0
0
1 __ I_O-_2'_Ol_--ft-_f':> 

13'1201 [0_-1_,°-10-__ 1°_-,_,°_1 --*I-i 

Reference Input 
Magni tude _~[q-=':2'~Oj-l=::;1t1~ 

Reference Output 
r [q-2,OJ Magnitude 

13'1301 [0-1 ,0 [0-2 ,01 '---+--"--+--+-+-----1-1-------' 

13'1<01 1°:...-
1_'°+1+0-_---. 

I3V5C1 [0_-1_'0-++1-10-_-, 

~V6Cl [q-l:0 [q-2:0 -..,--,,,, 

~-~~£Yer-e4nc-e-~'~ 
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q-l=bi'C 

<Xc!Vl 

iq-l:O] 

{Q-l:01 

O:CIV3 

Iq-l:O] 

{q-l.:O} 

ClC1V5 

{Q-.1:01 

Figure 3.9: A new architecture that will support both a reference input and a 
reference output (architecture is modified from Figure 3.1). 

Apparently, there is a cost incurred whilst adding the support for these 

reference inputs and outputs and such is depicted in Table 3.1 which conforms to 

the arrangement in Figure 3.4. It should be noted that the cost gains are relative 
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to the simple implementation solution. To elaborate, say that one needed to 

support one degree-29, two degree-14 and four degree-5 nodes. Referring to 

Table 3.1 costs of nodes without the overhead of the reference inputs/outputs 

may be determined (i.e. columns 'Cost of XORs' and 'Cost of Mins', where a 

single standalone node of degree-29 costs 57 XORs and 88 minimum units, or a 

single degree-14 costs 27 XORs and 39 minimum units). To have the 'simple 

implementation' would be the architecture wherein all the needed nodes exist in 

parallel, i.e. to have a degree-29 node, two degree-14 nodes, and four degree-5 

nodes is a cost of 1x57 + 2x27 + 4*9 = 147 XORs and 1x88 + 2x39 + 4x9=202 

minimum units. Alternatively, by using the reconfigurable nature of this work's 

nodes, a single degree-29 macro-block would be needed and would only cost 73 

XORs and 87 minimum units; a savings of 50% XOR count and 57% minimum 

unit count. The details for all the savings are in Table 3.1, note that savings are 

not shown for the sub-blocks as they are not the macro blocks and are only 

building blocks. 
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.<:: Q) .<::-iJ .<:: Q) .<::-iJ 
4-l 4-l-iJC 4-l-iJ..-l (I] 4-l 4-l-iJC 4-l-iJ..-l (I] 

o (I] o -.-I 0 o -.-I -.-I tJ> o (I] o -.-I 0 o -.-1-.-1 tJ> 
Degree -iJP:; ;3:~ ;3: ::l C -iJ C 

;3:..-l ;3: ::l C 
-iJ -iJ p:J • .--1 o'P -iJ ..: -iJ p:J -.-Io'P (1]0 (I] (I] (I] (I] i> ~ oil (I] (I] (I] (I] i> oX 0P:;4-l 0P:;4-l III OC4-l OC4-l III 

U U 0 Q) UOQ) en U U -.-I Q) U-.-I Q) en 
XP:; XP:; :<:P:; :<:P:; 

4 7 8 - - 6 9 - -
5 9 10 - - 9 13 - -
6 11 12 - - 12 16 - -
7 13 14 - - 15 20 - -
8 15 16 - - 18 23 - -

13 25 26 (12+12}+7=31 - 36 44 (16+16) +7=39 -
14 27 28 (10+10+8}+7=35 - 39 47 (13+13+9) +7=42 -
15 29 30 (14+14}+7=35 - 43 52 (20+20}+7=47 -
16 31 32 (16+16}+3=35 - 46 55 (23+23) +3=49 -
29 57 58 35+35+3=73 50 88 104 42+42+3=87 57 
30 59 60 35+35=70 59 91 107 47+47=94 60 
31 61 62 31+31+10+3=65 52 95 112 39+39+13+3=94 56 
32 63 64 35+35=70 62 98 115 49+49=98 63 

Table 3.1: The relative costs for implementing the support for reference 
inputs and outputs as to have merge-able nodes. 
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3.4 - Implementation 

When engineering a complex design, one must recognise that an organized 

approach to such a large problem is essential. In accordance with this we put 

forth the following flow chart of the chosen design process shown below in Figure 

3.10. 

