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Abstract

This thesis addresses a reactive (closed-loop) scheduling framework for integrated

scheduling of process operation and maintenance. Ethylene plant furnace scheduling is

chosen as the process example because it is concerned with optimally scheduling the

furnace operations and its periodic maintenance shutdowns. The main reason for

choosing this example is that it addresses a special class of scheduling problems where

the operations and maintenance have strong interactions and so integrated decision

making becomes necessary.

The major goal of this research was to select an appropriate closed-loop

framework and develop a reactive scheduling system. With the rolling horizon approach

being the most suitable method for closed-loop schedule implementation, a Model

Predictive Control (MPC) framework is chosen in this thesis. The presence of integer

variables in the scheduling model made the reactive scheduling systems resemble a

hybrid MPC problem.

The research was performed in two phases. In the first phase, an open-loop

scheduling model was formulated as a Mixed Integer Linear programming problem

(MILP) using discrete time representation. To ensure the tractability of the model,

tailored formulation methods (disjunctive reactor modelling, constraint reformulation and

tightening constraints) and efficient solution heuristics (two-stage temporal

decomposition heuristic) were developed in this thesis. In the second phase, the open­

loop scheduling model was applied in the prototype closed-loop framework to develop a

reactive scheduling system to assist engineers make appropriate decisions in a timely

manner.
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The automated scheduling system developed in this thesis was tested for several

scenarios and proved to have significant benefits over manual scheduling procedures,

confirmed that the scheduling model is tractable and achieved feasible solutions for all

the scenarios considered, including large problems with multiple feeds, multiple reactors

and a long (90-day) scheduling horizon. We conclude that the technology is appropriate

for further improvement and eventual application in the industry.
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Chapter 1. Introduction

Process scheduling has recently gained prominence because of the competitive

pressures in the process industry to improve productivity and reduce operational costs.

Scheduling integrates the production objectives with the process operations and could be

very effective in increasing the expected plant profits. It mainly defines the timing and

values of activities to be performed in a plant over a period of time. Broadly, the key

decision variables are the start time of an operation, the unit it \.vill run on, its duration,

process conditions and the amount of material processed. Scheduling decisions are made

over a defined finite horizon in such a way that the maintenance requirements are

fulfilled, customer demands are met and the inventory levels are kept as low as possible

while the overall profit is maximized. The time horizon for scheduling depends on the

typical run length of an operation in a unit and could range from few days to 2-3 months

(Mendez et a!., 2006 and Kallrath, 2002).

l\tfonrhs

Enterprise-wiele

Weeks

Facility-wiele
Days

Planning

Plant-wiele

Hours

Unit-wiele
Minuces

Seconds

Figure 1-1: Hierarchy of plant automation



In the hierarchy of plant automation shown in Figure I-I, scheduling lies between

planning and real-time process optimisation (RTO). Planning layer deals with long term

decisions such as feedstock purchase, production levels and product inventories for given

marketing forecasts and demands, which are forwarded to the scheduling layer.

Subsequently, the scheduling decisions are made by considering the planning decisions.

These decisions are then sent to the RTO layer, which communicates with the lower

levels of automation. At present, the RTO technology is well developed for plants that

operate at steady state (Yip and Marlin, 2004, Beautyman, 2004, Marlin and Hrymak,

1997). It uses a rigorous steady state plant model to obtain optimal operating conditions.

Consequently, simple and approximate plant models can be used for scheduling

continuous processes due to the cascade structure in the hierarchy of plant automation.

Process scheduling methods adopted in industry currently optimize the open-loop

behaviour of the system model. The open-loop scheduling models are solved by an

engineer in a batch manner using simulation or optimization tools to obtain feasible

schedules. He/she then picks the most profitable schedule and implements it and

periodically updates the model using feedback information. However, with few

experienced human schedulers available for the entire production facility, it becomes

extremely difficult to generate consistent schedules. This could have a great effect on the

expected plant profit.

The existing manual procedures for plant scheduling can be improved by

automating the scheduling system so that the on-line scheduler generates good feasible

schedules consistently with little involvement of human expertise. Our goals in this thesis

are to (a) formulate an open-loop scheduling model that can be solved in reasonable

computing time and (b) to apply this model in a prototype closed-loop scheduling system

that can assist engineers to make appropriate decisions in a timely manner.
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1.1 Thesis Objectives

The main overall objective of this research work is to develop a reactive (c1osed­

loop) scheduling system that automatically generates the schedule and implements it into

the plant in real time. Typically, closed-loop schedule implementation is done once every

day.

In this thesis, the scheduling system is developed as a stand alone system and not

integrated with the RTO or any other layers of automation. The system can be considered

as a closed-loop Model Predictive Controller (MPC), which has a Mixed Integer

optimization problem (MIP) at each iteration (hybrid MPC problem). The schematic of a

typical reactive scheduling framework (Bose and Pekny, 2000, Perea et aI., 2003) is

shown in Figure 1-2. This framework provides feedback information to update the plant

model in order to compensate for model errors and disturbances entering the plant.

D

+
~cJleduler t--~--.

Figure 1-2: Reactive (closed-loop) scheduling framework

In order to achieve this objective, the work was planned to be carried out in two phases.

• In the first phase, an open-loop scheduler is developed. The open-loop scheduler

is a multi-period optimization problem that is formulated as a Mixed Integer

programming problem (MIP). The aim of this open-loop scheduler is to determine

a feasible schedule that maximizes the plant profit and leaves the plant in an
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operable state at the end of horizon. The product developed in this phase can be

used as an optimization tool to assist the engineers for offline schedule generation

and manual implementation.

• In the second phase, a closed-loop framework is selected to implement the online

scheduling system. Necessary modifications to the open-loop scheduling model

should be accounted for to make it compatible for closed-loop application,

specifically to reduce the changes in plant operation between optimisation

solutions. Therefore, proper care should be taken during implementation phase to

make the closed-loop scheduler suitable for real time application.

1.2 Scope of work

Mixed Integer Linear Programming (MILP) has become one of the most widely

explored methods for process scheduling because of its rigorousness, flexible, extensive

modelling capabilitY and the availability of state-of-the-art solvers (Floudas and Lin,

2002). Also, the main advantage with MILP's is that they are well understood and the

techniques to solve them are well developed. For this reason, we intend to formulate the

scheduling model in this thesis as a MILP.

To avoid the non-linear sub-problems (relaxations), the nonlinearity in the

scheduling models are modelled as linear constraints using approximation and

reformulation techniques in this thesis. In general, MILP s embed a combinatorial aspect.

When this is combined with the large size of optimization problems, it makes the

optimization exceptionally difficult to solve in a reasonable amount of time. Thus, the

main scope of this work is to develop a tailored formulation and an efficient solution

strategy to reduce the computational time of the scheduling model and make it feasible

for real time application.

This thesis is mainly concerned with deterministic scheduling; therefore,

uncertainty is not explicitly addressed. Constant model parameters, product demands and

4



pnces are assumed. Feedback information available in the closed-loop system

compensates for model errors and disturbances entering the system.

1.3 Research Emphasis

In many processes, operations and maintenance often (not always) have

interactions. The main emphasis of this research is on a particular class of processes

where the operations and maintenance have strong interactions and so integrated decision

making is necessary. Let us consider a chemical reactor with a catalyst as an example. If

the temperature in the reactor increases, the catalyst decays quickly. As a result, the

reactor should be shutdown to replace the catalyst. Therefore, reactor operation

(temperature) interacts with its maintenance (shutdown). Other similar examples include

processes where process flow affects the adsorption run length (water treating system),

process flow can cause pump wear, reactor severity can cause coking in cracking coils

(ethylene plants), etc.

In order to capture the interactions between the process operation and

maintenance, integrated decision making is required.

1.4 Case study: Ethylene furnace scheduling

Ethylene plant furnace scheduling is chosen as the process example in this thesis.

This problem is concerned with optimally scheduling the furnace operations and its

shutdown (maintenance) simultaneously (Schulz et aI., 2006 and Lim et aI., 2006). The

interaction between reactor operation (severity and steam to hydrocarbon ratio) and

furnace maintenance is clearly evident in this example. Furnace scheduling lies at the

heart of every production and maintenance scheduling activity for a petrochemical

complex. Ethylene plant is the key source of intermediates for all downstream production

units and its operation directly affects downstream production quantities and qualities.

5



There is a huge cash flow in these plants (millions of dollars per day); therefore, any

small improvement in such a facility will produce significant economic benefits.

A wide variety of petrochemical products are produced in ethylene plants by

thermal cracking of feedstocks in the cracking furnaces. Continuous operation of the

furnaces leads to coke formation on the inner surface of the cracking coils. Coke hinders

heat transfer through the coil wall and thus decreases the productivity of the furnace. To

maintain the productivity, input energy must be continuously increased, and this raises

the tube skin temperature (coil surface temperature). Furthermore, excessive coke

deposition plugs the coil. Therefore, in order to maintain production efficiency and plant

safety, the furnace has to be periodically shutdown for cleaning the coke. This cleaning

process is called decoking. Typically, this is done when the tube skin temperature or the

pressure drop of the coi.! reaches its maximum limit. Therefore, optimization of the

decoking schedule is highly desirable to maximize the overall profit of the furnace

system.

On the other hand, the type of cracking feedstock (Ethane, Propane, Naphtha etc.)

and the operating conditions in the furnace (Severity, S/HC) directly effect coking in the

cracking coils and thus the decoking time periods. This signifies the interaction between

furnace operation and its maintenance shutdown. Therefore, an optimal schedule for this

problem would determine both the daily plant operations and the required maintenance

actions. More specifically the key optimization decisions of this furnace scheduling

problem are,

i) Selection of appropriate furnace feed selection (integer decision),

ii) Selection of optimal furnace operating conditions (Flow rates, Severity, Steam to

Hydrocarbon ratio (S/HC)) for the reactors (continuous decisions), and

iii) Determination of furnace shutdown time periods (integer decision).

The details of this scheduling problem and the challenges associated with it are discussed

in Chapter 3.

6



1.5 Thesis Outline

The thesis is laid out as six chapters. Figure 1-2 shows the schematic of thesis

outline. Brief details of each chapter are as follows.

Chapter 2 reviews the concepts of open-loop optimization and closed-loop

optimization for ethylene furnace scheduling. An overview of optimal scheduling is

provided with emphasis on time representation and model formulation in order to develop

a tractable open-loop optimization model. Challenges posed by the furnace scheduling

problem are discussed through a review of open-loop furnace scheduling literature.

Several reactive (closed-loop) frameworks available in the literature are presented and the

advantages and disadvantages of each are discussed in this chapter.

ChaPt~5_ '­

I
1
1
1
1
I
1
1

- _I

Figure 1-3: Schematic of the thesis outline

Chapter 3 provides an overview of the chemical engineering principles of olefin

production process. First, a detailed description of the chemical processes and general

operating procedures in Ethylene plants are presented. The details of furnace scheduling

problem are discussed next, and the objectives and scope of the optimization problem are

clearly defined in this chapter.

Chapter 4 emphasises the mathematical formulation of the open-loop scheduling

model. Although, the yield and coking data in an ethylene plant are nonlinear, a linear

7



scheduling model (MILP) was developed based on the modelling principles such as

discrete time formulation and disjunctive modelling. Challenges posed by this

optimization problem and the techniques (reformulated constraints, tightening constraints

and solutions heuristics) used to overcome them are elaborated. Extensive open-loop case

studies are consjdered, and the results are discussed in detail to access the performance of

the open loop scheduling model.

Chapter 5 discusses the framework for reactive (closed-loop) scheduling and some

important implementation issues associated with it. The modifications necessary to the

open-loop scheduling model to make it applicable for closed-loop scheduling are also

discussed in this chapter. Several closed-loop case studies are considered to study the

performance of the reactive scheduling system.

Chapter 6 draws the conclusions of this thesis. The main contributions of the work

are elaborated, and the issues that are outstanding in the research work are pointed out for

future work.
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Chapter 2. Literature review

This chapter reviews the concepts of open loop optimization and closed loop

optimization for ethylene furnace scheduling, which are the two main topics that form the

basis for this thesis. The discussion emphasises different methods and procedures

available in the literature to formulate an open loop scheduling optimization problem and

to develop a closed loop scheduling system for real time implementation.

2.1 Open loop optimization

Open loop optimization discusses mathematical formulations which can be

evaluated for offline scheduling. The following sections provide an overview of optimal

scheduling with more emphasis on mathematical formulation and solution procedures.

2.1.1 Overview of optimal scheduling

Optimal scheduling problems mainly involve sequential decision-making with

continuous and discrete decisions. Decisions are made over a finite horizon in such a way

that the production requirements are met and the customer demands are satisfied with the

optimal utilization of the process equipment and raw materials. Typically, these problems

are solved using a plant model, and the scheduling decisions are made over a multiple

time periods in the defined horizon; thus, these problems are often referred as multi­

period model based optimization problems. Due to the presence of continuous and

discrete decisions, schcduling problems are formulated as mixed integer programs (MIP).

It is important to know that these optimization problems are highly combinatorial in

nature and the typical nature of these types of problems is that in a worst case, the

computational time increases exponentially with the problem size (Kallrath, 2002,

Grossmann, 2005 and Mendez et a!., 2006).
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For the past two decades, there has been a significant contribution to the field of

optimal scheduling. The key focus has been on these topics, (i) Time representation, (ii)

Model formulation, and (iii) Solution heuristics.

2.1.1.1 Time representation

Time representation IS important while formulating multi-period optimization

problems. Based on the available literature, the techniques developed so far are grouped

into two categories (i) Discrete time representation (Kondili et aI., 1993 and Shah eLal.,

1993), and Oi) Continuous time representation (Ierapetritou & Floudas, 1998, Floudas &

Lin, 2004, Maravelies & Grossmann, 2003 and Mokus & Reklaitis, 1999).

In discrete-time models, the time horizon is divided into a finite number of

uniform or non-uniform time intervals of predefined durations and the scheduling tasks

are performed only at the boundaries of each time interval. In this way, time is just

modelled as a reference grid and is defined as a parameter in the optimization problem.

The advantage with discrete models is the concept of reference time grid, which is useful

to formulate difficult scheduling constraints easily while maintaining linearity in the

model. The disadvantage with these models is that they may lead to a large number of

time intervals in the problem. The number of binary variables in these models scales

proportionally with the time intervals in the scheduling horizon, thus making the models

computationally expensive. However, a modified formulation and tailored heuristics can

eliminate this difficulty in some cases, making the discrete time models acceptable for

large scale scheduling problems.

In contrast, continuous-time models are proposed to reduce the number of ti me

intervals and hence solve the problem of large binary variables in the model. These

models are based on the concept of variable time intervals. Here, the time horizon is

divided into 'n' time intervals, where the number of time intervals 'n' and the length of

each interval are unknown. They are defined as variables in the optimization problem,

thus the final solution would find the optimal number of time intervals and their lengths.

10



In these models, time is therefore, modelled as a variable which in many cases leads to

nonlinear constraints in the scheduling model.

2.1.1.2 Mode/formulation and solution procedure

Model formulation is critical to the development of a scheduling optimization

problem. Tractable formulation is very important and also since the scheduling models

are mixed integer optimization problems, additional care should be taken while

formulating the constraints as they have a direct effect on the computational time. For

example, in the case of big-M type constraints (Wolsey, 1998), improper specification of

'M' value can effect the search space and in turn the computational time.

As discussed earlier, time representation influences the formulation of the

scheduling model. In general, continuous time formulation leads to nonlinear constraints

in the model; thus, the resulting optimization problem would be a Mixed Integer

Nonlinear Programming problem (MINLP). Discrete time formulation, on the other hand,

is advantageous as it does not add any additional nonlinear constraints to the model

because of the reference grid for time. This way, discrete time models preserve the

linearity of the formulation.

The plant model is equally important while developing a scheduling model. For

example, if the plant model is linear, the scheduling model can be formulated as a Mixed

Integer Linear Programming problem (MILP) using discrete time representation.

However, if the plant model is nonlinear, the resulting scheduling model would be a

MINLP for either discrete time or continuous time formulation.

Mixed integer optimization problcms are COITibinatorial optimization problems

which can have a finite but usually very large number of feasible solutions. The branch

and bound (B&B) technique is the most widely used algorithm to search for an optimal

solution from the search space. B&B algorithm searches the complete space of solutions

for a given problem for the best solution. However, explicit enumeration is normally

11



impossible due to the exponentially increasing number of potential solutions. Therefore,

the use of bounding and pruning techniques enables the algorithm to search only part of

the solution space to find the best solution. The algorithm operates by relaxing selected

integer variables to be continuous between their bounds and fixing the remaining integer

variables. The bounding is achieved by maintaining rigorous upper and lower bounds on

the objective function in a fashion that the best solution is never lost (Wolsey, 1998,

CPLEX, 2006). The procedures for B&B algorithm can remain the same for MILP and

MINLP optimization problems. The only difference is that in the case of MILP, at every

node of the branch a Linear programming problem (LP) is solved, whereas a Nonlinear

Programming problem (NLP) is solved for MINLP problems.

The state-of-the-art MlLP solvers commercially available at present and widely

used are CPLEX (lLOG CPLEX, 2008) and XPRESS-MP (Dash Optimization, 2008).

Both these solvers embed a B&B algorithm to solve MILP problems. They have an

additional feature to add a variety of cuts at every node of the tree search in order to

restrict non-integer solutions that would otherwise be solutions of the continuous

relaxation. ClItS are constraints which usually reduce the number of branches needed to

solve a problem so that it can solved quickly.

At present, the most widely used MINLP solvers are BARON (Tawarmalani and

Sahinidis, 2002), MINOPT (Floudas, 1995) and DICOPT (Quesada and Grossmann,

1992, Sahinidis and Grossmann, 1991). These solvers were successfully used to solve a

few MINLP scheduling problems; however, the problem size and the convexity of the

optimization problem are always a main concern with these solvers.

2.1.1.3 Solution heuristics

Scheduling problems are usually large scale mixed integer optimization problems.

Sometimes these problems are difficult to solve with stand alone optimization solvers. In

such circumstances, solution heuristics are useful to solve those problems with less
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difficulty (Honkomp et aI., 2000 and Kelly, 2005, Heejin Lim et aI, 2006 and Grossmann,

2006).

A commonly used heuristic to solve MINLP scheduling problems (Heejin Lim et

aI, 2006 and Kelly, 2005) is to decompose the optimization problem into two sub­

problems (MILP & NLP) and solve in two stages. In the first stage, a MILP is obtained

by fixing some of the model variables that cause nonlinearity in the model (e.g. flow

rates) and solved using a MILP solver. In the second stage the integers decisions are fixed

and the variables which were fixed earlier are relaxed, so that the resulting problem is a

NLP which is solved using a NLP solver to obtain a better solution. This way a difficult

MINLP can be solved using the available state-of-the-art MILP and NLP solvers.

Although, these decomposition heuristics do not guarantee optimality, they yield a

feasible solution and provide a good alternative to solve difficult scheduling problems.

There are several other aggregation and decomposition heuristics proposed in the

literature (Honkomp et aI., 2000 and Kelly, 2005) to overcome the computational burden

of MIP's and solve them in a reasonable amount of time. Aggregation techniques rely on

the idea of aggregating the time periods within the specified horizon in order to reduce

the dimensionality of the problem. This way the number of binary variables are reduced

and the optimization problem can be solved quickly to provide an approximate solution

of the scheduling problem. Decomposition techniques, on the other hand, rely on the idea

of decomposing a large problem into several small problems and solving them

sequentially until the entire model is solved.

In a temporal decomposition heuristic (Kelly, 2005), the time horizon is first

spliced into a number of small horizons and the decisions are made sequentially by

solving the smaller problems arising in each sub horizon. Here, the decisions in the

succeeding horizons are made while fixing the decision in the earlier horizons. In this

way, decisions can be obtained for the entire time horizon. The main advantage here

comes in the form of lesser computational burden because only smaller problems are

solved without any computational problems. However, the main disadvantage is that it
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cannot guarantee optimality and also by splicing the time horizon to solve smaller

problems, this heuristic doesn't look far into the future. It just looks locally and obtains a

feasible solution. However, one should realize that in most scheduling problems, process

changes, product demands and disturbances etc. can occur over a long period of time, so

that it becomes necessary to employ an appropriate heuristic that looks into the future

over a longer period of time. Details on the tailor- made solution heuristic used in this

research are discussed in Chapter 4.

2.1.2 Ethylene furnace scheduling literature

This section reviews the literature particularly dealing with Ethylene furnace

scheduling problems. The main emphasis of the discussion will be on model formulation

and solution technology used by various researchers. The challenges posed by this

problem and the methods used to overcome those challenges are presented here.

Schulz and co-workers (2006) developed a furnace scheduling model to optimally

schedule the production and furnace decokes in an Ethane cracker. A discrete time

formulation was used to develop the model. Due to nonlinearity in the plant model, the

optimization problem was formulated as a MlJ'\JLP, which was very difficult to solve. The

nonlinearity in the mixed integer program is always difficult to compute because of no

good solver and no optimality guarantee due to non-convexity in the model. As a

solution heuristic the authors reduced the dimensionality of the problem by aggregating

the time periods (each time period was equal to I week) and solved the MINLP using

DICOPT (Quesada and Grossmann, 1992). Although, several scenarios were solved, the

coarse formulation is unrealistic because it assumes that during any decoke, a reactor

would be offline for 1 week, which is much too long.

A similar fumace scheduling model was developed by Lim and co-workers (2006)

for naphtha crackers based on a discrete time representation. This model was also

formulated as a MINLP due to the nonlinearities present in the Ethylene plant model.

They found it difficult to solve the resulting large scale MINLP. Therefore, they adopted
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a decomposition heuristic to decompose the MINLP into MILP and NLP and solved it in

two stages. Specifically, in the first stage, feed flow rates, severity and S/HC ratio were

fixed and the resulting MILP was solved using CPELX solver. In the second stage, the

restriction on the flow rates was relaxed and the resulting NLP was solved using

CONOPT solver. Besides using this heuristic, the model also assumed fixed chemical

reactor operating conditions (severity and S/HC ratio) to make the problem easily

computable. It is important to know that, feed fJowrates, severity, S/HC ratio and

decoking periods are the main degrees of freedom for the furnace scheduling problem

and fixing the major variables doesn't make the model complete for real-life application.

Kelly (2005) also proposed a furnace scheduling model for multi-feed crackers

based on discrete time representation. The model was formulated as a MINLP and solved

using the decomposition heuristic in two stages. In the first stage, feed flow rates were

fixed and the resulting MILP was solved using the solver XpressMP and the NLP in the

se~ond stage was solved using SLP. Furthermore, the sequential temporal decomposition

heuristic discussed in section (2.1.1.3) was used to solve the MILP in the first stage. This

was done because the MILP was large and difficult to compute in its current state. The

heuristics could not guarantee optimality; however, a feasible solution was obtained.

Note that this approach would not be successful if the production rate changed during the

horizon and decokes should be performed to prepare for the higher demand. This is

because the temporal decomposition heuristic doesn't look far into the future due to the

splicing of the time horizon.

Grossmann et a!. (1998) formulated a furnace scheduling model for multi­

feedstock crackers based on continuous time representation. The model was formulated

as a MI1'~LP and solved using the software developed in their group that employed the

branch and bound algorithm. Although, the model has all the features that existed in a

true plant, it lacks a true coking model. The scheduling model assumes an exponential

decay in the reactor performance with time independent of operating conditions. In

addition, the flow rates were assumed to be constant while solving the model in order to
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exploit special properties of the model. The main disadvantage with the model was that

the continuous time formulated led to bilinear constraints which are non-convex.

From this review, it is clear that all the scheduling model formulations are large

scale MINLP's. The nonlinearity in the formulation is mainly due to nonlinear yield and

coking patterns in the Ethylene plant model. Therefore, nonlinearity is inherent to the

furnace scheduling model. Due to the difficulties posed by the MINLP's (often non

convex and difficult to solve) and lack of an efficient MINLP solver, it is always a

challenge to solve the furnace scheduling model.

One alternative to overcome this difficultly is to reformulate the scheduling model

as a MILP. However proper care should be taken during the formulation so that the

nonlinearity in the Ethylene plant model is appropriately captured without losing any

information. There are few nonlinear approximation techniques available in the literature

such as separable programming and disjunctive programming (Williams, 1985,

Grossmann, 2002), which can be used to re-formulate the nonlinear constraints into

linear constraints; it is however accomplished by introducing new integer variables.

2.2 Closed loop optimization

Closed loop scheduling is also called as Reactive scheduling. Closed loop

scheduling frameworks are known for their ability to periodically update and modify the

optimal decisions to compensate for disturbances and modelling errors based on new

information. This reactive nature is very elegant and provides an ideal framework to

develop a closed loop scheduling system for online implementation. Some of the reactive

fran1eVIorks available in the literature are discussed here.
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2.2.1 MPC framework

Model predictive control (MPC) has been widely accepted by the process

industries as a tool to effectively control multivariate systems with input and output

constraints (Qin and Badwell, 2003, Marlin, 2000). MPC uses a plant model for

prediction and solves an optimization problem to optimize the future process behaviour to

obtain optimal control moves. These control moves are then implemented in the plant in a

rolling horizon fashion. The plant model used in MPC is periodically updated using the

feedback information at each controller execution. This particular framework has found

wide application that extends beyond the field of process control.

o
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Figure 2-1: MPC framework

2.2.1.1 Nominal MPC

In the nominal MPC framework, no explicit model of uncertainty is used for the

plant model parameters or the exogenous variables (measured and unmeasured

disturbances) (Qin and Badwell, 2003, Marlin, 2000). Instead, the parameters are tuned to

obtain closed loop stability, good dynamic performance and robust constraint handling.

Appropriate safety margins are provided to deal with potential constraint violations.

Since, feedback information is available at every execution time, the controiier can

quickly react to disturbances and modeling errors, and the control moves are recalculated

accordingly.
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The mathematical formulation of scheduling optimization and supply chain

optimization problems are similar and both of them involve continuous and discrete

variables. Recently, (Bose and Pekny, 2000, Mestan et al. (2006) and Perea-Lopez et al.

(2003) proposed nominal MPC frameworks to address the supply chain optimization

problems. The supply chain model consistjng of suppliers, production facilities,

distribution network, retailers and customers was formulated as a MILP with an objective

of maximizing the profit. At every MPC execution the states of the system (inventories,

accumulated orders) were updated, and the resulting MILP problem was solved to obtain

optimal control decisions (production schedule in the plant, orders placed between the

nodes and shipment amounts among the nodes). Fixed demand patterns, processing times

and transportation costs were used within the supply chain model. Therefore, any

disturbances entering the system and any model errors are compensated vja feedback.

2.2.1.2 Robust MPC

In robust MPC, explicit models of uncertainty are defined in order to maintain a

particular closed-loop behavior in the presence of model mismatch and disturbances.

Three main issues that are commonly addressed in robust analysis are robust stability

(Bemporad and Morari, 1999), robust performance and robust constrai nt handl ing (or

robust feasibility) (Warren, 2004, Van Hessem and Bosgra, 2006). Different formulations

have been proposed to address each of these issues ..

Most of the robust controller formulations result in convex optimization problems,

e.g. robust feasibility, is addressed by reformulating the linear constraints into second

order conic constraints while robust stability is achieved by semi-definite programming.

These are computationally tractable formulations, which guarantee global optimality in a

reasonable amount of time when the controller model includes only continuous variables.

With the presence of discrete variables ( as in scheduling models), robust MPC

framework leads to a problem formulation that is presently intractable. Also, the robust
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formulation of a MILP ends up being non-linear resulting in a MINLP (Lin et aI., 2004

and Janak et aI., 2007).

2.2.2 Stochastic programming with recourse

In this framework, the decisions are made sequentially in stages. Mainly the

decisions are separated into proactive and reactive decisions. The proactive decisions are

made before the actual realization of the uncertain parameter, and the reactive decisions

are made after the realization of uncertainty, generally with the assumption that the

uncertainty in the parameters is eliminated through measurement. These reactive

decisions are usually interpreted as corrective measures or recourse actions to improve

the solution when the uncertainty no longer exists. Thus, recourse provides feedback of a

special type. A recent review on stochastic programming and its application in the

process systems area can be found in Sahinidis (2004).

The most common recourse problem is the two-stage program Jl1 which the

decisions are made in two stages leading to an underlying assumption that uncertainty is

propagated only over two stages. Its application for robust process scheduling has been

considered recently (Sand and Engell, 2004). However, two stage programs cannot model

the closed loop uncertainty in multi-period optimization problems accurately because the

uncertainty propagates over time and not only over two stages. Thus, multistage

stochastic programs are appropriate for such problems in that the uncertainty is

propagated over all the stages considered in the problem. The number of stages depends

on the size of the time horizon considered in the optimization problem. Computationally,

small-scale stochastic programs with continuous variables are found to be tractable that

can be solved llsing exact algorithms or using some approximation schemes (Birge,

1997). They tend to become intractable with the introduction of integer variables in the

formulation and hence several approximation solution procedures and decomposition

schemes have been reported in the literature (Birge, 1997, Balasubramanian et aI., 2004).

