
DEVELOPMENT OF A PORTION OF A

THEORY LIBRARY FOR MECHANIZED

MATHEMATICS SYSTEMS

DEVELOPMENT OF A PORTION OF A

THEORY LIBRARY FOR MECHANIZED

MATHEMATICS SYSTEMS

By

MEHWISH ABBASI, M.Sc. ApPLIED MATHEMATICS

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Science
Department of Computing and Software

McMaster University

© Copyright by Mehwish Abbasi, September 2009

II

MASTER OF SCIENCE (2009)
(Computer Science)

McMaster University
Hamilton, Ontario

TITLE:

AUTHOR:

SUPERVISOR:

Development of a Portion of a Theory Library for Mechanized
Mathemaics Systems

Mehwish Abbasi, M.Sc. Applied Mathematics (University Of Karachi)

Dr. William M Farmer

NUMBER OF PAGES: viii, 60

ABSTRACT

A theory library for a mechanized mathematics system (MMS) is a collection of
mathematical theories which serves as a database of mathematics. A powerful library
plays a significant role in making an MMS useful. This thesis demonstrates some
of the techniques needed for generating a large theory library for an MMS, that has
capability of both computation and deduction, by developing a small portion of a
theory library. In the theory library presented in this thesis, the module system Mei,
a A-calculus style module system that supports higher-order functors, is employed to
manage mathematical theories. ChiTOn, a logic derived from von-Neumann-Bernays­
Godel set theory, is used as the underlying logic of the system, and biform theories,
which can include both formulas and algorithms as axioms, are used to present math­
ematical theories. The theory library given in this thesis is based on the branch of
mathematics called calculus.

iii

ACKNOWLEDGMENTS

First of all, I would like to express my deep and sincere gratitude to my supervisor
Dr. William M Farmer for his support, guidance, patience, worthy suggestions and
encouragement throughout my two years of study at McMaster. He taught me tons
of new things. Without his help it would not have been possible to write this thesis.

I am grateful to the examination committee members, Dr. Jacques Carette and
Dr. Christopher Anand, for their valuable suggestions.

I would like to thank my husband, Iftikhar, for standing by me and encouraging me,
my parents for their love, efforts in raising me and unstinting support in every part
of my life. I would not be what I am today without them. Lastly, I would like to
thank my sister Sana and brother Adil for helping me whenever I need them.

IV

CONTENTS

Abstract

Acknowledgement

1 Introduction

1.1 Mechanized Mathematics Systems .

1.2 Objective and Approach .

1.3 Organization of the Thesis

2 Background

2.1 Mathematical Knowledge Management (MKM)

2.2 Chiron

2.3 Biform Theories in Chiron

2.4 Mei

3 Forms of conservative extension

3.1 Special Forms of Theory Extension

3.2 Extension with Theorems

3.3 Extension with Definitions

3.4 Extension with a Profile .

3.5 Extension with an Inductive Data Type.

3.6 Extension with a Recursive Definition.

3.7 Extension with an Interpreted Theory.

v

111

111

1

1

2

3

5

5

6

8

10

13

14

14

16
18

20

23

26

VI

4 Starting Theories

4.1 Real Numbers Base

4.2 Real Numbers A

4.3 Real Numbers B

4.4 Real Numbers C

4.5 Real Numbers D

4.6 Real Numbers E .

4.7 Real Numbers F .

4.8 Real Numbers G

4.9 Real Numbers H

4.10 Metric Spaces Base

4.11 Metric Spaces . .

4.12 Monoids

4.13 Monoidal Metric

5 Theory Building Tools

5.1 Binary Iterative Functor

5.2 Limit Functor

5.3 Limit of Sequence Functor

5.4 Continuity Functor . .

5.5 Derivative Functor ..

5.6 Infinite Series Functor

6 Sample Library

6.1 Real Numbers I

6.2 Real Numbers J

6.3 Real Numbers J'

6.4 Real Numbers K

6.5 Real Numbers with Limit

6.6 Real Numbers with Limit of Sequence.

6.7 Real Numbers with Continuity

6.8 Real Numbers with Derivative

6.9 Real Numbers with Binary Iterative.

6.10 Real Numbers with Infinite Series ..

6.11 Real Numbers without using Functors.

CONTENTS

28

28

30

30

31

31

32

32

33

33

33

34

35

35

36

36

37

38

38

39

39

41

41

42

42

42

43

44

45

46

46

47

47

CONTENTS vii

6.12 Real Numbers with Definite Integral 49

7 Comparison to Previous Work 51

8 Conclusion 53

9 Future Work 54

APPENDIX A - List of Symbols 55

Bibliography 56

LIST OF FIGURES

2.1 Syntax and semantics of Chiron.

2.2 Components of the proposed theory library.

6.1 Relation among theories

viii

8

12

50

CHAPTER 1

INTRODUCTION

1.1 Mechanized Mathematics Systems

A mechanized mathematics system (MMS) is a software system that is intended to

manage, automate, and improve parts of the mathematics process. The three main

kinds of MMSs are:

• Computer theorem proving systems (CTPSs): These include automated theo­

rem provers, for example, Vampire [28], interactive theorem provers or proof

assistants, for example, IMPS [17] and proof checkers, for example, Logic Dae­

mon [20].

• Computer algebra systems (CASs): These are software programs that performs

symbolic computation, for example, Maple [7], Axiom [18] and Mathematica [1].

• Interactive mathematics laboratories (IMLs): Researcher are working on this

kind of MMS. They do not exist at present, but they could have great impact

on the way people do Mathematics [10].

2 1. Introduction

In CTPSs mathematics is represented by axiomatic theories, where an axiomatic

theory represents mathematical knowledge declaratively as a set of axioms. In these

systems, reasoning is performed by proving conjectures. They emphasize proof check­

ing or proof development. Their upsides are that they are based on rigorous logical

foundations and support a wide range of mathematics. The downsides of CTPSs are

that they are very difficult to use, they have poor support for routine computations

and abstract theories are emphasized over concrete structures.

In CASs mathematics is represented by algorithmic theories, where an algorith­

mic theory represents mathematical knowledge procedurally as a set of algorithms.

In contrast to CTPs, in these systems reasoning is performed by computation. Their

advantages are that they perform quickly, carry out sophisticated symbolic compu­

tations and are relatively easy to use. Their disadvantages are that they have poor

support for context guided computation and, unlike CTPSs, they are not based on

a rigorous logical foundation and concrete structures are emphasized over abstract

theories.

Nowadays much work is being done for developing new MMSs and improving the

design of MMSs. Many conferences are held every year in which scientists from all

over the world discuss and share new ideas for making MMSs better. Examples are

Calculemus [3], Mathematical Knowledge Management [23], Modules and Libraries

for Proof Assistants (MLPA) [24], the Conference on Autometed Deduction (CADE)

[2], etc.

1.2 Objective and Approach

An MMS is not very beneficial without an extensive library. In an MMS, a math­

ematical library has to be well organized and developed in such a way so that new

knowledge can be easily added to it and theories can be easily connected to each other.

For expressing theories in MMS, we need an expressive and practical logic. Further­

more, in contemporary CTPSs mathematical knowledge is represented by axiomatic

theories and deduction is supported. On the other hand, in CASs mathematical

knowledge is represented by algorithmic theories and computation is supported. We

want to have a system in which the reasoning engine has both deduction and compu-

1. Introduction 3

tation. In order to have it we need to merge CASs and CTPSs and this can be done

by having a library in which mathematical knowledge is represented by a combination

of algorithmic and axiomatic theories.

This thesis illustrates, by developing a portion of theory library, how to build a

theory library for an MMS that is well structured, whose underlying logic is practical,

and has both the capabilities of computation and deduction. This is done by employ­

ing the module system Mei [32], proposed by Jian Xu for organizing mathematical

knowledge in theory library of MMSs. Biform theories, which are both algorithmic

and axiomatic theories together, are used as a way of representing theories and Ch­

iron is used as an underlying logic of the library because biform theories are easily

expressed in this logic. To put it simply, the theory library developed in this thesis

represents mathematical knowledge as biform theories expressed in Chiron and based

on Mei.

This research is conducted as part of MathScheme project [21] at McMaster Uni­

versity. MathScheme is a project whose aim is to build a mechanized mathematics

system that integrates computer algebra and computer theorem proving. Its ultimate

goal is to develop an interactive mathematics laboratory. The module system Mei,

logic Chiron and bifrom theories all were developed as part of this project.

1.3 Organization of the Thesis

This thesis illustrates how to build a theory library of a MMSs that has the capabil­

ities of both deduction and computation. It is organized as follows:

Chapter 2 (Background) goes over the module system Mei which is chosen as a

system to organize mathematical library, the logic Chiron which is used as the under­

lying logic of the library and biform theories which are employed as a way to represent

theories. It also describes what mathematical knowledge management means.

Chapter 3 (Forms of conservative extensions) presents several extensions to

Mei. Each of these extensions introduces a theory extension that is conservative pro­

vided a certain obligation is satisfied.

4 1. Introduction

Chapter 4 (Starting Theories) demonstrates how we can use the extensions de­

scribed in the previous chapter to build theories from existing theories.

Chapter 5 (Theory Building Tools) illustrates functors as another way to develop

theories from existing theories. All the notions in these functors belongs to calculus

of one variable.

Chapter 6 (Sample Library) portrays how we can employ the functors shown in

the last chapter to produce a theory of real numbers.

