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Abstract 

In the 1970s, Abraham Lempel and Jacob Ziv developed the first dictionary-based 

compression methods (LZ77 and LZ78). Their ideas have been a wellspring of 

inspiration to many researchers , who generalized, improved and combined them with 

run-length encoding (RLE) and statistical methods to form many commonly used 

lossless compression methods for text , image and sounds. 

The proposed methods factor a string x into substrings (factors) in such a way as 

to facilitate encoding the string into a compressed form (lossless text compression). 

This LZ factorization , as it is commonly called today, became a fundamental data 

structure in string processing, especially valuable for string compression. Recently, it 

found applications in computing various "regularities" in strings. 

The main principle of LZ methods is to use a portion of the previously seen input 

string as the dictionary. LZ77 and LZ78 encoders differ in two aspects . The first 

aspect is that LZ77 uses a sliding window unlike LZ78 which uses the entire string for 

building the dictionary. The use of a sliding window in LZ77 makes its decoder much 

simpler and faster than the LZ78 decoder. This implies that LZ77 is valuable in 

cases where a file is compressed once (or just a few times) and is decompressed often. 

A rarely used archive of compressed files is a superb example. The other aspect is the 

format of the codewords. LZ77 codewords consist of three parts: position, length 

and first non-matching symbol , while LZ78 removes the need for the length of the 

match in the codeword since it is implied in the dictionary. 

A whole family of algorithms has stemmed out of the original LZ algorithms (LZ77 

and LZ78). This was a result of an effort to improve upon the LZ encoding algorithm 
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in terms of speed and compression ratio. Some of these variants involved the use of 

sophisticated data structures (e.g. suffix trees, binary search trees , etc) to hold the 

dictionary in order to boost the search time. The problem with such data structures 

is that the amount of memory required is variable and cannot be known in advance. 

Furthermore, some of these data structures require a substantial amount of memory. 

LZ is the basis of the gzip (Unix) , winzip and pkzip compression techniques. 

In the testing for [1], we scaled up an LZSS implementation due to Haruhiko 

Okumura [37] so as to be useful for regularities (N = n , the length of the whole 

input string, and F equal to the full length of the unfactored suffix). vVe found that 

the binary tree approach becomes uncompetitive with algorit hms that use the suffix 

array (SA) approach for the LZ factorization of the whole string. This observation 

triggered us to scale down the SA approach. 

The main contribution of this thesis is a novel LZ77 variant (LZAS) that uses a 

suffix array (SA) to perform the searches. The SA is augmented with a very simple 

and efficient algorithm that alternates between searching left and right in SA to find 

the longest match. Suffix arrays have gained the attention of researchers in recent 

years due to their simplicity and low memory requirements . They solve the sub-string 

problem as efficiently as suffix trees, using less memory. One notable advantage of 

using SA in an LZ encoder is that the amount of memory is independent of the 

text to be searched and can be defined a priori. The low and predictable memory 

requirement of this approach makes it suitable for memory-critical applications such 

as embedded systems. Moreover, our experiments show that the processing time per 

letter is almost stable and hence we can predict the processing time for a file given 

its size. Our proposed algorithm can additionally be used for forward/ backward sub­

string search. 

In this thesis we investigate three variants of the LZAS algorithm. The first 

two of these variants (i.e. LZAS1 and LZAS2) use a dynamic suffix array DSA . DSA 

is a suffix array that can be updated whenever a letter or a factor is edited (i.e. 

deleted/ inserted/substituted by another letter or factor) in the original string. The 
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suffix array of a sliding window changes whenever t he window slides. Hence, we use 

t he DSA to make sure t hat t he suffix array is up to date. T he DSA can be com­

pressed using a sampling technique; therefore we decided to experiment with both 

sampled and non-sampled DSA. The third variant (i. e. LZAS3) re-computes t he suffix 

array instead of updating it . We use an implementation of a suffix array construction 

algorit hm (SACA) t hat requires supralinear time [28] but performs well in practice. 

vVe t ested these variants against each other in terms of time and space. vVe further 

experimented with various window sizes and noticed t hat re-computing SA becomes 

better than updating it using DSA when the window size is small (i .e. hundreds of 

bytes compared to t housands of bytes). 
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I Chapter 1 

Introduction 

LZ77 and LZ78 compression [47, 48] started a novel category of compression methods: 

dictionary-based compression. The ideas of LZ77 and LZ78 have been a wellspring of 

inspiration to many researchers. This led to whole a family of variants that stemmed 

out of the original LZ algorithms (LZ77 and LZ78) . 

The proposed methods factor a string x into substrings (factors) in such a way as 

to facilitate encoding the string into a compressed form (lossless text compression) . 

This LZ factorization, as it is commonly called today, became a fundamental data 

structure in string processing, especially valuable for string compression. 

The main principle of LZ methods is to use a portion of the previously seen input 

string as the dictionary. vVe will describe briefly t his principle in the context of a 

sliding window which is used in LZ77 but not in LZ78 . For more details on LZ77 and 

LZ78 see Chapter 3. 

LZ77 operates not on the string as a whole, but only on a sliding window of length 
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N. The window is divided into two parts (see Fig. l.1 ): 

l. A search buffer which contains input that has already been encoded. 

2. A lookahead buffer of length F , an as-yet-unencoded suffix. 

search buffer lookahead buffer 

~ text already encoded . 

window slides by the length of the 
longest match Ibbal 

. ....... ~text yet to be input 

search buffer lookahead buffer 

~ text alre ady encoded ....... ~text yet to be input 

Figure l.1: Example to illustrate the sliding window in LZ77 

The encoder maintains t he window and shifts it from left to right as strings of symbols 

are being encoded. It scans the search buffer looking for t he longest match to a 

prefix of t he lookahead buffer. Once a match is determined, the encoder outputs a 

codeword and shifts the window to the right by the length of the match . In practical 

implementations the search buffer is usually some t housands of bytes long, while t he 
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lookahead buffer is only t ens of bytes long. It has been found that in practice the use 

of the sliding window provides compression as good as using the entire string would 

yield, and of course processing time is substantially reduced. 

LZ77 has many variants that improved upon the original version. LZSS is the first 

and most prominent amongst them. It was developed by Storer and Szymanski in 

1982 [43J. Bell [3J improved LZSS by using a binary search tree to hold the dictio­

nary. Another improvement comes from the observation that using a large tree with 

N - F strings in it would lead to an expected tree height of log(N) , hence log(N) 

comparisons, assuming the tree was balanced. A direct way to reduce that mau-ximum 

height is to use 256 different trees , one for every possible init ial character. Some 

implementations use N trees , choosing them by hashing on the first three characters. 

Hence, one can decide which trees to search using the first three characters of t he 

lookahead buffer and the hashing function. 

In the testing for [1 J, we scaled up an LZSS implementation due to Haruhiko 

Okumura so as to be useful for regularities (N = n , the length of the whole input 

string, and F equal to the full length of t he unfactored suffix) . vVe found that t he 

binary tree approach becomes uncompetit ive wit h algorit hms t hat use the suffix array 

(SA) approach for the LZ factorization of the whole string. This observation triggered 

us to scale down the SA approach. 

The key idea is to replace the binary search t ree (or any other type of tree) by 
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the suffix array. The search is done using a simple elegant algorit hm that performs 

a left/right search of t he suffix array to obtain the longest match (for t he lookahead 

buffer in the search buffer). Another advantage of such a method is that the memory 

is fixed and independent of t he string length. 

1.1 Background 

Data Compression algorithms exploit characteristics such as repeating substrings 

(patterns) to make the compressed data smaller than the original data. Lossless 

compression algorithms - as opposed to "lossy" compression algorithms - ensure 

that the original information can be accurately reproduced from the compressed data. 

vVell-known lossless compression techniques include: 

• Run-length encoding (RLE) which basically replaces n consecutive occurrences 

of item d by the single pair nd, 

• statistical techniques such as Huffman coding and predication by partial match-

ing (PPM) , and 

• dictionary coders. 

The Lempel-Ziv algorithms belong to the last category. 

Dictionary coding techniques rely upon the observation t hat there are correla­

tions between parts of data (recurring patterns). The basic idea is to replace those 
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repetitions by (shorter) references to a "dictionary" . The dictionary holds strings 

of symbols from the original data, and it can be static or dynamic (adapt ive). The 

former is permanent, sometimes allowing the addit ion but no deletions, whereas the 

latter holds strings previously found in the input stream allowing for additions and 

deletions of strings as new input is being read. Thus, we can divide the dictionary 

coders further according to the nature of the dictionary in the following categories: 

• static dictionary coders, 

• semi-adaptive dictionary coders , and 

• adaptive dictionary coders. 

Most of the Lempel-Ziv algorithms belong to the third of the above cat egories. The 

dictionary is built in a single pass, while at the same time the dat a is encoded. It 

is not necessary to explicitly transmit /store the dictionary because the decoder can 

build up the dictionary in a way similar to the encoder . 

In general, an adaptive dictionary-based method is preferable. It can start with 

an empty dictionary or with a small , default dictionary: add ent ries to it as they are 

found in the input stream, and delete old entries since a large dictionary means slow 

search. We can visualize an adaptive dict ionary-based method as a loop where each 

iteration: 

• st arts by reading the input st ream, and 

5 
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• breaks it up (parses it) into words or phrases, 

• then searches the dictionary for each word or phrase; 

4 

I • if a match is found , writes a token in the output stream. 

• Otherwise, the uncompressed word should be written and also added to the 

dictionary. 

• Finally, it checks to see whether an old entry should be deleted from the dictio-

nary. 

This may seem complicated , but it has two important features that differentiate 

it from other compression techniques: 

1. It involves string search and match operations, rather than numerical compu-

tations. 

