
POWER-AWARE SCHEDULING FOR SERVER 

CLUSTERS 



POWER-AWARE SCHEDULING FOR SERVER CLUSTERS 

By 

HADIL AL-DAOUD, B.Eng. 

A Thesis 

Submitted to the School of Graduate Studies 

in Partial Fulfillment of the Requirements 

for the Degree 

Master of Applied Sciences (M.A.Sc.) 

McMaster University 

© Hadil AI-Daoud, 2010 



lVIASTER OF APPLIED SCIENCES (2010) 

(Software Engineering) 

lVkMaster University 

Hamilton, Ontario 

TITLE: Power-aware Scheduling for Server Clusters 

AUTHOR: Hadil AI-Daoud, B.Eng. 

SUPERVISOR: Dr. Douglas G. Down 

NUMBER OF PAGES: LXXI, 71 

11 



Abstract 

For the past few years, research in the area of computer clusters has been a hot topic. 

The main focus has been towards on how to achieve the best performance in such 

systems. \iVhile this problem has been well studied, many of the solutions maximize 

performance at the expense of increasing the amount of power consumed by the cluster 

and consequently raising the cost of power usage. Therefore, power management 

(PM) in such systems has become necessary. .Many PIVI policies are proposed in the 

literature to achieve this goal for both homogeneous and heterogeneous clusters. 

In this work, in the case of homogeneous clusters, we review two applicable policies 

that have been proposed in the literature for reducing power consumption. We also 

propose a power saving policy, that uses queueing theory formulas, which attempts 

to minimize power consumption while satisfying given performance constraints. We 

evaluate this policy by using simulation and compare it to other applicable policies. 

Our main contribution is for heterogeneous clusters. We suggest a task distri­

bution policy in order to reduce power consumption. Our suggested policy requires 

solving two linear programming problems (LPs). Our simulation experiments show 

that our proposed policy is successful in terms of achieving a significant power savings 

in comparison to other distribution policies, especially in the case of highly heteroge­

neous clusters. 

III 



Contents 

Abstract 

List of Tables 

List of Figures 

1 Introduction 

1.1 Motivation. 

1.2 Background 

1.3 Homogeneous Clusters 

1.3.1 Cluster Workload Model and Assumptions 

1.3.2 Related Work . . 

1.4 Heterogeneous Clusters . 

1.4.1 Cluster Workload Model and Assumptions 

1.4.2 Related Work ............... . 

2 Preliminaries 

3 Homogeneous Clusters 

3.1 The On-Off (Power) Model. 

3.2 Static Cluster Configuration Policy 

3.3 Dynamic Cluster Configuration Policies. 

3.3.1 On/Off Policies ........ . 

3.3.2 The Base Configuration Policy. 

3.4 Simulation Results 

3.5 Summary .. . . . 

4 Heterogeneous Clusters 

4.1 The On-Off Model .. 

iii 

IV 

VI 

1 

1 

4 

5 

5 

6 

7 

7 

10 

11 

14 

14 

14 

15 

15 

16 

17 

20 

22 

22 



------------

4.2 Current Policies . 23 

4.3 The Power-Aware LPAS Policy 24 

4.3.1 Introduction . 24 

4.3.2 Main Concept of Power-Aware LPAS policy 24 

4.3.3 Simulation Results 28 

4.3.4 Task and Machine Heterogeneity 29 

4.3.5 Realistic Architectures 32 

4.4 Comparison to Dynamic Voltage Scaling 35 

4.5 Summary 37 

5 Power-Aware LPAS for Structured Systems 39 

5.1 Introduction. 39 

5.2 Structured Systems 39 

5.2.1 Introduction . 39 

5.2.2 Observation 41 

5.2.3 A New Scheduling Policy. 46 

5.2.4 Structured Systems Approximation 48 

5.3 Summary 53 

6 Conclusion 55 

ii 



Bibliography 57 

iii 



List of Tables 

3.1 The Arrival Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19 

3.2 Simulation Results for the Base configuration policy with constant ar-

rival rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19 

3.3 Simulation Results for the Base configuration policy with changing 

arrival rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

3.4 Simulation Results for Lien policy with changing arrival rate 20 

3.5 Simulation Results for the Jennings et al. policy with changing arrival 

rate 

4.1 Simulation Results for Experiment 1 

4.2 Simulation Results for Experiment 2 

20 

29 

29 

4.3 Simulation Results for Experiment 3 32 

4.4 The Execution Rates for the System in Section 4.3.5 32 

4.5 The Machine Power Consumption lVIatrix for the System in Section 4.3.5 

- The Heterogeneous Case 

5.1 Simulation Results 

5.2 Simulation Results 

5.3 Load on each machine for different loads on the system 

5.4 Simulation Results 

5.5 Simulation Results 

5.6 Results of Experiment 1. 

IV 

33 

41 

41 

43 

47 

48 

51 



5.7 Results of Experiment 2. 

5.8 Simulation Results ... 

v 

53 

53 



List of Figures 

1.1 Homogeneous Cluster System NIodel 

1.2 Heterogeneous Cluster System :Model 

4.1 Simulation results for the system in Section 4.3.5 - The heterogeneous 

case .................................... 

4.2 Simulation results for the system in Section 4.3.5 - The more homoge-

6 

9 

35 

neous case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 

VI 



"Master's Thesis - H. AI-Daoud - MclVlaster - Computing and Software 

Chapter 1 

Introd uction 

1.1 Motivation 

Optimizing performance in computer clusters has been a topic of interest in a number 

of recent research papers. It is true that research has gone a long way in accomplishing 

this goal but on the other hand, power consumption has been mostly neglected. 

There is almost always a trade-off between performance and energy consumption. 

Thus, good performance may be attained but at the expense of an undesired level of 

energy consumption. This is because better performance can be achieved by keeping 

all machines on all the time in order to handle peak load conditions and improve 

system responsiveness. Since peak load conditions typically happen infrequently and 

as a result, most of the time the cluster is underutilized, energy consumption can be 

reduced significantly just by taking advantage of the times during which the cluster 

is underutilized. 

Reducing energy consumption in computer clusters has become a necessity for 

many reasons. First of all, for a large cluster which consumes significant amounts of 

energy, it can be necessary to use expensive cooling equipment. Cooling equipment 

can consume up to 50% of the total energy consumption in some commercial servers 

(see Rajamani et al. [30]). Also, because of the growing cost of electricity, reducing 

1 



Master's Thesis - H. AI-Daoud - lVlcMaster - Computing and Software 

energy consumption has become an economic necessity (see Bianchini et al. [8]). Fur­

thennore, reducing energy consumption helps the environment since gas emissions 

during electricity production are reduced (see Chase et al. [10]). 

In this thesis, we develop scheduling policies which aim to reduce energy consump­

tion in computer clusters. Computer clusters can be homogeneous or heterogeneous. 

In our study, we consider heterogeneous clusters. Widespread availability of low-cost, 

high performance computing hardware and the rapid expansion of the Internet and 

advances in computing networking technology have led to an increasing use of het­

erogeneous computing (HC) systems (see Kontothanassis and Goddeau [24]). Such 

systems are constructed by networking various machines with different capabilities 

and coordinating their use to execute a set of tasks. 

Scheduling for such systems is complicated due to several factors. The state of 

the system dynamically changes and a scheduling policy should adapt its decisions 

accordingly. Another factor contributing to the complexity of scheduling for clusters 

is related to the heterogeneous nature of such systems. These systems interconnect a 

multitude of heterogeneous machines (desktops with various resources: CPU, mem­

ory, disk, etc.) to perform computationally intensive applications that have diverse 

computational requirements. Performance may be significantly impacted if informa­

tion on task and machine heterogeneity is not taken into account by the scheduling 

policy. 

Each machine in a homogeneous cluster consumes power at the same rate. Also, 

the time it takes for a machine to execute any type of tasks is the same on all machines. 

In the literature, there has been a lot of work done on power saving in homogeneous 

clusters. In our work, in the case of homogeneous clusters, we review two power saving 

policies that were suggested in the literature. Then, we propose a power saving policy 

that uses basic queueing theory formulas. 

In the area of heterogeneous clusters, we suggest a power-aware task distribution 

policy. Our proposed policy requires solving two linear programming problems in 

2 



Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

order to save power while maintaining a particular level of performance. Our exper­

iments shows that our policy provides significant power savings compared to other 

suggested power saving strategies. Also, we suggest a power saving policy for struc­

tured systems that uses the power efficiency of the machines and does not require the 

knowledge of the arrival rates. 

In earlier work ([1] and [2]), several scheduling policies are developed which per­

form competitively in heterogeneous systems. The policies use the solution to an 

allocation linear programming problem (LP) which maximizes the system capacity. 

However, machine power consumption is not considered. In this thesis, we suggest a 

power-aware scheduling policy (the Power-Aware Linear frogramming based Affinity 

Q.cheduling policy (LPAS)). The proposed policy also uses the solution to an alloca­

tion LP which takes into consideration machine power consumption. Our experiments 

show that our policy provides significant energy savings in highly heterogeneous sys­

tems. 

The policy uses the arrival and execution rates to find the maximum capacity. 

Also, the policy uses information on the power consumption of each machine in order 

to find an allocation of the machines which results in the maximum energy saving. 

However, there are cases where obtaining such information is not possible or there 

is a large degree of uncertainty. In this thesis, we also suggest a power-aware pol­

icy for structured systems that only requires knowledge of the ranking of machines 

with respect to their power efficiencies. Structured systems are a special kind of 

heterogeneous systems that are common for cluster environments. 

This thesis is organized as follows. Section 1.2 gives an overview of the power man­

agement policies that are used in the literature. In Section 1.3, the workload model 

is described and a literature review is given for the case of homogeneous clusters. 

Section 1.4 also describes the workload model and gives a literature review for the 

case of heterogeneous clusters. Chapter 2 gives a brief queueing theory background. 

In Chapter 3, three power saving policies for homogeneous clusters are discussed. 

3 



1IIaster's Thesis - H. AI-Daoud - Mc1lIaster - Computing and Software 

In Chapter 4, we explain and evaluate our proposed Power-Aware task distribution 

policy for heterogeneous computer clusters. In Chapter 5, we propose a new Power­

Aware task distribution policy for structured systems and we evaluate it. Finally, 

Chapter 6 discusses future work and provides some concluding remarks. 

1.2 Background 

Finding power management policies for clusters has been the focus of many re­

searchers. Typically, the goal is to meet some performance requirement, while re­

ducing power consumption. 

There are two basic power management mechanisms proposed in the literature: 

Dynamic Voltage Scaling (DVS) and Vary-On/Vary-Off (VOVO). In this section, we 

give the basic concepts of both mechanisms. Furthermore, we give an overview of 

the work in the literature that has used these techniques in both homogeneous and 

heterogeneous clusters. Also, we discuss the relationship of the work in this thesis to 

the existing literature. 

The concept of dynamic voltage scaling is based on the fact that the power con­

sumption P is proportional to the square of the CPU operating voltage V i. e. P <X V 2 

(Elnozahy et al. [13J and 1IIudge [28]). For example this relation shows that reducing 

the CPU operating voltage by half will reduce the amount of power consumption by 

a factor of four. Thus, a considerable amount of power consumption can be saved by 

decreasing the CPU operating voltage. DVS adjusts the CPU operating voltage V 

by adapting the maximum CPU operating frequency f according to the intensity of 

the workload. The relationship between V and f is linear, i.e. V <X fmax [13, 28J. 

By setting the values of the operating voltage and the maximum operating fre­

quency at the lowest values that allow the system to meet performance requirements, 

the main goal of reducing the cluster's power consumption will be achieved. For in-

4 



Master's Thesis - H. AI-Daoud - lVIclVIaster - Computing and Software 

stance, if the workload on the system decreases, the maximum operating frequency of 

the machines can be dynamically decreased and consequently the voltage is decreased. 