Chapter 7 (Comparison to Previous Work) discusses that which other systems

has used the ideas presented in this thesis.

Chapter 8 (Conclusion) summarizes what is achieved in this thesis.

Chapter 9 (Future Work) sketches how the work presented in this thesis can be

used in the future including an idea to build a whole mathematical library based on

techniques this thesis exhibits.

CHAPTER 2

BACKGROUND

2.1 Mathematical Knowledge Management (MKM)

In [11] Dr. William Farmer has described MKM as follows

MKM is a new interdisciplinary field of research in the intersection of

mathematics, computer science, library science, and scientific publishing.

The objective of MKM is to develop new and better ways of managing

mathematical knowledge using sophisticated software tools. MKM is ex­

pected to serve mathematicians, scientists, and engineers who produce

and use mathematical knowledge; educators and students who teach and

learn mathematics; publishers who offer mathematical textbooks and dis­

seminate new mathematical results; and librarians and mathematicians

who catalog and organize mathematical knowledge.

Mathematical knowledge management (MKM) is a new field of research. It has

largely developed in the last few years. Its aim is to develop new and better ways

for organising mathematical knowledge using sophisticated tools. It is hard to orga­

nize mathematical knowledge and it is much different from other sorts of knowledge.

Mathematical knowledge management has been an issue within the community of

mathematicians for centuries, but now mathematicians and mathematics practition­

ers are more involved in it than ever before.

6 2. Background

Before the information age, mathematical knowledge used to be stored in text­

books and journals, but the classical method of organizing mathematical knowledge is

not sufficient any more and new methods are needed. Nowadays non mathematicians

are also producing mathematical knowledge. We believe that there should be a place

where all mathematical knowledge is stored.

Mathematical knowledge is abstract, universal, highly structured, extraordinarily

interconnected, and of immense size and these attributes of mathematical knowledge

make it different from other kind of knowledge [12]. For managing mathematical

knowledge we need tools and methods that are different from the tools and methods

required for other sorts of knowledge. The organization of mathematical knowledge

can be divided into four activities, i.e. articulation, organization, dissemination and

access [11].

There is an MKM research group which organizes conferences on Mathematical

Knowledge Management. The work of this thesis, building a library of mathematical

knowledge for MMSs, is one of the areas that MKM community is concerned about;

for details see [6]. The grand challenge of MKM is to build a universal digital math­

ematicallibrary (UDML).

2.2 Chiron

A logic that is both theoretically and practically expressive is required by a practical,

general purpose MMS. Traditional logics such as first-order logic or simple type the­

ory (classical higher-order logic) are not suitable for this purpose due to the absence

of the practical expressivity needed for an MMS. They are designed to be used in

theory, not in practice.

Chiron is a logic developed by W.M Farmer [14]. It is derived from von-Neumann­

Bernays-Godel (NBG) set theory which is a conservative extension of Zermelo-Fraenkel

set theory that is designed to be a practical, general purpose logic. As it is derived

from NBG set theory, it is based on familiar principles from predicate logic, set theory,

and type theory. It has the same theoretical expressivity as ZF and NBG set theories,

but it is much practically expressive than traditional logics. It is designed to be a

2. Background 7

logical foundation for mechanized mathematics. It supports in an integrated manner

five reasoning paradigms [15] that are commonly employed either in mathematical

practice or in contemporary MMSs:

(1) Classical.

(2) Permitted undefinedness.

(3) Set theory.

(4) Type theory.

(5) Formalized syntax.

As described in [14], in Chiron, operators, terms, types and formulas are all proper

expressions, while improper expressions are nondenoting (i.e., they do not denote any­

thing). Operators are used to construct expressions. They denote operations. Types

are used to restrict the values of operators and variables and to classify terms by

their values. They denote superclasses. Terms are used to describe classes. They

denote classes or the undefined value. Formulas are used to make assertions. They

denote truth values. (illustrated in figure 2.1). The values for intuitively nondenoting

types, terms, and formulas are the default values Dc (universal superclass), ~, and

F, respectively.

In Chiron a theory is (L, <P, /::1) where L is a language (set of operators), <P is a

pair (r, II) where r is a set of axioms and II is a set of base transformers and /::1 is

a pair (w,~) where W is a set of theorems and ~ is a set of derived transformers. In

Chiron, a language is only a set of operators.

Two main features of Chiron are that it can handle undefinedness and can reason

about the syntax of expressions. Chiron reasons about syntax by using quotation and

evaluation.

We are using Chiron because we need a logic that is designed to be more practical

than traditional logics. Biform theories as well as algorithmic theories are difficult

to formalize in a traditional logic without the means to reason about syntax. We

have used Chiron as the underlying logic because biform theories can manipulate the

8 2. Background

Syntax

Semantics

Figure 2.1: Syntax and semantics of Chiron.

syntax of expressions and for that we need a logic that can deal with the syntax of

expressions. For this reason, it is an exceptionally well-suited logic for formalizing

biform theories.

2.3 Biform Theories in Chiron

An axiomatic theory is a pair of a language and a set of sentences. Mathemati­

cal knowledge is expressed in an axiomatic theory declaratively as a set of axioms

whereas an algorithmic theory is a pair of a language and a set of transformers.

Mathematical knowledge is expressed in an algorithmic theory procedurally as a set

of algorithms. The union of axiomatic theories and algorithmic theories gives biform

theories. Mathematical knowledge is expressed in a biform theory both declaratively

and procedurally.

2. Background 9

A biform theory T [5] is a triple T = (c, T, r) where c is a set of expressions, T is

a set of transformers for c, and r is a set of formulas in c.

A transformer in L is a pair (7r, 'if) such that 7r is an operator (0 :: E, ... , E) in L

(with E occurring more than 0 times) and 'if is an algorithm that implements 7r. The

operator 7r serves as a name for the algorithm 'if.

A biform theory in Chiron [13] is a tuple (L, (r, II), (\IF, ~)), where

(1) L is a language of Chiron.

(2) r is a set of sentences of L called axioms.

(3) II is a set of transformers in L called base transformers.

(4) \IF is a set of sentences of L called theorems.

(5) ~ is a set of transformers in L called derived transJoTTners.

Axioms are the background assumptions and specifications of the operators in

L including the operators in II. The members of \IF are logical consequences of ax­

ioms and may specify transformers ~. We assume that the axioms are true and base

transformers are working correctly whereas the theorems and derived transformers

are logical consequences of axioms and base transformers, respectively.

The reason that Chiron has been used as underlying logic of Mei in this thesis is

because a mechanized mathematics system that utilizes biform theories to represent

mathematics requires a logic in which biform theories can be expressed. The ax­

ioms in biform theories that describes what a transformer means is a statement that

expresses something both about the syntax of expressions and what the expression

means and for that we need a logic that can deal with the syntax of expressions. Tra­

ditional logics do not have this facility. Chiron has a facility for reasoning about the

syntax of expressions and thus for formalizing biform theories the most appropriate

logic is Chiron.

Bringing computer theorem proving and computer algebra together is one of the main

objectives of Mathscheme project. In biform theories, both logical and computation

coexist and thus it plays a key role in integrating CASs and CTPSs. This is the

10 2. Background

reason we have used biform theories in this thesis.

2.4 Mei

A good module system plays a significant role in making mathematical knowledge

well organized in an MMS. In this section we will discuss Mei [32, 31]' a A-calculus

style module system for organizing mathematical knowledge in MMSs. Mei is the

building block of the library proposed in the thesis.

In Mei, mathematical knowledge is organized as modules called theories. A the­

ory in Mei is a triple (L, <P,.6.) where L is a language (a set of symbols used by the

theory), <P is a set of axioms and .6. is a set of theorems provable from the axioms

in some sound proof system (.6. can be empty). The theories in Mei are organized

according to the little theories method [16]. In Mei, we can use the following ways to

build a theory: building a theory from scratch, extension of existing theory, union of

existing theories, renaming of a theory.

Mei also supports building a theory from a parametrized theory, called a functor.

Theories are objects and parametrized theories are functions. Functors can be defined

in terms of arbitrary module expressions over the parameter theories. Functors are

instantiated only when the actual parameter theory matches the argument type. An

actual parameter is passed to a functor via a mechanism similar to a fitting morphism

[32]. Functors in Mei are applicative and can be higher-order.

In Mei, there is a type system to classify module expressions by their values,

which are theories or functors. In this thesis, two new operators are added to Mei,

type operator and return type operator. type operator (type) when applied to a theory

T = (L, <P,.6.) returns the type of that theory i.e.

type(T) is (L, <p)

The return type operator (returntype) takes a functor F : G ---+ H as its argument and

gives back the theory H.

returntype(F) is H

2. Background 11

By a subtyping mechanism in Mei, an object of one type (subtype) can be treated

as an object of another type (supertype). Therefore if the formal parameter of a

functor F is a theory T, then theories which are subtype of T can also be taken as

the parameter of F. Every theory in Mei effectively has more than one type.

Mei supports a coercion mechanism, which is similar to a fitting morphism. Coer­

cion is done by a coercion functor. A Coercion functor changes the actual parameter

in a form that can be accepted by the functor where a view is used to justify how

and why an object in the formal parameter can be treated as an object in the actual

parameter. view is a generalization of theory interpretation and a subtype relation.

