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Abstract

In radar signal processing, the vulnerability of the desired signal to homogeneous

and heterogeneous interferences increases as the communication traffic increases. The

principal challenge in the radar system then is to mitigate the effects of cold (homoge­

neous) clutter, severe dynamic (heterogeneous) hot clutter and jamming interferences

while estimating the states of targets under track. Space-Time Adaptive Processing

(STAP) enhances the capability of radar systems to overcome this challenge. How­

ever, it is a sample-based system where the adaptive processing is sensitive to the

underlying assumptions as well as the diversity of potential interferences. Hence, the

performance of STAP deteriorates when basic assumptions are violated due to errors

in receiver array elements, non-stationary nature of interferences, inadequate Inde­

pendent and Identically Distributed (i.i.d.) sample data, and target like-signal in the

training data set.

This thesis proposes an Adaptive State Estimation (ASE) approach to characterize

STAP used simultaneously in spatial and Doppler domains for non-stationary, homo­

geneous and heterogeneous systems. The contributions presented here are based on

the adjustment of the weight vector and the update of associated interference covari­

ance matrix by ASE to minimize the output noise power while maximizing Signal to

Interference-pIus-Noise Ratio (SINR) in the Mean Squared Error (MSE) sense. The

integration of STAP principle with sequential state estimation in order to decode the

v



target signal while rejecting the interferences due to non-stationary heterogeneous

clutter and jammer effects without degrading performance is the key contribution of

this paper. The Proposed STAP-ASE algorithm is shown to outperform its counter­

parts in terms of efficiency, IF-improvement factor, Signal to Interference-pIus-Noise

Ratio (SINR) convergence rate and target detection. Simulation results are presented

to illustrate the performance of the proposed technique.
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Chapter 1

Introduction

The word "radar is an abbreviation for RAdio Detection And Ranging. It refers to the

technique of using radio waves to detect the presence of the target of interest in the

atmosphere. In radar communication systems, modulated waveformed and directive

antennas are being used to transmit the electromagnetic energy into a specific direc­

tion in order to detect, and track the target of interest. Target within the surveillance

area will reflect portions of the transmitted energy, echoes or radar returns, back to

the radar. These reflected echoes from the target are then received and processed

by the radar receiver in order to extract the target information such as range, range

rate, acceleration, angular position and other target specific identifications. Radars

are very complex electronic and electromagnetic systems. There is a great diver­

sity in the design architecture of the radar systems based on purpose, however the

fundamental operating principle and basic designed architecture is the same. They

(Radars) can be classified as ground based, airborne and spaceborne radar systems.

Depending on the type of waveforms radars use or by their operating frequency, radar

can also be classified as Continuous \Nave (CW) radar and the Pulse Radar (PR). A

simplified block diagram of radar communication systems is shown in Figure 1.1.
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Display ­....... Receiver
x(t)=s(t)+n(t)

J\

Power Supply

'I'

Duplexer SWitChM::::~;:---.l~
"

Angle of ArrivalAntennaTransmitterSynchronizer ~L J-~-'-- ....

Figure 1.1: Block Diagram of Radar Communication Systems

In the radar communication systems, if the received or the observed signal x(t) at

time t has the interference n(t), then the main challenges ofthe radar communication

systems are to extract the signal of interest s (t) from this observed signal. This type of

signal reception by the conventional radar receiver has been attractive solution for the

severe problem of signal detection and estimation, but conventional signal reception

technique are susceptible to degradation in Signal to Interference-pIus-Noise Ratio

(SINR) performance because of the constant changing of the interference environment

due to nonstationary, nonlinear and heterogeneous sources. This degradation may

be further aggravated as the radar communication traffic increases. As a result,

adaptive signal processing is the focal area for reducing the susceptibility of signals to

interferences because of its automatic sensations, hence rejection of the interferences
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without prior knowledge of the signal environment. Space-Time Adaptive Processing

(STAP) is a multi-dimensional adaptive signal processing technique that estimates

adaptive weight vectors in spatial and Doppler domains for which a target detection

hypothesis is to be formed. STAP operates on the set of returns, composed of pulses,

array elements, and range bins, over a period of time. Hence, STAP is a 2D processing

on 3D datacube, collected from the available signals received at the radar receiver.

Since, adaptation is performed in spatial and temporal domains, training is done using

the range bins. Typically, it is a sample-based approach where covariance matrix may

be estimated from Independent and Identically Distributed (i.i.d) sample data. The

main theory of this processing is to adapt with the sample data set in order to estimate

the interference covariance matrix and adjust or update the weight vector such a way

that, the noise power can be minimized, and Signal to Interference-pIus-Noise Ratio

(SINR) can be maximized in some appropriate sense.

1.1 Fundamentals of Space-Time Adaptive

Processing

STAP processing has long been considered for airborne radar in order to mitigate the

target signal in strong ground clutter environment [2]. Processing in STAP is based

on the adaptation of sample data, training the sample and solving a set of linear

equations. In STAP, two types of data are typically processed: one is training data,

which is used to estimate the interference covariance matrix and adaptive weight

vector. Other is the primary data or the test data on which detection and parameter

estimation are performed. In STAP, increment in the range bin within a particular

Pulse Repetition Interval (PRI) is known as the fast time samples, and those across

the PRIs is called slow time samples. If there are N antenna elements, and 1\.1 pulses

3



M.A.Sc Thesis- Md. Obaidul Malek McMaster - Electrical & Computer Engineering

over the Coherent Processing Interval (CPI), the group of N samples associated with

each pulse (over a particular CPI) are collected, or one sample is taken simultaneously

from each of the N antenna element, to make one snapshot. Therefore, there are

.!VI x N snapshots for each range bin. Signal processing on STAP platform is based

on the following three fundamental (core) equations.

1.) Equation for the estimation of the asymptotic interference covariance matrix

for ith from the training data set [1] [Complete derivation in Appendix A]:

1 L

Qi= LLx1Xf
1=1

(1.1)

where, L 2:: lVIN is the total number of samples being used for the ith range bin, x

is the input data vector, which may have noise only or target with noise, and (.)H

represents the hermitian transposition. The dimension of x is same as L 2:: A1N. In

this case, No. of Range Bins 2:: .!VIN and i represents the range bin index.

One of the major challenges in STAP processing is to estimate the interference

covariance matrix from the Li.d sample data set, since the prior of the matrix is

not known. Therefore, the Ivlaximum Likelihood (NIL) function in (1.1) needs to be

utilized in order to estimate the maximum likelihood of the interference covariance

matrix. However, in this approach, the input data from all the surrounding range

bins except the bin under test would be considered, and it is also assumed that there

is no target signals in the surrounding range bins (unsupervised or null hypothesis­

Appendix D). But, there are two main possibilities for having the target signal in the

secondary data: one is the perfectly matched with the target signal response, and

the other is the mismatched [1]. In the proposed approach, the perfectly matched

target like signal (semi-supervised) has been considered and filtered out from the

secondary data set in order to estimate the maximum likelihood of the interference

4
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covariance matrix. It is also assumed that interference is Gaussian, and Independent

and Identically Distributed (i.i.d).

2.) Equation for the weight vector:

Q-1
Wapt = S (1.2)

vVhere, Q and wopt are (unknown) expected asymptotic interference covariance ma­

trix, and optimal weight vector, W = [WI, W2, ... , WMN]H respectively. s = [Sl, S2, ... ,

SMN]H is the desired signal steering vector. The covariance (asymptotic) matrix Q

Can be obtained from (1.1), and hence the weight vector w. For known value of Q,

equation (1.2) is an optimal solution for the weight vector, i.e., W = Wopt.

3.) Equation for the scalar beamformering output:

y (1.3)

where, observed signal vector x = [Xl, X2, ... , XMN]H with noise vector n.
The core concept of the STAP formulation is based on above three equations

(1.1-1.3). Furthermore, a low sidelobe antenna with fixed interference does not need

training, hence the adaptation. But, often there is a need to detect and estimate

the target of interest in the vicinity of diverse interferences. Therefore, adaptation

and adjustment are the two crucial steps in STAP processing. Adaptation involves

the estimation of the interference matrix from the i.i.d training data vector and the

requirement of the number of data vector for the estimation of covariance matrix

increases with the increase of matrix dimension. On the other hand, adjustment of

the weight vector would be required in such a way that the process can track the

changes due to changes in the nature of the interferences. The main objective of

5
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the STAP is to isolate the signal from the interferences by adaptively estimating

the weight vector and error covariance matrix based on the sample data (training

data) received from the spatial and temporal domains. Main motivation of the STAP

processing is its outstanding performance to isolate the slow and fast moving target

from the interferences, even if the interference signals are stronger than the signal of

interest.

Depending on how sample returns (input data) are processed, STAP can be clas­

sified into fully adaptive processing, subspace adaptive processing, and post Doppler

adaptive Processing.

In the fully adaptive processing technique, the sample data is processed with full

the degree of freedom as obtained by the number of array elements and the pulses [1].

In fact, this model estimates the weight vector, mitigates the target signal and rejects

the interference covariance matrix on the way processor has received the sample date

[1]. This technique faces challenges for the adaption with the training data set due to

the insufficient i.i.d sample data set in one hand and computational complexity due

to the estimation of the inverse of interference covariance matrix on the other.

In the subspace technique, the large covariance matrix is transformed into discrete

matrices, so that the computational load can be reduced, and the challenge not having

sufficient i.i.d sample data can also be avoided. Matrix transformation can be done

on spatial or temporal domain or both. This is a suboptimal process, however, this

method is widely used, since it is computationally efficient.

In post Doppler processing, Doppler filtering is performed before the STAP adap­

tation. This is also called frequency depended processing where scanning is performed

based on the Doppler bins. It is a special form of subspace technique. However, it

is suboptimal and the performance is poor compared to full and typical subspace

adaptive processing.
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The motivation of the STAP processing is its capability to enhance the radar re­

ceiver to mitigate the desired signal power and isolate the target even if the undesired

signal is stronger compared to the target signal. One of the major challenges in STAP

processing is to estimate the interference covariance matrix from the sample data set,

because of insufficient i.i.d sample data set due to nonstationary, and heterogeneous

clutter and jammer characteristics. More importantly, the prior of the interference

covariance matrix is unknown, however, using the Maximum Likelihood Estimator

(MLE) function stated in (1.1), the likelihood of interference covariance matrix may

be estimated.

1.2 Space-Time Adaptive Processing with

Adaptive State Estimation (STAP-ASE)

A common problem in any radar communication system is its additive noise at the

receiver. One source of additive noise is from the solid state devices and resistors

used in the implementation of the receiver module due to thermal effects. Another

source of additive noise interference, is due to clutter and jammer effects. Therefore,

the received signal at antenna elements are contaminated not only due to cold clutter

interference but also nonstationary hot clutter and jammer. Hence, it is necessary to

detect and isolate the effect of nonstationary and nonlinear signal interferences from

the target of interest. In STAP processing, it is usually assumed that the training

(secondary/alL'Ciliary) data samples are free from target signal (unsupervised). But,

in reality, there is a high possibility that the training data set is being contaminated

by the target signal. Therefore, overall performance, efficiency, and accuracy of the

STAP processing depends on the appropriate selection of auxiliary data set. It is

crucial to have a target free secondary data for computing the covariance matrix of

7
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the range cell under consideration (test), so that the cancelation of desired target

signal or self-nulling may be avoided. Therefore, the filter needs to be designed in a

way that would enable to isolate the target like signal from the sample data set before

starting the training process. Data sample collected by this method can be termed

as semi-supervised. STAP processing not only mitigates the combined interference

effect from nonstationary hot and cold clutter and jammer, but it also enhances the

detection of small and slow moving target, and provides robustness in the presence

of undesired signals.

The proposed STAP-ASE model is based on the minimization of the interference

covariance matrix and maximization of the Signal to Interference-pIus-Noise Ratio

(SINR) in the MSE sense. Therefore, the processor would be able to decode or

isolate the signal of interest from the nonstationary heterogeneous interferences due

to clutter and jammer sources. During the weight training process, there may be no

limit on the value of the weight vector [4], so that the constraint on the weight value

may introduce consistency on the estimation process [4]. Therefore, a constraint was

added to weight vector, which would accelerate the system convergence by limiting

the weight vector within an acceptable range and may also keep the relationship

required for the processing. Constrained weight vector may be considered as a key

tool to cancel out the interferences due to hot clutter, cold clutter, and noise, so

that the system can converge at its optimal point without affecting the original signal

characteristics and at the same time maintain the rigorous reliability of the processor.