Machine Vary-On/Vary-Off or the cluster dynamic configuration mechanism uses 

a subset of available machines to achieve the performance requirements of the system 

such as meeting tasks' deadlines [13]. Machines that are idling whenever the cluster 

system is not fully utilized can be either completely turned off or put in low power 

states. This ensures that power is not wasted when the system is not highly loaded. 

1.3 Homogeneous Clusters 

In this section, we provide an overview of research in the area of power management 

for homogeneous clusters. Also, we describe our workload model. 

1.3.1 Cluster Workload Model and Assumptions 

Suppose we have s homogeneous machines. These machines are homogeneous in terms 

of both power and speed. Therefore, each machine has the same execution rate fL. 

The task arrival rate is changing with time and is given by .>.(t). 

The cluster system (see Figure 1.2) has a front-end scheduler that receives periodic 

messages about the load from the back-end machines. When a task arrives to the 

system, it is the scheduler's responsibility to assign it to one of the machines. It is 

assumed that it assigns the tasks to the machines on a First-Come-First-Serve basis. 

Each machine executes one task at a time and when a machine finishes executing a 

task, it immediately receives a new task from the scheduler, if there is one available. 

Furthermore, at regular time intervals (window sizes), the scheduler makes a decision 

on how many machines to turn on in an effort to minimize power consumption while 

maintaining sufficiently high performance. In order to decide how many machines 

to turn on, the scheduler uses a cluster configuration policy. Cluster configuration 

5 



Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

,------------------------------------

Scheduler 
Task ~ • 
Arrivals ----r----)o ... ~ 

, 

, 
, 

~ , 

0+
, 

J ' , 
, , 

------------------------------------~ 

Figure 1.1: Homogeneous Cluster System Model 

policies can be static or dynamic. 

1.3.2 Related Work 

Five policies are proposed in [13]. Independent Voltage Scaling and Coordinated 

Voltage Scaling are two policies that employ the DVS mechanism in order to reduce 

the power consumption of each machine. In Independent Voltage Scaling, each ma­

chine independently adjusts its CPU operating frequency according to its load. In 

Coordinated Voltage Scaling, the CPU operating frequency of each machine is set to 

a desired average. The third policy uses the VOVO mechanism. Two other policies 

combine the DVS and VOVO mechanisms in order to achieve more energy saving. 

The first one is a combination of VOVO and Independent Voltage Scaling. The second 

one is a combination of VOVO and Coordinated Voltage Scaling. The main idea is to 

adjust the number of operating machines based on a global (target) CPU operating 

frequency. To clarify, if the global CPU operating frequency increases above a thresh-

6 



Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

old we turn a machine on and if it decreases below this threshold then a machine is 

turned off. 

In Pinheiro et al. [29], the authors propose a policy which uses a dynamic clus­

ter configuration mechanism and is based on control theory. Their approach is to 

dynamically turn machines on and off while keeping performance degradation within 

acceptable levels. Acceptable performance degradation levels are determined by the 

system administrator or the user. A machine is turned off if the performance degra­

dation is judged to be acceptable. 

In Sharma et al. [33], the authors consider a homogeneous cluster with different 

classes of arriving tasks. The authors show how to lower energy consumption while 

meeting task deadlines. Both DVS and VOVO mechanisms are used. :Meeting task 

deadlines is achieved by using a technique called synthetic utilization. The CPU 

operating frequency of each machine is adjusted based on the value of the synthetic 

utilization. Eventually, if the value of the synthetic utilization is below a certain 

threshold, the CPU operating frequency of each machine is decreased and vice versa. 

Another policy is presented in Elnozahy et al. [14]. The authors propose a policy 

that combines DVS and VOVO mechanisms. In the policy, a subset of the machines 

are put in a low power state for specified periods of time called batching periods. The 

response time can be controlled by adjusting the batching period. 

1.4 Heterogeneous Clusters 

In this section, we describe our workload model. Also, an overview of the research in 

the area of power management for heterogenous clusters is given. 

1.4.1 Cluster Workload Model and Assumptions 

In our model for a computer cluster (see Figure 1.2), there is a dedicated front-end 

scheduler for assigning incoming tasks to the back-end machines. Let the number of 

7 



------- - ---

Nlaster's Thesis - H. AI-Daoud - McNlaster - Computing and Software 

machines in the system be J. 

It is assumed that the tasks are classified into I classes. Tasks of class i arrive to 

the front-end scheduler at rate O:i. Let 0: be the arrival rate vector, the ith element 

of 0: is O:i. The tasks are assumed to be independent and atomic. In the literature, 

parallel applications whose tasks are independent are sometimes referred to as Bag­

of-Tasks applications (BoT) (as in Anglano et al. [6]) or parameter-sweep applications 

(as in Casanova et al. [9]). Such applications are becoming predominant for clusters 

and grids (see Iosup et al. [20] and Li and Buyya [26]). 

While determining the exact task execution time on a target machine remains a 

challenge, there exist several techniques that can be used to estimate an expected 

value for the task execution time (see Rao and Huh [31]). The policies considered in 

this thesis exploit estimates on mean task execution times rather than exact execution 

times. Furthermore, in computer clusters and grids, tasks that belong to the same 

application are typically similar in their resource requirements. For example, some 

applications are CPU bound while others are I/O bOlUld. In fact, several authors 

have observed the high dependence of a task's execution time on the application it 

belongs to and the machine it is running on. They argue for using application profile 

information to guide resource management (see [24]). We follow the same steps and 

assume that the tasks are classified into groups (or classes) with identical distributions 

for the execution times. 

Let I-li,j be the execution rate for tasks of class i at machine j, hence 1/ I-li,j is the 

mean execution time for class i tasks at machine j. We allow I-li,j = 0, which implies 

machine j is physically incapable of executing class i tasks. Each task class can be 

executed by at least one machine. Let I-l be the execution rate matrix, having (i, j) 

element I-li,j. Our workload model is similar to the workload model in AI-Azzoni and 

Down [2]. 

We note that performance monitoring tools such as NWS [35] and MonALISA [25] 

can be used to provide dynamic information on the state of the cluster system. Fur-

8 



Master's Thesis - H. Al-Daoud - McMaster - Computing and Software 

r------------------------------------
I 
I 

Classl ~ 
0-+-

arrivals -----'-------..~ 1 

• 
• • 

Scheduler 

ClassN ~ 
arrivals ------'------.~ N 

• 
• 
• 

0+ 
I 

Figure 1.2: Heterogeneous Cluster System lVIodel 

thermore, these tools anticipate the future performance behaviour of an application 

including task arrival and machine execution rates. 

At this stage, we introduce the machine power consumption model. We assume 

that at any point in time a machine can be either busy or in a low power state. Each 

machine may have different power consumptions when executing different classes of 

tasks. Let Nli,j be the power consumption of machine j when executing a task of 

class i (it is measured in terms of the energy consumed per time-unit). In addition, 

we assume that a machine is put into a low power state when it is not executing any 

task. Let B j be the power consumption of machine j when it is in a low power state. 

We assume that B j « Nli,j for all i. Our power consumption model is similar to the 

one considered in Heath et al. [19]. 

9 



NIaster's Thesis - H. AI-Daoud - NIcMaster - Computing and Software 

1.4.2 Related Work 

The energy conservation policy in Heath et al. [19] attempts to minimize the total 

energy consumption-throughput ratio according to predicted load in a heterogeneous 

cluster. To accomplish this, the authors develop an optimization procedure to find the 

optimal request distribution policy for the cluster. Analytic models are required to 

compute the predicted throughputs and total energy consumption. The Power-Aware 

LPAS policy does not require such analytic models. 

In Rusu et al. [32], the authors present a policy for reducing energy consumption 

in heterogeneous clusters while meeting certain requirements on the quality of service 

(QoS). The proposed policy uses a dynamic cluster configuration mechanism that 

turns machines on and off according to the system load while ensuring that the QoS 

requirements are achieved. In addition, they examine the use of the DVS mechanism. 

The authors in Guerra et al. [17] propose a policy that applies both DVS and 

VOVO mechanisms in heterogeneous clusters. A linear-programming formalism is 

employed to find the optimal CPU operating frequency for each machine. 

10 



:Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

Chapter 2 

Preliminaries 

In this chapter, we give a brief explanation of some of the basic queueing theory con­

cepts that are used in this thesis. 

The exponential distribution is one of the most important and widely used con­

tinuous distributions and its probability distribution function is given by: 

{ 

1 - e->'x if x :::: 0 where>. > 0 
F(x; >.) = 

o otherwise. 

The mean f-L and variance ()"2 of an exponentially distributed variable X with rate 

>. are given by f-L = 1/>. and ()"2 = 1/>.2, respectively. 

An important characteristic of the exponential distribution is called the memory­

less property. The memoryless property can be stated as follows. Suppose that the 

inter-arrival times in a queueing system are exponentially distributed with rate >.. 

This means that knowing the time of the last arrival provides no information on the 

time to the next arrival, i.e. the time to the next arrival is exponentially distributed 

with rate >.. 

Let the random variable N(t) represent the number of arrivals up to time t. The 

counting process N(t), t :::: 0 is called a Poisson process with rate>. if the inter-arrival 

times have a common exponential distribution function with rate >.. 

11 



--- -- -- ----- ----------------------------------------

lVIaster's Thesis - H. AI-Daoud - MclVIaster - Computing and Software 

Queueing models are used to calculate many steady state performance measures 

such as the mean task waiting time and the mean number of tasks in the system. 

A queueing model is represented by Kendall's notation: A/ B / S / K, where A is the 

interarrival time distribution, B is the service time distribution, S is the number of 

servers, and K is the system capacity. 

Note that a symbol is used to represent each distribution. For example, the symbol 

M is used to represent the exponential distribution. 

The sim-plest queueing model is the single server model, known as iVI/lVI/I. A 

queueing system is modeled as iVI/iVI/l if arrivals follow a Poisson process, execution 

times are exponentially distributed and there is just a single machine serving arrivals. 

The mean waiting time is given by the following equation [16]: 

(2.1) T¥= ~ 
fl.-A 

This only holds if the system is stable, which occurs iff: 

A 
(2.2) - < I. 

fl. 

Another queueing model is the M / iVI / s model which generalizes the J../f / J../f /1 model 

to a system with multiple servers. A queueing system can be modeled by iVI/ iVI / s if 

arrivals follow a Poisson process, execution times are exponentially distributed and 

there are s machines with a single queue. To compute the mean task waiting time W 

for an iVI/iVI/s model, we use the following formula [16]: 

where Po is the probability of having zero tasks in the system and is given by: 

12 



Master's Thesis - H. AI-Daoud - lVIcMaster - Computing and Software 

The above formulas assume that the system is stable, i. e., 

), 
(2.5) - < 1. 

SJ-L 

Other queueing systems are analyzed in [16], but these two are sufficient for the 

purpose of the work in this thesis. 

13 



l\/Iaster's Thesis - H. AI-Daoud - McMaster - Computing and Software 

Chapter 3 

Homogeneous Clusters 

This chapter is organized as follows. In Section 3.1, we give the power model. In 

Section 3.2, we explain the concept of static cluster configuration. In Section 3.3, we 

present three dynamic cluster configuration policies. Section 3.4 provides simulation 

results for these policies. Finally, we give an overview of the related work. 

3.1 The On-Off (Power) Model 

The state of each server at any time is assumed to be either on or off. Also, the power 

a machine consumes when it is on is assumed to be P per time unit and zero when it 

is off. Our power model is similar to the one chosen in [30]. 

