
USING SUFFIX ARRAYS FOR LEMPEL-ZIV DATA

COMPRESSION

USING SUFFIX ARRAYS FOR LEMPEL-ZIV DATA

COMPRESSION

BY

ANISA AL-HAFIDH, B.Sc.

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

AT

MCMASTER UNIVERSITY

HAMILTON, ONTARIO, CANADA

AUGUST, 2009

© Copyright by Anisa AI-Hafidh, 2009

MCMASTER UNIVERSITY

Date: August, 2009

Author: Anisa AI-Hafidh

Title: Using Suffix Arrays for Lempel-Ziv Data

Compression

Supervisor: Dr. William F. Smyth

Department: Computing and Software

Degree: M.Sc. Convocation: Nov Year: 2009

Permission is herewith granted to McMaster University to circulate and
to have copied for non-commercial purposes, at its discretion, the above title
upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS , AND
NEITHER THE THESIS NOR EXTE SIVE EXTRACTS FROM IT MAY
BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR'S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE
IS CLEARLY ACKNOWLEDGED.

11

To Our Beloved Prophet

Muhammad

Peace Be Upon Him

Abstract

In the 1970s, Abraham Lempel and Jacob Ziv developed the first dictionary-based

compression methods (LZ77 and LZ78). Their ideas have been a wellspring of

inspiration to many researchers , who generalized, improved and combined them with

run-length encoding (RLE) and statistical methods to form many commonly used

lossless compression methods for text , image and sounds.

The proposed methods factor a string x into substrings (factors) in such a way as

to facilitate encoding the string into a compressed form (lossless text compression).

This LZ factorization , as it is commonly called today, became a fundamental data

structure in string processing, especially valuable for string compression. Recently, it

found applications in computing various "regularities" in strings.

The main principle of LZ methods is to use a portion of the previously seen input

string as the dictionary. LZ77 and LZ78 encoders differ in two aspects . The first

aspect is that LZ77 uses a sliding window unlike LZ78 which uses the entire string for

building the dictionary. The use of a sliding window in LZ77 makes its decoder much

simpler and faster than the LZ78 decoder. This implies that LZ77 is valuable in

cases where a file is compressed once (or just a few times) and is decompressed often.

A rarely used archive of compressed files is a superb example. The other aspect is the

format of the codewords. LZ77 codewords consist of three parts: position, length

and first non-matching symbol , while LZ78 removes the need for the length of the

match in the codeword since it is implied in the dictionary.

A whole family of algorithms has stemmed out of the original LZ algorithms (LZ77

and LZ78). This was a result of an effort to improve upon the LZ encoding algorithm

III

in terms of speed and compression ratio. Some of these variants involved the use of

sophisticated data structures (e.g. suffix trees, binary search trees , etc) to hold the

dictionary in order to boost the search time. The problem with such data structures

is that the amount of memory required is variable and cannot be known in advance.

Furthermore, some of these data structures require a substantial amount of memory.

LZ is the basis of the gzip (Unix) , winzip and pkzip compression techniques.

In the testing for [1], we scaled up an LZSS implementation due to Haruhiko

Okumura [37] so as to be useful for regularities (N = n , the length of the whole

input string, and F equal to the full length of the unfactored suffix). vVe found that

the binary tree approach becomes uncompetitive with algorit hms that use the suffix

array (SA) approach for the LZ factorization of the whole string. This observation

triggered us to scale down the SA approach.

The main contribution of this thesis is a novel LZ77 variant (LZAS) that uses a

suffix array (SA) to perform the searches. The SA is augmented with a very simple

and efficient algorithm that alternates between searching left and right in SA to find

the longest match. Suffix arrays have gained the attention of researchers in recent

years due to their simplicity and low memory requirements . They solve the sub-string

problem as efficiently as suffix trees, using less memory. One notable advantage of

using SA in an LZ encoder is that the amount of memory is independent of the

text to be searched and can be defined a priori. The low and predictable memory

requirement of this approach makes it suitable for memory-critical applications such

as embedded systems. Moreover, our experiments show that the processing time per

letter is almost stable and hence we can predict the processing time for a file given

its size. Our proposed algorithm can additionally be used for forward/ backward sub­

string search.

In this thesis we investigate three variants of the LZAS algorithm. The first

two of these variants (i.e. LZAS1 and LZAS2) use a dynamic suffix array DSA . DSA

is a suffix array that can be updated whenever a letter or a factor is edited (i.e.

deleted/ inserted/substituted by another letter or factor) in the original string. The

IV

suffix array of a sliding window changes whenever t he window slides. Hence, we use

t he DSA to make sure t hat t he suffix array is up to date. T he DSA can be com­

pressed using a sampling technique; therefore we decided to experiment with both

sampled and non-sampled DSA. The third variant (i. e. LZAS3) re-computes t he suffix

array instead of updating it . We use an implementation of a suffix array construction

algorit hm (SACA) t hat requires supralinear time [28] but performs well in practice.

vVe t ested these variants against each other in terms of time and space. vVe further

experimented with various window sizes and noticed t hat re-computing SA becomes

better than updating it using DSA when the window size is small (i .e. hundreds of

bytes compared to t housands of bytes).

v

Acknowledgements

He who does not thank people is not grateful to God.

Prophet Muhammad (pbuh)

lIIost of all , I would like to thank my supervisor Bill Smyth. Thanks for the op­

portunity to become your student and get the chance to join McMaster. Thanks for

your patience, support and guidance. Thanks for your kind words when I needed

them and your criticisms when I needed them. Thanks for your encouraging words

and reminding me of what I am capable of. 'Without you this thesis won 't be here

today.

I would like also to thank my thesis committee Mark Lawford and Jeffery Zucker.

Thanks for accepting to serve on the committee on such a short notice and for your

helpful comments. You were such a great committee.

I wish to extend my gratitude to everyone who helped me with providing informa­

tion and answering my questions. Thanks to Mikael Salson and Laurent Mouchard

for providing me with their papers and code even before the papers were published.

Thanks for always taking the time to answer my questions and discuss your work. I

would like also to thank Simon Puglisi for taking the time to answer my questions

about suffix arrays and their construction.

VI

I must acknowledge as well my colleagues at McMaster. Shu \Nang and Munira

Yusufu, thanks for answering my questions about your experiences in string algo­

rithms and providing me with information when I need it. Evgenia Kopylov , thanks

for answering my questions about your testing and experience with Okuruma's code

for LZSS. Hadeel Al-Dauod and Tahani Al-Mabruk, thanks for your sisterhood that

helped me through periods of homesickness, you have been such a great companion.

I would like also to thank my best friend Fatima Al-Raisi for sharing her past

experience through her Masters study in US and replying my emails when I needed

her support and advice through tough times. Fatima, I can not imagine how my life

would be without you, you are such a great friend.

I will always be indebted to my family, without them I wouldn't be where I am

today. Father , thanks for believing in me and supporting me emotionally and finan­

cially; I assure you, you will never regret it. Mother , thanks for being patient and

providing me with strength while we are miles away. My brothers Ali and Omar,

thanks for your company and for sacrificing your time to come with me to Canada

to pursue my dream. I will always be indebted to you and won't be able to pay you

back whatever I do.

Finally, all praise and gratitude is due to God the Exalted.

Vll

Table of Contents

Abstract

Acknowledgements

Table of Contents

List of Tables

List of Figures

1 Introduction
l.1 Background
l.2 Applications
l.3 The New Algorithms
l.4 Thesis Outline .

2 Preliminaries
2.1 Basic Definitions

2.1.1 Alphabets and Strings
2.l.2 Lempel-Ziv Factorization LZ .

2.2 Fundamental Data Structures . .
2.2.1 Suffix Array SA
2.2.2 Inverse Suffix Array (ISA) ..
2.2.3 Longest Common Prefix (LCP) Array
2.2.4 Burrows-'Wheeler Transform BvVT

2.3 Algorithms
2.3.1 Preliminaries .
2.3.2 Updating BWT
2.3.3 Updating SA .

Vlll

111

VI

V111

x

XI

1
4
7
8

11

12
12
12
15
16
16
17
17
18
20
20
22
26

2.3.4 Sampling 29
2.3.5 Space and Time Complexity 32

3 LZ Compression 34
3.1 LZ77 34
3.2 LZ78 38

4 New Algorithm 42
4.1 The Core Idea . 42
4.2 The Search Algorithm 44
4.3 Update or Recompute? 49
4.4 Is there a better way to update SA? . 50

5 Experiments 57
5.1 Implementation 57
5.2 Platform. 58
5.3 Timing 59
5.4 Test Data ... 59
5.5 Discussion of Test Results 59

6 Conclusion and Future Work 68

Bibliography 70

lX

List of Tables

2.1 Sampling vs. Non-sampling: Time and space complexity 32

2.2 Time and space complexity for various operations and structures used

for updating SA .. 33

3.1 First 32 steps in LZ78 40

5.1 Description of test data. 60

5.2 Runtime in microseconds/letter for LZAS1 , LZAS2 , LZAS3 and LZSS 61

5.3 Average runtime in microseconds/ letter for LZAS1 , LZAS2 , LZAS3

over various window sizes. .. 61

x

List of Figures

1.1 Example to illustrate the sliding window in LZ77 2

2.1 Prefixes and suffixes of x = abaabaab 13

2.2 SA and LCP arrays of x = abaabaab 16

2.3 The conceptual matrix M and BvVT=bbbaa$aaa (column L) 19

2.4 LF function . 21

2.5 The impact of inserting a letter c at position 5 in x on the matrix M 23

2.6 All possible locations of c in x,b] after its insertion at position i 24

2.7 Stages (Ia) , (Ib) and (IIa) of updating BWT 25

2.8 Stage (IIb) of updating BWT 25

2.9 REORDER used in stage (IIb) 26

2.10 Stages (Ia) , (Ib) and (IIa) of updating SA and ISA 28

2.11 Stage (IIb) of updating SA and ISA 28

2.12 Retrieving a value for a sampled position ISA[5] 30

3.1 Example to illustrate LZ77 36

3.2 Pseudocode of LZ77 37

3.3 Pseudocode of LZ78 39

3.4 An LZ78 Dictionary Tree 39

4.1 Pseudocode of LZAS . . . 43

4.2 SA Search algorithm: Compute longest previous factor given SA, I SA

and LCP .. 45

Xl

4.3 Example to illustrate the search algorithm

4.4 SA/ ISA/ LCP arrays for x = abaabaab . .

4.5 Various states of the search algorithm executed for x = abaabaab with

47

48

i = 6 . 49

4.6 The effect of deleting a prefix p = aba from x = abaabaab on SA 51

4.7 Step 1 of updating t he suffix array after the adding a suffix s = baa to

x' = abaab 54

4.8 Step 2 of updating t he suffix array aft er the adding a suffix s = baa to

x' = abaab 56

5.1 Time vs. 'Window Size For LZAS1 . 64

5.2 Time vs. Window Size For LZAS2 . 65

5.3 Time vs. Window Size For LZAS3 . 66

5.4 A verage Time vs. Window Size For LZAS variants 67

XlI

~

I Chapter 1

Introduction

LZ77 and LZ78 compression [47, 48] started a novel category of compression methods:

dictionary-based compression. The ideas of LZ77 and LZ78 have been a wellspring of

inspiration to many researchers. This led to whole a family of variants that stemmed

out of the original LZ algorithms (LZ77 and LZ78) .

The proposed methods factor a string x into substrings (factors) in such a way as

to facilitate encoding the string into a compressed form (lossless text compression) .

This LZ factorization, as it is commonly called today, became a fundamental data

structure in string processing, especially valuable for string compression.

The main principle of LZ methods is to use a portion of the previously seen input

string as the dictionary. vVe will describe briefly t his principle in the context of a

sliding window which is used in LZ77 but not in LZ78 . For more details on LZ77 and

LZ78 see Chapter 3.

LZ77 operates not on the string as a whole, but only on a sliding window of length

1

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

N. The window is divided into two parts (see Fig. l.1):

l. A search buffer which contains input that has already been encoded.

2. A lookahead buffer of length F , an as-yet-unencoded suffix.

search buffer lookahead buffer

~ text already encoded .

window slides by the length of the
longest match Ibbal

. ~text yet to be input

search buffer lookahead buffer

~ text alre ady encoded ~text yet to be input

Figure l.1: Example to illustrate the sliding window in LZ77

The encoder maintains t he window and shifts it from left to right as strings of symbols

are being encoded. It scans the search buffer looking for t he longest match to a

prefix of t he lookahead buffer. Once a match is determined, the encoder outputs a

codeword and shifts the window to the right by the length of the match . In practical

implementations the search buffer is usually some t housands of bytes long, while t he

2

M. Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

lookahead buffer is only t ens of bytes long. It has been found that in practice the use

of the sliding window provides compression as good as using the entire string would

yield, and of course processing time is substantially reduced.

