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Abstract

This thesis addresses a reactive (closed-loop) scheduling framework for integrated
scheduling of process operation and maintenance. Ethylene plant furnace scheduling is
chosen as the process example because it is concerned with optimally scheduling the
furnace operations and its periodic maintenance shutdowns. The main reason for
choosing this example is that it addresses a special class of scheduling problems where
the operations and maintenance have strong interactions and so integrated decision

making becomes necessary.

The major goal of this research was to select an appropriate closed-loop
framework and develop a reactive scheduling system. With the rolling horizon approach
being the most suitable method for closed-loop schedule implementation, a Model
Predictive Control (MPC) framework is chosen in this thesis. The presence of integer
variables in the scheduling model made the reactive scheduling systems resemble a

hybrid MPC problem.

The research was performed in two phases. In the first phase, an open-loop
scheduling model was formulated as a Mixed Integer Linear programming problem
(MILP) using discrete time representation. To ensure the tractability of the model,
tailored formulation methods (disjunctive reactor modelling, constraint reformulation and
tightening constraints) and efficient solution heuristics (two-stage temporal
decomposition heuristic) were developed in this thesis. In the second phase, the open-
loop scheduling model was applied in the prototype closed-loop framework to develop a
reactive scheduling system to assist engineers make appropriate decisions in a timely

manner.



The automated scheduling system developed in this thesis was tested for several
scenarios and proved to have significant benefits over manual scheduling procedures,
confirmed that the scheduling model is tractable and achieved feasible solutions for all
the scenarios considered, including large problems with multiple feeds, multiple reactors
and a long (90-day) scheduling horizon. We conclude that the technology is appropriate

for further improvement and eventual application in the industry.
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Chapter 1. Introduction

Process scheduling has recently gained prominence because of the competitive
pressures in the process industry to improve productivity and reduce operational costs.
Scheduling integrates the production objectives with the process operations and could be
very effective in increasing the expected plant profits. It mainly defines the timing and
values of activities to be performed in a plant over a period of time. Broadly, the key
decision variables are the start time of an operation, the unit it will run on, its duration,
process conditions and the amount of material processed. Scheduling decisions are made
over a defined finite horizon in such a way that the maintenance requirements are
fulfilled, customer demands are met and the inventory levels are kept as low as possible
while the overall profit is maximized. The time horizon for scheduling depends on the
typical run length of an operation in a unit and could range from few days to 2-3 months

(Mendez et al., 2006 and Kallrath, 2002).

Months
Enterprise-wide
Weeks 113N

Facility-wide e
Days
Plant-wicle
Hours y

Unit-wide
Minutes

Seconds DCSandplant

Figure 1-1: Hierarchy of plant automation



In the hierarchy of plant automation shown in Figure 1-1, scheduling lies between
planning and real-time process optimisation (RTO). Planning layer deals with long term
decisions such as feedstock purchase, production levels and product inventories for given
marketing forecasts and demands, which are forwarded to the scheduling layer.
Subsequently, the scheduling decisions are made by considering the planning decisions.
These decisions are then sent to the RTO layer, which communicates with the lower
levels of automation. At present, the RTO technology is well developed for plants that
operate at steady state (Yip and Marlin, 2004, Beautyman, 2004, Marlin and Hrymak,
1997). It uses a rigorous steady state plant model to obtain optimal operating conditions.
Consequently, simple and approximate plant models can be used for scheduling

continuous processes due to the cascade structure in the hierarchy of plant automation.

Process scheduling methods adopted in industry currently optimize the open-loop
behaviour of the system model. The open-loop scheduling models are solved by an
engineer in a batch manner using simulation or optimization tools to obtain feasible
schedules. He/she then picks the most profitable schedule and implements it and
periodically updates the model using feedback information. However, with few
experienced human schedulers available for the entire production facility, it becomes
extremely difficult to generate consistent schedules. This could have a great effect on the

expected plant profit.

The existing manual procedures for plant scheduling can be improved by
automating the scheduling system so that the on-line scheduler generates good feasible
schedules consistently with little involvement of human expertise. Our goals in this thesis
are to (a) formulate an open-loop scheduling model that can be solved in reasonable
computing time and (b) to apply this model in a prototype closed-loop scheduling system

that can assist engineers to make appropriate decisions in a timely manner.



1.1  Thesis Objectives

The main overall objective of this research work is to develop a reactive (closed-
loop) scheduling system that automatically generates the schedule and implements it into

the plant in real time. Typically, closed-loop schedule implementation is done once every

day.

In this thesis, the scheduling system is developed as a stand alone system and not
integrated with the RTO or any other layers of automation. The system can be considered
as a closed-loop Model Predictive Controller (MPC), which has a Mixed Integer
optimization problem (MIP) at each iteration (hybrid MPC problem). The schematic of a
typical reactive scheduling framework (Bose and Pekny, 2000, Perea et al., 2003) is
shown in Figure 1-2. This framework provides feedback information to update the plant

model in order to compensate for model errors and disturbances entering the plant.

Figure 1-2: Reactive (closed-loop) scheduling framework

In order to achieve this objective, the work was planned to be carried out in two phases.

= In the first phase, an open-loop scheduler is developed. The open-loop scheduler
is a multi-period optimization problem that is formulated as a Mixed Integer
programming problem (MIP). The aim of this open-loop scheduler is to determine

a feasible schedule that maximizes the plant profit and leaves the plant in an



operable state at the end of horizon. The product developed in this phase can be
used as an optimization tool to assist the engineers for offline schedule generation

and manual implementation.

= In the second phase, a closed-loop framework is selected to implement the online
scheduling system. Necessary modifications to the open-loop scheduling model
should be accounted for to make it compatible for closed-loop application,
specifically to reduce the changes in plant operation between optimisation
solutions. Therefore, proper care should be taken during implementation phase to

make the closed-loop scheduler suitable for real time application.

1.2 Scope of work

Mixed Integer Linear Programming (MILP) has become one of the most widely
explored methods for process scheduling because of its rigorousness, flexible, extensive
modelling capability and the availability of state-of-the-art solvers (Floudas and Lin,
2002). Also, the main advantage with MILP’s is that they are well understood and the
techniques to solve them are well developed. For this reason, we intend to formulate the

scheduling model in this thesis as a MILP.

To avoid the non-linear sub-problems (relaxations), the nonlinearity in the
scheduling models are modelled as linear constraints using approximation and
reformulation techniques in this thesis. In general, MILP’s embed a combinatorial aspect.
When this is combined with the large size of optimization problems, it makes the
optimization exceptionally difficult to solve in a reasonable amount of time. Thus, the
main scope of this work is to develop a tailored formulation and an efficient solution
strategy to reduce the computational time of the scheduling model and make it feasible

for real time application.

This thesis is mainly concerned with deterministic scheduling; therefore,

uncertainty is not explicitly addressed. Constant model parameters, product demands and



prices are assumed. Feedback information available in the closed-loop system

compensates for model errors and disturbances entering the system.

1.3 Research Emphasis

In many processes, operations and maintenance often (not always) have
interactions. The main emphasis of this research is on a particular class of processes
where the operations and maintenance have strong interactions and so integrated decision
making is necessary. Let us consider a chemical reactor with a catalyst as an example. If
the temperature in the reactor increases, the catalyst decays quickly. As a result, the
reactor should be shutdown to replace the catalyst. Therefore, reactor operation
(temperature) interacts with its maintenance (shutdown). Other similar examples include
processes where process flow affects the adsorption run length (water treating system),
process flow can cause pump wear, reactor severity can cause coking in cracking coils

(ethylene plants), etc.

In order to capture the interactions between the process operation and

maintenance, integrated decision making is required.

1.4 Case study: Ethylene furnace scheduling

Ethylene plant furnace scheduling is chosen as the process example in this thesis.
This problem is concerned with optimally scheduling the furnace operations and its
shutdown (maintenance) simultaneously (Schulz et al., 2006 and Lim et al., 2006). The
interaction between reactor operation (severity and steam to hydrocarbon ratio) and
furnace maintenance is clearly evident in this example. Furnace scheduling lies at the
heart of every production and maintenance scheduling activity for a petrochemical
complex. Ethylene plant is the key source of intermediates for all downstream production

units and its operation directly affects downstream production quantities and qualities.



There is a huge cash flow in these plants (millions of dollars per day); therefore, any

small improvement in such a facility will produce significant economic benefits.

A wide variety of petrochemical products are produced in ethylene plants by
thermal cracking of feedstocks in the cracking furnaces. Continuous operation of the
furnaces leads to coke formation on the inner surface of the cracking coils. Coke hinders
heat transfer through the coil wall and thus decreases the productivity of the furnace. To
maintain the productivity, input energy must be continuously increased, and this raises
the tube skin temperature (coil surface temperature). Furthermore, excessive coke
deposition plugs the coil. Therefore, in order to maintain production efficiency and plant
safety, the furnace has to be periodically shutdown for cleaning the coke. This cleaning
process is called decoking. Typically, this is done when the tube skin temperature or the
pressure drop of the coil reaches its maximum limit. Therefore, optimization of the
decoking schedule is highly desirable to maximize the overall profit of the furnace

system.