Verified 

Verify Behaviour 

Behaviour Fails 

Determine Algorithms 

and Flow of Data 

Produce a Backend 

Behavioural Model in 

high level language (C) 

cr.: .... ~~......~ [l 
W Verify Functionality 

~~ 
Verified 

Output Fails 

~ ~ I.-"~c>~ ProduceHDLin 

t <l~<~ 6P~c: -::--:--r>n 
U Verify Functionality 

r Compile HDL and k l "odu" b;"'",m '0 j ~. 
program FPGA 

~ <r~"1 T«IBe,,",;I, 

Verified 

Figure 3.10: Flowchart for design process utilized by this thesis. 
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To outline the steps: 

- Determine algorithm and flow of data 

o The algorithm needs to be established. It is determined by 

researching what is currently in the public domain; algorithm 

decision is based on what could be the most hardware efficient 

solution. Final decision of algorithm was with UMP. 

o The needed flow of data, here the message passing structure, is 

a good indication of needed complexity for the datapath; fewer 

complexes are beneficial. 

Produce a backend behavioural model in a high level language; C 

programming language as in [19] 

o The reason why a high level language such as C is used is to 

alleviate the process of debugging and coding; runtime is not of 

major concern as long as runtime is on the order of seconds to 

minutes. 

o The backend must also output the necessary data files for the 

test bench which runs later in the design flow. 
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- Verify functionality 

o Simply ensure that the decoding is successful, and if not, then 

debug until the verification passes; use output files to determine 

bugs in the code. 

- Produce Hardware Description Language (HDL) at Register Transfer 

Level (RTL); Verilog HDL as in [45] 

o Translate as much C code as possible into Verilog, exploiting 

the similarity in dataflow. The advantage of a behaviour model's 

similarity in dataflow when compared to that of the hardware 

implementation is appreciated in this step. 

o Produce the remaining needed modules along with a top level 

organization of the modules. 

- Verify functionality 

o Utilize a test bench (written specifically for this design or if time 

permits have test bench generated automatically from the 

backend) to verify functionality; upon failure, debug until failure 

does not occur. The test bench must test enough cases as to 

correctly verify functionality. Lucky cases must not be accepted 

as proof of functionality. 
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- Compile HDL and produce bitstream to program FPGA 

o Now that the design is verified, the HDL is compiled as to create 

a bitstream that will program the FPGA so the following step 

may be performed. 

- Verify behaviour 

o The complete and correct behaviour of the design is tested. This 

will verify if the FPGA implementation operates correctly. 

o If the behaviour is incorrect in any way, observation tools may 

be utilized to probe internal signals in the FPGA-implemented 

design as to determine the inconsistencies from that of the test 

bench. 

- Finish 

o If all is functional, design is complete to the scope of this thesis. 
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3.4.1 - Behavioural Model 

To be able to verify the operation and functionality of the final design, and even to 

be able to debug the first draft of the design, a software-based behavioural model 

is required; already depicted in the design flow of this work in Figure 3.10. 

There are two main approaches that can be used as to produce the 

software behavioural model: a pure software model may be derived as to simply 

compute the necessary calculations and operations with coding optimized for an 

instruction machine (i.e. the computer running the code), or a 'closer to hardware' 

model may be derived that also computes the necessary calculations and 

operations, yet with behaviour (i.e. how the data is organized and moved around) 

closer to that of the final hardware implementation. 

The advantage of the earlier approach is that the code will run fast and the 

conceptual portion of the design can be proven. Yet such an approach does not 

yield as closely matching debug data (for the hardware debugging) as does the 

later approach, which is so closely related to the hardware design to be 

debugged. Captured output of the software backend behavioural model is shown 

below in Figure 3.11 as demonstration of the backend program flow. 
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Figure 3.11: Captured output from cygwin running the software backend 
behavioural model for a single instance. 

3.4.2 - Generic VLSI Architecture 

There are many possible ways to utilize this work's contribution in the 

chosen case study as a proof of concept. The generic architecture for the 

decoder is shown below in Figure 3.12. 
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Address­r-----------4 ..... --------~--__.1 Dependant 

Addresses 

Data Out 

Memory 

Block 

Module 

Variable-Node­
Update-Calculation 

Processing Block 

Check-Node­
Update-Calculation 

Processing Block 

Rewire Unit 

Figure 3.12: The general LOpe decoder architecture for implementation in 
the proof of concept. 