LZ77 has many variants that improved upon the original version. LZSS is the first

and most prominent amongst them. It was developed by Storer and Szymanski in

1982 [43J. Bell [3J improved LZSS by using a binary search tree to hold the dictio­

nary. Another improvement comes from the observation that using a large tree with

N - F strings in it would lead to an expected tree height of log(N) , hence log(N)

comparisons, assuming the tree was balanced. A direct way to reduce that mau-ximum

height is to use 256 different trees , one for every possible init ial character. Some

implementations use N trees , choosing them by hashing on the first three characters.

Hence, one can decide which trees to search using the first three characters of t he

lookahead buffer and the hashing function.

In the testing for [1 J, we scaled up an LZSS implementation due to Haruhiko

Okumura so as to be useful for regularities (N = n , the length of the whole input

string, and F equal to the full length of t he unfactored suffix) . vVe found that t he

binary tree approach becomes uncompetit ive wit h algorit hms t hat use the suffix array

(SA) approach for the LZ factorization of the whole string. This observation triggered

us to scale down the SA approach.

The key idea is to replace the binary search t ree (or any other type of tree) by

3

M.Sc. Thesis - Anisa A l-Hafidh McMaster University - Computing & Software

the suffix array. The search is done using a simple elegant algorit hm that performs

a left/right search of t he suffix array to obtain the longest match (for t he lookahead

buffer in the search buffer). Another advantage of such a method is that the memory

is fixed and independent of t he string length.

1.1 Background

Data Compression algorithms exploit characteristics such as repeating substrings

(patterns) to make the compressed data smaller than the original data. Lossless

compression algorithms - as opposed to "lossy" compression algorithms - ensure

that the original information can be accurately reproduced from the compressed data.

vVell-known lossless compression techniques include:

• Run-length encoding (RLE) which basically replaces n consecutive occurrences

of item d by the single pair nd,

• statistical techniques such as Huffman coding and predication by partial match-

ing (PPM) , and

• dictionary coders.

The Lempel-Ziv algorithms belong to the last category.

Dictionary coding techniques rely upon the observation t hat there are correla­

tions between parts of data (recurring patterns). The basic idea is to replace those

4

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

repetitions by (shorter) references to a "dictionary" . The dictionary holds strings

of symbols from the original data, and it can be static or dynamic (adapt ive). The

former is permanent, sometimes allowing the addit ion but no deletions, whereas the

latter holds strings previously found in the input stream allowing for additions and

deletions of strings as new input is being read. Thus, we can divide the dictionary

coders further according to the nature of the dictionary in the following categories:

• static dictionary coders,

• semi-adaptive dictionary coders , and

• adaptive dictionary coders.

Most of the Lempel-Ziv algorithms belong to the third of the above cat egories. The

dictionary is built in a single pass, while at the same time the dat a is encoded. It

is not necessary to explicitly transmit /store the dictionary because the decoder can

build up the dictionary in a way similar to the encoder .

In general, an adaptive dictionary-based method is preferable. It can start with

an empty dictionary or with a small , default dictionary: add ent ries to it as they are

found in the input stream, and delete old entries since a large dictionary means slow

search. We can visualize an adaptive dict ionary-based method as a loop where each

iteration:

• st arts by reading the input st ream, and

5

M.Sc. Thesis - Anisa Al-Hafidh MclVlaster University - Computing & Software 6

• breaks it up (parses it) into words or phrases,

• then searches the dictionary for each word or phrase;

4

I • if a match is found , writes a token in the output stream.

• Otherwise, the uncompressed word should be written and also added to the

dictionary.

• Finally, it checks to see whether an old entry should be deleted from the dictio-

nary.

This may seem complicated , but it has two important features that differentiate

it from other compression techniques:

1. It involves string search and match operations, rather than numerical compu-

tations.

2. The decoder is simple. In statistical compression methods, the decoder is

the exact opposite of the encoder (symmetric compression). In an adaptive

dictionary-based method , however , the decoder has to read its input stream,

determine whether the current item is a token or uncompressed data, use to-

kens to acquire data from the dictionary, and output the final , uncompressed

data. It does not have to parse the input stream in a complex way, and it does

not have to search the dictionary to find matches.

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

1.2 Applications

LZ factorization has recently found application in the computation of various "reg­

ularities" in strings: repetitions [6], runs (maximal periodicities) [20, 2, 10, 11 , 7, 8],

repeats with fixed gap [21], branching repeats [42], sequence alignments [9], and lo­

cal periods [15]. For these applications, the LZ factorization of the entire string,

not merely a window, is required. However , we are interested here in the original

application of LZ in data compression.

vVe seem to be preprogrammed with the idea of sending as little data as we can to

save time. We normally tend to accumulate data and hate to throw anything away.

Over time, this can lead to an overflow no matter how large our storage device is.

Time is also an issue for us. We hate to wait for a large file to download or a web

page to be displayed on our screen; anything longer than a few seconds is usually

a long time to wait . Hence, compression is useful as it reduces the consumption of

expensive resources such as hard disk space or transmission time.

Data compression is the process of encoding data using fewer bits than the actual

unencoded data. A compression scheme is either loss less or lossy. Lossless compres­

sion schemes- as opposed to "lossy" compression schemes- ensure that the original

information can be accurately reproduced from the compressed data. LZ compres­

sion is a loss less compression scheme. Therefore, in what follows we will mention

applications related to lossless compression.

7

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Comp u ting & Software

Optimizing disk space or bandwidth of a network is usually done with loss less data

compression. Also, in compressing files that contain symbols such as spreadsheets,

texts , executable program, etc., losslessness is important as changing even a single

bit cannot be tolerated.

Modern modems contain hardware that automatically compresses data as they

send it. If the data is already compressed, there will not be any farther compression.

As there might be expansion sometimes, the modem should be able to monitor the

compression ratio "on the fly" and, if it is low, it should stop compressing and send

the rest of the data uncompressed. An example of this technique is V.42bis protocol.

V.42bis protocol uses the LZW variant (a famous LZ78 variant) when operating in

"compressed" mode.

Most graphics file formats use some kind of compression. GlF (the graphics

interchange format) was developed by Compuserve Information Services in 1987 as an

efficient, compressed graphics file format , which allows for images to be sent between

different computers. It uses a variant of LZW to compress the graphics data.

1.3 The New Algorithms

As we mentioned before , the experiment of scaling up an implementation of LZSS ,

due to Haruhiko Okumura [37], triggered the idea of scaling down the SA-based LZ

algorithms. Okumura implementation's uses 256 binary search trees to achieve fast

searches. Most LZ77 variants use some sort of trees (i.e . suffix trees , binary search

8

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

trees, tries , etc) to speed up the encoding process.

We designed a novel LZ77 variant that makes use of the suffix array to perform

the search in the dictionary. The main idea is to replace the binary search tree (or

any other kind of t ree) by the suffix array. The search is done using a simple elegant

algorithm that performs a left / right search of the suffix array to obtain the longest

match in the search buffer for a prefix of the look-ahead buffer. Another advantage

of such a method is t hat the memory is fixed and independent of t he string length.

Notice that the suffix array needs to be updated wherever the window slides. In

this thesis we experiment with two solutions:

1. Use a dynamic suffix array DSA [27] which can be updated whenever characters

are added, delet ed or edited in the original string. DSA can be used in its

compact form (i. e. sampled SA) or non-compact (i.e. non-sampled SA) form.

vVe experiment with both forms.

2. Recompute the suffix array whenever the window slides. For test ing purposes,

we use a supralinear suffix array construction algorithm SACA but efficient

according to [28].

These two solutions give rise to three variants of the LZAS algorithm. The first two

of these variants (i .e. LZAS1 and LZAS2) use a dynamic suffix array DSA. The suffix

array of a sliding window changes whenever the window slides. Hence, we use the

DSA to make sure that t he suffix array is up to date . The DSA can be compressed

9

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

using a sampling technique. We decided to experiment with both sampled and non­

sampled DSA. The third variant (i .e. LZAS3) re-computes t he suffix array inst ead of

updating it. We tested these variants against each other in t erms of time and space.

'liVe further experimented with various window sizes and noticed that recomputing

SA becomes better than updating it using DSA when the window size is small (i. e.

hundreds of byt es compared to thousands of byt es).

We compared our results with Okumura's implementation of LZSS. It turns out

that our approach becomes uncompetitive to Okumura implementation. This might

be related to the fact that the binary search trees are more efficient for small strings

and hence work well for a sliding window approach ; while suffix arrays are more

efficient for long strings and hence work efficiently for a whole string. When scaling

up the window to accommodate the whole string, the binary search trees grow bigger

and become inefficient. The other reasoning is t hat we need to update the suffix array

whenever t he window slides and if the update was not efficient enough then this will

slow the whole algorithm as this is the most time consuming part of our algorithm.

DSA was designed for a general update in mind i.e. adding/deleting /substituting

a letter or a factor in the original string, regardless of the position. We think it is

possible to develop an algorithm that updates t he suffix array more efficiently for

cases of deleting a factor (prefix) at t he beginning of t he string and adding a factor

(suffix) at the end of t he string.

10

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

1.4 Thesis Outline

The reminder of this thesis consists of the following chapters. Chapter 2 prepares the

background required to make the reading process efficient. It provides the required

definitions and notation that are used throughout the thesis . Furthermore, data

structures that are used in our algorithms are described in this preliminary chapter.

vVe then give a very short chapter, Chapter 3, on LZ77 and LZ78 to enable the reader

to distinguish between the two schemes. Chapter 4 introduces our novel LZ77 variant

algorithm for data compression. vVe describe the algorithm in detail and its variants.

Moreover , we state an interesting lemma that we discovered while investigating the

process of updating the SA for a particular case (deleting a prefix and adding a suffix

to the original string). This observation was not considered in the algorithm of DSA.

vVe think this lemma can be used to develop a more efficient algorithm for updating

the suffix array for this particular case which would be useful for our context (i.e.

sliding window). Chapter 5 presents the results of experiments that compare the

algorithms against each other and against an existing LZ77 variant (LZSS). Finally,

Chapter 6 provides some concluding remarks and suggestions for improving this work.

11

Chapter 2

Preliminaries

2.1 Basic Definitions

In this section we give definitions and notation required for the reader to comprehend

the material presented in t his thesis. Most of these defini t ions come from [41] .

2.1.1 Alphabets and Strings

This thesis deals with linear strings. A linear string is a fin ite sequence of characters

called letters which are elements of a nonempty finite set I: called an alphabet. 'vVe

use ()" to denote the size of the alphabet 1 I: I. A string of length n is denoted by

x = x [Ln] = x [1]x [2] ... x [n], where x li] represents a character at position i for

i E L n .

'vVe use x [i .. j] to denote a substring of x starting at position i of length j - i + 1,

where 1 ::; i ::; j ::; n , i. e. x[i .. j] = x [i] x [i + 1] ... x [j]. If j < i , then x [i .. j] = E ,

the empty string. Using this notation we can write a prefix of x start ing at posit ion

j E Ln, as x[Lj]. A prefix is said to be a proper prefix when j < n. Likewise,

12

M. Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

x [i .. n] denotes a suffix of x starting at position i E l..n+ 1 and when i > 1 it is called

a proper suffix. For example, the prefixes and suffixes of abaaabba are shown in

Figure 2.l. P roper prefixes and suffixes are produced by simply excluding t he string

itself from the previous lists.

'When a proper prefix x [1..j] and a proper suffix x [i .. n] of a string x are equal so

that i = n - j + 1, we say that x has a border b = x [1..j] = x[i .. n] of length j.

From Figure 2. 1, we see that string x = abaabaab has two nonempty borders: ab and

abaab. Observe that the longest one, abaab, overlaps with itself.

prefixes E, a, ab, aba, abaa , abaab, abaaba, abaabaa , abaabaab
suffixes E, b, ab , aab , baab , abaab, aabaab, baabaab, abaabaab

Figure 2.1 : Prefixes and suffixes of x = abaabaab

vVe require I: to be an ordered set; hence we can define a lexicographic order

on strings of I:. Suppose we are given two strings x = x [1..n] and y = y [1..m]' where

n 2': 0 and m 2': O. We say that x < y (x is lexicographically less than y) if and only

if one of the following (mutually exclusive) conditions hold:

• n < m and x [1..n] = y [1..n] (i.e. x is a proper prefix of y);

• x[1..i - 1] = y [1..i - 1] and x li] < y [i] for some integer i E 1.. min n, m (this is

t he case in which there is a first position i in which x and y differ).

vVhen needed, we use $ as a sent inel letter in posit ion n + 1, that is not equal to

13

l\II.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

any other letter in x and that is lexicograhically less than all letters in ~.