19



2.2.3 Simulation based loe-optimization

lung et al. (2004) have recently proposed a simulation-based optimization

framework for supply chain optimization problems involving both continuous and integer

decisions. This is slightly different from the nominal MPC framework in that, a

deterministic optimization problem is solved at each execution time and subsequently the

feasibility of the solution is verified before being implemented. This is carried out by

using two simulation models (a deterministic model and a stochastic model), which can

verify the robustness of the solution for a sample of realizations of uncertainty. If in any

case, the solution is found to be infeasible or below the specified tolerance limits over the

finite horizon (i.e. prediction horizon), re-optimization is triggered and the robustness

check is performed again. Once the solution is verified for its robustness and

performance, the current time period decisions are implemented and the whole process

continued.

The main advantage here is computational efficiency because only a deterministic

optimization problem is solved. However, no clear strategy is available to correct the

optimization results when infeasibilities occur; lung et al. (2004) allow only the current

and future decisions in the horizon to be adjusted, with all decisions prior to the

infeasibility in the horizon fixed at the result from the deterministic solution values. This

is a very limiting strategy and may not be able to lead to a feasible, let alone optimal,

result. In addition, if many re-optimizations are triggered before the implementation of

each control move, there can be a serious computational difficulty as opposed to solving

a single robust optimization problem.

2.3 Summary

The main concepts of open loop scheduling and the frameworks for closed loop

scheduling are discussed in this chapter. First, a review of open loop furnace scheduling

models developed in the past has revealed that all the models were formulated as large
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scale MINLP's. The nonlinearity is inherent to the ethylene furnace scheduling model

because of the nonlinear yields and coking rates in the ethylene plant model. It was a

great chaJJenge to solve the MINLP's and as a result several solution heuristics were

proposed by the authors.

One alternative to overcome the difficulties posed by nonlinear scheduling models

is to formulate them as linear models (MILP's). While doing so, proper care should be

taken to capture the nonlinear information in the plant. Nonlinear approximation

techniques such as Separable programming and Disjunctive programming could be used

for this purpose. The main advantage with MILP's is that they are well understood and

the techniques to solve them are well developed. Irrespective of the linearity or

nonlinearity of the model, it is always important to develop a tractable formulation to

preserve the fidelity of the scheduling model so that it guarantees that the model could be

solved efficiently with the available solvers. Therefore, every attempt should be made to

develop a tFactable formulation.

Open loop optimization provides an optimal schedule that needs to be

implemented manually in the plant. A closed loop system would automatically implement

the schedules into the plant in real time. Furthermore, it uses feedback information to

update the plant model in order to compensate for model errors and disturbances entering

the plant. Several reactive frameworks were reviewed and the advantages and

disadvantages of the frameworks were discussed in this chapter. Reactive approaches

provide a framework for reactively updating the decision upon the realization of

uncertain parameters. Nominal MPC framework provides an elegant way to update the

decisions using the feedback information. Other reactive frameworks such as simulation

based optimization techniques and stochastic programming could be computationally

expensive when it comes to solving scheduling problems, which are often large

optimization problems.
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Chapter 3. Ethylene plant process technology

and furnace scheduling challenges

The emphasis of this chapter is on the chemical engll1eenng element of the

olefins-producing process, which is the process example considered throughout the

thesis. First, detailed descriptions of the processes in ethylene plants are provided and

some general operating procedures are discussed. Ethylene plant furnace scheduling

problem is presented next and the scope and objectives of the scheduling are clearly

mentioned. The assumptions made to develop the scheduling model are briefly discussed,

and the plant capacity details used as a basis for the case studies are also elaborated.

3.1 Introduction

Ethylene is the lightest olefinic hydrocarbon that is not available freely in nature.

It is produced in ethylene plants by thermal cracking of hydrocarbon feedstocks. Olefins

such as propylene, butylene and other side products are also produced in these plants.

Ethylene is an intermediate petroleum product primarily used in the production of other

chemicals such as polyethylene, the world's most widely used plastic, polyvinyl chloride,

ethylene oxide and ethyl benzene (Albright et a!., 1983, Ethylene, 1992).

An ethylene plant forms a core facility of a fully integrated petrochemical

complex producing a variety of products. The capacity of most plants designed since the

year 2000 ranges between 800,000 and 1,300,000 MTA ethylene with typically 4 to 6

cracking heaters (reactors) in a plant. In today's design, a single cracking heater is built

with a capacity of 200,000 to 300,000 MTA ethylene (Meyers, 2005).
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Some ethylene plants are designed to crack only gas feeds and some to crack

liquid feeds. However, due to increased profitability when a plant is able to respond to

price fluctuations, new facilities are designed with the flexibility to handle a combination

of feeds ranging from gas to liquid hydrocarbons.

3.2 Process description

Thermal cracking is also commonly known as steam cracking or pyrolysis.

Cracking is highly endothermic and involves a large number of chemical reactions

following a free-radical mechanism. A simplified process flow diagram of an ethylene

plant is shown in Figure 3-1. Each section of the plant is briefly discussed here.
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Figure 3-1: Simplified process flow diagram of an Ethylene plant

Feedstocks

The most common feedstocks cracked in ethylene plants are ethane, propane,

ethane/propane mixture, butane, naphtha and gas oil [3]. The choice of feedstock mainly
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depends on the cracker design, availability of the particular feed, its current market price,

and the desired end-products.

Ethane is usually cracked at a conversion level of between 60-65% per pass, with

a single pass ethylene yield of approximately 51 wt% at 65% conversion and ultimate

yield of 81 wt% at 60% conversion (Albright et a!., 1983, Froment et a!., 1976 and

Sundaram et a!., 1981). Very small amount of by-products are produced from an ethane

cracker. Usually, when there is large demand for ethylene and by products are less

important, ethane feed is an ideal choice.

Propane is normally cracked at a conversion level of 65-93% per pass, depending

on the desired ratio of propylene to ethylene. At a conversion level of 93% per pass, the

ultimate yield of ethylene is approximately 47 wt% (Albright et a!., 1983, Vandamme et

a!., 1975, Sundaram et a!., 1979). When there is large demand for propylene and the

economics for propane are favourable, propane is the preferred feedstock.

Naphtha is widely used for the production of olefins and aromatics all over the

world. One of the advantages naphtha feedstock has over gaseous feedstocks is the wide

spectrum of possible co-products. Butadiene and BTX (Benzene, Toulene and Xylene)

are the most important ones. By varying the cracking severity, propylene to ethylene ratio

on a once through basis may be changed from about OAO at high severity to about 0.75 at

low severity (Plehiers et a!., 1987, Kumar et a!., 1985).

The prices of the feedstocks and end products are shown in Table 1. They reflect

the prices from an oil refinery in the US gulf cost (Oil and gas journal, 1992), and they

are the prices used throughout this thesis.
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Table 3-1: Prices of feedstock and end products

Feedstock Price Product Price
(US$/Kg) (US$/Kg)

Ethane 0.240 Hydrogen (H2) 0.881

Propane 0.260 Methane (CH4) 0.220

n-Butane 0.300 cEthylene (C2H4) 0.650
Light Naphtha 0.361 Propylene (C3H6) 0.511

Gas oil 0.297 Butadiene (C4H6) 0.852

Butylene (C4H8) 0.811

Pentanes plus (C5+) OAOI

Cracking section

The schematic of a typical pyrolysis furnace is shown in Figure 3-2. It consists of

a convection section and radiation section. In the convection section, feedstocks are

mixed with dilution steam and preheated to the cross over temperature. The objective is

to heat the feed to a temperature just below the point at which cracking is initiated. The

crossover temperature ranges from 550 to 7000 C depending on the feedstock.

Feedstocks are cracked in the radiation section of the coil. Energy required for the

endothermic cracking is provided by the furnace. The cracked products leave the radiant

coils at a temperature of 750 to 9000 C, depending on feedstock, cracking severity, and

selectivity (Steam to Hydrocarbon ratio).
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Figure 3-2: Diagram of a typical pyrolysis furnace

Transfer Line Exchangers and Quench coolers

In order to maintain the overa]] process efficiency, it is required to efficiently

recover the heat in the cracked effluents. This heat is recovered mainly in the convection

section of the furnace and in the Transfer Line Exchangers (TLE's). The effluents from

the cracking section are immediately cooled in TLE's to temperatures around 350 to 6000

C depending on the feedstocks. This cooling ensures that the the olefins are not further

cracked to less valuable products. Energy is recovered in the TLE's durjng this cooling

process and used to generate medium pressure and high pressure steam that is used to

boil dilution steam and elsewhere in the plant.

For gas feedstocks, cracked gas is further cooled to nearly 2000 C 111 secondary

TLE's and water quench towers. For liquid feed crackers, this cooling is achieved by

direct quenching in oil quench towers and later the heavier products (C5+ components)

are separated from the product mixture in primary fractionators. During this quenching

process, dilution steam which was mixed with the feed in the convection section is also

condensed and recycled.
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Compression

The cracked gases leaving the quench tower are then compressed to 32-38 bars

for further processing. Compression is carried out in a four to six stage centrifugal

compressor. The number of stages depends primarily on the cracked gas composition and

the highest temperature allowed for inter-stage discharge. Condensed water and

hydrocarbons are separated from cracked gas between the stages. Water is returned to the

quench water system and hydrocarbons are sent to other sections for further processing.

Following compression, acid gases such as carbon dioxide and hydrogen disulfide

are removed from the cracked effluent and water is (nearly) completely removed via gas

dryers in preparation for cryogel1lc separation, where water would freeze in the

equipment if not removed.

Hydrocarbon fractionation

There are .several hydrocarbon fractionation sequences commonly being

employed in ethylene plants (Ethylene, 1992 and Meyers, 2005). The front end

demethanizer process is the most commonly used sequence which is shown in Figure 3- I

and descri bed here.

The fractionation sequence begins by removal of hydrogen and methane as

overhead products in the demethanizer. The bottom product is directed into deethanizer

column where acetylene, ethane and ethylene are removed as overhead product and C:\

and heavier components as bottom product. The overhead products are separated in

ethylene fractionation column, while the bottom products are routed to a depropanizer.

Propadiene, propane and propylene are taken as overhead products and the heavier

botton1 components are next processed in debutanizer colurnn and so on. f',,1ore details

about the processes are available (Ethylene, 1992).

The major products obtained after eventual separation are ethylene and propylene;

however, many side products are also obtained. Ethane obtained in the products stream is

recycled back to the cracking section for further cracking.
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Ethylene obtained as a result of fractionation is usually stored as a liquid in

pressurized vessels and is transported as a gas via pipelines to various production sites.

Sometimes, it is transported by cargo tanks or tank cars to its destination.

Economic considerations and operating procedures

The economics of an ethylene plant are not simple. It is important to know that

because of the current energy situation and since an ethylene plant is severely energy

intensive, the pyrolysis section of the plant has the greatest impact on economics

(Albright et aI., 1983 and Meyers, 2005). Therefore, some description of the general

operating policies of an ethylene furnace is provided here.

There are four main operating variables for an ethylene steam cracker, and the

optimization of these variables determines the end products produced and the efficiency

of the unit and hence the profitability of the facility. The variables are:

•

•

•

•

Feedstock and its composition

Residence time (tlowrates or hydrocarbon and steam)

Temperature of the feed in cracking coil (Severity)

Steam to hydrocarbon ratio (Selectivity)

By operating the furnace at a particular combination of the variables the engineer

attempts to achieve the desired yields of various end products. The common procedure is

to first select a particular feedstock based on the product demand and then to operate the

reactors at an optimum severity and selectivity levels. Once this is done, he/she then

adjusts the throughput by setting average flow rates again based on the expected product

demand. These variables can be adjusted accordingly at any time to meet the demands

and to respond to unexpected events. For example, if there is a sudden demand for the

products, the processing rates or the severity can be increased depending on the

magnitude of spike in the demand. The proper choice of variables to adjust depends on

the yields and other effects (such as coking which will be discussed shortly); therefore,
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standard operating rules will be able to achieve desired production rates, but not at

maximum profit.

In this thesis, a systematic method is developed for optimal scheduling that assists

the engineers to make appropriate decisions in a timely manner that will maximize profit.

3.3 Ethylene plant furnace scheduling

This section introduces the concept of furnace scheduling in ethylene plants. A

schematic of an ethylene plant with multiple feeds, several furnaces and a separation

system is shown in Figure 3-3. As discussed earlier, the feeds are processed into the

reactors where they are cracked. From the cracked products, the heavier ones (CS+) are

removed first and the remaining gases are processed further into the separation system for

their eventual separation. The ethane product stream is recycled back to cracking

furnaces for further processing. In reality, there are no feed tanks for ethane and propane;

they tlow directly from pipelines to reactors.
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Figure 3-3: Schematic of an Ethylene plant

Cracking furnaces are generally operated at very high temperatures, around

825°C. During this energy intensive operation, coke deposits on the inner surface of the
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reactors due to several catalytic and non-catalytic mechanisms. Deposition of coke inside

the reactors is known to degrade the reactor performance.

First, coke acts as insulation and hampers heat transfer from furnace to the

gaseous mixture in the reactor. Due to this heat loss, severity in the reactors reduces and

as a result olefin yield decreases. Therefore, to maintain a constant severity, furnaces

should supply additional energy to the reactors. Providing additional energy in turn heats

up the external wall of the reactors, thus increasing the reactor's external skin

temperature. Due to material limitations, a maximum value for the reactor coil cannot be

exceeded, or the metal will fail catastrophically.

Second, coke deposition decreases the cross sectional area of the tubular reactor

causing the pressure drop across the tube to increase. Therefore, in order to maintain the

nominal feed flow, pressure in the inlet side of the reactor has to be increased. Higher

pressures lead to reduction in olefin yields and causes additional safety concerns. For

both these reasons, furnaces have to be periodically shut down for coke cleanup.

In general, when the tube walls reach their maximum allowable temperature set

by tube metallurgical limits, shutdown of the furnace is necessary for cleanup. This

cleanup operation is known as decoking, which is accomplished by removing the coil

from service and using a steam-air mixture to burn the carbon out of the coil. The steam

air mixture is heated to 900-10000 C and is slowly reacted with the carbon to produce

hydrogen and carbon monoxide. Typical run lengths (furnace operation time between

decokes) for naphtha feedstock is 20-30 days (Plehiers et aI., 1975), propane is 20-50

days (Vandamme et aI., 1975) and ethane is 20-60 days (Froment et aI., 1976).

Furnace scheduling is n1ainly concerned "vith optimally (1) selecting feedstocks,

(2) selecting operating conditions, and (3) scheduling the maintenance shutdowns of

furnaces for periodic decoking. An appropriate time for decoking is strongly affected by

cracking feed and reactor operation. Typically, heavy hydrocarbons yield more coke than

the lighter ones. Reactor operation at higher severity produces better yields, but leads to
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faster coke accumulation, thus sh0l1er run lengths and frequent decokes. Also, a decoking

operation leads to a downtime (production loss) of approximately 8-10 hI's. Therefore

there appears to be a trade-off between choosing heavy feed, operating at higher severity

and decoking frequently versus choosing a light feed, operating at lower severity and

decoking less frequently. This is ultimately an economics based decision.

Therefore, we define the ethylene plant furnace scheduling problem as a source to

automatically consider the trade-off and make optimal decisions on appropriate feed

selection, reactor operation and its maintenance that maximises the plant economics.

With the main objective to obtain appropriate feed, optimal reactor operating conditions

and shutdown policies over a defined time horizon, we model furnace scheduling as a

Mixed Integer optimization problem (MIP). The problem overview is described as

follows for any given scenario description.

Maximize the Plant profit for a selected time period

Decision variables

• The optimal feed to be cracked in the furnaces (integer decisions),

• The optimal operating conditions (tlowrates, severity, S/HC) for the

reactors (continuous variable decisions),

• Furnace maintenance decoking, which furnace and when (integer

decisions), and

• The number of furnaces in production service at any time (integer

decisions)

The problem above must be defined for a specific set of conditions, which we will

term a scenano. A scenario is usually defined by the initial process conditions,

equipment capacity limits, product demands, economics, and any other requirements that

need to be satisfied by the model. A scenario can be described by the following

parameters, which are the constants necessary to define the problem.
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• Initial process conditions

•

•

•

Number of Furnaces available and their capacities,

Feedstocks available and their capacities

Accumulated coke in the reactors

• Operating conditions (Severity, SIHC, Flow rates etc. needed for move

suppression in closed-loop cases)

• Production requirements (Product demands and sales limits)

• Requirements on end conditions (end of finite horizon)

• Limitations on process equipment performance, e.g., capacity

• Time horizon of interest

• Economics

A detailed mathematical formulation of this scheduling model is provided in Chapter 4.

The basic structure is provided here as shown below.

Plant profit

- Feedstock allocation constraints (feeds and amounts available)
- Normal plant operation constraints (flows, material balances)
- Severity and selectivity bounds (conversion, S//-IC)
- Coking model constraints (coke accumulation)
- Decoking constraints (cleanup)
- Equipment capacity limits
- Integrated product demand and sales limits
- Bounds on all the variables
- Initial conditions
- Data for all the parameters
{Continuous and binar}' variables}

,----------------------------------------------------------------------

: Maximize:
I

I Subject to:
I
I
I
I

3.4 Major challenges

Ethylene furnace scheduling problem has some important characteristics which

pose significant modelling and computational challenges. They are discussed here.
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3.4.1 Interaction

As discussed earlier, there is a strong interaction between ethylene plant furnace

maintenance and operation. Therefore, while scheduling ethylene furnaces, proper care

should be taken to consider the tradeoff between these two factors. This problem is

interesting because we cannot make the maintenance or furnace operation decisions

separately; both have to be made simultaneously in an integrated approach.

Earlier there were instances where authors understood the difficultly of solving

this problem and proposed some heuristics (Bizet et a!., 2005). They tried to solve the

problem in two stages. In the first stage they would fix the furnace operating conditions

and obtained the maintenance schedule. Once they had the maintenance schedule, it was

fixed and the furnace operating conditions were adjusted to meet the demands and

operate the plant profitably. Although this type of heuristic yields a feasible schedule, it

usually ends up in sub-optimal schedules.

If we want to obtain an optimal solution or at least a good feasible solution for

this problem, it should be solved in a single stage without fixing any of the key decision

variables. This means that decisions on the maintenance and furnace operation should be

made together. Dealing with such a condition is challenging for large scale mixed integer

optimization problems.

3.4.2 Non-Linearity

In ethylene plants, we encounter significant nonlinearities in product yields and

coking rates. Plant data (product yields and coking rates as a function of furnace

operating conditions) for various feeds are provided in Appendix A. This data has been

obtained from pilot plant studies conducted by Foment and cowokers [4, 5].

Typical product yield profiles for a propane feedstock over a range of furnace

operating conditions are shown in Figure 3-4. Clearly, propylene and pentanes (Cs+)

yields are strongly nonlinear, while the other products exhibit slight nonlinearity. Similar
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nonlinearities also exist for naphtha, butane and gas oil feeds. This leads to nonlinear

yield models.
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Figure 3-4: Propane feedstock yield profiles

A linear approximation of the yield models could be reasonable within a narrow

range of operating conditions. However this approximation becomes inexact when used

over a broad range of operating conditions. A direct implementation of nonlinear yield

models in the furnace scheduling problem would result in a Mixed Integer Nonlinear

Programming problem (MINLP), which poses significant computational difficulties.

3.4.3 Computational burden

The resulting furnace scheduling problem leads to a large scale Mixed Integer

optimization problem (MIP). Typical problem size for a case study involving 3 different

feeds and 5 reactors over a 90 day horizon is 3100 binary variables, 297794 continuous

variables and 308629 constraints. Even if all the constraints are linear, solving this

problem becomes difficult for any standalone commercial solver such as CPLEX,

XPRESS etc. In a worst case, any mixed integer solver will have to search 23100 nodes to

obtain an optimal solution. Even if it takes I sec to solve the problem at each node, it

takes centuries to search through the entire nodes.
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The mam concerns for this scheduling problem are (i) the presence of large

number of binary variables, and (ii) type of constraints (linear or non-linear). MIP's are

combinatorial in nature where the number of binary variables is directly related to the

computational complexity. On top of that, nonlinearity in the model could make it

exceptionally difficult to solve.

This is a major challenge for solving large scale scheduling problems. 11 is

therefore, necessary to understand the structure of the optimization problem and exploit

the structure through several ways.

3.5 Modelling assumptions

The model for scheduling major decisions in the ethylene plant requires a tailored

model. If the model were too complex, it would not be computationally tractable; if it

were too simple, the important interactions among decokes, feed materials, and operating

conditions cannot be included. Therefore, the general goal is to include all important

decisions and model features that determine the integer decisions (feed selection, number

of reactors in operation and decoking). To do this, the operating conditions of the

reactors must be optimized; however, the operating conditions could be fine-tuned by a

real-time, steady-state optimization (RTO) of the plant that would be executed several

times a day (Marlin and Hrymak, 1997). The RTO typically uses a much more complex

and accurate model, but it does not optimize the integer decision variables.

The model assumptions are briefly introduced here, and the detailed model

equations are presented in the next chapter.

• Model accuracy - The model structure and parameters are known exactly.

Therefore, uncertainty is not considered explicitly in the optimization.

However, feedback based on measurements will be considered in the reactive

scheduling work in Chapter 5.
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• Furnace operation

No change to the properties of feed material

Feed flow rate doesn't affect the severity in the reactors

Feed conversion is used as a measure of severity (reactor temperature)

in the reactors. 11 is assumed that each reactor effluent is measured and

controlled by adjusting the temperature. This is standard practice in

industry using transfer line analyzers. In this thesis, the terms severity

and conversion are used interchangeably.

Flow rates do not affect the rate of coking in the reactors

Coke deposited in the reactors doesn't affect the product yields

Recycle streams are assumed to be pure, which is a result of the

perfect separation assumption.

Cracked gas processing through the separation equipments IS not

modelled in detail. Perfect separations are assumed. Constraints 111

the equipment could be included based on the material flow rates.

• Refrigeration and separation energy costs are not included in the model.

• Efficiency for compression is considered to be 100 % .

• Product inventory is not modelled. The products are assumed to be directly

delivered to the clients via pipelines without storage.

• Integrated demand is considered which needs to be satisfied appropriately.

Therefore, some deviation from instantaneous demand is allowed without

penalty.

• All prices are assumed to be constant during all time periods in the schedule.

• Product yields and coking rates do not change over the time horizon.
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• The model assumes that only one reactor exists in a furnace (fired heater).

Therefore, the terms like reactor or furnace are used interchangeably; in

reality, several reactors exist in a furnace, and their operating conditions can

be slightly different.

• Most dynamics within an ethylene plant units are not considered and

therefore, guasl steady-state models are used in each time period of the

schedule. Note, that the key variables that "link" time periods are the

dynamics of coke in the reactors.

Clearly, the greatest emphasis is placed on the reactor models that are needed for

optimal scheduling. Detailed optimisation of the separations plant is not addressed in this

research.

3.6 Plant capacity details

In order to make the case studies in this thesis more realistic, data corresponding

to commercial sized ethylene plant were used in the model. The capacity of the plant is

considered to be around 800,000 - 1,000,000 MTA ethylene. It can crack three

feedstocks ethane, propane and naphtha. A single ethane cracker has a capacity of

200,000 MTA ethylene whereas propane and naphtha has 175,000 MTA and 150,000

MTA respectively. An overview of the process structure and a few additional capacities

are depicted in Figure 3-5 and provided in Table 3-2.
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Table 3-2: Plant capacity details

Reactor processing
Capacity

rates
Feedstock

Pmin Pmax Single cracker Plant (5 crackers)

(Kg/hI') (Kg/hr) (MTA C=C) (MTA C=C)

Ethane 32620 46600 200,000 1,000,0000

Propane 40000 57140 175,000 875,000

Naphtha 46106 65865 150,000 750,000

PLANT CAPACITY
08:- I Mtlhon l't'IT.t.., I~H4

P stands for reactor processing rate

Figure 3-5: Plant capacity details
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3.7 Typical scheduling simulation result

Let us look at a scenario with two furnaces cracking naphtha feed. Based on the

initial conditions on the coke state, there is already 250 kg of coke deposited in both the

reactors. The maximum limit for tube metal temperature is 10500 C, which corresponds to

300 kg of coke deposited in the furnace. Demand for ethylene over a period of 90 days is

a maximum of 49,500,000 kg, and demand for propylene is unlimited.

In simulation based scheduling, it is important to know that the main decisions

variables that affect the plant economics (e.g. conversion, steam to hydrocarbon, feed

flowrates) have to be determined by the engineer. For unlimited propylene sales,

guidelines would generally select low severity and low steam to hydrocarbon ratio

because this operation will be close to the propylene yield peak. Therefore, for this

scenario, we have fixed the severity to a conversion of 82% and steam to hydrocarbon to

0.5. The processing rates in the reactors are then selected appropriately to meet the

product demands. Finally, decokes will be performed when the coke limit is reached.

Based on these conditions, the maintenance schedule obtained by simulation is

shown in Figure 3-6. The production rates of the key products - ethylene and propylene ­

are plotted versus time, but all products are modeled and included when calculating the

economic performance. The furnace (reactor) status - either processing feed or decoking

- is also plotted versus time. Finally, the coke accumulation in each reactor is plotted

versus time. The schedule predicts the plant behaviour for 90 days.
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Figure 3-6: DiJ'ect simulation results

From the results, it is clear that both the reactors have to be decoked on the same

day leaving no option for production in the plant during that day. This is because the

same severity in both the reactors leads to equal accumulation of coke and since both of

them had same initial coke condition, the day for decoking turned out to be the same.

This can be seen from the coke accumulation part of the graph where the coking contours

for both reactors are identical and appear to be a single line.

These results are unacceptable, because the entire plant would have to shutdown

for the decoking time. The time and cost for restarting the plant are very high, so high

that the optimizer will not ailow such a scheduie, and fuB plant start-up costs are not

included in the modeL

Simulation case studies require the engineer have the intelligence to overcome

this infeasibility condition (no production condition), as well as economically optimize
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the variables. The person has to make appropriate changes to the schedule to make it

feasible for implementation. He/she can choose an early decoke for furnace I and the

result of such a change on the overall schedule can be seen in Figure 3-7.
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Figure 3-7: Schedule after operators changes

Clearly this is a feasible schedule suitable for implementation. However, we

cannot say if this is the most profitable schedule. We need to try various combinations of

flowrates, severity and selectivity values to find a profitable solution. Arguably, this is a

tedious process.

An optimal scheduling model such as the one introduced in the next chapter

would have the intelligence of looking for feasibility and optimality. It would react to

any condition in the following ways.
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To maintain feasibility, it can

• Adjust reactor operation, and

• Decoke early

To maximize Plant profit, it can

• Adjust reactor operation (change the severity or S/HC),

• Decoke optimally,

• Choose feed appropriately, and

• Choose the number of reactors in service.

This scenario is also considered in the case studies (Section 4.5.1.4) of Chapter 4, where

optimal results are discussed and compared with these simulation results.

3.8 Summary

The challenges posed by ethylene plant furnace scheduling are clearly identified

in this chapter. An integrated schedul ing approach is deemed necessary to capture the

interaction between furnace operation and maintenance. While developing a scheduling

model, tailored formulation schemes should be used to preserve the linearity of the

scheduling model without losing nonlinear information in the yield and coking models.

Unfortunately, a well developed scheduling model inevitably ends up in a large scale

MILP, posing computational difficulties. Therefore, appropriate solution heuristics may

be needed to reduce the computational time. More details on the mathematical model

development and solution strategies are discussed in the next chapter.
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Chapter 4. Open-loop Scheduler formulation

The main emphasis of this chapter is on the mathematical modelling of the open­

loop scheduler and testing its performance through various case studies. First, an

overview of the scheduling model is presented in this chapter with discussion on the

importance of preserving linearity and on the techniques used for that purpose. Details of

the scheduler are presented next followed by detailed mathematical formulation of the

optimization model. Tailored constraint formulation and solution heuristics proposed to

help improve the computational time are also discussed in this chapter. Finally, several

open loop case studies are considered, and the results discussed in detail for single feed

and multiple feed scenarios.

4.1 Model overview

As discussed in Chapter 3, the open-loop scheduling model leads to a mixed

integer optimization problem with continuous variables to model reactor operating

conditions and integer variables to model feed a]]ocation, furnace operation and

decoking. We have also seen that there are significant nonlinearities in the yield and

coking model relating to reactor conditions. These nonlinearities in the scheduling model

could lead to a Mixed Integer Nonlinear Programming problem (MINLP), which is a

difficult problem to solve for the size of the our scheduling problem.

Therefore, our nlain objective here is to preserve the n10del linearity, so that the

resulting scheduling model can be formulated as a Mixed Integer Linear Programming

problem (M ILP). Model lineari ty is preserved for several reasons, such as (I) Linear

relaxations are convex problems, (2) State-of-the-art MILP solvers are available

(CPLEX, XPRESS etc).
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In order to preserve model linearity, we used discrete time representation for

model formulation and adopted disjunctive modelling technique to handle the

nonlinearity in the yield profiles. The concepts behind the linear formulation are

discussed in the next sub-sections and then, details of the formulation are given in

Section 4.2.