A view from a theory T to T' is a mapping from the expressions of T (source theory)

to the expressions T' (target theory). view(T, T', p) asserts that p is a mapping from

T to T'. A view from a functor F : G -----+ H to F' : G' -----+ H' means view(G, G', p) and

view(H, H', p). In Mei, a good theory view is a theory interpretation. If v=(T,T', p)

is a view from a theory T to T', then its semantic [v] is a functor in Mei called a

coercion functor. The instantiation of functor can accept more objects as input with

the help of coercion functors.

Mei has adopted the idea of parametrized modules as functors i.e. functions from

modules to modules and the idea of higher-order functors from ML-family module

systems and the fitting morphism style parameter passing mechanism from algebraic

specification languages. It is the first system that integrates higher-order functors

with fitting morphisms.

There is an analogy between Mei, which handles theories, and typed)" Calculus,

which deals with classical values. The theory types are base types, functor types are

function types, module expressions are terms, functor abstractions are).. abstractions,

functor applications are function applications and theory operations are extra term

contructors.

In this thesis, Mei is used for organizing mathematical knowledge. We will use ex­

tension, union, renaming and parametrized theories for building theories. Extension

means adding language and axioms in an existing theory to get a new theory. The

language L2 of the new theory contains all the symbols of extended theory; therefore

language Ll of the new theory is a sublanguage of L2, that is, Ll ~ L2 and axioms

12 2. Background

<I>2 and theorems .6.2 of new theory comprises the set of axioms <I>1 and the set of

theorems .6.1 of original theory as well as some new axioms (hence <I>1 S;;; <I>2)' We use

conservative extensions to develop a stack of theories. The union operation is used

to build a theory from two or more existing theories. The union of T1 = (L1' <I> 1 , .6.1)

and T2 = (L2' <I>2, .6.2) is denoted by T = T1 E9T2. T is a theory whose language is the

union of L1 and L2 , the axioms are the union of <I>1 and <I>2 and the theorems are the

union of .6.1 and .6.2 .

Once again, the three main components of the proposed theory library are Mei,

which is used to organize theories, Chiron, which is used as underlying logic and

Biform theories, which is employed to represent theories. Fig 2.2 illustrates the way

they are used.

Mei Ghiron

Theory Library

Figure 2.2: Three main components of the proposed theory library.

CHAPTER 3

FORMS OF CONSERVATIVE

EXTENSION

Using Mei, we can build a theory either from scratch or we can use previously devel­

oped theories to build a new theory. Mei supports theory building operations such

as theory extension, union and renaming. The following are the definitions of theory

extension and conservative extension.

A theory T2 = (L2' 1>2, .6.2) is an extension of another theory T1 = (L1' 1>1, .6.1), writ­

ten, T1 ::; T2, if L1 ~ L2, 1>1 ~ 1>2 and .6.1 ~ .6.2 (see 2.4).

A theory T2 is a conservative extension of another theory T1 if T2 is an extension of

T1 and every sentence valid in T2 that involves only operators of T1 is also valid in T1.

That is, T2 adds new machinery to T1 without compromising the original machinery

ofT1 .

In this chapter, six special forms of theory extension will be presented. All of these

extensions are conservative (provided certain obligations are satisfied). We are inter­

ested in conservative extensions of theories because in a conservative extension the

new machinery does not compromise the old machinery. All theories and languages

in this chapter are theories and languages of Chiron.

14 3. Forms of conservative extension

3.1 Special Forms of Theory Extension

We will define six important forms of theory extension that are conservative:

(1) A Set of Theorems.

This adds a set of theorems to a theory.

(2) A Set of Definitions.

This adds a set of new separately defined operators to a theory.

(3) A Profile.

This adds a set of new collectively profiled operators to a theory.

(4) An Inductive Data Type

This adds a new inductive data type to a theory.

(5) A Recursive Definition.

This adds a recursively defined operator to a theory.

(6) An Interpreted Theory.

This adds an interpreted theory to a theory.

3.2 Extension with Theorems

This kind of theory extension adds a set of sentences to the set of theorems of a theory

T. The set of sentences is specified by \If.

Extended Mei Syntax

The extended syntax of Mei that expresses an extension with theorems by \If is

T extended with theorems by \If

where T is a theory and \If is a set of sentences not in the language of T.

Meaning As Official Mei Syntax Using Biform Theories In Chiron

The syntax

T extended with theorems by \If

3. Forms of conservative extension 15

means in Mei

T extended by (0, (0,0), (w, 0))

As described earlier in section 2.3, a biform theory in Chiron has the form (L, <I>, .6..).

Here <I> is (0,0) as there are neither new axioms nor new base transformers and .6.. is

(w,0) as there are new theorems but no new derived transformers.

Syntactic Form

Let T be a theory. The extension T' of T with a set of theorems is presented by the

following syntactic form:

T' = T extended with theorems by

Theorems

Al

This represents T extended with theorems by W where W = {A I ,A2 , ... ,An}.

Conservativity

Let T' be T extended with theorems by W where W = {AI ,A2 , ... ,An}. The obligation

B of this extension is

The new theory T' is a conservative extension of T if B is valid in T, that is, if T F B.

Example

RealNumG' = RealNumG extended with theorems by

Theorems

Va, b : rr. a < b ::J 3c : qq . a < c /\ c < b

Va, b : rr . a > 0 /\ b > 0 ::J 3c : n n . c * a > b

In the example above, the theory RealNumG which is defined in section 4.8 is extended

by two theorems.

16 3. Forms of conservative extension

3.3 Extension with Definitions

This form of theory extension adds a set of new separately defined operators to the

language of a theory T. Each operator can be given a special notation. For each

operator there is one or more defining axioms. This extension is specified by (L) r))
where L is a language of operators to be added to T and r is a set of sentences to be

added to the axioms of T.

Extended Mei Syntax

The extended syntax of Mei that expresses an extension with definitions by (L) r) is

T extended with definitions by (L) r)

where T is a theory) L is a language whose members are not in the language of T and

r is a set of sentences that serves as the defining axioms for these operators.

Meaning As Official Mei Syntax Using Biform Theories In Chiron

The syntax

T extended with definitions by (L) r)

means

T extended by (L) (r) 0)) (0) 0))

Here <I> is (r) 0) as there are only new axioms and no new base transformers) and 6.

is (0) 0) as there are neither new theorems nor new derived transformers.

Syntactic Form

Let T be a theory. The extension T' of T with a set of definitions is presented by the

following syntactic form:

T' = T extended with definitions by

Defined Operators

0 1

O2

3. Forms of conservative extension 17

Notation

Nl means 0 1 (eu, ... , elml)

Defining Axioms

Ai

This represents T extended with definitions by (L, r) where Lis {Ol, O2 , ... , On} and

r = {Ai, A~, ... , A;n}' The set of operators Oi that are added to the theory Tare

listed under Defined Operators. The optional notation for the operators is listed

under Notation, and the axioms Ai, A~, ... , A~i under Defining Axioms defines the

operator Oi for each i with 1 ::::; i ::::; n.

Conservativity

Let T' be T extended with definitions by (L,r) where r = {Ai,A~, ... ,A;J. The

obligation B of this extension states that there exist operations that uniquely satisfy

the conjunction of all the axioms:

The new theory T' is conservative if the above obligation is valid in T, that is, if

T F B. Notice that B will usually not be directly expressible in Chiron since there

are no operation variables in Chiron.

18 3. Forms of conservative extension

Example

RealNum' - RealNumBase extended with definition by

Defined Operators

(sub :: rr -+ (rr -+ rr))

(sue :: rr -+ rr)

(nn :: type)

Notation

a - b means sub(a)(b)

Defining Axioms

sub = Va, b : rr . a - b = a + (-b)

sue = AX : rr . x + 1

nn « rr

Va: rr . (a 1 nn) _ (a = 0 V :3b : nn . sue(b) = a)

In the example above, there are three defined operators, sub which finds the difference

between two real numbers, sue which gives the successor of a real number, nn which is

a type of natural numbers, there is a special notation for sub alone. It is not necessary

to have a special notation for every operator. There is one axiom corresponding to

each of sub and sue, but there are two axioms for nn.

3.4 Extension with a Profile

This extension adds a set 0 1 , ... , On of operators and a profiling axiom A containing

0 1 , ... ,On to a theory T. Like an extension with definitions, this extension is also

specified by a pair (L, r) but in this case the language L is a set of profiled operators

and r is a set {A} of single sentence called the profiling axiom.

Extended Mei Syntax

The syntax of Mei that expresses an extension with a profile by (L, r) is

T extended with a profile by (L, r)

where T is a theory, L is a language whose members are not in the language of T and

3. Forms of conservative extension

r is a set of a single sentence that serves as the profiling axiom for the operators.

Meaning As Official Mei Syntax Using Biform Theories In Chiron

The syntax

T extended with a profile by (L, r)

means

T extended by (L, (r, 0), (0,0))

19

Again like an extension with definitions, <I> is (r,0) as there are only new axioms and

no new base transformers and I::i is (0,0) as there are neither new theorems nor new

derived transformers.

Syntactic Form

Let T be a theory. The extension T' of T with a profile is presented by the following

syntactic form:

T' = T extended with a profile by

Profiled Operators

0 1

O2

On

Notation

Nl means 0 1 (e11' ... , elml)

Axioms

Al

An

This represents T extended with a profile by (L, r) where L is {Ol, O2 , ... , On} and

r = {Al/\ A2/\ " ./\ An}. Under Profiled Operators, there is a set of profiled opera­

tors Oi' Under Notation, there is optional special notation for the profiled operators,

20 3. Forms of conservative extension

and under Axioms, each axiom constrains the value of one or more profiled operators.