A cyclic shift (or rotation) of x is defined to be the string xli] = x [j +

l..n]x [l..j] for every integer j E O .. n - 1. Thus x[O] = x and the eight cyclic shifts of

our example x = abaabaab are as follows:

x[O] = abaabaab

X[I] = baabaaba

X[2] = aabaabab

X[3] = abaababa

X[4] = baababaa

X[5] = aababaab

X[6] = ababaaba

X[7] = babaabaa

(2 .1.1)

'Writing x = WI W2 ••• Wk where the Wi are nonempty substrings, i E l..k , is

called a factorization or decomposition of x into factors Wi . Thus a factor is

just a nonempty substring.

14

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

2.1.2 Lempel-Ziv Factorization LZ

For an LZ factorization of x, we use the following definition:

Definition 2.1.1. A factorization of x = W1W2' •• Wk is LZ if and only if each Wj ,

j E l..k , is

(a) a letter that does not occur in W1W2'" Wj-l; or otherwise

(b) the longest substring that occurs at least twice in Wl W2 ... Wj.

We observe that Wl = x[l], further that a factor Wj may overlap with its previous

occurrence in x. For the string

12345678
(2.1.2)

x = a b a a b a a b,

For most of the last 30 years, LZ factorization has been used primarily for text

compression, and many LZ variants have been proposed and computed, including

factorization of infinite words [4J. Useful surveys are available at [14, 36, 46J . In the

context of compression , LZ algorithms generally operate not on the string as a whole,

but only on a sliding window. Many sliding-window algorithms have been proposed,

of which several are described in [43, 3, 38] and the surveys noted above. See Chapter

3 for more details on the original LZ compression algorithms: LZ77 and LZ78.

15

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software 16

2.2 Fundamental Data Structures

In t his sect ion we define t he fundamental data structures that are t he basis of our

~

I
algorithm and are important for almost all string algorithms.

2.2.1 Suffix Array SA

Consider a string x = x [1..n] of length n over an ordered alphabet :E. As mentioned

previously, the suffix of x starting at position i is denoted by x [i .. n], for 1 :::; i :::; n

(here we are not interested in the suffix E, hence i =1= n + 1) . To simplify the notation,

let us use the expression suffix i to denote the suffix x [i .. n] . Then, the suffix array

of x , denoted SA, gives the suffixes of x sorted in ascending lexicographical order ,

that is:

SA[l] < SA[2] < .. . < SA[n].

The suffix array of the string abaabaab is shown in the second column of Figure 2.2.

~ SAri] x [SA [i] .. n] ISA[i] LCP[i]
1 6 aab 5 -1
2 3 aabaab 8 3
3 7 ab 2 1
4 4 abaab 4 2
5 1 abaabaab 7 5
6 8 b 1 0
7 5 baab 3 1
8 2 baabaab 6 4

Figure 2.2: SA and LCP arrays of x = abaabaab

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

SA can be computed in 8 (n) worst-case time [25, 22], though various supralinear

methods [32, 33] are certainly much faster , as well as more space-efficient , in practice

[40], in some cases requiring space only for x and SA itself.

In [2] an Enhanced Suffix Array (ESA) is introduced, consisting of the suffix array

together with an "lcp-interval tree". Recently, a Dynamic ESA (DSA) was introduced

in [27] . They presented an algorithm that updates ESA/SA when the text is edited

(insertion , deletion or substitution of a letter or a factor) . We discuss the DSA

algorithm briefly in 2.3.

2.2.2 Inverse Suffix Array (ISA)

The inverse suffix array (ISA) gives for each suffix x [i .. n], its lexicographical order

among other suffixes. That is , ISA[i] = j iff SAUl = i. Many algorithms use inverse

suffix array to build suffix arrays in linear time. Reversibly, an inverse suffix array

can be turned into a suffix array in place in linear t ime, too. The fourth column in

Figure 2.2 represents the ISA for our string example.

2.2.3 Longest Common Prefix (LCP) Array

Another important data structure that is usually used with suffix arrays is the Longest

Common Prefix (LCP) array. Let us denote the length of the longest common prefix

of suffixes SAri] and SA [j] by lcp(SA[i], SA[j]). Then , the LCP array contains the

lengths of the longest common prefixes between successive suffixes of SA. That is,

17

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

for 1 < i :::; n, LCP [i] = lcp(SA[i -lJ, SA[i]) and LCP[I] = - 1 since it is otherwise

undefined. An important property of lcp [25] is t hat for any 1 :::; i < j :::; n:

lcp(SA[i], SA[jD = mini<k~j LCP[k] .

Given x and SA, LCP can also be computed in 8(n) time [23 , 31 , 39 , 24]: the

first algorithm described in [31] requires 9n words of storage and is almost as fast in

practice as that of [23] , which requires 13n words. However the algorithm described in

[39] is generally faster and requires about 6n words of storage for its execution, since

it overwrites the suffix array. The very recent LCP algorithm is t he one proposed

in [24], that first computes a "permuted" LCP array; it executes consistently faster

than all other LCP algorithms, but uses 13n bytes.

The fifth column of Figure 2.2 gives the LCP array of the string abaabaab.

2.2.4 Burrows-Wheeler Transform BWT

The BWT and its calculations are important for the methods used in this thesis. vVe

use a dynamic SA (DSA) [27] that can be updated whenever the window slides. DSA

needs BWT in order to maintain the suffix array after an insertion or deletion.

Formally, we define the Burrows-vVheeler Transform BWT of x [5] as follows:

Definition 2.2.1. For a string x = x [1..n], BvVT[i] = x [SA[i] -I] for SA ri] > 1;
otherwise, BvVT[i] = x [n] .

Usually, when using the BvVT, it is convenient to suppose that the sentinel letter

$ has been appended to x , yielding x [l..n + 1] = x$. Since $ is the least letter , this

18

M.Sc. Thesis - Anisa AI-Hafidh McMaster University - Computing & Software 19

means t hat the least cyclic shift (the lexicographically least suffix of x) is $x and

occurs as the first row in the conceptual matrix NI (see Fig. 2.3).

The BvVT is equal to the text corresponding to the last column L of the conceptual

matrix M whose rows are the lexicographically sorted cyclic shifts of the string x$

(see Fig. 2.3). There is a strong apparent relation between the matrix NI and the

suffix array SA of the string x$. vVhen sorting the rows of the matrix M we are

essentially sorting the suffixes of x$. Consequently, SAri] points to the suffix of x$

occupying (a prefix of) the ith row of M. Hence, the cost of constructing the BvVT

is given by the cost of constructing the suffix array, and this requires 0 (n) time.

~ F L
9 $ a b a a b a a b
6 a a b $ a b a a b
3 a a b a a b $ a b
7 a b $ a b a a b a
4 a b a a b $ a b a
1 a b a a b a a b $
8 b $ a b a a b a a
5 b a a b $ a b a a
2 b a a b a a b $ a

Figure 2.3: The conceptual matrix NI and BVVT=bbbaa$aaa (column L)

The Burrows-vVheeler transform (BvVT) [5] sorts the letters of a text x to facilitate

its compression. It is used as a preprocessor by some famous loss less text compression

tools (such as bzip) that incoperate it with Run-length Encoding or Prediction by

Partial Matching (PPM) methods [12, 13]. Due to its structure and its similarity

with the suffix array, it has been used a lot for advanced compressed index structures

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software 20

[17, 18, 27] that compute approximate pattern matching, which make them useful for

search engines.

~
8alson et. a1. [26] studied the impact of edit operations (insert ion/deletion/substit ut ion

I

of a let ter or a factor) on BWT(x). Moreover , they presented a four-stage algorithm

for updating BvVT(x) . We explain this algorit hm briefly in section 2.3.2.

2.3 Algorithms

[27] presented an algorithm t hat modifies the SA and the LCP arrays based on changes

to the text (i .e. insertion/ deletion/substitut ion of a letter or a factor) . This algorithm

is based on a four-stage algorithm described in [26] that updates BvVT .

vVe will briefly discuss in t his section t he updating process of BvVT and how t he

authors extended it to update the SA. The reader who is interested in the det ails of

updating the LCP can refer to [27]. To ease the reading process, we will denote the

SA updating algorithm by DSA (an acronym for dynamic suffix array).

2.3.1 Preliminaries

Recall that F and L are respectively the first and last columns of the conceptual

matrix NI (see Fig. 2.3) . Notice that F is sorted and hence can be deduced from

L. If we want to add/delete a character from t he original string x , we will need to

reconstruct x from L . T hat can be done by navigation through the characters of L

according to their positions in x . In order to navigate through L, we need a function

M.Sc. Thesis - Anisa Al-Hafldh McMaster University - Computing & Software

that tells us how the rows are ranked. This function is called LF and maps a letter

in L to its equivalent in F ; for example, the unique $ in L is mapped to the unique

$ in F , the first a in L is mapped to the first a in F , etc (see Fig. 2.4) . That is , we

want to map corresponding letters in F and L.

F
1 $
2 a
3 a
4 a
5 a
6 a
7 b
8 b
9

L
b
b
b
a
a
$
a
a
a

Figure 2.4: LF function

To understand how we can compute LF, we will examine the relationship between

Land F closely. First , we consider the first row of the conceptual matrix !VI: it cor-

responds to x [n). This row necessarily contains $ in F and x [nJ in L (since $ is the

smallest letter and F is sorted) . Consequently, the row that contains the letter x [n]

in L has to be mapped with the row corresponding to the cyclic shift starting with

x [n]$, that is the row where x [nJ appears for the first time in F. Hence, we need

a simple mechanism for navigating from the row corresponding to X [i+ l) to X [i) . By

definition , if the row X [i+ l) has a letter c in L , then the row X li) has also the same

letter c in F .

21

M.Sc. Thesis - Anisa Al-Hafidh McNlaster University - Computing & Software

Remark 2.3.1. x li + 1] = x li mod IXI! [n + 1], for 0 :s; i :s; n .

From the previous remark, we know that if p is the position of x [il in the sorted

cyclic shifts , then x [i + 1] = L[P]. In order to map corresponding letters in Land F ,

we therefore need a function rankx(c , i) that returns the number of c in x[1..i]' for

any string x over 2:. Now given two positions p and p' such that F[P'] = L[P] = c, we

are connecting them if and only if rankF(c,p') = rankL(c,p).

vVe also need a table C storing, for each letter c of the alphabet, the number

C[e] of characters smaller than c = x li] in x [1..n] . Since letters are lexicographically

sorted in F , the number of letters smaller than c is one less than the position at which

c appears for t he first time in F.

Finally, using the rank function and the count table , the LF function which

permits us to compute the position of a cyclic shift x [il from the position of the

following cyclic shift x [i+11, can be computed as follows:

LF(i) = rankx(L[p], i) + C[L[P]].

2.3.2 Updating BWT

(2.3.1)

As we mentioned before, DSA is based on an algorithm that updates t he BWT. This

was due to t he similarities between BvVT and SA (see section 2.2.4). As defined

previously, the BvVT is the text of length n + 1 equal to the last column L of the

22

M.Sc. Thesis - Anisa Al-Hafidh McNlaster University - Computing & Software 23

conceptual matrix M whose rows are the lexicographically sorted cyclic shifts of x $

(see Fig.2.5(a)).

F L F L
x $ a b a a b a a b x ' $ a b a a c b a a b
X[5] a a b $ a b a a b x ' [6] a a b $ a b a a c b
X[2] a a b a a b $ a b X,[2] a a c b a a b $ a b
X[6] a b $ a b a a b a X,[7] a b $ a b a a c b a
X[3] a b a a b $ a b a -------t x ,[a] a b a a c b a a b $
x[a] a b a a b a a b $ X' [3] a c b a a b $ a b a
X[7] b $ a b a a b a a x ' [8] b $ a b a a c b a a
X[4] b a a b $ a b a a X' [5] b a a b $ a b a a c
xlI] b a a b a a b $ a X,[l] b a a c b a a b $ a

X,[4] c b a a b $ a b a a

(a)The conceptual matrix (b)The conceptual matrix
M of x$ = abaabaab$ M ' of x'$ = abaacbaab$

Figure 2.5: The impact of inserting a letter c at position 5 in x on the matrix IV!

vVe will give an overview of t he algorithm developed by [26] to see how this al-

gorithm can be extended to update the suffix array. Let us consider the following

simple case: a letter c is inserted at position i in x $ (i.e. x' = x [l..i - l]cx [i oon]$).

vVe will take as an example our string x = abaabaab. Suppose we are inserting a

letter c at position i = 5. The new string will become x' = abaacbaab. Let M' be

the the conceptual matrix of x'$ (see Fig.2.5(b)). Examining the cyclic shifts of x'$

(i.e. rows of M'), we can notice that the letter c appears in a cyclic shift x, U] at one

of t he following positions (see Fig. 2.6):

• c appears right of $ and before L (case Ia). The cyclic shifts X,[9] , X,[6] , X,[7]

and X,[8] are examples for this case (see Fig. 2.5(b)).

lVI.Sc. Thesis - Anisa Al-Handh McMaster University - Computing & Software

• c appears in L (case Ib) . For example, the cyclic shift Xt[5] has c in column L

(see Fig. 2.5(b)).