4.1.1 Discrete time formulation

Discrete time formulation is based on the concept of dividing the time horizon

into a finite number of uniform or non-uniform time intervals of predefined durations and

modelling the scheduling tasks only at the boundaries of each time interval.

The most notable feature of this formulation is that time is modelled as a reference

grid and is defined as a parameter in the optimization problem. Therefore, we avoid

nonlinear constraints due to time representation in scheduling models. With this

reference gri-d, we can formulate difficult scheduling constraints easily. The only

disadvantage with these models is that they lead to a large number of binary variables.

The number of binary variables in these models scales proportionally with the time

intervals in the scheduling horizon, thus making the models computationally expensive.

However, a better formulation with tailored heuristics can eliminate this difficulty,

making the discrete time models best suitable for large scale scheduling applications

(Schulz et aI., 2006, Kelly, 2005 and Lim et aI., 2006).

4.1.2 Disjunctive modelling

In an attempt to capture the nonlinearity, in the yields and coking rates, usmg

linear constraints without compromising on losing the nonlinear information, the concept

of disjunctive programming (Williams, 1985) was employed. The main idea of

disjunctive programming is to first formulate several alternative linear disjunctive models

for a system. These alternatives could be different process technologies or as in this case,
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different operating conditions for an existing process. The typical disjunctive modelling

approach selects one disjunctive model using binary variables. In this research, the

disjunctive models approximate the nonlinear reactor yields with a set of linear yields at

specific reactor operating conditions. Therefore, selecting one disjunctive model is

equivalent to selecting one from several operating conditions, although the operating

conditions are continuous in the real plant and in the underlying nonlinear model.

As an example, let us recollect the nonlinearities in the yield profiles of propane

feedstock, which is shown in Figure 3-4. To approximately capture the nonlinearities in

those yields, eight disjunctive models were formulated as shown in Table 4-1. Each

disjunctive model corresponds to a particular conversion and S/HC ratio, which

represents one operating condition for a reactor. Therefore, selecting a disjunctive model

is equal to choosing a particular furnace operation. This selection can be accomplished by

llsing binary variables in the scheduling model.

Table 4-1: Disjunctive models for Propane feed

Disjunctive S/HC Conversion
COT (0C)

Coking rate
models (ratio) (%) (Kg/day)

Propane I 0.4 70 814.31 7.56
Propane2 0.4 80 825.85 9.63

Propane3 0.4 90 840.42 I 1.62

Propane4 0.4 95 851.37 12.61

Propane5 1 70 832.57 6.85

Propane6 I 80 844.50 8.51
Propane7 1 90 859.57 10.07

Propane8 I 95 870.9 I 10.86

Although disjunctive progranlnling captures the nonlinear relationship USing

linear constraints, the main disadvantage with this technique is that it requires binary

variables to make the selection of a single disjunctive model. As discllssed earlier, binary

variables are very critical to any optimization problem as they are directly related to the

computational burden of the optimization problem.
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Initial computational experience validated our expectation that adding many

thousands of binary variables to select the reactor operations for many reactors, feed

types and time steps yielded intractable optimization problems. While a very small

problem might be solved within reasonable computing times, large problems required

more than one day of computing time. A few cases studies are described in Appendix B.

Therefore, we evaluated a simplified alternative formulation in which all

disjunctive reactor models could be selected, I.e., have non-zero feed rates. This

approach is formulated by removing the integer variables that require only one

disjunctive model to be selected for a specific feed material to a reactor in a time period.

This formulation has dramatically fewer integer variables and could be implemented in

the real plant under two situations. First, if the optimal solution had non-zero feed flows

in only one of the disjunctive models, the result can be directly implemented. Secondly,

if the solution contains non-zero feed flows to "adjacent" operating conditions, an

interpolated set of operating conditions could be implemented in the plant. By adjacent,

we mean two conditions having the same conversion and different steam-to-hydrocarbon

or different conversions and the same steam-to-hydrocarbon, with "different" referring to

only one entry different in Table 4-1. ]1' one of these situations does not occur, the

optimal solution could not be implemented in the real plant. Further details on the valid

combinations are elaborated in Appendix B.

Extensive computational expenence with this problem has shown that the

optimum operating condition corresponds to a single disjunctive model, i.e., that only one

disjunctive model (at most) has a non-zero feed flow rate. Therefore, using the integer

variables to restrict the selection of disjunctive models are not required to obtain the

global optimum of the problem. If more than one "non-adjacent" model were selected,

some integer variables would have had to be added and the problem resolved; to reiterate,

this did not occur in this research.
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4.2 Scheduler details

Using the discrete time representation and disjunctive modeling techniques, the

scheduler is formulated as a deterministic MILP model. The inputs and outputs of the

scheduling optimizer (scheduler) are shown in Figure 4-1. Outputs are the decision

variables of the optimization model, and inputs are the initial conditions (furnace coke

conditions), model parameters and other parameters necessary to define the problem

scenario (sales demands, economics, furnace availability, and so forth).

2

3

4

5

Scheduler
(MILP)

~

Figure 4-1: Inputs and outputs of the Scheduler

2

3

4

Inputs (parameters) Outputs (optimization variables)

1
Initial process conditions (Coke, severity,

Feedstock to each reactorS/HC, available feeds and number of 1

furnaces)

2 All constraint values, e.g., Product demand 2 Feed flow rates
and sales limits

3 End conditions 3 Reactor severi ties

4 Time horizon 4 Reaclor selecli vilies (Sine)

5 Economics
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4.3 Mathematical formulation

4.3.1 Basic formulation

In this formulation, continuous variables are used to represent the quantity of

material flow, coke accumulation, and the operating conditions (Severity, S/HC) in the

reactors. Binary variables are used to select appropriate feedstock for cracking, to decide

the optimal number of furnaces in service and to initiate a furnace shutdown for

deocking. Variables and parameters declared in the model are defined as follows:

Indices

J

k

c

Feedstock, i = 1, ,NF

Reactor, j = 1, ,NR

Disjunctive model, k = 1, ,ND j

Product component, c = 1, ,NP

Time period, t = 1,.... ,NT

Where the set dimensions are,

NF

NR

NP

NT

Thorz

Number of feeds

Number of reactors

Number of disjunctive models for cracking feed i

Number of products

Number of discrete time intervals within the specified time horizon

( NT =Thorz/6t )

Time horizon (hrs)
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Duration of each time interval (hrs)

Continuous Variables

Flow rate of fresh feed i at time t (Kg/hr)

"X ijkt

a clisj
ijkt

E compressor
t

Flow rate of the recycled feed i at time t , for cracking (Kg/hr)

Flow rate of feed i at time t, recycled to the storage tank

(Kg/hr)

Inventory of feed i at time t, in the recycle storage tank

Processing rate of feed i in reactor j at time t (Kg/hr)

Processing rate of feed i in disjunctive model k corresponding

to reactor j at time t (Kg/hr)

Fraction of flow through each disjunctive model W.r.t. the

maximum processing rate

Adjusted fraction of flow through each disjunctive model

Slack variable used in the disjunctive model constraint

Production rate of product c, while cracking feed i in

disjunctive model k corresponding to reactor j at time

(Kg/hr)

Amount of product c produced from all the reactors during the

defined time horizon (Kg)

Energy required for a compressor in a single train compression

system at time t (KJ/hr)
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E 1."urnaCc
JI

F.~Ps(eal1l
lJI

FMPSleam
IJI

Coke j,

boDecoke j,

Tw.
JI

Inv CI

Sales ci

PenaltyCOke

Penalty Rcy _Ill\'

Energy required for cracking in furnace j at time t (KJ/hr)

Flow rate of high-pressure steam generated while cracking feed

i in reactor j at time t (Kg/hI')

Flow rate of medium-pressure steam generated while cracking

feed i in reactor j at time t (Kg/hr)

Coke deposited in reactor j at time t (Kg)

Coke deposited in the disjunctive model k corresponding to

reactor j while cracking feed i in time bot (where, bot is the

time period) (Kg)

A large decoke variable used to erase the total coke in the

reactor j at time t when de-coke is active. (Kg)

Tube wall temperature of reactor j at time t (0C)

Slack variable used in the decoking model

Inventory of product c at time t (Kg)

Sales of product c at time t (Kg/hI')

Penalty term for coke accumulated at the end of time horizon

($/Kg)

Penalty term to minimize the cost associated with recycle feed

inventory in the model ($/Kg)
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Binary variables

Variables to model Feedstock allocation

Wd ={'.I'

o
When feed i is not allocated to reactor j at time t for

cracking

When feed i is allocated to reactor j at time t for cracking

Variables to model furnace decoking

8'kwk~ ={
.1 1

o Normal operation of reactor j at time

Decoking of reactor j at time

Variables to model the number of furnaces in service

8shlilclO\\'1l ={
.II

Parameters

o Reactor j in operation at time

Reactor j shutdown at time t

p.~lla;\

'.1

X iikr

Minimum processing rate of feed i in reactor j (Kg/hI')

Maximum processing rate of feed i in reactor j (Kg/hI')

Weight fraction of product component c, in disjunctive model k

corresponding to reactor j while cracking feed i

Energy required in disjunctive model k corresponding to reactor

j while cracking feed i (KJ/Kg)
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RCoke ik

Sev~rit\'

Pik .

C tprodllCI
as C

C feedost i

Costdillllion
sleam

c -. furnaceostenergy

Cost compressor
energy

HI'
Costs1e"m

~II'

Costslcam

c ' furnaceost changco\"Cr

6.t decoke

T~IPSlcam
• 2

G HPSIl2'i1m

Coking rate corresponding to disjunctive model k while

cracking feed i (Kg coke/hI')

Steam to hydrocarbon ratio for feed i corresponding to

disjunctive model k

Severity for feed i corresponding to disjunctive model k

Molecular weight of component c

Cost of product c ($/Kg)

Cost of feed i ($/Kg)

Cost of dilution steam ($/Kg)

Cost of furnace energy ($/KJ)

Cost of compressor energy ($/KJ)

Cost of high-pressure (HP) steam ($/Kg)

Cost of medium pressure (MP) steam ($/Kg)

Cost of furnace changeover/maintenance ($)

Duration of a decoke operation (hI'S)

Heat capacity of steam (1.937 KJ/Kg.K)

Temperature of the generated high-pressure steam (586.6° K)

Temperature of the generated medium-pressure steam (514.9° K)

Feed water temperature used to generate high-pressure and

medium-pressure steam (323.1500 K)

Constant used for the calculation of flow-rate of high-pressure
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GMPSleam

Coke ,max
J

M

T. Ilt.1X

J

Cokeinita'

Demand~'in

Demand~""

Inv min
c

In v~1aX

1612.572
steam, -'(---:-:-::[,------') (Kg steam/Kbo reactor effluent)

T
H'sleillll _ T -

Cp 2 I

Constant used for the calculation of flow-rate of medium-

602.721 K /K 'f1)
Pressure steam, ( 'II' ) ( g steam bO reactor et uent

TO" Slcillll_T
c p :' I

Maximum limit on deposited coke for reactor j (Kg)

Constant (Big-M type) used in the decoking model to erase coke

(300 Kg)

Maximum limit on tube wall temperature for reactor j (oC)

The amount of coke in the reactor at time 0 (Kg)

Minimum demand for component c (Kg/time horizon)

Maximum demand for component c (Kg/time horizon)

Minimum inventory for component c (Kg)

Maximum inventory for component c (Kg)

Number of reactors allowed to decoke in a coarse time grid

Minimum number of days a reactor should operate before

decoke, taken from operators experience.

Maximum number of decokes possible in a defined time horizon,

from operators experience

Number or days berore which decoking is nol possibie (days)

Days at the beginning of horizon when a decoking is compulsory

(days)
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decoke
Cokeallowed

C k decoke
o eendcondilion

Tw conSl

Constraints

The amount of coke allowed to accumulate (to avoid premature

decokes) before each possible decoke (Kg)

The amount of coke that cannot be exceeded at the end of the

time horizon (Kg)

Penalty coefficient for Inventory of recycled ethane (0.00 I $/Kg)

Parameter used in the Tube wall temperature model (0.37 oK/Kg)

A list of conditions that are modeled as constraints in the scheduling model are

summarized first.

Only one feed can be cracked in a furnace at any time;

Feedstock cannot be switched during normal operation;

Account for mass flow rates of all the components leaving a reactor;

Model the non-linear relationships (yields and coking) using linear disjunctive

constraints;

Account for recycled ethane during cracking;

• Account for energy required in furnace and compressor;

Model coking in the reactors and the corresponding tube metal temperatures;

While decoking, consider complete cleanup of the reactors (i.e. coke =0 after

cleaning);

No more than one reactor can be decoked at any time;

Consider the end point conditions on the coke accumulated in the reactors;

Integrated demand over the time horizon should be met.
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The associated constraints in the mathematical formulation are discussed as follows.

Feedstock allocation

The condition that no more than one feedstock can be cracked in a particular

reactor at any time is modeled using a binary allocation variable, as shown in equation

(4.1). Also, the condition that feedstock switching is not allowed between decokes is

modeled as equation (4.2). The constraint ensures that there is no feedstock switching

during the normal plant operation. It can occur only after the reactor is decoked.

WH - WH < ()dccokc
IJI-I IJI - JI

Vj, t

Vi,j, t = 2.. NT

(4.1 )

(4.2)

Equations (4.3) specifies the bounds on the reactor processll1g feed rates. It

models the condition that the processing rate for a feed i is zero when it is not allocated

to a reactor j at ti me t .

plllin . WH < p. < plllax .w..
IJ 1.11 - IJI - '.1 IJI

Reactor operation

Feed balance constraints

Vi, j, t (4.3)

The total amount of feed processed into the reactors is equal to the amount of fresh

feed plus the recycled feed, given as equation (4.4). Only ethane in the products is

recycled back for subsequent cracking. One of the reactors is allocated exclusively to

crack recycled ethane. Whenever, the dedicated ethane cracker is scheduled for

maintenance, the recycled ethane has to be stored for subsequent cracking. This recycle

storage is modeled using equations (4.4 to 4.6). The amount recycled to the storage

(frcYil) is given by equation (4.5). The inventory in the recycle storage is then modeled as

equation (4.6), which is penalized in the objective function to minimize the cost
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associated with inventory. This ensures that inventory is always zero except during

decoke. It was found that the penalty does not affect the total fresh ethane feed purchase,

operating conditions, or end conditions for the recycle inventory; however, it reduces the

ethane recycle inventory to its minimum at every time throughout the horizon which

smoothes variation in fresh and recycle flow rates. A schematic of recycle stream and

inventory is shown in Figure 4-2

Recycled feed, frcY,t

Fresh feed, Fit

l"igure 4-2: Recycle sh'earn and inventory

Fit + FRcYit = Ip .
ijt

frcy it =I I PD ijkt . X ijke
j k

Disjunctive reactor model constraints

Vi, t

c =ethane, V t

i =ethane, V t

(4.4)

(4.5)

(4.6)

As discussed earlier, these constraints model the nonlinear patterns in yields and

coking using a set of linear algebraic equations. To achieve this, the operating conditions

in each reactor are first divided into k disjunctive models, and the optimizer decides to

choose one model. We know that, each disjunctive model represents a combination of

Severity and S/HC ratio. Therefore, selection of feed rate to a particular disjunctive

model decides the operating condition in that reactor. In other words, the flow through

each disjunctive model will reflect the selected operating condition. If the fraction of flow
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is equal to 1 for a particular disjunctive model, it means that only this model (operating

condition) is selected. Alternatively, if more than one disjunctive models share the

fraction of flow, then the operating condition can be calculated by interpolation. A

schematic is shown in Figure 4-3.

o
/\
PD D.~~
IJk~{J~
.... Q~~

Feed _P-'--ijt_.i'-</·-----O~'*_-~Products
~
o

······tJ~)

Figure 4-3: Disjunctive reactor conditions

Disjunctive operation is modeled as equation (4.7).

IPD ijkl = Pijl
k

Vi,j, t (4.7)

The flow through disjunctive models is used in the yield model to calculate the amount of

products produced as shown below.

Product flow rates

Based on the disjunctive model f]owrates, production rates of the components are

obtained by the product of disjunctive model tlowrates times the component yields as

shown in equation (4.8). The yield data is taken from curves similar to Figure 3-4; the

data used for the disjunctive models is reported in Appendix A. The amount of product

produced from all the reactors at any time is given by equation (4-9).

Vi,j, k,c, t
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Prod n = IIIPRateijkCI
j k

Fraction of now through disjunctive reactors

Vc, t (4.9)

The fraction of flow for each disjunctive operation is required in the coking model. As

stated earlier, each disjunctive model is related to a particular operating condition and

hence to a particular coking rate. To calculate the coking rate associated with the selected

disjunctive operation, we need to calculate the fraction of flow through the disjunctive

reactors. It can be modeled as shown in equation (4-10). Unfortunatel y, equation (4. J0) is

nonlinear.

Vi,j, k, t (4.10)

Since our aim is to develop a linear MJP, we propose an approximation scheme here that

maintains model linearity with minimal effect on the model accuracy. Equations (4. J 1 ­

4.16) replaces equation (4.10) and enforces the procedure to calculate the fraction of

tlow.

I <:kt ~I
k

xu + SU - (Jdisjijkl . ijkl - ijkl

"" (J~isj = IL... IJkt
k

"".J _" disj " JL... Sijkl - L... (J ijkt - L... X ijkl
k k k

Vi,j, k, t

Vi,j, t

Vi,j, k, t

Vi,j,t

Vi,j,1

Vi,j, k, t
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First, the fraction of flow through each disjunctive model is calculated relative to

the maximum processing rate as shown in equation (4.11). Second, additional variables

are introduced in the form of slack variables (S~kl) and new disjunctive model flow

fraction variables (()~~~';) that will be used in the coking model. Note that it is not

necessary to penalize these slacks variables in the objective function as they are used to

ensure model feasibility. They are related to (X~:kl) as shown in equation (4.13) while also

observing equation (4.14); therefore, the new variables sum to one. Finally, the bounds

on the slack variables are decided by equations (4.15 and 4.16). Hence, variables (()~~;i)

are the approximate fractions of flow through the disjunctive models.

As long as a single disjunctive model (or operating condition) is picked by the

optimizer, this model ensures that there is no error in this approximation, i.e., <;kl equals

():~~!. However, whenever multiple disjunctive models are picked by the optimizer, there

is a small error in the fraction that is processed at each disjunctive reactor operating

conditions (()~~;). The maximum error was found to be approximately 0.05%, which

leads to an error of I hI' for a 30 day run length. This is negligible for the scheduling

horizon (90 days) considered in the model.

Equations (4.11 - 4.16) provide a conceptual approach to approximate the fraction

of flow through each disjunctive model using linear constraints. However, to comply with

feedstock allocation constraints, equation (4.12) should be replaced by equation (4.17),

and to comply with decoke model constraints and guarantee model feasibility, equation

(4.16) must be replaced by equations (4.18,4.19).

'" disj < WLJ () ijkl - ijl
k

O< d < d + s:: decoke
- Sijkl - X ijkt V jl
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Coking and Tube wall temperature

Coking model constraints

Vi,j, k, t (4.19)

The amount of coke in a reactor at any time t, is modeled as the coke present at

time t -I plus the coke accumulated during the current time interval. This constraint is

modeled as equation (4.20). The coking rate depends upon the disjunctive operation.

Therefore, the amount of coke accumulated during any time interval t is calculated using

the selected severity and the corresponding coking rate data. This is written as equation

(4.21 ).

Coke =Coke I + '" '" ~Cokenk.I( .11- L., L., 1.1'(
i k

Vi,j, t

Vi,j, k, t

(4.20)

(4.21 )

Equation (4.21) is the reason that we needed to evaluate the flow fraction

variables (0:;~;). It is assumed that coke is additive in two disjunctive models. Also, note

that in this model coke is not proportional to the reactor hydrocarbon feed rate.

Tube wall temperature constraints

Since coke cannot be measured directly, the industrial practice is to infer its value

using the tube wall temperature measurement. Tube wall temperature depends upon the

current reactor coke and the disjunctive operation that is achieved adjusting the reactor

outlet temperature to give the required severity or conversion. It increases with the

accumulated coke in a reactor. Therefore, it is correlated with the accumulated coke and

the clean tube wall temperature as equation (4.22).
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Tw. ="" "" (Tw c1eon . a'IiS
j )+ T eonSI. Coke.

JI LL Ik IJkl W JI
k

Threshold limits

Vj, t (4.22)

These are the limits that are imposed on the accumulated coke and the tube wall

temperature to trigger a decoke operation. They are basically the upper bounds on the

accumulated coke and the tube wall temperature of a reactor, which should not be

violated in the model. These restrictions can be posed as equations (4.23 and 4.24).

Coke. < Coke lnilX

JI - J

T < T lnax

W jt - j

Vi,j,t

Vi,j,t

(4.23)

(4.24)

These limitations require that a furnace be decoked before the bound has been violated.

Energy requirement constraints

The amount of energy required for cracking in furnace j at time t is modeled as

equation (4.25) and the energy required by a compressor (in a single train compression

system) at time t is modeled as equation (4.26). It should be noted that in this model,

furnace energy required depends on the disjunctive model (operating condition) selection.

E furnace ="" "" PO H • E ..
JI LL IJkl IJk

k

(
PRateHk JE~'olnpress()r =I I I I IJ 'Ct :i: E camp

i j k c MWc

Vj, t

Vt

(4.25)

(4.26)

Energy of compression assumes a constant compressibility and efficiency and

constant inlet and outlet pressures. Therefore, it is a linear function of molar flow rate.
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High pressure (HP) and Medium pressure (MP) steam flowrates

Hot cracked gases exiting from the reactors at 800-900° C are immediately cooled

In the transfer line exchangers (TLE's) to quickly reduce the temperature so that no

further reactions takes place. During this cooling process, heat is recovered to generate

HP and MP steam that is used for various purposes within the plant. The generated steam

flow rates are related to the processing rates in the reactors as shown in equations (4.27,

4.28).

FHPSleal11 = p .. G HPSlealll
IJI IJI

F~WSleam = p ... G MPSIeam
IJI IJI

Decoking constraints

Vi,j, t

Vi,j, t

(4.27)

(4.28)

The time required for decoking is considered to be 1 day. Decoking can be

performed at anytime when the tube wall temperature and the accumulated coke in the

reactors are within the threshold limits. However, while scheduling a decoke operation, it

is important to ensure that at any time, no more than one reactor is taken offline for

maintenance. This will ensure that there is sufficient uninterrupted and continuous

product flow in the plant at all times. The decoke decision is modeled using binary

variables with the above described constraint posed as equation (4.29). Also one should

ensure that when a reactor is decoked, (i) the hydrocarbon flow through the reactor is

zero, and (ii) the accumulated coke is completely cleaned. These constraints are posed as

equations (4.30) and (4.31) respectively. The accompanying variables in equation (4.31)

are described in equations (4.32) and (4.33).

~ 8decokc < 1
L..... JI -

j

plllin . (1 _8"eeoke)::;: p < pnlilX . (I _8'kCOkC)
IJ JI IJI - IJ Jl
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Coke jt =Cokej,_, +IILlCoke;jk' -LlDecoke jt +S~t Vi,j,t
k

(4.31 )

M . s:decoke < AD cok . < M . s:decoke
U I' - LJ. e e It - U I'

0< st· < M ·8dccoke
- I' - J'

Vi,j, t

Vi,j, t

(4.32)

(4.33)

It is clear from these constraints that at any time t, when a reactor j is decoked,

8ftCCOke = I and therefore LlDecokeijt takes a value equal to M from equation (4.32), where

M is a sufficiently large value chosen to eliminate the accumulated coke in the reactor,

i.e., to make the variable Coke ijt in equation (4.31) equal to O. A slack variable S~it is

added to ensure that Coke ij, exactly takes a value equal to O. Since coke accumulation is

bounded to be non-negative, the decoke task cannot reduce coke below 0; since an

economic debit occurs for any coke accumulation, the coke at the end of a decoke task

will always be O. Alternatively, when no reactor is decoked, 8c1tCcOke is 0 and both
1-

LlDecokejj" S~;t are 0; thus, equation (4.31) becomes equation (4.20). Therefore, equation

(4.31) and not (4.20) is used in the scheduling optimizer.

Product invento.'y and sales constraints

The products obtained from the plant are transported through pipelines for sale

and any excess amounts are stored in the inventory tanks. The model for the product

inventory is given by equation (4.34) whereas the bounds on the inventory are given by

equation (4.35). Additional flexibility can be added to the inventory by proposing either

hard constraints or soft constraints. The sales depend on the predicted demands.

The plant cannot produce a constant rate of products because of periodic furnace

decokes. Therefore, the sales are specified as total production over a period, which for

this study in the output horizon of 90 days. Bounds on the integrated sales are shown in

equation (4.36).
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Inv cl = Inv cl-l + PI' od ot - Sales,.,

D dlll;n <'S I <D dill"'eman 0 - L. a eSct - eman 0

,

'Ve, t

'Vt

'Ve

(4.34)

(4.35)

(4.36)

In ethylene plants products are stored as gas in an underground cavern or in

liquefied form in a tank. In all our case studies, no inventory (or storage) of products was

considered. Inventory (Inv c,) in equation (4.34) was assumed to be zero at all times. This

means that in this model, all the products are sold as they are being produced. Equation

(4.36) is included to define the integrated product demand.

End point conditions

End conditions are the requirements that are imposed at the end of the time

horizon. In the current study, end conditions are related to the amount of coke

accumulated in the reactors. From computational experience, it was clearly evident that

the optimal solution was unrealistic without the end conditions. Therefore, the end

conditions described in this sub-section were always included in the scheduling model

(with the exception of one case study to demonstrate the need for the end conditions).

There are two end conditions on the coke. The first condition is to ensure a

feasible operational state at the end of the horizon, so that future operation remains

feasible. This condition will make sure that two or more reactors do not require decoking

during the first time period after the optimisation horizon ends i.e., ensuring that no two

reactors are completely filled with coke at the end of the time horizon. A rigorous way of

modelling this condition would require additional binary variables. Therefore, an

alternative approach that reduces flexibility slightly using only continuous variables is

proposed. This approach involves a hard constraint that must be strictly met for feasibility

as shown in equation (4.37). This equation ensures that no two reactors are ready for
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decoke at the end of the time horizon, thus enabling feasible operation beyond the

specified time horizon. The value for Coke~~~~ondi'ion is calculated based on the number of

furnaces in operation to allow feasible operation beyond the time horizon, as shown in

equation (4.38).

C k < C k 1ll0Xo e jNT - 0 ecndrondition

C k mo, -C k ma, (Nf' l)""C k Illaxo eendrondilion - 0 e - IS - ',' 0 eacnlllli period

\fj (4.37)

(4.38)

where, Nfl'S is the number of furnaces in service, Coke""" is the maximum coke allowed

in a reactor before decoking, and Coke::~:::lm/periOd is the maximum coke accumulated

during one time period.

The second end condition addresses the coke build up that will ultimately require

decoking after the optimiser horizon. To define this end condition, a soft constraint is

imposed by penalizing the amount of coke accumulated at the end of time horizon in the

objective function. The penalty term as shown in equation (4.39) adds a cost that is

proportional to the coke accumulation at the end of the optimiser horizon.

ICokejNT

Penalt),roke = j . (C stcncrgy + C st ProlilIOSS)o dccooke 0 dccokc
Coke ma ,

(4.39)

Typically, the cost associated with furnace decoke is the cost of energy required to

completely cleanup coke. However, for instance if a furnace is scheduled to operate at

full production capacity (and at its maximum severity), to meet the required product

demand, a decoke under such a circumstance can incorporate a downtime of I day,

leading to production loss, thus loss of profit. Both these terms are the costs associated

with furnace decoke (i.e. to completely clean the coke (Cokel1lox) in the furnace);

therefore, they are included in the penalty term as a cost proportional to the coke

accumulation at the end of optimizer horizon. The energy costs are always present in the
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penalty term; however, the costs related to profit loss are scenario specific. The profit loss

is zero for scenarios where the integrated demand over the scheduling horizon can be met

without operating the furnace at its full production capacity. The costs associated with

both these terms for all the scenarios considered in this thesis are provided in Appendix

B.

Sample optimisation results with and without penalty function (equation (4.39))

are shown in Figure 4-4. It is clear that without penalty, the optimizer avoids a second

decoke at the end of the horizon. It does so by selecting a low severity (low ternperature)

for the reactor. This strategy is optimal for the fixed horizon, but it results in the decoking

cost immediately after the horizon and lower overall profit. A more complete case study

on the importance of end conditions is discussed in Section 4.5.1.1.
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Figure 4-4: Sample results to highlight the importance of end conditions

Objective function

Since, the objective of this scheduling problem is to maximize the plant profit, an

economic objective function is formulated in the model that is expressed as the plant

profit less the penalties on coke and recycle feed inventory as shown in equation (4.40).