The profiling axiom A is the conjunction of all these axioms, that is, A I I\A2 1\·· ·I\An .

Conservativity

Let T' be T extended with a profile by (L, T) where L = {Ol, O2 , ... , On} and r = {A}.

The obligation B for the extension states that there are operations that satisfy the

profiling axiom:

Similar to an extension with definitions, T' is a conservative extension of T if T F B.

Example : Positive Real Numbers

PosRealN urn RealN urn extended with a profile by

Profiled Operators

(pas-real :: rr)

(neg-real :: rr)

Axioms

(0 < pos-real)

(0 > neg-real)

(pos-real = -(neg-real))

In the example above, there are two profiled operators pos-real and neg-real and

there are three axioms. pas-real and neg-real are operators that give back unspecified

positive and negative real numbers, respectively. Under Axioms, the first one is a

constraint on pas-real, the second is a constraint on neg-real, and the third axiom is

a constraint on both the profiled operators.

3.5 Extension with an Inductive Data Type

With this extension a type and a set of constructors that specify an inductively data

type are added to a theory. This extensian is specified by a language L that includes

a type operator representing the set of elements of the inductive data type and a set

of operators representing the constructors for the inductive data type. L is added

to the language of the theory and a set of sentences idt-ax(L) and idt-th(L) that en­

code implicit properties of the inductive data type are added to the sets of axioms

3. Forms of conservative extension 21

and theorems of the theory, respectively. idt-ax(L) are the axioms that say that the

constructors are total and whatever they construct is of type a, all the elements of

type a are constructed by the constructors (no junk) and each member of a can be

constructed by only one constructor (no confusion).

Extended Mei Syntax

The syntax of Mei that expresses an extension with an inductive data type by L is

T extended with an idt by L

where T is a theory and L is a language that includes a type operator not in T and

other operators that represent the constructors of the type a. None of these operators

are in T.

Meaning As Official Mei Syntax Using Biform Theories In Chiron

The syntax

T extended with an idt by L

means

Textended by (L, (idt-ax(L), 0), (idt -thm(L), 0))

In an extension with an idt, since we have implicit axioms and theorems but no trans­

formers are added to the theory, <I> is (idt-ax(L), 0) and 6. is (idt-thm(L), 0).

Syntactic Form

Let T be a theory. The extension T' of T with an idt by L has the following syntactic

form:

Inductive Data Type

(s :: a)

Constructors

0 1

O2

22 3. Forms of conservative extension

Notation

Nl means Ol(ell, ... , elmJ

Under Inductive Data Type, there is a type operator, and under Constructors, there

are operators that build that data type. Under Notation is special notation for the

operators.

Conservativity

Let T' be T extended with an idt by L where L = {s :: a, 0 1 , O2 , ... , On}. The

obligation B of this extension is a sentence that says that there exists a set S repre­

senting the type a and mappings filIi representing the operators Oi for each i with

1 ::; i ::; n such that:

• Mi gives a member of S (total) when it is applied to the arguments of Oi.

• Every member of the type a is constructed by one of the mappings Mi (no

junk).

• No member of a is produced by more than one mapping Mi (no confusion).

The new theory T' is a conservative extension of T if B is valid in T, that is,

T' is conservative if T F B.

Example 1

Natural Numbers with an error element

T' = T extended with an idt by

Inductive Data Type

(Ne :: type)

Constructors

(error:: Ne)

(normal :: N, Ne)

In the example above, N is a type of natural numbers and Ne is a new type of nat­

ural numbers plus an error element. normal "tags" a natural number as a "normal"

number of Ne . error denotes the error element of Ne .

3. Forms of conservative extension

Example 2

Integers

TI = T extended with an idt by

Inductive Data Type

(Z :: type)

Constructors

(posint :: Npos, Z)

(negint :: Npos, Z)

(zero :: Z)

23

In the example above, Z is a new inductive data type of integers, Npos is a type of

positive natural numbers. Its members are constructed by three constructors posint,

negint and zero. posint takes an element of type natural number and gives back an

element of type positive integer, negint maps an element of type natural number to

an element of type negative integer and zero is a O-ary operator that gives the number

zero of type integer.

3.6 Extension with a Recursive Definition

In this extension, we add an operator 0 and a functional F such that the operator 0

denotes the least fixed point of a functional F. We can also define a system of recur­

sively defined operators from a list of functionals such that the system of operators

(01 , ... , On) denotes the least fixed point of the list (F1 , ... , Fn) of functionals. A

functional is a mapping that takes a function of type a as its argument and returns a

function of the same type a. A fixed point of a functional F is a function f such that

F(J) = f. The least fixed point of F is a fixed point of F which is less than or equal to

(with respect to the subfunction relation) all other fixed points of F. This extension

is specified by an operator 0 and a functional F. It adds 0 to the language of T and

set of sentences that encode implicit properties of 0, rec-ax(0, F) and rec-th (0, F),
to the axioms and theorems of T, respectively. rec-ax(0, F) are the axioms that say

that the operator 0 denotes the least fixed point of functional F.

24 3. Forms of conservative extension

Extended Mei Syntax

The syntax of Mei that expresses an extension with a recursive definition by L is

T extended with a recursive definition by (0, F)

where T is a theory of Chiron, ° is an operator, and F is a term of type a -----+ a.

Meaning As Official Mei Syntax Using Biform Theories In Chiron

T extended with a recursive definition by (0, F)

means

T extended by ({O}, (rec-ax(O, F), O), (rec-thm(O, F), O))

Like an extension with an inductive data type, we have new axioms and theorems

but no new transformers, so <I> is (rec-ax(0,F),0) and 6. is (rec-thm(0,F),0).

Syntactic Form

Let T be a theory. The extension T' of T with a recursive definitions is presented by

the following syntactic form:

T' = T extended with a recursive definition by

Recursively Defined Operator

(0:: a)

where a is a function type.

Notation

a means O(el, ... , em)

Functional

F

Under Recursively Defined Operator, there is an operator that is defined using F.

Under Notation, there can be a special notation for the recursively defined operator

and under Functional there is a term F of type a -----+ a.

3. Forms of conservative extension 25

Conservativity

Let T' be T extended with a recursive definition by (0) F). The obligation B of this

extension is that the functional F must be monotone. F is monotone if it preserves

the order of functions) that is

Vf)g: a. f C g::) F(f) ~ F(g).

T' is conservative extension of T if T ~ B.

Example 1

Natural numbers

T' = T extended with a recursive definition by

Recursively Defined Operators

(factorial :: (nn -----+ nn))

Functional

Af : (nn -----+ nn) . An : nn . if(n = 0) 1) f(n - 1) * n)

In this example) factorial is an operator recursively defined as the least fixed point of

the given functional. Notice that the functional is monotone.

Example 2

Natural numbers

T' T extended with a recursive definition by

Recursively Defined Operators

(fibonacci :: (nn -----+ nn))

Functional

Af : (nn -----+ nn) . An: nn . if(n = 0) 0) if(n = 1) 1) f(n - 1) + f(n - 2)))

In the example above) fibonacci is an operator recursively defined as the least fixed

point of the given functional.

26 3. Forms of conservative extension

3.7 Extension with an Interpreted Theory

This extension adds to T an interpretation of a theory T*. The interpretation is a

Mei view view(T*, T, p), where p is a mapping from T* to T.

Extended Mei Syntax

The extended syntax of Mei that expresses an extension with an interpreted theory

T* by view(T*, T, p) is

T extended with an interpreted theory T* by view(T*, T, p)

where T and T* are theories and view(T*, T, p) is a view from T* to T.

Meaning As Official Mei Syntax Using Biform Theories In Chiron

The syntax

T extended with an interpreted theory T* by view(T*, T, p)

Ineans

T tfJ (T* with p)

That is, the union of T and the translation of T* by p.

Syntactic Form

The extension T' of T with an interpreted theory T* is presented by the following

syntactic form:

T' = T extended with an interpreted theory by T* f-----+ T

View

Ot f-----+ 0 1

O~ f-----+ O2

O~ f-----+ On

This represents T extended with an interpreted theory T* by view(T*, T, p) where

Ot , O~, ... , O~ are all the operators in the language of T* and 0 1 , O2 , ... , On are the

operators in the language of T to which the operators of T* are mapped. If some 0*

in the language of T* is not among 0 1 , O2 , ... ,On, then 0* is mapped to itself.

3. Forms of conservative extension 27

Conservativity

Let T' be T extended with an interpreted theory T* by view(T*, T, p). The obligation

B for the extension states that p is an interpretation of T* in T, i.e.,

T* F A ~ T F p(A)

for all formulas A in the language of T*.

Example

RealNumK RealNumJ' extended with an interpreted theory by

MonoidalMetric 1-----+ RealN umJ'

View

ms 1-----+ rms

space 1-----+ rspace

metric 1-----+ rmetric

.1-----+ +
el-----+O

In the example above, the operators ms, space, metric, • and e belong to the theory

MonoidalMetric and the operators rms, rspace, rmetric, + and 0 are the operators

of theory ReaINumJ'. The mapping is from the operators of MonoidalMetric to

RealNumJ' (see section 6.4 for details).

CHAPTER 4

STARTING THEORIES

In this chapter we present some theories and their extensions using the forms of theory

extensions discussed in the previous chapter.

4.1 Real Numbers Base

The first theory is RealNurnBase. It is a theory of the real numbers axiomatized as

a complete ordered field. The first eleven axioms say that the type of real numbers is

a field, the next three axioms make it an ordered field, the next four are definitions

and the last axiom is an axiom of completeness.