• c appears left of $ and after F (case IIa) . The cyclic shifts X, [3] , x,[OI, x,[ll and

X,3 are examples for this case (see Fig. 2.5(b)).

• c appears in F (case IIb). For example, the cyclic shift xt[41 has c in column F

(see Fig. 2.5(b)).

x[j .. n]$x[1..i - l]cx [i .. j - 1]
x[i .. n]$x[1..i - l]c

cx[i .. n]$x[1..i - 1]
xU + l..i - l]cx [i .. n]$x [1..j]

if i < j :::; n
if j = i
if j = i-I
if 0 :::; j < i-I

(Ia)
(Ib)
(IIa)
(IIb)

Figure 2.6: All possible locations of c in x,[jl after its insertion at position i

The following lemma is proved in [26]:

Lemma 2.3.2. Inserting a letter c at position i in x has no effect on the respective
ranking of cyclic shifts whose, orders ar; strictl~ reater than i. That is: for all j 2': i
and j' 2': i, we have x bl < x [] 1 ~ x,b+ 1 < x,b + I.

Based on the above four situations and the previous Lemma, [26] presented the

following four-stage algorithm for updating BvVT (see Fig. 2.7 and Fig. 2.8):

(Ia) Ignore: no direct impact on either L or F.

(Ib) Modification: for row ISA [i], the letter in L is stored (i.e . b = L [ISA [i]]) and

replaced by c.

24

M.Sc. Thesis - Anisa AI-Hafidh McMaster University - Computing & Software 25

(IIa) Insertion: a new row is inserted at position LF(ISA [i]) , F receives c and L

receives b.

~

I (IIb) Gently reorganize the rows that are affected by the insertion.

F L F L F L
1 $ b $ b $ b
2 a b a b a b

(Ia) 3 a b a b a b No impact;

4 a a a a a a (Ib) For ISA[5] = 8, the letter a in L is
(Ib) (IIa)

5 a a ---+ a a ---+ c a stored and replaced with c,
6 a $ a $ a a
7 b a b a a $ (IIa) A new row is inserted at position

8 b a b c b a LF(ISA[5]) = LF(8) = 5, F receives

9 b a b a b c c and L receives the stored a.

10 b a
(Ia) (Ib) (IIa)

Figure 2.7: Stages (Ia) , (Ib) and (IIa) of updating BvVT

F L F L
1 $ b $ b The fourth stage is slightly more compli-
2 a b a b cated: by inserting a new row in !VI dur-
3 a b a b ing stage (IIa) , we somehow disrupt the
4 a a a a LF function and create inappropriate re-

5
(I Jb)

$ lations between letters in F and L. vVe c a ---+ a
6 a a a a therefore have to consider the local rear-

7 a $ b a rangement that might occurs (they consist

8 b a b c in rotations , a row k moves to row k' and

9 b c b a all the rows between k and k' are shifted

10 b a c a by one position accordingly).

(IIa) (IIb)

Figure 2.8: Stage (IIb) of updating BvVT

The rearrangement in stage (IIb) is performed as long as the "expected" LF value

is different from the "actual" LF value. The "expected" LF value is computed by

M.Sc. Thesis - Anisa Al-Hafidh MclVIaster University - Computing & Software

summing rankx(c, i) and the value C(c) (see equation 2.3. 1). Fig.2.9 shows the

reordering algorithm used in stage (IIb).

2.3.3 Updating SA

The four-stage algorithm for updating BWT naturally extends to updating SA due

to the closeness between the BvVT and SA [27].

Recall that the LF function allows us to navigate in L from the ith to the (i - 1)th

cyclic shifts. Notice also that the ith cyclic shift corresponds to the suffix beginning

at position i + 1. Thus, LF(i) = j iff SAri] = SA[j] + 1 (see section 2.3.1).

function REORDER(L , i)
- gives the actual position of X[i- I) in IVI

j t- index(x[i- I));
- gives the computed position of X,[i- I) in IVI'

j' t- LF(index(x,[i-I))) ;
while (j =I- j') do

newj t- LF(j) ;
- moves a row of L from position j to j'

MOVEROvV(L , j , j) ;
J t- newj ;
j t- LF(j') ;

Figure 2.9: REORDER used in stage (IIb)

[27] considered t he BWT updating algorit hm and induced the required modifica-

tion on both SA and ISA arrays caused by inserting a letter c at position i of x . The

following is the extension of the four-stage BvVT algorithm to SA:

• Stage 1 (Ia) - suffixes x [j .. n], Vj > i: From Lemma 2.3.2 , the respective ranking

of the corresponding cyclic shifts is conserved. Hence, SA and ISA are not

26

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software 27

modified during this stage .

• Stage 2 (Ib) - suffix x[i .. n]: The same condition applies here as in the previous

~ , stage. Notice that during this stage of BvVT algorithm, for k = ISA[i] the letter

b = L [k] is stored and replaced by c .

• Stage 3 (IIa) - suffix cx[j .. n]: At this stage in BvVT algorithm, a new row is

inserted at position k' = LF(k) in l with the letter stored from the previous

stage i. e. L [k /] = b. This would reflect to the following modifications in ISA

and SA (for our example see Fig. 2.10):

- SA: insertion of i at index k':

1. all values in SA greater than or equal to i are incremented.

2. value i is inserted at index k'.

- ISA: insertion of k' at index i:

1. all values in ISA greater than or equal to k' are incremented.

2. value k' is inserted at index i .

• Stage 4 (IIb) - suffixes x/[j .. nJ, j < i: This is the reordering stage which is done

using the same REORDER algorithm that is used in BWT algorithm (see 2.9).

If without loss of generality, we suppose j < j' , then the following applies (for

our example see Fig. 2.11):

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software 28

- L: the element at position j is moved to position j'.

- SA: the element at position j is moved to position j'.

- ISA: all values between j (excluded) and j' (included) are decremented by

1. Then, j is modified to j'.

SA ISA SA ISA (Ia) No impact on SA or ISA.

1 9 6 10 g 7 B (Ib) For ISA [5] = 8, we store the origi-
2 6 9 7 B 10 g nal LF(8) = 5 in pos but there is no
3 3 3 3 3 impact on SA or ISA at this stage.
4 7 5 8 + 6 ~

5 4 8
(lIa) W W (IIa) All values greater than or equal to

-----+

6 1 2 4 9 g i = 5 are incremented in SA and

7 8 4 1 2 value i = 5 is inserted at position

8 5 7 9 g 4
k' = LF(8) = 5. vVe update pos to

9 2 1 6 ~ 8 + 6. All values greater than or equal

10 2 1 to LF(8) = 5 are incremented in ISA

(Ia) & (Ib) (IIa) and value k' = LF(8) = 5 is inserted
at position i = 5.

Figure 2. 10: Stages (Ia), (Ib) and (IIa) of updating SA and ISA

SA ISA SA ISA
1 10 7 10 5
2 7 10 7 9
3 3 3 3 3
4 8 6 8 6

5 5 5
(I Jb)

1 10 -----+

6 4 9 4 8
7 1 2 9 2
8 9 4 6 4
9 6 8 2 7
10 2 1 5 1

(IIa) (IIb)

Figure 2.11: Stage (IIb) of updating SA and ISA

M. Sc. Thesis - Anisa Al-Hafidh lVIclVlaster University - Computing & Software

DSA needs to store L (which provides rank queries) and C (which provides count

function) which are essential for computing the LF function. DSA also requires the

inverse suffix array ISA during the reordering stage.

The previous algorithm can be generalized to the insertion/ deletion/substitution

of a letter or a factor (see [27] for details).

2.3.4 Sampling

Since SA and ISA are space-consuming structures, the authors discussed the choice

of compressing these arrays using sampling techniques. Without using the sampling

technique, the space requirement would be 8n bytes plus the space required for storing

Land C (see previous section).

Basic Idea

Compressed data structures [35] that support rank/select operations and require only

o(n) bits of storage provided a solution for reducing the space requirements. This

solution is based on the idea of sampling; we store only a few values over the entire

sequence.

vVe will illustrate the idea of sampling on the ISA. Let us consider the following

ISA from Figure 2.2:

1234567 8

ISA = 5 8 2 4 7 1 3 6,
(2.3.2)

A dynamic sample of ISA consists of two bit vectors and one integer array as

29

M. Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software 30

follows:

• The first bit vector , mISA , indicates the positions where ISA is sampled .

• The second bit vector ,VISA , indicates the set of values that are sampled.

• The integer array, 7rISA , gives the respective order of the sampled values. In

other words, it maps a sampled position to its corresponding sampled value.

Figure 2.12 shows the bit vectors and the integer array for our ISA example.

sampled i 1 3 5 7

rnISA 1 0 1 0 1 0 1 0
sampled ISA 5 2 7 3

VISA 0 1 1 0 1 0 1 0
1rISA 5 2 3 7

Figure 2.1 2: Retrieving a value for a sampled position ISA[5]

Suppose we want to retrieve the value of ISA [5] . We need to follow the following

steps:

1. mIsA[5] = 1 is a sampled position. Hence, we apply rankmIsA (1 , 5) = 3.

2. 7rISA[3] = 3.

3. I SA [5] = selectm I SA (1 , 3) = 7.

Since rank and select functions can be formed in 0(l09 n) worst-case time, retriev-

ing a value at a sampled position costs at most 0(l09 n) plus the cost of accessing

the 7rISA dynamic structure.

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Comp uting & Software

Retrieving a value at an unsampled position is a bit more complex process. It

consists of applying a series of rank and select queries and one call to the LF function

at the last step. The time for this process is bounded by O(off x log n(l + lo~olo; n))

plus the time for accessing 7rISA , where (5 is the alphabet size and off is the offset

between i and the sampled position to the right of i .

For more details on adding/removing a sample, updating the permutation , inser­

tion/ deletion of a value j at position i we refer the reader to [27].

Improving Retrieve and Update Time

In order to guarantee fast access to the ISA values, 7rISA needs to be stored and

updated in an efficient way. [27] proposed using two balanced binary trees A and

B. Let A[i] be the ith node in A and B[j] be the lh node in B. Using A and B, a

permutation 7r of n element is defined as follows: 7r [i] = j if and only if there exists

a link from A [i] to B[j].

Since ISA is the inverse of SA; SA can be computed in a similar fashion. No­

tice that for computing ISA, 7rISA is the mapping between mISA (positions in ISA)

and V I SA (values in ISA). Symmetrically, for comput ing SA: 7ri§A is the mapping be­

tween V I SA (positions in SA) and mISA (values in SA). Using the previous presented

structure of the two balanced tree, 7ri§A can be easily computed by making the links

bid irectional.

31

M.Sc. Thesis - Anisa AI-Hafidh McNlaster University - Computing & Software 32

2.3.5 Space and Time Complexity

Sampling I Non-Sampling I

Retrieve ISA/SA value O(log1+E n (1 + toga))
loq loq n O(log n)

Update O(n log n(l + log a))
log log n O(log n)

Space o(n) bits O(n log n) bits

Table 2.1: Sampling vs. Non-sampling: Time and space complexity

Let us consider the space and time complexity for both cases sampling and non-

sampling.

For the sampling case, we need two bit vectors. [27] uses dynamic compressed bit

vectors developed by Mankinen and Navarro [35] that need nHo+o(n) bits and handle

all the needed operations (i .e. rank/select) in O(log n) worst-case time. Ho denotes

the zero-th order entropy of the bit vector and since the bit vectors are sparse, their

space consumption is o(n) bits only. Furthermore , we need the permutation array 7rISA

which require O(n log n / log1+E n) = o(n) bits using the structure of the two binary

trees. Obtaining a value from SA or ISA requires O(log2+E n + log n log(J / log log n)

worst-case time as the LF function requires 0 (log n+log n log (J / log log n) worst-case

time. Table 2.2 summarizes these bounds.