2. The decoder is simple. In statistical compression methods, the decoder is 

the exact opposite of the encoder (symmetric compression). In an adaptive 

dictionary-based method , however , the decoder has to read its input stream, 

determine whether the current item is a token or uncompressed data, use to-

kens to acquire data from the dictionary, and output the final , uncompressed 

data. It does not have to parse the input stream in a complex way, and it does 

not have to search the dictionary to find matches. 
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1.2 Applications 

LZ factorization has recently found application in the computation of various "reg­

ularities" in strings: repetitions [6], runs (maximal periodicities) [20, 2, 10, 11 , 7, 8], 

repeats with fixed gap [21], branching repeats [42], sequence alignments [9], and lo­

cal periods [15]. For these applications, the LZ factorization of the entire string, 

not merely a window, is required. However , we are interested here in the original 

application of LZ in data compression. 

vVe seem to be preprogrammed with the idea of sending as little data as we can to 

save time. We normally tend to accumulate data and hate to throw anything away. 

Over time, this can lead to an overflow no matter how large our storage device is. 

Time is also an issue for us. We hate to wait for a large file to download or a web 

page to be displayed on our screen; anything longer than a few seconds is usually 

a long time to wait . Hence, compression is useful as it reduces the consumption of 

expensive resources such as hard disk space or transmission time. 

Data compression is the process of encoding data using fewer bits than the actual 

unencoded data. A compression scheme is either loss less or lossy. Lossless compres­

sion schemes- as opposed to "lossy" compression schemes- ensure that the original 

information can be accurately reproduced from the compressed data. LZ compres­

sion is a loss less compression scheme. Therefore, in what follows we will mention 

applications related to lossless compression. 
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Optimizing disk space or bandwidth of a network is usually done with loss less data 

compression. Also, in compressing files that contain symbols such as spreadsheets, 

texts , executable program, etc., losslessness is important as changing even a single 

bit cannot be tolerated. 

Modern modems contain hardware that automatically compresses data as they 

send it. If the data is already compressed, there will not be any farther compression. 

As there might be expansion sometimes, the modem should be able to monitor the 

compression ratio "on the fly" and, if it is low, it should stop compressing and send 

the rest of the data uncompressed. An example of this technique is V.42bis protocol. 

V.42bis protocol uses the LZW variant (a famous LZ78 variant) when operating in 

"compressed" mode. 

Most graphics file formats use some kind of compression. GlF (the graphics 

interchange format) was developed by Compuserve Information Services in 1987 as an 

efficient, compressed graphics file format , which allows for images to be sent between 

different computers. It uses a variant of LZW to compress the graphics data. 

1.3 The New Algorithms 

As we mentioned before , the experiment of scaling up an implementation of LZSS , 

due to Haruhiko Okumura [37], triggered the idea of scaling down the SA-based LZ 

algorithms. Okumura implementation's uses 256 binary search trees to achieve fast 

searches. Most LZ77 variants use some sort of trees (i.e . suffix trees , binary search 
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trees, tries , etc) to speed up the encoding process. 

We designed a novel LZ77 variant that makes use of the suffix array to perform 

the search in the dictionary. The main idea is to replace the binary search tree (or 

any other kind of t ree) by the suffix array. The search is done using a simple elegant 

algorithm that performs a left / right search of the suffix array to obtain the longest 

match in the search buffer for a prefix of the look-ahead buffer. Another advantage 

of such a method is t hat the memory is fixed and independent of t he string length. 

Notice that the suffix array needs to be updated wherever the window slides. In 

this thesis we experiment with two solutions: 

1. Use a dynamic suffix array DSA [27] which can be updated whenever characters 

are added, delet ed or edited in the original string. DSA can be used in its 

compact form (i. e. sampled SA) or non-compact (i.e. non-sampled SA) form. 

vVe experiment with both forms. 

2. Recompute the suffix array whenever the window slides. For test ing purposes, 

we use a supralinear suffix array construction algorithm SACA but efficient 

according to [28]. 

These two solutions give rise to three variants of the LZAS algorithm. The first two 

of these variants (i .e. LZAS1 and LZAS2) use a dynamic suffix array DSA. The suffix 

array of a sliding window changes whenever the window slides. Hence, we use the 

DSA to make sure that t he suffix array is up to date . The DSA can be compressed 
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using a sampling technique. We decided to experiment with both sampled and non­

sampled DSA. The third variant (i .e. LZAS3) re-computes t he suffix array inst ead of 

updating it. We tested these variants against each other in t erms of time and space. 

'liVe further experimented with various window sizes and noticed that recomputing 

SA becomes better than updating it using DSA when the window size is small (i. e. 

hundreds of byt es compared to thousands of byt es). 

We compared our results with Okumura's implementation of LZSS. It turns out 

that our approach becomes uncompetitive to Okumura implementation. This might 

be related to the fact that the binary search trees are more efficient for small strings 

and hence work well for a sliding window approach ; while suffix arrays are more 

efficient for long strings and hence work efficiently for a whole string. When scaling 

up the window to accommodate the whole string, the binary search trees grow bigger 

and become inefficient. The other reasoning is t hat we need to update the suffix array 

whenever t he window slides and if the update was not efficient enough then this will 

slow the whole algorithm as this is the most time consuming part of our algorithm. 

DSA was designed for a general update in mind i.e. adding/deleting /substituting 

a letter or a factor in the original string, regardless of the position. We think it is 

possible to develop an algorithm that updates t he suffix array more efficiently for 

cases of deleting a factor (prefix) at t he beginning of t he string and adding a factor 

(suffix) at the end of t he string. 

10 
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1.4 Thesis Outline 

The reminder of this thesis consists of the following chapters. Chapter 2 prepares the 

background required to make the reading process efficient. It provides the required 

definitions and notation that are used throughout the thesis . Furthermore, data 

structures that are used in our algorithms are described in this preliminary chapter. 

vVe then give a very short chapter, Chapter 3, on LZ77 and LZ78 to enable the reader 

to distinguish between the two schemes. Chapter 4 introduces our novel LZ77 variant 

algorithm for data compression. vVe describe the algorithm in detail and its variants. 

Moreover , we state an interesting lemma that we discovered while investigating the 

process of updating the SA for a particular case (deleting a prefix and adding a suffix 

to the original string). This observation was not considered in the algorithm of DSA. 

vVe think this lemma can be used to develop a more efficient algorithm for updating 

the suffix array for this particular case which would be useful for our context (i.e. 

sliding window). Chapter 5 presents the results of experiments that compare the 

algorithms against each other and against an existing LZ77 variant (LZSS). Finally, 

Chapter 6 provides some concluding remarks and suggestions for improving this work. 

11 



Chapter 2 

Preliminaries 

2.1 Basic Definitions 

In this section we give definitions and notation required for the reader to comprehend 

the material presented in t his thesis. Most of these defini t ions come from [41] . 

2.1.1 Alphabets and Strings 

This thesis deals with linear strings. A linear string is a fin ite sequence of characters 

called letters which are elements of a nonempty finite set I: called an alphabet. 'vVe 

use ()" to denote the size of the alphabet 1 I: I. A string of length n is denoted by 

x = x [Ln] = x [1]x [2] ... x [n], where x li] represents a character at position i for 

i E L n . 

'vVe use x [i .. j ] to denote a substring of x starting at position i of length j - i + 1, 

where 1 ::; i ::; j ::; n , i. e. x[i .. j ] = x [i] x [i + 1] ... x [j ]. If j < i , then x [i .. j ] = E , 

the empty string. Using this notation we can write a prefix of x start ing at posit ion 

j E Ln, as x[Lj]. A prefix is said to be a proper prefix when j < n. Likewise, 
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x [i .. n] denotes a suffix of x starting at position i E l..n+ 1 and when i > 1 it is called 

a proper suffix. For example, the prefixes and suffixes of abaaabba are shown in 

Figure 2.l. P roper prefixes and suffixes are produced by simply excluding t he string 

itself from the previous lists. 

'When a proper prefix x [1..j] and a proper suffix x [i .. n] of a string x are equal so 

that i = n - j + 1, we say that x has a border b = x [1..j ] = x[i .. n] of length j. 

From Figure 2. 1, we see that string x = abaabaab has two nonempty borders: ab and 

abaab. Observe that the longest one, abaab, overlaps with itself. 

prefixes E, a, ab, aba, abaa , abaab, abaaba, abaabaa , abaabaab 
suffixes E, b, ab , aab , baab , abaab, aabaab, baabaab, abaabaab 

Figure 2.1 : Prefixes and suffixes of x = abaabaab 

vVe require I: to be an ordered set; hence we can define a lexicographic order 

on strings of I:. Suppose we are given two strings x = x [1..n] and y = y [1..m]' where 

n 2': 0 and m 2': O. We say that x < y (x is lexicographically less than y) if and only 

if one of the following (mutually exclusive) conditions hold: 

• n < m and x [1..n] = y [1..n] (i.e. x is a proper prefix of y ); 

• x[1..i - 1] = y [1..i - 1] and x li] < y [i] for some integer i E 1.. min n, m (this is 

t he case in which there is a first position i in which x and y differ). 

vVhen needed, we use $ as a sent inel letter in posit ion n + 1, that is not equal to 

13 
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any other letter in x and that is lexicograhically less than all letters in ~. 

A cyclic shift (or rotation) of x is defined to be the string xli] = x [j + 

l..n]x [l..j ] for every integer j E O .. n - 1. Thus x[O] = x and the eight cyclic shifts of 

our example x = abaabaab are as follows: 

x[O] = abaabaab 

X[I] = baabaaba 

X[2] = aabaabab 

X[3] = abaababa 

X[4] = baababaa 

X[5] = aababaab 

X[6] = ababaaba 

X[7] = babaabaa 

(2 .1.1) 

'Writing x = WI W2 ••• Wk where the Wi are nonempty substrings, i E l..k , is 

called a factorization or decomposition of x into factors Wi . Thus a factor is 

just a nonempty substring. 

14 
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2.1.2 Lempel-Ziv Factorization LZ 

For an LZ factorization of x, we use the following definition: 

Definition 2.1.1. A factorization of x = W1W2' •• Wk is LZ if and only if each Wj , 

j E l..k , is 

(a) a letter that does not occur in W1W2'" Wj-l; or otherwise 

(b) the longest substring that occurs at least twice in Wl W2 ... Wj. 