RealN urnBase

Operators

(rr :: type)

(0 :: rr)
(1 :: rr)
(+ :: rr ~ (rr ~ rr))

(neg :: rr ~ rr)

(-1 :: rr ~ rr)

(* :: rr ~ (rr ~ rr))

«:: rr, rr, formula)

4. Starting Theories

(:::;:: rr, rr, formula)

(pos :: rr, formula)

(ub :: rr, sets(rr), formula)

(Iub :: rr, sets(rr), formula)

Notation

(-a) means neg(a)
a-1 means -l(a)

a+b means +(a)(b)

a*b means *(a)(b)

a<b means < (a, b)

a:::;b means :::; (a, b)

a ub s means ub(a,s)

a lub s means lub(a,s)

Axioms

Va, b, c : rr . a + (b + c) = (a + b) + c

Va, b : rr . a + b = b + a

Va : rr . a + 0 = a

Va: rr . a + (-a) = 0

Va, b, c : rr . a * (b * c) = (a * b) * c

Va: rr . a * 1 = a /\ 1 * a = a

Va: rr . a#-O ::J (a * a-1 = 1/\ a- 1 * a = 1)

0-1 i
Va, b : rr. a * b = b * a

0#-1

Va, b, c : rr . a * (b + c) = (a * b) + (a * c)

Va: rr. (a = 0/\ -,pos(a) /\ -,pos(-a))V

(a #- 0/\ pos(a) /\ -,pos(-a))V

(a #- 0/\ -,pos(a) /\ pos(-a))

Va, b : rr. (pos(a) /\ pos(b)) ::J pos(a + b)

Va, b : rr . (pos(a) /\ pos(b)) ::J pos(a * b)

Va, b : rr. a < b = pos(b - a)

Va, b : rr. a :::; b = (a < b V a = b)

Vx : rr, s : sets(rr) . x ub s = Va : rr . a E s ::J a :::; x

Vx : rr, s : sets(rr) . x lub s = (x ub s /\ Vy : rr . y ub s ::J x :::; y)

29

30 4. Starting Theories

Vs: sets(rr) . ((s =f=. 0) 1\ (:3x : rr . x ub s)) ::) :3x : rr . x lub s

4.2 Real Numbers A

The theory RealN umA is obtained by extending theory RealN umBase with defini­

tions. By this extension, two new operators sub and div are added to RealNumBase.

sub is the difference of two real numbers and div is the division operator.

RealNumA = RealNumBase extended with definitions by

Defined Operators

(sub :: rr -7 (rr -7 rr))

(div :: rr -7 (rr -7 rr))

Notation

a - b means sUb(a)(b)

alb means div(a)(b)

Defining Axioms

Va, b : rr . a - b = a + (-b)

Va, b : rr. alb ~ a * b-1

4.3 Real Numbers B

Again the extension with definitions form is used to add two new operators, greater

than (» and greater than or equals to C:::), to RealNumA to acquire RealNumB.

RealNumB - RealNumA extended with definitions by

Defined Operators

(>:: rr, rr, formula)

(:2::: ii, rr, formula)

Notation

a > b means > (a, b)

a:2: b means 2 (a, b)

4. Starting Theories 31

Defining Axioms

Va, b : rr . a > b pos (a - b)

Va, b : rr . a 2: b (a > b V a = b)

4.4 Real Numbers C

The theory RealNumC is attained by extending RealNumB with definitions. It

has two new operators, Ib and glb, that determine the lower bound and greatest lower

bound of a set, respectively.

RealNumC = RealNumB extended with definitions by

Defined Operators

(Ib :: rr, sets(rr), formula))

(glb :: rr, sets(rr), formula))

Notation

a Ib s means Ib(a, s)

aglbs means glb(a,s)

Defining Axioms

Vx : rr, s : sets(rr) . x Ib s Va: rr. a E s ::J a 2: x

Vx : rr, s : sets(rr) . x glb s - x Ib s 1\ Vy : rr . y Ib s ::J x 2: y

4.5 Real Numbers D

The theory RealNumD, which is an extension of RealNumC with definitions, has

an operator sue that gives the successor of a real number.

RealNumD - RealNumC extended with definitions by

Defined Operators

(sue :: rr ----+ rr)

32 4. Starting Theories

Defining Axioms

sue = AX : rr . x + 1

4.6 Real Numbers E

By appending a type of nn and an axiom defining it in theory of RealNumD, the­

ory RealNumE is obtained. We are defining the natural numbers here as a special

sub collection of real numbers.

RealNumE = RealNumD extended with definitions by

Defined Operators

(nn :: type)

Defining Axioms

nn « rr

Va: rr . (a 1 nn) _ (a = 0 V 3b : nn . sue (b) = a)

4.7 Real Numbers F

The theory RealN umF is obtained by adding a new operator zz, the type of integers,

to the theory RealN umE

RealN umF _ RealN umE extended with definitions by

Defined Operators

(zz :: type)

Defining Axioms

zz « rr

Va: rr. (a 1 zz) = ((a 1 nn) V ((-a) 1 nn))

4. Starting Theories 33

4.8 Real Numbers G

The addition of a new operator qq that is the type of rational numbers produces the

theory RealN urn G.

RealNurnG RealNurnF extended with definitions by

Defined Operators

(qq :: type)

Defining Axioms

qq « rr

Va: rr . (a 1 qq) = (:3p, q : zz . q -I- 01\ a = plq)

4.9 Real Numbers H

The theory RealNurnH is obtained by adding factorial in RealNurnG.

RealNurnH = RealNurnG extended with recursive definition by

Recursively Defined Operators

(factorial :: (nn -----+ nn))

Functional

Af : (nn -----+ nn) . An : nn . if(n = 0,1, f(n - 1) * n)

4.10 Metric Spaces Base

MetricSpacesBase is an axiomatization of theory of metric space. It comprises

three operators ms, space and metric. ms is a type operator which is a type of metric

spaces. space when applied to a member of ms yields a type representing the point of

the metric space, it is a subtype of type of sets. metric measures the distance between

two elements of the space of the metric space.

34

MetricSpacesBase - RealNum extended with a profile by

Profiled Operators

(ms :: type)

(space :: ms, type)

(metric :: Am : ms . space(m) ~ (space(m) ~ rr))

Axioms

Vm: ms . space(m) «V

Vm: ms, PI,P'i : space(m) .

4. Starting Theories

metric(m)(PI)(P2) 2: 0/\ metric(m) (PI) (P2) = 0 = PI = P2
Vm: ms, PI,P2 : space(m) .

metric(m)(PI)(P2) = metric(m)(P2)(PI)

Vm : ms, PI,P2,P3 : space(m) .

metric(m) (PI) (P2) :::; metric(m) (PI) (P3) + metric(m) (P3) (P2)

4.11 Metric Spaces

The theory MetricSpaces is an extension of the theory MetricSpacesBase with

definitions by two new operators openball and closedball.

MetricSpaces - MetricSpacesBase extended with definitions by

Defined Operators

(openball :: Am : ms . (space(m) ~ (rr ~ sets(space(m)))))

(closedball :: Am : ms . (space(m) ~ (rr ~ sets(space(m)))))

Defining Axioms

openball : Vm : ms, c: space(m), r : rr, r 2: 0 ~

Vp: space(m) . P E openball(m)(c)(r) = metric(m) (c)(p) < r
closedball : Vm: ms, c: space(m), r : rr, r 2: 0 ~

Vp : space(m) . P E closedball(m)(c)(r) - metric(m) (c)(p) :::; r

4. Starting Theories 35

4.12 Monoids

The language of the theory Monoid comprises four operators md, space, the identity

element e and the binary operator e.

Monoid

Defined Operators

(md :: type)

(space :: md, type)

(e :: Am : md . space(m))

(e :: Am: md . (space(m) - (space(m) - space(m))))

Notation

em means e(m)

PI em P2 means e (m,PI,P2)

Defining Axioms

'tim: md . space(m) «V

'tim: md, PI,P2,P3 : space(m) .

PI em (P2 em P3) = (PI em P2) em P3

'tim : md, P : space(m) .

P em em = P /\ em e Pm = P

4.13 Monoidal Metric

The theory MonoidalMetric is the union of the theory MetricSpacesBase and

Monoid. The renaming operation is used to rename the type md to the type ms.

MonoidalMetric = MetricSpaces Rase E9 Monoid with md !---+ ms

CHAPTER 5

THEORY BUILDING TOOLS

In Mei, a parametrized theory is a functor. Mei not only supports first-order functors

but it also supports higher-order functors where a higher-order functor is a mapping

that takes a functor as an argument or returns a functor. A functor can be instanti­

ated only when the actual parameter theory or functor matches the argument type.

In the previous chapter we used the theory building operations extension, union and

renaming to construct new theories from existing theories. In this chapter, we will

employ another theory building operator "functor" to build the theory of calculus of

one variable.

5.1 Binary Iterative Functor

BinaryIterative is a first-order functor that takes a theory of type (Monoidal

Metric) as its argument, introduces a concept of applying the binary operator •

iteratively on given function over all integers in the specified range, and returns a

theory of type returntype(BinaryIterative).

Binary Iterative = functor X : type(MonoidalMetric) . X extended with recursive

definitions by

Recursively Defined Operators

5. Theory Building Tools

(binaryiterative :: Am : ms . (zz -t space(m)) -t (zz -t (zz -t space(m))))

Functional

Af : Am : ms . (zz -t space(m)) -t (zz -t (zz -t space(m))) .