Using the whole SA and ISA can be seen as a special case of the sampled SA and

ISA where all positions are sampled. The bit arrays become useless here since every

position is essent ially sampled. Only 7rI SA is meaningful since it corresponds to SA

and ISA arrays and it is represented by the two binary trees . According to [27], in

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

bit vectors space nHo + o(n) bits
mISA and VISA rank/select t ime O(log n)
permutation array space O(n log n) = o(n) bits

logl+< n

7rISA operations t ime
(retrieving/ insert ing/ deleting) O(log n)

LF function time O(log n + log n log 0')
loq loq n

Table 2.2: Time and space complexity for various operations and structures used for
updating SA

this case any value of SA and ISA can be accessed in O(log n) worst-case t ime using

O(n log n) bits . See Table 2.1 for a comparison between sampling and non-sampling

space/time complexity.

33

Chapter 3

LZ Compression

In general, compression methods based on strings of symbols can be more efficient

than methods that compress individual symbols. The probabilities of strings of sym­

bols vary more than the probabilities of the individual symbols constituting the

strings. Hence, dictionary-based compression methods select strings of symbols and

encode each string as a token using a dictionary. The dictionary holds strings of

symbols, and it may be static or dynamic (adaptive). As we mentioned previously,

LZ compression methods are dictionary-based. In this brief chapter , we describe the

original LZ methods: LZ77 and LZ78. vVe attempt to differentiate between t he two

and illustrate each method using a simple example.

3.1 LZ77

In general terms, an LZ factorization of x is a decomposition of x into nonempty fac­

tors: x = WI W2 ••• Wk. The factorization of x can be reported in several ways. In its

native form , LZ77 factorization [47] reports each factor Wj as a triple (POS,LEN») ,

34

M. Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

where:

• POS is the location of a prior occurrence of Wj in x or the location of Wj if no

previous occurrence exists;

• LEN is the length (possibly zero) of the matching previous occurrence;

• A is the " letter of mismatch" .

It is noteworthy that this (in general, compressed) encoding of x permits the

original string to be reconstituted (decoded) with no need for an explicit dictionary.

Essentially, LZ78 factorization [48] removes LEN from the output, thus compressing

the text further , but introducing the need for a dictionary in order to retrieve the

original text .

LZ77 operates not on the string as a whole, but only on a sliding window of length

N (usually N = 4096 or 8192), with a long prefix that has already been factored

and a short (typically 18 letters) as-yet-unfactored suffix F. The next factor Wj is

the longest prefix of F that matches a preceding substring within the window. Once

Wj has been determined , the window is shifted right by IWjl positions. It has been

found that in practice the use of the sliding window provides compression as good

as using the entire string would yield, and of course processing time is substantially

reduced. vVe will illuotrate the basic idea of LZ77 using an example. vVe will usc u

to denote a white space. The data shown in Fig. 3.1 is to be encoded . The string

35

M.Sc. Thesis - Anisa A l-Hafi dh McMaster University - Computing & Software

search b uffer look ahead buffer

----------~----------, ~ ,- ,,--~

.. The most complet be li ever is the best in character, and the best of yo u is the bes to his womenfolk

window sli des by the length of the
longest match I"b est "1+ 1 = 6

searc h buffer

1
r-~-----------~~------------,

look ahead b uffer

... The most complete beli ev r is the best in character, and the best 0 f you is the best to hi womenfo lk . .

Figure 3.1: Example to illustrate LZ77

m t he search buffer has already been encoded, while the string m t he lookahead

buffer is yet to be encoded. The algorithm works from left to right and has already

encoded the string S = "believeruisutheubestuinucharacter ,u andutheu" . The string

F= "bestuofuyouuisutheubest" is t he data yet to be encoded.

First , the algorithm searches for the longest match for the string in the encoded

string S matching a prefix of F . In t his specific example, t he longest match is t he

string "bestu" starting at the 17th posit ion (count ing from one) . T herefore, it is pos-

sible to code t he first five characters of F (i. e. "bestu") as a reference to the substring

that occurs at posit ion 17 of the search buffer. As mentioned previously, references

are encoded as a fixed-length codeword consisting of three elements: posit ion, length

and first non-matching symbol. In our case, t he codeword would be (17, 5, '0'). As we

36

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

can see, five characters have been coded with just one codeword. vVhen the matches

get longer, those coded references will consume significantly fewer space than, for

example, coding every thing in ASCII.

Fig. 3.2 is pseudocode of LZ77.

while 100kAheadBuffer not empty do

get a reference (position, length) to longest match;
if length > ° then

output(position, length, next symbol);
shift the window length+ 1 positions along;

else
output(0, 0, first symbol in the 100kAheadBuffer) ;
shift window 1 character along;

Figure 3.2: Pseudocode of LZ77

The algorithm starts out with the lookahead buffer filled with the first symbols

of t he data to be encoded and the search buffer filled with a predefined symbol of

the input alphabet (zeros, for example). Some of the LZ77 variants that improved

upon the original version are: LZSS [43] , LZRW [44] , LZB [30] , LZH(developed

by Haruyasu Yoshizaki) , and LZP [19]. LZSS is the most prominent amongst LZ77

variants.

The LZ77 encoder and the decoder exhibit high asymmetry. In particular, the

decoder is much simpler than the encoder. It merely prepares a buffer with the same

window size as the encoder. It starts each iteration by grabbing the next token (i .e.

codeword) on its input stream and finds the match in its buffer. It then writes the

37

M.Sc. Thesis - Anisa Al-Handh McMaster University - Computing & Software

match and the third token field (i. e. the symbol) on the out put stream. In the last

step of every iteration, the decoder shifts the matched string and the third token to

the buffer. Because t he decoder is fast and simple, LZ77 is particularly useful in

cases when a file is compressed once and decompressed several t imes.

3.2 LZ78

Unlike LZ77, LZ78 [48] is a dictionary-based compression algorithm that maintains

an explicit dictionary. LZ78 has a slightly different codewords from LZ77. LZ78

codewords consist of two fields: the location of the longest matching entry in t he

dictionary and the first "letter of mismatch" . The LZ78 scheme removes the need for

the length of the mat ch since it is implied from the matching entry in the dictionary.

This scheme thus furt her compresses the text . When outputting the codeword , the

algorithm simultaneously adds the index and the symbol pair to the dictionary as

a new ent ry. 'When a symbol, that is not yet in the dictionary, is encountered , the

codeword is assigned the next available index value in the dictionary. Then, it is

added to the dictionary as a new ent ry. vVith this approach, the algorithm gradually

builds up a dictionary. Fig. 3.3 shows pseudocode of LZ78 .

Table 3.1 shows the fi rst 31 steps in encoding the string:

"The most complete believer is the best in character , and the best of you

is the best to his womenfolk" 1

1 Prophet Mohammed, T irmidhi # 1162 and verified

38

M.Sc. Thesis - Anisa AI-Hafidh McMaster University - Computing & Software

W f- NIL;

while there is input do
k f- next symbol from input;
if wk exists in the dictionary then

W f- wk;
else

output(index(w) , k) ;
add wk to the dictionary;
W f- NIL;

Figure 3.3: Pseudocode of LZ78

A good data structure for the dictionary is a tree, but not a binary one. The tree

starts with the null string as the root. All the strings that start with the null string

(strings for which the token pointer is zero) are added to the tree as children of the

root . In the above example those are 'T ' , 'h ' , 'e', 'u ', em', '0' , 's', ' t ', 'p ', '1' , 'b ', oi', 'a'

and 'r '. Each of them become a root of a subtree as shown in Fig. 3.4. For example,

all the strings that start with 't' (the three strings "th", "tu", and "te ') constitute

the subtree of node 't ' .

Figure 3.4: An LZ78 Dictionary Tree

As you can see from the algorithm, the LZ78 decoder is more elaborate than the

LZ77 decoder. It builds the dictionary in a similar manner as it is built through the

39

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software 40

Dictionary Token Dictionary Token

° null 16 "el" (3 , '1')
1 "T" (0 , 'T ') 17 "i" (0 , 'i')
2 "h" (0, 'h') 18 "eu" (3, 'u')
3 "e" (0 , 'e') 19 "er" (3 , 'r ')
4 " " (0 , 'U ') 20 " i" (4 , 'i')
5 "m" (0 , em') 21 "s " (7 ,'u')
6 "0" (0 , '0 ') 22 "th" (8 ,' h ')
7 "s" (0 , 's') 23 "e b" (18,'b ')
8 "t" (0, ' t ') 24 "es" (3, 's ')
9 " c" (4 , 'c') 25 "t " (8, 'u ')
10 "oIn" (6 , em ') 26 "in" (17,'n ')
11 "p" (0 , 'p') 27 " ch" (9 ,'h ')
12 "1" (0 , '1') 28 "a" (O ,' a ')
13 "et" (3 , 't') 29 "r" (O ,'r')
14 "e " (3 , 'u ') 30 "ac" (28, 'c')
15 "b" (0 , 'b') 31 "te" (8, 'e')

Table 3.1: First 32 steps in LZ78

encoding process. It grabs a codeword and uses the POS to locate the entry in the

dictionary and copies that entry at the end. Next , it adds the copied entry contacted

with Imda as a new entry to the dictionary if there is a position available. It continues

applying this process until the entire string is recovered.

Note that this pseudocode is a simplified version of the algorithm and it does

not prevent the dictionary from growing without bound. The simplest solution to

limit the dictionary size is to stop adding entries and continue as a static dictionary

encoder. Another solution is to throw the dictionary away and start from scratch

after a specific number of entries has been reached . There are more sophisticated

M.Sc. Thesis - Anisa A l-Hafidh McMaster University - Computing & Software

approaches that give raise to the collection of LZ78 family algorithms. Some of

LZ78 family are: LZW [45] , LZC (a software version of LZW with some additional

features used in compress utility) , LZMvV [34], LZMS, LZJ , LZFG [16] (a hybrid of

LZ77 and LZ78). LZvV is the most popular variant of LZ78.

41

Chapter 4

New Algorithm

As we mentioned in Chapter 1, the experiment of scaling up an implementation of

LZSS , due to Haruhiko Okumura [37], triggered the idea of scaling down the SA-based

LZ algorithms. In this chapter we describe our new variant LZAS and discuss the

variations that stemmed out of it .

4.1 The Core Idea

vVe designed a novel LZ77 variant (LZAS) that makes use of t he suffix array to

perform the search in the dictionary. The main idea is to replace the binary search

tree (or any other kind of tree) by t he suffix array. Fig. 4.1 is the pseudocode of our

algorithm.

The suffix array (SA) posses two nice structural propert ies which are usually

exploited to support fast pattern search:

(i) all t he suffixes of the string x [1..n] prefixed by a pattern p[1..m] occupy a

contiguous portion (subarray) of SA.

42

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

Algorithm LZAS

- initialize the window by initializing its two parts: search buffer
- and lookahead buffer

Initialize searchBuffer with predefined symbol of the input alphabet ;
Init ialize lookAheadBuffer with the first symbols of the data to be encoded;
Compute SA;
while lookAheadBuffer not empty do

Search for a match (position, length) using SA;
get a reference to longest match;
if length > 1 then

output(fiag = 1, position, length) ;
shift the window length positions along;

else
output(fiag = 0, first symbol in the lookAheadBuffer) ;
shift window one character along;

Update SA;

Figure 4.1: Pseudocode of LZAS

(ii) that subarray has a starting position sp and ending position ep , where sp is

actually the lexicographic position of the suffix sp among the ordered sequence

of text suffixes.

vVe use the above properties to design our search algorithm which we describe in the

next section.

One notable advantage of using SA in an LZ encoder is that the amount of memory

is independent of the text to be searched and can be defined a priori . The low and pre-

dictable memory requirement of this approach makes it suitable for memory-critical

applications such as embedded systems. Our proposed algorithm can additionally be

used for forward / backward sub-string search.

43

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

vVe follow LZSS codeword format which contains just a position and a length. If

no match was found , the encoder emits the uncompressed code of the next symbol

instead of t he wasteful three-field token (0, 0, . . .). To distinguish between tokens

and uncompressed codes, each is preceded by a single bit (flag).

4.2 The Search Algorithm

The search in LZAS is done using a simple algorithm that performs a left/right search

of the suffix array to obtain the longest match in the search buffer for a prefix of the

look-ahead buffer. The pseudocode of the search algorithm is illustrated in Fig. 4.2.

Let N be the length of the window and F be the length of the look ahead buffer.

Given a position r = N - F + 1 in x, at the right hand side of the window, we want

to compute the position of the longest previous substring matching the substring

x [r .. NJ. This can be done by searching the neighbourhood of position j = ISA [rJ in

the suffix array SA.

The search algorithm alternates between searching left and searching right , de­

pending on which side has the maximum LC P value. This approach is very efficient

since r will normally be large, because it is on the right hand side of the window,

and so the probability will be high that any suitable if that satisfies if < r is located

immediately. Our experiments confirm this observation.