We observe that Wl = x[l], further that a factor Wj may overlap with its previous 

occurrence in x. For the string 

12345678 
(2.1.2) 

x = a b a a b a a b, 

For most of the last 30 years, LZ factorization has been used primarily for text 

compression, and many LZ variants have been proposed and computed, including 

factorization of infinite words [4J. Useful surveys are available at [14, 36, 46J . In the 

context of compression , LZ algorithms generally operate not on the string as a whole, 

but only on a sliding window. Many sliding-window algorithms have been proposed, 

of which several are described in [43, 3, 38] and the surveys noted above. See Chapter 

3 for more details on the original LZ compression algorithms: LZ77 and LZ78. 

15 
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2.2 Fundamental Data Structures 

In t his sect ion we define t he fundamental data structures that are t he basis of our 

~ 

I 
algorithm and are important for almost all string algorithms. 

2.2.1 Suffix Array SA 

Consider a string x = x [1..n] of length n over an ordered alphabet :E. As mentioned 

previously, the suffix of x starting at position i is denoted by x [i .. n], for 1 :::; i :::; n 

(here we are not interested in the suffix E, hence i =1= n + 1) . To simplify the notation, 

let us use the expression suffix i to denote the suffix x [i .. n] . Then, the suffix array 

of x , denoted SA, gives the suffixes of x sorted in ascending lexicographical order , 

that is: 

SA[l] < SA[2] < .. . < SA[n]. 

The suffix array of the string abaabaab is shown in the second column of Figure 2.2. 

~ SAri] x [SA [i ] .. n ] ISA[i] LCP[i] 
1 6 aab 5 -1 
2 3 aabaab 8 3 
3 7 ab 2 1 
4 4 abaab 4 2 
5 1 abaabaab 7 5 
6 8 b 1 0 
7 5 baab 3 1 
8 2 baabaab 6 4 

Figure 2.2: SA and LCP arrays of x = abaabaab 
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SA can be computed in 8 (n) worst-case time [25, 22], though various supralinear 

methods [32, 33] are certainly much faster , as well as more space-efficient , in practice 

[40], in some cases requiring space only for x and SA itself. 

In [2] an Enhanced Suffix Array (ESA) is introduced, consisting of the suffix array 

together with an "lcp-interval tree". Recently, a Dynamic ESA (DSA) was introduced 

in [27] . They presented an algorithm that updates ESA/SA when the text is edited 

(insertion , deletion or substitution of a letter or a factor) . We discuss the DSA 

algorithm briefly in 2.3. 

2.2.2 Inverse Suffix Array (ISA) 

The inverse suffix array (ISA) gives for each suffix x [i .. n], its lexicographical order 

among other suffixes. That is , ISA[i] = j iff SAUl = i. Many algorithms use inverse 

suffix array to build suffix arrays in linear time. Reversibly, an inverse suffix array 

can be turned into a suffix array in place in linear t ime, too. The fourth column in 

Figure 2.2 represents the ISA for our string example. 

2.2.3 Longest Common Prefix (LCP) Array 

Another important data structure that is usually used with suffix arrays is the Longest 

Common Prefix (LCP) array. Let us denote the length of the longest common prefix 

of suffixes SAri] and SA [j ] by lcp(SA[i], SA[j]). Then , the LCP array contains the 

lengths of the longest common prefixes between successive suffixes of SA. That is, 

17 
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for 1 < i :::; n, LCP [i] = lcp(SA[i -lJ, SA[i]) and LCP[I] = - 1 since it is otherwise 

undefined. An important property of lcp [25] is t hat for any 1 :::; i < j :::; n: 

lcp(SA[i], SA[jD = mini<k~j LCP[k] . 

Given x and SA, LCP can also be computed in 8(n) time [23 , 31 , 39 , 24]: the 

first algorithm described in [31] requires 9n words of storage and is almost as fast in 

practice as that of [23] , which requires 13n words. However the algorithm described in 

[39] is generally faster and requires about 6n words of storage for its execution, since 

it overwrites the suffix array. The very recent LCP algorithm is t he one proposed 

in [24], that first computes a "permuted" LCP array; it executes consistently faster 

than all other LCP algorithms, but uses 13n bytes. 

The fifth column of Figure 2.2 gives the LCP array of the string abaabaab. 

2.2.4 Burrows-Wheeler Transform BWT 

The BWT and its calculations are important for the methods used in this thesis. vVe 

use a dynamic SA (DSA) [27] that can be updated whenever the window slides. DSA 

needs BWT in order to maintain the suffix array after an insertion or deletion. 

Formally, we define the Burrows-vVheeler Transform BWT of x [5] as follows: 

Definition 2.2.1. For a string x = x [1..n], BvVT[i] = x [SA[i] -I] for SA ri] > 1; 
otherwise, BvVT[i] = x [n] . 

Usually, when using the BvVT, it is convenient to suppose that the sentinel letter 

$ has been appended to x , yielding x [l..n + 1] = x$ . Since $ is the least letter , this 

18 
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means t hat the least cyclic shift (the lexicographically least suffix of x) is $x and 

occurs as the first row in the conceptual matrix NI (see Fig. 2.3). 

The BvVT is equal to the text corresponding to the last column L of the conceptual 

matrix M whose rows are the lexicographically sorted cyclic shifts of the string x$ 

(see Fig. 2.3). There is a strong apparent relation between the matrix NI and the 

suffix array SA of the string x$. vVhen sorting the rows of the matrix M we are 

essentially sorting the suffixes of x$ . Consequently, SAri] points to the suffix of x$ 

occupying (a prefix of) the ith row of M. Hence, the cost of constructing the BvVT 

is given by the cost of constructing the suffix array, and this requires 0 (n) time. 

~ F L 
9 $ a b a a b a a b 
6 a a b $ a b a a b 
3 a a b a a b $ a b 
7 a b $ a b a a b a 
4 a b a a b $ a b a 
1 a b a a b a a b $ 
8 b $ a b a a b a a 
5 b a a b $ a b a a 
2 b a a b a a b $ a 

Figure 2.3: The conceptual matrix NI and BVVT=bbbaa$aaa (column L) 

The Burrows-vVheeler transform (BvVT) [5] sorts the letters of a text x to facilitate 

its compression. It is used as a preprocessor by some famous loss less text compression 

tools (such as bzip) that incoperate it with Run-length Encoding or Prediction by 

Partial Matching (PPM) methods [12, 13]. Due to its structure and its similarity 

with the suffix array, it has been used a lot for advanced compressed index structures 
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[17, 18, 27] that compute approximate pattern matching, which make them useful for 

search engines. 

~ 
8alson et. a1. [26] studied the impact of edit operations (insert ion/deletion/substit ut ion 

I 

of a let ter or a factor) on BWT(x ). Moreover , they presented a four-stage algorithm 

for updating BvVT(x) . We explain this algorit hm briefly in section 2.3.2. 

2.3 Algorithms 

[27] presented an algorithm t hat modifies the SA and the LCP arrays based on changes 

to the text (i .e. insertion/ deletion/substitut ion of a letter or a factor) . This algorithm 

is based on a four-stage algorithm described in [26] that updates BvVT . 

vVe will briefly discuss in t his section t he updating process of BvVT and how t he 

authors extended it to update the SA. The reader who is interested in the det ails of 

updating the LCP can refer to [27]. To ease the reading process, we will denote the 

SA updating algorithm by DSA (an acronym for dynamic suffix array). 

2.3.1 Preliminaries 

Recall that F and L are respectively the first and last columns of the conceptual 

matrix NI (see Fig. 2.3) . Notice that F is sorted and hence can be deduced from 

L. If we want to add/delete a character from t he original string x , we will need to 

reconstruct x from L . T hat can be done by navigation through the characters of L 

according to their positions in x . In order to navigate through L, we need a function 
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that tells us how the rows are ranked. This function is called LF and maps a letter 

in L to its equivalent in F ; for example, the unique $ in L is mapped to the unique 

$ in F , the first a in L is mapped to the first a in F , etc (see Fig. 2.4) . That is , we 

want to map corresponding letters in F and L. 

F 
1 $ 
2 a 
3 a 
4 a 
5 a 
6 a 
7 b 
8 b 
9 

L 
b 
b 
b 
a 
a 
$ 
a 
a 
a 

Figure 2.4: LF function 

To understand how we can compute LF, we will examine the relationship between 

Land F closely. First , we consider the first row of the conceptual matrix !VI: it cor-

responds to x [n). This row necessarily contains $ in F and x [nJ in L (since $ is the 

smallest letter and F is sorted) . Consequently, the row that contains the letter x [n] 

in L has to be mapped with the row corresponding to the cyclic shift starting with 

x [n]$ , that is the row where x [nJ appears for the first time in F. Hence, we need 

a simple mechanism for navigating from the row corresponding to X [i+ l ) to X [i) . By 

definition , if the row X [i+ l ) has a letter c in L , then the row X li ) has also the same 

letter c in F . 

21 
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Remark 2.3.1. x li + 1] = x li mod IXI! [n + 1], for 0 :s; i :s; n . 

From the previous remark, we know that if p is the position of x [il in the sorted 

cyclic shifts , then x [i + 1] = L[P]. In order to map corresponding letters in Land F , 

we therefore need a function rankx(c , i) that returns the number of c in x[1..i]' for 

any string x over 2:. Now given two positions p and p' such that F[P'] = L[P] = c, we 

are connecting them if and only if rankF(c,p') = rankL(c,p). 

vVe also need a table C storing, for each letter c of the alphabet, the number 

C[e] of characters smaller than c = x li] in x [1..n] . Since letters are lexicographically 

sorted in F , the number of letters smaller than c is one less than the position at which 

c appears for t he first time in F. 

Finally, using the rank function and the count table , the LF function which 

permits us to compute the position of a cyclic shift x [il from the position of the 

following cyclic shift x [i+11, can be computed as follows: 

LF(i) = rankx(L[p], i) + C[L[P]]. 

2.3.2 Updating BWT 

(2.3.1) 

As we mentioned before, DSA is based on an algorithm that updates t he BWT. This 

was due to t he similarities between BvVT and SA (see section 2.2.4). As defined 

previously, the BvVT is the text of length n + 1 equal to the last column L of the 

22 
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conceptual matrix M whose rows are the lexicographically sorted cyclic shifts of x $ 

(see Fig.2.5( a)). 