The parameters driving the variety of possible resultant constructions of 

the above generic architecture mostly manifest in the number of Variable and 

Check Node-Update-Calculation engines in each Processing Block, along with 

the Memory Block Module. The other sub modules also experience alterations 

as the different schemes are explored, yet these differences are moot when 

compared to the needed alterations for the earlier stated blocks. Let us clarify 

some of the sub modules that have not yet been discussed in detail. 
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The Main Address Control Unit is the centre of the datapath control in this 

device. It will control all the addressing and muxing in the entire decoder and will 

also control the evaluation of the Hard-Decision-Vector-Component-Calculation. 

The Hard-Decision-Vector-Component-Calculation Processing Block 

simply takes in the individual results from the Hard-Decision-Vector-Component­

Calculation in the Variable-Node-Update-Calculation Processing Block, compiles 

them into a single word, and tests residue; the result is reported back to the Main 

Address Control Unit. 

The Address-Dependant Rewire Units are particular to this work's 

approach to decoding and are resultant from both how the matrix to be supported 

is constructed along with how the memory is organized. In particular, a set of q 

2:1 MUXs is needed for every value that is not translated between matrices and a 

maximum of q 2: 1 MUXs is needed in addition for each input to the Variable­

Node-Update-Calculation Processing Block for some schemes. A worst case 

scenario architecture wherein L different inputs are rewired to L different outputs 

is provided below in Figure 3.13. This is assuming three as the max number of 

possible different inputs (selections from the bus of all inputs) selected. Note that 

not every output need be a selection of one of three inputs. In fact, the number of 

different inputs that one output may be is directly related to the chosen 

configuration of the general architecture in Figure 3.12 in addition to being related 
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to the parity check matrices implemented by the decoder. The number of inputs 

can vary from 2 to as many as 5 as design configurations are explored; 

architecture configurations are elaborated in section 3.4.3. 

Address Dependent Control (From Main Address Control) 

Lx2 

Input Values 

Possible Value 1 q 
0 

Possible Value 2 q 
1 q 

Possible Value 3 q 

• • • • • • 
Possible Value 1 q 

0 

Possible Value 2 q 
1 

Possible Value 3 q 

IIIII 

0 

1 

• • • 

V 

Output Values 

loutput 01 

q 
loutput L-11 

III I 

Figure 3.13: Architecture of worst case scenario Address-Dependant 
Rewire Unit. 
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The Memory Block Module is the wrapped module containing all the 

storage for the messages that are passed. Internal organization is simply a 

collection of parallel smaller memories as to meet the large bandwidth 

requirement, along with some simple internal data dropping via the individual 

memory write enables (necessary for the data dropped through 'pseudo 

puncturing', see section 3.2). An architecture for this memory stacking as to boost 

bandwidth is provided below in Figure 3.14. 

;--------:;r----.I Write Address 

; 

; ; Write Address , 
Write Address ; Write Address 

J ;.-----------
Read Address - -/ - - ... - - - - - - - - - - Read Address 

RAM Sub­
Block 1 

Data In -~-{ 1-r...'::.....-~---+lData In 

Sub-

q 

Data Out i-+----7'Co--{ }-----"c-"- Data Out 
Clock ----eF-------~~ q 

Figure 3.14: An architecture of the Memory Block Module. 

It should be noted that the above figure is assuming a bandwidth of L input words 

of length q to be written and L output words of length q to be read each clock 

cycle; L ::::: 366 in the final implementation and is discussed in section 3.4.3. The 

variable J is resultant from the number of addresses in the sub blocks, i.e. the 

87 



3.4 - Implementation M.A.Sc. M.N. Jobes - McMaster 

number of locations to where data of width q may be written, and is equal to 

ceiling(log2(number of addressable memory locations in one RAM Sub-Block». 

Hence for 7 addresses (the chosen organization for this thesis' implementation), 

J=3. 

The Variable-Node-Update-Calculation Processing Block is the processing 

block that which contains all the parallel instances of the variable node 

processing blocks; the quantity is a design constraint and is addressed in the 

following section 3.4.3. 

The Check-Node-Update-Calculation Processing Block is the processing 

block that which contains all the parallel instances of the macro check node 

processing blocks; the quantity is a design constraint and is addressed in the 

following section 3.4.3. 

The general architecture in Figure 3.12 is too general as to use to directly 

create the final design; the level of parallelism still needs to be addressed and is 

done in the following section 3.4.3. 
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3.4.3 - Final Implementation and Results 

When implementing this thesis' contribution in the case study (IEEE 

802.15.3c LOPC Rate 1/2, 3/4, and 7/8 matrices), there is still some design to 

address concerning the parallelism to be applied to the Check-Node-Update-

Calculation and Variable-Node-Update-Calculation Processing Blocks. To 

achieve the needed throughput as detailed by the case study of this thesis, i.e. 