To see why this observation is true, recall that the window size N is typically a

few thousands long (e.g. 4096), while the look ahead buffer F is just tens of bytes

44

~

I

M. Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

The SA Left/Right Search Algorithm

function LongesLMatch_Search(i , SA, ISA , LCP)

1
2
3
4
5
6
7
8
9

jl f- ISA [i];
if (jl ::; 1)

ilf--1; len' , lenlf- O
else

i l f- SA[jl - 1]; len', lenl f- LC P [jl]
j r f- j l + 1;
if (jr > N)

ir f-- 1; len" , lenrf- O
else

10 ir f- SA[jr] ; len", lenr f- LCP [jr]
11 len f- max(lenl, lenr)
12 while (l en> 0) do
13 if (l enl ::: lenr) then - Search left.
14 while (len' ::: lenr and i l > i) do
15 jLf-jL-1 ;
16 if (jl ::; 1)
17 i l f- - 1; len' , lenl f- 0
18 else
19 il f- SA[j1 - 1]; len' f- LCP[j tl
20 lenl f- min(len' , lenl)
21 if len' ::: lenr then
22 return (ii, lenr)
23 else
24 len f- lenr
26 else - Search right .
27 while (len" ::: lenl and ir > i) do
28 jr f- jr + 1;
29 if (jr > N)
30 ir f- -1 ; len" , lenr f-O
31 else
32 ir f- SA[jr]; len" f- LCP[jr]
33 lenr f- min(len" , lenr)
34 if len" ::: lenl then
35 return (i r ,lenr)

36 else
37 len f- lenr
38 return (i ,O)

Figure 4.2: SA Search algorithm: Compute longest previous factor given SA, I SA
and LCP

45

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

only (e.g. 16). This is what makes our search algorithm very efficient. Let us examine

the algorithm in figure 4.2 more closely. vVe are searching for a position to the left of

r t hat has t he longest match with t he prefix of the look ahead buffer . vVe have the

following four cases for SA values and LCP values that we use to guide our left/right

search:

1. SA [jl - 1] and SA[jr] are both to left of i = r.

2. SA[jl - 1] and SA [jr] are both to the right of i = r.

3. SA[jl - 1] > i and LCP [jzl > LCP[jr]'

4. SA[jr] > i and LCP[jr] > LCP [jzl.

In t he first case we can immediately locate t he position of t he longest match by

comparing LCP [jzl and LCP [jr] and take the position with greater LCP value. The

other t hree cases require more work. The probability that t he first case occurs is very

high . To show that , let us try to approximate the probability of the other three cases .

We can formulate our question as follows:

vVhat is the probability that one or both of SA[jl - 1] and SA [jr] occur

to the right of i = r in x?

One would expect this probability to be approximately equal to fi which is very

small since N is very large compared to F as we mentioned previously. Therefore,

46

M. Sc. Thesis - Anisa A l-Handh McMaster University - Computing & Software

the probability that that any suitable i f that satisfies if < r is located immediately is

equal to 1 - ~ which is very big.

F=3

~~,

, . __ ~ ~_----,J
V

N=8

Figure 4.3: Example to illustrate the search algorithm

The approach requires ISA , SA and LCP to be available. In regard to LCP, we

had two choices: either to compute the whole LC P array or compute LC P values

on a demand basis. We experimented with both choices and found that the second

one is more efficient as we expected . This confirms the fact t hat we need the LC P

values rarely according to our previous observation. Hence, our final implementation

computes LCP values on demand basis.

Let us illustrate the algorithm with a small example. Let x be our regular string

example abaabaab. Let us assume that the window length N is equal to the string

length n = 8 and that F = 3. ow we want to find the longest match for t he

lookahead buffer aab, in the search buffer abaab (see Fig. 4.3). Figure 4.4 shows the

SA/ISA/LCP arrays for our example.

vVe need to call our search algorithm with posit ion i = r = N - F = 8 - 3 + 1 = 6.

The first line of our search algorithm (Fig. 4.3) would access ISA at position i = 6

47

M.Sc. Thesis - Anisa AI-Hafidh McMaster University - Computing & Software 48

't 2 3 4 5 6 7 8

X a b a a b a a b
SA 6 W 7 4 1 8 5 2
ISA 5 8 2 4 7 IT] 3 6
LCP -1 W 1 2 5 0 1 4

Figure 4.4: SA/ISA/LCP arrays for x = abaabaab

and store the value in jl = 1. Before accessing SA[jl - 1J and LCP[jl - 1], we need to

make sure that these are valid positions by checking if jl = 1. Since this is the case

in our example, we initialize i l to -1 and len' , lenl to 0 and hence we will not do a

left search.

Next , the algorithm computes the values needed to do the right search. In line

6, we compute jr = jl + 1 = 2 and then line 7 checks if it is in the valid boundary.

Since 2 > N = 8, the variables ir and len" / lenr are initialized with SA[jrJ = 3

and LCP[jrJ = 3 respectively. In Figure 4.5 , we highlight array values that we had

accessed in SA/ISA/LCP.

Before we start the search, we need to store the ma.,"Ximum of lenl and lenr which

is 3 in the variable len (i.e. the length of the longest match so far). The rest of the

algorithm consists of a while loop that iterates as long as we still did not find our

longest match and alternate between searching left and searching right. Once we find

a match with the longest length so far that occurs previously (i .e. i' = jl or i' = jr

and i' < i) , we return these values (i.e. POS = i' , LEN = l' where l' = lenl or

l' = lenr which ever is larger).

~

I

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

In our example, we will start by searching right as len r > lenl. But since ir =

3 < i = 6, we will not to search at all since we already have our longest match. The

algorithm will t erminate at line 36 with POS = 3 and LEN = 3. That agrees wit h

our conj ecture that there is a high probability that any suitable i f t hat satisfies i f < r

will be located immediat ely. Figure 4.5 shows the variables through the various states

of the algorit hm.

I lines I i lIen I jIll lIen ' Ilenl I j r I ir lIen" Ilenr
1-5 6 1 -1 0 0

6 -10 6 1 -1 0 0 2 3 3 3
11 6 3 1 -1 0 0 2 3 3 3

12 - 35 6 3 1 -1 0 0 2 3 3 3

Figure 4.5: Various st at es of the search algorithm executed for x = abaabaab with
i=6

4.3 Update or Recompute?

Another question was raised from the fact that SA changes whenever the window

slides . Therefore , we need the new S A that corresponds to the new window. That

led us to two choices: either updating the SA or re-computing it.

To update the S A, we needed to find an algorit hm that does t his efficient ly. The

dynamic suffix array DBA described in Chapter 2 (see section 2.3) allows us to

do t hat. The DSA [27] is designed in such a way as t o be updateable whenever

characters are added , deleted or edited in the original string. DSA can be used in its

compact form (i.e. sampled S A) or non-compact (i .e. non-sampled SA) form. We

49

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

decided to experiment with bot h forms. This give raise to two variants of the LZAS:

LZASI and LZAS2.

Recomput ing SA is the straightforward choice and hence we decided to experiment

with it as well . We use it as a measure for the performance of the updating approach.

vVe call this variant LZAS3.

4.4 Is there a better way to update SA?

As we mentioned in section 1.3, it turns out that our approach becomes uncompetitive

when compared to the Okumura [37] implementation. vVe gave two reasons for this

result in Section 1.3. vVe will discuss in this section the second reason which relates

to the mechanism of updating the suffix array.

Recall t hat we need t o update the suffix array whenever the window slides. If

the update was not efficient enough, t hen this will slow t he whole algorit hm as t his

is t he most t ime consuming part of our algorithm. It seems that DSA might not

be effecient enough after all. DSA was designed with a general update in mind i. e.

adding/deleting /substitut ing a let ter or a factor in the original string, regardless of

the position. vVe t hink it is possible to develop an algorithm that updates t he suffix

array more efficient ly for cases of deleting a factor (prefix) at t he beginning of t he

string and adding a factor (suffix) at the end of t he string.

Let us investigate this case closely. Suppose we have a string x and we have its

suffix array S Ax . Deleting a prefix p of length t from x will not affect SAx too

50

lVI.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software 51

much. Let x' be the string produced by this operation. This delete corresponds to

deleting the longest t suffixes in x. For j > t , suffix j in x becomes suffix j - t in

~

I
x'. Then, we only need to subtract t from each entry in the SAx and delete the

nonpositive entries to get SA~,. vVe will see later on that for practical purposes we

will not delete these entries as we can use their slots for the new suffixes that will

result from adding a suffix of the same length as p. Figure 4.6 illustrates this idea

with the string x = abaabaab and p = aba.

~ 12345678

x a b aa baa b
SAx 6 3 7 4 1 8 5 2

subtract ipi = 3
-lJ.

x ' a b a a b
SA' x 3 [ill 4 1 []] 5 2 [JJ

delete nonpositive entries

-lJ.

~ 2 3 4 5

x' a b a a b

SAx' 3 4 1 5 2

Figure 4.6: The effect of deleting a prefix p = aba from x = abaabaab on SA

ow let us investigate the effect of adding a suffix s of length t to x' on SAx' .

Let us call this new string x", that is x" = x's. This situation requires more work

in order to update the suffix array.

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

Let us examine the effect of this insert/append operation on the corresponding

order of suffixes of x' . Suppose u and v are suffixes of x' and assume that lui> Ivl

without loss of generality. One of the following two cases would arise:

l. u > v: From the definition of lexicographic order in Section 2.l.1 , one of the

following two cases will hold:

1.1 v is a prefix of u , that is u = vu'. Hence, the new suffixes us = vu's < v s

if and only if u's < s .

l.2 u and v differ at position i, that is u [1..i - 1] = v[1..i - 1] and u ri] > v [i].

Therefore, the new suffixes will have the same order (i. e. us > vs).

2. u < v: Since lui > lvi , from the definition of lexicographic order u and v

necessarily differ at some position i. Hence, adding a suffix s will not change

the corresponding order of the new suffixes (i.e. us < vs) .

From the above analysis, we can see that the order of suffixes changes rarely.

Specifically, the order changes if and only if v is a prefix of u and u' s < s (see case

l.1 above). This analysis leads us to the following lemma:

Lemma 4.4.1. Suppose u and v > u are suffixes of a given string x. Then for any
nonempty string s) vs > us if and only if one of the following conditions holds:

(a) u is not a border of v ;

(b) v is a border of u = vu' and s > u'.

52

-,
I

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

The previous lemma indicates that v changes its relation to another suffix u only

rarely, since a very large proportion of the time either (a) or (b) will hold . It seems

to show that the technique of using SA in a sliding window context is viable.

Now given the suffix array SAx' and the substring s added to the end of x ' , how

can we construct (or update) the suffix array of the new string x" = x's? There are

two things that we need to take care of in this setting:

1. The respective ranking of the suffixes that results from appending s to the

suffixes of x ' .

2. The new suffixes that need to be inserted and that comes from t he suffixes of

s.

A quick glance at the first problem leads us to a simple solution. The solut ion

involves scanning the suffix array SAx' from right to left and comparing the updated

suffixes t hat are adjacent i. e. us and vs. If they are not in a correct lexicographic

order, vve swap t hem. vVe stop this process as soon as we cross over suffixes with

maintained respective ranking (see lemma 4.4.1). This is just an outline of a possible

solution and needs more investigation. See Figure 4.7 which illustrates this process

when adding s = baa to x' = abaab. Notice that we have kept the empty entries

when we have deleted the prefix p = aba from x = abaabaab as we will need them

for the final updated SA.

53

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Comp uting & Software

~ 1 2345678

x" a b a a b b a a
3 4 1 5 2

compare suffix 2 and suffix 5: baabbaa < bbaa ----+ swap suffix 5 and suffix 2

X"

SAxl
a b a a b
3 4 1

b a a

[l]w

54

compare suffix 2 and suffix 1: baabbaa < abaabbaa ----+ no swap is required . Stop scanning.

Figure 4.7: Step 1 of updating the suffix array after the adding a suffix s = baa to
x' = abaab

Handling the insertion of the new suffixes that comes from appending s to x'

needs more work. One solution would involve the following steps:

1. Construct the suffix array of s , S As. Since s is usually small (typically 18

characters long) , this is not a costly computation.

2. Add I x'I to each entry of S As. Let us call t his result ing array A.

3. We t hen can compute the updated suffix array SAx" by merging A and SA'w1

using insertion sort . Simply, we take each suffix A[i] and compare it to the

suffixes in SA' I scanning it from right to left . Once we found a suffix j that is x

less than A[i], we stop and insert A[i] before that suffix. T his would probably

involve shift ing t he previously scanned suffixes if there is no empty slot before

suffix j.