On the other hand, the type of cracking feedstock (Ethane, Propane, Naphtha etc.)
and the operating conditions in the furnace (Severity, S/HC) directly effect coking in the
cracking coils and thus the decoking time periods. This signifies the interaction between
furnace operation and its maintenance shutdown. Therefore, an optimal schedule for this
problem would determine both the daily plant operations and the required maintenance
actions. More specifically the key optimization decisions of this furnace scheduling

problem are,

1) Selection of appropriate furnace feed selection (integer decision),

i1) Selection of optimal furnace operating conditions (Flow rates, Severity, Steam to

Hydrocarbon ratio (S/HC)) for the reactors (continuous decisions), and

i) Determination of furnace shutdown time periods (integer decision).

The details of this scheduling problem and the challenges associated with it are discussed

in Chapter 3.
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1.5 Thesis Outline

The thesis is laid out as six chapters. Figure 1-2 shows the schematic of thesis

outline. Brief details of each chapter are as follows.

Chapter 2 reviews the concepts of open-loop optimization and closed-loop
optimization for ethylene furnace scheduling. An overview of optimal scheduling is
provided with emphasis on time representation and model formulation in order to develop
a tractable open-loop optimization model. Challenges posed by the furnace scheduling
problem are discussed through a review of open-loop furnace scheduling literature.
Several reactive (closed-loop) frameworks available in the literature are presented and the

advantages and disadvantages of each are discussed in this chapter.

Chapter 5

Figure 1-3: Schematic of the thesis outline

Chapter 3 provides an overview of the chemical engineering principles of olefin
production process. First, a detailed description of the chemical processes and general
operating procedures in Ethylene plants are presented. The details of furnace scheduling
problem are discussed next, and the objectives and scope of the optimization problem are

clearly defined in this chapter.

Chapter 4 emphasises the mathematical formulation of the open-loop scheduling

model. Although, the yield and coking data in an ethylene plant are nonlinear, a linear



scheduling model (MILP) was developed based on the modelling principles such as
discrete time formulation and disjunctive modelling. Challenges posed by this
optimization problem and the techniques (reformulated constraints, tightening constraints
and solutions heuristics) used to overcome them are elaborated. Extensive open-loop case
studies are considered, and the results are discussed in detail to access the performance of

the open loop scheduling model.

Chapter 5 discusses the framework for reactive (closed-loop) scheduling and some
important implementation issues associated with it. The modifications necessary to the
open-loop scheduling model to make it applicable for closed-loop scheduling are also
discussed in this chapter. Several closed-loop case studies are considered to study the

performance of the reactive scheduling system.

Chapter 6 draws the conclusions of this thesis. The main contributions of the work
are elaborated, and the issues that are outstanding in the research work are pointed out for

future work.



Chapter 2. Literature review

This chapter reviews the concepts of open loop optimization and closed loop
optimization for ethylene furnace scheduling, which are the two main topics that form the
basis for this thesis. The discussion emphasises different methods and procedures
available in the literature to formulate an open loop scheduling optimization problem and

to develop a closed loop scheduling system for real time implementation.
2.1 Open loop optimization

Open loop optimization discusses mathematical formulations which can be
evaluated for offline scheduling. The following sections provide an overview of optimal

scheduling with more emphasis on mathematical formulation and solution procedures.
2.1.1 Overview of optimal scheduling

Optimal scheduling problems mainly involve sequential decision-making with
continuous and discrete decisions. Decisions are made over a finite horizon in such a way
that the production requirements are met and the customer demands are satisfied with the
optimal utilization of the process equipment and raw materials. Typically, these problems
are solved using a plant model, and the scheduling decisions are made over a multiple
time periods in the defined horizon; thus, these problems are often referred as multi-
period model based optimization problems. Due to the presence of continuous and
discrete decisions, scheduling problems are formulated as mixed integer programs (MIP).
It is important to know that these optimization problems are highly combinatorial in
nature and the typical nature of these types of problems is that in a worst case, the
computational time increases exponentially with the problem size (Kallrath, 2002,

Grossmann, 2005 and Mendez et al., 20006).



For the past two decades, there has been a significant contribution to the field of
optimal scheduling. The key focus has been on these topics, (i) Time representation, (ii)

Model formulation, and (ii1) Solution heuristics.

2.1.1.1 Time representation

Time representation is important while formulating multi-period optimization
problems. Based on the available literature, the techniques developed so far are grouped
into two categories (i) Discrete time representation (Kondili et al., 1993 and Shah et.al.,
1993), and (i1) Continuous time representation (lerapetritou & Floudas. 1998, Floudas &

Lin, 2004, Maravelies & Grossmann, 2003 and Mokus & Reklaitis, 1999).

In discrete-time models, the time horizon is divided into a finite number of
uniform or non-uniform time intervals of predefined durations and the scheduling tasks
are performed only at the boundaries of each time interval. In this way, time is just
modelled as a reference grid and is defined as a parameter in the optimization problem.
The advantage with discrete models is the concept of reference time grid, which is useful
to formulate difficult scheduling constraints easily while maihtuining linearity in the
model. The disadvantage with these models is that they may lead to a large number of
time intervals in the problem. The number of binary variables in these models scales
proportionally with the time intervals in the scheduling horizon, thus making the models
computationally expensive. However, a modified formulation and tailored heuristics can
eliminate this difficulty in some cases, making the discrete time models acceptable for

large scale scheduling problems.

=<

In contrast, continuous-time models are proposed to reduce the number of time
intervals and hence solve the problem of large binary variables in the model. These
models are based on the concept of variable time intervals. Here, the time horizon is
divided into ‘n’ time intervals, where the number of time intervals ‘n’ and the length of
each interval are unknown. They are defined as variables in the optimization problem,

thus the final solution would find the optimal number of time intervals and their lengths.
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In these models, time is therefore, modelled as a variable which in many cases leads to

nonlinear constraints in the scheduling model.

2:1.12 Model formulation and solution procedure

Model formulation is critical to the development of a scheduling optimization
problem. Tractable formulation is very important and also since the scheduling models
are mixed integer optimization problems, additional care should be taken while
formulating the constraints as they have a direct effect on the computational time. For
example, in the case of big-M type constraints (Wolsey, 1998), improper specification of

‘M’ value can effect the search space and in turn the computational time.

As discussed earlier, time representation influences the formulation of the
scheduling model. In general, continuous time formulation leads to nonlinear constraints
in the model; thus, the resulting optimization problem would be a Mixed Integer
Nonlinear Programming problem (MINLP). Discrete time formulation, on the other hand,
is advantageous as it does not add any additional nonlinear constraints to the model
because of the reference grid for time. This way, discrete time models preserve the

linearity of the formulation.

The plant model is equally important while developing a scheduling model. For
example, if the plant model is linear, the scheduling model can be formulated as a Mixed
Integer Linear Programming problem (MILP) using discrete time representation.
However, if the plant model is nonlinear, the resulting scheduling model would be a

MINLP for either discrete time or continuous time formulation.

Mixed integer optimization problems arc combinatorial optimization problems
which can have a finite but usually very large number of feasible solutions. The branch
and bound (B&B) technique is the most widely used algorithm to search for an optimal
solution from the search space. B&B algorithm searches the complete space of solutions

for a given problem for the best solution. However, explicit enumeration is normally
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impossible due to the exponentially increasing number of potential solutions. Therefore,
the use of bounding and pruning techniques enables the algorithm to search only part of
the solution space to find the best solution. The algorithm operates by relaxing selected
integer variables to be continuous between their bounds and fixing the remaining integer
variables. The bounding is achieved by maintaining rigorous upper and lower bounds on
the objective function in a fashion that the best solution is never lost (Wolsey, 1998,
CPLEX, 2006). The procedures for B&B algorithm can remain the same for MILP and
MINLP optimization problems. The only difference is that in the case of MILP, at every
node of the branch a Linear programming problem (LP) is solved, whereas a Nonlinear

Programming problem (NLP) is solved for MINLP problems.

The state-of-the-art MILP solvers commercially available at present and widely
used are CPLEX (ILOG CPLEX, 2008) and XPRESS-MP (Dash Optimization, 2008).
Both these solvers embed a B&B algorithm to solve MILP problems. They have an
additional feature to add a variety of cuts at every node of the tree search in order to
restrict non-integer solutions that would otherwise be solutions of the continuous
relaxation. Cuts are constraints which usually reduce the number of branches needed to

solve a problem so that it can solved quickly.

At present, the most widely used MINLP solvers are BARON (Tawarmalani and
Sahinidis, 2002), MINOPT (Floudas, 1995) and DICOPT (Quesada and Grossmann,
1992, Sahinidis and Grossmann, 1991). These solvers were successfully used to solve a
few MINLP scheduling problems; however, the problem size and the convexity of the

optimization problem are always a main concern with these solvers.

2.1.1.3 Solution heuristics

Scheduling problems are usually large scale mixed integer optimization problems.
Sometimes these problems are difficult to solve with stand alone optimization solvers. In

such circumstances, solution heuristics are useful to solve those problems with less
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difficulty (Honkomp et al., 2000 and Kelly, 2005, Heejin Lim et al, 2006 and Grossmann,
2006).