3.2 Static Cluster Configuration Policy 

In the static cluster configuration policy, all the machines are turned on all of the 

time. Therefore, each machine consumes the maximum amount of power even if the 

load on the whole cluster is very low. To illustrate, suppose we have s machines that 

are turned on all of the time. Then, the total power consumption rate is sP per 

time-unit. 

14 



Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

3.3 Dynamic Cluster Configuration Policies 

Dynamic cluster configuration policies aim to reduce power consumption. Since we 

assume that the arrival rate is changing, there may be times when the system load 

is not high. As a result, turning on all the machines will leave some of the machines 

under-utilized and power is thus wasted. In order to avoid that, the idea is to use 

the minimum number of machines that is necessary to achieve certain performance 

requirements. 

3.3.1 On/Off Policies 

Lien Policy 

The policy in Lien et al. [27] is suggested to reduce the power consumption for JIII/l\1I/1 

workload models. Determining the optimal number of machines is based on main­

taining a balance between power and performance. Performance is measured using 

mean task waiting time TV (the time that a task spends in the system from arrival 

until departure). The idea is to turn on the number of machines that result in the 

minimum "Mean Task Waiting Time-Power Product". To calculate the Inean task 

waiting time, the NI/NI/l formula is used. To evaluate their policy, they conduct 

their experiments on a real server cluster. 

In this work, our goal is to generalize the Lien policy for our workload model. 

Jennings Policy 

The authors in Jennings et al. [21] propose a policy for calculating the number of 

machines needed at specific time instances. The number of machines at time t is 

determined such that the task's delay probability (using a normal approximation) is 

no larger than a target value a at all times. 

15 



- ----------

j\lIaster's Thesis - H. AI-Daoud - Mcj\lIaster - Computing and Software 

The number of machines that are required as a function of time, s(t), is estimated 

using the following equation: 

(3.1) s(t) = fm(t) + 0.5 + zaVvWl 

where f xl is the least integer greater than or equal to x, m(t) is the mean function, 

v(t) is the variance function and Za satisfies P(N(O, 1) > za) = a. Note that N(m, 0-
2

) 

denotes a Normal random variable with mean m and variance 0-2 . 

Given that the execution times are exponentially distributed, m(t) is found by 

solving the following ordinary differential equation (ODE): 

(3.2) m'(t) = ).(t) - fLm(t). 

In the case of Poisson arrivals and exponentially distributed execution times, the 

variance function is given simply by v(t) = m(t). 

For the evaluation of this policy, they compare their approximation with the exact 

numerical solution of the lYlt! lYI/ St model (the subscript t indicates that both the 

arrival rate and number of servers vary with time). 

3.3.2 The Base Configuration Policy 

There is almost always a tradeoff between power and performance. To decrease the 

mean waiting time, more machines are needed, however, this results in increased power 

consumption. The base configuration policy applies this concept in order to achieve 

power saving. It allows the user to choose the level of increase in the average waiting 

time that can be tolerated and uses this tolerance to reduce the power consumption. 

The procedure for the dynamic reconfiguration of the cluster using this policy is 

explained in the following steps. 

1) The scheduler calculates the mean waiting time every specified time interval 

using queueing formulas. We assume that the time intervals (the times at which the 

16 



.. 

. ; 

IVIaster's Thesis - H. AI-Daoud - McMaster - Computing and Software 

scheduler decides whether to reconfigure the cluster or not) are determined by the 

user . 

2) The performance is measured in our policy by the mean task waiting time . 

By permitting the mean task waiting time to increase, performance will degrade. To 

illustrate mathematically, let {3 be the proportion by which the mean task waiting 

time is allowed to increase. For example, if we choose {3 = 0.5, this will cause the 

mean task waiting time to increase by 50 percent compared to the mean task waiting 

time when all the machines are on. The new mean task waiting time is referred to as 

the target mean waiting time WTarget. The user selects the proportion of mean task 

waiting time degradation ({3). 

3) The scheduler determines the minimum number of machines to be turned on 

such that the following condition is satisfied: 

(3.3) WTarget <::; (1 + {3)TiVAllmachinesOn. 

This condition guarantees that the target mean task waiting time TIVTarget, does not 

exceed the mean task waiting time when all machines are on by more than the pro­

portion {3. 

3.4 Simulation Results 

In this section, we present the results of simulating the three proposed power-aware 

policies. Also, we compare the dynamic configuration policies to the static policy in 

terms of power consumption and performance. 

The arrival process is assumed to be Poisson with rate >.(t). Also, every machine 

has an exponential execution-time distribution with rate f-L. Hence, to compute the 

mean task waiting time VV, we use the formula for the NI/ IVI/ s system (See Chapter 2). 

17 



Master's Thesis - H. AI-Daoud - IVIcMaster - Computing and Software 

For the Jennings policy, we solve (3.2) to obtain m(t): 

(3.4) 
A 

m(t) = -(1 - e- fLt
). 

f-L 

Each experiment is run for 20, 000 time-units (seconds) and is repeated 30 times. 

The cluster consists of 50 machines. We assume that when a machine is turned on, it 

consumes power at the rate of 100 watts. The execution rate for each machine is 10 

tasks per second. Therefore, the maximum arrival rate on the system has to be less 

than 500 tasks per second. The decision of reconfiguring the cluster is made every 

0.3 seconds. 

For the static configuration policy, since all the machines are turned on, the total 

power consumed is just the product of the simulation time, number of machines, and 

P. 

First, we show the tradeoff between power and performance that can be achieved 

by using the Base Configuration Policy. We take different values for fJ and then see 

the impact of changing its value on the power consumption and the average waiting 

time. 

This experiment is conducted for four different values of fJ (0, 0.01, 0.25, 0.75) 

for the system under two different arrival rates. The first arrival rate is constant 

(its value is chosen to be 250). The second one is time-varying (see Table 3.1). The 

maximum load on the system under ..\(t) happens when the arrival rate is 470. 

Confidence intervals for the mean waiting time were computed at 95% level. We 

show the average waiting time along with the accuracy of the confidence interval 

defined as the interval half width divided by the average waiting time. We also show 

the energy saving (6.) with respect to a completely turned on system. 

18 



:t\/Iaster's Thesis - H. AI-Daoud - McMaster - Computing and Software 

Time (tl t <:: 100 t <:: 150 t <:: 250 t <:: 300 t <:: 400 t <:: 450 t <:: 600 

Arrival Rate 100 200 450 470 450 200 350 

Time (tl t <:: 650 t <:: 700 t < 750 t <:: 800 t <:: 850 t < 950 t <:: 1000 

Arrival Rate 300 250 350 450 300 200 250 

Table 3.1: The Arrival Rate 

(3 ~ W 

0.0 0 0.10 ± 0.03% 

0.01 32.02 0.10 ± 0.03% 

0.25 44.01 0.12± 0.14% 

0.75 46.00 0.13 ± 0.29% 

Table 3.2: Simulation Results for the Base configuration policy with constant arrival 

rate 

The results in Table 3.2 and Table 3.3 for both constant and varying arriving rates 

show that increasing the value of (3 will degrade the performance i. e., increase the 

average task waiting time. The amount that the average waiting time will increase 

depends on the chosen value of (3. On the other hand, a reduction in the value of 

the power consumption will be achieved (because increasing the value of (3 results 

in turning on less machines at each decision time). For instance, in the case of a 

varying arrival rate (Table 3.3), by increasing the value of (3 from 0.0 to 0.01, the 

mean waiting time should not exceed 0.101 (This value is calculated using equation 

(3.3)). Moreover, a 50% power saving is attained. Note that the power saving is 

calculated compared to the static configuration policy (which is equivalent to the 

base configuration policy when (3 = 0). For the static configuration policy, the powcr 

saving is 0% and the average waiting time is 0.10 ± 0.05%. 

Based on the results in Table 3.2 and Table 3.3, to get most of the power savings 

possible with very little loss in performance, we recommend that (3 should be chosen 

to be small. For instance, by increasing the value of (3 from 0.0 to 0.01 in Table 3.2, 

we save 32.02% at the same value of average waiting time when (3 = O. 

Furthermore, we show that a good amount of power saving can be achieved also 

by using the Lien and Jennings et al. policies as opposed to the static configuration 

19 



.Master's Thesis - H. AI-Daoud - lVIcMaster - Computing and Software 

(3 D,. W 

0.0 0 0.100 ± 0.03% 

0.01 50.00 0.100 ± 0.05% 

0.25 60.00 0.102 ± 0.06% 

0.75 78.00 0.180 ± 0.71% 

Table 3.3: Simulation Results for the Base configuration policy with changing arrival 

rate 

Policy D,. W 

Lien 29.03 0.11 ± 0.12% 

Table 3.4: Simulation Results for Lien policy with changing arrival rate 

policy. We take the same time-varying arrival rate that is used to evaluate the base 

configuration policy (see Table 3.1). 

The simulation results are shown in Table 3.4 and Table 3.5. The Jennings et al. 

results are done under different values of probability delay cx. Also, the results for the 

Jennings et al. policy (Table 3.4) shows that the amount of power saving is increased 

by increasing the value of cx. Also, it can be seen that most of the power savings are 

achieved after a small increase in cx. 

3.5 Summary 

Power saving for homogeneous clusters can be achieved by applying any of the sug­

gested policies in this chapter. We use two policies which are already proposed in the 

Q D,. W 

0.005 16.24 0.10 ± 0.10% 

0.1 27.63 0.11 ± 0.10% 

0.4 33.23 0.13 ± 0.36% 

0.5 35.83 0.18 ± 1.17% 

Table 3.5: Simulation Results for the Jennings et al. policy with changing arrival rate 

20 



Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

literature and we apply it for our workload model. The first policy is the Lien policy 

which determines the number of machines that gives the minimum "Mean Task Wait­

ing Time-Power Product". This policy uses queueing theory to calculate the mean 

waiting time. The second policy is proposed by Jennings et al. In this policy, the 

delay probability of each task is kept below a target value. The power saving can be 

increased or decreased according to the chosen target value. 

In this chapter, we also propose another basic power saving policy that can be 

used in homogeneous clusters. This policy, which we call the base configuration 

policy, considers the tradeoff between power reduction and performance which gives 

the opportunity to emphasize power savings over performance or vice versa. The 

average waiting time is directly controllable by the user and can be kept below a 

target value. The determination of the minimum number of machines is based on the 

selected value for the percentage of the average waiting time. 

One should be aware of the following when applying the previous policies. First, 

it is easier for system administrators to express service level agreements using the 

average task waiting time rather than a task's delay probability. Both Lien and the 

base configuration policies require the former parameter as the performance target, 

while Jennings et al. policy requires the latter. Second, in the Lien and the base 

configuration policies, one needs to use queueing theory to estimate the mean waiting 

times. In some cases, closed-form solutions do not exist and thus one must use other 

approaches, which may be expensive. Finally, for all policies, one should set the 

window size. Although not discussed in the thesis, the window size should be chosen 

based on the dynamics of the system. For example, if the arrival rate is changing 

rapidly, one may choose very small window sizes. 

Some aspects are not considered in our approach and need further study. For 

example, we have not considered the delay time and cost obtained when a machine 

changes from one power state to another. Also, we have not considered issues such 

as choosing the window size. 

21 



Master's Thesis - H. AI-Daoud - lVIcMaster - Computing and Software 

Chapter 4 

Heterogeneous Clusters 

Designing a power-efficient heterogeneous server cluster is studied in this chapter. 

More specifically, we propose a power-aware task distribution strategy for the hetero­

geneous clusters. As previously mentioned, the purpose of finding such a strategy is 

to schedule the incoming tasks in a way that the total power consumed by the cluster 

is minimized. 

The organization of this chapter is as follows. In Section 4.1, we define our power 

model. In Section 4.2, we describe our proposed power-aware task distribution policy. 

Section 4.3 demonstrates the experimental results. The content of this chapter and 

the following chapter appears in [3] and AI-Daoud et al. [4]. 