M.Sc. Thesis - Anisa AI-Hafidh McMaster University - Computing & Software

It is apparent from step 3 above why we decided to keep the empty slots (i.e. slots

for the nonpositive entries) in the suffix array after deleting the prefix p. Figure 4.8

shows the above processing for our previous example in which we add s = baa to

x' = abaab

55

M.Sc. Thesis - Anisa Al-Haficlh McMaster University - Computing & Software

1. Compute t he suffix array of s = baa

t 1 23

S b a a
SAs 3 2 1

2. Add Ix'i = 5 to each entry of SAs

t 1 2 3

S b a a
A 8 7 6

JJ.

3. Merge SAx' and A to produce SAx" using insertion sort

't 2 3 4. 5 6 7 8

x" a b a a b b a a

SAx' :3

~
4 1 2 .5

[ill :3 4 1 2 5 ill:>ert :> l1ffix S (i. e. a)

\\
8 [I] 3 4 1 2 5 iIl:>ert :>l1ffix 7 (i.e. aa)

~~
SAx" 7 3 4 1 []] 2 5 ill:>el t suffix 6 (i. e. baa)

Figure 4.8 : Step 2 of updating the suffix array after the adding a suffix s = baa to
x' = abaab

56

Chapter 5

Experiments

In this chapter we investigate the practical times of our algorithm variants (i. e.

LZASl , LZAS2 and LZAS3) using standard files from the well-known Calgaryl and

Canterbury2 corpora.

5.1 Implementation

vVe have implemented the three variants of LZAS described in Chapter 4. As we

ment ioned in Chapter 4, the first two variants, LZASI and LZAS2 , use t he dynamic

suffix array DSA desrcibed in Section 2.3. DSA can be used in its compact form

(i.e. sampled SA) or non-compact (i.e. non-sampled SA) form . vVe experimented

with both forms. The code for both forms were provided by Mikael Salson. The

third vraiant, LZAS3 , recomputes the suffix array whenever the window slides . For

test ing purposes, we use a supralinear suffix array construction algorithm SACA but

l ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression. corpus?
2http://corpus.canterbury .ac.nz?

57

M.Sc. Thesis - Anisa AI-Hafidh McMaster University - Computing & Software

efficient according to [28] . T he code for this SACA is due to N. Jesper Larsson3 . vVe

also tested an LZSS implementation in C due to Okumura [37] against LZAS variants.

All codes were optimized using various optimization techniques. They were also

compiled with an optimization option of the highest level, -03 (i .e. using GNU g++

compiler). This option turns on more expensive optimizations, such as function in-

lining, in addition to all the optimizations of the lower levels -02 and -01. The -03

optimization level may increase the speed of the resulting executable, but can also

increase its size.

5.2 Platform

Hardware All tests were conducted on a SUN X4600 M2 Server with four 2.6 GHz

Dual-Core AMD Opteron(tm) 8218 Processors (total of eight processor cores) , 32GB

of RAM (64-bit word length) , and four 146GB SAS disks.

Software The operating system is Redhat Linux 5.3 running kernel 2.6. 18. All

implementations were in C++ , compiled using GNU g++ (gcc version 4.1.2) at the

-03 optimization level.

3ean be obtained at the bottom of http : //www .larsson.dogma.net /research . html? from
the source code sect i on

58

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software

5.3 Timing

We use a c++ library function "gettimeofday,, 4 to measure the execution time of

the algorithms. We run each algorithm 4 times against each test string. The minimum

of these 4 tests was taken as the final result.

5.4 Test Data

The corpus of our test data consists of 20 fi les from t he well-known Calgary and

Canterbury corpora. The files in these corpora have being developed specifically for

testing compression algorithms. They were selected based on their ability to provide

representative performance results. The investigated data files are listed in Table 5. 1.

5.5 Discussion of Test Results

Table 5.2 give the total runtime in microseconds/ letter for LZAS variants and LZSS

with window size N = 4096 and look ahead buffer size F = 18. Table 5.3 give

t he average runtime in microseconds/letter with the window size ranges from 256 up

to 8192. Figures 5.1 , 5.2 and 5.3 show the processing time verses various window

sizes for LZASl , LZAS2 and LZAS3 respectively for our test data strings. F igure 5.4

compares the behaviour of all three variants using the average processing t ime in

milliseconds/letter. vVe are not measuring the memory usage since all algorithms

have very small memory requirement (about 400-900 KB).

4include: < sys/ time.h >

59

M.Sc. Thesis - Anisa A l-Hafidh McMaster University - Computing & Software 60

I File name I Category Size

Calgary Corpus
bib Bibliography (refer format) 111261
book2 Non-fiction book (troff format) 610856
news USENET batch file 377109
paper1 Technical paper 53161
paper2 Technical paper 82199
paper3 Technical paper 46526
paper4 Technical paper 13286
paper5 Technical paper 11954
paper6 Technical paper 38105
progc Source code in " C" 39611
progl Source code in LISP 71646
progp Source code in PASCAL 49379

Canterbury Corpus
alice29.txt English text 152089
asyoulik. txt play Shakespeare 125179
cp.html HTML source 24603
fields.c C source 11150
grammar .lsp LISP source 3721
lcet10.txt Technical writing 426754
plrabn12.txt Poetry 481861
xargs.1 GNU manual page 4227

Table 5. 1: Descript ion of test data

M.Sc. Thesis - Anisa Al-Hafidh McJvIaster University - Computing & Software

File name I LZAS1 LZAS2 LZAS3 I LZSS

Calgary Corpus
bib 54.63 14.03 091.23 0 .40
book2 51.87 13.44 89.59 0 .40
news 61.43 14.40 102.41 0.37
paper1 52.27 13.33 89.92 0 .41
paper2 51.145 13.65 91.12 0 .41
paper3 52.89 13.61 95.00 0 .40
paper4 55.39 13.93 103.11 0.41
paper5 57.89 13.90 103.73 0 .41
paper6 54.19 13.44 91.59 0 .42
progc 54.24 13.19 88.86 0.41
progl 38.21 11.34 68.15 0 .45
progp 39.05 11.22 69.67 0.48

Canterbury Corpus
alice29 .txt 50.94 13.36 91.99 0 .42
asyoulik. txt 54.87 13.97 95.94 0 .39
cp.html 55.98 14.15 91.45 0 .40
fields.c 41.10 11.37 76.23 0.45
grammar.lsp 48.209 11.69 96.75 0.43
lcet10.txt 50.83 13.23 89.35 0.41
plrabn12.txt 55.08 14.42 100.43 0.39
xargs.1 53.14 13.30 111.19 0.38

Table 5.2: Runtime in microseconds/ letter for LZAS1, LZAS2 , LZAS3 and LZSS

Window Size I LZAS 1 LZAS2 LZAS3

256 62.3 8.6 8.2
512 55.0 9.3 14.2
1024 46.6 10.1 25.8
2048 50.7 11.3 48.3
4096 51.7 13.2 91.9
8192 53.9 16.5 178.5

Table 5.3: Average runtime in microseconds/letter for LZAS1 , LZAS2 , LZAS3 over
various window sizes

61

M. Sc. Thesis - Anisa Al-Hafldh McMaster University - Computing & Software

vVe make the following observations:

(1) LZSS is 30-40 times faster than LZAS2 (the fastest among LZAS variants). As

we mentioned before , the experiment of scaling up an implementation of LZSS

triggered the idea of scaling down the SA-based LZ algorithms. However , it

turns out that our approach becomes uncompetitive to LZSS. Okumura imple­

mentation 's [37] uses 256 binary search trees to achieve fast searches. It seems

that the binary search trees are more efficient for small strings and hence work

well for a sliding window approach; while suffix arrays are more efficient for long

strings and hence work efficiently for a whole string.

(2) For N = 4096 , among the LZAS variants, LZAS2 is the fastest one. This

was expected as we are updating the suffix tree here rather than recomputing it

(LZAS3) and we are maintaining the whole suffix array rather than just sampled

values of SA/ ISA (LZAS 1).

(3) LZAS1 processing time per letter is relatively stable (see Figure 5.1). This

probably refelcts the logarithimc factor involved in sampling.

(4) LZAS2 processing time per letter increases steadily as the window size increases

(Figure 5.2) but it remains the generally the fastest. This increase is clearly

logarithmic: as N varies from 28 to 213 (a factor of 25), time per letter approx­

imately doubles .

62

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Comp uting & Software

(5) LZAS3 processing time increases linearly as the window size increases. This is

expected since we are recomputing SA whenever the window slides. Since the

window size is increased by a factor of 2, we would expect an increase by a

factor of 2 in the computation of SA as the update/recompute step is t he most

consuming part of our algorithm ..

(6) vVhen varying the window size, LZAS2 is still the fastest except for N = 256

where LZAS3 is a litt le bit faster. Also notice that for window sizes 256-1024

LZAS3 is faster than LZAS1 (see Figure 5.4). vVe can conclude that LZAS3 is

better for small window sizes.

63

45~---.

40+1--~

351-------~~--------------------------------------~

30l---------------------~==~--------------------------1

-----~ -----~~::==~~~~==~----==~~==~========------~~~----_l ~ 25+----~
o
4)

$..

E 201-------------------------~==~~--~----------------------~
f=

-_.---'

15+1--~

10+1--~

~.- '" • • •
5 I ~ .. i«)IE ..)I::

L~ " ~ 0 ; :- : ; ~ x : :

256 512 1024 2048 4096 8192

Window Size (bytes}

Figure 5.1: Time VS. Window Size For LZASI

~
Cf}
0

~
(1)
I:Jl

-+- bib
I:Jl

- book2 ~
t:::l

news I:Jl
."

_ paper1 ~
'"-

-- paper2
I

~ - paper3 ::::::n

-+-paper4
a...
b-'

--paper5

-- paper6

progc ~
alice29 ~
asyoulik I:Jl

c:;-

- - cp.html ~

-+- fields.c ~
- grammar.lsp &
- - lcet1 O. txt ~
-- plrabn12.txt ~

I

--xaros.1 Q
8

1::l
r::
c:;-.....
t:::l

O"q

R;>
Cf}
0
~

~
'"!
(1)

G:l
~

~ -= -:;
(,)
41
$..

~
~

12 ~--~

8

6

~ /
/'

/'
./

.... ~/.r ,/

.--.--.-~ . ~-.- ../..-"--
..;-_ ... ,.r-----

------+~---~-,~-~-------

~.---.'
.------ .. -----..;-

__ r ~_~_._ J-- ""

_ ... -----_111----
-~- '

.~.~,.~

,.r·

L -
4 :.

.. =-----sY

2+1-- --------------~

.: ~
f f y T '

o 1 • . , •• f' " s.. "' ~ c · -- ~

256 512 1024 2048 4096 8192

WindQw Size (bytes)

Figure 5.2: Time VS . Window Size For LZAS2

~
V'J.
5'

~
(1)

'"
'"

-+- book2 ~
t:::l

- news
'" paper1
~

~
- paper3

.......
I

~paper4 ~ :::n
- paper5 Q.,

t:::l"
-+- paper6

-- progl

-- progp ~
alice29 ~ cp.html '" c:-t-

fields .c
(1)
>-;

- -- grammar.lsp ~
-- lcet10 (§
- plrabn12 ~

.- xarQs.1 ~
I

9
!3
"0
c:
c:-t-.....
t:::l

O'q

~
V'J.
0
~

~
>-;
(1)

0':>
CJl

120 ~--. ~
\J1
:0

~
-+- bib <ll

(J)
100 .