A commonly used heuristic to solve MINLP scheduling problems (Heejin Lim et
al, 2006 and Kelly, 2005) is to decompose the optimization problem into two sub-
problems (MILP & NLP) and solve in two stages. In the first stage, a MILP is obtained
by fixing some of the model variables that cause nonlinearity in the model (e.g. tlow
rates) and solved using a MILP solver. In the second stage the integers decisions are fixed
and the variables which were fixed earlier are relaxed, so that the resulting problem is a
NLP which is solved using a NLP solver to obtain a better solution. This way a difficult
MINLP can be solved using the available state-of-the-art MILP and NLP solvers.
Although, these decomposition heuristics do not guarantee optimality, they yield a

feasible solution and provide a good alternative to solve difficult scheduling problems.

There are several other aggregation and decomposition heuristics proposed in the
literature (Honkomp et al., 2000 and Kelly, 2005) to overcome the computational burden
of MIP’s and solve them in a reasonable amount of time. Aggregation techniques rely on
the idea of aggregating the time periods within the specified horizon in order to reduce
the dimensionality of the problem. This way the number of binary variables are reduced
and the optimization problem can be solved quickly to provide an approximate solution
of the scheduling problem. Decomposition techniques, on the other hand, rely on the idea
of decomposing a large problem into several small problems and solving them

sequentially until the entire model is solved.

In a temporal decomposition heuristic (Kelly, 2005), the time horizon is first
spliced into a number of small horizons and the decisions are made sequentially by
solving the smaller problems arising in each sub horizon. Here, the decisions in the
succeeding horizons are made while fixing the decision in the earlier horizons. In this
way, decisions can be obtained for the entire time horizon. The main advantage here
comes in the form of lesser computational burden because only smaller problems are

solved without any computational problems. However, the main disadvantage is that it



cannot guarantee optimality and also by splicing the time horizon to solve smaller
problems, this heuristic doesn’t look far into the future. It just looks locally and obtains a
feasible solution. However, one should realize that in most scheduling problems, process
changes, product demands and disturbances etc. can occur over a long period of time, so
that it becomes necessary to employ an appropriate heuristic that looks into the future
over a longer period of time. Details on the tailor- made solution heuristic used in this

research are discussed in Chapter 4.
2.1.2 Ethylene furnace scheduling literature

This section reviews the literature particularly dealing with Ethylene furnace
scheduling problems. The main emphasis of the discussion will be on model formulation
and solution technology used by various researchers. The challenges posed by this

problem and the methods used to overcome those challenges are presented here.

Schulz and co-workers (2006) developed a furnace scheduling model to optimally
schedule the production and furnace decokes in an Ethane cracker. A discrete time
formulation was used to develop the model. Due to nonlinearity in the plant model, the
optimization problem was formulated as a MINLP, which was very difficult to solve. The
nonlinearity in the mixed integer program is always difficult to compute because of no
good solver and no optimality guarantee due to non-convexity in the model. As a
solution heuristic the authors reduced the dimensionality of the problem by aggregating
the time periods (each time period was equal to 1 week) and solved the MINLP using
DICOPT (Quesada and Grossmann, 1992). Although, several scenarios were solved, the
coarse formulation is unrealistic because it assumes that during any decoke, a reactor

would be offline for I week, which is much too long.

A similar furnace scheduling model was developed by Lim and co-workers (2006)
for naphtha crackers based on a discrete time representation. This model was also
formulated as a MINLP due to the nonlinearities present in the Ethylene plant model.

They found it difficult to solve the resulting large scale MINLP. Therefore, they adopted
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a decomposition heuristic to decompose the MINLP into MILP and NLP and solved it in
two stages. Specifically, in the first stage, feed flow rates, severity and S/HC ratio were
fixed and the resulting MILP was solved using CPELX solver. In the second stage, the
restriction on the flow rates was relaxed and the resulting NLP was solved using
CONOPT solver. Besides using this heuristic, the model also assumed fixed chemical
reactor operating conditions (severity and S/HC ratio) to make the problem easily
computable. It is important to know that, feed flowrates, severity, S/HC ratio and
decoking periods are the main degrees of freedom for the furnace scheduling problem

and fixing the major variables doesn’t make the model complete for real-life application.

Kelly (2005) also proposed a furnace scheduling model for multi-feed crackers
based on discrete time representation. The model was formulated as a MINLP and solved
using the decomposition heuristic in two stages. In the first stage, feed flow rates were
fixed and the resulting MILP was solved using the solver XpressMP and the NLP in the
second stage was solved using SLP. Furthermore, the sequential temporal decomposition
heuristic discussed in section (2.1.1.3) was used to solve the MILP in the first stage. This
was done because the MILP was large and difficult to compute in its current state. The
heuristics could not guarantee optimality; however, a feasible solution was obtained.
Note that this approach would not be successful if the production rate changed during the
horizon and decokes should be performed to prepare for the higher demand. This is
because the temporal decomposition heuristic doesn’t look far into the future due to the

splicing of the time horizon.

Grossmann et al. (1998) formulated a furnace scheduling model for multi-
feedstock crackers based on continuous time representation. The model was formulated
as a MINLP and solved using the sofiware developed in their group that employed the
branch and bound algorithm. Although, the model has all the features that existed in a
true plant, it lacks a true coking model. The scheduling model assumes an exponential
decay in the reactor performance with time independent of operating conditions. In

addition, the flow rates were assumed to be constant while solving the model in order to
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exploit special properties of the model. The main disadvantage with the model was that

the continuous time formulated led to bilinear constraints which are non-convex.

From this review, it is clear that all the scheduling model formulations are large
scale MINLP’s. The nonlinearity in the formulation is mainly due to nonlinear yield and
coking patterns in the Ethylene plant model. Therefore, nonlinearity is inherent to the
furnace scheduling model. Due to the difficulties posed by the MINLP’s (often non
convex and difficult to solve) and lack of an efficient MINLP solver, it is always a

challenge to solve the furnace scheduling model.

One alternative to overcome this difficultly is to reformulate the scheduling model
as a MILP. However proper care should be taken during the formulation so that the
nonlinearity in the Ethylene plant model is appropriately captured without losing any
information. There are few nonlinear approximation techniques available in the literature
such as separable programming and disjunctive programming (Williams, 1985,
Grossmann, 2002), which can be used to re-formulate the nonlinear constraints into

linear constraints; it is however accomplished by introducing new integer variables.

2.2 Closed loop optimization

Closed loop scheduling is also called as Reactive scheduling. Closed loop
scheduling frameworks are known for their ability to periodically update and modify the
optimal decisions to compensate for disturbances and modelling errors based on new
information. This reactive nature is very elegant and provides an ideal framework to
develop a closed loop scheduling system for online implementation. Some of the reactive

frameworks available in the literature are discussed here.
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2.2.1 MPC framework

Model predictive control (MPC) has been widely accepted by the process
industries as a tool to effectively control multivariate systems with input and output
constraints (Qin and Badwell, 2003, Marlin, 2000). MPC uses a plant model for
prediction and solves an optimization problem to optimize the future process behaviour to
obtain optimal control moves. These control moves are then implemented in the plant in a
rolling horizon fashion. The plant model used in MPC is periodically updated using the
feedback information at each controller execution. This particular framework has found

wide application that extends beyond the field of process control.
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Figure 2-1: MPC framework

2.2.1.1 Nominal MPC

In the nominal MPC framework, no explicit model of uncertainty is used for the
plant model parameters or the exogenous variables (measured and unmeasured
disturbances) (Qin and Badwell, 2003, Marlin, 2000). Instead, the parameters are tuned to
obtain closed loop stability, good dynamic performance and robust constraint handling.
Appropriate safety margins are provided to deal with potential constraint violations.
Since, feedback information is available at every execution time, the controiier can
quickly react to disturbances and modeling errors, and the control moves are recalculated

accordingly.
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The mathematical formulation of scheduling optimization and supply chain
optimization problems are similar and both of them involve continuous and discrete
variables. Recently, (Bose and Pekny, 2000, Mestan et al. (2006) and Perea-Lopez et al.
(2003) proposed nominal MPC frameworks to address the supply chain optimization
problems. The supply chain model consisting of suppliers, production facilities,
distribution network, retailers and customers was formulated as a MILP with an objective
of maximizing the profit. At every MPC execution the states of the system (inventories,
accumulated orders) were updated, and the resulting MILP problem was solved to obtain
optimal control decisions (production schedule in the plant, orders placed between the
nodes and shipment amounts among the nodes). Fixed demand patterns, processing times
and transportation costs were used within the supply chain model. Therefore, any

disturbances entering the system and any model errors are compensated via feedback.

2.2.1.2 Robust MPC

In robust MPC, explicit models of uncertainty are defined in order to maintain a
particular closed-loop behavior in the presence of model mismatch and disturbances.
Three main issues that are commonly addressed in robust analysis are robust stability
(Bemporad and Morari, 1999), robust performance and robust constraint handling (or
robust feasibility) (Warren, 2004, Van Hessem and Bosgra, 2006). Different formulations

have been proposed to address each of these issues..