66



The plant profit is expressed in terms of the value of products, cost of feeds and other

utility costs as shown in equation (4.41):

Objective function = Plant Profit - PenaltlOke
- Pena1tlcy-lnv (4.40)

Plant Profit = Value of products - Cost of feedstocks - Cost of dilution (4.41)

steam - Cost of furnace energy - Cost of compressor energy + Value of

HP and MP steam generated at TLE's - Cost for furnace decokeo

Details of each term in the profit equation are given as follows:

Value of products = LLSalesc, .Cost~rOduCI
I C

C f I'" k '\' '\' feedost a leedstoc s =L.. L.. Fi, .Cost i

C f dOl . - '\' '\' '\' '\' PD S/HC C . dilulionosto lutlonsteam-L..L..L..L.. ijkl'Pik . ost"eolll
1 j k

C f f '" '" E furnace. Co t furnaceost a urnace energy =~~ )1 S energy
I j

Cost of compressor energy = I E~'olllpressor . Cost~~~;~;~ssor
I

(4.41 a)

(4.4Ib)

(4.4lc)

(4.4ld)

(4.4 Ie)

Value of HP and MP steam = '\' '\' '\' FHPsleillll .C t HP + '\' '\' '\' F~'IPsleaJll .C st MP
~~~ IJi os steam L ~~ IJI 0 slemn

I i j I .i

(4.41f)

C I'" f d k '" '" ~ decoke C decokeost lor urnace eco e =~~ vjl . ostenergy
I j

67

(4.41 g)



Rcy In\' '1"Penalty - = fl.' L., L., Rcy _ Inv it

t

(4.41 h)

The objective function and all the constraints discussed so far forms the basic

formulation of the scheduling model. The problem size for a case study involving 3

feedstocks and 5 reactors results in 3100 binary variables, 297794 continuous variables,

308629 linear constraints for a scheduling horizon of 90 days with 90 time intervals.

When this MILP was attempted to solve using CPLEX, version 10.1, the solver initially

had difficulties finding a feasible solution and eventually was unable to find the optimal

solution in 100 hI's. This could be mainly attributed to the presence of large number of

binary variables. Therefore, to enhance the computational time and make the model

suitable for online computation, some constraints were reformulated and few tightening

constraints were proposed. Details are discussed in the following sections.

4.3.2 Reformulated constraints

A couple of constraints were reformulated and included in the model. This was

done to avoid the constraint structure that led to computational problems.

Feedstock allocation

Feedstock allocation is a discrete decision which should be made only when a

cleaned reactor becomes available. Therefore, an alternative allocation constraint is

modeled that can propagate the feedstock allocation decision during the normal plant

operation and makes the allocation decision only when a cleaned reactor is available.

This constraint as shown in equation (4.42) is included in the model. Furthermore, this

constraint also ensures that there is no feedstock switching during the normal plant

operation. Upon introducing this constraint, a logical modification has to be made for

equation (4.1), as shown in equation (4.43). Therefore, equation (4.1) is replaced by

equation (4.43) in the model.
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W ijl + I Wi'JI-1 S I
i'-,ti

"\' Wd < I.(I _15dccokc)
L.. IJI - Jl

\Ii, j, t

\lj, t

(4.42)

(4.43)

In equation (4.42), the summation is over all feedstocks (i) except the feedstock

currently being processed in the reactor. The benefit of this constraint is to substantially

reduce the feasible region, which should speed the branch and bound search.

Decoking model

As pointed out earlier, constraints (4.31 - 4.33) are used to model the cleaning of

accumulated coke during a decoke operation. They have slack variables and big-M type

constraints which were found to be computationally expensive from various trial runs.

Therefore, those constraints are replaced by equations (4.44 - 4.46) to reduce

computational time. This is done by eliminating the slack variables (sUt ) and modifying

the big-M type constraints.

Coke jt = Coke jH +I tlCoke jkt - tlDecoke jl
k

O< AD k < M . s: d.ccoke
- L..l eco e j, - U JI

o:::; Coke jl :::; Coke :;'" . (1 - 8~~COkC )

\lj, t

\lj, t

\lj, t

(4.44)

(4.45)

(4.46)

Since the economics requIre a decoke to remove all coke and negative coke

accumulation is not possible, the slack was found to be unnecessary. It was found that

the value of M in equation (4.45) affected the computational time. Experience has shown

that large values of M needed more computational time. This made sense because large

values of M result in larger feasible region; thus, requiring more time for the search.

Therefore, in the model, the value of M was chosen to be no more than the maximum

value of coke, i.e., 300 kg.
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4.3.3 Tightening constraints

Several tightening constraints were formulated that incorporated process

knowledge about the process and economics of an ethylene plant into the scheduling

model. From computational experience these constraints were found to be very effective.

Note that no additional assumptions are required when applying these constraints, except

for the last constraint.

Minimum run length (1) days) constraint

In general, operating a reactor at high severity leads to shorter run lengths and low

severity leads to longer run lengths. Accordingly, if the maximum severity of operation in

a reactor is known, it is possible to calculate the minimum run length for that reactor. In

other words, one can estimate the minimum number of days (saYl1) a furnace should be

in operation without decoking. This also means that only one decoke is possible in every

(11 ) days.

The constraint, as shown in equation (4.47) is modeled as a rolling time window

which assures that over the entire time horizon, at any time only one decoke is possible in

11 days. This is an important and very efficient tightening constraint, because it reduces

the tree search significantly. For exanlple, say the minimum run length is estimated as 20

days. If, a decoke is triggered at day I, then this constraint will enforce the binary decoke

variables in the next 19 days to take a no decoke value, thus reducing the feasible region

and search time considerably.

\tj, t (4.47)

Coke'"'' - Coke ,olca
"

where 11 = and RCoke'mx is the coking rate corresponding to
, RCoke"1<"

maximum reactor severity.
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(~) decokes in the defined time horizon

Once the minimum run length 11 is known, we can further calculate the maximum

number of decokes possible for a reactor in the defined scheduling time horizon. This

estimate can then be used to restrict the number of decokes, as shown in equation (4.48).

Similar to the previous constraint, this one also increases the efficiency of tree search by

pruning out the unnecessary node searches.

"8dccoke < A
~ JI -I-'

1

where, ~ =TH , TH =Time Horizon (days)
11

No decokes in first (1) days

'dj (4.48)

Based on the initial coke present in the reactors, we can calculate the minimum

number of days the reactors should operate without triggering a decoke operation, based

on the heuristic that a decoke will not occur before required for feasibility. This estimate

can be used to fix some of the binary variables in the beginning of the tree search thus

reducing the search time. This constraint is more effective when the initial coke present

in the reactor is small, thus allowing more number of binary variables to be fixed. This

constraint is posed as shown in equation (4.49).

1+/
" 8dcroke < 0
~ JI -
I~I

'dj (4.49)

Coke rna, _ Coke inilial

where, 'Y =-------- and RCoke""" is the coking rate corresponding to
RCoke ntlX

maximum reactor severity.

Force decoke within the first (a) days
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If the typical minimum severity of operation is known, it is possible to calculate

the maximum time within which a decoke must occur. This constraint adds less flexibility

by forci ng a decoke duri ng the fi rst ( 0:) days, posed as equation (4.50).

I+a
'" 8<kcokc > I
L.., JI -
1=1

'v'j (4.50)

C k ma' - C k inilial

Wh 0 e 0 e d RC k min· h k· d·ere, 0: = . an 0 e IS t e co tng rate correspon Ing to
RCoke nlln

minimum reactor severity. The value of 0: must be rounded.

Decoke possible only after a predefined condition

More frequent decokes decreases the life of the reactors. This information is not

included in the model; therefore, if the optimum requires frequent decoking, the

optimizer would select many decokes. To utilize the minimum number of decokes, a

parameter is added to the model, which can ensure that decoking is triggered only after

exceeding the limit on the accumulated coke (Coke~~~~,:cd). This constraint is posed as

shown in equat ion (4.51).

C k. >Cokedecoke ·8decokco eJI-I - allowed Jl 'v'j, t (4.51 )

This constraint was found to be very useful in the model as it reduced the

computational time greatly. However, it causes conflicts in few scenarios where

premature decokes were advantageous due to changing demand during the horizon.

Therefore, it was removed from the model while dealing with such cases. For example,

this constraint was not included in the model for the scenario described in Section 4.6.1.2.

The use of this constraint would depend on the engineer's insight; if the user is not sure

that the heuristic is valid, the constraint should not be included.
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4.4 Solution heuristic

Solution heuristics are required when it becomes difficult to solve large scale

scheduling problems using standalone optimization solvers. Several aggregation and

decomposition heuristics have been proposed in the literature (e.g., Pekny et aI., 2000 and

Kelly, 2005) to deal with difficult MIP's and solve them in a reasonable amount of time.

A review of literature on solution heuristics is provided in Section 2.1.1.3. Typically,

aggregation techniques rely on the idea of aggregating the time periods within the

specified horizon in order to reduce the dimensionality of the problem leading to a coarse

model and decomposition techniques rely on the idea of decomposing a large problem

into several small problems and solving them sequentially.

Using the aggregation and decomposition heuristics, we proposed a two-stage

temporal decomposition heuristic that was found to be very effective for solving the

furnace scheduling problem. This heuristic is always used within our scheduling model

and applied for all·the case studies discussed in this chapter.

4.4.1 Two-stage temporal decomposition heuristic

This is a time based decomposition heuristic which is designed to solve the

scheduling model in two stages instead of solving in a single stage. In the first stage, a

coarse grid model is formulated based on aggregation of time periods to reduce the

dimensionality of the problem and solved. The results obtained from this stage are used

to the binary (decoke) decisions in the next stage. In the second stage, many binary

variables in the fine grid model are fixed based on the first stage solution. Finally, the

fine grid model is solved to obtain a fine tuned solution. A schematic of this idea is

shown in Figure 4-5.

The main difference between coarse grid and fine grid models with respect to the

furnace scheduling model is the length of each time period. The fine grid model has more
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(finer) time periods, where as the coarse model has fewer (aggregated) time periods.

Essentially both these models represent the same set of constraints and objective function

with the exception of length of each time period in the scheduling horizon.

For example, consider the scheduling time horizon to be 90 days. In a fine grid

model, the length of each time period is considered to I day, resulting in 90 time periods

over the entire horizon. The length of each time period for a coarse model is considered

to be 3 days; therefore, the total number of time periods over the entire horizon is equal to

30. This reduction in dimensionality reduces the problem size to approximately (1/3Id
) of

the size of fine grid model. Therefore, instead of solving the scheduling (fine-grid) model

directly using a standalone solver in a single stage, this heuristic solves the scheduling

model in two stages to be computationally efficient. The details of the heuristic are

provided as follows.

In stage I, a coarse grid model is solved to o~tain an approximate solution. This

model is obtained by aggregating the time intervals in the defined scheduling horizon

leading to a smaller scheduling model. The solution from this model yields three-day

intervals within which the decoke occurs.

In stage2, the solution from stage I is used to fix the binary (decoke) decisions in

fine grid region where decoking may occur and definitely does not occur. As shown in

Figure 4-5, the binary variables in the un-shaded time periods are fixed because decoking

is not possible in this region as reflected in the coarse grid solution. Thus, the binary

variables in the shaded time periods are the only active binary variables in the model to

make decoke decisions. By searching the neighbourhood (9 time periods), this heuristic

provides extra flexibility around the decoking three-day period selected at stage I. Finally,

the fine grid model is solved to obtain a fine tuned decoke solution.
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This heuristic is completely automated so that the optimization model need not be

interrupted between the stages to fix the decisions. Fixing the logical decisions in the

model is achieved by forcing the decoke decisions to take a particular integer value.

Since this heuristic leads to smaller problem sizes in stage I (due to aggregation of time

periods) and stage2 (due to fixing binary variables), the solution can be obtained much

more quickly.

Decoke: tUlle period ill ~I;lgc -I :'OIUlio!l

NT INT-2 1 NT-l

Stage 2

Stage 1 ,-'~~

'-2--'-3-------'------1:, M,

---

//

Time perio::ls ,,,,arched for a fme tun/?{] decol-:e event

Figure 4-5: Illustration of two-stage decomposition heuristic

This heuristic was found to be very effective in reducing the computational time.

The optimum using this heuristic was identical to the optimum using only fine grid in

cases small enough that we could solve the optimisation problem in one stage with a fine

grid. Naturally, a global optimum cannot be guaranteed when this heuristic is employed

for large scheduling problems. As will be discussed in next section, this heuristic has

improved the computational time substantially.

4.4.2 Issues with the coarse grid model

From the above discussion, it is clear that the solution of coarse grid model forms

the basis for fine grid solution search because many of the binary variables in the fine

grid model are fixed based on the coarse grid solution. For instance, if the coarse grid
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model is incorrectly posed, that could mislead the fine grid model solution. Therefore,

proper care should be taken while posing the coarse model.

In a coarse grid model, the length of each time period is equal to 3 days; when the

optimizer chooses a reactor to decoke, it would be shutdown for one time period (i.e., 3

days). For a plant decoking time period of I day, this would result in 2 days of production

loss and no coke accumulation. Over a scheduling horizon of 90 days, this would

propagate inconsistency to the future decoking schedule due to incorrect interpretation of

production and coke accumulation in the cracking coils. Furthermore, the condition that

only one reactor could be decoked in a single time period holds good for a fine grid

model, but could be misleading when used in a coarse grid model because for a reactor to

shutdown, it would have to inevitably wait for 3 days (one time period) after any other

reactor is shutdown.

In order to address these issues and model a I day decoke in a 3 day time period,

few additional constraints have to be added to the coarse grid model. These constraints

are added only to the coarse grid model and not to the fine grid model. The constraints

are intended to (i) allow multiple (up to three) reactors to decoke in a single time period,

(ii) accommodate two days of production when a furnace is decoked in a 3 day decoke

period, and (iii) account for coke build up in a reactor during a 3 day decoke event.

Details of these constraints are provided in the following sub-sections.

4.4.2.1 Decoking multiple reactors

Equation (4.29) ensures that only one reactor can be shutdown for maintenance at

any time period. However, to allow multiple reactors to decoke within a single time

period, equation (4.29) is replaced with equation (4.52) in the coarse grid model. The

maximum number of reactors allowed to decoke C'T) in a single time period is calculated

based on the length of time period and the maintenance period. The condition that only

one reactor should be decoked at any time period can be taken care by the fine grid 1T1Odei

in the second stage of the solution heuristic.
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" 8 decoke < 1:L.J JI -
j

Vt (4.52)

where, 1: = ~t k ' is the number of reactors that can be docoked during each time
f..t eeo 'e

period.'For the coarse grid model in this study, 1: =3.

4.4.2.2 Accommodate production in the decoke time period

In order to accommodate two days of production in a 3 day decoke time period, an

additional (new) set of production constraints similar to those in the basic scheduling

model are used. The variables in these constraints have star as a superscript to

differentiate them from the variables in the basic scheduling model. These constraints are

used to model production only during a decoke event in a coarse grid model. Therefore,

during normal operation (periods without a decoke), these constraints are effectively

eliminated based on the decoke binary variables (i.e., production variables are forced to

be zero) using equation (4.53).

pmill . 8del'Oke ~ p* < pma, .8dccoke
'.1 Jl IJI - IJ .II

Vi, j, t (4.53)

During a decoke event, the logic variable 8~I,ecoke = I and the processlIlg rate

variables are activated according to equation (4.53). During normal plant operation,

8dc
l'oke =0 and the variables are forced to take zero values according to the sameJI ~

equation.

The feed balance constraint IS shown as equation (4.54). Disjunctive reactor

model constraint is shown as equation (4.55) and the production rates are calculated using

equations (4.56 to 4.58). To account for appropriate material balance, the production

during these two days is added to the production variable in the main scheduling model

as shown in equation (4.58a).
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F' =Ip* Vi, t (4.54)il ijl
j

I PD ~k' =Pi;l Vi, j, t (4.55)
k

PR * PD' X Vi,j,k,c,t (4.56)ate ijkCl = ijkt' ijkc

Pr od;, =I I I PRate:,kCI \ic, t (4.57)
j k

Sales;t =Pr od:t \ic, t (4.58)

Prod c, =Prod c1 + Prod:, . (,'1t - t-.tdeCoke) \ic, t (4.58a)

These equations account for production during all decoke periods. Note that

equation (4.53) governs the equations (4.54 to 4.58). During normal operation, equation

(4.53) is inactive and so all the production variables are forced to zero. The profit during

the two day production period is calculated as shown in equation (4.61) which should be

added to the objective function (equation 4.40) while solving the coarse grid model. The

profit calculation is shown in equation (4.61). This profit is added to the objective

function as shown in equation (4.62).

P 'ofit* = ("'\' Sal s* . Co -t prodUlI - "'\' F' . Cost feed - "'\'"'\'"'\' PD" . pS/HC _Cost dilulion
I I L..J e ct S C L..J 11 I L..J L..J L..J IJkt Ik steam

i k

+ '\' '\' FHPslCam* . Cost HI' + '\' '\' F~IPSle'"ll* . Cost MI' ). (t-.t _ t-.t decoke )
~~ IJ1 slemll ~~ IJl ' stealll

i j i j
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Ob · . f t· PI t P fit P I Cokc P I Rcy Iny f' .'.JectJve unc IOn = an ro I - ena ty - ena ty .- + pro It·:· (4.62)

4.4.2.3 Modificatiolls to the coke model

While modelling a I day decoke in a 3 day time period, it is assumed that the first

day is allocated for decoking and the next two days for production. The coke

accumulated during the two days of production is added to the subsequent time periods to

maintain consistency in the coking model. Therefore the coke model, described earlier as

equation (4.44), should be replaced with equation (4.63) in the coarse grid model. The

three terms identified in the equation are explained in the table below.

2 3

~A ~~
( '\ 1\ II

Coke jt =Cokejt-l + I L'-.Coke jkl + Coke;I_1 - L'-.Decoke jt

k

Vj, t (4.63)

Term Description

I Coke buildup during normal operation

2
Coke buildup during the 2 days in a 3 day decoke period. This IeI'm will add

the 2 days of coke buildup lo the next time step.

3 Term to eliminate coke during decoking

The tube wall temperature constraint is modified as shown in equation (4.64). The

coke accumulated during the two days is calculated using equation (4.65) and used in

equation (4.66) to calculate the change in the tube wall temperature during those two

days.

Tw, ="" "" (Tw clean . a~iSj)+ Tw eonsl . Coke,
JI ~~ Ik IJkl Jl

k

Coke:
t
= Rcoke* , (L'-.t - L'-.t decoke )
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where, Rcoke' is the coking rate chosen during the two days of production, ~t =3 days

for coarse grid model and ~tJerokc = I day.

All these constraints are used only in the coarse-grid model to account of I day

decoke in a 3 day time period. A complete set of constraints and objective function for

coarse-grid and fine-grid models used in this thesis to solve single feedstock and multiple

feedstock scenarios are provided in Appendix C.

4.5 Computational improvement

By introducing the reformulated constraints, tightening constraints and the

solution heuristic into basic scheduling model, the computational time was significantly

reduced. For example, let us consider a simple scenario where one feed is cracked in 2

reactors (for a one-stage, fine grid model: 180 binary vaFiables, 37080 continuous

variables and 37884 linear constraints). When a stand alone solver (CPLEX 10.1) was

used to solve the basic model, it took approximately 14000 seconds to solve the problem.

However, when the model was solved by introducing reformulated constraints, tightening

constraints and using the solution heuristic, it took approximately 350 seconds.

Improvement in the computational time as research progressed for this scenario is

shown in Figure 4-6. It is clear that the computational time has reduced greatly with the

introduction of tailored schemes such as solution heuristic, reformulated constraints and

tightening constraints to the basic model, during the course of the research. Most notably,

the computational time has been reduced by a factor of 40, which means that the

improved scheduling model (with tailored schemes included) could be solved 40 times

quicker than the basic scheduling model. In case of large models, the computational

improvement was found to be even more. For a scenario with 3 feedstocks and 5 reactors

(for a one-stage, fine grid model: 3100 binary variables, 297794 continuous variables and

308629 linear constraints), the computational efficiency was improved by over 240 times.
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Figure 4-6: Computational improvement as research progressed
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4.6 Open-loop case studies

Several case studies have been formulated and the results are discussed in this

section. These case studies are designed to highlight the flexibility of the scheduler to

handle various scenarios. The results obtained for every scenario are the predictions from

the scheduler, i.e., the solution of the MILP without feedback to account for any model

mismatch. (In the next chapter, the MILP will be the MPC controller in a feedback

control system.) Several single feed and multi-feed scenarios are formulated; these

scenarios are designed to show the importance of formulation features, to demonstrate the

ability of the formulation to solve complex problems, and to evaluate the computing

times. For all the cases, the formulation includes the two-stage solution heuristic,

reformulated constraints and tightening constraints. A complete set of constraints and the

objective function for coarse grid and fine grid models used to solve the open-loop case

studies are provided in Appendix C.

4.6.1 Single feedstock scenarios

Scenarios formulated with a single feedstock are discussed here. Naphtha is the

feedstock used for all the cases. Ethane, obtained in the products is not recycled back for

further cracking; it is sold. The main optimization decisions are to obtain optimal

flowrates, reactor operating conditions and decoke time periods. Yield profiles from

naphtha feedstock for various reactor conditions are shown in Figure 4-7. Severities

corresponding to propylene and ethylene peaks are highlighted in the figure as they are

repeatedly used in the following discussion. Yield profiles from Ethane feedstock for

various reactor conditions are shown in Figure 4-8. (For propane feedstock yield profiles,

refer to Figure 3-4) .
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In Figure 4-8, only ethylene yield is plotted onto the primary y-axis, which is on

the left hand side. All the remaining product yields are plotted onto the secondary y-axis

shown on the right hand side of the graph.

4.6.1.1 Case 1 - End conditions

End conditions are the requirements that we decide must be met to ensure a

feasible operational state at the end of time horizon. In this scenario, we study the effect

of end conditions on the reactor operation and maintenance schedule. This is done by

looking at the results from the scheduling model with end conditions and without end

conditions. A brief description of the scenario parameters are tabulated as shown below.

Feedstock Naphtha

Number of Reactors 2
Time horizon 90 days
Sales limit Unlimited C2H4 sales
Fresh feed Unlimited amount available
Degrees of freedom Processing rates, Severity, SIHC and decoke time periods

Discussion of results

Results obtained without end penalties in the model are shown in Figures 4-9 and

4-10. The production details of ethylene and propylene, maintenance schedule in the form

of Gantt chart, coke accumulation details over the entire horizon are depicted in Figure 4­

9. Severity and S/HC profiles for both the reactors are shown in Figure 4-10.

In general, for an unlimited ethylene sales scenario, the reactors should operate at

high severity and S/HC ratios to produce as much ethylene as possible. From Figure 4-10,

it can be seen that severities in both the reactors were high in the beginning; however,

they gradually decrease towards the end of the horizon. On the other hand, both the

reactors are completely filled with coke by the end of the horizon. This leads to a

conclusion that the reactors have been operating at reduced severities to avoid a (third)
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decoke towards the end of the horizon. Although it is an "optimal" solution for the

horizon in the model, it leads to a situation where both the reactors have to be decoked in

the future - immediately after the horizon ends. In such a situation, there would be no

production in the plant until the maintenance is complete, and the plant would have to be

shutdown at a large economic cost.

In order to overcome such situations, end penalties have been imposed in the

model, and the results obtained after its implementation are shown in Figures 4-11 and 4­

12. The new solution has an additional decoke for each reactor almost at the end of the

horizon. The little coke accumulated in both the reactors at the end of the horizon

provides scope for feasible operation in the future as can be seen from Figure 4-11. Also,

there is no decrease in the severity levels as before; the reactors are operated consistently

at expected levels. This leads to a very reasonable solution.

In conclusion, without end penalties the final operational state could be infeasible

for future operation and the cost for coke present at end of the horizon would not be

included in objective function. Since end conditions overcome such a situation, they are

always embedded in the standard implementation of the scheduling model, including all

further studies reported in this thesis.
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Results without end conditions
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4.6.1.2 Case 2 - Variable sales limits

It is possible for the demands for certain products may vary over a 90 day period.

Hence, the sales limits vary accordingly with the demand patterns since demand is

interpreted in these cases as a maximum market sales. In this scenario, we highlight the

flexibility of the optimizer to tackle such a varying demand situation. In this scenario,

there is a sales limit on ethylene for the first 30 days, while there is no limit Oil ethylene

sales for the remaining 60 days. A brief description of the scenario parameters are

tabulated as shown below. We expect the optimizer to adapt to these changes by choosing

operating conditions and decoke timings that are most profitable.

Feedstock Naphtha
Number of Reactors 2
Time horizon 90 days
Integrated ethylene 60% of the plant capacity for the first 30 days and
Demand unlimited sales for the last 60 days
Fresh feed Unlimited Naphtha available
De21"eeS of freedom Processing rates, Severity, S/HC and decoke time periods

Discussion of Results

Results obtained for this scenario are shown in Figures 4-13 to 4-15. During the

first 30 days, there is a limit on ethylene sales. Therefore, the optimizer chooses to

operate both the reactors at the propylene peak corresponding to a severity of 0.82 and

low S/HC of 0.5 as shown in Figure 4-14. The propylene peak is a profitable operating

condition during normal reactor operation. At this peak, the reactors produce as much

propylene as possible, while producing just enough ethylene to meet the ethylene

demand. One can also see that the reactors have around 250 kg of coke accumulated.

During the last 60 days, there is no limit on ethylene sales. Therefore, the reactors

can produce as much ethylene as possible during this period. Thus, the optimizer choose

to operate both the reactors at the ethylene peak corresponding to a severity of I and

S/HC ratio of 1.5. During this period of high severity operation, it is also desirable to
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have as little down time as possible. This means that the number of reactor shutdowns for

coke cleanup should be minimum. Therefore, as a solution the optimizer has chosen to

prematurely decoke both the reactors before the 3\s, day, the day when the unlimited

sales starts. It is clear from the Gantt chart as shown in Figure 4-13, that Reactor I is

cleaned on 291h day and Reactor2 is cleaned on the 30lh day. Doing so, the optimizer

made sure that both the reactors are clean and available for production at maximum

capacity from the 31 sl day.

Numerical results obtained are shown in Table 4-2. The problem SIzes,

computational times, and so forth for both the temporal decomposition stages are

highlighted. It can be seen that this problem was solved in less than 15 seconds in two

stages.

Table 4-2: Case 2 . Numerical results

Two Stage decomposition heuristic
Stage 1 Stage 2

Discrete time intervals 30 90
Integer variables 48 28
Continuous variables 14750 27066
Constraints 15114 27474
Computational time 4.86 secs 9 secs
Model Profit 38270551.8 $
Solver details CPLEX \0.1
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Figure 4-15: Case 2 - Processing rates

Case 3 - Reactors in service

Sometimes the demand for products may drop significantly. In such a case, it

might be necessary to shutdown one or a few reactors to reduce production. In this

scenario, we highlight the capability of the model to deal with a situation when there is

low demand for ethylene. The nwin decisions are then to decide which reactors will be in

service at what times during the time horizon. The constraints used to model this

condition are discussed in Appendix B. A brief description of the scenario parameters are

tabulated below.

Feedstock Naphtha
Number of Reactors 2
Time horizon 90 days
Integrated ethylene Demand 40% of the plant capacity
Fresh feed Unlimited Naphtha available
Degrees of freedom Processing rates, Severity, SIHC, Decoke time

periods and Number of furnaces in operation
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Discussion of Results

]n this scenario, the demand for ethylene is very low, which leads to a significant

reduction in ethylene production due to sales limits. As an optimal solution, the optimizer

has chosen to operate both reactors and shut them down intermittently. The results

obtained for this scenario are shown in Figures 4-16 to 4-18. Due to the specified initial

condition, both the reactors start to operate in the beginning. But after the 16th day, we

can observe in the Gantt chart in Figure 4-16 that Reactor 2 remains in operation while

Reactorl is taken offline. The processing rates of the reactors are shown in Figure 4-18.

When the processing rate for a reactor is zero, it means that the reactor is not in service.

The optimizer could have chosen to operate both the reactors for certain period

and then shutdown both of them once the demands were met. But in our formulation, we

imposed an additional constraint that there should be a minimum feed flow into the

reactors to maintain continuous downstream plant operation. Therefore, the optimizer has

chosen to operate at least one reactor by allowing intermittent shutdowns.

Numerical results obtained are shown ll1 Table 4-3. The problem Sizes,

computational times etc. for both the stages are highlighted. ]t can be seen that this

problem was solved in 270 seconds in two stages. The integrated demand for ethylene was

exactly met in this scenario.
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Table 4-3: Case 3 - Numerical results

Two Stage decomposition heuristic
Sta~e 1 Stage 2

Discrete time intervals 30 90
Integer variables 110 46
Continuous variables 16139 21341
Constraints 16615 19426
Computational time 258 sees 12 sees
Inte~rated CzUt Demand 30000000 Kg
Ethylene produced 30000000 Kg
Model Profit 22419400 $
Solver details CPLEX 10.1
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Figure 4-16: Case 3 - Gantt chart and Production details

93



Reactor 1

I:f::::::":',::''::'::: :: ]
10 20 30 40 50 60 70 80 90

Reactor 2

I ::[ , "" '. '., ;d
10 20 30 40 50 60 70 80 90

Reactor 1

<J ' ~::; .;: ~:: ;[]
10 20 30 40 50 60 70 80 90

Reaclor 2

<r :1:::,1:::::: ;D
\0 20 30 40 50 60 70 SO 90

Time honzon idaysj

Figure 4-17: Case 3 - Severity and S/HC profiles

x 10' Reactor 1
8~~~~

~ 6 ---------------------------------------,--------------l------j
~
<II • _ _ . _ • ~. .

~ 4 1
}, 1

o~~~~

10 21) 30 40 50 ')0 70 80 90

8

h
"O' , , ,"'"""', , , , rl

I' --------1. Immmmmmu-----mm
~ 4 . . ..• . 1

j :l ,~, '", ,I , , ,U
10 20 30 40 50 60 70 80 gO

Time honzon ida,s)

Figure 4-18: Case 3 - Processing rates

94



4.6.1.4 Case 4 - Coked reactors

In this scenario, both the reactors in operation initially have a large amount of

coke (250 Kg) so that decoking is required in the near future. However, due to

maintenance constraints only one reactor can be decoked on any particular day.

Therefore, it becomes necessary to prematurely decoke (before reaching the decoke

limits) one reactor to achieve feasible plant operation. Here, we highlight the flexibility

of the optimizer to deal with such a situation and decide which reactors to prematurely

decoke and which to operate at different periods of time. A brief description of the

scenario parameters are tabulated as shown below.

Feedstock Naphtha
Number of Reactors 2
Time horizon 90 days
Integrated ethylene Demand 66% of the plant capacity
Fresh feed Unlimited Naphtha available
Degrees of freedom Processing rates, Severity, S/HC and Decoke time

periods

Discussion of Results

The results obtained are shown in Figures 4-19 to 4-21. Figure 4-19 clearly shows

that Reactor I is prematurely decoked. The maintenance schedule shown in the form of a

Gantt chart shows a cyclic pattern for reactor shutdowns. The severities and S/HC ratios

for reactors I and 2 are shown in Figure 4-20. The processing rates for all the reactors are

clearly depicted in Figure 4-21 .

The results from the simulation study for the same scenario were discussed in

Chapter 3 (Section 3.7). It appears that simulation results (which represent an engineer

making all decisions) and optimal results are the same for reactor maintenance decision

making (compare Gantt chart). However, there are differences in the ethylene production