Am : ms, Ag : zz -t space(m) . Aj : zz . Ak : zz .

if(k < j, em, g(j) em f(m, g, j + I, k))

5.2 Limit Functor

37

Like BinaryIterative, Limit is a first-order functor whose formal parameter is a

theory of type(MonoidaIMetric). It adds a notion of limit of a function at a point

in MonoidalMetric and returns a theory of type returntype (Limit).

Limit - functor X : type(MonoidaIMetric) . X extended with definitions by

Defined Operators

(lim :: AmI, m2 : ms . (space(ml) -t space(m2)) -t space(ml) -t space(m2))

Defining Axioms

lim = AmI, m2 : ms . Af : space(ml) -t space(m2) .

a : space(ml) . &L : space(m2) .

Theorems

'liE : rr, E> 0 ::J

:30 : rr, 0> 0/\ 'lip: space(ml) . P -I- a /\ metric(ml) (p) (a) < 0 ::J

metric(m2)(f(p))(L) < E

Vml, m2 : ms . a : space(ml), k : space(m2) .

lim(ml)(m2)(Ax : space(ml) . k)(a) rv k

Vml, m2 : ms . Af : space(ml) -t space(m2) . a : space(ml)' C : space(m2) .

lim(ml)(m2)(Ax : space(ml) . C * f(x))(a) ~

C * lim(ml)(m2)(f)(a)

38 5. Theory Building Tools

5.3 Limit of Sequence Functor

LimitSeq takes a theory X of type(MonoidaIMetric), defines the concept of limit

of sequence in X and returns a theory of type returntype(LimSeq) .

LimitSeq _ functor X : type(MonoidaIMetric) . X extended with definitions by

Defined Operators

(Iimseq :: Am: ms . (nn -+ space(m)) -+ space(m))

Defining Axioms

limseq = Am : ms . Ai : nn -+ space(m) .

"L : space(m) . 'lIE : rr, E > 0 :::)

3N : nn . 'lin : nn . n ~ N :::)

metric(m)(j(n))(L) < E

5.4 Continuity Functor

Continuous is instantiated by a theory of type returntype(Limit) and produces a the­

ory that defines the continuity of a function at a point. It determines whether the

function is continuous at the given point or not. 1

Continuous - functor X : returntype(Limit) . X extended with definitions by

Defined Operators

(cont :: ms, ms, V, V, formula)

Defining Axioms

1 In this case, the operator is not written as a curried function because in Chiron a function

cannot return a formula.

5. Theory Building Tools

'11m 1 , m2 : ms, j, a: V . cont(ml)(m2)(f)(a) -

j 1 (space(ml) ---7 space(m2)) 1\

a 1 space(ml) 1\

lim(ml)(m2)(f)(a) = j(a)

5.5 Derivative Functor

39

The Derivative functor adds the concept of derivative of a function at a point to

the parameter theory.

Derivative - functorX : returntype(Limit) . X extended with definitions by

Defined Operators

(der :: Am : ms . (space(m) ---7 rr) ---7 space(m) ---7 rr)

Defining Axioms

'11m: ms . Aj : space(m) ---7 rr, a : space(m) .

der(m)(f)(a) = lim(m)(Ax: space(m) . !e~~i-;;tl)(:~(~))(O) 1

Theorems

'11m : ms . 'II j : space(m) ---7 rr . a, C : space(m) .

der(m)(Ax : space(m) . C * j(x))(a) rv C * der(m)(f)(a)

'11m : ms . AC : space(m) . der(m)(Ax : space(m) . c)(a) = 0

5.6 Infinite Series Functor

The formal parameter of the functor InfSum is the union of returntype(LimSeq)

and returntype(BinaryIterative). This functor gives the sum of an infinite series.

InfSum = functor X : returntype(LimSeq).

functor Y : returntype(BinaryIterative) .

(X EB Y) extended with definitions by

40 5. Theory Building Tools

Defined Operators

(infsum :: Am: ms . (zz ---7 space(m)) ---7 zz ---7 space(m))

Defining Axioms

infsum = Am : ms, f : zz ---7 space(m), j

Binarylterative(m) (1) (j) (k))
zz . limseq(m)(Ak zz .

CHAPTER 6

SAMPLE LIBRARY

In chapter 4, we used the theory building operators extension, union and renaming to

add various notions to the theory RealNumBase. In this chapter, we will illustrate

how to add new machinery in a theory using functors and how the system proposed in

the previous chapter works on real numbers. We will start off by extending the theory

RealNumH (given in section 4.9) and then apply all the functors that have been

shown in the previous chapter on the resulting theory to finally obtain the theory of

RealNum.

6.1 Real Numbers I

The theory RealNumI is obtained by extending theory RealNumH with the pro­

filed operator rms. rms contains exactly one element, which is intended to represent

the real numbers as metric space.

RealNumI = RealNumH extended with a profile by

Profiled Operators

rms :: type

Axioms

\Ix, y : rms . x = y

42 6. Sample Library

6.2 Real Numbers J

The extension of RealN umI by two new operators rspace and rmetric gives Real­

NumJ.

RealNumJ RealNumI extended with definitions by

Defined Operators

rspace :: rms, type

rmetric :: Am : rms . rspace(m) -7 rspace(m) -7 rr

Defining Axioms

\1m: rms . rspace(m) =ty rr

\1m: rms . x, y : rspace(m) . rmetric(m)(x)(y) = Ix - YI

6.3 Real Numbers J'

The extension of RealNumJ with theorems yields RealNumJ'.

RealNumJ' = RealNumJ extended with theorems by

Theorems

\1m: rms . x : rspace(m) . Ixl ::::: 01\ Ix - YI = 0 - x = Y

\1m: rms. x,y: rspace(m) . Ix - yl = Iy - xl

\1m: rms . x, y, z : rspace(m) . Ix - yl :::; Ix - zl + Iz - yl

6.4 Real Numbers K

We will show that RealNumJ' has a structure of MonoidalMetric by interpreting

theory of MonoidalMetric to RealN umJ' employing a view (for details of view

see section 2.4). In other words, RealNumJ' is not of type(MonoidaIMetric) but

using fitting morphism we can coerce it to type(MonoidaIMetric).

6. Sample Library

The interpretation from MonoidalMetric to RealN umJ' is the view

view(type(MonoidaIMetric), type(ReaINumJ'), ms 1---+ rms, space 1---+ rspace,

metric 1---+ rmetric, • 1---+ +, e 1---+ 0)

43

The extension of theory RealN umJ' by an interpreted theory is a theory Real­

NumK

RealNumK = RealNumJ' extended with an interpreted theory by

MonoidalMetric 1---+ RealN umJ'

View

ms 1---+ rms

space 1---+ rspace

metric 1---+ rmetric

• 1---+ +
el---+O

6.5 Real Numbers with Limit

Until now, we have only used the method of extension to get new theories. In the

rest of the sections of this chapter we will use functors to produce new theories. All

these functors are first order and have been defined in Chapter 5. The first functor

we will use is Limit. As defined in the previous chapter, it is instantiated by theory

of type(MonoidaIMetric), therefore we will first employ a view to have a mapping

from the language of MonoidalMetric to RealN umK and then apply the functor

Limit on RealN umK.

Let W = (type(MonoidaIMetric), type(RealN umK) ,

ms 1---+ rms, space 1---+ rspace, metric 1---+ rmetric, • 1---+ +, e 1---+ 0).

RealNumL Limit (RealNumK with view W) extended with definitions by

Defined Operators

(rlim :: AmI, m2 : rms . (space(ml) -----+ space(m2)) -----+ space(ml) -----+ space(m2))

44 6. Sample Library

Defining Axioms

rlim - lim

Theorems

'IIml, m2 : rms . Ai, g : space(ml) ----t space(m2), a: space(ml) .

lim(ml)(m2)(f + g)(a) '"'-'
lim(ml)(m2)(f)(a) + lim(ml)(m2)(g)(a)

'IIml' m2 : rms . Ai, g : space(ml) ----t space(m2), a : space(ml) .

lim(ml)(m2)(f - g)(a) ~
lim(ml)(m2)(f)(a) - lim(ml)(m2)(g)(a)

'11m 1 , m2 : rms . Ai, g : space(ml) ----t space(m2)' a: space(ml) .

lim(ml)(m2)(f * g)(a) ~
lim(ml)(m2)(f)(a) * lim(ml)(m2)(g)(a)

'IIml' m2 : rms . Ai, g : space(ml) ----t space(m2), a: space(ml)/\

lim(ml)(m2)(g)(a) -I- 0 .

lim(ml)(m2)(f / g)(a) ~
lim(ml) (m2) (]) (a) /Iim (ml) (m2) (g) (a)

Here i + g, i - g, etc. are defined in the usual way. The application of Limit

to the theory RealN umK returns a theory RealN umL which has in its language a

new operator rlim.

6.6 Real Numbers with Limit of Sequence

The functor LimSeq is instantiated by a theory of type type(MonoidaIMetric). As

RealNumL, which we obtain by applying the functor Limit to RealNumK, has a

structure of MonoidalMetric therefore it can instantiate the functor LimSeq.

RealNumM _ LimSeq (RealNumL) extended with definitions by

Defined Operators

(rlimseq :: Am : rms . (nn ----t space(m)) ----t space(m))

Defining Axioms

6. Sample Library 45

rlimseq - limseq

This gives back a theory RealNumM that has a notion of rlimseq.