Most of the robust controller formulations result in convex optimization problems,
e.g. robust feasibility, is addressed by reformulating the linear constraints into second
order conic constraints while robust stability is achieved by semi-definite programming.
These are computationally tractable formulations, which guarantee global optimality in a
reasonable amount of time when the controller model includes only continuous variables.
With the presence of discrete variables ( as in scheduling models), robust MPC

framework leads to a problem formulation that is presently intractable. Also, the robust
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formulation of a MILP ends up being non-linear resulting in a MINLP (Lin et al., 2004
and Janak et al., 2007).

2.2.2 Stochastic programming with recourse

In this framework, the decisions are made sequentially in stages. Mainly the
decisions are separated into proactive and reactive decisions. The proactive decisions are
made before the actual realization of the uncertain parameter, and the reactive decisions
are made after the realization of uncertainty, generally with the assumption that the
uncertainty in the parameters is eliminated through measurement. These reactive
decisions are usually interpreted as corrective measures or recourse actions to improve
the solution when the uncertainty no longer exists. Thus, recourse provides feedback of a
special type. A recent review on stochastic programming and its application in the

process systems area can be found in Sahinidis (2004).

The most common recourse problem is the two-stage program in which the
decisions are made in two stages leading to an underlying assumption that uncertainty is
propagated only over two stages. Its application for robust process scheduling has been
considered recently (Sand and Engell, 2004). However, two stage programs cannot model
the closed loop uncertainty in multi-period optimization problems accurately because the
uncertainty propagates over time and not only over two stages. Thus, multistage
stochastic programs are appropriate for such problems in that the uncertainty is
propagated over all the stages considered in the problem. The number of stages depends
on the size of the time horizon considered in the optimization problem. Computationally,
small-scale stochastic programs with continuous variables are found to be tractable that
______ . using some approximation schemes (Birge,
1997). They tend to become intractable with the introduction of integer variables in the
formulation and hence several approximation solution procedures and decomposition

schemes have been reported in the literature (Birge, 1997, Balasubramanian et al., 2004).



2.2.3 Simulation based re-optimization

Jung et al. (2004) have recently proposed a simulation-based optimization
framework for supply chain optimization problems involving both continuous and integer
decisions. This is slightly different from the nominal MPC framework in that, a
deterministic optimization problem is solved at each execution time and subsequently the
feasibility of the solution is verified before being implemented. This is carried out by
using two simulation models (a deterministic model and a stochastic model), which can
verify the robustness of the solution for a sample of realizations of uncertainty. If in any
case, the solution is found to be infeasible or below the specified tolerance limits over the
finite horizon (i.e. prediction horizon), re-optimization is triggered and the robustness
check is performed again. Once the solution is verified for its robustness and
performance, the current time period decisions are implemented and the whole process

continued.

The main advantage here is computational efficiency because only a deterministic
optimization problem is solved. However, no clear strategy is available to correct the
optimization results when infeasibilities occur; Jung et al. (2004) allow only the current
and future decisions in the horizon to be adjusted, with all decisions prior to the
infeasibility in the horizon fixed at the result from the deterministic solution values. This
is a very limiting strategy and may not be able to lead to a feasible, let alone optimal,
result. In addition, if many re-optimizations are triggered before the implementation of
each control move, there can be a serious computational difficulty as opposed to solving

a single robust optimization problem.

2.3  Summary

The main concepts of open loop scheduling and the frameworks for closed loop
scheduling are discussed in this chapter. First, a review of open loop furnace scheduling

models developed in the past has revealed that all the models were formulated as large
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scale MINLP's. The nonlinearity is inherent to the ethylene furnace scheduling model
because of the nonlinear yields and coking rates in the ethylene plant model. It was a
great challenge to solve the MINLP's and as a result several solution heuristics were

proposed by the authors.

One alternative to overcome the difficulties posed by nonlinear scheduling models
is to formulate them as linear models (MILP's). While doing so, proper care should be
taken to capture the nonlinear information in the plant. Nonlinear approximation
techniques such as Separable programming and Disjunctive programming could be used
for this purpose. The main advantage with MILP’s is that they are well understood and
the techniques to solve them are well developed. Irrespective of the linearity or
nonlinearity of the model, it is always important to develop a tractable formulation to
preserve the fidelity of the scheduling model so that it guarantees that the model could be
solved efficiently with the available solvers. Therefore, every attempt should be made to

develop a tractable formulation.

Open loop optimization provides an optimal schedule that needs to be
implemented manually in the plant. A closed loop system would automatically implement
the schedules into the plant in real time. Furthermore, it uses feedback information to
update the plant model in order to compensate for model errors and disturbances entering
the plant. Several reactive frameworks were reviewed and the advantages and
disadvantages of the frameworks were discussed in this chapter. Reactive approaches
provide a framework for reactively updating the decision upon the realization of
uncertain parameters. Nominal MPC framework provides an elegant way to update the
decisions using the feedback information. Other reactive frameworks such as simulation
based optimization techniques and stochastic programming could be computationally
expensive when it comes to solving scheduling problems, which are often large

optimization problems.
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Chapter 3. Ethylene plant process technology

and furnace scheduling challenges

The emphasis of this chapter is on the chemical engineering element of the
olefins-producing process, which is the process example considered throughout the
thesis. First, detailed descriptions of the processes in ethylene plants are provided and
some general operating procedures are discussed. Ethylene plant furnace scheduling
problem is presented next and the scope and objectives of the scheduling are clearly
mentioned. The assumptions made to develop the scheduling model are briefly discussed,

and the plant capacity details used as a basis for the case studies are also elaborated.

3.1 Introduction

Ethylene is the lightest olefinic hydrocarbon that is not available freely in nature.
It is produced in ethylene plants by thermal cracking of hydrocarbon feedstocks. Olefins
such as propylene, butylene and other side products are also produced in these plants.
Ethylene is an intermediate petroleum product primarily used in the production of other
chemicals such as polyethylene, the world's most widely used plastic, polyvinyl chloride,

ethylene oxide and ethyl benzene (Albright et al., 1983, Ethylene, 1992).

An ethylene plant forms a core facility of a fully integrated petrochemical

complex producing a variety of products. The capacity of most plants designed since the

cracking heaters (reactors) in a plant. In today’s design, a single cracking heater is built

with a capacity of 200,000 to 300,000 MTA ethylene (Meyers, 2005).
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Some ethylene plants are designed to crack only gas feeds and some to crack
liquid feeds. However, due to increased profitability when a plant is able to respond to
price fluctuations, new facilities are designed with the flexibility to handle a combination

of feeds ranging from gas to liquid hydrocarbons.

3.2 Process description

Thermal cracking is also commonly known as steam cracking or pyrolysis.
Cracking is highly endothermic and involves a large number of chemical reactions
following a free-radical mechanism. A simplified process flow diagram of an ethylene

plant is shown in Figure 3-1. Each section of the plant is briefly discussed here.
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Figure 3-1: Simplified process flow diagram of an Ethylene plant
Feedstocks

The most common feedstocks cracked in ethylene plants are ethane, propane,

ethane/propane mixture, butane, naphtha and gas oil [3]. The choice of feedstock mainly
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depends on the cracker design, availability of the particular feed, its current market price,

and the desired end-products.

Ethane is usually cracked at a conversion level of between 60-65% per pass, with
a single pass ethylene yield of approximately 51 wt% at 65% conversion and ultimate
yield of 81 wt% at 60% conversion (Albright et al., 1983, Froment et al., 1976 and
Sundaram et al., 1981). Very small amount of by-products are produced from an ethane
cracker. Usually, when there is large demand for ethylene and by products are less

important, ethane feed is an ideal choice.

Propane is normally cracked at a conversion level of 65-93% per pass, depending
on the desired ratio of propylene to ethylene. At a conversion level of 93% per pass, the
ultimate yield of ethylene is approximately 47 wt% (Albright et al., 1983, Vandamme et
al., 1975, Sundaram et al., 1979). When there is large demand for propylene and the

economics for propane are favourable, propane is the preferred feedstock.

Naphtha i1s widely used for the production of olefins and aromatics all over the
world. One of the advantages naphtha feedstock has over gaseous feedstocks is the wide
spectrum of possible co-products. Butadiene and BTX (Benzene, Toulene and Xylene)
are the most important ones. By varying the cracking severity, propylene to ethylene ratio
on a once through basis may be changed from about 0.40 at high severity to about 0.75 at

low severity (Plehiers et al., 1987, Kumar et al., 1985).

The prices of the feedstocks and end products are shown in Table 1. They reflect
the prices from an oil refinery in the US gulf cost (Oil and gas journal, 1992), and they

are the prices used throughout this thesis.
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Table 3-1: Prices of feedstock and end products

Feedstock Price Product Price
(US$/Kg) (US$/Kg)

Ethane 0.240  [Hydrogen (H2) 0.881
Propane 0.260  [Methane (CH4) 0.220
n-Butane 0.300 Ethylene (C2H4) 0.650
Light Naphtha|  0.361 Propylene (C3H6) 0.511
Gas oil 0.297 Butadiene (C4H6) 0.852
Butylene (C4HS) 0.811

Pentanes plus (C5+) 0.401

Cracking section

The schematic of a typical pyrolysis furnace is shown in Figure 3-2. It consists of
a convection section and radiation section. In the convection section, feedstocks are
mixed with dilution steam and preheated to the cross over temperature. The objective is
to heat the feed to a temperature just below the point at which cracking is initiated. The

crossover temperature ranges from 550 to 700” C depending on the feedstock.