The motivation of this model is its effective suppression of clutter and jammer in­

terferences by integrating STAP principle with sequential state estimation. In STAP­

ASE, the interference covariance matrix adaptively changes over the CPI due to

nonstationary clutter and jammer interferences. The interference covariance matrix

8
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is also updated within the filtering loop using previous data. Therefore, actual at­

tainable interference suppression, and convergence rate based on worst case scenario

are much higher than other techniques like Sample Matrix Inversion, Loaded Sample

MatrLx Inversion. In this model, the Posterior Cramer-Rao Lower Bound (PCRLB) is

analyzed from the dynamic state model perspective and have used this lower bound

as an achievable optimal point in order to cancel out the interferences, and mitigate

the signal power. Maximum attainable SINR, performance and the Improvement

Factor (IF) are also examined. The performance of Minimum Variance Distortion­

less Response (MVDR) is compared with the proposed STAP-ASE. ASE-SATP has

shown outperform performance compared to its counterparts, SMI, LSMI, for signal

decoding, Improvement Factor (IF), SINR, efficiency, consistency and convergence

rate.

1.3 Contributions and Previous Work

The nonlinear model in [7] presents a robust adaptive beamforming (spatial filtering)

system. The approach is to implement the robust Minimum Variance Distortion­

less Response (MVDR) beamformer due to mismatches in the approximation of the

desired signal steering vector.

Wiener filter approach stated in [1] [2], is for a linear stationary system, since

Wiener filter is optimal filter under the assumption that the system is linear and

time-invariant. The typical block diagram of a vViener filter is given in Figure 1.2.

Constrained Kalman filter model stated for STAP in [3] is for a stationary linear

system with unity gain, which performs well lmder the assumption that system en­

vironment is stationary and linear. The operational diagram for this model is stated

9
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d(t)

(t)(t)y WeFilter, W ....>- ,.

~

~,
~

X(t)

d(t)
.... Additive Interference,.

Figure 1.2: Schematic Diagram of a vViener Filter

in Figure 1.3 [3].

In the proposed STAP-ASE model, STAP itself is integrated with sequential state

estimation for rejecting the clutter and jammer effects, hence decoding the signal of

interest by considering the worst case scenario.

In most of the previous works including Sample Matrix Inversion (SMI), Loaded

Sample Matrix Inversion (LSMI), Adaptive Beamforming Using the Constraint Kalman

Filter, and Robust Adaptive Beamforming Based on Kalman Filter, weight vector is

updated within the filtering loop, and decomposed interference covariance matrix off

the loop. In the proposed STAP-ASE model, weight vector, and its associated in­

terference covariance and updated within the filtering loop. Interference covariance

matrix is updated in every loop cycle using the data set from the immediate previous

10
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Figure 1.3: Block Diagram of Linear Constrain Kalman Beamformer (Copied From
[3])

state. As a result the STAP-ASE model has higher rate of convergence as well as

better rejects the interferences originated from the cold and hot clutter and jammer

sources.

Furthermore, the implementation of a Kalman filter on a dynamic model (i.e.,

STAP) , depends on the adaptation and on-line estimation of unknown parameters,

and is severely biased on the nature of the received signals. More importantly, in

nonstationary heterogeneous system where the signal characteristics fluctuate over

time due to diverse nature of the received signal, there may be noticeable variation

in interference covariance matrix over a single (same) Coherent Processing Interval

11
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(CPI), hence the state estimation, which in turn degrades the performance and con­

sistency of the processor with models stated in SMI, LSMI, and [3] [7] [18]. In the

proposed model, the interference covariance matrix changes over CPI have been con­

sidered because of nonstationary and heterogeneous nature of the clutter and jammer,

and has the ability to sense adaptively the presence of the nonstationary interference

sources and suppress the interference while simultaneously decoding the signal with

high precision.

1.4 Thesis Organization

Chapter 2 provides a brief overview of the technical background, i.e., prerequisites

for STAP processing. In particular, it includes a brief summary of some of the theo­

ries about signal processing, statistical properties, and prerequisites upon which the

Space-Time Adaptive Processing (STAP) has been developed. Comprehensive the­

ory of STAP processing, interferences, possible challenges, nonstationary systems and

beamfonner output has also been discussed in this chapter. Finally, in this chapter,

the Least Mean Squared and vViener filter approaches are also discussed.

In Chapter 3, an overview of signals for the proposed STAP-ASE model is dis­

cussed. One of the biggest challenges of the STAP processing is to estimate the

interference covariance matrix from the sample data set because of insufficient i.i.d

sample data set, nonstationarity, and heterogeneous clutter and jammer characteris­

tics. More importantly, the prior of the interference covariance matrix is unlmown.

Estimation of the asymptotic interference covariance matrix, STAP-signal character­

ization, signal and noise, clutter and jammer interference models are stated in this

chapter. Furthermore, a model for constraint weight vector is also discussed. It

is shown that predefined signal vector with the associated constraint weight vector,

12
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would be able to approximate the desired signal so that the signal from the interfer­

ence can be isolated. Mathematical formulation for the maximum attainable Signal

to Interference-pIus-Noise Ratio (SINR) is also presented in this chapter. Finally,

the Improvement Factor, states the performance and efficiency of the estimator, and

generalized expression for Minimum Variance Distortionless Response (MVDR) are

also included in this chapter.

Chapter 4 is the core one for the proposed STAP-ASE processing. In this chapter,

the problem formulation, design algorithms, and design architecture for the proposed

STAP-ASE model are discussed. Different aspects of finite sample size, SMI and LSMI

algorithms, for STAP processing are also presented. Furthermore, the vViener filtering

approach is formulated, and it is shown that the \iViener filter is the special case of the

Kalman filtering approach, since it has been developed under the assumption that the

system is stationary and linear. More importantly, a novel model, which integrates

STAP with the extended Kalman filter is presented. The computational burden for

this model is also discussed. This chapter also presents the Posterior Cramer-Rao

Lower Bound (PCRLB), and the efficiency of the proposed model is also formulated.

The simulations, results and discussions are included in Chapter 5. Finally, Chap­

ter 6 presents the conclusions of this thesis and future work.

13
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Chapter 2

Prerequisites for Space-Time

Adaptive Processing (STAP)

2.1 Introduction

As the communication networking increases, the vulnerability of the desired signal to

the homogeneous and heterogeneous interferences increases. Hence, adaptive signal

processing architectures are currently the main focal point as a means for the sus­

ceptibility of the desired signal to the interferences. The main reason of widening

the interest for the adaptive systems because of its automated adaptation as well as

suppression of the interferences. Space-Time Adaptive Processing (STAP) is a multi­

dimensional signal processing technique, which enhances the radar receiver to mitigate

the desired signal power and isolates the target even if the undesired (interferences)

signal is stronger compared to the signal of interest.

This chapter would provide a brief summary of some of the theories, statistical

properties, and prerequisites upon which the Space-Time Adaptive Processing model
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has been developed. Comprehensive theory of STAP proccssmg, challenges, char­

acteristics of nonstationary systems and beamformering output have also been dis­

cussed. Finally, the basic concept of Least Mean Square and Wiener filter algorithms

have been stated.

2.2 Statistical Properties

Statistical properties of the signal processing deals with the mean, covariance, prob­

ability, probability density function, autocorrelation and cross correlation functions.

These properties are the backbone of the signal processing and detection; and pa­

rameter estimations hypothesis are being performed based on this properties. But, a

fundamental limit on the performance based on this hypothesis is deviated from the

optimal level due to the insufficient Independent and Identically Distributed (i.i.d)

sample data set, errors in receiver elements, and the diverse nature of the interferences.

As a result, the adaptive signal processing is now the subject of extensive research

due to its capability of reducing the effects due to the diversification from the under­

lining assumption in order to work and adapt with the more real world environment.

Therefore, it is very important to have a core concept of the signal properties from

the statistical perspectives. Following subsections stated the fundamentals of these

properties based on the works have already been done in [4] [20] [21].

2.2.1 Mean

Now, assumed that, {Lx is the mean, also known as expected value, of random process

X. If x is vector, which contains L samples of random process X, then it can be

written:

x = [Xl X2 ... XL]T
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and the expected value or the mean:

McMaster - Electrical & Computer Engineering

(2.2)

Now consider another random process Y, and y is vector of length L of that process

with mean Jly, then mean of the two random variables is the sum of their means, and

can be stated as:

(2.3)

2.2.2 Covariance

The covariance can be stated as a measure of how two non-identical variables change

together. If the two variables are identical, then this property is called as the variance.

The covariance matrix can be defined as:

lE[(x - Jlx)(Y - Jly)HJ

lE[xyH - JlxyH - xJly + JlxJl:J

In the case of zero means, covariance can be stated as:

Using these relationships, variance:

(2.4)

(2.5)

(2.6)

"Vhere, (.)H Rxx and Rxy are the Hermitian transpose, autocorrelation and cross­

correlation respectively, and have been defined in next section.
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The standard deviation can be stated as a measure of the variability or dispersion of a

data set. It is represented as a square root of the variance (or covariance). Therefore

standard deviation:

(2.7)

2.2.3 Cross Correlation

Let us consider two stochastic processes X and Y. Then the correlation between two

stochastic processes is called the cross correlation, and can be stated as:

(2.8)

The autocorrelation of a stochastic process describes the correlation between the

process at different points in time. Hence can be stated as:

(2.9)

Therefore, according to equation [2.5, 2.6, 2.8 and 2.9], it can be concluded that, at

mean zero; variance and covariance are equal to autocorrelation and cross correlation

respectively.

2.2.4 Posterior Probability Density Function

Probability theory is concerned with analysis of random phenomena. It is a possibility,

and a way of expressing knowledge or belief that an event will occur or has occurred. If

probability is a number that describes a set. Higher the number, the more probability

of occurring event there is. It is a measure of how likely it is that some event will

occur. Typically, probability can be denoted by P[.]. Conditional probability on

18
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the other hand is defined as the knowledge of event or occurrence of X, given the

occurrence of Y. So, conditional probability can be stated as [21]:

P[XIY] = P[XY]
pry]

Where, pry] > 0

(2.10)

Now, consider, sample vectors x and y of a stochastic process X and Y respectively.

Then the posterior probability density function (pdf) of x conditioned on y is:

[ I ] - p[Ylx]p[x]
pxy - ply]

This is also known as a Bayes' theorem.

(2.11)

If the random vector x follows a multivariate gaussian pdf Px(x), then it can be

written:

(2.12)

where IQxl is the matrix determinant.

2.2.5 Ergodic Process

A stochastic process is termed to be ergodic if its statistical properties can be deduced

from a single, sufficiently long sample of the process. In other words, it is the process

when time average of the samples approaches the ensemble average. As for example, in

signal processing, the process can be stated as a ergodic, if the mean of the snapshot

of the process is equal to the true mean of that process for all the snapshots for

-00 < t < 00.
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2.2.6 Independence, Correlation, and Disjoint

The random events x and y is said to be independent if and only if their joint pdf

can be written as:

if x and y have non-zero probabilities, then this implies:

Pxy(xly) = Px(x)

and

In the case of disjoint events, it may consider:

pxy(xny) = 0

(2.13)

(2.14)

(2.15)

(2.16)

In probability, disjoint and the independence are not exactly the same meaning.

However, when any of Px(x) or py(y) is zero, then disjoint and the independence are

the same. Finally, random variables x and yare said to be uncorrelated if they satisfy

the following relation:

(2.17)

2.3 Interferences

The principal challenge in the radar system is to mitigate the interferences due to ther­

mal noises; and interferences because of cold (homogeneous) clutter, severe dynamic

(heterogeneous) nonstationary multi-path hot clutter and jammer sources. Particu­

larly, in the case of airborne radars, these noises and interferences playa critical role
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due to integrated influences of platform motion and antenna pattern. However, 1ll

the case of ground based radars, system can have a ridge at the zero Doppler.

System may consider two types of noise sources, effect the target signal; one is the

internal and other is the external sources. External noise mostly is the environmental

noise (thermal noise) and is received from the surrounding of the target of interest.

On the other hand, internal noise (or receiver inherent noise) effect is superimposed on

the desired signal received by the radar due to the radar receiver. However, with the

advancement of the radar technology and high performance of the receivers, internal

noise effect can be minimized at lower level compared to the other interferences.

Clutter can be stated as any object (unwanted) that may generate undesired target

like echo signal for the radar professionals [24]. Typically, clutter is considered as a

passive nature of interferences, since it usually appears in response of the radar signals

[24]. Major sources of clutter echoes are typically returned from ground (objects),

sea, rain, birds, animals, insects, chaff, decoys and atmospheric turbulence. Clutter

can also be considered as a moving interference with respect to the clutter background

[1]. Clutter may also be caused by the multi-path echoes from the desired targets due

to the reflection and refraction [22]. To isolate the target from this mixture, may be

a great challenge, since the clutter sources and the target signal may share the same

resolution element. However, differing doppler shifts between the target and clutter

would be very efficient technique in order to mitigate the target Signal [24].