F L F L 
x $ a b a a b a a b x ' $ a b a a c b a a b 
X[5] a a b $ a b a a b x ' [6] a a b $ a b a a c b 
X[2] a a b a a b $ a b X,[2] a a c b a a b $ a b 
X[6] a b $ a b a a b a X,[7] a b $ a b a a c b a 
X[3] a b a a b $ a b a -------t x ,[a] a b a a c b a a b $ 
x[a] a b a a b a a b $ X' [3] a c b a a b $ a b a 
X[7] b $ a b a a b a a x ' [8] b $ a b a a c b a a 
X[4] b a a b $ a b a a X' [5] b a a b $ a b a a c 
xlI] b a a b a a b $ a X,[l] b a a c b a a b $ a 

X,[4] c b a a b $ a b a a 

(a)The conceptual matrix (b )The conceptual matrix 
M of x$ = abaabaab$ M ' of x'$ = abaacbaab$ 

Figure 2.5: The impact of inserting a letter c at position 5 in x on the matrix IV! 

vVe will give an overview of t he algorithm developed by [26] to see how this al-

gorithm can be extended to update the suffix array. Let us consider the following 

simple case: a letter c is inserted at position i in x $ (i.e. x' = x [l..i - l ]cx [i oon]$ ). 

vVe will take as an example our string x = abaabaab. Suppose we are inserting a 

letter c at position i = 5. The new string will become x' = abaacbaab. Let M' be 

the the conceptual matrix of x'$ (see Fig.2.5(b)). Examining the cyclic shifts of x'$ 

(i.e. rows of M'), we can notice that the letter c appears in a cyclic shift x, U] at one 

of t he following positions (see Fig. 2.6): 

• c appears right of $ and before L (case Ia). The cyclic shifts X,[9 ] , X,[6] , X,[7] 

and X,[8] are examples for this case (see Fig. 2.5(b)). 
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• c appears in L (case Ib) . For example, the cyclic shift Xt[5] has c in column L 

(see Fig. 2.5(b)). 

• c appears left of $ and after F (case IIa) . The cyclic shifts X, [3] , x,[OI, x,[ll and 

X,3 are examples for this case (see Fig. 2.5(b)). 

• c appears in F (case IIb). For example, the cyclic shift xt[41 has c in column F 

(see Fig. 2.5(b)). 

x[j .. n]$x[1..i - l ]cx [i .. j - 1] 
x[i .. n]$x[1..i - l ]c 

cx[i .. n]$x[1..i - 1] 
xU + l..i - l ]cx [i .. n]$x [1..j] 

if i < j :::; n 
if j = i 
if j = i-I 
if 0 :::; j < i-I 

(Ia) 
(Ib) 
(IIa) 
(IIb) 

Figure 2.6: All possible locations of c in x,[jl after its insertion at position i 

The following lemma is proved in [26]: 

Lemma 2.3.2. Inserting a letter c at position i in x has no effect on the respective 
ranking of cyclic shifts whose, orders ar; strictl~ reater than i. That is: for all j 2': i 
and j' 2': i, we have x bl < x [] 1 ~ x,b+ 1 < x,b + I. 

Based on the above four situations and the previous Lemma, [26] presented the 

following four-stage algorithm for updating BvVT (see Fig. 2.7 and Fig. 2.8): 

(Ia) Ignore: no direct impact on either L or F. 

(Ib) Modification: for row ISA [i], the letter in L is stored (i.e . b = L [ISA [i]] ) and 

replaced by c. 

24 
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(IIa) Insertion: a new row is inserted at position LF(ISA [i]) , F receives c and L 

receives b. 

~ 

I (IIb) Gently reorganize the rows that are affected by the insertion. 

F L F L F L 
1 $ b $ b $ b 
2 a b a b a b 

(Ia) 3 a b a b a b No impact; 

4 a a a a a a (Ib) For ISA[5] = 8, the letter a in L is 
(Ib) (IIa) 

5 a a ---+ a a ---+ c a stored and replaced with c, 
6 a $ a $ a a 
7 b a b a a $ (IIa) A new row is inserted at position 

8 b a b c b a LF(ISA[5]) = LF(8) = 5, F receives 

9 b a b a b c c and L receives the stored a. 

10 b a 
(Ia) (Ib) (IIa) 

Figure 2.7: Stages (Ia) , (Ib) and (IIa) of updating BvVT 

F L F L 
1 $ b $ b The fourth stage is slightly more compli-
2 a b a b cated: by inserting a new row in !VI dur-
3 a b a b ing stage (IIa) , we somehow disrupt the 
4 a a a a LF function and create inappropriate re-

5 
(I Jb ) 

$ lations between letters in F and L. vVe c a ---+ a 
6 a a a a therefore have to consider the local rear-

7 a $ b a rangement that might occurs (they consist 

8 b a b c in rotations , a row k moves to row k' and 

9 b c b a all the rows between k and k' are shifted 

10 b a c a by one position accordingly). 

(IIa) (IIb) 

Figure 2.8: Stage (IIb) of updating BvVT 

The rearrangement in stage (IIb) is performed as long as the "expected" LF value 

is different from the "actual" LF value. The "expected" LF value is computed by 
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summing rankx(c, i) and the value C(c) (see equation 2.3. 1). Fig.2.9 shows the 

reordering algorithm used in stage (IIb). 

2.3.3 Updating SA 

The four-stage algorithm for updating BWT naturally extends to updating SA due 

to the closeness between the BvVT and SA [27]. 

Recall that the LF function allows us to navigate in L from the ith to the (i - 1 )th 

cyclic shifts. Notice also that the ith cyclic shift corresponds to the suffix beginning 

at position i + 1. Thus, LF(i) = j iff SAri] = SA[j] + 1 (see section 2.3.1). 

function REORDER(L , i) 
- gives the actual position of X[i- I) in IVI 

j t- index(x[i- I)); 
- gives the computed position of X,[i- I) in IVI' 

j' t- LF(index(x,[i-I))) ; 
while ( j =I- j' ) do 

newj t- LF(j) ; 
- moves a row of L from position j to j' 

MOVEROvV( L , j , j) ; 
J t- newj ; 
j t- LF(j') ; 

Figure 2.9: REORDER used in stage (IIb) 

[27] considered t he BWT updating algorit hm and induced the required modifica-

tion on both SA and ISA arrays caused by inserting a letter c at position i of x . The 

following is the extension of the four-stage BvVT algorithm to SA: 

• Stage 1 (Ia) - suffixes x [j .. n], Vj > i: From Lemma 2.3.2 , the respective ranking 

of the corresponding cyclic shifts is conserved. Hence, SA and ISA are not 

26 
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modified during this stage . 

• Stage 2 (Ib) - suffix x[i .. n]: The same condition applies here as in the previous 

~ , stage. Notice that during this stage of BvVT algorithm, for k = ISA[i] the letter 

b = L [k] is stored and replaced by c . 

• Stage 3 (IIa) - suffix cx[j .. n]: At this stage in BvVT algorithm, a new row is 

inserted at position k' = LF(k) in l with the letter stored from the previous 

stage i. e. L [k /] = b. This would reflect to the following modifications in ISA 

and SA (for our example see Fig. 2.10): 

- SA: insertion of i at index k': 

1. all values in SA greater than or equal to i are incremented. 

2. value i is inserted at index k'. 

- ISA: insertion of k' at index i: 

1. all values in ISA greater than or equal to k' are incremented. 

2. value k' is inserted at index i . 

• Stage 4 (IIb) - suffixes x/[j .. nJ, j < i: This is the reordering stage which is done 

using the same REORDER algorithm that is used in BWT algorithm (see 2.9). 

If without loss of generality, we suppose j < j' , then the following applies (for 

our example see Fig. 2.11): 
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- L: the element at position j is moved to position j'. 

- SA: the element at position j is moved to position j'. 

- ISA: all values between j (excluded) and j' (included) are decremented by 

1. Then, j is modified to j'. 

SA ISA SA ISA (Ia) No impact on SA or ISA. 

1 9 6 10 g 7 B (Ib) For ISA [5] = 8, we store the origi-
2 6 9 7 B 10 g nal LF(8) = 5 in pos but there is no 
3 3 3 3 3 impact on SA or ISA at this stage. 
4 7 5 8 + 6 ~ 

5 4 8 
(lIa) W W (IIa) All values greater than or equal to 

-----+ 

6 1 2 4 9 g i = 5 are incremented in SA and 

7 8 4 1 2 value i = 5 is inserted at position 

8 5 7 9 g 4 
k' = LF(8) = 5. vVe update pos to 

9 2 1 6 ~ 8 + 6. All values greater than or equal 

10 2 1 to LF(8) = 5 are incremented in ISA 

(Ia) & (Ib) (IIa) and value k' = LF(8) = 5 is inserted 
at position i = 5. 

Figure 2. 10: Stages (Ia), (Ib) and (IIa) of updating SA and ISA 

SA ISA SA ISA 
1 10 7 10 5 
2 7 10 7 9 
3 3 3 3 3 
4 8 6 8 6 

5 5 5 
(I Jb) 

1 10 -----+ 

6 4 9 4 8 
7 1 2 9 2 
8 9 4 6 4 
9 6 8 2 7 
10 2 1 5 1 

(IIa) (IIb) 

Figure 2.11: Stage (IIb) of updating SA and ISA 
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DSA needs to store L (which provides rank queries) and C (which provides count 

function) which are essential for computing the LF function. DSA also requires the 

inverse suffix array ISA during the reordering stage. 

The previous algorithm can be generalized to the insertion/ deletion/substitution 

of a letter or a factor (see [27] for details). 

2.3.4 Sampling 

Since SA and ISA are space-consuming structures, the authors discussed the choice 

of compressing these arrays using sampling techniques. Without using the sampling 

technique, the space requirement would be 8n bytes plus the space required for storing 

Land C (see previous section). 