Feedstocks are cracked in the radiation section of the coil. Energy required for the
endothermic cracking is provided by the furnace. The cracked products leave the radiant
coils at a temperature of 750 to 900" C, depending on feedstock, cracking severity, and

selectivity (Steam to Hydrocarbon ratio).
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Figure 3-2: Diagram of a typical pyrolysis furnace

Transfer Line Exchangers and Quench coolers

In order to maintain the overall process efficiency, it is required to efficiently
recover the heat in the cracked effluents. This heat is recovered mainly in the convection
section of the furnace and in the Transfer Line Exchangers (TLE’s). The effluents from
the cracking section are immediately cooled in TLE’s to temperatures around 350 to 600"
C depending on the feedstocks. This cooling ensures that the the olefins are not further
cracked to less valuable products. Energy is recovered in the TLE’s during this cooling
process and used to generate medium pressure and high pressure steam that is used to

boil dilution steam and elsewhere in the plant.

For gas feedstocks, cracked gas is further cooled to nearly 200" C in secondary
TLE’s and water quench towers. For liquid feed crackers, this cooling is achieved by
direct quenching in oil quench towers and later the heavier products (Cs+ components)
are separated from the product mixture in primary fractionators. During this quenching
process, dilution steam which was mixed with the feed in the convection section is also

condensed and recycled.
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Compression

The cracked gases leaving the quench tower are then compressed to 32-38 bars
for further processing. Compression is carried out in a four to six stage centrifugal
compressor. The number of stages depends primarily on the cracked gas composition and
the highest temperature allowed for inter-stage discharge. Condensed water and
hydrocarbons are separated from cracked gas between the stages. Water is returned to the

quench water system and hydrocarbons are sent to other sections for further processing.

Following compression, acid gases such as carbon dioxide and hydrogen disulfide
are removed from the cracked effluent and water is (nearly) completely removed via gas
dryers in preparation for cryogenic separation, where water would freeze in the

equipment if not removed.

Hydrocarbon fractionation

There are several hydrocarbon fractionation sequences commonly being
employed in ethylene plants (Ethylene, 1992 and Meyers, 2005). The front end
demethanizer process is the most commonly used sequence which is shown in Figure 3-1

and described here.

The fractionation sequence begins by removal of hydrogen and methane as
overhead products in the demethanizer. The bottom product is directed into deethanizer
column where acetylene, ethane and ethylene are removed as overhead product and C;
and heavier components as bottom product. The overhead products are separated in
ethylene fractionation column, while the bottom products are routed to a depropanizer.
Propadiene, propane and propylene are taken as overhead products and the heavier
bottom components are next processed in debutanizer column and so on. More details

about the processes are available (Ethylene, 1992).

The major products obtained after eventual separation are ethylene and propylene;
however, many side products are also obtained. Ethane obtained in the products stream is

recycled back to the cracking section for further cracking.
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Ethylene obtained as a result of fractionation is usually stored as a liquid in
pressurized vessels and is transported as a gas via pipelines to various production sites.

Sometimes, it is transported by cargo tanks or tank cars to its destination.

Economic considerations and operating procedures

The economics of an ethylene plant are not simple. It is important to know that
because of the current energy situation and since an ethylene plant is severely energy
intensive, the pyrolysis section of the plant has the greatest impact on economics
(Albright et al., 1983 and Meyers, 2005). Therefore, some description of the general

operating policies of an ethylene furnace is provided here.

There are four main operating variables for an ethylene steam cracker, and the
optimization of these variables determines the end products produced and the efficiency

of the unit and hence the profitability of the facility. The variables are:

Feedstock and its composition
= Residence time (flowrates or hydrocarbon and steam)
= Temperature of the feed in cracking coil (Severity)

=  Steam to hydrocarbon ratio (Selectivity)

By operating the furnace at a particular combination of the variables the engineer
attempts to achieve the desired yields of various end products. The common procedure is
to first select a particular feedstock based on the product demand and then to operate the
reactors at an optimum severity and selectivity levels. Once this is done, he/she then
adjusts the throughput by setting average flow rates again based on the expected product
demand. These variables can be adjusted accordingly at any time to meet the demands
and to respond to unexpected events. For example, if there is a sudden demand for the
products, the processing rates or the severity can be increased depending on the
magnitude of spike in the demand. The proper choice of variables to adjust depends on

the yields and other effects (such as coking which will be discussed shortly); therefore,
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standard operating rules will be able to achieve desired production rates, but not at

maximum profit.

In this thesis, a systematic method is developed for optimal scheduling that assists

the engineers to make appropriate decisions in a timely manner that will maximize profit.

3.3 Ethylene plant furnace scheduling

This section introduces the concept of furnace scheduling in ethylene plants. A
schematic of an ethylene plant with multiple feeds, several furnaces and a separation
system is shown in Figure 3-3. As discussed earlier, the feeds are processed into the
reactors where they are cracked. From the cracked products, the heavier ones (C5+) are
removed first and the remaining gases are processed further into the separation system for
their eventual separation. The ethane product stream is recycled back to cracking
furnaces for further processing. In reality, there are no feed tanks for ethane and propane;

they flow directly from pipelines to reactors. ’

Charzing tanks Fited heaters Separation system

Figure 3-3: Schematic of an Ethylene plant

Cracking furnaces are generally operated at very high temperatures, around

0 . i . : . " v
825°C. During this energy intensive operation, coke deposits on the inner surface of the
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reactors due to several catalytic and non-catalytic mechanisms. Deposition of coke inside

the reactors is known to degrade the reactor performance.

First, coke acts as insulation and hampers heat transfer from furnace to the
gaseous mixture in the reactor. Due to this heat loss, severity in the reactors reduces and
as a result olefin yield decreases. Therefore, to maintain a constant severity, furnaces
should supply additional energy to the reactors. Providing additional energy in turn heats
up the external wall of the reactors, thus increasing the reactor’s external skin
temperature. Due to material limitations, a maximum value for the reactor coil cannot be

exceeded, or the metal will fail catastrophically.

Second, coke deposition decreases the cross sectional area of the tubular reactor
causing the pressure drop across the tube to increase. Therefore, in order to maintain the
nominal feed flow, pressure in the inlet side of the reactor has to be increased. Higher
pressures lead to reduction in olefin yields and causes additional safety concerns. For

both these reasons, furnaces have to be periodically shut down for coke cleanup.

In general, when the tube walls reach their maximum allowable temperature set
by tube metallurgical limits, shutdown of the furnace is necessary for cleanup. This
cleanup operation is known as decoking, which is accomplished by removing the coil
from service and using a steam-air mixture to burn the carbon out of the coil. The steam
air mixture is heated to 900-1000" C and is slowly reacted with the carbon to produce
hydrogen and carbon monoxide. Typical run lengths (furnace operation time between
decokes) for naphtha feedstock is 20-30 days (Plehiers et al., 1975), propane is 20-50
days (Vandamme et al., 1975) and ethane is 20-60 days (Froment et al., 1976).

Furnace scheduling is mainly concerned with optimally (1) selecting feedstocks,
(2) selecting operating conditions, and (3) scheduling the maintenance shutdowns of
furnaces for periodic decoking. An appropriate time for decoking is strongly affected by
cracking feed and reactor operation. Typically, heavy hydrocarbons yield more coke than

the lighter ones. Reactor operation at higher severity produces better yields, but leads to
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faster coke accumulation, thus shorter run lengths and frequent decokes. Also, a decoking
operation leads to a downtime (production loss) of approximately 8-10 hrs. Therefore
there appears to be a trade-off between choosing heavy feed, operating at higher severity
and decoking frequently versus choosing a light feed, operating at lower severity and

decoking less frequently. This is ultimately an economics based decision.

Therefore, we define the ethylene plant furnace scheduling problem as a source to
automatically consider the trade-off and make optimal decisions on appropriate feed
selection, reactor operation and its maintenance that maximises the plant economics.
With the main objective to obtain appropriate feed, optimal reactor operating conditions
and shutdown policies over a defined time horizon, we model furnace scheduling as a
Mixed Integer optimization problem (MIP). The problem overview is described as

follows for any given scenario description.

Maximize the Plant profit for a selected time period
Decision variables

= The optimal feed to be cracked in the furnaces (integer decisions),

* The optimal operating conditions (flowrates, severity, S/HC) for the

reactors (continuous variable decisions),

= Furnace maintenance decoking, which furnace and when (integer

decisions), and
* The number of furnaces in production service at any time (integer

decisions)

The problem above must be defined for a specific set of conditions, which we will
term a scenario. A scenario is usually defined by the initial process conditions,
equipment capacity limits, product demands, economics, and any other requirements that
need to be satisfied by the model. A scenario can be described by the following

parameters, which are the constants necessary to define the problem.
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= Initial process conditions
= Number of Furnaces available and their capacities,
= Feedstocks available and their capacities
= Accumulated coke in the reactors
= Operating conditions (Severity, S/HC, Flow rates etc. needed for move

suppression in closed-loop cases)

Production requirements (Product demands and sales limits)

= Requirements on end conditions (end of finite horizon)

Limitations on process equipment performance, e.g., capacity
= Time horizon of interest

= Economics

A detailed mathematical formulation of this scheduling model is provided in Chapter 4.