Jammer is known as an active interference, and it is initiated by the elements

outside the radar and in general, it is unrelated to the radar signals. Furthermore, a

jammer may be considered as a device that intercepts signal transmissions by creating

interference. It is a common interference in radar communication systems. Jammer

interference from the dedicated transmitter (jammer), can cause a masking interfer­

ence and deception jamming in the form of noise and simulated echoes respectively
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~

I

[24]. Detection and tracking in jammer environment is very challenging task, since

jamming signal usually travels only from the jammer to the radar while in the case of

radar signal, it travels in two ways, hence produces signal with significantly reduced

power when received by the radar receivers [22,24]. Jammer has an added effect of

affecting radars along other line-of-sights, due to the radar receiver's sidelobes (Jam­

ming). Mainlobe jamming effect can be mitigated by narrowing the mainlobe solid

angle, and sidelobe jamming effect can be improved by reducing receiving sidelobes

in the radar antenna design.

2.4 Space-Time Adaptive Processing (STAP)

Space-Time Adaptive Processing (STAP) is a special set of signal processing method,

which enhances the radars to detect targets that might otherwise be contaminated

by the interferences. This processing is a linear combination or weighted sum of the

input samples. The Space in STAP means that STAP weight, signal samples at each

antenna array element, at one instant of time define an antenna pattern in space,

the term Adaptive in STAP refers that STAP weights are computed to reflect the

actual noise and interferences, due to the clutter and jammer effect in which radar

finds itself, Time in the STAP process refers that STAP weights, applied to the signal

samples at one antenna element defines a system impulse, and therefore a system

frequency response.

Adaptive architecture are currently the main focus point as a means for reducing

the susceptibility of the desired signal to the interferences, and STAP is an extension

of the adaptive antenna processing method. Adaptive antenna methods, typically

adjust the phase (directional pattern) and amplitude of the received signal aperture

illumination in order to mitigate the signal power. On the other hand, Space-Time
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Adaptive Processing (STAP) is a multi-dimensional adaptive signal processing tech­

nique, over a spatial-doppler domains. Processing in the STAP is based on the adap­

tation of sample data, training the sample and solving a set of linear equations. STAP

typically processing two types of data. One is training data and are used to estimate

the interference covariance matrix as well as adaptive weight vector. Other is the

primary data or the test data on which detection and the parameter estimation is

performed. Since, adaptation is done in spatial and temporal domains, training is usu­

ally performed in the range bins. Therefore, it is typically called 2D data processing

methodology on 3D datacube.

In STAP, increment in the range bin within a particular Pulse Repetition Interval

(PRI) is known the fast time samples, and those across the PRIs is called as slow

time samples. If there are N antenna elements, and M pulses over the Coherent

Processing Interval (CPI), collect the group of N samples associated with each pulse

(over a particular CPI), or taking one sample simultaneously from each of the N

antenna element, to make one snapshot (one column of Figure 2.1). So, there are

NIN snapshots for each range bin. The typical diagram for STAP datacube is shown

in Figure 2.1.

A low sidelobe antenna with fixed interference does not need training hence the

adaptation. But, processor often needs to detect and estimate the target of interest

in the vicinity of diverse interferences. Therefore, adaptation and adjustment are

the two crucial steps in STAP processing. Adaptation involves the estimation of the

interference matrix from the Independent and Identically Distributed (i.i.d) training

data vector and number of data vector for the estimation of covariance (asymptotic)

matrix increases with the increase of matrix dimension. On the other hand, adjust­

ment of the weight in a way that process can track the changes due to changes in

the nature of the interferences. The main objective of the STAP is to isolate the
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Figure 2.1: STAP datacube

24



M.A.Sc Thesis- Md. Obaidul Malek McMaster - Electrical & Computer Engineering

signal from the interferences by adaptively estimating the weight vector and error

covariance matrix, based on the sample data (training data) received from the spatial

and temporal domains. Furthermore, STAP principle is also used to eliminate the

effects of co-channel interference, and lSI in radar communication. It also uses mul­

tiple antennas, which typically requires to place at least half the wave length of the

operating signal in order to mitigate the fading effects. The motivation of the STAP

processing is its outstanding performance to isolate the slow and fast moving target

from the interferences, even if the interference signals are stronger than the signal of

interest.

2.4.1 Processing Procedures

Depending on how sample returns (input data) are processed, Space-Time Adaptive

Processing can be classified into fully adaptive processing, subspace adaptive process­

ing, and post Doppler adaptive processing.

In fully adaptive processing, system processes the sample data with full degree

of freedom as obtained by the number of array elements and the pulses [1]. In fact,

system estimates the weight vector, mitigates the target signal and rejects the in­

terference covariance matrix on the way they have received it [1]. Fully Adaptive

Processing requires to solve M x N linear equations. This is fully optimal process,

however in the case of large sample data, or unavailability of sufficient number of

Independent and Identically Distributed (i.i.d) sample data set, this technique faces

challenges for adaption with the sample data set and computational complexity due

to the estimation of the inverse of interference covariance matrix (1\11N x 1\11N). Typ­

ical operational principle of fully adaptive processing is given in the Figure 2.2 [70]:
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STAP: Space-Time Adaptive Processing
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Figure 2.2: Fully Adaptive STAP Processing

In subspace technique, large covariance matrix needs to be transformed into dis­

crete matrices so that computational load can be reduced, and also the challenges that

are constituted for not having sufficient i.i.d sample data may be avoided. Matrix

transformation can be done in spatial or temporal domain or both. This is subop­

timal process, however this method is computationally efficient. Typical operational

principle of partially adaptive processing is given in the Figure 2.3 [70]:

In post Doppler processing, Doppler filtering is performed before the STAP adapta-

tion. This is also lmown as a frequency dependent processing where scanning is per­

formed based on the Doppler bins. It is a special form of subspace technique, where

NI x N-dimension filtering problems are transformed into M separate N-dimension

problems. This technique is computationally efficient and needs fewer sample data

than fully adaptive process. However, it is suboptimal and the performance is poor

in comparison to full and typical subspace adaptive STAP techniques.
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Figure 2.3: Partially Adaptive STAP Processing

2.4.2 STAP-Nonstationary Heterogeneous Systems

Nonstationary refers to the changes of properties over time, and it is usually a prop­

erty of the dynamic systems. In STAP-processing, requirements of the Independent

and Identically Distributed (i.i.d) training data set increase with the increase of the

dimension of the covariance matrix. But, due to the nonstationary and heterogenous

nature of the interferences, it might be a great challenge for having sufficient i.i.d

sample data set for the estimation of interference covariance matrix as well as ad­

justment of the associated weight vector. Most of the time, the system model would

usually consider that the radar interferences are stationary. But, in reality, spatial­

temporal properties of the interferences may not be constant over the same Coherent

Processing Interval (CPI). Therefore, the fluctuation in the adaptation of the spatial­

temporal covariance (asymptotic) matrix over time (CPI) is highly predictable. In

STAP processing, nonstationarity may be considered due to the range variation as

well as variation of the direction of arrival over time i.e. over the same Coherent
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Processing Interval (CPI). As a result the structure of the interference covariance

matrix changes with Pulse Repetition Interval (PRI) over the same CPI. Therefore,

the processor model must be able to incorporate adaption and adjustment in order

to achieve effective suppression of interferences due to nonstationary heterogeneous

clutter and jammer effects.

Detection of target in nonstationary heterogeneous clutter and jammer environ­

ment may involve the computation of data during each snap shot compared to the

other. If the adjustment of weight vector is considered in the same time slot as the

training data, there would be no impact due to time variation. Even extended clutter

or jammer suppression might be possible for the diverse properties of the interfer­

ences due to nonstationary heterogeneous systems. Time varying adaptive weights

by a linear extrapolation over a CPI due to moving interference may also be computed

[17][18].

One of the greatest challenges in STAP processing is to estimate the asymptotic

interference covariance matrix from the sample data set, because of insufficient i.i.d

sample data set due to nonstationary and heterogeneous clutter and jammer char­

acteristics, and the prior of the interference covariance matrix is unknown. More

importantly, computational complexity increases with the increase of the size of the

interference covariance matrix, since the accuracy of the STAP processing depends

on the number of the sample; and size of the covariance matrix increases with the

increase of the sample size. High computational burden is also the challenge for the

future growth and expansion of the STAP method. Furthermore, the Maximum Like­

lihood Estimation (MLE) function stated in equation (1.1), may be used to estimate

the likelihood of interference (asymptotic) covariance matrix, even though the prior of

the interference covariance matrix not known. The computational bottle neck can also

be overcome by using the partially adaptive (parallel processing) STAP-processing.
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Finally, motivation of the STAP processing is its ability to enhance the radar receiver

to mitigate the desired signal power and isolate the target even if the interference

signal is stronger compared to the target of interest.

2.5 Adaptive Beamforming

Adaptive beamforming is a signal processing technique, which widely used in antenna

arrays for spatial signal transmission and reception. In this beamforming technique,

array of antennas is exploited to achieve maximum reception in a specified direction

in order to estimate the signal arrival from a desired direction as well as obtained

the optimal signal power, while rejecting the signal from other directions. The main

distinction between an adaptive beamformer and a conventional beamforming sys­

tems is that, adaptive beamforming has the ability to automatically adapt with the

interferences, and suppress these interferences while simultaneously enhancing and

optimizing the performance of the radar reception without prior knowledge of the

signal and noise environment. It is highly reliable beamforming technique, since the

spatial characteristics of the signal can be automatically adjusted until the array side­

lobes are reduced at the optimal level. On the other hand, conventional methods are

highly vulnerable to the undesired interferences, and the performance is significantly

degraded with the increase of the array sidelobes. Figure 2.4 shows the principle

configuration of adaptive beamforming method:

According to the Figure 2.4, now, assume that the direction of arrival is e, number

of antenna array elements N, operating wave length A, spacing between two elements

is d. Therefore, the received signal at the Nth element of the antenna array can be

stated as [1][2]:

(2.18)
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Figure 2.4: Adaptive Beamforming Systems
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Now, consider the associated weighting factors (vectors) w for each of the array

element, then the scalar output of the beamformer can be stated as [1] [2]:

y
N

LW;;xn

n=l

wHx (2.19)

In STAP-processing, adaptive beamforming, typically means a data dependent mod­

ification of the array elements. In this processing, the system usually considered two

types of data: one is the training data and other is the primary data. Adjustment in

the adaptive beamforming is achieved by varying the weights of the associated array

elements, and by taking the weighted sum of the received signals at all of the array

elements [25]. In the case of STAP processing, the initial weight vector would be

approximated from the likelihood of the interference (asymptotic) covariance matrix,

and optimal weight vector can be achieved by recursively or the iteratively training

the sample data set based on underlying processing algorithms, and detection and

estimation is performed with primary data set. The operation of an adaptive beam­

forming system can be illustrated, by considering a reference signal and comparing

the signal with the estimated signal. Each time the difference (error) from this com­

parison is calculated, and based on this error, system needs to adjust or estimate the

associated coefficient. This process is continued until it fulfils the required criteria of

the processing algorithm. To overcome the challenges due to the nonlinear and non­

stationary environment, sequential state estimator filtering approach, i.e., Kalman

filter may be considered.
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2.6 Wiener Filter and Least Mean Squared

In the statistical linear filtering solution, a simple linear filtering approach would be

anticipated in order to cancel out the noise and mitigate the signal power. Wiener

filter, proposed by Norbert vViener, is a fundamental building block of optimum linear

filters, which involves linear estimation of a desired signal. It is linear optimal discrete

time invariant filter. The principle approach of this filtering solution, is to minimize

the error due to the differences (noise) between the reference signal and the estimated

signal because of the stationary input. It uses Mean Squared Error (MSE) approach

in order to minimize the difference and optimize the signal of interest. Figure 2.5 is

the generic block diagram of vViener filter. The input data x(n) is the combination of

signal and the noise, and d(n) is the desired signal. The Wiener filter is inadequate

for dealing with non-stationarity systems (signal and interferences), since it is optimal

filter under the assumption that the operating environment is linear and stationary.

The Least Mean Squared (LMS) algorithm is an adaptive gradient based method of

steepest decent, introduced by \i\Tidrow and Hoff. LMS uses an iterative procedure

in order to make successive corrections to the weight vector in the direction of the

negative of the gradient vector which eventually leads to the minimum mean square

error. There is no cross-correlation or expectation required for least mean square.

Typically, it does not consider any stochastic nature of the signal and statistical

assumption, however there may be a similarity (with vViener filter) in weight solution.
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Chapter 3

Signals Overview for STAP with

Adaptive State Estimation

(STAP-ASE)

Adaptive signal processing is the focal area for reducing the susceptibility of the

signals to the interferences because of its automatic sensation and rejection of the

interferences without prior knowledge of the signal environment. Space-Time Adap­

tive Processing (STAP) is a multi-dimensional adaptive signal processing technique,

which estimates adaptive weight vectors in spatial and Doppler domains for which a

target detection hypothesis is to be performed. STAP operates on the set of returns,

composed of pulses, array elements, and range bins, over a period of time. Hence,

STAP is a 2D processing on 3D datacube, collected from the available signal received

at the radar receiver. Since, adaptation is performed in spatial and temporal domains,

training is done using the range bins. Typically, it is a sample based approach where

covariance (asymptotic) matrix may be estimated from Independent and Identically

Distributed (i.i.d) sample data. The main theory of this processing is to adapt with
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the sample data set in order to estimate thc interference covariance matrix and adjust

or update the weight vector in a way that, the noise power can be minimized, and

Signal to Interference-pius-Noise Ratio (SINR) can be maximized in some appropriate

sense.