80 I
/;

.I
j

J

~

/
"; 1/ Q
<.)
4> 60

,/

$.
4> - / / /

1= / / ,. / 1
40 I

.//
/ , .

f / '

/
/~

20 I / / Y
· ./'

""-
y / c~".- ,

./ ~> -----

~---:;:::::-;;:';::::.::>:- -

~t_=--~~~;;-:::~----: .".
~~~-'~ 

i ;;t.C 

.. -

o 
256 512 2048 8192 4096 1024 

.... 

- book2 (J) 

news ~ 
b 

--->E- paper1 .... . 
(J) 
(l:> 

- paper2 ~ ...... 
- paper3 I 

~ -+- paper4 ::n 
-- paperS Cl... 

b" 

-- paper£) 

progc 
progl ~ 
progp ~ 

- - alice29 (J) 
O"t-

-+.- asyoulik ~ 

-+-- cp.html ~ ..... 
.. fields .c & 

--grammar.lsp ~ ..... 
-- lcet10 ~ 

I 

-+- plrabn12 61 
- xargs.1 :3 

>0 
c: 
O"t-..... 
b 
~ 

R;> 
\J1 

Window Size (bytes) 0 
~ 

~ 
>-j 
<ll 

Figure 5.3: Time vs. Window Size For LZAS3 

en 
en 



0.2 

0.18 

0.16 

-=- 0.14 
<I> 

i 
~ 
III 
~ 0.12 
o 
(.j 
<I> 
.~ 
=E 0.1 
S 
~ 

~ 0.08 
<I> 
C') 

z: 
<I> 

~ 0.06 

0.04 

0.02 

o 
"-

256 

i 

/ 

,.. ...... '; 

-.~ 
~ ~. 

• • • 
.. 

512 1024 2048 4096 

Window Size (bytes) 

Figure 5.4: Average Time vs. Window Size For LZAS variants 

~ 
V). 
0 

~ 
Cll 
C/J ..... . 
C/J 

~ 
~ ...... 
C/J 
PJ 
~ 
'"-I 

~ 
i:::::h 
Q.. 
b-' 

------. 
--+-l..ZAS1 

- l..ZAS2/ ~ l..ZAS3 
~ 
PJ 
C/J 
c-t-

~ 

2? ...... 
& 
~ ..... . 
q-

I 

61 
.. ~ 

.: 
c-t-..... . 
~ 

O"q 

8192 
R;> 
V). 
0 
~ 

~ 
>-j 
Cll 

Ol 
-.J 



, 
-1 

Chapter 6 

Conclusion and Future Work 

In this thesis we have discussed the use of Lempel-Ziv factorization for dictionary-

based dat a compression. vVe gave a brief explanation of the general processing in 

LZ77 and LZ78 to enable the reader to distinguish between the two schemes. vVe 

also discussed the process of updating the suffix array using DSA and t he idea of 

sampling. Then we presented our new algorit hm along with its variants and an 

interesting simple search algorithm that is used to find the longest previous match. 

vVe conducted comprehensive testing using well-known corpora that are designed for 

compression algorithms. vVe compared our algorithm variants against each other and 

against a previous algorithm (i.e. LZSS). Some observations were drawn from the 

test results. 

We have discussed the updating process of the suffix array and how we can make 

it more efficient for t he case of deleting a prefix and adding a suffix. The idea seems 

promising, although it might not be enough to improve our algorithm. It might be 

68 



j 

i 

M .Sc. Thesis - Anisa Al-HaBdh McMaster University - Computing & Software 

useful for other applications. 

Another improvement that can be done is related to the computation of the inverse 

suffix array ISA. In our search algorithm we use only one ISA value, specifically ISA[r]' 

where r = N - F + 1. So we do not really need to compute the whole ISA array. 

One solution would be to make the SACA algorithm pick up and return the value at 

position r that we need; alternatively, a binary search of SA would yield the same 

value. 

69 



Bibliography 

[1] Anisa Al-Hafidh, Maxime Crochemore, Lucian !lie, Jenya Kopylov , W. F. Smyth, 
German Tischler , & Munina Yusufu, A Comparison of Lempel-Ziv LZ77 
Factorization Algorithms in prepration. 

[2] M. 1. Abouelhoda, S. Kurtz , & E. Ohlenbusch, Replacing suffix trees with 
enhanced suffix arrays , J. Discrete Algs. 2 (2004) 53- 86. 

[3] Timothy C. Bell, Better OPM/L text compression, IEEE Trans. Commu­
nications COM-34 (12) (1986) 1176- 1182. 

[4] Jean Berstel & Alessandra Savelli , Crochemore factorization of Sturmian 
and other infinite words , Proc. 31st Internat. Symp . Math. Foundations of 
Computer Sci. , Ratislav Kralovic & Pawel Urzyczyn (eds.) , LNCS 4162, Springer­
Verlag (2006) 157- 166. 

[5] Michael Burrows & David J. \lVheeler, A Block-Sorting Lossless Data Compres­
sion Algorithm, Technical Report 124, Digital Equipment Corporation (1994). 

[6] Maxime Crochemore, Transducers and repetitions, Theoret. Comput. Sci. 
45- 1 (1986) 63- 86. 

[7] Maxime Crochemore & Lucian !lie, Computing longest previous factor in 
linear time and applications , Inform. Process. Lett. 106 (2008) 75- 80. 

[8] Maxime Crochemore, Lucian !lie, & \IV. F . Smyth, A simple algorithm for 
computing the Lempel-Ziv factorization , Proc. 18th Data Compression 
Conference (DCC'08) , J. A. Storer & M. \IV. Marcellin (eds.) (2008) 482- 488. 

[9] Maxime Crochemore, Gad M. Landau & Michal Ziv-Ukelson, A sub-quadratic 
sequence alignment algorithm for unrestricted cost matrices , Proc. 12th 
ACM-SIAM Symp. Discrete Algs. (2002) 679- 688. 

[10] Gang Chen, Simon J. Puglisi, & \IV. F . Smyth, Fast and practical algorithms 
for computing all runs in a string, Proc. 18th Annual Symp. Combinatorial 

70 



M.Sc. Thesis - Anisa A l-Hafidh McMaster University- Computing & Software 

Pattern Matching, Bin Ma & Kaizhong Zhang (eds.) , LNCS 4580, Springer­
Verlag (2007) 307- 315. 

[11] Gang Chen, Simon J. Puglisi & vV. F. Smyth, Lempel-Ziv factorization using 
less time & space, Mathematics in Computer Science 1-4 , Joseph Chan and 
Maxime Crochemore (eds.) (2008) 605- 623. 

[12] J. G. Cleary & 1. H. Witten, Data compression using adaptive coding & 
partial string matching, IEEE Transactions on Communications 32(4) (1984) 
396- 4023. 

[13] J. G. Cleary, VV. J. Teahan & 1. H. Witten, Unbounded length contexts for 
PPM, The Computer Journal 40(2/3) (1997) 67- 75. 

[14] Michael Dipperstein, LZSS (LZ11) Discussion and Implementation 

http://michael.dipperstein.com/lzss / 

[15] J.-P. Duval, R. Kolpakov, G. Kucherov, T. Lecroq, & A. Lefebvre, Linear-time 
computation of local periods , Theoret. Comput. Sci. 326 (1-3) (2004) 229-
240. 

[16] Fiala & Greene, Data Compression with Finite Windows , CACM: Com­
munications of the ACM 32 (1989) . 

[17] P. Ferragina & G. Manzini , Opportunistic data structures with applica­
tions , Proc. ojthe 41st IEEE Symposium on Foundations of Computer Science 
(2000) 390- 398. 

[18] P. Ferragina , G. Manzini , V. Makinen & G. Navarro Compressed representa­
tion of sequences and full-text indexes , A CM Trans. Algo. 3 (2007) article 
20. 

[19] Yoko, Hidetoshi , An improvement of dynamic huffman coding with a 
simple repetition finder , IEEE Transctions on Communications 39(1) (1991) 
8- 10. 

[20] Roman Kolpakov & Gregory Kucherov , Finding maximal repetitions in a 
word in linear time, Proc. 40th Annual IEEE Symp. Found. Computer Science 
(1999) 596- 604. 

[21] Roman Kolpakov & Gregory Kucherov, Finding repeats with fixed gap , 
Proc. 7th International Symposium on String Processing fj Information Retrieval 
(2000) 162- 168. 

71 



M .Sc. Thesis - Anisa A l-Hafidh McMaster University - Computing & Software 

[22] Pang Ko & Srinivas Aluru, Space efficient linear time construction of 
suffix arrays , Proc. 14th Annual Symp . Combinatorial Pattern Matching, R. 
Baeza-Yates, E. Chavez & M. Crochemore (eds.) , LNCS 2676 , Springer-Verlag 
(2003) 200- 210. 

[23] T . Kasai, G. Lee, H. Arimura, S. Arikawa & K. Park, Linear-time longest­
common-prefix computation in suffix arrays and its applications , Proc. 
12th Annual Symp . Combinatorial Pattern Matching, Amihood Amir & Gad M. 
Landau (eds.) , LNCS 2089, Springer-Verlag (2001) 181- 192. 

[24] Juha Karkkainen, Giovanni Manzini & Simon J. Puglisi, Permuted longest­
common-prefix array , Proc. 20th Annual Symp. Combinatorial Pattern 
Matching (2009) to appear. 

[25] Juha Karkkainen & Peter Sanders, Simple linear work suffix array con­
struction, Proc. 30th Internat. Colloq. Automata, Languages f3 Programming, 
LNCS 2719, Springer-Verlag (2003) 943- 955. 

[26] Mikael Salson, Thierry Lecroq, Martine Leonard , & Laurent Mouchard A four­
stage a lgorithm for updating a Burrows-Wheeler Transform, Theory of 
Computer Science. To appear .. 

[27] Mikael Salson, Martine Leonard , Thierry Lecroq & Laurent Mouchard Dynamic 
Extended Suffix Arrays , Journal of Discrete Algorithms. To appear .. 

[28] J. N. Larsson & Kunihiko Sadakane, Faster Suffix Sorting, Tech . Rep. LU-CS­
TR:99-214 [LUNFD6/(NFCS-3140)], Department of Computer Science, Lund 
University, Sweden (1999) 20 pp. 

[29] Abraham Lempel & Jacob Ziv, On the complexity of finite sequences , IEEE 
Trans . Information Theory 22 (1976) 75- 81. 

[30] Mohammad Banikazemi , LZB: Data Compression with Bounded Refer­
ences , Data Compression Conference (2009) 436 . 

[31] G. Manzini , Two space saving tricks for linear time LCP computation, 
Proc . 9th Scandinavian Workshop on Algorithm Theory, T. Hagerup & J. Kata­
jainen (eds.) , LNCS 3111 , Springer-Verlag (2004) 372- 383. 

[32] Giovanni fanzini & Paolo Ferragina, Engineering a lightweight suffix array 
construction algorithm, Algorithmica 40 (2004) 33- 50. 

[33] Michael Maniscalco & Simon J . Puglisi , Faster lightweight suffix array con­
struction, Proc. 17th Australasian Workshop on Combinatorial A lgs., Joe Ryan 
& Dafik (eds.) (2006) 16-29. 

72 



-, 
1 

M. Se. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software 

[34] V. S. Miller & M. N. ·Wegman, Variations on a theme by Ziv and Lempel, 
Combinatorial Algorithms on Words, A. Apostolico & Z. Galil (eds.) , NATO ASI 
series Vol. F12 , Springer-Verlag (1985) 131- 140. 

[35] V. Makinen & G. Navarro, Dynamic entropy-compressed sequences and 
full-text indexes , ACM Trans. Alg. 4(3) (2008) article 32. 

[36] Mark Nelson & Jean loup Gailly, The Data Compression Book, M&T Books 
(1995) 541 pp. 

[37] Haruhiko Okumura, LZSS source code in C 

ht t p: //www .programmersheaven . com/ download/ 2260/ 4/ ZipView.aspx 

[38] Pawel Pylak, Efficient modification of LZSS compression a lgorithm, An­
nales UMCS Informatica AI 1 (2003) 61- 72. 

[39] Simon J. Puglisi & Andrew Turpin , Space-time tradeoffs for longest­
common-prefix array computation, Proc. 19th Internat. Symp . Algs. f3 
Computation, S.-H. Hong, H. Nagamochi & T. Fukunaga (eds) (2008) 124- 135. 

[40] Simon J. Puglisi , vV. F. Smyth & Andrew Turpin, A taxonomy of suffix array 
construction a lgorithms, ACM Computing Surveys 39- 2 (2007) Article 4, 1-
31. 

[41] Bill Smyth, Computing Patterns in Strings , Pearson Addison-Wesley (2003) 423 
pp . 

[42] Jens Stoye & Dan Gusfield, Simple and flexible detection of contiguous 
repeats using a suffix tree , Theoret. Comput. Sci. 279-1/2 (2002) 843-850. 

[43] James A. Storer & Thomas G. Szymanski , Data compression via textual 
substitution, J. Assoc. Comput. Mach. 29- 4 (1982) 928- 951. 

[44] Ross N. vVilliams An Extremely Fast Ziv-Lempel Data Compression Al­
gorithm Data Compression Conference (1991) 362- 371. 

[45] Terry A. vVelch A Technique for High Performance Data Compression 
IEEE Computer 17(6) (1984) 8- 19. 

[46] Christina Zeeh, The Lempel-Ziv Algorithm (2003) 

http: //tuxtina.de / files / seminar/ LempelZiv .pdf 

73 



M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software 

[47] Jacob Ziv & Abraham Lempel, A universal algorithm for sequential data 
compression, IEEE Trans . Information Theory 23 (1977) 337- 343. 

[48] Jacob Ziv & Abraham Lempel, Compression of individual sequences via 
variable-rate coding, IEEE Trans . Information Theory 24 (1978) 530- 536. 

74 