The basic structure is provided here as shown below.

1 Maximize: Plant profit
E Subject to:

) - Feedstock allocation constraints (feeds and amounts available)
: - Normal plant operation constraints (flows, material balances)

E - Severity and selectivity bounds (conversion, S/HC)

' - Coking model constraints (coke accumulation)

! - Decoking constraints (cleanup)

' - Equipment capacity limits

E - Integrated product demand and sales limits

: - Bounds on all the variables

i - Initial conditions

E - Data for all the parameters

v {Continuous and binary variables}

3.4 Major challenges

Ethylene furnace scheduling problem has some important characteristics which

pose significant modelling and computational challenges. They are discussed here.
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3.4.1 Interaction

As discussed earlier, there is a strong interaction between ethylene plant furnace
maintenance and operation. Therefore, while scheduling ethylene furnaces, proper care
should be taken to consider the tradeoff between these two factors. This problem is
interesting because we cannot make the maintenance or furnace operation decisions

separately; both have to be made simultaneously in an integrated approach.

Earlier there were instances where authors understood the difficultly of solving
this problem and proposed some heuristics (Bizet et al., 2005). They tried to solve the
problem in two stages. In the first stage they would fix the furnace operating conditions
and obtained the maintenance schedule. Once they had the maintenance schedule, it was
fixed and the furnace operating conditions were adjusted to meet the demands and
operate the plant profitably. Although this type of heuristic yields a feasible schedule, it

usually ends up in sub-optimal schedules.

If we want to obtain an optimal solution or at least a good feasible solution for
this problem, it should be solved in a single stage without fixing any of the key decision
variables. This means that decisions on the maintenance and furnace operation should be
made together. Dealing with such a condition is challenging for large scale mixed integer

optimization problems.

3.4.2 Non-Linearity

In ethylene plants, we encounter significant nonlinearities in product yields and
coking rates. Plant data (product yields and coking rates as a function of furnace
operating conditions) for various feeds are provided in Appendix A. This data has been

obtained from pilot plant studies conducted by Foment and cowokers [4, 5].

Typical product yield profiles for a propane feedstock over a range of furnace
operating conditions are shown in Figure 3-4. Clearly, propylene and pentanes (Cs+)

yields are strongly nonlinear, while the other products exhibit slight nonlinearity. Similar
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nonlinearities also exist for naphtha, butane and gas oil feeds. This leads to nonlinear

yield models.
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Figure 3-4: Propane feedstock yield profiles

A linear approximation of the yield models could be reasonable within a narrow
range of operating conditions. However this approximation becomes inexact when used
over a broad range of operating conditions. A direct implementation of nonlinear yield
models in the furnace scheduling problem would result in a Mixed Integer Nonlinear

Programming problem (MINLP), which poses significant computational difficulties.
3.4.3 Computational burden

The resulting furnace scheduling problem leads to a large scale Mixed Integer
optimization problem (MIP). Typical problem size for a case study involving 3 different
feeds and 5 reactors over a 90 day horizon is 3100 binary variables, 297794 continuous
variables and 308629 constraints. Even if all the constraints are linear, solving this
problem becomes difficult for any standalone commercial solver such as CPLEX,

: s s 3100
XPRESS etc. In a worst case, any mixed integer solver will have to search 2

nodes to
obtain an optimal solution. Even if it takes 1 sec to solve the problem at each node, it

takes centuries to search through the entire nodes.
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The main concerns for this scheduling problem are (i) the presence of large
number of binary variables, and (ii) type of constraints (linear or non-linear). MIP’s are
combinatorial in nature where the number of binary variables is directly related to the
computational complexity. On top of that, nonlinearity in the model could make it

exceptionally difficult to solve.

This is a major challenge for solving large scale scheduling problems. It is
therefore, necessary to understand the structure of the optimization problem and exploit

the structure through several ways.

3.5 Modelling assumptions

The model for scheduling major decisions in the ethylene plant requires a tailored
model. If the model were too complex, it would not be computationally tractable; if it
were too simple, the important interactions among decokes, feed materials, and operating
conditions cannot be included. Therefore, the general goal is to include all important
decisions and model features that determine the integer decisions (feed selection, number
of reactors in operation and decoking). To do this, the operating conditions of the
reactors must be optimized; however, the operating conditions could be fine-tuned by a
real-time, steady-state optimization (RTO) of the plant that would be executed several
times a day (Marlin and Hrymak, 1997). The RTO typically uses a much more complex

and accurate model, but it does not optimize the mteger decision variables.

The model assumptions are briefly introduced here, and the detailed model

equations are presented in the next chapter.

e Model accuracy — The model structure and parameters are known exactly.
Therefore, uncertainty is not considered explicitly in the optimization.
However, feedback based on measurements will be considered in the reactive

scheduling work in Chapter 5.
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Furnace operation
= No change to the properties of feed material
= Feed flow rate doesn’t affect the severity in the reactors

= Feed conversion is used as a measure of severity (reactor temperature)
in the reactors. It is assumed that each reactor effluent is measured and
controlled by adjusting the temperature. This is standard practice in
industry using transfer line analyzers. In this thesis, the terms severity

and conversion are used interchangeably.
= Flow rates do not affect the rate of coking in the reactors
= Coke deposited in the reactors doesn’t affect the product yields

= Recycle streams are assumed to be pure, which is a result of the

perfect separation assumption.

= Cracked gas processing through the separation equipments is not
modelled in detail. Perfect separations are assumed. Constraints in

the equipment could be included based on the material flow rates.
Refrigeration and separation energy costs are not included in the model.
Efficiency for compression is considered to be 100 % .

Product inventory is not modelled. The products are assumed to be directly

delivered to the clients via pipelines without storage.

Integrated demand is considered which needs to be satisfied appropriately.
Therefore, some deviation from instantaneous demand is allowed without

penalty.
All prices are assumed to be constant during all time periods in the schedule.

Product yields and coking rates do not change over the time horizon.
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e The model assumes that only one reactor exists in a furnace (fired heater).
Therefore, the terms like reactor or furnace are used interchangeably; in
reality, several reactors exist in a furnace, and their operating conditions can

be slightly different.

e Most dynamics within an ethylene plant units are not considered and
therefore, quasi steady-state models are used in each time period of the
schedule. Note, that the key variables that “link” time periods are the

dynamics of coke in the reactors.

Clearly, the greatest emphasis is placed on the reactor models that are needed for
optimal scheduling. Detailed optimisation of the separations plant is not addressed in this

research.

3.6  Plant capacity details

In order to make the case studies in this thesis more realistic, data corresponding
to commercial sized ethylene plant were used in the model. The capacity of the plant is
considered to be around 800,000 — 1,000,000 MTA ethylene. It can crack three
feedstocks ethane, propane and naphtha. A single ethane cracker has a capacity of
200,000 MTA ethylene whereas propane and naphtha has 175,000 MTA and 150,000
MTA respectively. An overview of the process structure and a few additional capacities

are depicted in Figure 3-5 and provided in Table 3-2.
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Table 3-2: Plant capacity details

Feedstock

Reactor processing

rates

Capacity

Pmin

(Kg/hr)

Pmax

(Kg/hr)

Single cracker

(MTA C=C)

Plant (5 crackers)
(MTA C=C)

Ethane

32620

46600

200,000

1,000,0000

Propane

40000

57140

175,000

875,000

46106

65865

150,000

750,000

Naphtha
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Figure 3-5: Plant capacity details
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3.7 Typical scheduling simulation result

Let us look at a scenario with two furnaces cracking naphtha feed. Based on the
initial conditions on the coke state, there is already 250 kg of coke deposited in both the
reactors. The maximum limit for tube metal temperature is 1050 C, which corresponds to
300 kg of coke deposited in the furnace. Demand for ethylene over a period of 90 days is

a maximum of 49,500,000 kg, and demand for propylene is unlimited.

In simulation based scheduling, it 1s important to know that the main decisions
variables that affect the plant economics (e.g. conversion, steam to hydrocarbon, feed
flowrates) have to be determined by the engineer. For unlimited propylene sales,
guidelines would generally select low severity and low steam to hydrocarbon ratio
because this operation will be close to the propylene yield peak. Therefore, for this
scenario, we have fixed the severity to a conversion of 82% and steam to hydrocarbon to
0.5. The processing rates in the reactors are then selected appropriately to meet the

product demands. Finally, decokes will be performed when the coke limit is reached.

Based on these conditions, the maintenance schedule obtained by simulation is
shown in Figure 3-6. The production rates of the key products — ethylene and propylene —
are plotted versus time, but all products are modeled and included when calculating the
economic performance. The furnace (reactor) status — either processing feed or decoking
—1s also plotted versus time. Finally, the coke accumulation in each reactor is plotted

versus time. The schedule predicts the plant behaviour for 90 days.
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Figure 3-6: Direct simulation results

From the results, it is clear that both the reactors have to be decoked on the same
day leaving no option for production in the plant during that day. This is because the
same severity in both the reactors leads to equal accumulation of coke and since both of
them had same initial coke condition, the day for decoking turned out to be the same.
This can be seen from the coke accumulation part of the graph where the coking contours

for both reactors are identical and appear to be a single line.