In this chapter, the prerequisites of problem formulation for STAP-ASE have been

stated. One of the greatest challenges in STAP processing is to estimate the interfer­

ence covariance matrix from the sample data set, because of insufficient i.i.d sample

data set due to nonstationary, and heterogeneous clutter and jammer characteris­

tics. More importantly, the prior of the interference covariance matrL""C is unknown.

Therefore, estimation of the interference covariance matrix, problem formulation,

STAP-signal characterization, signal and interference models are also being stated

in this chapter. The improvement factor, states the performance and efficiency of

the estimator, and mathematical formulation for Minimum Variance Distortionless

Response (MVDR) have also been included in this chapter.

3.1 Introduction

In STAP processing, it is usually assumed that the training (secondary/auxiliary)

data samples are free from target signal (unsupervised). But, in reality, there is a

high probability that the training data set is being contaminated by the target signal.

Therefore, overall performance, efficiency, and accuracy of the STAP processing de­

pends on the appropriate selection of alL""Ciliary data set. It is crucial to have a target

free secondary data for computing the covariance matrix of the range cell under con­

sideration (tcst), so that the cancelation of desired target signal or self-nulling may

be avoided. Therefore, the filter needs to be designed in a way, that would be able

to isolate the target like signal from the sample data set before starting the training
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process. The sample data obtained by this way is called as semi-supervised. STAP

processing not only mitigate the combined interference effects from nonstationary hot

and cold clutter and jammer, but also enhance the detection of small and slow moving

target, and also provides robustness in the presence of undesired signals.

STAP involved high computational complexity for the adaptation, estimation and

filtering of the signal of interest. Complexity due to adaptation and the estima­

tion of the inverse of the interference covariance matrix increases with the increase

of the sample data vector, since dimension of the interference covariance matrix is

proportional to the data vector [1]. On the other hand, filtering typically involves

sequentially multiplying the received data (steering vector) with the inverse of the es­

timated covariance (asymptotic) matrix for all the range bins for all possible Doppler

frequencies.

Proposed STAP-ASE model is based on the minimization of the interference

covariance matrix and maximization of the Signal to Interference-pIus-Noise Ratio

(SINR) in the Mean Squared Error (MSE) sense. Therefore, the system can decode

or isolate the signal of interest from the interferences due to clutter and jammer

sources. During the weight training process, there may be no limit on the value of

the weight vector [4], so that the constraint on the weight value may introduce con­

sistency on the estimation process [4]. Therefore, added constraint to weight vector

would accelerate the system convergence by limiting the weight vector within an ac­

ceptable range and may also keep the relation stated in equation (3.13). Constraint

weight vector may be considered as a key tool to cancel out the interferences (hot

clutter, cold clutter, and noise), so that the system can converge to its optimal point

without affecting the original signal characteristics and at the same time maintain

the rigorous reliability of the systems.
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3.2 Signal Characterizations

One of the greatest challenges in STAP processing is to estimate the interference

covariance matrix from the i.i.d sample data set, since the prior of the matrix is not

known. However, using the Maximum Likelihood Estimation (MLE) function, pro­

cessor may estimate the interference covariance matrix. In this approach, the input

data from all the surrounding range bins except the bin under test has been consid­

ered, and it may also be assumed that there are no target signal in the surrounding

range bins (unsupervised or null hypothesis:-Appendix-D ). But there are two main

possibilities for having target signal in the secondary data set. One is perfect matched

with the target signal response, and other is mismatched. In the proposed approach,

the perfectly matched target like signal (semi-supervised) is being considered and

filtered out from the secondary data set in order to estimate the maximum likelihood

of the interference covariance matrix. Hence, the maximum likelihood of interference

covariance matrix can be stated as [1]:

1 L

Q'i = L I:xlxf
1=1

(3.1)

where,L ;;:; NIN is the total number of samples being used for the ith range bin, x is

the input data vector may have noise only or target with noise and (.)H represents

the hermitian transposition. The dimension of x is 2 NIN.

3.2.1

Diverse nature of the signal properties due to the various sources, signal source may

be considered as inherently random. Thermal noise, interferences due to clutter and

jamming effect are also random in nature. The main concern is to process the received
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signal in a way that the overall detection performance of the desired signal can be

improved. The adaptive methodology may exploit signal characteristics, and the

nature of the signal sources in order to achieve such improvement. Therefore, it is

very important to consider the signals and interferences model in different context.

On the other hand, advantage for having the random signal is such that, it is plausible

to assume a Gaussian random process, since the statistical properties of the Gaussian

signals are more desirable because the first and second moment of the process would

be able to provide a complete characterization of the signal.

Now, consider the complex desired (joint domain) steering vector S E CMN , where

N is the number of array elements and NI is the number of pulses. If the ma."'cimum

likelihood of interference covariance matrix is Q (its dimension depends on the di­

mension of input x) with zero mean Gaussian and multivariate complex Gaussian

distribution, and corresponding complex weight vector is W E CklN , then

W (3.2)

The optimal weight vector for the signal with steering vector s and the asymptotic

interference covariance matrix of the processor is Q, then the relation between them

can be stated by the following well-known equation [1]:

Q-l
Wopt = S (3.3)

'Where, Q and Wopt are (unknown) expected interference covariance and weight vector

respectively and depend on the adaption and training of the sample data.

Now, if x = [Xl, X2, ... , XMN] is the signal (with noise+dutter+jammer interfer­

ence) from the array elements then the main challenge is to isolate the desired signal
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with steering vector s from the interferences by the adaptation of the sample data,

estimation of covariance matrix and adjustment of the weight vector.

Now assume that the complex weight vector W rnn for each receiving channel of

array of N elements with equal space d (for lVI pulses) as shown in Figure 3.1. Now

Element 2

x(t)

e

Array axis

d

Element 1

Figure 3.1: Pair of Identical Array Elements

consider the beamformer output of the process is scalar, y. Therefore, the output y

can be stated as [1]:

kIN

Y I:: W;;rn Xnrn

nrn=l

wHx
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Received signal is always contaminated by the noise and the interferences due to the

clutter and jammer effects. If x has the noise component D E elVIN, equation (3.4)

may be restated as:

y

The output power of the process [1]:

(3.5)

The signal power at the output [1]:

and the noise power at the output [1]:

Pn lE[lwH D1
2

]

wHlE[DDH]w

since, Q = E[DDH
]

and II . II represents the Euclidean-norm.

Signal to Interference-pIus-Noise Ratio (Power),
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Based on the STAP phenomenon, the processor needs to minimize the noise power

while maximizing the signal response in some appropriate sense. Therefore, the sys­

tem can isolate or decode the signal of interest.

The Signal to Interference-plus Noise Power ratio may be restated as:

I w H Q1/2Q-1/2s 1
2

wHQw
(3.10)

Using the Schwarz's inequality, equation (3.10) may be written as:

At the optimum condition, the upper bound can be considered, and hence:

( Ps ) H-1P
n

opt = S Q S

3.2.2 Constraint Weight Vector

(3.11)

(3.12)

The main objective of the proposed model is to estimate the weight vector and the

interference covariance matrix from the adaption of training data set in a way, that

the noise power can be minimized and at the same time SINR can be maximized in the

MSE sense. Therefore, the system may decode or isolate the signal of interest. Now,

consider that, putting the constraint on the weight vector would allow the system to

obtain this goal. Now, the equation for the constraint can be stated as:

H
C we=g (3.13)

vVhere, We = [WeI, W e2, . .. ,WeMN]T is the constraint weight vector, C is the prede-

fined steering vector whose elements are stated by look direction and signal Doppler
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frequency, and 9 is the constant gain due to the associated signal steering vector.

The constraint to the weight vector would also ensure that the characteristics (such

as signal energy) of the signal would be unchanged, while minimizing the effects of

the interference covariance matrix [1]. Now, constrain the gain of the processor at 9

on the prescribed direction and frequency, and null the other directional and Doppler

interferences without distorting the signal of interest.

The optimal solution for the constraint weight [complete derivation in Appendi.x

C] vector can be stated as:

(3.14)

According to STAP principle, interference covariance matrix needs to be estimated

using the sample data from the surrounding range cells except the cell under consid­

eration (test cell). Therefore, they system needs to nullify the signal influence due to

the test cell when estimating the interference covariance matrix. Now, consider a a

matrix U E CMNXZ\tlN, and which must also satisfy following condition,

(3.15)

where, 0 is ]vIN x 1 zero vector. Therefore, constraint vector c, constraint weight

vector We, and null block with matrix U(t) are formulated in a way, which would

satisfy the above constraints.
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3.3 Target Signal
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The desired target signal for the proposed model depends on the weight vectors

(we = w), and it is also apparent from equation (3.3), the weight vector depends

on the asymptotic interference covariance matrix Q. However, if the system has the

signal of interest s(t) of the moving target with radial velocity Vrad for the associated

spatial and temporal steering vectors, then desired signal can be formulated [1] as:

ftarD

s(t)

2Vrad
-A-COS<Pt COSet

(3.16)

'Where, Vt, vs, and @ are the temporal steering vector, spatial steering vector and kro­

necker product respectively. The terms <Pt, e t A, ftarD' T are azimuth angle, depression

angle, operating wave length, target Doppler frequency, PRI respectively. Subscript

t represents the position of the target at the associated angles. m = 1,2, ... ,M and

i = 1,2, ... ,N.

The tangential component of the target velocity may also be considered, however

for large range and the small number of echo pulses this can be neglected. For the

same reason, radial component of the target can also be assumed constant, since the

azimuth angle interval passing by the desired target at the time of observation is

negligible. However, in the case of long pulse sequences, radial velocity varies pulse

to pulse [1].
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Furthermore, if the space time signal vector s(t) used for the model is under the

assumption of equation (3.16), then they system may consider that the model is per­

fectly matched to the expected signal, as a result the maximum processor performance

can be anticipated in order to suppress the interferences due to clutter.

3.4 Interferences

Immunity to the multipath interference needs to be considered in order to enhance

the detection performance, since interference environment always cllanges due to the

severely diverse nature of spatial-temporal properties. Received signal in the nature

is contaminated by both of white as well as the colored noises due to clutter and the

jammer interferences. As the communication load increases, the detection of target

due to these interferences is getting a big concern.

So, it is a paramount importance to understand the interference model in order
to isolate and suppress these interferences from the target of interest. The total

interferences may be stated as:

(3.17)

where, Qn is noise part; Qc and Qj are the interferences due to clutter and jammer

effects respectively.

Typical configuration of omnidirectional array with two array elements where signal

and interferences are arrived at certain angles is shown in Figure 3.2.
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Signal of Interest = s(t)

Array axis
Element 2

Interference

Element 1

d -
A

- 2

Figure 3.2: Signal and Noise mixture process

3.4.1 Noise

Noise can be defined as the variation in, and the addition of the unwanted factors to

the stream of the desired target signal. It can be categorized as the white noise and the

colored noise; and can also be considered as a random signal. 'White noise typically

contains the equal power at any central frequency and within a fixed bandwidth,

where power spectrum density is distributed with visible properties. This white noise

may typically be considered as uncorrelated with the spatial domain (signal), and it

has covariance with diagonal matrix; and may also be considered as a thermal noise

received by the antenna or the receiver inherent noise. The colored noise on the other

hand, is due to the presence of the interferences because of the clutter and jammer

effects, and correlated with signal. 46
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3.4.2 Clutter
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Clutter may describe any source or object which can cause unwanted signal. It is a

passive interference, received by the radar. The unwanted signal that comes through

the antenna's main-lobe is being considered as a main-lobe clutter, and the others

are being considered as a side-lobe clutter signal. The Figure 3.3 shows the typical

antenna radiation pattern for side-lobes, and main-lobes [28]. Clutter and target of

interest may be situated in the same radar resolution cell [27], hence angular and range

selection method do not ensure sufficient suppression of clutter. Alternate technique

to mitigate the target signal is to consider the difference in velocity between the target

and the interference due to clutter, since it may cause different Doppler shift between

the desired signal and the interferences. In space time processing, clutter rejection

is being considered on a pulse-to-pulse basis, and the process is carried out for one

range increment only under the assumption that, the clutter echoes are independent,

identical, and asymptotically Gaussian. Furthermore, if the system considers that the

clutter background is moving at the radial direction with velocity Ve , then additional

clutter velocity needs to be considered with the platform velocity [1] [2].