4.1 The On-Off Model 

At any point in time, a machine can be either busy or in a low power state. Each 

machine consumes a different amount of power per time-unit when executing each 

type of tR.sks. 

Assume that Mi,j represents the power consumption of machine j when executing 

a task of type i, where i = 1, ...... , I and j = 1, ...... , J. In addition, we assume that a 

22 



Master's Thesis - H. AI-Daoud - J\kMaster - Computing and Software 

machine is put into a low power state (i. e., a deep sleep state) when it is not executing 

any tasks or idling. Let Bj be the power consumption of machine j when it is in the 

deep sleep state. We assume that B j « iVii,j for all i i. e., the power consumed by 

a machine in a deep sleep state is much lower than the amount of power consumed 

when it is on. 

Let Pj be the average power consumed per unit time by a machine j; therefore, 

the total power consumed by all machines can be expressed as: 

J J I I 

(4.1) L Pj = L[(L 6i,jNii,j) + (1 - L 6i,j)Bj J 

j=l j=l i=l i=l 

where 6i,j is the proportion of time that machine j is busy executing tasks of type i. 

Our power model is similar to the one given in Heath et al. [19J. 

4.2 Current Policies 

A scheduling policy that is applicable to our workload model is the classical First­

Come-First-Serve (FCFS) policy. FCFS is used in major schedulers (such as Domingues 

et al. [11J and Kondo et al. [23]). An advantage of FCFS is that it does not require 

any dynamic information on the state of the system. However, FCFS only performs 

well in systems with limited task heterogeneity and under moderate system loads. As 

the application tasks become more heterogeneous and the load increases, performance 

degrades rapidly (see AI-Azzoni and Down [1]). Furthermore, FCFS ignoreR machine 

power consumption and thus may result in serious energy waste. 

Another scheduling policy is the Pick-the-Most-Efficient (PME) policy. The policy 

uses a greedy approach for assigning tasks to machines. It is defined as follows. When 

23 



IVlaster's Thesis - H. AI-Daoud - MclVlaster - Computing and Software 

a machine j becomes available, it is assigned a class i task where the power efficiency 

of machine j on class i is the maximum amongst those classes with at least one task 

waiting. The power efficiency of a machine j on class i tasks is defined as /-Li,j / ]\.!{i,j. 

The PIVIE policy only requires dynamic information on the machine execution rates 

and power consumption. In particular, it does not take into account information on 

the task arrival rates. 

4.3 The Power-Aware LPAS Policy 

4.3.1 Introduction 

In the LPAS policy (see [2]), the power-efficiency of the cluster is not considered. In 

this work, we suggest a scheduling policy that takes power consulT1Ption into account 

and performs well. This policy is called: Power-Aware Linear Programming Based 

Affinity Scheduling (Power-Aware LPAS). This policy takes advantage of low load 

periods by carefully choosing (using an LP solution) which machines to idle and be 

put into a low-power state. A machine is activated only when there is a need e.g., 

executing an arriving task. 

In this section, we give a basis for our Power-Aware task distribution policy with an 

example that should help to clarify how it works. Also, we illustrate its performance 

using simulation results. 

4.3.2 Main Concept of Power-Aware LPAS policy 

The Power-Aware LPAS policy requires solving two allocation linear programming 

(LP) problems. The first LP does not take power consumption into account. It is the 

same LP that is used in the other LPAS-related policies (see [1] and [2]). This LP 

is solved for the purpose of obtaining the maximum capacity of the system A*. This 

value is then used in the second LP. 

24 



Master's Thesis - H. AI-Daoud - :McMaster - Computing and Software 

In the first LP, the decision variables are A and Bi,j for i = I, ... ,I, j = 1, ... ,J. 

The variables Bi,j are to be interpreted as the proportional allocation of machine j to 

class i. 

max A 

(4.2a) 
J 

S.t. L Bi,jJLi,j 2:: ACI!i, for all i = I, ... , I, 
j=l 

(4.2b) 
I 

L Bi,j S I, for all j = 1, ... ,J, 
i=l 

(4.2c) 

for all i = 1, ... , I, and j = I, ... ,1. 

The left-hand side of (4.2a) represents the total execution capacity assigned to class i 

by all machines in the system. The right-hand side represents the arrival rate of tasks 

that belong to class i scaled by a factor of A. Thus, (4.2a) enforces that the total 

capacity allocated for a class should be at least as large as the scaled arrival rate for 

that class. This constraint is needed to have a stable system. The constraint (4. 2b) 

prevents overallocating a machine and (4.2c) states that negative allocations are not 

allowed. 

Let A* and {Bi,j} , i = 1, ... ,1, j = 1, ... , J, be an optimal solution to LP (4.2). 

The LP always has a solution, since no lower bound constraint is put on A. However, 

the physical meaning of ), * requires that its value be at least one (as explained below). 

In this case, 1/ A * is interpreted as the long-run utilization of the busiest machine. 

The value A * can also be interpreted as the maximum capacity of the system. We 

define the maximum capacity as follows. Consider a system with given values for C1!i 

(i = 1, ... ,1) and A*. If A* S I, then the system is unstable. Thus, the system will be 

overloaded and tasks queue indefinitely. If, however, A* > I, then the system can be 

25 



Master's Thesis - H. AI-Daoud - lVlcMaster - Computing and Software 

stabilized even if each arrival rate is increased by a factor less than or equal to ,\ * (i. e., 

the same system with arrival rates ct~ ::; '\*cti' for all i = 1, ... ,I, can be stabilized). 

In this case, the values {B;,j} , i = 1, ... ,I, j = 1, ... , J, can be interpreted as the 

long-run fraction of time that machine j should spend on class i in order to stabilize 

the system under maximum capacity conditions. 

The second LP considers the power consumption of the machines. The decision 

variables are Oi,j for i = 1, ... ,I, j = 1, ... ,J. 

J I I 

min "'[('" O' .}.if. .) + (1 - '" O· ·)B·] ~ ~ ',] ',] ~ .,] ] 

j=l i=l i=l 

(4.3a) 
J 

s.t. L Oi,jf..Li,j 2:: Ccti, for all i = 1, ... ,I, 
j=l 

(4.3b) 
I 

L Oi,j ::; 1, for all j = 1, ... , J, 
i=l 

( 4.3c) 

for all i = 1, ... , I, and j = 1, ... , 1. 

The constraint (4.3a) enforces that the total execution capacity allocated for a class 

should be at least as large as the arrival rate for that class scaled by a factor c. The 

optimal solution for this LP is given in the form of a matrix 0* where the (i,j) entry 

is o:'j' The matrix 0* specifies an allocation of machines to tasks such that the energy 

consumption is minimized while still meeting capacity c. 

The Power-Aware LPAS policy considers the trade-off between energy consump­

tion and performance. Let c represent the target capacity of the system. Assuming 

that ,\* > 1, the value of c can range from 1 to the maximum capacity of the system, 

i. e., 1 ::; c::; ,\ *. In this case, LP (4.3) always has a solution, since B* already satisfies 

26 



Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

the constraints (4.3a)-(4.3c). Choosing for c values closer to 1 may cause performance 

to degrade while achieving increased energy saving. If c is very close to 1, then only 

the minimum capacity is utilized and this results in severe performance degradation 

(or even system instability). Thus, we avoid the use of such values for c. On the other 

hand, the closer c to the maximum capacity A *, the better the performance, at the 

expense of increased energy consumption. 

In order to achieve the allocations 6i,j' we use the following mechanism. Suppose 

that machine j requests a task at time t. Let bi,j(t) be the proportion of time that 

machine j has been executing class i tasks up to time t. The scheduler assigns the 

machine to a class i task such that bi,j > 0 and bi,j - bi,j(t) is the maximum. If all 

of the values of bi,j - bi,j(t) are negative, machine j is put in a low power state until 

Ljt(t) = 1- ~f=l bi,j' where Lj(t) is the total time machine j has been in a low power 

state up to time t. 

Consider a system with two machines and two classes of tasks (I = 2, J = 2). 

The arrival and execution rates are as follows: 

a ~ [1 15 1 and ~ ~ [: :]. 

Furthermore, assume that 

B = [0.1 0.1] and fi./f = 
[ 

1 20] 
1 20 

Thus, when executing a task, power consumption of machine 2 is 20 times that of 

machine 1. Both machines have the same power consumption in the low power state. 

Solving LP (4.2) gives X' = 1.7647 and 

()* = [0 0.3529]. 
1 0.6471 

First, set c = A *. Solving LP (4.3) gives b* = ()*. The resulting b* achieves the 

maximum system capacity (see [1]), however it ignores power consumption of the 

27 



Master's Thesis - H. AI-Daoud - McNIaster - Computing and Software 

machines. Machine 2 is assigned tasks for execution although it is very inefficient 

power-wise. 

In the second case we set c = 1. Solving LP (4.3) gives 

0* = [0.1111 0]. 
0.7500 0 

Note that in this case machine 2 is put in a low power state. The allocation 0* results 

in the maximum energy saving while meeting the minimum required capacity. 

4.3.3 Simulation Results 

Overview 

We use simulation to compare the performance of the scheduling policies. Tn Section 

4.3.4, we simulate artificial systems with different heterogeneities to show the impact 

of heterogeneity on performance. Then, in Section 4.3.5, we show the results of 

simulating a realistic cluster system. 

The task arrivals are modeled by independent Poisson processes, each with rate 

ai, i = 1, ... ,I. The execution times are exponentially distributed with rates /-1i,j, 

where 1/ /-1i,j represents the mean execution time of a task of class i at machine j, i = 

1, ... ,I, j = 1, ... , J. 

There are several performance metrics that can be used. We use the long-run 

average task completion time W, as a metric for performance comparison. A task 

completion time is defined as the time elapsing between the submission of the task 

and the completion of its execution. Another metric we also show is the energy saving 

(~) with respect to FCFS. 

Each simulation experiment models a particular system, characterized by the val­

ues of I, J, B j , JIIli,j, ai, and fl-i,j, i = 1, ... ,I, j = 1, ... , J. Each experiment is 

executed for 20,000 time-units and repeated 30 times. For every case, we give Wand 

~. For VV, we also give the accuracy of the confidence interval defined as the ratio of 

28 



Master's Thesis - H. AI-Daoud - lVIclVIaster - Computing and Software 

Policy c t::. TiV 

Power-Aware LPAS ,A* = 1.7068 38.21% 0.165 ± 0.24% 

Power-Aware LPAS mid point= 1. 3534 45.63% 0.265 ± 1.97% 

PlVIE - 13.20% 0.261 ± 0.22% 

FCFS - 0% 2.842 ± 14.08% 

Table 4.1: Simulation Results for Experiment 1 

Policy c t::. HI 

Power-Aware LPAS ,A* = 1.4582 22.38% 0.308 ± 0.45% 

Power-Aware LPAS midpoint=1.2291 54.14% 0.335 ± 1.92% 

PlVIE - 4.41% 0.207 ± 0.23% 

FCFS - 0% 0.207 ± 0.25% 

Table 4.2: Simulation Results for Experiment 2 

the half width of the interval over the mean value (all statistics are at 95% confidence 

level). 

4.3.4 Task and Machine Heterogeneity 

There are different kinds of system heterogeneity. Machine heterogeneity refers to 

the average variation along the rows of f-l" and similarly task heterogeneity refers to 

the average variation along the columns (see Armstrong [7]). In the first experiment, 

we simulate a system with high task heterogeneity and high machine heterogeneity. 

In the second experiment, we simulate a system with high machine heterogeneity 

and low task heterogeneity. In both experiments, machine power consumptions are 

completely heterogeneous. 