802.15.3c, a table was produced as to determine the best configuration via 

internal relationship; Table 3.2 shows this below 

C "" E-< E-< 0 C +' -fJ -fJ . .-j 0 ::l-" - ::> "'x.-i ",::>.-i 
'" ::l .~ 3 ~ c 

x ..:I 
Comb >'-fJ 'j ~UNS-I{/} ::>.-i .-i .~ ~ ~ 

0...:1.0 0. 0. 
H '" -w.g~~~~ z '" -fJ '" 

.,-1.IJ S • .-j.<! 
Block o N 

U '" -fJ ::l-fJ -fJ 0 -fJ ::l 0 -fJ0> +' .w tfI·r-! 
"' • .-j u ... ~gu~7~ .-i 0 0.0 "'.-i U ~ o..U '" ::l ro (f) ::1 ro 

Count '" C ",,'" •• E-< CE-< ~ .0 0 
'" C 0 

.-i 0 r-I O °t9 
Z '" -fJ S-I..c:NOO rl N H '" H ~ui; 0> H .<!-fJ _ ~N-fJ ~H-fJ ~.<! ... E-< • .-j N N E-< E-< 

0 :;: 

1 
21Addr x 

44 515 9868 54511 1 1 1 1 (29+30+31+32) 
7Addr x 

3 (29+30+31+32) 14 1620 27416 157407 2.7783 2.8876 3.1456 0.90 
x 3 

3Addr x 
7 (29+30+31+32) 8 2835 61438 363199 6.2260 6.6629 5.5049 1.17 

x 7 
lAddr x 

21 (29+30+31+32) 4 5670 180100 1083471 18.251 19.876 11.01 1. 73 
x 21 

Tab!e 3.2: A depiction of the cost analysis used for design. 
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To explain Table 3.2, there are 4 possible arrangements that can be 

chosen for the levels of parallelism applied to the general architecture in Figure 

3.12. The first option would use one block of the variable node / check node 

processing engines in the Variable and Check Node-Update-Calculation 

Processing Blocks; hence the comb block count equalling one. What is meant by 

one 'block' is one set of the four (degree-29, degree-3~, degree-31, and degree-

32) check-node-macro-blocks described in section 3.2, along with the 32 

variable-node-update-calculation blocks needed to have the bandwidth line up 

(i.e. if as much as 29+30+31+32=122 values need to be processed, as many as 

32 4-input variable-node-update-calculation blocks are needed). 

The elaboration of the check-node-update-calculation block of a single 

block (comb-1) and a three block (comb-3) are illustrated below in Figure 3.15 

and Figure 3.16 respectively. Note that the comb blocks are the check node and 

variable node blocks and as a result the comb block has one set of outputs for 

check updates and one set of outputs for variable node updates; see Figure 3.12 

and note the large MUX. Also, the Rewire block is an abbreviation of the 

Address-Dependant Rewire Unit. 
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Figure 3.15: An illustration of a comb-1 block. 
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Figure 3.16: An Illustration of a comb-3 block. 

To cover all of the needed space for all the traversing messages we need 

a memory organization that has 21 different addresses for 29+30+31+32 different 

instantiations (each memory would have a bitwidth equal to q in Figure 3.9, which 
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equals the chosen bitwidth for the decoder which is eight in this design). This is 

because the case study's design parameter K (see Figure 1.10) is equal to 21. 

The throughput for this choice is dependant on the number of iterations. 

Because the number of iterations for the variable and check node updates are 

equal, along with the 21 addresses to process + 1 clock cycle (cc) for latency, 

44cc are required to process 672 bits (the codeword block length). A throughput 

of 672 bits 1 44cc * estimated clock of 270MHz (the estimated clock is assumed 

to be 10x the fastest allowable clock for the FPGA implementation) or simply 515 

Mb/s is experienced with the costs of 98682:1 MUXs 154511 LUTs. 

Although the performance gap between ASICs and FPGAs has been 

improved down to 3.5x over the past few years, as was accepted in IEEE 

Transactions on Computer Aided Design in 2006, because our delays vary due to 

routing and random logic (i.e. comparators, XOR gates, muxes) in the FPGA we 

choose the FPGAIASIC ratio, in terms of clock period, to be 10x. 