Basic Idea 

Compressed data structures [35] that support rank/select operations and require only 

o(n) bits of storage provided a solution for reducing the space requirements. This 

solution is based on the idea of sampling; we store only a few values over the entire 

sequence. 

vVe will illustrate the idea of sampling on the ISA. Let us consider the following 

ISA from Figure 2.2: 

1234567 8 

ISA = 5 8 2 4 7 1 3 6, 
(2.3.2) 

A dynamic sample of ISA consists of two bit vectors and one integer array as 

29 
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follows: 

• The first bit vector , mISA , indicates the positions where ISA is sampled . 

• The second bit vector ,VISA , indicates the set of values that are sampled. 

• The integer array, 7rISA , gives the respective order of the sampled values. In 

other words, it maps a sampled position to its corresponding sampled value. 

Figure 2.12 shows the bit vectors and the integer array for our ISA example. 

sampled i 1 3 5 7 

rnISA 1 0 1 0 1 0 1 0 
sampled ISA 5 2 7 3 

VISA 0 1 1 0 1 0 1 0 
1rISA 5 2 3 7 

Figure 2.1 2: Retrieving a value for a sampled position ISA[5] 

Suppose we want to retrieve the value of ISA [5] . We need to follow the following 

steps: 

1. mIsA[5] = 1 is a sampled position. Hence, we apply rankmIsA (1 , 5) = 3. 

2. 7rISA[3] = 3. 

3. I SA [5] = selectm I SA (1 , 3) = 7. 

Since rank and select functions can be formed in 0(l09 n) worst-case time, retriev-

ing a value at a sampled position costs at most 0(l09 n) plus the cost of accessing 

the 7rISA dynamic structure. 
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Retrieving a value at an unsampled position is a bit more complex process. It 

consists of applying a series of rank and select queries and one call to the LF function 

at the last step. The time for this process is bounded by O(off x log n(l + lo~olo; n)) 

plus the time for accessing 7rISA , where (5 is the alphabet size and off is the offset 

between i and the sampled position to the right of i . 

For more details on adding/removing a sample, updating the permutation , inser­

tion/ deletion of a value j at position i we refer the reader to [27]. 

Improving Retrieve and Update Time 

In order to guarantee fast access to the ISA values, 7rISA needs to be stored and 

updated in an efficient way. [27] proposed using two balanced binary trees A and 

B. Let A[i] be the ith node in A and B[j] be the lh node in B. Using A and B, a 

permutation 7r of n element is defined as follows: 7r [i] = j if and only if there exists 

a link from A [i] to B[j ]. 

Since ISA is the inverse of SA; SA can be computed in a similar fashion. No­

tice that for computing ISA, 7rISA is the mapping between mISA (positions in ISA) 

and V I SA (values in ISA). Symmetrically, for comput ing SA: 7ri§A is the mapping be­

tween V I SA (positions in SA) and mISA (values in SA). Using the previous presented 

structure of the two balanced tree, 7ri§A can be easily computed by making the links 

bid irectional. 
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2.3.5 Space and Time Complexity 

Sampling I Non-Sampling I 

Retrieve ISA/SA value O(log1+E n (1 + toga )) 
loq loq n O(log n) 

Update O(n log n(l + log a )) 
log log n O(log n) 

Space o(n) bits O(n log n) bits 

Table 2.1: Sampling vs. Non-sampling: Time and space complexity 

Let us consider the space and time complexity for both cases sampling and non-

sampling. 

For the sampling case, we need two bit vectors. [27] uses dynamic compressed bit 

vectors developed by Mankinen and Navarro [35] that need nHo+o(n) bits and handle 

all the needed operations (i .e. rank/select) in O(log n) worst-case time. Ho denotes 

the zero-th order entropy of the bit vector and since the bit vectors are sparse, their 

space consumption is o(n) bits only. Furthermore , we need the permutation array 7rISA 

which require O(n log n / log1+E n) = o(n) bits using the structure of the two binary 

trees. Obtaining a value from SA or ISA requires O(log2+E n + log n log(J / log log n) 

worst-case time as the LF function requires 0 (log n+log n log (J / log log n) worst-case 

time. Table 2.2 summarizes these bounds. 

Using the whole SA and ISA can be seen as a special case of the sampled SA and 

ISA where all positions are sampled. The bit arrays become useless here since every 

position is essent ially sampled. Only 7rI SA is meaningful since it corresponds to SA 

and ISA arrays and it is represented by the two binary trees . According to [27], in 
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bit vectors space nHo + o(n ) bits 
mISA and VISA rank/select t ime O(log n ) 
permutation array space O( n log n ) = o(n) bits 

logl+< n 

7rISA operations t ime 
(retrieving/ insert ing/ deleting) O(log n) 

LF function time O(log n + log n log 0') 
loq loq n 

Table 2.2: Time and space complexity for various operations and structures used for 
updating SA 

this case any value of SA and ISA can be accessed in O(log n) worst-case t ime using 

O(n log n ) bits . See Table 2.1 for a comparison between sampling and non-sampling 

space/time complexity. 
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Chapter 3 

LZ Compression 

In general, compression methods based on strings of symbols can be more efficient 

than methods that compress individual symbols. The probabilities of strings of sym­

bols vary more than the probabilities of the individual symbols constituting the 

strings. Hence, dictionary-based compression methods select strings of symbols and 

encode each string as a token using a dictionary. The dictionary holds strings of 

symbols, and it may be static or dynamic (adaptive). As we mentioned previously, 

LZ compression methods are dictionary-based. In this brief chapter , we describe the 

original LZ methods: LZ77 and LZ78. vVe attempt to differentiate between t he two 

and illustrate each method using a simple example. 

3.1 LZ77 

In general terms, an LZ factorization of x is a decomposition of x into nonempty fac­

tors: x = WI W2 ••• Wk. The factorization of x can be reported in several ways. In its 

native form , LZ77 factorization [47] reports each factor Wj as a triple (POS,LEN») , 
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where: 

• POS is the location of a prior occurrence of Wj in x or the location of Wj if no 

previous occurrence exists; 

• LEN is the length (possibly zero) of the matching previous occurrence; 

• A is the " letter of mismatch" . 

It is noteworthy that this (in general, compressed) encoding of x permits the 

original string to be reconstituted (decoded) with no need for an explicit dictionary. 

Essentially, LZ78 factorization [48] removes LEN from the output, thus compressing 

the text further , but introducing the need for a dictionary in order to retrieve the 

original text . 

LZ77 operates not on the string as a whole, but only on a sliding window of length 

N (usually N = 4096 or 8192), with a long prefix that has already been factored 

and a short (typically 18 letters) as-yet-unfactored suffix F. The next factor Wj is 

the longest prefix of F that matches a preceding substring within the window. Once 

Wj has been determined , the window is shifted right by IWjl positions. It has been 

found that in practice the use of the sliding window provides compression as good 

as using the entire string would yield, and of course processing time is substantially 

reduced. vVe will illuotrate the basic idea of LZ77 using an example. vVe will usc u 

to denote a white space. The data shown in Fig. 3.1 is to be encoded . The string 
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search b uffer look ahead buffer 

----------~----------, ~ ,- ,,--~ 

.. The most complet be li ever is the best in character, and the best of yo u is the bes to his womenfolk 

window sli des by the length of the 
longest match I"b est "1+ 1 = 6 

searc h buffer 

1 
r-~-----------~~------------, 

look ahead b uffer 

... The most complete beli ev r is the best in character, and the best 0 f you is the best to hi womenfo lk . . 

Figure 3.1: Example to illustrate LZ77 

m t he search buffer has already been encoded, while the string m t he lookahead 

buffer is yet to be encoded. The algorithm works from left to right and has already 

encoded the string S = "believeruisutheubestuinucharacter ,u andutheu" . The string 

F= "bestuofuyouuisutheubest" is t he data yet to be encoded. 

First , the algorithm searches for the longest match for the string in the encoded 

string S matching a prefix of F . In t his specific example, t he longest match is t he 

string "bestu" starting at the 17th posit ion (count ing from one) . T herefore, it is pos-

sible to code t he first five characters of F (i. e. "bestu" ) as a reference to the substring 

that occurs at posit ion 17 of the search buffer. As mentioned previously, references 

are encoded as a fixed-length codeword consisting of three elements: posit ion, length 

and first non-matching symbol. In our case, t he codeword would be (17, 5, '0'). As we 
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can see, five characters have been coded with just one codeword. vVhen the matches 

get longer, those coded references will consume significantly fewer space than, for 

example, coding every thing in ASCII. 

Fig. 3.2 is pseudocode of LZ77. 

while 100kAheadBuffer not empty do 

get a reference (position, length) to longest match; 
if length > ° then 

output(position, length, next symbol); 
shift the window length+ 1 positions along; 

else 
output( 0, 0, first symbol in the 100kAheadBuffer) ; 
shift window 1 character along; 

Figure 3.2: Pseudocode of LZ77 

The algorithm starts out with the lookahead buffer filled with the first symbols 

of t he data to be encoded and the search buffer filled with a predefined symbol of 

the input alphabet (zeros, for example). Some of the LZ77 variants that improved 

upon the original version are: LZSS [43] , LZRW [44] , LZB [30] , LZH( developed 

by Haruyasu Yoshizaki) , and LZP [19]. LZSS is the most prominent amongst LZ77 

variants. 

The LZ77 encoder and the decoder exhibit high asymmetry. In particular, the 

decoder is much simpler than the encoder. It merely prepares a buffer with the same 

window size as the encoder. It starts each iteration by grabbing the next token (i .e. 

codeword) on its input stream and finds the match in its buffer. It then writes the 
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match and the third token field (i. e. the symbol) on the out put stream. In the last 

step of every iteration, the decoder shifts the matched string and the third token to 

the buffer. Because t he decoder is fast and simple, LZ77 is particularly useful in 

cases when a file is compressed once and decompressed several t imes. 

3.2 LZ78 

Unlike LZ77, LZ78 [48] is a dictionary-based compression algorithm that maintains 

an explicit dictionary. LZ78 has a slightly different codewords from LZ77. LZ78 

codewords consist of two fields: the location of the longest matching entry in t he 

dictionary and the first "letter of mismatch" . The LZ78 scheme removes the need for 

the length of the mat ch since it is implied from the matching entry in the dictionary. 