29 



--------

Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

Experiment 1 

Consider a system with 3 classes and 6 machines (I = 3, J = 6). The system is chosen 

to be both highly machine and task heterogeneous. The arrival and execution rates 

for this system are given by 0: = [9.75 8.5 9.5] and 

[ 

4.5 2 9.5 6.2 10.25 2.25] 

f-L = 6.2 4.5 6 2 4.2 5.9 , respectively. 

9.5 6.5 4 10 5.9 2.25 

The following define machine power consumption: 

B = [3.5 3 4 4 3.5 3] 

and 

NI = [ ~~ 
105 

73 84 103 

65 79 71 

80 96 85 

93 75] 
82 63 

95 70 

Solving LP (4.2) gives A * = 1.7068. Table 4.1 shows the simulation results for 

the experiment. The table gives simulation results for the Power-Aware LPAS policy 

under two different values of c: c = A* and c = l~A*. 

The results show that significant energy saving can be achieved by using the 

Power-Aware LPAS policy. When c is set to the midpoint (i.e., l~A*), the Power­

Aware LPAS policy results in an energy saving that is almost 2.5 times that of PME 

while achieving the same performance. 

Experiment 2 

In this experiment, we consider a system with high machine heterogeneity and low 

task heterogeneity. The system has 6 machines and 3 classes (I = 3, J = 6). The 

arrival and execution rates are respectively given by 0: = [8.75 8.5 9] and 

30 



Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

[ 22 
7 10.25 1 5.7 

12 I j.t= 
1.:5 

7.05 9.78 0.95 5.65 11.85 

7.25 10.02 0.98 5.75 11.8 

The following define machine power consumption: 

B = [3.5 3 4 4 3.5 3] 

and 

[ 128.4 
193.1 155.6 105.5 125.4 116.1 

iVl = 135.1 230.15 203.4 94.2 250.6 85.51 
84.15 62.3 81.1 96.9 71.3 215.09 

Solving LP (4.2) gives A * = 1.4582. Table 4.2 shows the simulation results for 

the experiment. The table gives simulation results for the Power-Aware LPAS policy 

under two different values of c: c = A* and c = H~iA*. 

The results show that using the Power-Aware LPAS policy results in significant 

energy saving compared to both FCFS and P1VIE but at the expense of an increased 

average waiting time. Note that the system has low task heterogeneity. In such 

systems, previous work has demonstrated that LPAS-related policies may not perform 

as well as other competing policies (see [1] and [2]). 

Experiment 3 

Consider a system with high machine heterogeneity and high task heterogeneity. This 

system also has I'll = 6 and N = 3. The arrival rates vary every 100 time-units and 

are given by the following vectors: 

al = [9.75 8.5 9.5], a2 = [7.75 7.5 7.5], a3 = [9.75 8.5 9.5] and Lt4 = 

[7.75 7.5 7.5]. 

The results in Table 4.3 show that significant energy saving can be also achieved 

by using the Power-Aware LPAS policy in the case of varying arrival rates. 

31 



Master's Thesis - H. AI-Daoud - lVlcMaster - Computing and Software 

Policy c D. Hi 

Power-Aware LPAS >.* 30.94 0.16 ± 0.33% 

Power-Aware LPAS midpoint 34.86 0.20 ± 0.02% 

Pick -JVIost-Efficient - 0 0.25 ± 0.32% 

Table 4.3: Simulation Results for Experiment 3 

4.3.5 Realistic Architectures 

In this section, we simulate a system which models a real computer cluster [24] (for 

details, see He [18]) to compare the scheduling policies. The system is a medium 

size system with 5 task classes and 30 machines. The machines are partitioned into 

6 groups, machines within a group are identical. Thus, if two machines are in the 

same group, then they have the same execution rates. Groups T, U, V, W, X, and 

Y, consist of 2 machines, 6 machines, 7 machines, 7 machines, 4 machines, and 4 

machines, respectively. The execution rates are shown in Table 4.4. The arrival rate 

vector is a = [204.10 68.87 77.63 5.0110.43]. For such a system, )..* = 2.4242. 

We consider two cases. In the first case, machine power consumptions are com­

pletely heterogeneous. The machine power consumption matrix 1\1£ is shown in Ta­

ble 4.5 . .1\11, ... ,10 is a sub-matrix of.l\l[ which shows the power consumption for machines 

1, ... ,10 (the sub-matrices 1\1£11, ... ,20 and .1\121 , ... ,30 are defined analogously). Machines 

in Group Tare 1 and 2, machines in Group U are 3, ... ,8, etc. 

y 

1 16.7 24.8 24.2 29 25.6 48.3 

2 30.4 48.3 77.7 83.6 135.9 144.9 

3 18.9 24.2 48.3 45.8 72.5 72.5 

4 3 3 7.6 7.6 8.3 8.7 

5 1 1.1 3 2.9 3 3 

Table 4.4: The Execution Rates for the System in Section 4.3.5 

32 



NIaster's Thesis - H. AI-Daoud - NIcMaster - Computing and Software 

., 

.j 

53.2 70.1 67.2 45.3 48.8 78.5 120.0 163.1 77.3 85.0 

82.6 200.7 148.8 68.8 92.9 97.9 87.4 67.0 78.3 94.4 

1\1'h, ... ,10 216.3 79.2 94.3 86.5 218.6 87.8 96.4 136.9 200.3 136.1 

97.2 87.4 136.4 154.5 156.1 176.2 137.3 183.9 149.6 230.6 

120.0 123.0 65.0 78.0 94.4 132.1 79.3 88.8 99.5 100.2 

93.3 64.1 82.6 72.9 59.1 69.1 59.3 75.4 88.0 130.6 

90.6 69.7 84.4 73.3 120.2 102.1 160.7 210.3 93.7 190.8 

Mn , ... ,20 164.2 89.3 95.5 189.6 129.6 87.5 74.8 98.0 94.9 129.0 

94.8 86.9 94.1 78.4 76.6 98.0 75.3 120.2 134.4 160.2 

90.4 65.0 73.0 97.9 179.0 213.0 169.8 61.2 123.0 145.5 

116.7 69.3 150.4 144.5 78.0 96.0 73.5 180.7 211.0 130.0 

211.9 94.2 89.3 67.5 87.6 73.7 133.8 128.0 123.0 221.6 

1\121, ... ,30 137.0 129.2 234.1 176.2 146.3 197.4 136.6 79.4 83.6 76.1 

96.9 130.6 143.4 176.1 109.3 79.1 69.6 78.9 143.3 165.5 

135.3 123.6 89.5 68.8 85.9 90.2 143.9 156.7 189.3 67.5 

Table 4.5: The Machine Power Consumption Matrix for the System in Section 4.3.5 

- The Heterogeneous Case 

33 



}.tIaster's Thesis - H. AI-Daoud - McMaster - Computing and Software 

The second case represents more homogeneous per-cluster power consumption. We 

assume that the power consumption for a machine is just a multiple of its execution 

rate. Thus, the faster the machine, the more energy it consumes. Furthermore, 

the multiplicative factor is different amongst the groups. This represents realistic 

systems in which the machines in a cluster are homogeneous in terms of their power 

consumption while the clusters differ in their power efficiency. The multiplicative 

factors are 6, 4, 7, 5.5, 5, and 6, for groups T, U, V, W, X, and Y, respectively. 

In both cases, the power consumption in the low power state is 2 for machines in 

Group T, 3 for machines in Groups U, V, and X, 3.5 for machines in Group W, and 

4 for machines in Group Y. For the Power-Aware LPAS policy, we give simulation 

results corresponding to five different values of c (1.1500, 1.3561, 1.7121, 2.0682, and 

2.4242). 

Figures 4.1 and 4.2 show the simulation results under both cases. The figures show 

that the Power-Aware LPAS policy performs competitively while reducing energy 

consumption. The improvements are more significant in systems with higher degrees 

of heterogeneity. Also, when the parameter c is set to values closer to )., *, better 

performance results. In this case, since the system being simulated is not highly 

loaded (41.25%), performance improvement is not that significant. However, if the 

load increases, performance improvement becomes much more significant. 

The Power-Aware LPAS policy results in reduced energy consumption, ranging 

from 25% to 50% in the heterogeneous case and from 0.5% to 5.5% in the more 

homogeneous case. We note that the energy saving is not linear with respect to 

decreasing values of c (the same observation holds for performance with respect to 

increasing values of c). Furthermore, when c is set to the midpoint (i. e., Ht = 

1.7160), the Power-Aware LPAS policy results in a reasonable compromise between 

performance improvement and energy saving. An administrator of a cluster can adjust 

the value of c to tailor to the organization's specific need. For example, one can 

reduce c just below the midpoint if energy consumption is more of a concern than 

34 



-j 

lVIaster's Thesis - H. AI-Daoud - lVIcMaster - Computing and Software 

Average Waiting Time VS. Parameter c 

0.12 ~ 

0.1-< 
---. 
E3 
'i:: 0.08 
:::l 

d.> 
.~ 0.06 -

• 
~ _____ ~60 
*Power-Aware LPAS 

PME 

I---FCFS 

50 

'----------' 40 

~30 
<f 

20 '-' I 
$: 0.04 --ik •••••••••••• " ••••• " •• " ••• ~ 

10 

Energy Saving VS. Parameter c 

o -T····--;- ..... j ......... _-, - ·······r···· r 
1 1.2 1.4 1.6 1.8 2 2.2 2.4 

C 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 
c 

Figure 4.1: Simulation results for the system in Section 4.3.5 - The heterogeneous 

case 

Average Waiting Time VS. Parameter c 

0.08 i 
I '*Power-Aware LPAS 

i PME 

~ \_ ""FCFS .~ 0.06 

cv I 
E , •.........• " •• ~:"."" •• " ... " ........ """"" 
e 0.04 -< ------. 
$: ----------. 

0.02 ~-.-------,---.------,---.---.--.-

1 1.2 1.4 1.6 1.8 2 2.2 2.4 

C 

6 -

5 

4 

2 

1 

Energy Saving vs. Parameter c 

----- ... ~II----, 
\ 

\ 
\ 

'I. 
o -+----.....--.---, 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 
C 

Figure 4.2: Simulation results for the system in Section 4.3.5 - The more homogeneous 

case 

performance. 

4.4 Comparison to Dynamic Voltage Scaling 

The Power-Aware LPAS policy employs a dynamic cluster configuration mechanism 

in which a machine is put in a low power state when it is not executing a task. Another 

35 



IVlaster's Thesis - H. AI-Daoud - MclVlaster - Computing and Software 

power management mechanism is the Dynamic Voltage Scaling mechanism in which a 

machine can have different CPU operating frequencies. At any time, a machine's low 

power state and busy power consumption depend on the current machine operating 

frequency. Both mechanisms were discussed in Section 1.2. 

Consider the following Dynamic Voltage Scaling policy. The utilization of each 

machine Uj is computed periodically and then the CPU operating frequency for ma­

chine j is set to the closest value higher than Ujfmax, where fmax is the maximum 

CPU operating frequency of machine j. The policy is used in Govil et al. [15] and 

Rusu et al. [32]. 

In this section, we use the same system specified in Section 4.3.5 which models 

a real computer cluster. However, to simulate the system using Dynamic Voltage 

Scaling, we need to scale the execution rates as well as each machine's low power 

state and busy power consumption. The scaling is based on the power consumption 

parameters of a real machine used in the experiments of [32] and which are reproduced 

in the following table: 

Frequency (MHz) 1000 1800 2000 2200 2400 

Idle (Watts) 70 74.5 78.5 83.5 89.5 

Busy (Watts) 80.5 92.5 103.5 119.5 140.5 

In our simulation experiments, we assume that all of the machines have the same 

parameters as in the table above. Let fj be the current CPU operating frequency for 

machine j. Then, the scaling is done as follows: 

M~,j = 2:boMi,j, where M is the execution rate matrix from Section 4.3.5. Note 

that 2400 is the maximum CPU operating frequency of the modelled machine .. 