6.7 Real Numbers with Continuity

Continuous is a functor whose formal parameter is a theory of type returntype(Limit).

It can be applied to the theory RealN umM, that possesses the concept of limit, after

a mapping from returntype(Limit) to type(ReaINumM).

Let W= (returntype(Limit), type(ReaINumM), lim 1-----+ rlim).

RealNumN - Continuous(RealNumM with view W) extended with definitions

by

Defined Operators

(rcont :: rms, rms, V, V, formula)

Defining Axioms

rcont _ cont

Theorems

'liml,m2 : rms. Aj,g: space(ml) ----+ space(m2) . a: space(ml) .

rcont(ml) (m2) (J)(a) /\ rcont(ml) (m2)(g) (a) ::)
rcont(ml)(m2)(J + g)(a)

'liml, m2 : rms . Aj, g : space(ml) ----+ space(m2)' . a : space(ml) .

rcont(ml) (m2)(J) (a) /\ rcont(ml)(m2)(g)(a) ::)

rcont(ml)(m2)(J * g)(a)
'lim 1 , m2 : rms . Aj, g : space(ml) ----+ space(m2) . a: space(ml) .

rcont(ml)(m2)(J)(a) /\ rcont(ml) (m2)(g)(a) /\ g(a) -I- a ::)
rcont(ml) (m2) (J / g) (a)

This adds a new operator rcont and its corresponding axiom in the theory Real­

NumM

46 6. Sample Library

6.8 Real Numbers with Derivative

The theory RealN umN can be taken as the actual parameter of the functor Deriva­

tive which takes theory of type returntype(Limit) as its argument.

RealNumO _ Derivative (ReaINumN) extended with definitions by

Defined Operators

(rder :: Am : rms . (space(m) ---7 rr) ---7 space(m) ---7 rr)

Defining Axioms

rder der

Theorems

\1m : rms . >..J, g : space(m) ---7 rr . a : space(m) .

rder(m)(j + g)(a) ~
rder(m)(j) (a) + rder(m)(g)(a)

\1m: rms . >..J, g : space(m) ---7 rr . a : space(m) .

rder(m)(j - g)(a) r-..J

rder(m)(j)(a) - rder(m) (g)(a)
\1m: rms. >"J,g: space(m) ---7 rr. a: space(m) .

rder(m)(j * g)(a) r-..J

rder(m)(j) (a) * g(a) + J(a) * rder(m)(g)(a)

6.9 Real Numbers with Binary Iterative

The application of BinaryIterative, which takes a theory of type type(MonoidaIMetric)

as its argument, on RealN umO produces the theory of RealN umP.

RealNumP _ BinaryIterative (ReaINumO) extended with definitions by

6. Sample Library 47

Defined Operators

(binaryiterative :: Am : rms . (zz -7 space(m)) -7 (zz -7 (zz -7 space(m))))

Defining Axioms

rbinaryiterative = binaryiterative

6.10 Real Numbers with Infinite Series

The formal parameter of the functor InfiniteSum is returntype(LimSeq) E9 return­

type(BinaryIterative). By employing a view, RealNumP can be taken as its ar­

gument.

Let W= (returntype(LimSeq) E9 returntype(Binarylterative), type(ReaINumP),

rLimSeq f-----7 LimSeq, rBinarylterative f-----7 Binarylterative).

RealNum InfiniteSum (RealNumP with view W) extended with definitions by

Defined Operators

(rinfsum :: Am : rms . (nn -7 space(m) -7 nn -7 nn -7 nn -7 space(m))

Defining Axioms

rinfsum - infsum

6.11 Real Numbers without using Functors

Now we demonstrate how we can use extensions with definitions and recursion to get

the theory of RealNum from RealNumK without using functors.

RealNumL' = RealNumL extended with recursive definitions by

Recursively Defined Operators

(binaryiterative' :: (zz -7 rr) -7 (zz -7 (zz -7 rr)))

48 6. Sample Library

Functional

Af : (zz -----+ rr) -----+ (zz -----+ (zz -----+ rr)) .

Ag : zz -----+ rr . Aj : zz . Ak : zz .

if(k < j, em, g(j) em f(g,j + 1, k))

The theory RealN umL' when extended with the following defined operators gives

the theory of RealN um.

RealNum = RealNumL' extended with definitions by

Defined Operators

rmetric' :: rr -----+ rr -----+ rr

rlim' :: (rr -----+ rr) -----+ rr -----+ rr

rlimseq' :: (nn -----+ rr) -----+ rr

rder' :: (rr -----+ rr) -----+ rr -----+ rr

rcont' :: rr -----+ rr, rr, formula

rinfsum' :: (zz -----+ rr) -----+ (zz -----+ rr)

Defining Axioms

'IIx, y : rr . rmetric'(x)(y) = Ix - YI.

rlim' = Af : rr -----+ rr .

a : rr . LL : rr .

'liE: rr, E > 0 ::)

:38: rr, 8> 01\ 'lip: rr . p #- a 1\ rmetric'(p) (a) < 8 ::)

rmetric'(f(p))(L) < E

rlimseq' = Af : nn -----+ rr .

LL : rr . 'liE : rr . E > 0 ::)

:3N : nn . 'lin : nn . n ~ N ::)

rmetric'(f(n))(L) < E

v f : rr -----+ rr, a : rr . rcont'(f)(a) rlim'(f)(a) = f(a)

6. Sample Library 49

Vf: rr --+ rr, a: rr. rder'(f)(a) _ rlim'(.\x: rr. f(a+x~-f(a))(O) 1

rinfsum' = Vf: nn --+ rr, j : nn . rlimseq'(.\k: nn . rbinaryiterative'(f)(j)(k))

This shows that we can get at RealNum from RealNumI by two different ways,

either by extensions or by using functors. When we use functors, we can apply the

functor that we need and we do not have to unnecessarily employ other functors that

we do not need, for instance, we have a theory of returntype(Limit), then we can

apply functor Derivative on it to have the notion of derivative in our theory. On the

other hand, when we use extensions, we have concept of derivative along with other

operators which we may not need. This is the benefit of having functors.

6.12 Real Numbers with Definite Integral

RealNum when extended with rint gives RealNum'.

RealNum' RealNum extended with definitions by

Defined Operators

rint :: (rr --+ rr) --+ (rr --+ (rr --+ rr))

Defining Axioms

.\f : rr --+ rr, a, b : rr. rint(f)(a)(b) =

rlimseq'(.\n: nn. rinfsum'('\i: nn. f(a+(i*(b-a))/n) * ((b-a)/n))(O)(n))

Theorems

.\f : rr --+ rr . a, b : rr .

rint(f)(a)(b) ~ -rint(f)(b)(a)
.\f : rr --+ rr . a, b, c : rr .

rint(f)(a)(c) + rinf(f)(c)(b) ~ Inf(f)(a)(b)

Figure 6.1 illustrates the way we have built the abstract theory of calculus of

real numbers on top of metric space. In Chapter4, the theory of RealN umBase

and Monoid was built from scratch and then a couple of extensions were made to

add more machinery in RealN umBase. MetricSpacesBase was also developed by

50 6. Sample Library

extending real numbers. In Chapter 6, we showed that real numbers has structure of

MonoidalMetric by using a fitting morphism.

Extension

Metric
Spaces

Monoids

Union

Figure 6.1: This shows how the theories in library are related to each other.

CHAPTER 7

COMPARISON TO PREVIOUS WORK

There are many ways to build a library of mathematics or to organize mathematical

knowledge. One of the most common and old methods of organizing mathematics

is by dividing mathematics into different categories. In all MMSs, theory libraries

are built using different systems for organizing theories. There are some MMSs that

employ module systems, for example, in theorem provers IMPS, PVS [25], Isabelle

[26], Coq [8] , Automath [9] and in computer algebra systems Maple [7], Mathematica

[1], Axiom [18], Aldor [30], Focal [29] and Magma [4], modules are used to organize

theories. The module systems are also used in programming and specification lan­

guages for organizing large software developments and specifications, for instance,

in ML-family module systems, algebraic specification languages Maude, Specware,

CASL, etc.

There are several module systems that are designed for building mathematical

libraries, for example, Focal [29], Coq [8] and Aldor [30]. The theory library proposed

in this thesis is built by using Mei. Mei is similar to Module System for Mathematical

Theories [27]. Both systems are independent of their underlying logic. For compari­

son of Mei with the module systems used in the above mentioned MMSs, see [32].

The library proposed in this thesis is based on calculus. There are many other

MMSs in which real analysis is formalized, for instance, IMPS, HOL [22], PVS, ACL2

[19], Isabelle, Coq, etc.

52 7. Comparison to Previous Work

The library shown in this work employs biform theories. Although the theories

presented in this thesis do not use transformers, they could. So far only one other

library is built using biform theories and that is the library of theory types by Huan

Zhang [33]. Huan's library is based on module systems of typed programming lan­

guages and algebraic specification languages and it is independent of underlying logic.

Both the work done, in this thesis and by Huan Zhang were carried out at the same

time. In this thesis, the module system Mei has been employed for organizing math­

ematical knowledge but other module systems, like module system for mathematical

theories (MMT), are also appropriate for biform theories.

The portion of theory library demonstrated in this thesis is different from other

libraries because it is a well organized library which has capability of both deduction

and computation.