This scheme thus furt her compresses the text . When outputting the codeword , the 

algorithm simultaneously adds the index and the symbol pair to the dictionary as 

a new ent ry. 'When a symbol, that is not yet in the dictionary, is encountered , the 

codeword is assigned the next available index value in the dictionary. Then, it is 

added to the dictionary as a new ent ry. vVith this approach, the algorithm gradually 

builds up a dictionary. Fig. 3.3 shows pseudocode of LZ78 . 

Table 3.1 shows the fi rst 31 steps in encoding the string: 

"The most complete believer is the best in character , and the best of you 

is the best to his womenfolk" 1 

1 Prophet Mohammed, T irmidhi # 1162 and verified 
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W f- NIL; 

while there is input do 
k f- next symbol from input; 
if wk exists in the dictionary then 

W f- wk; 
else 

output( index(w) , k) ; 
add wk to the dictionary; 
W f- NIL; 

Figure 3.3: Pseudocode of LZ78 

A good data structure for the dictionary is a tree, but not a binary one. The tree 

starts with the null string as the root. All the strings that start with the null string 

(strings for which the token pointer is zero) are added to the tree as children of the 

root . In the above example those are 'T ' , 'h ' , 'e', 'u ', em', '0' , 's', ' t ', 'p ', '1' , 'b ', oi', 'a' 

and 'r '. Each of them become a root of a subtree as shown in Fig. 3.4. For example, 

all the strings that start with 't' (the three strings "th", "tu", and "te ') constitute 

the subtree of node 't ' . 

Figure 3.4: An LZ78 Dictionary Tree 

As you can see from the algorithm, the LZ78 decoder is more elaborate than the 

LZ77 decoder. It builds the dictionary in a similar manner as it is built through the 
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Dictionary Token Dictionary Token 

° null 16 "el" (3 , '1') 
1 "T" (0 , 'T ') 17 "i" (0 , 'i') 
2 "h" (0, 'h') 18 "eu" (3, 'u') 
3 "e" (0 , 'e') 19 "er" (3 , 'r ') 
4 " " (0 , 'U ') 20 " i" (4 , 'i') 
5 "m" (0 , em') 21 "s " (7 ,'u' ) 
6 "0" (0 , '0 ') 22 "th" (8 ,' h ') 
7 "s" (0 , 's') 23 "e b" (18,'b ') 
8 "t" (0, ' t ') 24 "es" (3, 's ') 
9 " c" (4 , 'c') 25 "t " (8, 'u ') 
10 "oIn" (6 , em ') 26 "in" (17,'n ') 
11 "p" (0 , 'p') 27 " ch" (9 ,'h ') 
12 "1" (0 , '1') 28 "a" (O ,' a ') 
13 "et" (3 , 't') 29 "r" (O ,'r') 
14 "e " (3 , 'u ') 30 "ac" (28, 'c') 
15 "b" (0 , 'b') 31 "te" (8, 'e') 

Table 3.1: First 32 steps in LZ78 

encoding process. It grabs a codeword and uses the POS to locate the entry in the 

dictionary and copies that entry at the end. Next , it adds the copied entry contacted 

with Imda as a new entry to the dictionary if there is a position available. It continues 

applying this process until the entire string is recovered. 

Note that this pseudocode is a simplified version of the algorithm and it does 

not prevent the dictionary from growing without bound. The simplest solution to 

limit the dictionary size is to stop adding entries and continue as a static dictionary 

encoder. Another solution is to throw the dictionary away and start from scratch 

after a specific number of entries has been reached . There are more sophisticated 
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approaches that give raise to the collection of LZ78 family algorithms. Some of 

LZ78 family are: LZW [45] , LZC (a software version of LZW with some additional 

features used in compress utility) , LZMvV [34], LZMS, LZJ , LZFG [16] (a hybrid of 

LZ77 and LZ78). LZvV is the most popular variant of LZ78. 
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Chapter 4 

New Algorithm 

As we mentioned in Chapter 1, the experiment of scaling up an implementation of 

LZSS , due to Haruhiko Okumura [37], triggered the idea of scaling down the SA-based 

LZ algorithms. In this chapter we describe our new variant LZAS and discuss the 

variations that stemmed out of it . 

4.1 The Core Idea 

vVe designed a novel LZ77 variant (LZAS) that makes use of t he suffix array to 

perform the search in the dictionary. The main idea is to replace the binary search 

tree (or any other kind of tree) by t he suffix array. Fig. 4.1 is the pseudocode of our 

algorithm. 

The suffix array (SA) posses two nice structural propert ies which are usually 

exploited to support fast pattern search: 

(i) all t he suffixes of the string x [1..n] prefixed by a pattern p[1..m] occupy a 

contiguous portion (subarray) of SA. 
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Algorithm LZAS 

- initialize the window by initializing its two parts: search buffer 
- and lookahead buffer 

Initialize searchBuffer with predefined symbol of the input alphabet ; 
Init ialize lookAheadBuffer with the first symbols of the data to be encoded; 
Compute SA; 
while lookAheadBuffer not empty do 

Search for a match (position, length) using SA; 
get a reference to longest match; 
if length > 1 then 

output(fiag = 1, position, length) ; 
shift the window length positions along; 

else 
output(fiag = 0, first symbol in the lookAheadBuffer) ; 
shift window one character along; 

Update SA; 

Figure 4.1: Pseudocode of LZAS 

(ii) that subarray has a starting position sp and ending position ep , where sp is 

actually the lexicographic position of the suffix sp among the ordered sequence 

of text suffixes. 

vVe use the above properties to design our search algorithm which we describe in the 

next section. 

One notable advantage of using SA in an LZ encoder is that the amount of memory 

is independent of the text to be searched and can be defined a priori . The low and pre-

dictable memory requirement of this approach makes it suitable for memory-critical 

applications such as embedded systems. Our proposed algorithm can additionally be 

used for forward / backward sub-string search. 
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vVe follow LZSS codeword format which contains just a position and a length. If 

no match was found , the encoder emits the uncompressed code of the next symbol 

instead of t he wasteful three-field token ( 0, 0, . . . ). To distinguish between tokens 

and uncompressed codes, each is preceded by a single bit (flag). 

4.2 The Search Algorithm 

The search in LZAS is done using a simple algorithm that performs a left/right search 

of the suffix array to obtain the longest match in the search buffer for a prefix of the 

look-ahead buffer. The pseudocode of the search algorithm is illustrated in Fig. 4.2. 

Let N be the length of the window and F be the length of the look ahead buffer. 

Given a position r = N - F + 1 in x, at the right hand side of the window, we want 

to compute the position of the longest previous substring matching the substring 

x [r .. NJ. This can be done by searching the neighbourhood of position j = ISA [rJ in 

the suffix array SA. 

The search algorithm alternates between searching left and searching right , de­

pending on which side has the maximum LC P value. This approach is very efficient 

since r will normally be large, because it is on the right hand side of the window, 

and so the probability will be high that any suitable if that satisfies if < r is located 

immediately. Our experiments confirm this observation. 

To see why this observation is true, recall that the window size N is typically a 

few thousands long (e.g. 4096), while the look ahead buffer F is just tens of bytes 
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The SA Left/Right Search Algorithm 

function LongesLMatch_Search(i , SA, ISA , LCP) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

jl f- ISA [i]; 
if (jl ::; 1) 

ilf--1; len' , lenlf- O 
else 

i l f- SA[jl - 1]; len', lenl f- LC P [jl ] 
j r f- j l + 1; 
if (jr > N) 

ir f-- 1; len" , lenrf- O 
else 

10 ir f- SA[jr] ; len", lenr f- LCP [jr] 
11 len f- max(lenl, lenr) 
12 while (l en> 0) do 
13 if (l enl ::: lenr ) then - Search left. 
14 while ( len' ::: lenr and i l > i ) do 
15 jLf-jL-1 ; 
16 if (jl ::; 1) 
17 i l f- - 1; len' , lenl f- 0 
18 else 
19 il f- SA[j1 - 1]; len' f- LCP[j tl 
20 lenl f- min(len' , lenl) 
21 if len' ::: lenr then 
22 return (ii, lenr ) 
23 else 
24 len f- lenr 
26 else - Search right . 
27 while ( len" ::: lenl and ir > i ) do 
28 jr f- jr + 1; 
29 if (jr > N ) 
30 ir f- -1 ; len" , lenr f-O 
31 else 
32 ir f- SA[jr]; len" f- LCP[jr] 
33 lenr f- min( len" , lenr) 
34 if len" ::: lenl then 
35 return (i r ,lenr ) 

36 else 
37 len f- lenr 
38 return (i ,O) 

Figure 4.2: SA Search algorithm: Compute longest previous factor given SA, I SA 
and LCP 
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only (e.g. 16). This is what makes our search algorithm very efficient. Let us examine 

the algorithm in figure 4.2 more closely. vVe are searching for a position to the left of 

r t hat has t he longest match with t he prefix of the look ahead buffer . vVe have the 

following four cases for SA values and LCP values that we use to guide our left/right 

search: 

1. SA [jl - 1] and SA[jr] are both to left of i = r. 

2. SA[jl - 1] and SA [jr] are both to the right of i = r. 

3. SA[jl - 1] > i and LCP [jzl > LCP[jr]' 

4. SA[jr] > i and LCP[jr] > LCP [jzl. 

In t he first case we can immediately locate t he position of t he longest match by 

comparing LCP [jzl and LCP [jr] and take the position with greater LCP value. The 

other t hree cases require more work. The probability that t he first case occurs is very 

high . To show that , let us try to approximate the probability of the other three cases . 

We can formulate our question as follows: 

vVhat is the probability that one or both of SA[jl - 1] and SA [jr] occur 

to the right of i = r in x? 

One would expect this probability to be approximately equal to fi which is very 

small since N is very large compared to F as we mentioned previously. Therefore, 
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the probability that that any suitable i f that satisfies if < r is located immediately is 

equal to 1 - ~ which is very big. 