1I1f' - machine j busy power consumption corresponding to fj 111.. l' lI J ' tl h' 
i,j - 140.5 t,J' W 1e1e '1 IS 1e mac me 

busy power consumption matrix from Section 4.3.5. Note that 140.5 is the busy 

power consumption corresponding to the maximum CPU operating frequency 

of the modelled machine. 

36 



.. 
-j 

Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

B' - machine j idle power consumption corresponding to Ii B l' B' 1 1 . I 
j - 89.5 j, W lere IS t le mac llne ow 

power state power consumption vector from Section 4.3.5. Note that 89.5 is 

the idle power consumption corresponding to the maximum CPU operating 

frequency of the modelled machine. 

We assume that the front-end scheduler uses FCFS. Each machine sets its CPU 

operating frequency every 0.0001 time-units. This high frequency allows the machines 

to quickly adapt their CPU operating frequencies while meeting the load. We give the 

simulation results for the two cases in Section 4.3.5. For the heterogeneous machine 

power consumption case, using Dynamic Voltage Scaling results in an average task 

waiting time that is 93.78% higher than that of FCFS with 6. = -75.64%. For the 

more homogeneous machine power consumption case, using Dynamic Voltage Scaling 

results in an average task waiting time L!mt is 92.69% higher than that of FCFS 

with 6. = -81.79%. These results indicate that Dynamic Voltage Scaling does not 

perform well in systems with high task heterogeneity. Both the average task waiting 

time and the energy consumption increase. This is because the original DVS based 

policies implicitly assume homogeneity. It is possible that they could be adapted to 

the heterogeneous case. 

4.5 Summary 

The main contribution in this chapter is the suggestion of the Power-Aware LPAS 

policy for heterogeneous clusters. The Power-Aware LPAS policy requires solving two 

allocation LPs in order to find the the best task distribution that results in the lowest 

power consumed by the system. First, the maximum capacity is computed by solving 

the first LP. Then, a value for the system capacity between the maximum value and 

1 is chosen. Then, another LP that takes the power consumption into consideration 

is solved. By solving the second LP, the best allocation matrix for the chosen value 

of the system capacity is found. Our simulation experiments show that by using the 

37 



1tlaster's Thesis - H. AI-Daoud - 1tIcMaster - Computing and Software 

Power-Aware LPAS policy, our goal of minimizing the power consumption is achieved. 

38 



Master's Thesis - H. AI-Daoud - MclVIaster - Computing and Software 

Chapter 5 

Power-Aware LPAS for Structured 

Systems 

5.1 Introduction 

In the previous chapter, a good amount of energy saving can be achieved by using 

the Power-Aware LPAS policy. However, the Power-Aware LPAS policy requires 

knowledge of both task arrival and machine execution rates. In this chapter, we 

introduce another energy saving policy for heterogeneous structured systems which 

does not require knowledge of the task arrival rates. 

5.2 Structured Systems 

5.2.1 Introduction 

The execution rate matrix of a structured system is given by a combination of two 

components: a component that is completely dependent on the task (the inherent 

task difficulty) and another component that is completely dependent on the nmchine 

(the machine efficiency). Such systems appear to be reasonable models for computer 

39 



NIaster's Thesis - H. AI-Daoud - NIcMaster - Computing and Software 

cluster environments. Thus, the execution rate of machine j on a class i task is given 

by JLi,j = 'YjJLi, i = 1, ... ,I, j = 1, ... ,J. 

The busy power consumption matrix is also structured such that each machine's 

power consun'lption is equal to a factor multiplied by its speed. So, the power con­

sumption of machine j while executing a class i task can be given by lvIi,j = f3jJLi,j, i 

= 1, ... ,I, j = 1, ... ,J, where the factor 1/ f3j is the power efficiency of machine j. 

Suppose we have a system with .M = 7 machines and N = 4 tasks. To formulate 

the execution rate matrix, we choose: JL1 = 1, JL2 = 2, JL3 = 5, JL4 = 3. Then, we 

select values for 'Yj. For example, suppose that: "11 = 1, "12 = 3, "13 = 4, "14 = 0.2, "15 

= 6, "16 = 5, "17 = 10. As a result of multiplying JLi by 'Yj, the execution rate matrix 

is given by: 

1 3 4 0.2 6 5 10 

2 6 8 0.4 12 10 20 
JL= 

5 15 20 1 30 25 50 

3 9 12 0.6 18 15 30 

To form the power matrix corresponding to the execution rate matrix, we multiply 

each column of the execution rate matrix by f3j. For instance, we select the following 

values for f3{ f31 = 3.1, f32 = 11.7, f33 = 8.2, f34 = 6.5, f35 = 13.6, f36 = 17.4, f37 = 1.3. 

Thus, the busy power consumption matrix is given by: 

3.1 35.1 32.8 1.3 81.6 87 13 

lvI = 
6.2 70.2 65.6 2.6 163.2 174 26 

15.5 175.5 164 6.5 408 435 65 

9.3 105.3 98.4 3.9 244.8 261 39 

and B = [1 3 3 0.5 3 3 3]. 

Table 5.1 shows simulation results for this system under the constant arrival 

rate vector: a = [6.25 6 6.25 6]. Also, we simulate the system under ar­

rival rates that change every 100 time-units. At every arrival rate change event, 

the arrival rate vector assumes the values in one of the following vectors: CY1 = 

[6.25 6 6.25 6], CY2 = \ 3.75 3.6 3.75 3.6], a3 = [6.25 6 6.25 6] and 

CY4 = [ 3.75 3.6 3.75 3.6 . Table (5.2) shows the simulation results. 

40 



]\./Iaster's Thesis - H. AI-Daoud - McMaster - Computing and Software 

Policy c .6. W 

Power-Aware LPAS ,A* = 2.3360 40.93 0.167 ± 0.13% 

Power-Aware LPAS midpoint= 1.6680 57.13 0.20 ± 0.32% 

Pick-Most-Efficient - 0.009 0.164 ± 0.10% 

FCFC - 0 0.163 ± 0.11% 

Table 5.1: Simulation Results 

Policy c .6. W 

Power-Aware LPAS ,A* 41.59 0.172 ± 0.27% 

Power-Aware LPAS midpoint 57.77 0.199 ± 5.47% 

Pick-Most-Efficient - 0 0.175 ± 0.41% 

FCFS - 0 0.175 ± 0.43% 

Table 5.2: Simulation Results 

5.2.2 Observation 

For structured systems, the machines should be put in a low power state in increasing 

order of f3j when the load on the system is reduced and employed in decreasing order 

of f3j when the load on the system is increased. 

Consider a system that has the same characteristics of the system described in 

Section 5.2.1. Table 5.3 shows L;=l r5i,j for each machine j (i.e.) the load of the 

machine) at different values of the system load (1.) assuming c is set to the midpoint 

e~A*). 

For instance, at an arrival rate Q = [13.75 13.2 13.75 13.2], the load on the 

system is 0.9418. At the midpoint (c = 1.0309), the resulting allocation matrix is: 

0.0000 1.0000 0.2563 0.0000 1.0000 0.8300 0.0000 

1.0000 0.0000 0.7437 1.0000 0.0000 0.0000 0.2629 
r5* = 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2835 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4536 

Note that the sum of each column of the r5* matrix is 1, hence all machines are 

41 



Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

allocated all of the time. 

Now, by decreasing the arrival rates to cy = [12.5 12 12.5 12], the load on 

the system will be reduced to 0.856. At the midpoint (c = 1.084), the resulting 

allocation matrix is: 

(5* = 

0.0000 1.0000 0.4125 0.0000 1.0000 0.5800 0.0000 

1.0000 0.0000 0.5875 1.0000 0.0000 0.0000 0.2954 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2710 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4336 

Notice that nmchine 6 (which has the largest (3) is the first machine for which 

LI=l (57,j is zero and thus it is the first machine to be put in the low power state. If 

we decrease the load further and compute LI=l (5i,j for each machine j, the machines 

are put in a low power state in decreasing order of f3{ machines 5, 2, 3, 4, 1, then 7 

(or equivalently, increasing order of the power efficiency i. e., J
j
). In fact, we can show 

that putting machines in a low power state in order of their power efficiencies as the 

load decreases and vice versa characterizes a particular subset of optimal solutions to 

LP (4.3). 

Lemma 1 For a structured system where B j = a for j = 1, ... ,J, if there are two 

machines j1 and j2 such that f3jl > f3jz, we can not have: Li (5i,jl > a and Li (5i,jz = a 
in an optimal solution for LP {4.3}. 

Proof 

We prove the lemma by contradiction as follows. 

Consider a structured system with J machines and I classes. Assume that for two 

machines j1 and j2 we have f3jl > f3h' 

Suppose that in an optimal solution, we have LI=16i,11 > a and LI=l (5i,h = O. 

42 



Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

load JVIl :M2 M3 1vl4 IVI5 M6 JVI7 

0.9418 1 1 1 1 1 0.83 1 

0.856 1 1 1 1 1 0.58 1 

0.7705 1 1 1 1 1 0.3301 1 

0.6849 1 1 1 1 1 0.08 1 

0.5993 1 1 1 1 0.8584 0 1 

0.5137 1 1 1 1 0.6499 0 1 

0.428 1 1 1 1 0.4417 0 1 

0.3425 1 1 1 1 0.2333 0 1 

0.2568 1 1 1 1 0.025 0 1 

0.1712 1 0.6333 1 1 0 0 1 

0.08556 1 0.2167 1 1 0 0 1 

0.000856 (c=500) 1 0 0.325 1 0 0 1 

0.000856 (c=430) 0.75 0 0 0 0 0 1 

0.000856 (c= 195) 0 0 0 0 0 0 1 

Table 5.3: Load on each machine for different loads on the system 

The value of the objective function at this optimal solution is then given by: 

I 

(5.1) L L f-liljf3ij:'j' 
j=f-j2 i=l 

Consider another solution 0* constructed as follows. Let 0* be identical to 0* except 

for the columns corresponding to machines jl and j2' Let O*i,JI = Ijl/hjl + Ijz)O?,jl 

and o\,jz = ,j)hjl + ,jz)O;'jl for i = 1, .... , I. 

First, we show that the constructed solution is a feasible solution, i. e., it satisfies 

(4.3a)-(4.3c). 

43 



Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

To show that the constructed solution satisfies (4.3a), note that: 

J 

~8*··1I.·· ~ t,Jrt,J 
j=l 

= L 8:'jf-Li,j + 'Yj1 8;,j1f-Li 

#jd2 

= ~8':'·lI.iJ· ~ 'l,Jt-'" , 

#i2 

2 CCYi, for i = 1, ... ,1. 

To show that (4.3b) is satisfied, note that for )1: 

I 

L 8* i,j1f-Li,il 

i=l 

I 

- ~ 'Yil 8* .. 
- ~ 'Y' + 'Y' i,ilf-Lt,J1 

i=l J1 J2 

I 

'Yil ~ 8* 
'Y' + 'Y' ~ i,j1 f-Li,il 

J1 J2 i=l 

44 



Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

For j2, one can show that I:f=l 6* i,hJLi,j2 ::; 1 as follows: 

I 

L 6* i,j2JLi,j2 
i=l 

For all other machines j, 

I I 

L 6\,jJLi,j = L 6:,j~Li,j ::; 1. 
i=l i=l 

Hence, constraint (4.3b) holds. 

Finally, note that 6\,j 2: 0 for all j and hence (4.3c) is satisfied. 