rates and hence demand met. In optimization it is assured that integrated den1and

conditions are exactly met, which could not be assured with manual decision making.

Also, one should note that this is a simple scenario, therefore feasible operation was
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achieved by easy simulation. However, for larger problems where the decisions to make

are complicated, optimization based approach would provide faster optimal decisions.

Numerical results from the optimization based approach are shown in Table 4-4.

The problem sizes, computational times etc. for both the stages are highlighted. It can be

seen that this problem was solved in 12.4 seconds in two stages. The integrated demand

for ethylene was exactly met in this scenario.

Table 4-4: Case 4 - Numerical results

Two Sta2e decomposition heuristic
Sta2e 1 Sta2e 2

Discrete time intervals 30 90
Inte2er variables 48 28
Continuous variables 14750 27066
Constraints 15114 27474
Computational time 6.4 secs 6 secs
Inte~ratedCZH4 Demand 49500000 Kg
Ethylen'e produced 49500000 Kg
Model Profit 36929999.06 $
Solver details CPLEX 10.1
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4.6.1.5

.------------------------,-----------------------------------------

,-------------------------..------------------------,----- -- -----

Figure 4-21: Case 4 - Processing rates

Case 5 - Large scale problem

This is a large scale ethylene furnace scheduling problem having the number of

furnaces typical in a full-scale plant. In this scenario, the plant can crack naphtha

feedstock in five reactors for a total plant capacity of 0.75 million MTA ethylene. Here,

we highlight the model capability to handle large scale scheduling problems. To be more

realistic, initial coke in the reactors is considered to be different for all the reactors. A

brief description of the scenario parameters are tabulated as shown below.
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Ethylene Plant Capacity 0.75 million MTA C2H4

Feedstock Naphtha
Number of Reactor's 5
Time horizon 90 days
Inte~ratedethylene Demand 60% of the plant capacity
Fresh feed Unlimited Naphtha available
Degrees of freedom Processing rates, Severity, SIHC and Decoke

time periods

Discussion of Results

The results obtained for this scenarIO are shown in Figures 4-22 to 4-25. In

general, the optimizer selects an optimal severity and S/HC for the reactors and

manipulates the processing rates appropriately to meet the demands. The optimal

severity is chosen to be 0.82 (Figure 4-23) and S/HC ratio to be 0.5 (Figure 4-24) for all

the reactors during the entire horizon. The processing rates for the reactors are shown in

Figure 4-25.

Severity of 0.82 corresponds to propylene peak in the product yields. At this peak,

plant operates most profitably by producing more propylene and enough ethylene to

meet the demand. S/HC ratio of 0.5 is the minimum steam required for reactor

operation, which reduces furnace energy.

Schedule for maintenance of the reactors is shown in the Gantt chart as shown in

Figure 4-22. It is clear that Reactor I has two decokes because of low coke at the initial

condition and low severity chosen to maximize propylene yield, while all the others

have three decokes during the horizon.

Numerical results are shown in Table 4-5. The problem sizes, computational times

etc. for both the stages are highlighted. It can be seen that this problem took 453 seconds
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In stage I and 152 seconds in stage2 for a total of 705 seconds to sol ve the entire

problem. The integrated demand for ethylene was exactly met in this scenario.

Table 4-5: Case 5 - Numerical results

Stage 1 Stage 2
Discrete time intervals 30 90
Integer variables 136 94
Continuous variables 37412 64953
Constraints 38444 66075
Computational time 453 secs 152 secs
Integrated C2H4 Demand 123750000 Kg
Ethylene produced 123750000 Kg
Model Profit 92443061 . 13 $
Solver details CPLEX 10.1
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Figure 4-22: Case 5 - Gantt chart and Production details
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Figure 4-25: Case 5 - Processing rates

4.6.2 Multiple feedstock scenarios

The scenanos formulated with multiple feedstocks are discussed here. These

scenarios have an additional decision to make over the single feed scenarios discussed

earlier, which is to make an optimal allocation of feeds to the reactors. This decision is

mainly based on the economics and the product demands.

Also, we have an additional condition for these scenarios that at least one reactor

must crack the recycled ethane. Therefore, we have explicitly assigned Reactor I to crack

ethane in all these scenarios, leaving the optimizer to select feedstocks for the remaining

reactors. Details of the scenarios and results are discllssed as follows.
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4.6.2.1 Case 6 - Ethylene sales price higher than propylene

In this scenario, two feedstocks ethane and naphtha are available to be cracked in

three reactors. Sales on ethylene are unlimited and the ratio of ethylene price to

propylene is 1.46 (ethylene = 0.749 $/kg and propylene = 0.511 $/kg)). Under this

condition, the optimizer should choose the best feedstock to crack in the reactors for the

given product pricing. Here we highlight the model capacity to make additional binary

decisions (choosing appropriate feedstocks over time) besides the regular plant operating

conditions and maintenance schedule. A brief description of the scenario parameters are

tabulated as shown below.

Feedstocks Ethane, Naphtha

Number of Reactors 3
Time horizon 90 days
Sales limits Unlimited sales on all the products
Fresh feed Unlimited feeds available
Degrees of freedom Feedstock selection, Processing rates, Severity, S/HC and

Decoke time periods

Discussion of Results

The results obtained for this scenario are shown in Figures 4-26 to 4-28. Since

ethylene is sold for a higher price than propylene and no sales demands are acti ve, it

makes sense to operate the reactors at conditions giving the highest ethylene yields.

Therefore, it is clear from the results that the optimizer has selected to crack ethane is all

three reactors at their maximum severity, S/HC and processing rates so that the plant can

produce as much ethylene as possible.

The schedule for maintenance of the reactors is depicted in the Gantt chart as

shown in Figure 4.25. Clearly, all the reactors undergo three decokes during the entire

horizon. The severities and S/HC ratios corresponding to the ethylene peak are shown in

Figure 4-26.
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Figure 4-27: Case 6 - Severity and S/HC profiles
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4.6.2.2 Case 7 - Propylene sales price higher than ethylene

This scenario is the same as Case 6 except for one pricing change; propylene is

sold for a higher price than ethylene. The ratio of propylene price to ethylene is 1.46

(propylene =0.749 $/kg and ethylene =0.511 $/kg). Under this situation, the optimizer

should obtain the best feedstock to be cracked in the reactors with optimal operating

conditions and maintenance schedule. A brief description of the scenario parameters are

tabulated as shown below.

I Ethane, Naphtha
Number of Reactors 3
Time horizon 90 days
Sales limit Unlimited sales on all the products
Fresh feed Unlimited feeds available
Degrees of freedom Feedstock selection, Processing rates, Severity, S/HC and

Decoke time periods

I Feedstocks
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Discussion of Results

The scenario is the same as Case 6 except that the ratio of prices for ethylene are

propylene are inverted so that propylene is more valuable than ethylene in the market.

The main aim here is to find out which feedstock is profitable for ethylene plants under

such a situation.

Reactor I is explicitly allocated to crack recycled ethane. Therefore, the optimizer

has to decide on the feeds to be cracked only in Reactors 2 and 3. From the results, it is

clear that the optimizer has chosen to crack naphtha in reactors 2 and 3 at the propylene

peak. It makes sense to chose naphtha and crack at propylene peak because it has a much

higher yield of propylene, which is the more valuable product in the market. This leads to

a conclusion that when there is no limit on sales for the products and propylene is more

valuable than ethylene, it is most profitable to crack naphtha in the plant.

The results obtained for this scenano are shown in Figures 4-28 to 4-30. The

schedule for maintenance of the reactors is depicted in the Gantt chart as shown in Figure

4-28. Clearly, reactor I undergoes three decokes and reactors 2 and 3 undergo two

decokes during the entire horizon. Severities corresponding to propylene peak are shown

in Figure 4-29 and the processing rates are shown in Figure 4-30.
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Figure 4-29: Case 7 - Gantt chart and Production details

Reactor 1

I:~[ ::::::::::"::::::::::;;:;::::;;;"::";;:;""OJ
10 20 30 40 50 60 70 80 90

Reactor 2

~ I 0:[ ":::•:•• ::•• ":•"•• :•• ::::•• ":::•::•• :•::•• :J
10 20 30 40 50 60 70 80 90

Reactor 1

~ ::[ ;;;:;;: :;;:;:;;;::;;: :;;";:;::::::::: ::::1
10 20 30 40 50 60 70 80 90

Reactor 2

10 20 30 40 50 60 70 80 90
TIme horizon (days)

Figure 4-30: Case 7 - Severity and SIHC profiles
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Figure 4-31: Case 7 - Processing rates

4.6.2.3 Case 8 - Large scale problem 1: Sales limit on Ethylene

This is a large scale scheduling problem encountered typical to those in a real

plant. In this scenario, ethylene plant can crack ethane, propane and naphtha feedstocks

for a total plant capacity of 0.8 - I Million MTA ethylene. Unlimited amounts of fresh

ethane, propane and naphtha feeds are available for cracking. For a given ethylene

demand scenario, the optimizer should process the best feedstock(s) to be cracked in the

reactors over time with optimal operating conditions and maintenance schedule. A brief

description of the scenario parameters are tabulated as shown below.

l"eedstocks bthane, Propane and Naphtha
Number of Reactors 5
Time horizon 90 days
Sales limit On ethylene: 60% of the plant capacity
Fresh feed Unlimited feed available
Degrees of freedom Feedstock selection, Processing rates, Severity, S/HC and

Decoke time periods
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Discussion of Results

For this scenario, the optimizer selects an appropriate feedstock, optimal severity

and S/HC for the reactors and adjusts the processing rates appropriately to meet the

demands. Reactor I is explicitly allocated to crack recycled ethane. Therefore the

optimizer has to allocate feeds to reactors 2 to 5. Although unlimited amounts of ethane,

propane and naphtha feeds are available for cracking, optimizer selects naphtha feed for

reactors 2 to 5. It is therefore clear that for the specified plant economics, it is most

profitable to crack naphtha than ethane or propane.

The results obtained for this scenario are shown in Figures 4-3] to 4-34. The

optimizer chooses to operate Naphtha crackers (i.e. Reactors 2 to 5) at the propylene peak

corresponding to a severity of 0.82 and low S/HC of 0.5. At this peak, the reactors

produce as much propylene as possible and enough ethylene to meet the ethylene demand

and stay within the sales limits. The processing rates for all the five reactors are shown in

Figure 4-34. The schedule for maintenance of the reactors is depicted in the form of a

Gantt chart as shown in Figure. It is clear that reactors 1 to 4 undergo three decokes

whereas reactor 5 has only 2 decokes.

Numerical results obtained from the two-stage temporal decomposition heuristic

are shown in Table 4-6. It can be seen that this problem took 1263 seconds in stage I and

284.25 seconds in stage2 for a total of 1547.25 seconds to solve the entire problem. This

large problem could be solved in less than 30 minutes, which highlights the efficiency of

the formulation.
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Table 4-6: Case 8 - Numerical results

Stae:e 1 Stae:e 2
Discrete time intervals 30 90
Integer variables 577 122
Continuous variables 106006 77086
Constraints 110533 71017
Computational time 1263 sees 284.25 sees
Intee:rated C2H4 Demand 142187500 Kg
Ethylene produced 142187500 Kg
Propylene produced 86850840 Kg
Model Profit 104496482 $
Solver details CPLEX 10.1
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Figure 4-32: Case 8 - Gantt chart and Production details
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4.6.2.4 Case 9 - Large scale problem 2: Sales limit and Limited Naphtha feed

This is again a large scale scheduling problem similar to one discussed in Case 7.

In this scenario, ethylene plant can crack ethane, propane and naphtha feedstocks for a

total plant capacity of 0,8 - I Million MTA ethylene. An unlimited amount of fresh

ethane and propane feeds are available, while limited naphtha feed is available. For a

given ethylene demand scenario, the optimizer should obtain the best feedstock to be

cracked in the reactors over time with optimal operating conditions and maintenance

schedule. A brief description of the scenario parameters are tabulated as shown below.

]I Ethane, Propane and Naphtha
Number of Reactors 5
Time horizon 90 days
Sales limit On ethylene: 60% of the plant capacity

Fresh feed Limited Naphtha and Unlimited Ethane and Propane
available

Degrees of freedom Feedstock selection, Processing rates, Severity, S/HC and
Decoke time periods

IFeedstocks

112



Discussion of Results

Reactor I is expl icitly allocated to crack recycled ethane. Therefore the optimizer

has to allocate feeds to reactors 2 to 5. In this scenario, limited amount of naphtha is

available. We have seen in the Case 7 that naphtha is the most optimal feedstock. Since

its availability is limited here, the optimizer has to choose between propane or ethane for

cracking in the reactors. From the results, it is clear that the optimizer has selected to

crack naphtha in two reactors and propane in two reactors. This again leads to a

conclusion that propane is the next optimal feedstock after naphtha for this ethylene

sales limited case study because it produces a variety of useful products that have good

market value.

The results obtained for this scenano are shown in Figures 4-35 to 4-38. The

optimizer chooses to operate Naphtha crackers (i.e. Reactors 3 and 5) at the propylene

peak corresponding to a severity of 0.82 and low S/HC of 0.5. It also chose to operate

propane crackers at its propylene peak corresponding to a severity of 0.8 and low S/HC

ratio. For both naphtha and propane crackers, operating at propylene peak produces as

much propylene as possible and enough ethylene to meet the ethylene demand and stay

within the sales limits. The severity and S/HC for ethane cracker can also be seen from

Figures 4-36 and 4-37. Processing rates for all the five reactors are shown in Figure 4­

38.

The schedule for maintenance of the reactors is depicted in the form of a Gantt

chart as shown in Figure 4-35. It is clear that reactors 2 and4 cracking propane have two

decokes and rest of the reactors undergo three decokes during the entire horizon. This

schedule corresponds to a maximum plant profit.

Numerical results obtained from the two-stage temporal decomposition heuristic

are shown in Table 4-7. The problem sizes, computational times etc. for both the stages

are highlighted. It can be seen that this problem took 1254.5 seconds in stage I and

782.92 seconds in stage2 for a total of 2037.42 seconds to solve the entire problem. This
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large problem could be solved in less than 30 minutes, which highlights the efficiency

of the formulation.

Table 4-7: Case 9 - Numerical results

Stage 1 Stage 2
Discrete time intervals 30 90
Integer variables 147 138
Continuous variables 99796 164360
Constraints 100959 165727
Computational time 1254.5 secs 782.92 secs
Integrated C2H4 Demand 142187500 Kg
Ethylene produced 142187500 Kg
Propylene produced 87908886.43 Kg
Model Profit 105467336.57 $
Solver details CPLEX 10.1

X 106 Ethylene production
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Figure 4-36: Case 9 - Gantt chart and Production details
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Figure 4-37: Case 9 - Severity profiles
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Figure 4-38: Case 9 - S/HC profiles
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Figm'e 4-39: Case 9 - PI'ocessing rates

4.7 Summary

This chapter has covered the details of mathematical formulation of the scheduler

(scheduling optimization model). The basic formulation leads to a large scale MILP

(actual size depends on the scenario). It is important to know that the smallest problem (I

feed and 2 reactors) has a size of 180 binary variables, 37080 continuous variables and

37884 linear constraints. For a scenario representing a typical real size plant, the problem

size was much larger. A stand alone solver (CPLEX 10.1) could not solve this problem to

optimality.

Therefore, tailored schemes were proposed III the form of constraint

reformulation, tightening constraints and solutions heuristics. This had reduced the

computational time by approximately 40 times for small problems, which means that the

scheduling model with tailored schemes was solved 40 times quicker than the basic

scheduling model.
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The scenarios for single feed and multiple feed were formulated to test the model

adequacy and highlight the model capability under various circumstances. The problem

was solved to optimality in reasonable times for an optimization that will be made daily

in a plant. All results agree with qualitative process understanding, as covered in the

discussions of the cases.
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Chapter 5. Reactive (closed-loop) scheduling

This maIO focus of this chapter is on reactive scheduling framework and the

implementation issues associated with it. The term "reactive scheduling" denotes a

scheduling system that periodically measures selected variables in the plant and resolves

the schedule; the results are implemented using a rolling horizon strategy. Thus, reactive

scheduling is a feedback control system. Several closed-loop cases studies are presented

in this chapter to assess the performance for the reactive scheduling system.

5.1 MPC framework for scheduling

Model predictive control (MPC) has been widely accepted by the process

industries as a tool to effectively control multivariate systems with input and output

constraints (Qin and Badwell, 2003, Marlin, 2000). MPC uses a plant model for

predicting the effects of manipulated variables on output variables, and it solves a

mathematical programming problem to optimize the future process behaviour to obtain

optimal control moves. These control moves are implemented in the plant in a rolling

horizon fashion. The plant model is periodically updated using the feedback information

at each controller execution. This feedback mechanism compensates for prediction errors

due to parametric and structural mismatch between the model and the plant, measurement

errors and forecast errors.

Typical process scheduling methods currently optimize the open-loop behaviour

of a system model. In practice, the methods are employed in a rolling horizon mode,

with results for the current time period (or several time periods) implemented manually

and the entire problem resolved in a batch manner by an engineer. Also, feedback

information (e.g., inventories, feed properties, plant performance) is used to update the
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modeJ, but this feedback is added to the model manually by an engineer. Therefore, the

current, manual scheduling optimization has a structure similar to MPC, and therefore,

MPC framework is chosen as a basic framework for developing a closed-loop reactive

scheduling system in this thesis.

5.1.1 Framework description

MPC framework for reactive scheduling is shown in Figure 5-1, with the set

points, plant inputs, outputs and feedback shown. This structure is general and could be

applied using many plant measurements to update numerous predictions. In this thesis,

the feedback is limited to coke accumulation in each reactor. The scheduler is the

optimizer which solves an open-loop scheduling optimization problem (MILP) at each

scheduler iteration. The optimization results for the current time period (feed to each

reactor, feed rate, reactor severity and S/HC ratio) are implemented in the plant. Note that

the decisions on the number of reactors (furnaces) in operation are not included, since

they should. be made with manual review and are considered to be offline decisions. In

addition, only single-feed type is considered, so that feed selection is excluded from this

problem. Just before each scheduler execution, the outputs from the plant are measured

and compared with the model outputs to obtain the bias term, which is used as a feedback

to update the model, and the open-loop optimization problem is solved again. The set

point is imposed on the product demand while obeying the terminal conditions.

r Integ'::'led dema:~--'-l
, J

I,
I

V SP

(MILP)

Coke~;s

{--Feed r;;;;--',
,~.' Reactor sever;ty

. SIHC ratio
\_-~----

Coke bias calculator

D
L Tube metal temperature i
----I---------,

I
I

I T ~r plant
I "\ jT

Y

Figure 5-1: MPC framework for closed-loop scheduling
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Disturbances entering the plant are represented as D, and the measurement errors

are represented as M in the figure. Disturbances and measurement errors are very

common in plants. Therefore, there is always a mismatch between the plant information

and model prediction, mainly due to: (J) model error (parametric and structural mismatch

in the model) (2) measurement error and (3) disturbances. This mismatch is often

considered as uncertainty in the model. Any errors in the model prediction due to this

uncertainty will be compensated through feedback model updating in the MPC

framework.

For the closed-loop system considered in this thesis, as shown in Figure 5-1, the

plant and the controller model are considered to be the same except for coke rate.

Therefore, the model error is only in the coke build up and hence the tube metal

temperature.

As a representation for the true plant, a plant simulation was performed (in

AMPL) at every scheduler iteration. Therefore~ the measurements obtained from the plant

simulation represent the measurements from the true plant.

5.1.2 AvaiJable measurements and model updating

Typically, the measurements available from a plant are the production rates of the

products and tube metal temperatures. Production rates are used to keep track of the

demand met at every scheduler iteration, while tube metal temperatures are used to

update the reactor model via feedback mechanism.

As discussed in Chapter 4 and shown here III equation (5.1), the tube metal

tenlperature is nlodeled as a function of reactor coke. Therefore, as the coke deposited in

the reactors changes, the tube metal temperature changes, as modeled by the following

equation.

T model =""' ""' (T dean ........ disj )+ T eonst. Cok model
W jT .LJ.LJ W ik Vijkl W e jT

k
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where, the subscript T denotes time (days) in closed-loop implementation.

This model is used on-line to predict the tube metal temperatures at every

scheduler iteration to compare with the measured plant values. Due to the model errors,

there will always be a mismatch in the model prediction and the measured value. In order

to compensate for those prediction errors in the tube meta] temperatures, reactor coke is

updated at every scheduler iteration. Reactor coke is not available as a direct

measurement from the plant; however, it can be estimated from the plant measurement of

tube metal temperature (TW~~Ilnl). The coke in each reactor is estimated prior to each

scheduler execution. First, the error in the tube metal temperature model is calculated.

T bias - T p'"lll _ T moddWjT - WjT WjT Vj, T (5.2)

h T plllllt· h b I ( II ) fl' I' d T mod eI .were, W j·i IS t e tu e meta wa temperature rom pant simu atlon an w jT IS

obtained from the controller/optimizer model. We know through equation (5.1) that tube

metal temperature is modeled as a function of reactor coke and the reactor severity. Since

the severity effect is the same in the model and plant, the mismatch is attributed to the

coke, and the coke bias updating can be calculated as shown in the following.

T bills = T conSI;~ C k bill,
W jT W 0 e jT Vj, T (5.3)

Finally, the coke model is updated as shown in the following equation.

C k model =C k model + Cok hillso e jT 0 e jT efl Vj, T (5.4)

where Coke~\lOdelis the accumulated coke from the model. Note that this updated coke is

used as the initial condition by the scheduler for the optimization. The formulation for the

open-loop optimization performed in each MPC iteration is defined in section 5.3.
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5.2 Modifications to scheduling optimization for closed-loop

implementation

During closed-loop implementation, an open-loop optimization problem is solved

at each scheduler iteration. In addition, very large, frequent changes in reactor operation

may reduce the life of the furnaces, because of their operation near maximum metal

temperatures. These fluctuations are undesirable; therefore, additional constraints should

be included in the model so that changes in decision variables are penalised in order to

ensure that closed loop response is smooth. Therefore, "move suppression" similar to

process control MPC design is included in the scheduler to make it suitable for online

implementation.

5.2.1 Move suppression

Move suppression on the process manipulated variables is important to ensure that

the process operating conditions do not deviate excessively from their previous state in

one controller iteration. It can be accomplished by penalizing the current optimization

moves, i.e., the change from the previous optimization manipulated variables. This way,

at each iteration, the optimization results remain "closer" to the previous optimization

results, which ensures that there are no large changes (fluctuations) in the reactor

operating conditions. This is important because these fluctuations affect the reactors and

downstream processes and in turn the profitability of the plant.

A sample result is shown in Figure 5-2 (obtained for a scenario with two reactors

and naphtha feedstock), where the effect of move suppression in the scheduling model is

clearly demonstrated. One can see that without move suppression, the processing rates

nuctuate excessively, which would be undesirable. With move suppression, the reactor

feed rates are constant between decokes. Importantly, the profits for these two cases are

the same; therefore, we see that the move suppression does not have an adverse effect on

the profit.
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The sharp decrease in the flows to zero is due to reactor decoke operation when

the reactor should be shutdown, which is unavoidable. Therefore, while penalizing the

moves In the move suppression model, additional care should be taken to make sure

decoking moves are not penalized. Move suppression is implemented as a penalty

appearing in the objective function. An appropriate value of the penalty coefficient IS

important to ensure a balance between the operational changes and plant profit.

Without Move suppr&ssion

OL.-...~--L..---'--'-L.....,~~--'-:':~~---":--~-'---'~~--'--:'c~~~~~-:,:-"-u......--.......:

10 20 30 40 50 60 70 80 90
Tlma (days)

With I·.lova suppression

------------r--------------------------r--------------------------------

-

oL.-...~-'10~-'-'-~2:':-0~~c':30~~-'4':-O~-~5~O~~-='"60~~'-::7'-c-O~~c':80--UL~--:'90

Time (days)

Figure 5-2: Effect of move suppression in closed-loop scheduling

5.2.2 Move suppression constraints

Move suppressIOn In the closed-ioop implementation is modelled as a soft

constraint. This was accomplished by determining the change from the feed tlows values

to the disjunctive reactors in the previous optimal solution. The absolute difference

between the disjunctive moves is obtained as shown in the following equation.
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\ii, j, k, T (5.5)

where, PDijkT-1 is the previous optimization result, PD ijkT is the current optimization

result.

Move suppressIon could be accomplished by penalizing the summation of the

moves 2.>:~mijkT in the objective function during each scheduler evaluation time T, to
ijk

ensure a smooth response in the operating conditions. However, if we penalize

(LL1m ijkT ) in the objective function, that will introduce a penalty for all moves,
ijk

including the decoke moves. (Recall that a large change in the production rate during

decoke is required.)

It is therefore necessary to modify the constraint in such a way that it suppresses

all the moves except the decoke moves. A new set of variables L1M ijkT is defined as

shown in equation (5.6).

\ii, j, k, T (5.6)

The left hand variables represent the absolute differences between the disjunctive

models for all the moves except the decoke moves, including when the reactor is

reduction for shutdown and the increase for starting up. Finally, LL1M ijkT is penalized in
ijk

the objective function with an appropriate penalty coefficient. In equation (5.6), the left­

hand side is zero for the times when the reactor is shutdown and started up; thus, the

penalty is zero for these situations. (This constraint assumes that the reactors shall

resume immediately after decoke.) The discussion on the penalty coefficient is covered in

the next sub-section.
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One can notice that equation (5.6) is nonlinear due to the product of continuous

variables [l.mijkTand binary variables bjT , bjT_1 • A reformulation technique discussed by

(Gueret et aI., 2000) can exactly reformulate bilinear constraints, shown in equation (5.6),

as a set of linear constraints. Details regarding the technique are discussed in Appendix

B, while the reformulated constraints are provided here.

First, equation (5.6) can be re-written as shown in equation (5.7)

where,

\:ii, j, k, T (5.7)

(Non-linear)

(Non-linear)

\:ii, j, k, T

\:ii, j, k, T

(5.8)

(5.9)

The exact linear reformulation of equations (5.8 and 5.9) are shown below with all

continuous variables being non-negative.

Non-linear [l.m ~kT = [l.m ijkT . bjT [I. Y - bm ijkT - [l.m ijkT · jT-1

constraints

[I. " S; [l.m iikT (5.8a) [I. v < [I. (5.9a)m ijkT m ijkT - m ijkT

Exact linear
[I. " - p""" (1- bjT ) [I. Y >[1. P"""(l b )

reformulations
m:jkr ;::: [l.m ijkT m ijkT - m ijkT - - jT-1

(5.8b) (5.9b)

x < p""" b (5.8c) [I. v P """ b (5.9c)[l.m ijkT - . jT mijkT S; '. jT-1

Where, pm'" is the maximum processing rate in the reactors

Equations (5.5), (5.7), (5.8a, 5.8b, 5.8c) and (5.9a, 5.9b, 5.9c) constitute the move

suppression constraints. These equations were added for every i, j, k and the summation

of the penal ties ( [l.M ijkT ) were ineluded in the objecti ve function.
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5.2.3 Penalty coefficient

It is important to select an appropriate penalty coefficient that considers the trade­

off between operational changes and the plant economics. Obviously, if the penalty

coefficient is higher the fluctuations will be reduced; however, the move suppression can

result in lower profits because it reduces the operational flexibility. Figure 5-3 depicts the

behaviour clearly. The term "number of fluctuations" used in the figure refers to the

number of operational changes, i.e., the number of non-zero t-.M iikT . One can see that,

when there is almost no penalty on the operational moves (i.e. penalty= JE-9), there are

many fluctuations in the operating conditions and gradually they are reduced as the

penalty increases. On the other hand, plant profit also decreased with the increasing

penalty. From Figure 5-3, a penalty coefficient of 0.000 I appears to be a good choice that

considers the trade-off between the number of operational changes (fluctuations) and

plant profit. The closed-loop scenario (Case J2) was chosen to perform this analysis. Six

different values of move suppression penalty coefficients were used in the closed-loop

optimization to obtain this graph.
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Figure 5-3: Effect of move suppression penalty coefficient on the plant profit and

number of operational changes
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5.3 Closed-loop scheduler details

The open-loop scheduler model (MILP) is solved every day during the online

implementation. For performing a closed loop analysis, in this thesis, only single feed

optimization model is considered for simplicity. Therefore, the constraints and objective

function of the single-feedstock open-loop scheduler model used in the closed-loop

analysis are listed here.

Constraints

Feed balance constraints and

F=~P-
II L-- 'J'

j

Dis juncti ve reactor mode I constrai nts

L PDijkl =Pijl
k

Production rates

PRateijkcI =PD ijkl . Xjjkc

Prod C1 =IIIPRate jjkCl
j k

Fraction of flow through disiunctive reactors

PO d P ,m\Uk = X uk ...IJ·' IJ·I IJ

LX:;kl ::; I
k
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Vi, t

Vi,j, t

Vi,j, k,c, t

Vc

Vc

Vi,j,k,t

Vi,j, t

(5.10)

(5.11 )

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)



d + ,d = (Jdi,j Vi,j, k, t (5.17)Xijkl Sijkl ijkl

I (J~isj = I Vi,j, t (5.18)IJkl
k

IS~kl - I disj I d Vi,j, t (5.19)- (J ijkl - X ijkl
k k k

o d ::::1 Vi,j,k, t (5.20):::: Sijkl

Coking, Tube wall temperature and Decoking

Coke jl = Cokejt-l + II6Cokeijkl -6Decoke jl
k

Tw. ='" '" (Tw clean. (JdiSj ) + Tw COIlSI . Coke.JI L.... L.... Ik I.l kl JI
k

0< 6Decoke. < M . (5dccoke- JI - JI

O<C k . ::::Cokell"" .(l_~dCC()kc)- 0 e.ll IJ u JI

'" (5dccoke < I
L...I1 -

j

pillill . (I _8dCCOkC) < p. < pilla, . (I _8dCCOkC)
1.1 JI - IJI - IJ .II

Thresholcllimits for c1ecoking

C k < C k maxo e jl _ 0 e j
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Vj, t

Vi,j, k,t

Vj, t

Vj,t

Vj, t

Vt

Vi,j,t

Vi,j, t

(5.21 )

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)



T . < Tl1lax
W JI - J

Energy constraints

E furnace ="" "\' PDu . Eu
JI L...J L...J IJkl IJk

k

[
PRate u

k JE :'ol1lpressor =I I I I IJ 'cl *E eOl1lp

i j k c MWc

Steam generated

FHPSleam =p. .G HPSleal1l
IJI IJI

F~'Ps,eal1l = p.. G MPsleam
IJI 1)1

Tightening constraints

"" 8decoke < n.
L..)I -I-'

I

I+y

"" 8decuke < 0
L..)I -

1=1

C k > C k dccoke . s:: dccokea e jl_ 1 _ a eallowed V jl

lntegrated demand constraint
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'v'i,j, t

'v'j, t

'v't

'v'i,j, t

'v'i,j, t

'v'j, t

'v'j

'v'j

'v'j, t

'v'c

(5.29)

(5.30)

(5.31 )

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)



Move suppression constraints

6M ijkT ;:::: 6m ijkT - 6m ~kT - 6m ~kT

6m ~kT :::; 6m ijkT

A x > A plllax (I s: )um ijkT - um ijkT - - U jT

x plllax s:6m ijkT :::; . U jT

YAp Illax (1 s: )6m ijkT ;:::: um ijkT - - U jT_1

A Y pm" s:Urn ijkT :::; . U jT-1

Data on current operation

\ii, j, k, T (5.39)

\ii, j, k, T (5.40)

\ii, j, k, T (5.41 )

\ii, j, k, T (5.42)

\ii, j, k, T (5.43)

\ii, j, k, T (5.44)

\ii,j,k,T (5.45)

\ii, j, k, T (5.46)

During closed-loop implementation, (i) coke accumulated in the cracking coils is

updated through bias update, and (ii) the disjunctive flow rates from previous

optimization are used for move suppression. Therefore, the data required for current

operation are Coke jT-1 in equation (5.21) and PDijkT-, in equation (5.39). As discussed

earlier in section (5.1.2) coke (Coke jT-I) is estimated from tube-metal temperature

(Tw jT-1 ) measurement.

Objective function

The objective function for every scheduler optimization is given as shown in equation

Ie ')"7\
~J.J I).

Ob' - p. f' plant P I coke '"' '"' '"' AMJ-r- IOlt T - enaty -CD·L.L.L. u ijkT
j k

Where, CD is the penalty coefficient for move suppression.
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PI' ofit~lanl = Value of products - Cost of feed stocks - Cost of dilution

steam - Cost of furnace energy - Cost of compressor energy + Value of

HP and MP steam generated at TLE's - Cost for furnace decoke.

Details of each term in the profit equation are given as follows:

Value of products/ Income = l:l:Salescl . Cost~rOdlJCI
I C

Cost of feedstocks =l:l:Fil .Cost:l:ed

Cost of dilution steam =""""PDh . pS/HC . Costdilulion
~~~~ IJkl Ik . sleam