It can be seen that the first design which satisfies the throughput constraint 

of 1 - 2 Gb/s, comb-3, also has a relative gain over the first design option, comb-

1; a useful fact due to the more parallel designs' (i.e. comb-7 and comb-21) low 

chance of fitting on the chosen FPGA and the less parallel design having 

in~llffiri~nt thrnllnhnllt ... v_ ... ___ II'" ..... __ :;,.If""_ ... 
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When implementing the second design option along with all the needed 

peripherals, the following resource usage is needed on the Cyclone II 

EP2C70F896C6 FPGA (compiled with Quartus II 7.2 Student Edition): 1 PLL; 
:; 

47,080 Logic Elements; 693 Registers; and 29,568 bits of memory. The actual 

memory needed is only 20,496 bits and results in a memory bandwidth of 

(29+30+31+32) * 3 * 8bits = 2,928 bits/cc (i.e. 122 * 3 = 366 different 7 address 

memory blocks). Note that the usage was determined on Quartus II V7.2-203 

SP2 and that the critical path delay is 35.792 ns experienced on the path from: 

the Memory Block Module through the Check-Node-Update-Calculation 

Processing Block and back through the multiplexer to the Memory Block Module. 

This path is illustrated as it traverses through the general architecture in Figure 

3.12 below in Figure 3.17. 

The design was also implemented on a Stratix II EP2S180F1508C5 as to 

be able to compare the area and critical path of the chosen implementation 

scheme vs. the basic parallel implementation. As a result the chosen 

implementation has a resource usage of: 36,162 Adaptive LUTs (ALUTs), 700 

registers, and 29,568 bits of memory; a register to register critical path of 34.55 

ns (28.94 MHz), through the same path as in Figure 3.17, is experienced. The 

registers, and 29,568 bits of memory; a register to register critical path of 33.51 
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ns (29.85 MHz), through the same path as in Figure 3.17, is experienced. Recall 

the only difference between these two implementations is that the Check-Node­

Update-Calculation Block developed by this thesis is replaced with a functionally 

equivalent block wherein the nodes of various degrees are simply instantiated in 

parallel. The reason why another device was used was due to the fact that the 

parallel version did not fit on the Cyclone II device. The Stratix II device was used 

as to be able to compare the two approaches properly. These numbers suggest 

that for a cost of (1 - 28.94/29.85) = 3% reduction in throughput (recall the 

bandwidth is the same in terms of cc so clock rate directly relates to throughput), 

an area savings of (1 - 36162/48093) = 24.8% is experienced. Please note that 

these numbers are relative to themselves and as a result the saving percentages 

cannot be guaranteed, they are however fairly indicative of the expected savings. 
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Figure 3.17: Illustration of the critical path through the general architecture. 

The reason why the critical path traverses through this path is clear when 

recalling the combinational complexity incurred in the Check-Node-Update-

Calculation Processing Block as a result of the nested node design. What were 

once simple connections between input and output (i.e. in a single base node, 

there is no reference input, so the output can be directly determined by the inputs 

alone) are now weaved chains of dependency. In other words, regarding Figure 

3.6, the output of the degree N2 node is dependant on the degree N2 input and 

reference input. The reference input of the degree N2 node is dependent on the 

inputs to the degree N1 node. Hence, the weaved chain expression earlier said is 
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derived from the some-what 'zigzag' paths that data may traverse with one such 

path being: Inputs ~ degree N1 inputs ~ degree N1 reference output ~ degree 

N2 reference input ~ degree N2 output. As levels of nesting increase this 'zigzag' 

path increases in length resulting in an increase in the register to register critical 

path length. A detailed illustration of the degree-31 macro block (see section 3.2) 

is provided below in Figure 3.18 with a possible critical path highlighted (due to 

some internal symmetry this is subject to change as the final routing inside the 

FPGA will truly determine the critical path). 

31 x q 31 x q 
Values+-...,.....:..s~~_....::;;;Z;H~F~:==:~~~~ ____ --=-=-=-c~,.--+Values 

In Out 

18 x 
, q 

rxq 

lxq 
.. Re~E!tenc~ 1---:,<-----*"--1-----' 

~ ~ Out 

18 x 
, q 

Figure 3.18: Illustration of a possible critical path through the degree-31 
macro node from section 3.2. 
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It should be noted that in the implemented design, in the Cyclone II device, 

the 29,568 bits of memory are needed only due to the limitations of the FPGA 

utilized. To continue, 7 addresses * (29+30+31+32) * 3 * 8 bits is only 20,496 bits 

of memory, but because not all memory address/width configurations are 

possible (the limitation of the FPGA) there is some wasted space. This wastage 

could be avoided in an ASIC implementation as the standard library could be 

much larger and could contain more flexible memory configurations. 
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Chapter 4 