Statistical characteristics of the clutter returns mainly depended on the nature of

each return, however, the clutter fluctuation can be modeled by means of Gaussian

phenomenon [1]. Steering vectors due to the spatial and temporal properties for

airborne radar associated with each direction because of clutter, can be stated as [1]:

feD
2vp
TCos¢ cose
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vVhere, e, ¢, V e , Vp , feD and T are the depression angle, azimuth, radial clutter

velocity, platform velocity, clutter Doppler frequency and PRI respectively.
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Figure 3.3: Antenna Pattern Showing Main-lobes and Side-lobes

3.4.3 Jammer

Jammer may be considered as an active interference such as masking interference and

deceptive jamming [27]. Now, for jammer, system may consider only the channel

mismatch due to spatial properties of the process. So, steering vector due to the

spatial and temporal properties for airborne radar because of jammer, can be stated

as [1]:

~ I J. \
Y.jS\<fJ)

(3.19)
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where, l represents the location of the jammer at the associated angle.

Typically, the processor performed the jammer and clutter rejection in two sep­

arate steps. Since the jammer is being considered as spatial interference, first step

before the transition, spatial jammer interference covariance matrix (free of clutter)

in passive filter mode can be estimated. Second step is being considered after the

transition, i.e, after the anti-jamming filtering. As a result, for the jammer rejection,

the processor typically won't need STAP-filter, since jammer cancelation is being

completed in the spatial only domain. Therefore, for STAP-processing, filter just has

to cope with the clutter only colored interference if the jammer rejection is perfectly

done before transmission.

3.5 Improvement Factor (IF)

In the radar signal processing, interference suppression is really a computational bur­

den, however, performance of achieving clutter notch with some of the processors is

nearly close to the optimal. The performance and the efficiency of the processor may

be estimated by the Improvement Factor (IF). It is defined as the ratio of Signal to

Noise Power ratios at the output and input. It can be stated as[l]:

IF

w HssHw.tr(Q)
wHQW.SHS

(3.20)

vVhere, Pos, Pon , Pis and P..n represent output signal power, output noise power, input

signal power and input noise power respectively.

Equation (3.20) characterizes the efficiency or gain of any linear processor. The

49



M.A.Sc Thesis- Md. Obaidul Malek McMaster - Electrical & Computer Engineering

performance of the processor can be stated as:

(3.21)

where, I Fopt and I FST are the Improvement Factors (IF) for optimal processor and

STAP processor (under consideration) respectively. It represents how much processor

performance degraded by interference, and the expected attainable value for JIDIF is

unity.

3.6 Minimum Variance Distortionless

Response (MVDR)

The focal point of the most adaptive techniques used today were in the Minimum Vari­

ance Distortionless Response (MVDR). According to section 3.2.1, the beamformer

output:

y(t)

y(t)

wH(s(t,e,fd) +D(t))

wHs(t, e, fd) +wHn(t) (3.22)

The main goal is to extract s(t, e, fd) from y(t), i.e., y(t) ~ s(t). Therefore,
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where Qv and s(t, e, fd) are known. If variance Qv can be replaced with the esti­

mated variance Q from the processor, then Minimum Variance Distortionless Re-

sponse (MVDR) is the variation on equation (3.23).

Using the Lagrange multiplier, the optimal MVDR weight vector with the imposed

constraint stated in the above sections can be stated as:

(3.24)

and using the output from the proposed model, the form of equation (3.23) can be

stated as:

min wHQ w
w

(3.25)

Hence, Minimum Variance Distortionless Response (MVDR) stated in (3.23) is the

optimal solution of equation (3.25).

In summary, the Minimum Variance Distortionless Response (MVDR) is a tech­

nique, which minimizes the variance of the observed signal, while simultaneously

passing the desired signal.

3.7 Conclusions

Desired target signal is always contaminated by the white and colored interferences

due to the severely diverse interference sources. So it is important to have the knowl-

edge about the signal and interference properties of the operating environment. In

this chapter, the signal and interference models have been formulated. It is apparent
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from this chapter that, in order to improve the detection performance of the tar­

get signal, it is very important to have efficient filtering methodology. Jammer is

an active interference, and the processor doesn't need the joint domains approach

(STAP), since it needs to be canceled out at the spatial domain before the transmis­

sion. Clutter on the other hand, is a passive interference, however it can be considered

as a moving interference with respect to the platform velocity. Typically, rejection

of clutter interference is performed in space-time domain. It is also shown that the

constraint to the weight vector, the predefined signal vector c and the blocking matrix

U, play an important role for the approximation of the desired signal and pre-whiting

the signal-interferences. Finally, it is also evident that the, Improvement Factor (IF)

and the Minimum Variance Distortionless Response (MVDR) can also be used as a

key tool for the analysis of performance as well as efficiency of the estimator and the

processor.
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Chapter 4

Space-Time Adaptive Processing

with Adaptive State Estimation

(STAP-ASE)

Due to the diverse nature of the sources, nonlinear and nonstationary interferences

because of the clutter and jammer effects are highly anticipated. But ground and

space surveillance from the airborne radar, it is desirable to isolate, detect, and track,

small, slow and fast moving targets within this vicinity. So, filter would be able to

track and adapt with the changes due to the severely diverse nature of the environ­

ment. ·Wiener filter is an optimal linear filter in order to cancel out the interferences

for the linear estimation of a desired signal. Therefore, the conventional Wiener fil­

ter (or LIvIS algorithms) is inadequate for dealing with nonstationary and nonlinear

systems (signal and interferences). One the other hand, sequential state estimator

(i.e., Extended Kalman Filter-EKF), has the capability to adapt with the multiple

stochastic constraints to achieve the suppression of diverse nature of the interferences

due to the clutter and jammer effects. The approach presented here, STAP with
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Aadaptive (sequential) State Estimation, incorporates and adapts with the environ­

mental changes due to the nonlinear and nonstationary systems, while maintaining

the distortionless output without degrading the signal properties.

In this chapter, problem formulation for the proposed STAP-ASE model, algo­

rithms, and design architecture of the proposed model have been stated. The dif­

ferent aspects of the finite sample size STAP processing and the VViener filtering

approaches have also been included. In the middle of this chapter, the proposed

STAP-ASE model, and computational complexity of this model have been included.

Finally, the Posterior Cramer-Rao Lower Bound (PCRLB), and formulation of the

efficiency of the proposed model have been stated.

4.1 Aspects of Finite Sample Size for STAP

Processing

The biggest challenge of the STAP processing is to estimate the asymptotic interfer-

ence covariance matrix from the sample data set due to the insufficient i.i.d sample

data. More importantly, the exact (asymptotic) knowledge (prior) of the interfer­

ence covariance matrix is unknown. As a result, the model needs to use the most

popular Maximum Likelihood Estimator (MLE) function stated in following equa­

tion for number of samples L, in order to approximate the interference (asymptotic)

covariance matrix:

(4.1)

VVhere Qi is the equivalent to MLE of Qopt, and x is the training data sample, which

may obtain from spatial, temporal or both domains.

Requirements of the large number sample data is anticipated for the accuracy of
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this approximation close to the optimal value. However, large number of sample size

may cause long data acquisition time as well as computational effort [30]. On the other

hand, due to nonstationarity and nonlinearity, only a small number of Independent

and Identically Distributed (i.i.d) data set from the surrounding may be available

for the estimation of the interference covariance matrL",( for the range cell under test.

Following subsections would include two most widely used algorithms, Simple Matrix

Inversion (SMI) and Loaded Sample MatrL",( Inversion (LSMI), for finite sample size

STAP processing.

4.1.1 Sample Matrix Inversion (SMI)

The Sample Matrix Inversion (SMI) algorithm has been widely applied in the field of

adaptive processing. Most of the interference suppression due to clutter and jammer

effects, are based on the inverse of the sample covariance matrix. According to the

relation between asymptotic interference covariance matrix and the optimal weight

vector; suppression techniques are based on the adaptation of the training data set

and inverse of the interference covariance matrix. Furthermore, it is possible to

estimate the Signal to Interference-pIus-Noise Ratio (SINR) by using relation stated

in following equation.

(4.2)

The solution for maximizing the value of SINR can be stated under the following

constraint:

w

(4.3)
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Where, eand s are the direction of arrival and the target signal respectively.

The solution for equation (4.3) can be obtained from the following equation:

(4.4)

This method is known as 8ample Matrix Inversion (8MI) [29], and the stability of the

8MI algorithm depends on the ability to invert the interference covariance matrix. If

the signal and interference characteristics are known, then the interference covariance

matrix and optimal solution for the weight vector, hence the 8INR can be obtained

from equations (4.2), (4.3) and (4.4). However, in practice, the covariance matrix is

unknown and needs to be estimated from the relation stated in equation (4.1). The

typical diagram for adaptive 8MI beamfonning is shown in Figure 4.1 [30].

8MI algorithm is based on the direct inversion of the interference covariance ma­

trL"'C, hence offers a faster convergence rate [30]. However, huge matrix inversions, and

large sample size lead to computational complexities, which may cause the crucial

challenge for implementing 8MI algorithms. For example, if the number of array

elements N (N=12) and pulses 1\;[ (NI=100) for each Coherent Processing Interval

(CPI) , then the required number of samples or snapshots for 3dB optimal output

using 8MI algorithm will be 2 x ]\;IN (= 2400). On the other hand, due to the diverse

nature of the sources, and inadequate number data samples in the noise domain, it

is very challenging to have large number of i.i.d training data samples. As a conse­

quence singularity of the covariance matrix occurs, which may cause the instability

of the 8MI algorithm.
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Figure 4.1: SMI- Beamforming

4.1.2 Diagonal Loading- Loaded Sample Matrix Inversion

(LSMI)

The problem of the instability for SMI algorithms due to singularity of the covariance

matrix for not having sufficient sample data can be circumvented by adding artificial

noise, known as diagonal loading. This method is widely known as Loaded Sample

Matrix Inversion (LSMI). If Q is the estimate of the interference covariance matrix,

then the corresponding diagonally loaded matrix can be stated as [31]:

Qdl = Q+18
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Where, I is the identity matrix and 5 is a real constant representing the desired

loading factor.

According to the EVP (eigenvalue processor) model [1], the number of the inter­

ference eigenvalues is L = M + N - 1, and the number of channels depend on this

value. But, this might be necessary to increase the number of channels beyond L,

so that system call cope with the decorrelation effect due to the signal bandwidth.

Therefore, the nonlinear and the nonstationary clutter characteristics may lead to the

insufficient number of the eigenvalues. Typically, interference covariance matrix has

several number of eigenvalues. But with the insufficient number of required train­

ing data set, may result inadequate estimation of the interference, hence the large

interference eigenvalue spread occurs. It raises the question about the singularity

(non-invertibility) of the interference covariance matrix. Therefore, introducing the

additional or artificial noise, diagonal loading, diagonally can be a way of overcoming

this challenge. vVith the additional noise data, the estimation improves and as a result

eigenvalues converge to the optimal value, hence the adaptive beam shape. Diagonal

loading, known as Loaded Sample Matrix Inversion (LSMI), methodology improves

the adaptive side lobe levels, hence enhances the shape of the mainbeam response in

one hand, and overcomes the challenges due to the limited number of training data

sample on the other. In the case of LSMI, it has been shown [1][2][29][31] that, for

the 3dB performance, the system only needs L = 2 x (!VI + N) training data set,

which is significantly lower than the SMI method.

4.2 Wiener Filter Estimator

vViener filter is a linear optimal discrete time filter, based on the minimization of the

cost function, commonly known as the Mean Squared Error (MSE) function. It is
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.. Adaptive filter, ~ h= wfc(t)
y(t),

)j\

It

A

e(t)=d(t)-y(t)

Figure 4.2: Block Diagram of a Adaptive Wiener Filter

based on the complex valued stochastic process, where filter specified in terms of its

impulse response [32]. A schematic presentation of the adaptive 'Wiener filter is shown

in Figure 4.2. Adaptive Wiener filter has the ability to adapt with the stationary,

linear systems. The scalar output of the filter at time t can be stated as:

y(t) = w%(t)x(t) (4.6)

vVhere, vector x is the observed signal, which may contain interferences, and the

vector wfc = [WI, W2,···, WNV is considered as the filter coefficients, and in this

section N is considered as the number of filter coefficients.

If the system considers that the observed signal x, has the signal part s and the
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noise part n, then above equation can be restated as:

y(t) = w%(t)s(t) + w%n(t) (4.7)

Now, consider that the filter will pass the stationary process x(t) in order to estimate

f)(t) of the desired signal d(t). The model also assumed that x(t), s(t), and n(t) have

zero mean value, and the filter coefficients w le(t) do not change with time. Then the

estimate of the desired signal can be stated as:

f)(t) = w%(t)x(t)

Since, filter coefficients do not change with time, then it can be written:

(4.8)

(4.9)

The Mean Squared Error (MSE) is given by [complete derivation in Appendix B]:

(4.10)

where, Pdx = [Pdx(1),Pdx(2), ... ,Pdx(iV)]T = cross correlation vector between d(t) and

x(t); and (J~ is the covariance of the desired signal.

Therefore the cost function can be stated as:

(4.11)

where, Q is N x N matrix; Pdx and w Ie are N x 1 vectors respectively.
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If the matrix Q is invertible, then the Wiener solution for the optimal filter coef­

ficient Wopt can be stated as:

Q-l
wapt = x Pdx (4.12)

where, Wopt is N x 1 vector.