F=3 

~~, 

, . __ ~ ~_----,J 
V 

N=8 

Figure 4.3: Example to illustrate the search algorithm 

The approach requires ISA , SA and LCP to be available. In regard to LCP, we 

had two choices: either to compute the whole LC P array or compute LC P values 

on a demand basis. We experimented with both choices and found that the second 

one is more efficient as we expected . This confirms the fact t hat we need the LC P 

values rarely according to our previous observation. Hence, our final implementation 

computes LCP values on demand basis. 

Let us illustrate the algorithm with a small example. Let x be our regular string 

example abaabaab. Let us assume that the window length N is equal to the string 

length n = 8 and that F = 3. ow we want to find the longest match for t he 

lookahead buffer aab, in the search buffer abaab (see Fig. 4.3). Figure 4.4 shows the 

SA/ISA/LCP arrays for our example. 

vVe need to call our search algorithm with posit ion i = r = N - F = 8 - 3 + 1 = 6. 

The first line of our search algorithm (Fig. 4.3) would access ISA at position i = 6 
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't 2 3 4 5 6 7 8 

X a b a a b a a b 
SA 6 W 7 4 1 8 5 2 
ISA 5 8 2 4 7 IT] 3 6 
LCP -1 W 1 2 5 0 1 4 

Figure 4.4: SA/ISA/LCP arrays for x = abaabaab 

and store the value in jl = 1. Before accessing SA[jl - 1J and LCP[jl - 1], we need to 

make sure that these are valid positions by checking if jl = 1. Since this is the case 

in our example, we initialize i l to -1 and len' , lenl to 0 and hence we will not do a 

left search. 

Next , the algorithm computes the values needed to do the right search. In line 

6, we compute jr = jl + 1 = 2 and then line 7 checks if it is in the valid boundary. 

Since 2 > N = 8, the variables ir and len" / lenr are initialized with SA[jrJ = 3 

and LCP[jrJ = 3 respectively. In Figure 4.5 , we highlight array values that we had 

accessed in SA/ISA/LCP. 

Before we start the search, we need to store the ma.,"Ximum of lenl and lenr which 

is 3 in the variable len (i.e. the length of the longest match so far). The rest of the 

algorithm consists of a while loop that iterates as long as we still did not find our 

longest match and alternate between searching left and searching right. Once we find 

a match with the longest length so far that occurs previously (i .e. i' = jl or i' = jr 

and i' < i) , we return these values (i.e. POS = i' , LEN = l' where l' = lenl or 

l' = lenr which ever is larger). 



~ 

I 

M.Sc. Thesis - Anisa Al-Hafidh McMaster University - Computing & Software 

In our example, we will start by searching right as len r > lenl. But since ir = 

3 < i = 6, we will not to search at all since we already have our longest match. The 

algorithm will t erminate at line 36 with POS = 3 and LEN = 3. That agrees wit h 

our conj ecture that there is a high probability that any suitable i f t hat satisfies i f < r 

will be located immediat ely. Figure 4.5 shows the variables through the various states 

of the algorit hm. 

I lines I i lIen I jIll lIen ' Ilenl I j r I ir lIen" Ilenr 
1-5 6 1 -1 0 0 

6 -10 6 1 -1 0 0 2 3 3 3 
11 6 3 1 -1 0 0 2 3 3 3 

12 - 35 6 3 1 -1 0 0 2 3 3 3 

Figure 4.5: Various st at es of the search algorithm executed for x = abaabaab with 
i=6 

4.3 Update or Recompute? 

Another question was raised from the fact that SA changes whenever the window 

slides . Therefore , we need the new S A that corresponds to the new window. That 

led us to two choices: either updating the SA or re-computing it. 

To update the S A, we needed to find an algorit hm that does t his efficient ly. The 

dynamic suffix array DBA described in Chapter 2 (see section 2.3) allows us to 

do t hat. The DSA [27] is designed in such a way as t o be updateable whenever 

characters are added , deleted or edited in the original string. DSA can be used in its 

compact form (i.e. sampled S A) or non-compact (i .e. non-sampled SA) form. We 
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decided to experiment with bot h forms. This give raise to two variants of the LZAS: 

LZASI and LZAS2. 

Recomput ing SA is the straightforward choice and hence we decided to experiment 

with it as well . We use it as a measure for the performance of the updating approach. 

vVe call this variant LZAS3. 

4.4 Is there a better way to update SA? 

As we mentioned in section 1.3, it turns out that our approach becomes uncompetitive 

when compared to the Okumura [37] implementation. vVe gave two reasons for this 

result in Section 1.3. vVe will discuss in this section the second reason which relates 

to the mechanism of updating the suffix array. 

Recall t hat we need t o update the suffix array whenever the window slides. If 

the update was not efficient enough, t hen this will slow t he whole algorit hm as t his 

is t he most t ime consuming part of our algorithm. It seems that DSA might not 

be effecient enough after all. DSA was designed with a general update in mind i. e. 

adding/deleting /substitut ing a let ter or a factor in the original string, regardless of 

the position. vVe t hink it is possible to develop an algorithm that updates t he suffix 

array more efficient ly for cases of deleting a factor (prefix) at t he beginning of t he 

string and adding a factor (suffix) at the end of t he string. 

Let us investigate this case closely. Suppose we have a string x and we have its 

suffix array S Ax . Deleting a prefix p of length t from x will not affect SAx too 
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much. Let x' be the string produced by this operation. This delete corresponds to 

deleting the longest t suffixes in x. For j > t , suffix j in x becomes suffix j - t in 

~ 

I 
x'. Then, we only need to subtract t from each entry in the SAx and delete the 

nonpositive entries to get SA~,. vVe will see later on that for practical purposes we 

will not delete these entries as we can use their slots for the new suffixes that will 

result from adding a suffix of the same length as p. Figure 4.6 illustrates this idea 

with the string x = abaabaab and p = aba. 

~ 12345678 

x a b aa baa b 
SAx 6 3 7 4 1 8 5 2 

subtract ipi = 3 
-lJ. 

x ' a b a a b 
SA' x 3 [ill 4 1 []] 5 2 [JJ 

delete nonpositive entries 

-lJ. 

~ 2 3 4 5 

x' a b a a b 

SAx' 3 4 1 5 2 

Figure 4.6: The effect of deleting a prefix p = aba from x = abaabaab on SA 

ow let us investigate the effect of adding a suffix s of length t to x' on SAx' . 

Let us call this new string x", that is x" = x's. This situation requires more work 

in order to update the suffix array. 
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Let us examine the effect of this insert/append operation on the corresponding 

order of suffixes of x' . Suppose u and v are suffixes of x' and assume that lui> Ivl 

without loss of generality. One of the following two cases would arise: 

l. u > v: From the definition of lexicographic order in Section 2.l.1 , one of the 

following two cases will hold: 

1.1 v is a prefix of u , that is u = vu'. Hence, the new suffixes us = vu's < v s 

if and only if u's < s . 

l.2 u and v differ at position i, that is u [1..i - 1] = v[1..i - 1] and u ri] > v [i]. 

Therefore, the new suffixes will have the same order (i. e. us > vs). 

2. u < v: Since lui > lvi , from the definition of lexicographic order u and v 

necessarily differ at some position i. Hence, adding a suffix s will not change 

the corresponding order of the new suffixes (i.e. us < vs) . 

From the above analysis, we can see that the order of suffixes changes rarely. 

Specifically, the order changes if and only if v is a prefix of u and u' s < s (see case 

l.1 above). This analysis leads us to the following lemma: 

Lemma 4.4.1. Suppose u and v > u are suffixes of a given string x. Then for any 
nonempty string s ) vs > us if and only if one of the following conditions holds: 

(a) u is not a border of v ; 

(b) v is a border of u = vu' and s > u'. 
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The previous lemma indicates that v changes its relation to another suffix u only 

rarely, since a very large proportion of the time either (a) or (b) will hold . It seems 

to show that the technique of using SA in a sliding window context is viable. 

Now given the suffix array SAx' and the substring s added to the end of x ' , how 

can we construct (or update) the suffix array of the new string x" = x's? There are 

two things that we need to take care of in this setting: 

1. The respective ranking of the suffixes that results from appending s to the 

suffixes of x ' . 

2. The new suffixes that need to be inserted and that comes from t he suffixes of 

s. 

A quick glance at the first problem leads us to a simple solution. The solut ion 

involves scanning the suffix array SAx' from right to left and comparing the updated 

suffixes t hat are adjacent i. e. us and vs. If they are not in a correct lexicographic 

order, vve swap t hem. vVe stop this process as soon as we cross over suffixes with 

maintained respective ranking (see lemma 4.4.1). This is just an outline of a possible 

solution and needs more investigation. See Figure 4.7 which illustrates this process 

when adding s = baa to x' = abaab. Notice that we have kept the empty entries 

when we have deleted the prefix p = aba from x = abaabaab as we will need them 

for the final updated SA. 
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~ 1 2345678 

x" a b a a b b a a 
3 4 1 5 2 

compare suffix 2 and suffix 5: baabbaa < bbaa ----+ swap suffix 5 and suffix 2 

X" 

SAxl 
a b a a b 
3 4 1 

b a a 

[l]w 
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compare suffix 2 and suffix 1: baabbaa < abaabbaa ----+ no swap is required . Stop scanning. 

Figure 4.7: Step 1 of updating the suffix array after the adding a suffix s = baa to 
x' = abaab 

Handling the insertion of the new suffixes that comes from appending s to x' 

needs more work. One solution would involve the following steps: 

1. Construct the suffix array of s , S As. Since s is usually small (typically 18 

characters long) , this is not a costly computation. 