The new objective function is given by: 

I I I 

(5.2) L LJLi'Yj{Jj6*i,j + LJLi'YjJ3j1 6\,jl + LJLi'Yh{Jj2 6\,jz. 
j"",jl>i2 i=l i=l i=l 

By substituting 6*i,j,i = 1, ... ,I,j 

function value is: 

1, ... ,J, 11l (5.2), the resulting objective 

45 



Master's Thesis - H. AI-Daoud - lVIclVIaster - Computing and Software 

Thus, the corresponding value of the new objective function (5.2) is smaller than that 

of (5.1). Hence, the constructed solution is an optimal solution contradicting our 

original assumption and the proof is complete. 

The following theorem is a direct implication of the lelmna. 

Theorem 1 As the value of c is decreased, the Power-Aware LPAS turns machines 

off in descending order of {3j. Conversely, as the value of c is increased, the Power­

Aware LPAS turns machines on in ascending order of {3j. 

5.2.3 A New Scheduling Policy 

Introduction 

As a direct implication, we propose a Power-Aware policy that turns on and off 

machines in the order of {3j and we call this policy the ordered {3 policy. The ordered {3 

policy uses the following parameters: the window size (W S), the target waiting time 

(T¥Target) and the threshold (T). The window size determines the decision points. 

46 



Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

Policy c !::,. W 

the ordered (3 - 40.38 0.177 ± 0.33% 

Power-Aware LPAS >-* = 2.3360 40.93 0.167 ± 0.13% 

Pick-Mast-Efficient - 0.009 0.164 ± 0.10% 

FeFS - 0 0.163 ± 0.11% 

Table 5.4: Simulation Results 

After every H! S time units, the scheduler computes the average waiting time for the 

tasks that are executed during the interval. The parameters VVTarget and T detennine 

when a new machine should be added to those being employed or a working machine 

should be put in a low power state. A new machine is added to those employed when 

the average waiting time is above (1 - T)T¥Target and an additional machine is put 

in a low power state when the average waiting time is below (1 - 2T)WTarget, where 

o < T < 1. The machines to be added to those employed or to be put in a low power 

state are chosen according to the ordering of {3j, as explained earlier. 

The ordered {3 policy only requires knowledge of the ranking of the machines in 

terms of their power efficiencies. It does not require the task arrival or exec.ution rates 

of the machines, nor their power consumptions. This is extremely useful in systems 

where obtaining such information is difficult or there is a large degree of uncertainty. 

Simulation Results 

Consider a system that has the same execution rate and power consumption matri­

ces as the system mentioned in Section 5.2.1. We simulate this system under both 

constant and varying arrival rates. 

Under the constant arrival rate ct = [6.25 6 6.25 6], the results of the or­

dered {3 policy compared to other policies are given in Table 5.4. This table gives 

information about the average task waiting time Wand the improvement in energy 

saving with respect to the FCFS policy. Note that these results are taken under the 

following values for the parameters: WS = 25, T¥Target = 0.2 and T = 0.1. 

47 



Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

Policy c f::,. W 

the ordered (3 - 38.27 0.165 ± 0.36% 

Power-Aware LPAS ).* 41.59 0.172 ± 0.27% 

Pick -Most-Efficient - 0 0.175 ± 0.41% 

FCFS - 0 0.175 ± 0.43% 

Table 5.5: Simulation Results 

For the same varying arrival rate used in Section 5.2.1, the results of the ordered (J 

policy compared to other policies are given in Table 5.5. These results are taken under 

the following values for the parameters: TIVS = 250, TV Target = 0.2,0.15,0.2,0.15 and 

T = 0.25. The target average waiting time Wtarget is taken to be equal to the average 

waiting time lV in the Power-Aware LPAS at c = ),*. The results are taken compared 

to the FCFS policy. 

The results in Table 5.5 show significant energy saving achieved by the ordered 

(J policy. Also, the achieved amount of energy saving is comparable to that of the 

Power-Aware LPAS policy which requires knowledge of the arrival and execution rates 

as well as the machine power consumptions. 

5.2.4 Structured Systems Approximation 

Introduction 

In this section, we propose a technique for finding machine efficiencies (Jj in systems 

that are not exactly structured. We give two examples on how to do that. 

Method for Finding the Power Efficiency 

Consider a variation on the structured system above (see Section 5.2.1) such that 

ILi,j = "'/jIJ,i(1 + Ei) and Mi,j = (Jj!Li,j(1 + Ef), i = 1, ... , I, j = 1, ... , J. The 

inaccuracy levels Ei,j and d,j are sampled from the uniform distribution on [-0.5,0.5]. 

To find the machine power efficiencies ((Jj) in a system that is not exactly struc-

48 



Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

tured, the following procedure can be used. First, an approximation to the closest 

structured matrix to it is found by applying singular value decomposition (see Strang 

[34]). Singular value decomposition is a factorization of an m x n matrix in the form 

USVT where U is an m-by-m unitary matrix, S is an m-by-n diagonal matrix with 

non-negative real numbers on the diagonal, and V T (an n-by-n unitary matrix) is the 

conjugate transpose of V. 

Based on the Eckart-Young theorem [12], a matrix A can be approximated by a 

rank r matrix .A, where .A = U SVT , in which S is the same matrix as S except that 

it contains only the r largest singular values (the other singular values are replaced 

by zeros). By using this theorem, the execution rate matrix it can be approximated 

by a rank 1 matrix iJ,. The resulting matrix iJ, is the closest structured matrix to p. 

The machine power efficiencies can then be found using linear regression (see 

Autar and Kalu [22]). (3j is set to the slope of the straight line t.hat. best fit.s t.he dat.a 

points (iJ,i,j, Mi,j) , i = 1, ... ,I. Several linear regression met.hods exist. The simplest. 

method is t.he ordinary least. squares method which minimizes t.he sum of squared 

residuals [22]. 

Examples and Simulation Results 

Consider t.he st.ructured syst.em discussed in Section (5.2.1) where: 

10 1 0.2 4 3 6 5 13 3.1 1.3 32.8 35.1 81.6 87 

20 2 0.4 8 6 12 10 26 6.2 2.6 65.6 70.2 163.2 174 
it= andM= 

50 5 1 20 15 30 25 65 15.5 6.5 164 175.5 408 435 

30 3 0.6 12 9 18 15 39 9.3 3.9 98.4 105.3 244.8 261 

Eacll silnlllatioll experilnellt is repeatec:l 30 tinles. Each table of results shows the 

average waiting time and the percentage of energy saving for t.he ordered fJ policy 

compared t.o the FCFS policy at t.hree different. inaccuracy levels (5%, 10% and 50%). 

For t.he average waiting time, we also give the accuracy of t.he confidence int.erval. We 

generate 30 matrices at. every inaccuracy level for iti,j. 

We give a couple of examples. In each one, we generate a execution rat.e matrix it 

49 



lVIaster's Thesis - H. AI-Daoud - MclVIaster - Computing and Software 

and a corresponding power matrix under a certain inaccuracy level. Then, we show 

how to find the values of {3j for the non-exact structured system. Then, we show the 

energy saving that can be achieved by applying the ordered {3 policy and compare 

it to both Power-Aware LPAS and the FCFS policies in terms of performance and 

energy saving. 

In the first example, we generate a system with 50 percent inaccuracy using the 

structured system: 

JL= 

lVI = 

14.6049 0.5169 0.2881 5.6078 1.7936 6.1267 2.9235 

25.9080 2.7378 0.2383 11.0422 3.0360 8.4241 9.7264 

57.2116 7.1698 0.5984 21.4180 15.1137 34.7831 34.8229 

37.0726 3.5678 0.7856 8.8849 11.3716 22.8371 15.6354 

18.9864 1.6025 1.8726 45.9843 20.9853 83.3236 50.8690 

33.6805 8.4872 1.5490 90.5458 35.5216 114.5683 169.2392 

74.3750 22.2265 3.8898 175.6273 176.8308 473.0501 605.9181 

48.1944 11.0600 5.1064 72.8562 133.0481 310.5845 272.0560 

B = [3 1 0.5 3 3 3 

a = [5.5 5 5.5 5]. 

By applying the singular value decomposition, we get the following matrices: 

-0.1653 -0.4784 0.2661 -0.8203 

-0.3046 -0.8063 -0.1926 0.4691 
u= 

-0.8036 0.3147 -0.4738 -0.1754 

-0.4839 0.1483 0.8171 0.2761 

99.6771 0 0 0 0 0 0 

o o 0 0 0 0 0 

o 000 000 

o 000 000 

50 



Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

Policy c D. W 

the ordered (3 - 77.78 0.229 ± 0.78% 

Power-Aware LPAS midpoint=1.47925 74.07 0.217 ± 0.60% 

FeFS - 0 0.182 ± 0.14% 

Table 5.6: Results of Experiment 1. 

-0.7446 -0.4919 0.2950 0.2585 -0.1513 -0.0089 0.1638 

-0.0843 0.0372 -0.1236 0.4057 -0.0974 0.4846 -0.7532 

V = -0.0098 -0.0028 0.0552 -0.0087 -0.3308 -0.8056 -0.4882 

-0.2588 -0.3968 -0.4994 -0.4992 0.4512 -0.0479 -0.2667 

-0.1893 0.3528 0.2868 0.3049 0.7727 -0.2401 -0.0986 
The closest rank 1 matrix to fJ, is: 

12.2685 1.3890 0.1615 4.2642 3.1190 7.0388 6.4457 

22.6073 2.5595 0.2975 7.8576 5.7475 12.9705 11.8775 

59.6428 6.7525 0.7850 20.7300 15.1630 34.2189 31.3353 

35.9148 4.0661 0.4727 12.4829 9.1306 20.6055 18.8690 

Applying linear regression, we obtain the following values for /3: /31= 1.3, /32 = 

3.1, /33 = 6.5, /34 = 8.2, /35= 11.7, /36= 13.6 and /37= 17.4. 

Then, we apply the ordered /3 policy and compare it to the Power-Aware LPAS 

policy and the FCFS policy. The results of the simulation are shown in Table 5.6. 

Note that the ordered /3 policy has the following parameters: the window size = 100, 

the desired waiting time = 0.3 and the threshold = 0.1. The results show that the 

energy saving achieved by the ordered /3 policy is comparable to that achieved by the 

Power-A ware LP AS policy. 

In the secolld example, we generate a system with 10 percent inaccuracy using 

the following structured system: 

10.9210 0.9034 0.2176 4.3216 2.7587 6.0253 4.5847 

21.1816 2.1476 0.3677 8.6084 5.4072 11.2848 9.9453 
fJ,= 

51.4423 5.4340 0.9197 20.2836 15.0227 30.9566 26.9646 

31.4145 3.1136 0.6371 11.3770 9.4743 18.9674 15.1271 

51 



Master's Thesis - H. AI-Daoud - lVIcMaster - Computing and Software 

lVI = 

14.1973 2.8005 1.4145 35.4369 32.2771 81.9447 79.7738 

27.5361 6.6574 2.3898 70.5892 63.2643 153.4737 173.0478 

66.8750 16.8453 5.9780 166.3255 175.7662 421.0100 469.1836 

40.8389 9.6520 4.1413 93.2912 110.8496 257.9569 263.2112 

B = [3 1 0.5 3 3 3 3], 

a = [5.5 5 5.5 5]. 