The main advantage of Wiener filter is its computational simplicity and ability

to suppress noise in linear and stationary case. Furthermore, the optimal solution of

VViener filter involves only second order statistic, which in fact leads to a useful theory

of linear filtering for many applications. The main goal of the VViener is to filter out

the noise, based on the statistical properties. Furthermore, VViener filter is an optimal

filter under the assumption that the signal and additive noise are stationary linear

stochastic processes, and their spectral characteristic or auto and cross correlation

are known. But, it is very likely to have time varying nonlinear system with unknown

signal and noise properties. In that case, VViener filter solution is inadequate to deal

with noise suppression. Therefore, the system would need a filter that has the ability

to adapt itself to nonstationary and nonlinear environment.

4.3 Model Formulations and Samples Training

Using Space-Time Adaptive Processing with

Adaptive State Estimation (STAP-ASE)

The challenges of the VViener filter can be overcome by sequential state estimation

(i.e., Kalman Filter/Extended Kalman Filter). This is in fact an important general­

ization of the VViener filter, and has the ability to adapt with the nonstationary and

nonlinear systems. In other words, VViener filter is the special form of the Kalman
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Filter when the process is stationary. Therefore, the sequential state estimation is

being used for training the data samples for the proposed STAP-ASE model. In this

training process, constraint is added to the weight vectors in order to filter out the

signal interferences in the MSE sense. In this section, the main objective is to de­

sign a filter that would give us the estimate y(t) of the desired signal d(t) by using

the input data sample x(t). Now, consider the block U(t), which satisfies equation

(3.15). Therefore, the output of the block U(t) has contained the sample data signal

from the all range cells but the cell under test (semi-supervised). The operational

block diagram of the STAP with adaptive sequential state estimation (STAP-ASE)

is shown in Figure 4.3. The estimated processor output y(t) (scalar) can be stated as:

(4.13)

According to Figure 4.3 it can be written:

e(t)

lYISE = lE[e2 (t)]

where,

d(t) - y(t) = d(t) - w H (t)x(t)

lE[(d(t) - ~(t)X(t))2]

lE[((d(t) - w H (t)x(t)) (d(t) - w H (t)x(t))H]

lE[d2 (t) - w H (t)x(t)d(t) - d(t)xH(t)w(t) +w H (t)x(t)xH(t)w(t)]

lE[d2(t)] - 2wH(t)lE[x(t)d(t)] + wH (t)lE[x(t)xH(t)]w(t)

CT~ - 2wH(t)P xd + w H (t)Q(t)w(t) (4.14)

CT~ V ariance of the desired signal.

Pxd Cross correlation vector between x(t) and d(t)
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E[x(t)d(t)]

E[x(t)xH(t)]wc(t)

Q(t) [Q-1 C(t) (cH(t)Q-1 (t)c(t) )-1g]
c

(4.15)

(4.16)

Therefore,

min MSE = (J~ +wH(t)Q(t)w(t) - 2wH(t)P xd
w

(4.17)

and is also the expected outcome or objective function.

x(t)

Observed Signal

A
e(t)::: d(t) -y(t)

d (t) ::: w~ (t) X(t)
Desired Output

A H
t----l~Wc (t)=W(t) y(t)::: w (t)x(t)

Figure 4.3: STAP with Adaptive State Estimation (STAP-ASE)
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4.3.1 Adaptive Extended Kalman Filter Model for STAP

Processing

The proposed model has included spatial-Doppler processing in order to cancel out the

nonstationary multipath interference (hot clutter) in the MSE sense, so that it would

isolate or decode the signal of interest. For the diverse nature of the hot interferences,

the properties of the spatial-Doppler samples would be severely fluctuated over the

CPI interval, i.e., nonstationary. Therefore, due to the nonstationary interference

environment, covariance matrix, hence the weight vector associated with the array

element would not be fixed over time. As a result, consideration of conventional

adaptive processing won't allow us to achieve the effective suppression of hot clutter.

So, a complex system needs to be modeled so that system would be able to track

the changes in response to the change of the environment over time. Furthermore,

STAP is a multi-dimensional signal processing problem, which would estimate the

state vector by (adaptive) training the sample data. Since, adaptation is performed

in spatial and temporal domains, training is done using the range bins. The signal

received at the output of the processor can be stated as:

y(t) = wH(t)x(t) = wH(t)s(t) + wH(t)n(t) (4.18)

The objective is to find out the minimum value of the Mean Squared Error (MSE) ,

i.e., Minimum Mean Squared Error (MMSE) . Hence, the system can isolate or decode

the desired signaL

Therefore, it can be written:

min lv/BE = (7~ +wH(t)Q(t)w(t) - 2wH(t)P xd
w
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More importantly, the conditional mean is an optimal MMSE estimator and is com­

putationally efficient since it is recursive so that there is no need to store the entire

past data set. In many instances, the nonlinearity is benign so that the approximate

E:A.'tended Kalman Filter (EKF) , based on linearizing gives very good performance.

It shall be seen that the EKF is sufficiently accurate in this case. Of course, in the

linear case the Kalman Filter estimate of the conditional mean is optimal.

Now, consider an unknown dynamic system with state vector We and the system

is driven by random noise. If the system can be modeled as filter, then the state

equation can be written as [7]:

W~ (t + 1) = F(t + 1It)w~ (t) +v(t) (4.20)

Where, F(t + lit) is the transition matrix or the model parameter. v(t) is processed

noise, may be assumed white Gaussian and zero mean. The covariance matrix of

the process noise may be assumed R = \[1;1 [7], where 1 is identity matrix, t is time

index, and K represents the snapshot of the STAP processing. For convenience, the

superscript K can be ignored for rest of the cases.

If the signal environment is considered as stationary, then the state vector We

would be fixed and F(t + lit) can be considered identity matrix. For nonstationary

clutter and jammer environment, a more complex method for F(t + lit) needs to

be developed so that model can track the change in response to the change of the

environment.

Now, the measurement equation can be represented by:

d(t) X(t)HWe(t) + p(t)

H[t, we(t)] + p(t)
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where, p(t) is white Gaussian measurement noise with zero mean, and covariance is

given by:

JE[p(t)p(i)] = (J~(t)Oti (4.22)

Since the measurement model is linear (and the state model is also considered as lin­

ear), the Kalman Filter (KF) provides the MMSE estimate. However, in general, the

measurement model can be nonlinear and nonstationary. Therefore, the measurement

equation (4.21) due to the nonlinearity can be stated as:

dnon(t) = h[t, we(t)] + p(t) (4.23)

where, h[.] is Jacobian evaluation of the measurement matrix H[.] The estimate y(t)

of the desired signal d(t) can be stated as:

y(t) = h[t, we(t)] (4.24)

The MSE between the desired signal and the processor output can be defined by using

equation (4.17) as follow:

e(t)

minlVISE
We

d(t) - y(t)

JE[le(t) 1
2

]

(JJ +wIj (t)Q(t)we(t) - 2wIj (t)Pxd

(4.25)

(4.26)

Initial estimate of the weight vector starts with the relation stated in equation

(1.2), by using the estimated covariance (asymptotic) matrix calculated from the

sample data using equation (1.1). Thus, using STAP-ASE, We would be converged
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to optimal value in the MSE sense. Furthermore, the processor may update x for the

associated weight vector using equation (1.2), hence update estimate of covariance

matrix using relation stated in equation (1.1).

Now, the innovation or the measurement residue may be stated as [13]:

v(t) = d(t) - y(tlt - 1)

Hence, the state update equation can be stated as:

wc(t + lit + 1)= wc(t + lit) + k(t + l)v(t + 1)

(4.27)

(4.28)

Where k(t) is the filter gain, and then k(t) can be written in terms of first order

(Jacobian) EKF measurement matrix [13]:

and the estimated (predicted) conditional covariance matrix [13]:

P(t + lit) = F(t)P(tlt)FH(t) + R(t)

Innovation covariance:

(4.29)

(4.30)

The covariance update [13]:

P(t + lit + 1) = P(t + lit) - k(t + l)JvI(t + l)k(t + l)H (4.32)
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Using the matrix Lemma [13], it can be written:

(4.33)

If the first term of right hand side of equation (4.33) can be neglected for the large

initial value condition, then above equation may be restated as:

P( 11 1)-1 = 8h(t, wc(t)) [ 2 ]_l[8h(t, wc(t))]H
t + t + 8wc(t) am 8wc(t)

(4.34)

This is a recursive process starting from equation (4.23), and the process would stop

once the stop criteria meets.

Differences stated in equation (4.27) represent the differences between the desired

output and the actual output, estimated using the weight vector, and covariance

matrix. If the desired output d(t) can be interpreted as an approximation ofthe actual

desired signal using the constraint; then actual signal a(t), and the approximated

desired signal d(t) with approximation error f3(t) may be related as follows:

a(t) = d(t) + f3(t) (4.35)

Now, if the system is considered that, a(t), and f3(t) are white Gaussian and zero

mean, uncorrelated, then

(4.36)

Therefore, if the measurement d(t) is generated using the realistic approximation for

the desired signal, then a 2 (t) would be approximated based on the MMSE that can

be achieved by an optimal array, approximation of constraint weight vector wc(t) and

the filtering model as stated above. The robustness of the approximation of d(t) has
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been discussed in many papers. Using the model stated in [7], the robustness of this

approximation may be analyzed based on the constraint weight vector.

Furthermore, for time varying systems, parameters F(t + lit) and covariance R

of equation 4.20 would be more complex form. Therefore, these parameters of state

equation must be chosen in a way that system model can track the changes due to the

diversity of the environment [7]. For nonstationary environment, the state transition

matrix F (t + lit) =I- I, and this may make the state equation unstable, stability of the

filter may be assured by the observability condition [7][68][69]. If the state covariance

matrix R represents the total uncertainty due to the adapting stationary environment

assumption represented by using identity state transition matrix in equations (4.20)

and (4.30). The effect associated with this deviation due to nonstationary environ­

ment [v(t) =I- 0 and F(t+ lit) =I- I] prevent the Kalman Filter (KF) gain from decaying

to the values that are too small. Therefore, estimate of optimal weight vector We able

to follow the variations in the optimal weight vector due to the nonstationary hetero­

geneous operating environment. A typical choice of '1'; is 10-4 [7], but for stationary

environment the value of '1'; = 0, since for time invariant systems weight vector does

not change with time [7].

4.3.2 Computational Complexity

The computational complexity is an important aspect for the proposed STAP-ASE

model. Starting from equation (4.23), the STAP-ASE's computational complexity for

Jacobian evaluation is O(N2
). Complexity for equation (4.24), for estimating desired

signal is O(N2). Computational bottleneck for computing the inverse of updated

covariance at each cycle is O(N3 ). Complexity for updating of weight vector in

equation (4.28) is O(N), gain in equation (4.29) is O(N2), and predicted covariance

in equation (4.30) is O(N2 ). Computational cost for innovation covariance stated
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in equation (4.31) is O(N2
), covariance update in (4.32) is O(N2

) and for equation

(4.34) is O(N2
).

In 8TAP with A8E, the immediate previous state information has been used to

update current interference covariance matrix, and therefore, its computational cost

is O(N3 ) per cycle. Estimation of covariance matrix in 8MI, L8MI and [3][7] are

off the filtering loop, hence updated weight vector does not have any direct impact

on computation of the covariance matrix. Advantage of using proposed 8TAP-A8E

method is that, it would give the high convergence rate and high rejection of the

interferences due to nonstationary heterogeneous clutter and jammer effects at the

worst case scenario. In conclusion, it can be stated that, 8TAP with A8E is simpler

and a more efficient estimator than its counterparts.

4.4 Posterior Cramer-Rao Lower Bound (PCRLB)

The estimation of the unknown state with uncertainty for the slow and fast mov­

ing target is crucial for the efficient tracking algorithms. However, the estimation

of unknown parameters are always contaminated by the interferences. 80, minimum

achievable interference reduction level needs to be studied in order to evaluate the

performance of the estimator. The Cramer-Rao Lower Bound (CRLB), inverse of the

Fisher Information Matrix (FIM) , provides the achievable lower bound on interfer­

ence covariance matrix for the evaluation of performance of any unbiased estimator.

It allows the system to establish a bound to rule out the unreachable estimators. In

general, it is a benchmark against which the optimum performance of processor can

be compared, regardless of the filtering algorithm employed. The CRLB has been an­

alyzed for the dynamic state model, where state is unknown and randomly fluctuated.

Therefore, for the greatest interest of deriving lower bound on covariance matrix, in
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this section, the Posterior Cramer-Rao Lower Bound (PCRLB) is being used.