I j k

Cost of furnace energy = L L E ~~rnacc .Cost :':;~~:~~
I j

Cost of compressor enerboy ~ "'\' Ecomprcssor . Cost compressorL....J I t:n~rgy

I

(5.48)

(s.49a)

(s.49b)

(s.49c)

(s.49d)

(s.4ge)

Value ofHP and MP steam = """FHPslcam ·Cost HP + """FMPslcam·C t~IP.L..J~~ IJI steam L ~~ IJI os !'Icalll
I i j I i j

(s.49f)

Cost for furnace decoke = L L 8~lecokc . Cost~~:~::
I j

(s.49g)

PenaltlOke =
LCoke jNT

---,,--j • (Cost energy + CostprOlillosS)
deroke decokeCoke max

(s.49h)

The equations (5.10) to (5.49) form the open-loop scheduler model (MILP), which

is solved each day (T) during online implementation. At the end of every day, the coke

model is updated as discussed earlier using equations (5.1) to (5.4), and the scheduler

model is resolved the next day.
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In order to evaluate the closed loop performance of the framework, only single

feedstock and two reactors case studies were considered in this thesis. The solver CPLEX

10.1 was able to solve the problem in around 300 seconds without using the two-stage

solution heuristics. Therefore, the two-stage decomposition heuristic was not used in the

closed-loop implementation for all the case studies. However, when the closed-loop

approach is appl ied to larger problems, the two-stage solution heuristic would have to be

applied.

5.4 Closed-loop case studies

The closed-loop reactive scheduling is implemented daily using a rolling horizon

approach for a 90-day horizon. For the first day, no feedback information is assumed

available; therefore, an open-loop optimization problem (MILP) is solved. The results for

the first day are implemented in the simulated plant, which can have mismatch from the

model used in the scheduler. At the end of each subsequent day, the model (coke per

reactor) is updated based on the plant measurement of tube metal temperature, and the

scheduler open-loop optimization is solved. Again, the results for the first day are

implemented in the simulated plant. Therefore, the results we see in this section are the

plant operation for 90 days with daily reactive schedule update.

5.4.1 Single feedstock scenarios

For simplicity, only scenarios with a single feedstock and two reactors are

considered in the case studies to study the effect of move suppression, measurement error

and model error on the closed loop results. They are also used to highlight the capability

of the closed-loop framework to handle model errors and disturbances via the feedback

mechanism. Measurement enol' is considered in all the scenarios. A uniformly distributed

white noise with mean a and standard deviation of (0.1) is used to simulate measurement

error in the tube metal temperatures. No filtering was applied to the measurement before

updating the coke model.
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5.4.1.1 Case 10 - Perfect model without move suppression

This scenario is designed to highlight the importance of move suppression In

closed-loop implementation. A perfect model (no model error) is considered and move

suppression constraints are not included in the scheduling model. Naphtha is the only

available feedstock. The main requirement is to exactly meet the integrated demand on

ethylene by the end of the horizon i.e., by the 90lh day. A brief description of the scenario

parameters are tabulated as shown below.

Feedstock Naphtha
Number of Reactors 2
Prediction horizon (open loop) 90 time steps
Time horizon (closed loop) 90 days
Integrated Ethylene Demand 4.95 E+7 Kg
Fresh feed Unlimited Naphtha available
Degrees of freedom Processing rates, Severity, S/HC and Decoke

time periods
Move suppression coefficient 0
l\1easurement error Yes (Uniform white noise)
Plant-model mismatch No
Disturbances No

Discussion of Results

Results obtained without move suppression are shown in Figures 5-4 to 5-6.

Ethylene production rates, maintenance schedule, coke accumulation over the horizon are

depicted in Figure 5-4. Severity and S/HC profiles are shown in Figure 5-5 and the

processing rates are shown in Figure 5-6.

As an optimal operating condition for this case, the optimizer seiecls operating the

reactors at a severity corresponding to propylene peak and S/HC corresponding to its

lower bound to save energy costs. The optimizer maintains this condition throughout the

horizon without making any further changes. However, there are fluctuations in the

processing rates which are highlighted as dotted circles in Figure 5-6. These fluctuations
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are undesirable for plant operation as they affect the dynamics of the downstream

processes by acting as continuous disturbances. It is therefore, necessary to reduce the

fluctuations and remain as close as possible to the existing operating conditions.

Implementing move suppression in the model can solve this problem.

The typical problem size of each open-loop optimization problem for this scenario

is around 171 integer variables, 27906 continuous variables and 32889 constraints. The

computational time required to solve an optimization problem of this size every day is

around 285 seconds. The integrated ethylene demand was exactly met by the end of the

horizon, and the resulting plant profit over the entire horizon is 36947005 $.
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5.4.1.2 Case 11 - Perfect model with move suppression

Similar to the earlier scenario, a perfect model in considered but in addition move

suppression constraints are implemented in the model. Naphtha is the available feedstock.

The requirement is to exactly meet the integrated demand on ethylene by the end of the

horizon i.e., by the 90th day. The results should show a smooth closed-loop response as

apposed to the earlier scenario without move suppression. A brief description of the

scenario parameters are tabulated as shown below.

Feedstock Naphtha

Number of Reactors 2
Prediction horizon (open loop) 90 time steps
Time horizon (closed loop) 90 days
Integrated C2H4 Demand 4.95 E+7 Kg
Fresh feed Unlimited Naphtha available
Degrees of freedom Processing rates, Severity, S/HC and Decoke

time periods
Move suppression coefficient 0.0001
Measurement error Yes (Uniform white noise)
Plant-model mismatch No
Disturbances No

Discussion of Results

Results obtained by implementing move suppression in the model are shown in

Figures 5-7 to 5-9. Ethylene production details, maintenance schedule, coke

accumulation over the horizon are depicted in Figure 5-7. Severity and S/HC profiles are

shown in Figure 5-8 and the processing rates are shown in Figure 5-9.

The severity and S/HC ratio profiles are same as the solution without move

suppression. However, we notice that after implementing move suppression, the

fluctuations in the processing rates have disappeared and the response has smoothened a

lot. This is the most desirable condition to operate a reactor. As a result, we remain close

to the existing schedule without making any drastic changes in the schedule. Move

suppression constraints are therefore, very important and should always be embedded in

the scheduling model.

136



The typical problem size of each open-loop optimization problem for this scenario

is around 171 integer variables, 30786 continuous variables and 38649 constraints. The

computational time required to solve an optimization problem of this size at each

iteration is on an average 296 seconds. The main requirement of meeting the integrated

ethylene demand was exactly met by the end of the horizon and the resulting plant profit

over the closed loop horizon (90 days) is 36947005 $. It is important to notice that the

profit remained the same as for Case 10 . This result demonstrates that there are alternate

solutions for this case study.
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5.4.1.3 Case 12 - Plant-model mismatch case

This scenario is designed to study the effect of model error on the closed-loop

results. The plant-model mismatch (model error) is considered due to the difference in the

coking rates between model and plant. Naphtha is the available feedstock and the

requirement in this scenario is to meet the integrated demand on ethylene by the end of

the horizon. A brief description of the scenario parameters are tabulated as shown below.

Feedstock Naphtha

Number of Reactors 2
Prediction horizon (open loop) 90 time steps
Time horizon (closed loop) 90 days
Inte2rated C2H4 Demand 4.95 E+7 Kg
Fresh feed Unlimited Naphtha available
Degrees of freedom Processing rates, Severity, S/HC and Decoke

time periods

Move suppression coefficient 0.0001
Measurenlenterror Yes (Uniform white noise)

Plant-model mismatch Yes

Disturbances No

Discussion of Results

In order to model the mismatch for this scenarIO, it was considered that the

coking rates of the model used in the MPC are 5% lower than the coking in plant. The

results obtained for this scenario are shown in Figures 5-10 to 5-12. These results are

compared with the results of Case II to envision the differences.

Similar to Case II, the optimizer chooses to operate both the reactors at propylene

peak and low S/HC ratio as they are the optimum operating conditions. However,

because of the model error, the coke prediction from model is different from actual coke

deposited in the plant. This mismatch has altered the maintenance schedule by a small

extent in comparison to that of Case II.

139



In Case II, Reactor I was decoked on 811
\ 42nd and 761h days respectively, where

as here they are decoked on 91h
, 41 51

, and 751h days. Similarly, Reactor 2 was earlier

decoked on 131h
, 471h and 80lh days whereas now it is decoked on 11 11

\ 451h and 791h days.

Clearly there is a change in the maintenance schedule.

The computational time required to solve an open-loop optimization problem at

each iteration is around 300 seconds. The integrated ethylene demand was exactly met for

this scenario and the resulting plant profit is 36946997 $.
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5.4.1.4 Case 13 - Plant-model mismatch and Disturbance effect

This is a more realistic scenario encountered in ethylene plants. It is formulated to

study the effect of model error and disturbances on the closed-loop results. (I) Plant­

model mismatch is modeled due to the difference in the coking rates between model and

plant. (2) A disturbance in modeled as reduced available feedstock for a period of one

month during the horizon (from 151h day to 451h day), i.e., during this period only 70% of

the usual amount of feedstock was available for cracking. During the remaining days,

unlimited feed is available. The scheduler is aware of the disturbance and its occurrence

period on and after the 151h day, i.e., the optimizer has no prior knowledge of the

disturbance. Limited feed availability is common in ethylene plants due to delay in the

feedstock delivery or feed processing equipment problems.

Naphtha is the available feedstock and the requirement in this scenario is to meet

the integrated demand by the end of the horizon. The results should highlight how the

closed loop system reacts to the disturbances and model errors whi Ie meeting the

integrated demand on ethylene. A brief description of the scenario parameters are

tabulated as shown below.

Feedstock Naphtha
Number of Reactors 2
Prediction hol'izon (open loop) 90 time steps
Time horizon (closed loop) 90 days
Inte2rated C2H4 Demand 4.95 E+7 Kg
Fresh feed Unlimited Naphtha available
Degrees of freedom Processing rates, Severity, S/HC and

Decoke time periods
Move suppression coefficient 0.0001
Measurement error Yes (Uniform white noise)
Plant-model mismatch Yes
Disturbances Yes
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Discussion of Results

The results are shown in Figures 5-13 to 5-15. From the results, it is clear that

during the first 15 days, when no disturbance is anticipated (unlimited naphtha available),

the severity, S/J-IC ratio and processing rate profiles show a smooth response. The

optimizer is not aware of the disturbance till the 15th day. Therefore, it selects optimum

operating conditions for the reactors in the form of propylene peak for severity and low

S//HC as shown in Figure 5-14.

However, when disturbance enters on the 15th day, the operating conditions in the

reactors are changed. From Figure 5-15, we can see that the flow rates are reduced due to

the limited availability of naphtha feedstock. The optimizer reacts to this disturbance by

increasing the severity in the reactors, shown in Figure 5-14, to compensate for the lower

ethylene production due to reduced flow rates and to meet the ethylene demand. This

behaviour is seen as long as the disturbance is present, i.e. until the 451h day.

Once the disturbance disappears, the plant returns to its normal operating state.

The optimizer chooses to operate the reactors at the propylene peak and low S/HC ratio.

However, during this period the processing rates are appropriately adjusted to meet the

demands on ethylene exactly by the end of the horizon.

Numerical results have shown that during each iteration, the optimizer needed 305

seconds to solve an optimization problem. The main requirement of meeting the

integrated ethylene demand was exactly met and the resulting plant profit is

36542227.6$.
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In Figures 5-14 to 5-15, the fluctuations in the operating conditions are encircled.

These fluctuations may not be acceptable in a real plant. They can be reduced by

adjusting the move suppression penalty coefficient; however, feed rate changes are

required to satisfy the product demands. Results with a higher penalty coefficient (0.0 I)

are shown in Figures 5-16 to 5-18. Although, the operating conditions are smooth here,

the plant profit is reduced to 36298834.5$. There is a trade-off between the operation

performance and plant profit. One should understand that each plant has a different

operating strategy. An engineer has to analyse the situation and select an appropriate

trade-off. Therefore, it is up to an engineer to pick a suitable penalty coefficient.
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5.5 Summary

This chapter highlights the reactive scheduling framework and some online

implementation issues. The open-loop schedule implementation structure resembles

MPC; therefore, MPC framework has been chosen as the basic framework for developing

the reactive scheduling system. The coke model was updated through a feedback

mechanism just prior to every scheduler execution. The main advantage of this

framework lies in its feedback model updating capability so that model prediction always

remains close to the true plant behaviour.

The process variable trajectories should be smooth over the scheduling horizon. If

not, the fluctuation will affect the operability of the plant and the plant profit in ways that

are not included in the scheduler objective function. Therefore, move suppression

constraints were developed as soft constraints which penalized all the moves except the

decoke moves.
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Several case studies were formulated to highlight the capability of the reactive

scheduling system to handle the uncertainties in the form of measurement errors, model

errors and disturbances. The case studies have shown that there are several alternate

solutions for this problem. This was evident from the results of Case I0 and Case II. The

effect of measurement errors and model errors on the maintenance schedule was clearly

seen by comparing Case 12 with Case II.

Finally, a more realistic case encountered in ethylene plants was considered in

Case 13. During the presence of disturbance, the system modifies the operating

conditions to compensate for the changes in the plant and to meet the integrated ethylene

demand on time. It was found that the results of the scheduling system to handle the

disturbances depends on appropriate penalty coefficient for move suppression. Since each

plant has a different operating strategy, it is up to the engineer to consider the trade off

between the operation performance and plant profit and use an appropriate penalty

coefficient.
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Chapter 6. Conclusions and Recommendations

for future work

The maIn aIm of this research work was to develop a reactive (closed-loop)

scheduling system that automatically generates a schedule that can be implemented in the

plant in real time. To develop such as system, the work was carried out in two phases. In

the first phase, an open-loop scheduling model was formulated using rigorous

optimization techniques. The goal was to ensure that the model can be solved in

reasonable computing time, giving an optimal, feasible solution during the schedule

horizon and leaving the plant in a state at the end of the horizon that provides the

opportunity for feasible and continued profitable operation. In the second phase, this

model was applied in a prototype closed-loop framework to develop a reactive scheduling

system that can assist engineers to make appropriate decisions in a timely manner.

While these goals were successfully achieved, the technology (reactive scheduling

system) developed in this thesis needs to be further improved before being directly

applicable in the industry. The major conclusions and contributions of the research and

the recommendations for future work are discussed in the following sections.

6.1 Conclusions

6.1.1 Open-Ioup uptimization

A comprehensive scheduling model has been developed in this thesis for

scheduling the maintenance and operation of furnaces in ethylene plants. The

model was formulated as a Mixed Integer Linear Programming problem
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(MILP) USIng a discrete time representation and disjunctive modell ing

resulting in a large scale optimization problem.

To preserve the linearity of the model, a disjunctive modelling approach was

employed to formulate the nonlinear relationships in the reactor yields and

coking rates as linear constraints. Also, the large number of binary variables

associated with this approach was minimized by using only continuous

variables in the disjunctive model. The results from the cases considered in

the thesis have demonstrated that this approximation did not lead to any

interpolation between the operating conditions, as unique solutions were

obtained without integer variables. Although, this approximation is valid for

this furnace scheduling problem, it may not be suitable for direct application

to other problems without careful analysis during the model formulation stage.

The combinatorial nature of the scheduling model (MILP) when accompanied

by large problem size made it exceptionally difficult to solve in a reasonable

amount of time. Therefore, to overcome these computational challenges, a
tailored formulation was developed during the course of the work to improve

the model structure and make it computationally tractable.

Firstly, several reforrnulated constraints and tightening constraints were added

to the scheduling model. Most notably these constraints reduced the

integrality gap of the relaxed model (all continuous variables), thus making it

a better model. Integrality gap is defined as the gap between the best current

all-integer solution and the best current relaxed solution. Naturally, the

smaller the integral ity gap, the better is the formulation.

Secondly, a two-stage temporal decomposition heuristic was proposed as an

efficient solution strategy to solve the model "n two-stages. Results have

shown that even large models were easily solved using this heuristic which

were unsolvable or needed excessive computational time. It was also

confirmed (for a small problem: I feed, 2 reactors) that this heuristic did not
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affect the optimal solution of the MILP when solved in two stages. Even if the

heuristic affects the optimality for larger problems, it achieved a good feasible

solution at all times, avoiding problems during online applications.

Overall, the proposed tailored schemes had a profound effect on the

computational time of the scheduling model as it improved the computational

efficiency by over 240 times. For example, an industrial size furnace

scheduling problem with 3 feedstocks and 5 reactors would end up in a

problem size of 3100 binary variables, 297794 continuous variables and

308629 linear constraints for a scheduling horizon of 90 days. This model was

unsolvable in 5 days of computation without the tailored schemes, whereas

with them it was solved in about 2050 seconds (34 mins) with the

reformulation.

The key contributions of the \.\fork in open-loop optimization are:

•

•

MILP model: The open-loop scheduling model developed in this thesis is the

first MILP formulation for furnace scheduling reported in the literature. This

model enables the optimizer to make all key decisions (feed type, feed rate,

reactor conditions, decoking) in an integrated manner. All the previous models

are MINLP formulations (Schulz et aI., 2006, Lim et aI., 2006, Kelly, 2005

and Grossmann et a!., 1998), which posed severe computational difficulties

leading to many assulllptions in the models as reported in Chapter 2.

Novel formulation: A tractable formulation tailored to the furnace scheduling

problem was developed in this thesis. The main features of this formulation

include (a) Tractable disjunctive model, (b) Reformulated and Tightening

constraints, and (c) Two-stage temporal decomposition solution heuristic.
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6.1.2 Closed-loop optimization

Model Predictive Control (MPC) framework was chosen for developing a

closed-loop implementation of the scheduling model because of its feedback

mechanism that compensates for model errors, measurement errors and

disturbances. Since the open-loop scheduling model is an MILP, the c1osed­

loop system resembled a hybrid MPC problem. During every closed-loop

execution, a MlLP was solved and the implementation was carried out in a

rolling horizon manner. Since the open-loop model was tractably formulated

using tailored formulation and solution schemes, the hybrid MPC problem

was solved successfully, i.e., with reasonable computing times, acceptable

manipulated variable behavior, and solved to optimality.

During closed-loop implementation, fluctuations (large higher frequency

changes) in the optimization results were observed. To eliminate these

undesirable fluctuations, move suppression constraints were added to the

model in the form of soft constraints. These constraints were tailored to the

scheduling problem, penalizing all the moves except the large decoking

moves, which are required during maintenance. The results have indicated that

besides obtaining a smooth closed-loop response, the move suppression did

not have a significant adverse effect on the closed-loop profit.

The closed-loop implementation was tested for different scenarios over a 90­

day scheduling horizon. The results demonstrated that the scheduling system

is capable of adjusting the optimization results appropriately in real time when

unexpected process disturbances affect the plant operation. The results also

indicated that since every plant has different operational performance criteria,

it is up to the engineers to use appropriate move suppression penalty

coefficients to achieve significant economic benefits.
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The key contributions of the work in closed-loop optimization are:

• Hybrid MPC framework: MPC framework was chosen as the prototype for

implementing the closed-loop scheduling system. Since the open-loop

scheduling model (MILP) had integer variables, the MPC framework with

integer optimization at each optimizer execution would resemble a hybrid

MPC problem. The main contribution in this context is related to successful

implementation of the hybrid MPC framework over a 90-day period without

encountering adverse dynamic behavior.

6.2 Recommendations for future work

In order to make the closed-loop scheduling system developed in this thesis ready

for industrial application, some improvements have to be made to the scheduling model.

The following are the recommendations for future work.

6.2.1 Better Furnace model

The furnace model used in this thesis is based on the data obtained from literature

as reported in Appendix A. Since only limited information was available from the

literature, the effects of the most important variables were considered in the model. For

example, coking in the reactors was modelled only as a function of reactor severity and

S/HC ratio. Feed flow rates also effect coking in the reactors, but this effect was not

considered in the model due to limited available information. The section on modelling

assumptions (Section 3.5) clearly states which variable effects were not included in the

model. Therefore, in order to develop a scheduling system that is applicable in industrial

practice, it is important to build a comprehensive furnace model that considers all the

process variables and their effects on the furnace operation. Such a model can be

developed by collaborating with an industrial partner. Plant engineers at ethylene plants

could not only provide the data we require but also a lot of insight on the furnace
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operation. Alternatively, vendors who develop process solutions (e.g. scheduling

software) for industries such as Aspen Technology or Honeywell could also provide us

some information from their state-of-the-art simulation tools.

6.2.2 Uncertainty

The scheduling model developed in this thesis is deterministic which assumes exact a

priori knowledge of the model parameters (market demands, prices, feed characteristics).

This is almost never the case in reality e.g., the market demand changes very often. In

general, uncertainty is always prevalent in scheduling systems. The common sources of

uncertainty arise due to fluctuations in the market prices, raw material qualities, customer

demands, product specifications and plant-model mismatch. Measured disturbances

occurring due to planned feed deliveries, product shipments, equipment maintenance and

other causes can also be decisive in the optimal decision making process. In such highly

uncertain environment, deterministic approaches have limitations for decision-making.

Therefore, uncertainty handling capability should be included in the scheduling systems.

Open-loop uncertainty and closed-loop uncertainty are the two main directions of

research in this regard. Appendix D provides some literature on optimization under

uncertainty, which is applicable for scheduling optimization.

6.2.3 Integration of Scheduling and Real Time Optimization

When automating the scheduling system, an important consideration is the

integration of scheduling and real-time optimization. Closed-loop real-time optimizers

(RTO) are becoming a standard in the olefins industry. Real-time optimizers are based on

non-linear models and optimize plant operations on an hour-by-hour basis. Schedulers

use a simplified model and are executed once a day to generate schedules for reactor

operation and maintenance. These decisions have to be transferred to the RTO

optimization layer, where they are fine tuned by the real time optimizer before

implementing into the plant. Similarly, the scheduler would need some information from

the real time optimizer to initialize the scheduling model, e.g. the operating conditions
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that were implemented in the plant. Therefore, there is an exchange of information

between these two layers. Proper integration of these two systems should resolve any

conflicts arising during real time operation.

6.2.4 Relaxation of Binary Variables

In this application of MILP, many integer variables for selecting the disjunctive

models were removed from the formulation. The result was a model that yielded

solutions that could be implemented in the plant, closely or exactly matching the best

integer solution, and could be computed in reasonable times. This approach was

developed from "engineering insight" in this specific problem. A more fundamental

method for recognizing when such a relaxation would be beneficial would be helpful for

the engineer when building models. Also, a modified branch and bound strategy could

perhaps take advantage of the solution obtained from the fully relaxed disjunctive integer

variables by intelligently adding (a few) integer variables when the current approach did

not yield an all-integer solution or a solution that could be iT}terpolated, as discussed in

Appendix B.