2. Add I x'I to each entry of S As. Let us call t his result ing array A. 

3. We t hen can compute the updated suffix array SAx" by merging A and SA'w1 

using insertion sort . Simply, we take each suffix A[i] and compare it to the 

suffixes in SA' I scanning it from right to left . Once we found a suffix j that is x 

less than A[i ], we stop and insert A[i] before that suffix. T his would probably 

involve shift ing t he previously scanned suffixes if there is no empty slot before 

suffix j. 
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It is apparent from step 3 above why we decided to keep the empty slots (i.e. slots 

for the nonpositive entries) in the suffix array after deleting the prefix p. Figure 4.8 

shows the above processing for our previous example in which we add s = baa to 

x' = abaab 

55 



M.Sc. Thesis - Anisa Al-Haficlh McMaster University - Computing & Software 

1. Compute t he suffix array of s = baa 

t 1 23 

S b a a 
SAs 3 2 1 

2. Add Ix'i = 5 to each entry of SAs 

t 1 2 3 

S b a a 
A 8 7 6 

JJ. 

3. Merge SAx' and A to produce SAx" using insertion sort 

't 2 3 4. 5 6 7 8 

x" a b a a b b a a 

SAx' :3 

~ 
4 1 2 .5 

[ill :3 4 1 2 5 ill:>ert :> l1ffix S (i. e. a) 

\\ 
8 [I] 3 4 1 2 5 iIl:>ert :>l1ffix 7 (i.e. aa) 

~~ 
SAx" 7 3 4 1 []] 2 5 ill:>el t suffix 6 (i. e. baa) 

Figure 4.8 : Step 2 of updating the suffix array after the adding a suffix s = baa to 
x' = abaab 
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Chapter 5 

Experiments 

In this chapter we investigate the practical times of our algorithm variants (i. e. 

LZASl , LZAS2 and LZAS3) using standard files from the well-known Calgaryl and 

Canterbury2 corpora. 

5.1 Implementation 

vVe have implemented the three variants of LZAS described in Chapter 4. As we 

ment ioned in Chapter 4, the first two variants, LZASI and LZAS2 , use t he dynamic 

suffix array DSA desrcibed in Section 2.3. DSA can be used in its compact form 

(i.e. sampled SA) or non-compact (i.e. non-sampled SA) form . vVe experimented 

with both forms. The code for both forms were provided by Mikael Salson. The 

third vraiant, LZAS3 , recomputes the suffix array whenever the window slides . For 

test ing purposes, we use a supralinear suffix array construction algorithm SACA but 

l ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression. corpus? 
2http://corpus.canterbury .ac.nz? 
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efficient according to [28] . T he code for this SACA is due to N. Jesper Larsson3 . vVe 

also tested an LZSS implementation in C due to Okumura [37] against LZAS variants. 

All codes were optimized using various optimization techniques. They were also 

compiled with an optimization option of the highest level, -03 (i .e. using GNU g++ 

compiler). This option turns on more expensive optimizations, such as function in-

lining, in addition to all the optimizations of the lower levels -02 and -01. The -03 

optimization level may increase the speed of the resulting executable, but can also 

increase its size. 

5.2 Platform 

Hardware All tests were conducted on a SUN X4600 M2 Server with four 2.6 GHz 

Dual-Core AMD Opteron(tm) 8218 Processors (total of eight processor cores) , 32GB 

of RAM (64-bit word length) , and four 146GB SAS disks. 

Software The operating system is Redhat Linux 5.3 running kernel 2.6. 18. All 

implementations were in C++ , compiled using GNU g++ (gcc version 4.1.2) at the 

-03 optimization level. 

3ean be obtained at the bottom of http : //www .larsson.dogma.net /research . html? from 
the source code sect i on 
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5.3 Timing 

We use a c++ library function "gettimeofday,, 4 to measure the execution time of 

the algorithms. We run each algorithm 4 times against each test string. The minimum 

of these 4 tests was taken as the final result. 

5.4 Test Data 

The corpus of our test data consists of 20 fi les from t he well-known Calgary and 

Canterbury corpora. The files in these corpora have being developed specifically for 

testing compression algorithms. They were selected based on their ability to provide 

representative performance results. The investigated data files are listed in Table 5. 1. 

5.5 Discussion of Test Results 

Table 5.2 give the total runtime in microseconds/ letter for LZAS variants and LZSS 

with window size N = 4096 and look ahead buffer size F = 18. Table 5.3 give 

t he average runtime in microseconds/letter with the window size ranges from 256 up 

to 8192. Figures 5.1 , 5.2 and 5.3 show the processing time verses various window 

sizes for LZASl , LZAS2 and LZAS3 respectively for our test data strings. F igure 5.4 

compares the behaviour of all three variants using the average processing t ime in 

milliseconds/letter. vVe are not measuring the memory usage since all algorithms 

have very small memory requirement (about 400-900 KB). 

4include: < sys/ time.h > 
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I File name I Category Size 

Calgary Corpus 
bib Bibliography (refer format) 111261 
book2 Non-fiction book (troff format) 610856 
news USENET batch file 377109 
paper1 Technical paper 53161 
paper2 Technical paper 82199 
paper3 Technical paper 46526 
paper4 Technical paper 13286 
paper5 Technical paper 11954 
paper6 Technical paper 38105 
progc Source code in " C" 39611 
progl Source code in LISP 71646 
progp Source code in PASCAL 49379 

Canterbury Corpus 
alice29.txt English text 152089 
asyoulik. txt play Shakespeare 125179 
cp.html HTML source 24603 
fields.c C source 11150 
grammar .lsp LISP source 3721 
lcet10.txt Technical writing 426754 
plrabn12.txt Poetry 481861 
xargs.1 GNU manual page 4227 

Table 5. 1: Descript ion of test data 
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File name I LZAS1 LZAS2 LZAS3 I LZSS 

Calgary Corpus 
bib 54.63 14.03 091.23 0 .40 
book2 51.87 13.44 89.59 0 .40 
news 61.43 14.40 102.41 0.37 
paper1 52.27 13.33 89.92 0 .41 
paper2 51.145 13.65 91.12 0 .41 
paper3 52.89 13.61 95.00 0 .40 
paper4 55.39 13.93 103.11 0.41 
paper5 57.89 13.90 103.73 0 .41 
paper6 54.19 13.44 91.59 0 .42 
progc 54.24 13.19 88.86 0.41 
progl 38.21 11.34 68.15 0 .45 
progp 39.05 11.22 69.67 0.48 

Canterbury Corpus 
alice29 .txt 50.94 13.36 91.99 0 .42 
asyoulik. txt 54.87 13.97 95.94 0 .39 
cp.html 55.98 14.15 91.45 0 .40 
fields.c 41.10 11.37 76.23 0.45 
grammar.lsp 48.209 11.69 96.75 0.43 
lcet10.txt 50.83 13.23 89.35 0.41 
plrabn12.txt 55.08 14.42 100.43 0.39 
xargs.1 53.14 13.30 111.19 0.38 

Table 5.2: Runtime in microseconds/ letter for LZAS1, LZAS2 , LZAS3 and LZSS 

Window Size I LZAS 1 LZAS2 LZAS3 

256 62.3 8.6 8.2 
512 55.0 9.3 14.2 
1024 46.6 10.1 25.8 
2048 50.7 11.3 48.3 
4096 51.7 13.2 91.9 
8192 53.9 16.5 178.5 

Table 5.3: Average runtime in microseconds/letter for LZAS1 , LZAS2 , LZAS3 over 
various window sizes 
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vVe make the following observations: 

(1) LZSS is 30-40 times faster than LZAS2 (the fastest among LZAS variants). As 

we mentioned before , the experiment of scaling up an implementation of LZSS 

triggered the idea of scaling down the SA-based LZ algorithms. However , it 

turns out that our approach becomes uncompetitive to LZSS. Okumura imple­

mentation 's [37] uses 256 binary search trees to achieve fast searches. It seems 

that the binary search trees are more efficient for small strings and hence work 

well for a sliding window approach; while suffix arrays are more efficient for long 

strings and hence work efficiently for a whole string. 

(2) For N = 4096 , among the LZAS variants, LZAS2 is the fastest one. This 

was expected as we are updating the suffix tree here rather than recomputing it 

(LZAS3) and we are maintaining the whole suffix array rather than just sampled 

values of SA/ ISA (LZAS 1). 

(3) LZAS1 processing time per letter is relatively stable (see Figure 5.1). This 

probably refelcts the logarithimc factor involved in sampling. 

(4) LZAS2 processing time per letter increases steadily as the window size increases 

(Figure 5.2) but it remains the generally the fastest. This increase is clearly 

logarithmic: as N varies from 28 to 213 (a factor of 25 ), time per letter approx­

imately doubles . 
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(5) LZAS3 processing time increases linearly as the window size increases. This is 

expected since we are recomputing SA whenever the window slides. Since the 

window size is increased by a factor of 2, we would expect an increase by a 

factor of 2 in the computation of SA as the update/recompute step is t he most 

consuming part of our algorithm .. 

(6) vVhen varying the window size, LZAS2 is still the fastest except for N = 256 

where LZAS3 is a litt le bit faster. Also notice that for window sizes 256-1024 

LZAS3 is faster than LZAS1 (see Figure 5.4). vVe can conclude that LZAS3 is 

better for small window sizes. 
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Chapter 6 

Conclusion and Future Work 

In this thesis we have discussed the use of Lempel-Ziv factorization for dictionary-

based dat a compression. vVe gave a brief explanation of the general processing in 

LZ77 and LZ78 to enable the reader to distinguish between the two schemes. vVe 

also discussed the process of updating the suffix array using DSA and t he idea of 

sampling. Then we presented our new algorit hm along with its variants and an 

interesting simple search algorithm that is used to find the longest previous match. 

vVe conducted comprehensive testing using well-known corpora that are designed for 

compression algorithms. vVe compared our algorithm variants against each other and 

against a previous algorithm (i.e. LZSS). Some observations were drawn from the 

test results. 

We have discussed the updating process of the suffix array and how we can make 

it more efficient for t he case of deleting a prefix and adding a suffix. The idea seems 

promising, although it might not be enough to improve our algorithm. It might be 
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useful for other applications. 

Another improvement that can be done is related to the computation of the inverse 

suffix array ISA. In our search algorithm we use only one ISA value, specifically ISA[r]' 

where r = N - F + 1. So we do not really need to compute the whole ISA array. 

One solution would be to make the SACA algorithm pick up and return the value at 

position r that we need; alternatively, a binary search of SA would yield the same 

value. 
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