4.4.1 Introduction

Now consider, w(z) to be the unbiased estimate of dynamic state vector w = [WI, W2, . .. ,wn]T

estimated from observation z = [ZI, Z2, ... , znV, then the posterior pdf of the weight

estimation may be stated as:

( I ) - p(z Iw)p(w)
p w z - p(z)

the error covariance matrix:

Cov(w) = JE[(w - w)(w - wf]

and the Fisher Information Matrix (FIM) I may be stated as:

I(w) = _lE[(B
2

In p(w Iz)]
BwBwT

Hence, the PCRLB can be defined as:

Cov(w) ~ I(W)-l

Covariance matrix Cov(w):

(4.37)

(4.38)

(4.39)

(4.40)

Cov(w) =

rvar(wl) COV(W12)

COV(W21) var(w2)
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4.4.2 State and Measurement Information

The dynamic state equation for the state vectors w = [WI, W2, ... , wnY at the time

cycle t may be stated as:

w(t + 1) = F(t)w(t) + v(t) (4.42)

where, F(t) is linear fixed parameter as stated before, and v(t) is independent white

Gaussian noise with covariance 1'.

Hence, according to [14] [15] [16] [17], it may be written:

Jw(t) = [1'(t - 1) + F(t)J(t - l)F(t - 1ftl

where, J(t) is the state information matrix at time cycle t.

Measurement (nonlinear) equation may be stated as:

z(t) = h[w(t)] + p(t)

(4.43)

(4.44)

According to [15][16][17], the measurement information matrix may be stated as:

Jz(t) = JE[(\7w(t) In p(z(t) Iw(t)))(\7w(t) In p(z(t) Iw(t))f]

where, \7 is the first order partial derivative and T is the matrix transpose.

(4.45)

If the measurement covariance is ~ for the nonlinear measurement model, then it
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can be written [15][16][17]:
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(4.46)

Therefore, the posterior Fisher Information JVlatrix (FIM) J(t), may be stated as:

J(t) = Jw(t) + Jz(t) (4.47)

Now, if the prior information w is not kno-wn, then according to the equation (4.37),

(4.43), (4.45) and (4.47), it can be stated that the maximization of posterior is equiv­

alent to maximization of the likelihood function p(z Iw) [4] as well as maximization

of measurement information matrix. Now the likelihood function using the condi­

tional probability with predicted covariance (52 and conditional mean w(k I k - 1)

(Gaussian assumption) may be stated [4] as:

p(z Iw)

In p(z Iw) (4.48)

Therefore, maximum likelihood cost function:

n (k -(k I k 1))2
J(w) = -In p(z Iw) = ~[ln (21f(5~) + z - z - ]

L....J 2(52
k=l k

(4.49)

The objective is to find out the Maximum Likelihood Estimator (MLE) , so that the

cost function can be minimized. Minimum (optimal) value for the cost function can

be achieved by differentiating equation (4.49) with respect to wand equating it with

zero.
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So, it may yield:
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n

L[(zk - zml(k I k - 1)] 0
k=l

n

n Zml L[zk]
k=l

~ t[zk]
n

k=l

since, the system assumed that, 0-2 is independent of the weight vector w.

Now, it may be written:

Now, an estimator is said to be optimal or will reach to the lower bound if

lim z~l = Z
n-><XJ

(4.50)

(4.51)

(4.52)

In that case, the estimator is said to be consistence since it provides the actual value

of the parameter.

Finally, the efficiency of the estimator can be stated as:

Efficiency, Tf

Expected value for the efficiency is 1.
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4.5 Conclusions
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This is the core chapter for this thesis. First part of this Chapter, the aspects of

the finite sample size have been stated, and the required minimal sample size for 3dB

performance of SMI is 2 x M N, has also been formulated. It has also been shown that,

using the Loaded Sample Matrix Inversion (LSMI) method, the system can achieve

3dB performance by using only 2 x (]I.I[ + N) samples compared to SMI 2 x M N

samples. Middle of this chapter, the Wiener filter algorithms has been stated and

shown that Wiener filter is a special case of the sequential state estimation under the

assumption that the system environment is stationary and linear. Final part of this

chapter, the designed architecture of the proposed STAP-ASE model has been stated.

In this model, Extended Kalman Filter (EKF) as a sequential state estimator has been

used, and found that Kalman Filter is an efficient filter, and it has the ability to adapt

itself to nonstationary heterogeneous environments. Finally, the Posterior Cramer­

Rao Lower Bound (PCRLB) has been stated, and also formulated the efficiency for

the proposed model. However for STAP-ASE model, Improvement Factor (IF) is the

key tool for measuring the efficiency and the performance of the estimator.
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Chapter 5

Simulations and Discussions

5.1 Simulations and Discussions

In order to demonstrate the performance and efficiency of the proposed STAP-ASE

estimator, the comparisons with Loaded Sample Matrix Inversion (LSMI), Sample

Matrix Inversion (SMI) and optimal based beamformers have been presented.

In Figure 5.1 (a), Improvement Factor (IF), characterizing the efficiency and per­

formance, among optimal, STAP-ASE and LSMI beamformers have been compared.

In this simulation, 15 snapshots has been considered; and 12 no. of pulses (lvI) and

array elements (N) respectively have also been considered. From the outcome of this

simulation, it is evident that the, clutter rejection performance for the STAP-ASE

for 15 snapshots is superior than LSMI-beamformer and almost close to 3dB of op­

timal beamformer. Furthermore, STAP-ASE processor suppresses the clutter down

to the noise level compared to the optimal-processor. In Figure 5.1(b), the model

has considered 48 snapshots for LSMI-3dB performance. According to the Figure, it

is apparent that the clutter rejection performance of STAP-ASE beamformer is still
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better than L8MI beamformer and is also very close to optimal beamformer. How­

ever, L8MI beamformer is a bit better in the sense that curve in L8MI beamformer

suppresses the clutter down to the noise level compared to the 8TAP-A8E.

No of Snapshots =48,lterations =45, Elements =12. Pulses =12
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(a) ASE and LSMI-IF (b) ASE and LSMI(3dB)-IF

Figure 5.1: IF-A8E and L8MI-IF -Comparison of A8E-Beamformer with Optimal
and L8MI Beamformers for (a) K = 15 and (b) K = 2 x (NI + N)

In Figure 5.2(a), a comparison of Improvement Factor (IF), characterizing the ef­

ficiency and performance, among Optimal, 8TAP-A8E, L8MI and 8MI beamformers

has been presented. In this simulation, 144 snapshots; 12 no. of pulses (NI) and

array elements (N) respectively have been considered. It is apparent from the Figure

that, clutter rejection performance is inferior for 8MI beamformer. The performance

of 8TAP-A8E beamformer is better than L8MI and is also very close to the optimal

beamformer. In simulation 5.2(b), the performance of the beamformers using 288

snapshots (8MI-3dB) has been investigated. According to the outcomes of the sim­

ulation, it is apparent that, there is a noticeable improvement in the performance of

8MI-beamformer. The curves between the 8TAP-A8E and the optimal beamformers

have shown that the clutter notch as well as rejection performance caused by both

processors almost the same. It also stated that the clutter rejection performance
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for 8TAP-beamformer is a bit better than L8MI-beamformer and but much superior

than 8MI-beamformer, however, both L8IvII and 8MI have shown 3dB performance.

Only noticeable performance for L8MI and 8MI beamformers is that, both processors

suppress the clutter only down to the noise level compared to A8E-beamformer.
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Figure 5.2: A8E, L8MI and 8MI-IF -Comparison of A8E-Beamformer with L8MI,
8MI and Optimal Beamformers for (a) K = N NI and (b) K = 2 x (NNI)

The performance comparisons based on formation of beampatterns (power) for

A8E, 8MI, L8MI, and optimal beamformers are illustrated in Figure 5.3. According

to the outcomes of this simulation, it can be stated that, all of these beamformers

place nulls at the direction of interferences, however in the case of 8MI-beamformer,

some distortions have been found. It is also apparent that the performance of the

side-lobe reduction, and nulling the interferences of A8E-beamformer almost the same

as the optimal beamformer.
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Figure 5.3: Directional Patterns -Comparison of STAP-ASE-Beamformer with SMI,
LSMI and Optimal Beamformers

Figure-5.4 shows the MSE of beamformer output power versus the iteration num­

bers. It is apparent from the simulation that the Mean Squared Error (MSE) of

STAP-ASE beamformer output is very outstanding and is always below 1 after 7

iterations.
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Figure 5.4: MSE-ASE -STAP Mean Squared Error of Output Power

Next simulation, stated in Figure 5.5 has been compared the Signal to Interference­

plus-Noise Ratio (SINR) of the proposed STAP-ASE beamformer with SMI, LSMI

and optimal beamformers versus the no. of snapshots. From the figure, it is evident
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that the proposed STAP-ASE has the best performance among the algorithms tested,

however the performance of LSMI algorithm is almost close to the STAP-ASE model

after 80th snapshot. More importantly, the performance of the proposed model is

closed to the optimal beamformer after 40th snapshot.
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Figure 5.5: SINR -Comparison of STAP-ASE-Beamformer with SMI, LSMI and Op­
timal Beamformers.

Figure 5.6 has been examined and compared the MSE of the beamformer output

powers among the proposed STAP-ASE, SMI and LSMI models versus the no. of

snapshots. It is apparent from the simulation that the Mean Squared Error (MSE)

of STAP-ASE beamformer output is outstanding compared to other two algorithms.

More importantly, the MSE of the STAP-ASE model always below 1 after 19th snap­

shot.
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Figure 5.6: MSE- STAP Mean Squared Error of Output Power.

5.2 Conclusions

In this research, a novel STAP with Adaptive State Estimation (STAP-ASE) algo­

rithm has been proposed. The proposed estimator is based on the integration of the

sequential state estimation with the STAP processing, so that the model can detect

the target signal while rejecting the interferences at worst case scenario. The perfor­

mance comparison of the proposed model with the Sample Matrix Inversion (SJ\tII) ,

and Loaded Sample Matrix Inversion (LSMI) beamformer models has been examined.

The outcomes of this algorithm is also compared with the Optimal beamformer. It is

apparent from the simulation results that the STAP-ASE estimator outperforms its

counterparts in clutter rejection, and target characterization. Furthermore, it has also

shown better than 3dB performance for the convergence rate to the optimal Signal

Interference-plus-Noise Ratio (SINR).
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis has proposed a model that integrates Space-Time Adaptive Processing

with Adaptive (sequential) State Estimation, so that radar system can overcome the

challenges due to the effects of cold (homogeneous) clutter, severe dynamic (hetero­

geneous) hot clutter and jamming interferences while estimating the states of targets

under track. In this model, STAP-ASE is being considered as a multi-dimensional

adaptive signal processing technique, which estimates adaptive weight vectors in spa­

tial and Doppler domains for which a target detection hypothesis is to be formed.

STAP operates on the set of returns, composed of pulses, array elements, and range

bins, over a period of time. Hence, STAP-ASE is a 2D processing on 3D datacube,

collected from the available signal received at the radar receiver. Since, adaptation

is performed in spatial and temporal domains, training is done using the range bins.

The main theory of this model is to adapt with the sample data set in order to

estimate the interference (asymptotic) covariance matrix and adjust or update the

weight vector in a way that, the noise power can be minimized, and the Signal to

83



M.A.Sc Thesis- Md. Obaidul Malek McMaster - Electrical & Computer Engineering

Interference-pIus-Noise Ratio (SINR) can be ma,"Ximized in the MSE sense. Further­

more, the interferences that are considered in this proposed STAP-ASE model is due

to the nonstationary and heterogeneous clutter and jammer effects.

In this model, two types of data sets have been considered: one is the training data,

which is responsible to estimate the interference covariance matrix hence the weight

vector, and other is the primary data or the test data on which detection and the

parameter estimation is performed. The objective is achieved by considering the fully

adaptive processing under the assumption that interference covariance matrix can

be estimated from the sufficient number of Independent and Identically Distributed

(i.i.d) semi-supervised, only the target like signal is filtered out from the training

data, sample data set.

Motivation of this thesis, for its effective suppression of clutter and jammer inter­

ferences by integrating STAP principle with sequential state estimation. In STAP­

ASE, interference covariance matrix adaptively changes over the CPI due to nonsta­

tionary clutter and jammer interferences, and the model also updated interference

covariance matrix within the filtering loop using immediate previous data set. There­

fore, actual attainable interference suppression, and convergence rate based on worst

case scenario are much higher than its counterparts. In this paper, the Posterior

Cramer-Rao Lower Bound (PCRLB) has been analyzed from the dynamic state model

perspective and this PCRLB has been considered as an achievable optimal point in

order to cancel out the interferences, and mitigate the signal power. However, in

this research, the Improvement Factor (IF) has been used as a key tool to evaluate

the performance and efficiency of the proposed system. Maximum attainable SINR,

the performance and the Improvement Factor(IF) have been examined and compared.

The proposed system has also been compared with the Minimum Variance Distortion­

less Response (MVDR), Sample Matrix Inversion (SMI), and Loaded Sample 1'Iatrix
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Inversion (LSMI). Proposed STAP-ASE model has shown outperform compared to

counterparts, SMI, and LSMI for signal decoding, Improvement Factor (IF), SINR,

efficiency, consistency and convergence rate.