4 - Conclusion 

In this thesis we have discussed the application of nodal exploitation in the 

context of low density parity check, LOPC, codes. Chapter 1 provided the 

necessary foundation for understanding the basics of LOPC codes, along with the 

encoding, decoding, and construction of LOPC codes. Chapter 2 analyzed the 

current architectures in the public domain and related these designs via a 

consistent comparison table created by [3], in addition to providing a detailed 

analysis of three state of the art architectures design attributes. Chapter 3 

explained the details involved in decoding LOPC codes and provided 

architectures and a general methodology for building nodal processing blocks in 

which a significant relative savings of area is experienced when compared to the 

alternative of the parallel instantiation of nodes. This utilizes the inherent nesting 

of nodes in the parity check matrices resultant from the matrices' construction 

method (Chapter 1.2.4). Also provided by Chapter 3 is the design methodology 

utilized by this thesis and the results of the final implementation of the LOPC 

decoder for multi-rate support of the parity check matrices in this thesis' case 

study, namely 802.15-3c. 
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4.1 - Advantages 

As more wireless devices are built, more advanced coding schemes are 

desirable as to fully benefit from the advancements in said devices. One aspect 

of the wireless coding schemes is that of multi-rate support; channel parameters 

can change greatly if the wireless application is to be utilized in short range (Le. 

people can walk past operating devices and greatly change the channel 

parameters forcing an alternative rate to be used as to be able to get the best 

code performance for the new channel). Accepting that multi-rate support is a 

necessity this thesis' work can greatly contribute to the design of LOpe decoders. 

This work has potential to reduce the needed area for a LOpe decoder 

that needs to operate at multiple rates. The matrix construction necessary for this 

work is simple and commonly accepted in standards such as WPAN. Thus this 

thesis' work may be applied to a myriad of LOpe parity check matrices used in 

industry and may have the potential to create a new branch of code design which 

even further facilitates nodal nesting structure exploitation. Also, as described by 

section 4.3, this work may be applied to a family of algorithms in which the 

desired form is present; see section 4.3 for more details. 
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4.2 - Limitations 

The work in this thesis does prove helpful in the scope of multiple rate support. 

Yet if only a single rate is desired, the exploitations utilized by this work are moot 

and thusly this work does not apply to such a situation. Alternatively if the number 

of rates to be supported by the decoder comprises a long list, the nodal 

exploitation has only been verified to support the rates of the form (R-1)/R where 

RE 171land R>1. The additional complexity for supporting other rate forms could 

negatively impact the area gains for the rates that are of a different form (i.e. 5/7 

is not of the form (R-1 )/R, thus to have a macro node support this rate likely 

requires more complexity). In other words if matrices of varying rate forms need 

be supported the macro nodes may have a more complex structure. To support 

alternative rates could possibly be done by having some values propagate to two 

locations and other values propagate to a different integer number of locations. 

This detail was not explored as the case study had matrices of compatible rate 

form. This additional complexity is not required if all the design parameters can 

be controlled (i.e. matrix construction), for then we are able to design the code 

foundation, or set of matrices to be supported, as to even improve the final 

norfnl'rYI<:lnf"O 
1" •• " ...... 'V, IJlg) 1"',,-,. 
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4.3 - Future Work 

There is a factor about this work which has not yet been addressed. These 

extensions to this work are elaborated below. 

Concerning the formulae for the node update calculations and recalling 

that the key attribute was the fact that each output would only be a function of all 

the inputs except said output's counterpart, this work's applicability may be 

extended to any algorithm of said nature wherein different degrees need support. 

This is assuming that the formula or formulae to be processed are symmetric, i.e. 

F(A,B,C) = F(B,C,A), and separable, i.e. F(A,B,C) = F(A) n F(B) n F(C) such as 

addition, the max function, or the min function. Regarding Figure 3.6 allow the 

'OP' calculation blocks to be the operation performed by the algorithm which we 

desire to implement and allow the sub-blocks to be built in a similar pattern as 

they are in the macro-block. 

Also, with intelligent node grouping as to minimize interconnection 

complexity, the same hardware may be used to process a collection of grouped 

nodes separately or as a single node via the reference values regardless of 

internal computation (assuming the algorithm is of the earlier assumed form). In 

future work the possible applications would be explored in other possible fields, 

such as hardware acceleration and information theory. 
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