CHAPTER 8

CONCLUSION

A theory library in a mechanized mathematics system is a place where the mathemat­

ical knowledge is stored. Until now, the library of an MMS contains either axiomatic

theories or algorithmic theories and has either symbolic computation capabilities of

computer algebra systems or the formal deduction capabilities of theorem proving

systems but not both because of which we have two different types of MMSs, theo­

rem provers and computer algebra systems.

In this thesis, some extensions has been made to the module system Mei. Six special

kinds of theory extensions has been added to Mei. A theory now can be extended

with theorems, with definitions, with a profile, with an inductive data type, with a

recursive definition or with an interpreted theory.

Furthermore, a small portion of a theory library for an MMS has been presented and

the key idea is to illustrate how the module system Mei, the logic Chiron and biform

theories, as a way of representing theories, could be used to develop a theory library.

In this sample library, machinery for calculus of one variable has been developed.

The most significant feature of this library is that it is a novel library that expresses

theories both axiomatically and algorithmically thus allowing the power of both com­

putation and deduction to applied.

CHAPTER 9

FUTURE WORK

In future, the following work can be done:

• The portion of the theory library that has been presented in this thesis can be

used as a model to build a calculus portion in another theory library.

• Biform theories have been used in this thesis but none of the theories contain

transformers. Some transformers can be added to these theories, for example,

to do symbolic differentiation, symbolic integration, etc.

• The calculus machinery presented in this work is univariate and can be expanded

to multivariate.

• The theory RealN umBase has been developed from scratch, it could be build

up from simpler theories, that is to say, from simple algebraic theories such as

a theory of a monoid, etc.

• This work can be translated to Open Mathematical Documents (OMDoc) to

make it widely accessible to other theory library builders.

= The concept given in this thesis of employing Mei, Chiron and biform theories

to develop a theory library that has computation and deduction power is quite

simple and can help to create a bigger theory library that contains theories from

all branches of Mathematics.

APPENDIX A - LIST OF SYMBOLS

In this chapter, we provide an overview of Chiron's symbols that are used in this

thesis.

Symbols in Chiron

Operator (8 :: kI, ... ,kn+1)

Operator application (8 :: kl, ... , kn+l) (el' ... , en)

Variable (x: a)

Type application a(a)

Dependednt function type Ax : a . {3)

Simple function type a---7{3

Function application f(a)

Function abstraction (Ax:a.b)

Conditional term if(A, b, c)
Existential quantification (:::Ix: a . B)

Unique existential (:::I!x : a. B)

Universal quantification (Vx: a. B)

Definite description (hX: a.B)

indefinite description (EX: a.B)

Quotation iel
Evaluation [a]k

Set type V

Type equality a =ty {3

Term equality a=b

Quasi-equality a~b

Continued on next page

- ------------------

56 A. APPENDIX A - List of Symbols

Continued from previous page

Formula equality A B

Truth T

Falsehood F

Negation -,A

Disjunction AVB

Conjunction AI\B

Implication A~B

Definedness in a type ala
Definedness al
Type order a«(3
Canonical undefined term -.lc

Conditional type if(A, (3, ')')

Conditional formula if(A,B,C)

Class membership aEb
Subclass acb

BIBLIOGRAPHY

[1] B. Buchberger, "Mathematica: a system for doing mathematics by computer?"

Preprint, 1993.

[2] "CADE : the Conference on Automated Deduction." Web site at http: / /

www.cadeconference.org//.

[3] "Calculemus Project: Systems for Integrated Computation and Deduction." Web

site at http://www.calculemus.net/.

[4] J. Cannon and C. Playoust, Algebraic programming with Magma I : An intro­

duction to the Magma language. Springer-Verlag New York , 2006.

[5] J. Carette and W. M. Farmer, "High-level theories," in Intelligent Computer

Mathematics (J. C. S. Autexier, V. S. J. Rubio, M. Suzuki, and F. Wiedijk,

eds.), vol. 5144 of Lecture Notes in Computer Science (LNCS) , pp. 232-245,

2008.

r61 J. Carette and W. M. Farmer. "A review of mathematical knowledge manage-
I. .J I ~

ment," in Intelligent Computer Mathematics (J. Carette, L. Dixon, C. S. Coen,

and S. Watt, eds.), vol. 5625 of Lecture Notes in Computer Science (LNCS) ,

pp. 233-246, 2009.

[7] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and

S. M. Watt, Maple V Language Reference Manual. Springer-Verlag, 1991.

57

58 BIBLIOGRAPHY

[8] Coq Development Team, The Coq Proof Assistant Reference Manual, Ver­

sion 8.2,2008. Available at http://coq.inria.fr/doc/.

[9] N. G. de Bruijn, "A survey of the project AUTOMATH," m To H. B. Curry:

Essays on Combinatory Logic, Lambda Calculus and Formalism (J. P. Seldin and

J. R. Hindley, eds.), pp. 579-606, Academic Press, 1980.

[10] W. M. Farmer, "The interactive mathematics laboratory," in Proceedings of the

31st Annual Small College Computing Symposium (SCCS '98), pp. 84-94, April

1998.

[11] W. M. Farmer, "MKM: A new interdisciplinary field ofresearch," ACM SIGSAM

Bulletin, vol. 38, pp. 47-52, 2004.

[12] W. M. Farmer, "Mathematical knowledge management," in Encyclopedia of

Knowledge Management (D. G. Schwartz, ed.), pp. 599-604, Information Sci­

ence Reference, 2005.

[13] W. M. Farmer, "Biform theories in chiron," in Towards Mechanized Mathematical

Assistants (M. Kauers, M. Kerber, R. R. Miner, and W. Windsteiger, eds.),

vol. 4573 of Lecture Notes in Computer Science (LNCS) , pp. 66-79, 2007.

[14] W. M. Farmer, "Chiron: A multi-paradigm logic," in From Insight to Prool

Festschrift in Honour of Andrzej Trybulec (R. Matuszewski and A. Zalewska,

eds.), vol. 10(23) of Studies in Logic, Grammar and Rhetoric, pp. 1-19, Univer­

sity of Bialystok, 2007.

[15] W. M. Farmer, "Chiron: A set theory with types, undefinedness, quotation, and

evaluation," SQRL Report No. 38, McMaster University, 2007. Revised 2008.

[16] W. M. Farmer, J. D. Guttman, and F. J. Thayer, "Little theories," in Automated

Deduction-CADE-11 (D. Kapur, ed.), vol. 607 of Lecture Notes in Computer

Science, pp. 567-581, Springer-Verlag, 1992.

[17] W. M. Farmer, J. D. Guttman, and F. J. Thayer, "The IMPS user's man­

ual," Tech. Rep. M-93B138, The MITRE Corporation, 1993. Available at

http://imps.mcmaster.ca/.

[18] R. D. Jenks and R. S. Sutor, Axiom

Springer-Verlag, 1992.

The Scientific Computation System.

BIBLIOGRAPHY 59

[19] M. Kaufmann, P. Manolios, and J. S. Moore, Computer-Aided Reasoning: An

Approach. Kluwer Academic Publishers, 2000.

[20] "Logic Daemon." Web site at http://logic . tamu. edu/.

[21] "MathScheme: An Integrated Framework For Computer Algebra And Computer

Theorem Proving." Web site at http://imps.mcmaster.ca/mathscheme/ .

[22] M.J.C.Gordon and T.F.Melham, Introduction to HOL: A Theorem-Proving En­

vironment for Higher-Order Logic. Cambridge University Press, 1993.

[23] "MKM : Mathematical Knowledge Management."

www.mkm-ig.orgl.

[24] "Modules and Libraries for Proof Assistants."

www.itu.dk/research/pls/wiki/index.php/MLPA-09.

Web site at http: / /

Web site at http : / /

[25] S. Owre, S. Rajan, J. M. R.llshby, N. Shankar, and M. Srivas, "PVS: Combining

specification, proof checking, and model checking," in Computer Aided Verifica­

tion: 8th International Conference) CA V)96 (R. Alur and T. A. Henzinger, eds.),

vol. 1102 of Lecture Notes in Computer Science, pp. 411-414, Springer-Verlag,

1996.

[26] L. C. Paulson, Isabelle: A Generic Theorem Prover, vol. 828 of Lecture Notes in

Computer Science. Springer-Verlag, 1994.

[27] F. Rabe and M. Kohlhase, "A web-scalable module system for mathematical

theories," Journal of Symbolic Computation, 2009.

[28] A. Riazanov and A. Voronkov, "The design and implementation of vampire,"

AICOM, vol. 15, pp. 91-110, 2002.

[29] The FoC Development Team, The FoC Reference Manual) Version 0.0, 2003.

Available at http://www-spi.lip6.fr/foc/.

[30] S. M. Watt, P. A. Broadbery, P. Iglio, S. C. Morrison, J. M. Steinbach, and R. S.

Sutor, "Aldor compiler user guide." Available at http://www . aldor. org/docs

/HTML/, 2001.

60 BIBLIOGRAPHY

[31] J. Xu, "Mei - a module system for mechanized mathematics system", in

Proceedings of Programming Languages for Mechanized Mathematics (PLMMS

2007) (J. Carette and F. Wiedijik, eds.), (Hagenburg, Austria), p. 17, June 2007.

[32] J. Xu, Mei - A Module System For Mechanized Mathematics System. PhD

thesis, McMaster University, 2008.

[33] H. Zhang, "A language and a library of algebraic theory-types," Master's thesis,

McMaster University, 2009.