Furthermore, proposed STAP with Adaptive State Estimation (STAP-ASE) ap­

proach, characterizes STAP simultaneously in spatial and Doppler domains for non­

stationary, homogeneous and heterogeneous systems. The contributions presented

here are based on the adjustment of the weight vector and the update of associated in­

terference covariance matrix by STAP-ASE to minimize the output noise power while

maximizing Signal Interference-pIus-Noise Ratio (SINR) in the MSE sense, hence im­

proving the Improvement Factor (IF) of the estimator. Finally, the integration of

STAP principle with sequential state estimation in order to decode the target sig­

nal while rejecting the interferences due to nonstationary heterogeneous clutter and

jammer effects without degrading the performance is the key contribution of this

thesis.

Finally, the main highlighting ideas and principles of this thesis are as follows:

• Chapter 2, has included the technical background required for the Space-Time

Adaptive Processing (STAP) .

• In Chapter 3, the signal and the interferences due to the nonstationary hetero­

geneous clutter effect has been characterized. The goal is to state the signal and

interference model upon which estimation and detection of the target of interest

are being performed. The inclusion of the constraint weight model is ensured

the consistency of the system and also ensured that the system can minimize

the effects of the interference covariance matrix by keeping the characteristics

(SUCh as signal energy) of the signal unchanged. The main task of this constraint

weight vector along with the predefined signal vector c is to approximate the
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desired output and to filter out the target like signal (semi-supervised) from

the secondary data set. In this chapter, the equation for optimal weight vec­

tor has been stated, and also formulated the beamforming output as well as

the maximum achievable Signal Interference-pIus-Noise Ratio(SINR). Finally,

it is also evident that the, Improvement Factor (IF) and the Minimum Variance

Distortionless Response (MVDR) can be used as a key tool for the analysis of

performance as well as efficiency of the estimator and the processor.

• Chapter 4 is the core chapter for this thesis. This Chapter has stated the

problem formulations and the design architecture for the proposed STAP-ASE

model. First part of this chapter, Sample Matrix Inversion (SMI) , and Loaded

Sample Matrix Inversion (LSMI) have been included, and it also defined the

finite sample size structures for STAP processing using the existence SMI and

LSMI algorithms. In the second part of this chapter, the Wiener filtering ap­

proach has been included as an alternative solution for the STAP processing,

and showed that the Wiener filter is an optimal filter for time invariant linear

system. Middle of the chapter, Extended Kalman Filter (EKF) has been stated,

and this filtering approach has included as a sequential state estimation for the

proposed STAP-ASE system. It is apparent from the STAP-ASE model that,

the Extended Kalman Filter (EKF) is an important generalization of the Wiener

filter for nonstationary and nonlinear systems. Finally, computational complex­

ity for the proposed STAP-ASE model has been formulated; and the Posterior

Cramer-Rao Lower Bound (peRLB), and the efficiency of the proposed model

have also been discussed.

• Chapter 5 has included the simulations. The proposed STAP-ASE with SMI,
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LSMI and MVDR (Optimal) has been compared, and found outperform perfor­

mance compared to counterparts for signal decoding, Improvement Factor (IF),

SINR, efficiency, and consistency.

6.2 Future Work

Several areas of research have been opened and highlighted by this work. From the

designed architecture of chapter 4, two major parts of this model are very evident.

One is for the estimation of the interference (asymptotic) covariance matrix after

whitening the interference signal and other is the filtering part to cancel out the

interferences from the observed signal in order to extract the target of interest. In

this model, Extended Kalman Filter (EKF) has been used as a sequential state es­

timation, however other sequential state estimation like particle filter can also be

used without major changing of this model architecture. For the simulations, the

interference (asymptotic) covariance matrix is estimated based on the fully adap­

tive STAP-processing for semi-supervised training sample data set and under the

assumption that there is sufficient number of Independent and Identical Distributed

(i.i.d) secondary data is available in the vicinity of the test data cell. But, it is very

likely to have insufficient number of Independent, and Identically Distributed data

set due to the diverse nature of the interferences, hence question about the partially

adaptive STAP-processing. This model can easily adapt with the partially adaptive

STAP-processing by changing only the signal pre-whitening part of the designed ar­

chitecture stated in Figure 4.3 of chapter 4, while keeping the other parts of the model

remain the same.

Furthermore, there are potential applications in the field of neural network, or

biometric signal processing. Classical problem of STAP-ASE is to extract signal
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from the mixture of unknown interferences, however the system doesn't have any

prior knowledge about the interferences. Since model is based on the estimation of

asymptotic interference covariance matrix, hence the weight vector in order to decode

or extract signal of interest. Similarly, if the system may consider an interconnected

neural network consisting of neurons, and a model which is used to estimate the

weight vector in order to control interconnections, so that the network model will

be able to find out the signal of interest. STAP-ASE can also be implemented with

the Multiple Input and Multiple Output (MIMO) radar systems. Since, due to the

diversity of the signal, it is possible to achieve the improved clutter resolution for the

extracted signal from the radar receiver.

Finally, proposed STAP-ASE model does not consider the signal approximation

error, and hence the robustness of estimator, since the basic research model is based

on the minimization of the effects of the interference covariance matrix, maximiza­

tion of the Signal Interference-pIus-Noise Ratio (SINR) in the MSE sense, and hence

improve the Improvement Factor (IF) in order to mitigate the signal power detection.

Therefore, robustness of the processor, and robustness against interference fragmenta­

tion in sample covariance matrix are also the new waiting for the further exploration

of STAP-ASE model.
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Appendix A

Maximum Likelihood Estimate of

the Sample Covariance Matrix

Lets begin with an assumption that, there are L observations x = [Xl, X2, X3, ... ,XL]H.

Where x is assumed to be zero mean and Independent and Identically Distributed

(i.i.d) Gaussian random variable, and (.)H represents the hermitian transposition.

The dimension of x is L ~ lV£N and !vI is the number of pulses and N is the number

of array elements. Following derivation is based on the work presented in [35][36][37].

Now, the distribution can be stated as [35][36]:

(A.I)

vVhere, Q E CMNXMN, is unknown positive definite interference covariance matrix,

and 1.1 represents the determinant of Q.

Now, the associated likelihood conditioned on Q can be stated as [35][37]:

MN

II Ix! (xtlQ)
1=1
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j(xIQ)

1 "MN HQ-l
-----:-c;-:-;---::-:-c::-:-::-e- L.,l=l Xl Xl

1fMNXL IQIL
1 "MN HQ-l

-----:-c;-:-;---::-:-c::-:-::-e-L.,l=l Xl Xl

1fMNXL IQIL
1 e-Tr(xHQ-1x)

1fMNXL IQIL
1 -Tr(xxHQ-l)

1flvINXLIQIL e

1 -Tr(Q-1xxH)

1fMNXL IQIL e

[ 1 e-Tr(Q-IQ)]L

1f
MN IQI

(A.2)

Where, Tr 1.1 represents the trace, sum of the diagonal elements, and from the matrix

cookbook [38], Tr(XY) = Tr(YX) , and according to [35], it can also be considered

that,

Q
1 L

LLxlXf
l=l

1 H
-xx
L

(A.3)

Now, the maximum likelihood of the interference covariance matrLx can be obtained by

minimizing the negative log-likelihood [13][37] or maximizing the likelihood function,

and can be stated as:

arg m3ux[j(xIQ)]
Q

argmin[-lnj(xIQ)]
Q

argmin[lnlQI + Tr(Q-IQ)]
Q

arg min[-lnIQ-1
1+Tr(Q-1Q)]

Q

argmin[-lnIQ-1Q-1QI +Tr(Q-1Q)]
Q
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Since the system has assumed, Q is positive definite and L ~ NIN.

Now according to [34] [35] [36] [37] [38] [39] equation A.4 can be restated as:

(A.4)

(A.5)

Again, if D = Q~Q-lQ~, D = UAUH, and A E RMNXMN = diag AI, A2' ... ,AMN is

a diagonal matrix with positive eigenvalues, and unitary matrix [40] U E CMNXMN,

then according to [35], it can be vn..itten:

arg min[-lnIDI +Tr(D)]
n

arg min [-lnl (UAUH
) I+ Tr(UAUH

)]
UAUH

arg min[-lnl(A) I+Tr(A)]
A

(A.6)

Because of the convexity [35][41], first order derivatives of the above equation A.6

with respect to each eigenvalues will be canceled out. So, it can be stated [35]:

0[- ~:~~ In (At) + ~:~~ (At)] = 0

OAt
(A.7)

1
--+1 0

At

At 1 (A.8)
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where, 'Ill: l = 1,2, ... ,MN

Therefore, it be can written [35]:

McMaster - Electrical & Computer Engineering

I

L
A 1,,", H

Q = L L.JXlXl
1=1

I

1 L

LLxlX{'l
1=1

1 H
-xx
L

(A.g)

Finally, desired equation for the Maximum Likelihood Estimate (MLE) of (asymp-

totic) interference covariance matrix:

L
A 1,,", H

Q = L L.JXlXl
1=1
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Appendix B

Complete Derivations of Wiener

Filter Solution for Optimal Weight

Vector

According to Figure 4.2 and from the first line of equation (4.10) of chapter 4, the

Mean Squared Error (MSE) can be stated as:

NISE = E[e2(t)] - E[(d(t) - w%(t)X(t))2]

- E[d(t) - wfex(t)d(t) - WfeX(t)H]

E[d2 (t) - w%x(t)d(t) - d(t)xH(t)wfe +w%xxHwfel

- E[d2 (t)] - 2w%E[d(t)x(t)] +w%E[x(t)xH (t)]wfe

2 2 H HQ- (Jd - ,wfePdx +wfe xWfe

where,
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is the cross correlation vector between d(t) and x(t). a~ = covariance of desired signal

and wHx(t) = scaler quantity.

vVhere Qx is the correlation matrix of the observed data, and can be stated as:

x(t)

x(t - 1)

x(t -1VIN)

( x(t), x(t - 1) ... ,x(t - JvIN) )

TAl)

Tx(O)

... Tx(-MN)

T x (2)

T x (1)

Tx(-JvIN + 1)

T x(1VIN)

TAMN -1)

Tx(O)

Furthermore, it is also symmetric matrix, since in the case of vViener filter, the

model has assumed that the system is stationary, and linear.

The Wiener solution of the optimal weight vector, can be found by taking the sec­

ond order derivation of equation B.1 with respect to weight vector w fe, and equating

it with zero. Therefore, solution for the optimal weight vector wopt can be stated as:

a2 (lVlSE)
0

OWJe
Qxwapt Pdx

Wapt Q-l (B.3)x Pdx

The above equation is known as the vViener Hopf equation.
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Appendix C

Derivation of Optimal Solution for

Constraint Weight Vector

Rewriting the equation of section 3.2.2 in chapter 3 for the constraint weight vector

(C.1)

vVhere, We = [Wel, W e2, ... , WeMN]T is the constraint weight vector, c is the prede­

fined steering vector whose elements are stated by look direction and signal Doppler

frequency, and 9 is the constant gain due to the associated signal steering vector.

According to the optimal weight vector equation (1.2) stated in chapter 1, it can

be v.rritten:

Q-l
W e = C

Where, Q expected interference (asymptotic) covariance matrix.

Now, constrained optimization problem can be written as [25]:

. HQmIn We We
We
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(C.3)

Again, combining equations C.l and C.2, it Can be written:

=g

9 (C.4)

Therefore, solution for this constrained optimization problem is:
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Appendix D

Space-Time Adaptive Processing:

Performance Matrices

In STAP-ASE processing, there are two possibilities, either target is present or absent

in the observed signal. Based on these possibilities, two hypotheses Ho (target is

absent) and H1 (target is present) can be formulated [2]:

k k k
qc + qj +qn

s + xk(Ho) (D.l)

Where, s, q~, qj, q~ are the target steering vector, clutter interference, jam­

mer interference, and noise interference vectors respectively and k is the snapshots.

Following derivation is based on the work presented in [2].

Now, consider a weight vector w k applied to the joint Space-Time snapshots [2].
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Since, Space-Time processing technique linearly combined the snapshot of the ele­

ments [71], then the scalar output of the processor can be stated as [2]:

yk [wk]Hxk

NIN

2)wt]H[x~]
1=1

(D.2)

If Q is the interference (asymptotic) covariance matrix as stated before, then

likelihood ratio test, under the Gaussian assumption xk(Ho) I"'J CN(O, Qk) for optimal

detection statistics of equation D.2 can be stated as [1][71]:

(D.3)

Where, VT is the detection threshold for two hypotheses [2][71].

The performance of the above equation D.3 can be stated as [2]:

PD

(D.4)

"Vhere, PIa, PD and fJT are the probability of false alarm, probability of detection and

normalized detection threshold respectively [2]. f o is the modified zero-order Bessel

function of the first kind [2], and a can be stated as [2]:

a = -)2 x SfNR

Where, SINR is the Signal to Interference plus Noise Ratio as stated before.
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