By applying singular value decomposition, we get the following matrices: 

-0.1614 -0.4777 0.2645 -0.8221 

-0.3167 -0.8030 -0.1919 0.4670 
u= 

-0.8013 0.3228 -0.4699 -0.1814 

-0.4813 0.1511 0.8200 0.2705 

88.2353 0 0 0 0 0 0 

o o 0 0 0 0 0 
s= 

o 0 0 0 000 

o 0 0 0 000 

-0.7345 -0.4894 0.2891 0.2697 -0.1807 0.0044 0.1791 

-0.0757 0.0387 -0.1233 0.4087 -0.1316 0.4559 -0.7651 

-0.0135 -0.0034 0.0548 -0.0061 -0.3237 -0.8304 -0.4500 

V = -0.2851 -0.3987 -0.5054 -0.4763 0.4481 -0.0507 -0.2722 

-0.2126 0.3496 0.2843 0.3301 0.7629 -0.2265 -0.0970 

-0.4361 0.5175 0.3071 -0.5968 -0.1799 0.1853 -0.1577 

-0.3715 0.4583 -0.6839 0.2611 -0.1733 -0.1204 0.2677 
The closest rank 1 matrix to f1- is: 

10.4601 1.0781 0.1923 4.0602 3.0277 6.2106 5.2906 

20.5250 2.1154 0.3772 7.9669 5.9409 12.1864 10.3812 

51.9313 5.3522 0.9545 20.1574 15.0314 30.8336 26.2661 

31.1925 3.2148 0.5733 12.1075 9.0286 18.5201 15.7767 
Applying a linear regression, we obtain the following values for B: f31 = 1.3, f32 = 

3.1, f33 = 6.5, f34 = 8.2, f35 = 11.7, f36 = 13.6 and f37 = 17.4. 

52 



_I 

1 

Master's Thesis - H. AI-Daoud - McMaster - Computing and Software 

Policy c !::,. W 

the ordered (3 midpoint=1.2612 66.94 0.387 ± 2.26% 

Power-Aware LPAS - 73.76 0.372 ± 1.23% 

FCFS - 0 0.172±0.11% 

Table 5.7: Results of Experiment 2. 

Policy c !::,. W 

the ordered (3 - 9.88 0.049 ± 0.07% 

Power-Aware LPAS 1.3580 5.63 0.047 ± 0.17% 

Pick-the-most-efficient - 0 0.044 ± 0.07% 

FCFS - 0 0.044 ± 0.07% 

Table 5.8: Simulation Results 

In tllis example, the ordered (3 policy is simulated under the following parameters: 

the window size = 50, the desired waiting time = 0.35 and the threshold = 0.1. The 

results presented in Table 5.7 shows that energy saving achieved by the ordered (3 

policy is comparable to that achieved by the Power-Aware LPAS policy. 

The second case of the realistic system (the more homogeneous case) (see Sec­

tion 4.3.5) is also a non-exact structured system. By doing the singular value decom­

position, we get the same values for (3j as in the model description. Table 5.8 shows 

the results of the ordered (3 policy under the following values for the parameters: ltV S 

= 0.001, Wtarget = 0.04 and T = 0.25. Note that the target average waiting time 

lVtarget in the ordered (3 policy is taken to be equal to the average waiting time Till in 

the Power-Aware LPAS policy at c = 1.3580. 

5.3 Summary 

In this chapter, we suggested an energy saving policy for structured systems that 

does not require knowledge of the arrival or execution rates. This policy only requires 

knowledge of the relative machine power efficicncies. We also described a mcthod for 

53 



1\IIaster's Thesis - H. AI-Daoud - McMaster - Computing and Software 

finding the machine power efficiencies in such cases where the system is not exactly 

structured. The results of the experiments show that the energy saving that can 

be achieved by the ordered (3 policy is comparable to that achieved by applying the 

Power-Aware LPAS (which requires knowledge of the arrival rates). 

54 



Master's Thesis - H. AI-Daoud - lVIcMaster - Computing and Software 

Chapter 6 

Conclusion 

This thesis addressed the important problem of power saving in both homogeneous 

and heterogeneous clusters. Our main contribution is the proposition of R, new power­

aware scheduling policy for heterogeneous clusters. This policy seeks to provide sig­

nificant energy saving by solving two allocation LPs. The first LP is solved to find the 

maximum system capacity, while the second is solved to find an optimal allocation 

of machines to minimize the energy consumption. Our simulation results demon­

strate that significant energy saving can be achieved compmed to other policicl-l. For 

structured systems, we also suggest a policy which only requires the machine power 

efficiencies and results in competitive energy saving and performance. As future work, 

we plan to implement the proposed policies on a real heterogeneous cluster in order 

to validate the simulation results. 

One limitation of using linear programming in scheduling is scalability. Solving 

LPs for a large system may incur significant delay which can impact the performance 

of the Power-Aware LPAS policy. Also, in highly dynamic systems, the parameters 

may change very frequently causing performance degradation due to the overhead and 

delays of solving the LPs. In such cases, it is recommended to use other scheduling 

policies including the ordered (3 policy for structured systems. 

Another aspect of the Power-Aware LPAS policy which requires further study is 

55 



Master's Thesis - H. AI-Daoud - MclVlaster - Computing and Software 

robustness. Robustness can be defined as the degree to which a system can function 

correctly in the presence of parameter values different from those assumed (Ali et 

al. [5]). As observed in [2], the solution to the allocation LP is inherently robust and 

thus we expect the Power-Aware LPAS policy to be robust. 

56 



Bibliography 

[1] 1. AI-Azzoni and D. G. Down. Dynamic scheduling for heterogeneous Desktop 

Grids. In Proceedings of the 9th International Conference on Grid Computing, 

pages 136-143, 2008. 

[2] 1. AI-Azzoni and D. G. Down. Linear programming-based affinity scheduling 

of independent tasks on heterogeneous computing systems. 19(12):1671-1682, 

2008. 

[3] H. AI-Daoud, 1. AI-Azzoni, and D. G. Down. Power-Aware Linear Programming 

Based Scheduling for heterogeneous computer clusters, submitted for publication, 

2010. 

[4] H. AI-Daoud, 1. AI-Azzoni, and D. G. Down. Power-Aware Linear Programming 

Based Scheduling for heterogeneous computer clusters. In Proceedings of the 

Workshop in Progress in Green Computing Workshop, 2010. 

[5] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim. Measuring the robustness 

of a resource allocation. IEEE Transactions on Parallel and Distributed Systems, 

15(7):630-641, 2004. 

[6] C. AnglaIlo, J. Brevik, M. Canonico, D. Nurmi, and R. Wolski. Fault-aware 

scheduling for Bag-of-Tasks applications on Desktop Grids. In Proceedings of the 

7th International Conference on Grid Computing, pages 56-63, 2006. 

57 



[7] R. Armstrong. Investigation of effect of different run-time distributions on Smart­

Net performance. Master's thesis, Naval Postgraduate School, 1997. 

[8] R. Bianchini and R. Rajamony. Power and energy management for server sys­

tems. Computer, 37(11):68-74, 2004. 

[9] H. Casanova, D. Zagorodnov, F. Berman, and A. Legrand. Heuristics for schedul­

ing parameter sweep applications in grid environments. In Proceedings of the 9th 

Heterogeneous Computing Workshop, pages 349-363, 2000. 

[10] J. S. Chase and R. P. Doyle. Balance of power: Energy management for server 

clusters. In Proceedings of the 8th Workshop on Hot Topics in Operating Systems 

(Hot OS), 2001. 

[11] P. Domingues, P. :Marques, and L. Silva. DGSchedSim: A trace-driven simulator 

to evaluate scheduling algorithms for desktop grid environments. In Proceedings 

of the 14th Euromicro International Conference on Parallel, Distributed, and 

Network-Based Processing, pages 83-90, 2006. 

[12] C. Eckart and G. Young. The approximation of one matrix by another of lower 

rank. Psychometrika, 1(3):211-218, 1936. 

[13] E. X. Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient server clusters. 

In Proceedings of the Second International Workshop of Power-Aware Computer 

Systems, pages 179-196, 2002. 

[14] lV1. Elnozahy, M. Kistler, and R. Rajamony. Energy conservation policies for web 

servers. In Proceedings of the 4th conference on USENIX Symposium on Internet 

Technologies and Systems, pages 8-8. USENIX Association, 2003. 

[15] K. Govil, E. Chan, and H. Wasserman. Comparing algorithm for dynamic speed­

setting of a low-power CPU. In Proceedings of the Conference on Mobile Com­

puting and Networking, pages 13-25, 1995. 

58 



[16J D. Gross and C. M. Harris. Fundamentals of queueing theory (2nd ed.). John 

Wiley & Sons, Inc., 1985. 

[17J R. Guerra, J. Leite, and G. Fohler. Attaining soft real-time constraint and 

energy-efficiency in web servers. In Proceedings of the 2008 A CM Symposium on 

Applied Computing, pages 2085-2089, 2008. 

[18J Y.-T. He. Exploiting Limited Customer Choice and Server Flexibility. PhD thesis, 

McMaster University, 2007. 

[19J T. Heath, B. Diniz, E. V. Carrera, W. lVI. Jr., and R. Bianchini. Energy con­

servation in heterogeneous server clusters. In Proceedings of the Symposium on 

Principles and Practice of Parallel Programming, pages 186-195, 2005. 

[20J A. Iosup, O. Sonmez, S. Anoep, and D. Epema. The performance of bags-of­

tasks in large-scale distributed systems. In Proceedings of the 17th International 

Symposium on High Performance Distributed Computing, pages 97-108, 2008. 

[21J O. B. Jennings, A. Mandelbaum, 'IN. A. lVIassey, and W. Whitt. Server staffing 

to meet time-varying demand. 42(10):1381-1394, 1996. 

[22J A. Kaw and E. Kalu. Numerical Methods with Applications. 2008. 

[23J D. Kondo, A. A. Chien, and H. Casanova. Resource management for rapid appli­

cation turnaround on enterprise desktop grids. In Proceedings of the Conference 

on Supercomputing, 2004. 

[24J L. Kontothanassis and D. Goddeau. Profile driven scheduling for a heterogeneous 

server cluster. In Proceedings of the 34th International Conference on Parallel 

Processing Workshops, pages 336-345, 2005. 

[25J 1. Legrand, H. Newman, R. Voicu, C. Cirstoiu, C. Grigoras, M. Toarta, and 

C. Dobre. MonALISA: an agent based, dynamic service system to monitor, 

59 



control and optimize grid based applications. In Proceedings of the International 

Conference on Computing in High Energy and Nuclear Physics, 2004. 

[26] H. Li and R. Buyya. Model-driven simulation of grid scheduling strategies. In 

Proceedings of the 3rd International Conference on e-Science and Grid Comput­

ing, pages 287-294, 2007. 

[27] C.-H. Lien, Y.-VV. Bai, lVI.-B. Lin, and P.-A. Chen. The saving of energy in web 

server clusters by utilizing dynamic server management. In Proceedings of the 

12th IEEE International Conference on Networks, pages 253-257, 2004. 

[28] T. Mudge. Power: A first class design constraint. Computer, 34:52-57, 2000. 

[29] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Dynamic cluster recon­

figuration for power and performance. In Compilers and Operating Systems for 

Low Power, pages 75-93. Kluwer Academic Publishers, 2003. 

[30] K. Rajamani and C. Lefurgy. On evaluating request-distribution schemes for 

saving energy in server clusters. In Proceedings of the 2003 IEEE International 

Symposium on Performance Analysis of Systems and Software, pages 111-122, 

2003. 

[31] 1. Rao and E.-N. Huh. A probabilistic and adaptive scheduling algorithm using 

system-generated predictions for inter-grid resource sharing. Journal of Super­

computing, 45(2):185-204, 2008. 

[32] C. Rusu, A. Ferreira, C. Scordino, and A. Watson. Energy-efficient real-time 

heterogeneous server clusters. In Proceedings of the Real- Time and Embedded 

Technology and Applications Symposium, pages 418-428, 2006. 

[33] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu. Power-aware 

QoS management in web servers. In Proceedings of the 24th IEEE International 

Real-Time Systems Symposium, pages 63-72, 2003. 

60 



[34] G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 2009. 

[35] R. Wolski, N. T. Spring, and J. Hayes. The network weather service: a distributed 

resource performance forecasting service for metacomputing. Future Generation 

Computer Systems, 15(5-6):757-768, 1999. 

61 



12066 08 