These results are unacceptable, because the entire plant would have to shutdown
for the decoking time. The time and cost for restarting the plant are very high, so high
that the optimizer wiil not ailow such a schedule, and full plant start-up costs are not

included in the model.

Simulation case studies require the engineer have the intelligence to overcome

this infeasibility condition (no production condition), as well as economically optimize
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the variables. The person has to make appropriate changes to the schedule to make it
feasible for implementation. He/she can choose an early decoke for furnace | and the

result of such a change on the overall schedule can be seen in Figure 3-7.
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Figure 3-7: Schedule after operators changes

Clearly this is a feasible schedule suitable for implementation. However, we
cannot say if this is the most profitable schedule. We need to try various combinations of
flowrates, severity and selectivity values to find a profitable solution. Arguably, this is a

tedious process.

An optimal scheduling model such as the one introduced in the next chapter
would have the intelligence of looking for feasibility and optimality. It would react to

any condition in the following ways.
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To maintain feasibility, it can
= Adjust reactor operation, and

= Decoke early

To maximize Plant profit, it can
= Adjust reactor operation (change the severity or S/HC),
=  Decoke optimally,
» Choose feed appropriately, and

= Choose the number of reactors in service.

This scenario is also considered in the case studies (Section 4.5.1.4) of Chapter 4, where

optimal results are discussed and compared with these simulation results.

3.8 Summary

The challenges posed by ethylene plant furnace scheduling are clearly identified
in this chapter. An integrated scheduling approach is deemed necessary to capture the
interaction between furnace operation and maintenance. While developing a scheduling
model, tailored formulation schemes should be used to preserve the linearity of the
scheduling model without losing nonlinear information in the yield and coking models.
Unfortunately, a well developed scheduling model inevitably ends up in a large scale
MILP, posing computational difficulties. Therefore, appropriate solution heuristics may
be needed to reduce the computational time. More details on the mathematical model

development and solution strategies are discussed in the next chapter.
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Chapter 4. Open-loop Scheduler formulation

The main emphasis of this chapter is on the mathematical modelling of the open-
loop scheduler and testing its performance through various case studies. First, an
overview of the scheduling model is presented in this chapter with discussion on the
importance of preserving linearity and on the techniques used for that purpose. Details of
the scheduler are presented next followed by detailed mathematical formulation of the
optimization model. Tailored constraint formulation and solution heuristics proposed to
help improve the computational time are also discussed in this chapter. Finally, several
open loop case studies are considered, and the results discussed in detail for single feed

and multiple feed scenarios.

4.1 Model overview

As discussed in Chapter 3, the open-loop scheduling model leads to a mixed
integer optimization problem with continuous variables to model reactor operating
conditions and integer variables to model feed allocation, furnace operation and
decoking. We have also seen that there are significant nonlinearities in the yield and
coking model relating to reactor conditions. These nonlinearities in the scheduling model
could lead to a Mixed Integer Nonlinear Programming problem (MINLP), which is a

difficult problem to solve for the size of the our scheduling problem.

-
—
—

Therefore, our main objective here is to preserve the model lincarity, so tha
resulting scheduling model can be formulated as a Mixed Integer Linear Programming
problem (MILP). Model linearity is preserved for several reasons, such as (1) Linear
relaxations are convex problems, (2) State-of-the-art MILP solvers are available

(CPLEX, XPRESS etc).
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In order to preserve model linearity, we used discrete time representation for
model formulation and adopted disjunctive modelling technique to handle the
nonlinearity in the yield profiles. The concepts behind the linear formulation are
discussed in the next sub-sections and then, details of the formulation are given in

Section 4.2.

4.1.1 Discrete time formulation

Discrete time formulation is based on the concept of dividing the time horizon
into a finite number of uniform or non-uniform time intervals of predefined durations and

modelling the scheduling tasks only at the boundaries of each time interval.

The most notable feature of this formulation is that time is modelled as a reference
grid and is defined as a parameter in the optimization problem. Therefore, we avoid
nonlinear constraints due to time representation in scheduling models. With this
reference grid, we can formulate difficult scheduling constraints easily. The only
disadvantage with these models is that they lead to a large number of binary variables.
The number of binary variables in these models scales proportionally with the time
intervals in the scheduling horizon, thus making the models computationally expensive.
However, a better formulation with tailored heuristics can eliminate this difficulty,
making the discrete time models best suitable for large scale scheduling applications

(Schulz et al., 2006, Kelly, 2005 and Lim et al., 2006).

4.1.2 Disjunctive modelling

linear constraints without compromising on losing the nonlinear information, the concept
of disjunctive programming (Williams, 1985) was employed. The main idea of
disjunctive programming is to first formulate several alternative linear disjunctive models

for a system. These alternatives could be different process technologies or as in this case,
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different operating conditions for an existing process. The typical disjunctive modelling
approach selects one disjunctive model using binary variables. In this research, the
disjunctive models approximate the nonlinear reactor yields with a set of linear yields at
specific reactor operating conditions. Therefore, selecting one disjunctive model is
equivalent to selecting one from several operating conditions, although the operating

conditions are continuous in the real plant and in the underlying nonlinear model.

As an example, let us recollect the nonlinearities in the yield profiles of propane
feedstock, which is shown in Figure 3-4. To approximately capture the nonlinearities in
those yields, eight disjunctive models were formulated as shown in Table 4-1. Each
disjunctive model corresponds to a particular conversion and S/HC ratio, which
represents one operating condition for a reactor. Therefore, selecting a disjunctive model
is equal to choosing a particular furnace operation. This selection can be accomplished by

using binary variables in the scheduling model.

Table 4-1: Disjunctive models for Propane feed

Disjunctive S/HC | Conversion 0 Coking rate
models (ratio) (%) LIRS (Kg/g)ay)
Propanel 0.4 70 814.31 7.56
Propane2 0.4 80 825.85 9.63
Propane3 0.4 90 840.42 11.62
Propane4 0.4 95 851.37 12.61
Propane5 1 70 832.57 6.85
Propane6 1 80 844.50 8.51
Propane7 1 90 859.57 10.07
Propaneg8 | 95 870.91 10.86

oh dig

A hlnnn o a
Angougn i

sjunctive programming captures the nonlincar relationship using
linear constraints, the main disadvantage with this technique is that it requires binary
variables to make the selection of a single disjunctive model. As discussed earlier, binary
variables are very critical to any optimization problem as they are directly related to the

computational burden of the optimization problem.
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Initial computational experience validated our expectation that adding many
thousands of binary variables to select the reactor operations for many reactors, feed
types and time steps yielded intractable optimization problems. While a very small
problem might be solved within reasonable computing times, large problems required

more than one day of computing time. A few cases studies are described in Appendix B.

Therefore, we evaluated a simplified alternative formulation in which all
disjunctive reactor models could be selected, i.e., have non-zero feed rates. This
approach is formulated by removing the integer variables that require only one
disjunctive model to be selected for a specific feed material to a reactor in a time period.
This formulation has dramatically fewer integer variables and could be implemented in
the real plant under two situations. First, if the optimal solution had non-zero feed flows
in only one of the disjunctive models, the result can be directly implemented. Secondly,
if the solution contains non-zero feed flows to “adjacent” operating conditions, an
interpolated set of operating conditions could be implemented in the plant. By adjacent,
we mean two conditions having the same conversion and different steam—to—llydl'éczll'bon
or different conversions and the same steam-to-hydrocarbon, with “different” referring to
only one entry different in Table 4-1. If one of these situations does not occur, the
optimal solution could not be implemented in the real plant. Further details on the valid

combinations are elaborated in Appendix B.

Extensive computational experience with this problem has shown that the
optimum operating condition corresponds to a single disjunctive model, i.e., that only one
disjunctive model (at most) has a non-zero feed flow rate. Therefore, using the integer
variables to restrict the selection of disjunctive models are not required to obtain the
global optimum of the problem. If more than one “non-adjacent” model were selected,
some integer variables would have had to be added and the problem resolved; to reiterate,

this did not occur in this research.
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4.2 Scheduler details

Using the discrete time representation and disjunctive modeling techniques, the

scheduler is formulated as a deterministic MILP model. The inputs and outputs of the

scheduling optimizer (scheduler) are shown in Figure 4-1.

Outputs are the decision

variables of the optimization model, and inputs are the initial conditions (furnace coke

conditions), model parameters and other parameters necessary to define the problem

scenario (sales demands, economics, furnace availability, and so forth).