6.2.5 Move Suppression in Hybrid Models

Hybrid models have integer and continuous variables. The move suppression

approach developed for MPC and used in this study penalizes changes in the manipulated

variables from values in the previous solution. This approach is generally appropriate for

process control, where it provides stability for moderate model mismatch and reduces

manipulated variable variance. However, there are instances when a large fixed cost is

incurred for any change in a manipulated variable; in other instances, changes in many

contiguous time periods are unacceptable. Therefore, novel methods for modeling the

cost of manipulation are needed in production scheduling, some of which might require

integer variables.
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Appendix A

Summary of the data used in the model

165



Aol Economics

The prices for the hydrocarbons used in the model were obtained from (Oil and Gas

journal, 1992).

Component Price (US$/Kg)
Hydrogen (H2) 0.881
Methane (CH4) 0.220
Ethylene (C2H4) 0.650
Ethane (C2H6) 0.241
Propylene (C3H6) 0.511
Propane (C3H8) 0.260
Butadiene (C4H6) 0.771
IButene (C4H8) 0.811
n-Butane (C4H I0) 0.300
Pentanes plus (C5+) OAOI
Light Naptha 0.361
Gas oil 0.297

The prices of energy and steam (Campagne, 1981) used in the model are shown

below. Since the price for energy was reported in $/KJ, it is assumed to be the same for

furnace energy and compressor energy.

Item Price (US $)
Furnace energy 3.5x 10'6 $/KJ

Compression energy 3.5x 10-0 $/KJ
Dilution steam 4.41 xlO<\$/Kg

High Pressure steam 9.02x 10"; $/Kg

Medium Pressure steam 7.58xIO'3$/Kg

A " ~""" f t" AOtO
o~ uiSjUllctive reac,-or opera ..lOn con'-&l ..lOns

The disjuncti ve models for ethane, propane and naphtha feedstocks are shown

here. The tables also contain information on Coil Outlet Temperature (COT), ethylene

and propylene yields associated with the disjunctive models.
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A.2.1 Ethane feedstock

Disjunctive S/HC Severity COT C=C C3H6
models (ratio) (% conversion) (oC) yield yield
Ethane I 0.4 40 804.59 0.346 0.005
Ethane2 0.4 SO 835. J7 0.416 0.008
Ethane3 0.4 60 823.41 0.487 0.011
Ethane4 0.4 70 832.43 0.515 0.016
Ethane5 1 40 825.05 0.355 0.004
Ethane6 I SO 814.33 0.428 0.006
Ethane7 I 60 844.60 0.502 0.009
Ethane8 1 70 853.97 0.557 0.010

A.2.2 Propane feedstock

Disjunctive S/HC
Severity

COT C=C C3H6
models (ratio)

(% (oC) yield yield
conversion)

Propane I 0.4 70 814.31 0.257 0.189
Propane2 0.4 80 825.85 0.301 0.175
Propane3 0.4 90 840.42 0.348 0.146
Propane4 0.4 95 851.37 0.370 0.106
Propane5 I 70 832.57 0.269 0.189
Propane6 1 80 844.50 0.321 0.175
Propane7 I 90 859.57 0.375 0.147
Propane8 I 95 870.91 0.399 0.107

A.2.3 Naphtha feedstock

Disjunctive SIHC
Severity

COT C=C C3H6
models (ratio)

(% (oC) yield yield
conversion)

Naptha I 0.6 82 795.34 0.196 0.156
Naptha2 0.6 90 806.95 0.232 0.159
Naptha3 0.6 96 820.45 0.267 0.151
Naptha4 0.6 100 852.53 0.274 0.127
Naptha5 1.5 82 810.58 0.219 0.158
Naptha6 1.5 90 822.53 0.258 0.161
Naptha7 1.5 96 836.42 0.295 0.152
Naptha8 1.5 100 869.46 0.310 0.126
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A.3 Product yield information

The product yields for ethane (Froment et aI., 1976), propane (Vandamme et aI.,

1975) and naphtha (Plehiers et aI., 1987) feedstocks associated with each disjunctive

model are shown here.

A.3.1 Ethane feedstock

Disjunctive models Ethane 1 Ethane2 Ethane3 Ethane4 Ethane5 Ethane6 Ethane7 Ethane8
Conversion (w.fr.) 0.40 0.5 0.60 0.69 0.40 0.50 0.60 0.69
COT (C) 804.59 814.34 823.41 832.43 825.05 835.17 844.6 853.97
S/HC (ratio) 0.40 0.40 0.40 0.40 1.00 1.00 1.00 1.00
Yield (wt%)
H2 2.50 3.05 3.60 4.30 2.50 3.06 3.62 4.30
CH4 1.40 2.46 3.51 5.64 1.25 2.00 2.75 3.21
C2H2 0.00 0.12 0.25 0.38 0.00 0.12 0.25 0.38
C2H4 34.57 41.64 48.70 51.45 35.48 42.84 50.20 55.74
C2H6 59.52 49.37 39.22 30.60 59.03 49.14 39.25 29.99
C3H4 0.00 0.01 0.01 0.02 0.00 0.01 0.01 0.02
C3H6 0.50 0.78 1.05 1.55 0.37 0.62 0.88 1.02
C3H8 0.01 0.07 0.14 0.20 0.01 0.07 0.14 0.20
C4H6 0.41 0.83 1.25 1.47 0.41 0.83 1.25 1.47
C4H8 0.19 0.20 0.22 0.23 0.19 0.21 0.22 0.23
C4HI0 0.39 0.34 0.29 0.24 0.39 0.34 0.29 0.24
C5+ 0.50 1.13 1.76 3.92 0.37 0.76 1.15 3.21
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A.3.2 Propane feedstock

Disjunctive models Propane] Propane2 Propane3 Propane4 Propane5 Propane6 Propane7 Propane8
Conversion (w.fr.) 0.70 0.80 0.900 0.95 0.70 0.80 0.900 0.95
COT (C) 814.31 825.85 840.417 851.37 832.57 844.50 859.571 870.91
S/HC (ratio) 0.40 0.40 0.40 0.40 1.00 1.00 1.00 1.00
Yield (wt%)
H2 1.38 1.60 1.649 1.72 1.31 1.50 1.750 1.86
CH4 16.79 20.10 23.716 26.76 16.34 19.40 24.000 25.52
C2H2 0.21 0.25 0.497 0.82 0.25 0.31 0.650 0.69
C2H4 25.73 30.10 34.760 36.99 26.93 32.10 37.500 39.88
C2H6 3.26 3.78 4.221 3.91 2.95 3.40 3.825 3.54
C3H4 0.25 0.29 0.328 0.36 0.25 0.29 0.330 0.35
C3H6 18.88 17.51 14.599 10.60 18.93 17.51 14.700 10.67
C3H8 29.13 19.70 9.405 4.65 28.86 19.51 9.155 4.69
C4H6 1.25 1.75 2.284 2.81 1.19 1.60 2.100 2.23
C4H8 0.78 0.74 0.685 0.65 0.81 0.75 0.600 0.55
C4HI0 0.11 0.12 0.139 0.05 0.11 0.12 0.140 0.05
C5+ 2.22 4.05 7.717 10.67 2.08 3.50 5.250 9.96

A.3.3 Naphtha feedstock

Disjunctive models Naphthal Naphtha2 Naphtha3 Naphtha4 NaphthaS Naphtha6 Naphtha7 Naphtha8

Conversion (w.fr.) 0.82 0.90 0.96 1.00 0.82 0.90 0.96 1.00
COT (C) 795.34 806.95 820.45 852.53 810.58 822.53 836.42 869.46
S/HC (ratio) 0.60 0.60 0.60 0.60 1.50 1.50 1.50 1.50
Yield (wt%)
H2 0.54 0.60 0.68 0.73 0.55 0.6\ 0.69 0.73
CH4 9.17 11.63 14.47 16.86 9.29 11.77 14.53 16.79
C2H2 0.15 0.20 0.27 0.34 0.15 0.20 0.27 0.34
C2H4 19.63 23.] 8 26.67 27.37 21.87 25.80 29.46 30.95
C2H6 3.29 3.74 3.70 3.45 3.34 3.79 3.72 3.43
C3H4 0.17 0.27 0.42 0.62 0.18 0.27 0.42 0.62
C3H6 15.63 15.86 15.12 12.67 15.83 16.05 15.19 12.61
C3H8 0.46 0.45 0.46 0.44 0.46 0.46 0.46 0.44
C4H6 4.15 4.21 3.70 2.59 4.20 4.26 3.72 2.58
C4H8 5.31 4.82 4.40 3.77 5.38 4.87 4.42 3.75
C4HI0 1.99 ].43 1.05 0.72 2.01 1.45 1.05 0.72
C5+ 39.51 33.62 29.05 30.45 36.73 30.47 26.05 27.06
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A.4 Coking rates

The coking rates used for ethane (Sundaram et a!., 1981), propane (Sundaram et a!.,

1979) and naphtha (Kumar et a!., 1985) feedstocks associated with each disjunctive

model are shown here.

A.4.1 Ethane feedstock

Disjunctive Coking rate
models (Kg/day)

Ethane I 4.35
Ethane2 6.54
Ethane3 8.64
Ethane4 11.03
Ethane5 3.75
Ethane6 5.96
Ethane7 7.64
Ethane8 9.87

A.4.2 Propane feedstock

Disjunctive Coking rate
models (Kg/day)

Propanel 7.56
Propane2 9.63
Propane3 11.62
Propane4 12.61
Propane5 6.85
Propane6 8.51
Propane7 10.07
Propane8 10.86

A.4.3 Naphtha feedstock

Disjunctive Coking rate
models (Kg/day)

Naptha 1 8.88
Naptha2 9.36
Naptha3 11.43
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Naptha4 14.41
Naptha5 7.84
Naptha6 8.65
Naptha7 10.3\
Naptha8 12.66

A.5 Energy information

The calculations performed to obtain furnace energy and compression energy

(Cenge\ & Boles (200 I)) required in the model are shown here.

A.S.l Furnace energy requirement

Since, enthalpy is a state property, the procedure followed to compute the

necessary energy required in the furnace is shown in Figure A. I.

Reactant ....
150° C

Reactant
25° C

........-....---

Cracking at 25° C

Products

~ Temp = COT
..,.". (onesponding to each disjunctive reaGtcr)

Products
25° C

Figure A.I: Procedure for energy calculations

Where,

H r =Energy released when cool ing the feed from 150° C to 25° C
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i1Hcr =Heat of cracking; calculations carried out at 25° C using the standard

heats of formation

Hp =Energy required to heat the product mixture from 25° C to corresponding

coil outlet temperatures (COT) of each disjunctive model.

Therefore,

Overall Heat requirement (cracking + heating product mixture) =Hr + Her + Hp

(In addition, steam has to be heated from 150° C to COT. Heat capacity data for steam

was used to perform these calculations.)

Hr and Hp were calculated using the heat-capacity data. The following equations were

used.

(C,,) /I =Mean heat capacity, KJlKg K (A.2)

(A.3)

T
Where T=-, T.

o

The variation of heat capacity with temperature is accounted for in these

equations. The coefficients A, B, C and D for all the necessary hydrocarbons were

obtained from (Cengel & Boles (2001)).
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Heat of cracking (i1Hcr) was calculated lIsing the standard heats of formation of reactants

and the products as follows:

(AA)

i1Hcr =endothermic heat of cracking (KJ/Kg)

i1Hp =heat of formation of the cracked products (KJ/Kg)

i1H r =heat of formation of the feed (KJ/Kg)

The standard heats of formation and molecular weights of the hydrocarbons were

obtained from (Cengel & Boles (200 I».

These calculations were performed for all the feedstocks. Finally, the amount of

energy required for cracking I kg of ethane, propane and naphtha feedstocks at- various

disjunctive operating conditions are reported here.

A.5.l.! Ethane feedstock

Disjunctive Energy required
model (KJ/Kg)

Ethane I 4239.58
Ethane2 4706.85
Ethane3 5174.13
Ethane4 5536.37
Ethane5 4667.35
Ethane6 5141.53
Ethane7 5615.71
Ethane8 6106.56
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A.5.l.2 Propane feedstock

Disjunctive Energy required
model (KJlKg)

Propane) 3828.79
Propane2 4092.44
Propane3 4428.75
Propane4 4617.61
PropaneS 4257.32
Propane6 4531.93
Propane7 4818.56
Propane8 5084.98

A.5.l.3 Naphtha feedstock

Disjunctive Energy required
model (KJ/Kg)

Naphthal 3785.24
Naphtha2 3894.26
Naphtha3 3968.43
Naphtha4 4183.26
NaphthaS 4370.82
Naphtha6 4500.21
Naphtha7 4581.41
Naphtha8 4713.48

A.S.2 Compression energy requirement

A five stage compression was considered in the model (Cengel & Boles (200 I)).

Details of the calculations are shown here.

Work done for adiabatic compression of ideal gases with constant heat capacities

is given by:

[( )

(Y-IJ/Y ]
W = RT P2 _I

C 'Y - I PI
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Multistage compression with inter-cooling can be used to reduce the compressor

work. Therefore, for multistage compression with inter-cooling, the compression ratio

that produces minimum work for a generalized case of n stages is given by:

(A.6)

Assumption: No pressure drop ([cross the cooler.

The corresponding work done for n stages can be calculated using,

[( )

(Y-I)/Y 111-1 RT P.
We =2:-- ~ -I

i=1 y-I Pi

where,

y = 1.3(polyatomic)

11 = 0.7

T = 25°C = 298.15 0 K

R =8.314-
J

-
molK

(A.7)

With the known parameters, P 1=1.5 atm and P6 = 35 atm, the compression ratio that

minimizes the work was estimated to be,

P2 = 1.8776
PI

Using this ratio, pressures at each compressor were calculated. The values obtained are

shown in the Figure A.2.

Pl=1.5 aIm Ps= 18.64at~tm

4 .~__~

Figure A.2: 5-stage compression
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Finally, for the 5-stage compression, amount of work done was estimated as follows:

RT [( P2 J(Y-I)/Y ]
W =--x5 - -I

e 'Y - I PI

We = 12006.197~
Kmol

Therefore, the amount of compression energy required to compress 1Kmol of

gaseous products is equal to 12006.2 KJ.

A.5.3 Molecular weights

Molecular weight
Component (Kg/Kmol)

H2 2.02

CH4 16.04
C2H2 26.04

C2H4 28.05
C2H6 30.07
C3H4 40.07

C3H6 42.08

C3H8 44.10
C4H6 54.09

C4H8 56.11
C4HI0 58.12

C5+ 100.00
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Appendix B

Valid disjunctive combinations, Solver specifications

and additional constraints
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B.1 Case studies: Binary variables for disjunctive model selection

Two scenarios are considered here to study the consequences of using binary

variables for disjunctive reactor model selection on the computational time. These

scenarios lead to a large number of binary variables and therefore are expected to

experience computational difficulties. The results indicated that the small case study

(Case B.I.I) was solved to optimality but the large case study (Case B.I.2) could not be

solved even after 45 hours. The results and discussion for these scenarios are discussed as

follows.

Case Bol.l - Small case study: Binary variables for disjunctive model selection

This is a small case study with I feedstock and 2 reactors. The main requirement

of this scenario is to meet the integrated demand by the end of the horizon while

maximizing the plant profit. This case is considered to highlight the affect of using binary

variables to make disjunctive model selection. A brief description of the scenario

parameters are tabulated as shown below.

Feedstock Naphtha
Number of Reactors 2
Time horizon 90 days
Inte~rated ethylene Demand 66% of the plant capacity
Fresh feed Unlimited Naphtha available
Degrees of freedom Processing rates, Severity, S/HC and Decoke time

periods

Discussion of Results

With binary variables for disjunctive model selection, the problem size for this

scenario results in 1612 binary variables, 45160 linear variables and 48005 constraints. It

can be observed that the binary variables for this scenario are approximately 10 times

more than similar scenarios with continuous variable approximation for disjunctive

model selection (refer to the single feedstock case studies in Chapter 4). Nevertheless, the

optimal solution for this scenario was obtained in 150 seconds. Although, the scheduling

178



model for this scenario is tractable, the computational time is almost 12 times greater

than the continuous approximation for disjunctive model selection. The results obtained

are shown in Figures B-1 to B-3.

~8L' , , . I I;ii' ii"" I I " l' "I'" I I' , ! • Iii
1:f=:;l"'1j---------------------1f"11---------------------,-~-1
~I ,~ ,,' ." ....~" ,too t.~j

;0 :.) )') .!O :;') ~ 10 ro 9J

1
,1

• ! I, •. , I !

:0 81

i'

, r ! ! , . !
'( !( :J

I I ! I
'0 :Q

I. I

Figure B-1: Case B.I.I - Gantt chart and Production details
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Figure B-2: Case B.I.l - Severity and S/HC profiles
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Figure B-3: Case B.I.I - Processing rates
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One should understand that MILP's are known for their combinatorial nature and

exponential increase in the computational time with the number of binary variables.

Although, this model was tractable for relatively large number of binary variables, further

increase in the binary variables (number of furnaces) could make the model lose

tractability. The results of such a case are discussed in the next case study.

Case B.1.2 - Large case study: Binary variables for disjunctive model selection

This is a large case study with I feedstock and 5 reactors representing a real

single feed ethylene plant (similar to Case 5 of Chapter 4). The main requirement of this

scenario is again to meet the integrated demand by the end of the horizon while

maximizing the plant profit. Similar to the previous case, this is considered to highlight

the affect of using binary variables to make disjunctive model selection. A brief

description of the scenario parameters are tabulated as shown below.

Feedstock Naphtha
Number of Reactors 5
Time horizon 90 days
Integrated ethylene Demand 66% of the plant capacity
Fresh feed Unlimited Naphtha available
Deg.·ees of f.·eedom Processing rates, Severity, S/HC and Decoke time

periods

Discussion of Results

The scheduling model for this scenario results in 4050 binary variables, 296844

linear variables and 308629 constraints. From computational results, it was found that

this model could not be solved to optimality in 45 hours. The best feasible solution

obtained till this time had an objective function gap of 9 %, which cannot be considered

as a good solution. Comparing the results with the previous case study, it is clear that the

computational time increases exponentially with the increase in the number of binary

variables. The computational time of 45 hrs or more for single optimization is not

suitable for online applications. Therefore, using binary variables for disjunctive model

selection is not a good option as it makes the scheduling model intractable.
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B.2 Valid combinations of disjunctive models suitable for

interpolation

As discussed in Chapter 4, continuous variables were used to make a disjunctive

model selection. Consequently, the optimizer could select mUltiple disjunctive models

instead of one single disjunctive model by sending non-zero feed rates to two or more

yield models in the same physical reactor. If this occurs, the operating conditions would

have to be interpolated, which in some cases (combinations of disjunctive models) would

not be physically realizable. There are few valid combinations that allow a valid

operating condition to be interpolated. These combinations are based on the adjacent

disjunctive models corresponding to particular S/HC and severity. The valid

combinations are listed here.

B.2.] Ethane feedstock

S.No. Valid combinations Comment

I (Ethane I, Ethane2)
Adjacent severities

2 (Ethane2,Ethane3)
corresponding to S/HC = 0.4

3 (Ethane3, Ethane4)

4 (Ethane5,Ethane6)
Adjacent severities

5 (Ethane6, Ethane7)
corresponding to S/HC = I

6 (Ethane7, Ethane8)

7 (Ethane I, Ethane5) Adjacent S/HC ratios

8 (Ethane2, Ethane6) corresponding to severities

9 (Ethane3, Ethane7) (0.4,0.5,0.6 and 0.7

10 (Ethane4, Ethane8) respecti vel y)
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B.2.2 Propane feedstock

S.No. Valid combinations Comment

I (Propane I, Propane2)
Adjacent severities

2 (Propane2, Propane3)
corresponding to S/HC = 0.4

3 (Propane3, Propane4)

4 (PropaneS, Propane6)

S (Propane6, Propane7)
Adjacent severities

corresponding to S/HC = 1
6 (Propane7, Propane8)

7 (Propane 1, PropaneS)

8 (Propane2, Propane6)
Adjacent S/HC ratios

corresponding to severities (0.7,
9 (Propane3, Propane7)

0.8,0.9 and 0.9S respectively)
10 (Propane4, Propane8)

B.2.3 Naphtha feedstock

S.No. Valid combinations Comment

I (Naphtha I, Naphtha2)
Adjacent severities

2 (Naphtha2, Naphtha3)
corresponding to S/HC = 0.6

3 (Naphtha3, Naphtha4)

4 (NaphthaS, Naphtha6)

S (Naphtha6, Naphtha7)
Adjacent severities

corresponding to S/HC = I.S
6 (Naphtha7, Naphtha8)

7 (Naphthal, NaphthaS) Adjacent S/HC ratios

8 (Naphtha2, Naphtha6) corresponding to severities

9 (Naphtha3, Naphtha7) (0.82,0.90,0.96 and 1.0

10 (Naphtha4, Naphtha8) respectively)
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Interpolation of the operating condition can be performed only between these

combinations of disjunctive models. Our computational experience over all the case

studies considered in this thesis has shown that during most of the time horizon an

optimum operating condition corresponding to a single disjunctive model is selected with

continuous variables without any difficulty. It is rarely that the optimizer selects more

than one disjunctive model, just before a decoke event. This is done only to ensure

feasibility of the model. Even when more than one disjunctive model was selected by the

optimizer, at all times only valid combinations allowing interpolation were chosen by the

optimizer.

B.3 Reactors in service

These constraints provide flexibility for when fewer than the maximum number

reactors have to in operation due to limited product demands. In other words, these

constraints allow the optimiser to decide the number of reactors (furnaces) in service at

any point in time.

To be more realistic, we impose a condition that the reactors in service cannot be

intermittently shutdown. It is possible to shut them down and bring in production only

after the reactors are taken amine for maintenance (decoke). This condition is posed as

shown in equation B.I.

Reactor shutdown possible only after a decoke

8shutuowI1 < 8t1ecoke + 8shuldowI1
.II -.II .11-1 \fj, t (B. I )

Also, when a furnace is shutdown there is no production. This is modeled using a

constraint shown as equation (B.2).
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No production during shutdown

p min . (1- 8shuluown ) < p. < p Illax . (1 _S:ShUldOWIl )
.II - '.II - U J1

Vi, j, t (B.2)

Furthermore, the reactor model should also ensure that there is no coke deposition

during the furnace shutdown. This condition is imposed using a set of constraints shown

as equations B.3, 8.4 and B.S. When a reactor is shutdown, equation B.4 ensures that

Coke t is equal to zero. i1Decoke t is always zero except during a decoke. Therefore, the
.I J

only nonzero term in B.3 is the second term on the RHS. 8.5 ensures that

i1Nocoke _shutdown jt takes a large value during a shutdown, which erases the nonzero

term in equation B.3. In this way, no coke build up is modeled during a shutdown.

No coke build up during shutdown

Coke jt = CokejH +II(Rcokeik . O~;~;i. i1t)- i1Decoke j, - i1Nocoke_shutdown jt
i k

\ij, t (B.3)

C k . < C k Illax. (1 _ s: shutdown )
o ell - 0 e U J,

L-.Nocoke _ shutdown jt ~ M . (o~:HlldO\\n )

\ij, t

\ij, t

(B.4)

(B.S)

It is important to understand that the use of this constraint would depend on the

engineer's insight; if the user is not sure that the heuristic is valid, the constraint should

not be included.
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B.4 Costs associated with furnace decoke

The costs associated with furnace decoke are used in the coke penalty term used

in the objective function to penalize coke accumulated at the end of time horizon. The

d · h I ( C ena"v ) d (C Proli'loss) Th I t' Itwo terms use III t e pena ty term are ostueco=ke an ostdecokc·' e va ues 0 eac 1

term used for all the cases are Iisted below.

Decoke costs
Case # Energy ($) Profit loss ($)
Case I 4500 0
Case 2 4500 206000
Case 3 4500 0
Case 4 4500 0
Case 5 4500 0
Case 6 4500 206000
Case 7 4500 206000
Case 8 4500 0
Case 9 4500 0
Case 10 4500 0
Case II 4500 0
Case 12 4500 0
Case 13 4500 0

B.5 Product of a Binary and a Real variable: Linear reformulation

technique

Gueret et al. (2000) introduces a linear reformulation technique when a nonlinear

relationship (product of binary and a real variable) is encountered. The technique is

elaborated here:

With two real variables, x and y, and a binary variable b, we want to model

y =b· x
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Suppose we have some upper bound U on the value of x. Then consider the

following constraints

y'5.x

y ~ x - U.(1- b)

y'5.U ·b

(B.7)

(B.8)

(B.9)

If b=O, then (B.9) means that y=O. If b= 1, then (B.9) simply imposes the upper

bound constraint, and we have y '5. x from (B.7) and y ~ x from (B.8), i.e. y=x, which is

what is desired.

B.6 Modeling language, Solver and Computer specifications

The solver and computer specifications used to carry out all the case studies in

this thesis are provided here.

Modeling Language

AMPL

Solver details

Sol ver: CPLEX

Version: 10.\

Integrality gap = 0.0000 I

Conlputer specifications

Processor speed: 3.2 GHz

Memory (RAM): 2GB

Operating system: Windows XP
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Appendix C

Coarse-grid and Fine-grid scheduling models
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C.l Single feedstock scenarios

Naphtha is the feedstock used in these scenarios and no recycle is considered.

The time horizon of 90 days is chosen for all the scenarios. A complete set of constraints

and objecti ve function for coarse-grid and fi ne-grid models used to sol ve the single

feedstock scenarios are presented here.

C.l.l Coarse-grid model

The length of each time period in a coarse-grid model is 3 days. Therefore, for a

90 day time horizon, the coarse-grid model has 30 time periods. This forlllulation reduces

the problem size to approximately 1/3 of its original size (formulation with time period =
1 day). The time required for decoking is considered to be I day. Therefore, to model a 1­

day decoke in a 3-day time period, we incorporated an additional set of constraints to

accommodate decoking of multiple reactors and production for the remaining two days as

discussed in Section 4.4.2. The constraints and the objective function of the coarse-grid

model are presented as follows.

Constraints

Feed balance constraints

Fit =IPjjt

j

Disjunctive reactor model constraints

IPD jjkt =Pjjt
k

Production rates
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PI' od c1 =I I I PRateijkCl
j k

Salesc1 =PI' ad cl

Fraction of flow through disjunctive reactors

PD d p max
ijkl = Xijkl 0 ij

" d < IL. X ijk1 -
k

X d + Sd = (Jdisi
ijkt ijkt ijkt

"(J~isj = I
L., IJkl

k

" d _" disj " dL., Sijkl - L., (J ijkt - L., X ijkl
k k k

0 < ,d < I- Sijkl -

Coking, Tube wall temperature and Decoking

Ve

Ve

Vi,j, k, t

Vi,j, t

Vi,j,k, t

Vi,j, t

Vi,j, t

Vi,j,k, t

(CA)

(C.S)

(C.6)

(C.7)

(C.8)

(C.9)

(C.IO)

(C.II)

Coke jl =Coke jt-l + I I L'-.Coke ijkl + Coke ;1_1 - L'-.Decoke jl
i k

Vj,t (C.12)

AC k - (R k diSj ) AU a eijkl - co eik 0 (Jijkl 0 ut

Tw. ="" (Tw clean. (J,liSj )+ Tw const . Coke.JI L., L.... Ik IJkl Jl
i k

Coke;l = Rcoke" 0 (L'-.t - L'-.t 'bookc )

Tw* =Tw COllst
0 Coke*Jl .II
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Vj, t

Vj, t

Vj, t

(C.13)

(C.14)

(C.IS)
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o< ~Decoke < M ·8decoke
- )1 - )1

0 < C k . < Cok lnax . (1- S:decoke)- 0 ell - e,) 0)1

pllli" . (1_ 8decoke) < p. < pm'" . (I _8decoke)
I) )1 - 1)1 - I) )1

Threshold limits for decoking

Coke < Coke"l;1X
)1 - )

T . < T"'"x
W)I - )

Decoking multiple reactors

"\' s: decoke <
L..J 0)1 - '[

j

~t
Where '[ =---, ~t decoke

Accommodate lost production due to coarse time grid

pllli" . 8decoke ~ p* ~ P""'x . 8dccoke
I) )1 1)1 ') )1

F" "\' P"
II = L..J ijl

j

L PD ~kl = Pi;1
k

PRate~kCI = PD~kl . X ijkc
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'Vj, t

Vi,j, t

'Vi,j, t

Vi,j,t

'Vt

Vi,j, t

Vi, t

Vi,j, t

'Vi,j, k,c, t

(CI7)

(CI8)

(CI9)

(C20)

(C.21)

(C22)

(C23)

(C24)

(C25)

(C26)



Prod:l = IIIPRate~kCI Vc, t (C.27)
j k

Sales:l = Prod:1
Vc, t (C.28)

Prod c1 =Prod cl +Prod:l .(~t_~tdCCOke) VC, t (C.28a)

o< PD ~ < plll<lX . (Jdisj< Vi,j, t (C.29)- I)kl - I) I)kl

I (J~i,j* < () decokc \ii,j, t (C.30)I)kl - )1

k

Energy constraints

Efurnace = "'"~ PD.. . E ..
)1 L..J L..J I)kl I)k

k

(
PRate"k JE ~·omprc"or = I I I I I) TI * Ecllmp

i .i k e MWe

Steam generated

FHPsleam = p. .G HPsteam
1)1 1)1

FMPstcalll = p. .G Ml'slcam
1)1 1)1

Tightening constraints

'""' ()dccokc < A
~)l -I-'

I
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Vj, t

Vt

\ii,j, t

\ii, j, t

\ij, t

\ij

(C.31)

(C.32)

(C.33)

(C.34)

(C.35)

(C.36)



I+y

"" 8decoke < 0
L.. Jl -
1=1

C k decoke s: decoke
Coke jt-l:2: 0 eallo\\"cd· U jl

Integrated demand constraint

ISales'.1 ~ Demand c
1

End conditions

C k <C k maxo ejNT - 0 ecalclllalCd

C k max -C k ntlX -Nf- *C k Illaxo ecalclliated - 0 e IS 0 eaccllm/pcriod

Objective function

The objective function is shown as equation (CA2).

Vj

Vj, t

Vc

(C.37)

(C.38)

(C.39)

(C.40)

(CAl)

Objective function = Plant Profit - PenaltlOke + profit" (CA2)

Plant Profit =Value of products - Cost of feedstocks - Cost of dilution (C.43)

steam - Cost of furnace energy - Cost of compressor energy + Value of

HP and MP steam generated at TLE's - Cost for furnace decoke.

Details of each term in the profit equation are given as follows:

Value of products = IISales
cl

. Cost~rOdllcl

I c
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Cost of feedstocks =IIFil 0 Cost:ced

Cost of dilution steam = IIIIpDijkl 0 p;tc
0 Cost~li~~:~:~n

I i j k

Cost of furnace energy = '""' '""' E furnace 0 Cost furnace'-' L.J L.J Jl energy
t j

Cost of compressor energy = '""' Ecolllpressor 0 Costcolllpressor....... L.J I energy
I

(C43b)

(C.43c)

(C.43d)

(C43e)

Value ofHP and MP steam = "''''"''FHl'slealll oCo'tHI' + "'''''''F~IPslcal1l °Cost MP
~~~ IJt S sleam ~~~ IJI steam

I i .i I j

(C43f)

Cost for furnace decoke = '""' '""' 8decoke 0 C tdecokeL.J L.J Jl os energy
I j

(C43g)

CokePenalty =
"ICokejNT
---'-j "(Cost energy + Cost prolilloss)

decoke decoke
Coke

mlX

(C43h)

Profit" =("Sales" 0 Cost produci - '" F* 0 Cost feed _ "" '" PD ~ 0 pS/HC "Cost dilution
~ rl (' ~ II I L,.;~~ IJkl Ik steam

C j k

o (PRate~k ]*" furnace IJ Tl compressor
- IIIpDi.ikl oEijk oCostenerg~ -IIII. oEcolllpressor oCostcnergy

i j k i j k CO MWc

+'" '" FHI'Sleam' "Cost HI' +"" F~II'Sleam. 0 Cost MI' ) 0 (t-.t _t-.tdeCOke)
~~ III steam ~ L,..; IJI steam

j j

(C.43i)
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C.l.2 Fine-grid model

The length of each time period in a fine-grid model is 1 day. Therefore, for a 90

day time horizon, the fine-grid model has 90 time periods. The increase in the number of

time periods will increase the number of binary variables in the model. However, many

of the binary (decoke) variables in this model are fixed in the two-stage temporal

decomposition heuristic. The decoking period of I day is equal to the length of each time

period in this model. Therefore, there is no production loss in this model during decoking

as in coarse grid model.

Constraints

Feed balance constraints

F='P
It ~ 1.11

j

Disjunctive reactor model constraints

IPDijkl = Pijl
k

Production rates

PRateijktl =PD ijkl . X jjkt-

Prod Cl = IIIPRateijkCI
j k

Fraction of flow through disjunctive reactors

PD d p m1X
ijkl = X ijkl' ij
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Vi, t

Vi,j, t

Vi,j,k,c,t

Vc

Vc

Vi,j, k, t

(CA4)

(CAS)

(C.46)

(CA7)

(CA8)

(CA9)



IX~kl ::; 1 Vi,j, t CCSO)
k

d f- ,d _ di'j Vi,j, k, t CCSI)x ijkl - Sijkl - (Jijkl

I(J'li,j =1 Vi, j, t CCS2)IJkl
k

IS~kl - I disj I d Vi,j, t CCS3)- (J ijkl - X ijkl

k k k

0< ,d ::;1 Vi,j,k,t CCS4)- Sijkl

Coking, Tube wall temperature and Decoking

Coke jl = Coke jI-l + I I 6Coke ijkl - 6Decoke jt

i k

"C k - (R k diS
j

) "u 0 e ijkl - co e ik 0 (Jijkl 0 ut

Tw ='" '" (Tw clean 0 (Jdi'j ) + Tw eonS[ 0 Coke 0

JI L.. L.. Ik I.lkl JI
i k

0< 6Decoke < M °8decoke
- .II - JI

0::; Coke ::; Coke In,,, 0 (I _ 8decoke)
JI '.1 JI

pomin 0 (I _()derokc) < p < pmax 0 (1_ 8deroke)
'.1 .II - IJI - IJ .II

Decoking single reactor

,,()decokc < I
.i..J.l1 -

j
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Vj, t

Vi,j,k,t

Vj, t

Vj, t

Vj, t

Vi,j, t

Vt

CCSS)

CCS6)

CCS7)

CCS8)

CCS9)

CC60)

CC61)



Threshold limits for decoking

C k . < CokeI."'"o eJI - J

T . < Tn."
W JI - J

Energy constraints

Efurnare =~~ PD.. . E-Jl L...- L...- IJkl IJk
k

(
PRate .., JE ~ompressor =L LL I 'J"rl '" E camp

i j k r MW,.

Steam generated

FHPsteam = p_ .G I-IPs(cam
'Jl IJI

FMPSleam = p .. G ~IPSleam
IJI IJI

Vi, j, t

Vi,j, t

Vj, t

Vt

Vi ,j, t

Vi ,j, t

(C.62)

(C.63)

(C.64)

(C.65)

(C.66)

(C.67)

Tightening constraints

l+~

I8d~coke < I Vj, t (C.68)JI -
('=1

I8dccoke < ~ Vj (C.69)Jl -
I

1+'1
I8decoke < 0 Vj (C.70)Jl -
1=1

C C k dccoke 8decokc Vj, t (C.71)oke jl-l ~ 0 e"lIowed' jl
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Integrated demand constraint

ISalesc, S; Demand c
I

End conditions

C k < C k maxo ejNT - 0 ecalculnted

C k max - C k '''"X Nf' -" C k maxo ecaknlaled - 0 e - IS ',' 0 eaccum/period

Objective function

The objective function is shown as equation (C75).

Vc (C72)

(C73)

(C74)

Objective function = Plant Profit - PenaltlOkC (C75)

Plant Profit = Value of products - Cost of feedstocks - Cost of dilution (C76)

steam - Cost of furnace energy - Cost of compressor energy + Value of

HP and MP steam generated at TLE's - Cost for furnace decoke.

Details of each term in the profit equation are given as follows:

Value of products/ Income = IISalesc, -Cost~rod\lct
I c

"" f dCost of feedstocks =L.., L.., Fit -Cost iCC
I i

C f d'l . - """"PD S/HC C . dilulionost 0 I utlon steam - L..,L..,L..,L.., ijkl' Pik . oststcam
t i j k
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Cost of furnace energy =~~ EJf't,rnace . Cost furnace
'"-" ~~ energy

I j

Cost of compressor energy =~ E col11pressor . Costcol11pressor
~ t energy

1

(C76d)

(C76e)

Value ofHP and MP steam = """FHPsteal11 ·Cost HP + """F~lI'slealll ·Cost~'IP
~~~ IJI sleam ~~~ IJt steam

1 j 1 i j

(C76f)

C + h d k ~~ s::d.eeoke . C tdecokeost tort Llrnace eco 'e =~~ 0Jl os euergy
t j

(C76g)

PenaltyCOke =
L Coke jNT

-'-j . (Co ,te"ergy + CostprOlilloSS)
S decoke decoke

Coke"""
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C.2 Multiple feedstock scenarios

Ethane, Propane and Naphtha are the feedstocks used in these scenarios. Only

ethane is recycled back for subsequent cracking. The time horizon of 90 days is chosen

for all the scenarios. A complete set of constraints and objective function for coarse-grid

and fine-grid models used to solve the multiple feedstock scenarios are presented here.

C.2.1 Coarse-grid model

The length of each time period in a coarse-grid model is 3 days. Therefore, for a

90 day time horizon, the coarse-grid model has 30 time periods. The time required for

decoking is considered to be I day. Therefore, to model a I-day decoke in a 3-day time

period, additional set of constraints were added to accommodate decoking of multiple

reactors and production for the remaining two days as discussed in Section 4.4.2. The

constraints and the objective function of the coarse-grid model are presented as follows.

Constraints

Feedstock allocation

Wu = (1- odecoke)
1)=11 FII

(Reactor I is allocated to crack ethane)

"Wu < (I _odecoke)L...J 1)1 - )1

Wijl + L Wj'jl-l S I
j':;ti

Wu - Wu < 0decoke
1)1-1 1)1 - )1

pl11in . Wu < pu < pl11ax . WU
I) 1)1 - 1)1 - I) 1)1
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i = ethane, V t

\ij, t

\ii, j, t

\ii,j,t =2..NT

\ii,j, t

(C77)

(C78)

(C79)

(C80)

(C81 )



Feed balance constraints

Fil + FRcy il = I Pijl
j

Disjunctive reactor model constraints

IpOijk, =Pijl
k

Production rates

PI' od CI =I I I PRate ijkcl
i j k

Sales c1 = PI' od CI

Recycle Inventory constraints

freYil =IIPO ijkl ° Xikco
j k

FReYil =0

Fraction of flow through disjunctive reactors

_ d . pmax
PO ijkl - X ijkl ij

~d
~Xiikl S I
k
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\ii, t

\ii,j, t

\ii,j, k,e, t

\ie

\ie

i =ethane \it

i =ethane \it

i "* ethane, \i t

\ii,j,k,t

\ii, j, t

(C.82)

(C.83)

(C.84)

(C.85)

(C.86)

(C.87)

(C.88)

(C.89)

(C.90)

(C.91)



d ,d _ disj Vi,j, k, t (C.92)Xijkl + Sijkl - (J ijkl

I ~isj < Wu Vi, j, t (C.93)(J')kl - '.II

k

IS~kl -I disj I ,I Vi,j, t (C.94)- (J ijkl - Xijkl
k k k

Odd 8decokc Vi,j,k,t (C.95):s: Sijkl :s: x ijkl + jl

0< ,d < Wu Vi,j,k,t (C.96)- Sijkl - '.11

Coking. Tube wall temperature and Decoking

Coke jl =Coke jl_1 + I I 6Coke ijkl + Coke :1-1 - 6Decoke jl
i k

AC k - (R k diSj ) AD 0 eijkl - co eik . (Jijkl . Dt

T . =""(Tw deon . (J'1iSi)+Tw"onq ·Coke.
W)I L..J L..J Ik I.lkl .II

i k

Vj, t

Vj, t (C.97)

Vi,j, k, t (C.98)

(C.99)

Cok<1 =Rcoke'; . (6t - 6t dccokc )

Tw" =Tw COllq .Coke~
fl fl

0< 6Decoke < M ·8dccoke
- .II - )1

0< Coke :s: Coke'"'' . (1 _ 8dCCOkC)
- JI II Jl

p.min . (1 _8decokc ) < p. < plllax . (I _8,hokc )
I) .II - 1)1 - I) .II
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V.i, t (C.100)

Vj, t (C.IOI)

V.i, t (C.102)

V.i, t (C.I03)

Vi,j, t (C.104)



Threshold limits for decoking

Coke < Coke m,1X
JI - .I

T . < T'l>1Xw JI - J

Decoking multiple reactors

'" 8decoke < 'I
L..J JI -

j

~t
'I=--­

~tdecoke

Accommodate lost production due to coarse time grid

pmin .8decoke < p' < p.m"' .8uccokc
IJ JI - IJI - IJ JI

pmin . W ::;; P" ::;; pm'" . W
IJ IJI IJI IJ IJI

F ="'p'
n L..J IJI

j

'" PD* P'L..J ijkl - ijl
k

Sales;1 =PI' od:1

P d P • ( det'oke )Prod cl = 1'0 cl + rod cl ' ~t -~t
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Vi,j, t

Vi,j, t

Vt

Vi, j, t

Vi,j, t

Vi, t

Vi, j, t

Vi,j,k,c,t

Ve, !

'de,!

'dc,t

(CI05)

(CI06)

(CI07)

eC108)

(CI09)

(CliO)

(Clll)

(CI12)

(CI13)

(CI14)

(CI14a)



O< PD" < pmax . a~isj*
- IJkl - IJ IJkl

'" a disj* < 8 decokeL..J IJkl - JI
k

Energy constraints

E rumoce '" '" PD E
jl = L..J L..J ijkl' ijk

k

(
PRate" k JE ~ompressor =I I I I IJ TI *E comp

i j k c MWc

Steam generated

FHPSlcam = p. . G HPstc<lm
IJI IJt

FMPSIC:l1ll = p. . G ~IPslcam
IJI IJI

Tightening constraints

"8decokc < A
~ Jt -I-'

I

I+y

') 8 ~,ccokc ~ 0
....- -,-
1=1

C
k decokc s: decokc

Coke jt-I::::: 0 eollowcd . U jt
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\lc

\li,j, t

\lj, t

Vt

\li,j, t

\li,j, t

\lj, t

\lj

\lj

\lj, t

(C.II4a)

(C.IIS)

(C.116)

(C.117)

(C.l 18)

(C.119)

(C.120)

(C.121)

(c.ln)

(C.123)



Integrated demand consLraint

End conditions

C k < C k maxo ejNT - 0 ecalculaled

C k max - C k lTlax - Nf' *C k Illaxo ecakulalcd - 0 e IS 0 eacculll/period

Objective function

The objective function is shown as equation (C. J 27).

'\Ic (C.124)

(C.12S)

(C. J 26)

Objective function = Plant Profit - PenaltlOkC - Penalt/cy_Inv + profit"

Plant Profit =Value of products - Cost of feedstocks - Cost of dilution

steam - Cost of furnace energy - Cost of compressor energy + Value of HP

and MP steam generated at TLE's - Cost for furnace decoke.

Details of each term in the profit equation are given as follows:

Value of products/ Income = IISalesc, . Cost~roduci
I C

Cost of feedstocks =IIFil .Cost:ecd

I i

C f d·J t' t - '" '" '" '" PD S/HC C dilulionost 0 1 U Jon seam - LLLL ijkl . Pik . ostslcalll
I i j k
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(C.128)

(C.128a)

(C.128b)

(C.128c)



Cost of furnace energy = '" '" E IJ'I,rnare -Cost furnaceL..J L.J t:nergy
I j

Cost of compressor energy = LE~ompressor -Cost~~~:~;~ssor
I

(C128d)

(CI28e)

Value of HP ancl MP steam = '" '" '" FHPsleam -Co t HI' + '" '" '" FMPSleam -Co t MP~~~ IJI S sleam ~~~ IJI S steam
I j I j

(CI28f)

Cost for furnace decoke = '" '" 8deroke -C tderokeL..J L..J JI os energy
I j

(CI28g)

(CI28h)

CokePenalty =
LCoke jNT
-.o.j (Costenerl!)- + CostprOlilloSS)

decoke decoke
Coke max

(CI28i)

Profit* = ("'Sal s' _Co,tproducl - "'F' _Cost feed - "'''''''PD~ _pS/HC _Costdilulion
~ e el S c ~ JI I ~~~ IJkl Ik sleam

r j k

. (PRate~k ]::. lurnace IJ ·cl compressor
- IIIpDjjkl -E jjk . Cost energy -IIII -Erompressor ·Costencrgy

j j k j j k c MWc

+ '" '" FHPsleam" _Cost HI' + '" '" F~IPsle"m" C MI') (/1 /1 decoke)
~~ IJI steam ~~ 'Jl - ostsleam - t - t

j i j

(CI28j)
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C.2.2 Fine-grid model

The length of each time period in a fine-grid model is 1 day. Therefore, for a 90

day time horizon, the fine-grid model has 90 time periods. The increase in the number of

time periods will increase the number of binary variables in the model. However, many

of the binary (decoke) variables in this model are fixed in the two-stage temporal

decomposition heuristic.

Constraints

Feedstock allocation

Wn =(1_ 8dCCOkC)
IJ=II FII

(Reactor I is allocated to crack ethane)

~ Wn ~ (1_ 8dCCOkC)
~ IJI Jl

W;jl + I W;'jl-l S I
j'iti

W. - Wn < 8uCt"l)kc
IJI-I IJI - JI

pmill . Wn < p. < plllax . W ..
IJ '.1

'
- IJI - IJ IJI

Feed balance constraints

Fil + FRcYil =I Pijl
j

Disjunctive reactor model constraints

"PDnk =p.L.. '.1'1 IJI
k
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i = ethane, \:;j t

Vj, t

Vi, j, t

Vi,j, t = 2..NT

Vi, j, t

Vi, t

Vi,j, t

(C.129)

(C.130)

(C.131)

(C.132)

(C.133)

(C.134)

(C.135)



Production rates

PRateijkcl =PD ijkl . X ijk,.

Pr od el =I I I PRateijkCI
j k

Recycle Inventory constraints

frcYit =LLPDijkl ,X ike
j k

FRcYil = 0

Fraction of flow through disjunctive reactors

d Illa.\

PD ijkl = x ijkl . Pij

d d _ disj
Xijkl + Sijkl - (J ijkl

'" ~isj < WU
~ (J IJkl - '.II

k

'" d _"", disj '" d
~Sijkl - ~(Jijkl - ~Xijkl
k k k

O< d < d s:: dceokc
- Sijkl - Xijkl + U jl
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Vi,j,k,c,t

Vc

Vc

i =ethane '1ft

i =ethane '1ft

i "* ethane, 'If t

Vi,j,k, t

Vi,j,t

'lfi,j,k,t

Vi,j, t

Vi,j, t

'lfi,j,k,t

'lfi,j,k,t

(C.136)

(C.137)

(C.138)

(C.139)

(C.140)

(C.141)

(C.142)

(C.143)

(C.144)

(C.145)

fr' 111{-;\
~'- •• """tV}

(C.147)

(C.148)



Coking, Tube wall temperature and Dccoking

Coke jt =Coke jt-! + I I ~COkeijkl - ~Decoke jl
i k

AC k - (R k diSj ) AD 0 eijkl - co eik . (Jijkl . Dt

T =~~ (Tw clean . (J~iSj)+ Tw const . Coke.w Jl L..J L..J Ik IJkt Jl
i k

a< ~Decoke < M . odecoke- Jt - Jt

a< Coke. ~ Coke 'l1aX . (1 _ odecoke)- Jl IJ Jl

plllin . (1_ 8decoke) < p. < pilla, . (I _8decoke)
IJ Jt - IJt - IJ Jl

Decoking single reactor

" 8,!eL'oke < I
L...., Jt -

j

Threshold limits for decoking

Ck <Cklllaxo ej1 _ 0 e j

T . < Tmax
w Jl - J

Energy constraints

Efurnnce =~~ PDn .En
Jt L..J L..J IJkl IJk

i k
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Vj, t

Vi,j,k,t

Vj, t

Vj, t

Vj, t

Vi,j, t

Vt

Vi,j,t

Vi,j, t

Vj, t

(CI49)

(Clsa)

(ClSI)

(C IS2)

(CIS3)

(CIS4)

(CISS)

(CIS6)

(CIS7)

(CIS8)



(
PRate H

k JE~ompressor =L LLL I) 'CI '" Ecomp

i j k c MWc

Steam generated

FHPSleam =p. . G HPsleam
1)1 1)1

F~IPsleam =p. . G MPslcam
1)1 1)1

Tightening constraints

"8deroke < R.
.L..)I -I-'

I

1+'(

" 8decoke < 0
.L..)I -

I=J

e ke k decoke s:: decoke
o 'e jt-l ~ 0 'eallowed . U jl

Integrated demand constraint

ISalesel ~ Demand c
I

End conditions

C k < C k max
o e jNT - 0 ecaleulaled

C k,m, C k max Nf ,'. C k milX
o ecalellJaled = o'e - rs ." 0 'e"ccllm(period
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Vt

Vi,j, t

Vi,j, t

Vj, t

'vIj

'vIj

'vIj, t

'vic

(C J59)

(C 160)

(CI61)

(C 162)

(C 163)

(C 164)

(C 165)

(C 166)

(C 167)

(C 168)



Objective function

The objective function is shown as equation (CI69).

Ob ° ° f ° PI t P fO P I Coke P I Rcy Illv fit*JectIve unctIOn = an 1'0 It - ena ty - ena ty - + pro I

Plant Profit = Value of products - Cost of feedstocks - Cost of dilution

steam - Cost of furnace energy - Cost of compressor energy + Value of HP

and MP steam generated at TLE's - Cost for furnace decoke.

Details of each term in the profit equation are given as follows:

Value of products/ Income = I I Salesct . Cost~roduci
t c

Cost of feedstocks =IIFi1 ·Cost:ced

I i

C f do, 0, - """"PD SjHC C dilulionost 0 1 utlOn steam - L..... L..... L..... L..... ijkt 0 Pik 0 ost Slearn
I i j k

C f f '\' '\' E furnace C furnaceost 0 urnace energy = LJ LJ jt 0 ostenergy
I j

Cost of compressor eneroy = '\' Ecompressor 0 Cost compressor
b LJ I energy

I

(CI69)

(CI70)

(CI70a)

(CI70b)

(CI70c)

(CI70d)

(CI70e)

Value of HP and MP steam = LLIFij~PS,eam Cost~~~1m +II IFi;~IPSleam 0 Cost~~m
I i j I i j

(CI70f)

'\' '\' s: dccoke decokeCost for furnace decoke = LJ LJ U jt 0 Cost energy
I j
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(CI70g)



(C.170h)

PenaltlOke =
LCokejNT

j (C energy C protilloss )
-"----- . ostdccoke + ostdecoke

Coke n"k1X
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Appendix D

Optimization under uncertainty: A brief review of the

state-of-the-art
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Multi-period optimization under uncertainty: State-of-the-art review

of tools

Predictive approaches Advantages Disadvantages

(Open loop)

Deterministic optimization · Is the basis for mathcmatical · Open loop solution. Cannot

mcthods (Kallrath 2002, formulation of general SSC update the solution at later

Floudas et aI., 2004. problems stages in the event of

Grossmann, 2005 and · First and necessary step for occurrence of disturbances.

Mendez et aI., 2006) problem formulation · Uncertainty is not explicitly

· Issues of modeling modeled

uncertainties are usually · Problem size of the MILP

embedded onto these models dictates the computational

using various robust complexity

optimization techniques · Not ideal for online

implementation

Robust opti mization · Can explicitly model the · Open loop solution.

technology (Second Order uncertainty in the model • Solution obtained based on

Conic Programs (SOCP)) parameters and the exogenous predicted uncertain parameters.

(Ben Tal and Nemirovski, inputs (i .e. measured and Cannot update the solution

2000, Lin and Floudas, unmeasured disturbances) upon realization of uncertainty.

2004) · Convex problem. Robust · Problem size dictates the

solutions computational complexity when

· Can handle continuous and considering intcger variables.

integer variables · Not ideal for online

· Problems with continuous implementation.

variables can be solved easily

in a reasonable amount of time

to global optimality
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Probabilistic or chance · Addresses the uncertainty in a · Open loop solution. Solution

constraint probabilistic manner obtained based on predicted

(Birge and Louveaux, • Confidence level can be used exogenous inputs.

1997, Warren, 2004, Sen as a tuning parameter to adjust · Can become computationally

and Hilge 1999) the system near constraints intractable if standard

distributions (e.g. normal) are

not used to define uncertainty.

• Probabilistic constraints should

be well formulated. Their

deterministic counterpart could

be non-convex.

· Not ideal for online

implementation

Parametric programming · General framework to · Open loop solutioll. Cannot

(Pistikopoulos et aI., 2002. parameterize the solution (i.e readjust the solution upon

Sakizlis et aI., 2004, Li et solution as a function of model realization of uncertainty

aI., 2006 and Ryu et aI., parameters) by solving the · Computationally intensive to

2004). optimization problem only obtain the basis or parametric

once. solution for large problems

· Then use the same solution for · Not ideal for online

various realizations of implementat ion

uncertai n parameters

• Small problems can be solved

in a reasonable amount of time
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Reactive approaches Advantages Disadvantages

(Closed loop)

Nominal MPC framework • Stability, performance and robust · Does not use an explicit

(Qin and Badgwell, 1996, constraint handling is achieved by model of uncertainty.

2003, Marlin, 2000) heuristically tuning the parameters · Could be more conservative

and providing appropriate safety due to the oversized safety

margins margins

• Feedback information available at · Handles only continuous

every execution time. Rolling variables

horizon approach, can compensate

stochastic disturbances

· Computationally efficient. Ideal

for online application

Robust MPC framework · Explicitly considers uncertainty · Could be computationally

(Warren, 2004, Bemporad due to plant/model mismatch and intensive depending on the

and Morari, 1999, Van exogenous variables (measured, sizc of the problcm.

Hcsscm, 2004) unmeasured disturbances) · Handles only continuous

· Closed loop prediction of future variables.

behaviour

· Guarantees stability, feasibility and

performance (Robust solutions)

• Ccrtain formulations arc

computationally efficient. Ideal for

online application

Stochastic programming Two sta2.e and multista\2c SP · Two stage SP doesn't handle

(SP) with recourse • Models closed loop uncertainty future uncertainty

(van del' Vlcrk, 2004, Sen uSlllg recourse appropriately

and Hilge 1999) · Two stage SP approximation in · Multistage SP is

computationally tractable. computationally intensive

• Ideal for online application (intractable for a large

number of stages or time

steps).

· Handles only continuous

variables
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MPC for supply chain • Uses heuristics to select the model · Deterministic controller

management (Wang et aI., parameters that guarantee model, i.e., included in back-

2003, Rivera et aI., 2004. performance and robustness ofT calculations

Seferlis and Giannelos, • Rolling horizon approach, can · Uses simple heuristics to

2004) compensate stochastic disturbances back off from infeasibilities

• Ideal for online implementation · Can handle only continuous

variables

MPC for control of hybrid • Can handle continuous and integer · Uncertainty in not explicitly

systems variables modelled for the nominal

(Bemporad and Morari, • Rolling horizon approach, can case.

1999, Pistikopoulos et aI., compensate disturbances · Size ofMILP or MIQP could

2002, Sakizlis et aI., 2004) · MILP or MIQP is solved at each dictate the computational

execution time. Ideal for online complexity.

application (ifMILP can be solved · Also, obtaining a parametric

within each execution period) solution could be

• Uses parametric programming to computationally intensive for

obtain robust solutions large problems.

MPC I'OJ supply chain · Can handle continuous and integer · Uncertainty in not explicitly

optimization (Mestan et variables (solves a MILP at each modelled.

aI., 2006, Perea-Lopez et execution time) · Similar to nominal MPC but

al.,2004) · Rolling horizon approach to react with integer variables.

against disturbances (varying · Can be computationally

demand) intensive depending on the

· Ideal for online implementation (if size of MJLP

MILP can be solved within each

execution period)
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Simulation based · Can handle continuous and integer · Only deterministic optimizer

optimization variables is used. So, the solutions

(Honkomp et aI., 1999 and · Two simulation plant models could become infeasible due

lung el aI., 2004) (deterministic and stochastic to uncertainty.

models) are used to assess the • Only the solution in the

performance and validate the future stages is adjusted to

robustness of the solution. account for infeasibility

· Reactive solution update if the • Could be computationally

solution is found infeasible or intensive depending on the

below the specified tolerance number of re-optimizations.

limits by re-optimization.

Stochastic integer Multistage SIP · Multistage SIP is

programmi ng (SIP) with · Can handle continuous and integer computationally intensive

recourse variables. (intractable for large stages

(Sand and Engell, 2004, · Multistage SIP models the closed or time steps).

Shultz 2003 and loop uncertainty appropriately • Cannot be used for online

Grossmann et al 2003) (using recourse). application unless

· An approximall;: solution approximation strategies are

framework has been proposed used.

Grossmann (2003) using the idea

of solving several two stage SIP's

within a shrinking horizon.

Two stage SIP · Two stage SP docsn' t handle

• Can handle continuous and integer future uncertainty

variables. appropriately

· Models closed loop uncertainty · Can be computationally

· Computationally tractable for intractable for large

moderate problem sizes. Ideal for problems

online application.
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