> 1
i Scheduler > )
A o (MILP) > 3
5 > > 4

Figure 4-1: Inputs and outputs of the Scheduler

Inputs (parameters)

QOutputs (optimization variables)

Initial process conditions (Coke, severity,
S/HC, available feeds and number of
furnaces)

1 | Feedstock to each reactor

7 | All constraint values, e.g., Product demand
and sales limits

o

Feed flow rates

3 | End conditions

3 | Reactor severities

4 | Time horizon

/

Reacior seleciiviiies (S/HC)

oo

5 | Economics
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4.3 Mathematical formulation
4.3.1 Basic formulation

In this formulation, continuous variables are used to represent the quantity of
material flow, coke accumulation, and the operating conditions (Severity, S/HC) in the
reactors. Binary variables are used to select appropriate feedstock for cracking, to decide
the optimal number of furnaces in service and to initiate a furnace shutdown for

deocking. Variables and parameters declared in the model are defined as follows:

Indices
i Feedstock, i=1,.....NF
] Reactor, j=1,.... ,NR
k Disjunctive model, k= 1,.....ND;
C Product component, ¢= 1,.....NP
t Time period, t=1,....NT

Where the set dimensions are,

NF Number of feeds
NR Number of reactors
ND; Number of disjunctive models for cracking feed i
NP Number of products
Number of discrete time intervals within the specified time horizon
Nt (NT =Thorz/At)
Thorz Time horizon (hrs)
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At

Continuous Variables

E

1t

FRcey;,

frey,

Rey _Inv,

ijt

PD

ijkt

ijkt

disj

(SHH

Sijkt

PRate;,

Prod,

E compressor
1

Duration of each time interval (hrs)

Flow rate of fresh feed i at time t (Kg/hr)
Flow rate of the recycled feed i at time t, for cracking (Kg/hr)

Flow rate of feed i at time t, recycled to the storage tank

(Kg/hr)
Inventory of feed i at time t, in the recycle storage tank
Processing rate of feed i in reactor j at time t (Kg/hr)

Processing rate of feed i in disjunctive model k corresponding

to reactor j at time t (Kg/hr)

Fraction of flow through each disjunctive model w.r.t. the

maximum processing rate

Adjusted fraction of flow through each disjunctive model

Slack variable used in the disjunctive model constraint

Production rate of product ¢, while cracking feed i in
disjunctive model k corresponding to reactor j at time t

(Kg/hr)

Amount of product ¢ produced from all the reactors during the

defined time horizon (Kg)

Energy required for a compressor in a single train compression

system at time t (KJ/hr)
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E furnace
i

F HPsteam
ijt

FMPslcam
it

Coke;,

ACoke.

ijkt

ADecoke,

Inv

ct

Sales

coke

Penalty

Penalty

Rey _ Inv

Energy required for cracking in furnace j at time t (KJ/hr)

Flow rate of high-pressure steam generated while cracking feed

i inreactor j at time t (Kg/hr)

Flow rate of medium-pressure steam generated while cracking

feed i inreactor j at time t (Kg/hr)
Coke deposited in reactor j at time t (Kg)

Coke deposited in the disjunctive model k corresponding to
reactor j while cracking feed i in time At (where, At is the

time period) (Kg)

A large decoke variable used to erase the total coke in the

reactor j at time t when de-coke is active. (Kg)

Tube wall temperature of reactor j at time t ("C)

Slack variable used in the decoking model
Inventory of product ¢ at time t (Kg)

Sales of product ¢ at time t (Kg/hr)

Penalty term for coke accumulated at the end of time horizon

($/Kg)

Penalty term to minimize the cost associated with recycle feed

inventory in the model ($/Kg)
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Binary variables

Variables to model Feedstock allocation

When feed i is not allocated to reactor j at time t for

W. = cracking

| When feed i is allocated to reactor j at time t for cracking

Variables to model furnace decoking

ook 0  Normal operation of reactor j at time t
8»0(‘0 ¢ =
it

] Decoking of reactor j at time t

Variables to model the number of furnaces in service

- 0 Reactor j in operation at time t
6\ hutdown —
n i 7
| Reactor j shutdown at time t
Parameters
R;“i“ Minimum processing rate of feed i in reactor j (Kg/hr)
B Maximum processing rate of feed i in reactor j (Kg/hr)
. Weight fraction of product component ¢, in disjunctive model k
ijke . . 5 ; .
corresponding to reactor j while cracking feed i
Energy required in disjunctive model k corresponding to reactor
E

ijk

j while cracking feed i (KJ/Kg)
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Coking rate corresponding to disjunctive model k while

RCoke,,
cracking feed i (Kg coke/hr)
s Steam to hydrocarbon ratio for feed i corresponding to
Pik .. .
disjunctive model k
e Severity for feed icorresponding to disjunctive model k
MW, Molecular weight of component ¢

Cosft™* Cost of product ¢ ($/Kg)

Cosli'b"d Cost of feed i ($/Kg)
Costhon Cost of dilution steam ($/Kg)
Cost:;",‘;‘;' Cost of furnace energy ($/KJ)

Coston  Cost of compressor energy ($/KJ)

Cost!? | Cost of high-pressure (HP) steam ($/Kg)
Cost™" Cost of medium pressure (MP) steam ($/Kg)

furnace - .
Costimeenver Cost of furnace changeover/maintenance ($)
Ay decoke Duration of a decoke operation (hrs)

Cp Heat capacity of steam (1.937 KJ/Kg.K)

7 Temperature of the generated high-pressure steam (586.6" K)

i Temperature of the generated medium-pressure steam (514.9" K)

Feed water temperature used to generate high-pressure and

medium-pressure steam (323.1 50" K)

HPsteam - 5 . .
G Constant used for the calculation of flow-rate of high-pressure
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G MPsteam

Coke max

J

M

T max

Coke inital

min

Demand

<
Demand™
min

Inv

max

Inv

1612.572

steam, ~—(—)HMV"" (Kg steam/Kg reactor effluent)
Cp TZ ‘ _Tl

Constant used for the calculation of flow-rate of medium-

pressure steam 602.721
SSUTE Stee ’ steam
CP(TZMLI. ~~_TI)

(Kg steam/Kg reactor effluent)

Maximum limit on deposited coke for reactor j (Kg)

Constant (Big-M type) used in the decoking model to erase coke

(300 Kg)
Maximum limit on tube wall temperature for reactor j "C)

The amount of coke in the reactor at time 0 (Kg)

Minimum demand for component ¢ (Kg/time horizon)
Maximum demand for component ¢ (Kg/time horizon)

Minimum inventory for component ¢ (Kg)

Maximum inventory for component ¢ (Kg)

Number of reactors allowed to decoke in a coarse time grid

Minimum number of days a reactor should operate before

decoke, taken from operators experience.

Maximum number of decokes possible in a defined time horizon,

from operators experience
Number of days before which decoking is not possible (days)

Days at the beginning of horizon when a decoking is compulsory

(days)
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COke decoke

allowed

C Ok edccoke

endcondition

TW const

Constraints

The amount of coke allowed to accumulate (to avoid premature

decokes) before each possible decoke (Kg)

The amount of coke that cannot be exceeded at the end of the

time horizon (Kg)
Penalty coefficient for Inventory of recycled ethane (0.001 $/Kg)

Parameter used in the Tube wall temperature model (0.37 "K/Kg)

A list of conditions that are modeled as constraints in the scheduling model are

summarized first.

= Only one feed can be cracked in a furnace at any time;

= Feedstock cannot be switched during normal operation;

= Account for mass flow rates of all the components leaving a reactor;

= Model the non-linear relationships (yields and coking) using linear disjunctive

constraints;

= Account for recycled ethane during cracking;

= Account for energy required in furnace and compressor;

= Model coking in the reactors and the corresponding tube metal temperatures;

=  While decoking, consider complete cleanup of the reactors (i.e. coke =0 after

cleaning);

= No more than one reactor can be decoked at any time;

= Consider the end point conditions on the coke accumulated in the reactors;

= Integrated demand over the time horizon should be met.



The associated constraints in the mathematical formulation are discussed as follows.

Feedstock allocation

The condition that no more than one feedstock can be cracked in a particular
reactor at any time is modeled using a binary allocation variable, as shown in equation
(4.1). Also, the condition that feedstock switching is not allowed between decokes is
modeled as equation (4.2). The constraint ensures that there is no feedstock switching

during the normal plant operation. It can occur only after the reactor is decoked.

2 Wy <1 Vit (4.1)

Wi =W, < 6}]:ch Vi, j,t=2.NT 4.2)

Equations (4.3) specifies the bounds on the reactor processing feed rates. It
models the condition that the processing rate for a feed i is zero when it is not allocated

to a reactor j attimet.
BE Wy <R 20 W, Vi, .t (4.3)

Reactor operation

Feed balance constraints

The total amount of feed processed into the reactors is equal to the amount of fresh
feed plus the recycled feed, given as equation (4.4). Only ethane in the products is
recycled back for subsequent cracking. One of the reactors is allocated exclusively to
crack recycled ethane. Whenever, the dedicated ethane cracker is scheduled for
maintenance, the recycled ethane has to be stored for subsequent cracking. This recycle
storage 1s modeled using equations (4.4 to 4.6). The amount recycled to the storage
(frcy, ) is given by equation (4.5). The inventory in the recycle storage is then modeled as

equation (4.6), which is penalized in the objective function to minimize the cost
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associated with inventory. This ensures that inventory is always zero except during
decoke. It was found that the penalty does not affect the total fresh ethane feed purchase,
operating conditions, or end conditions for the recycle inventory; however, it reduces the
ethane recycle inventory to its minimum at every time throughout the horizon which
smoothes variation in fresh and recycle flow rates. A schematic of recycle stream and

inventory is shown in Figure 4-2

Recycled feed, frcy,

Fresh feed, F,

Figure 4-2: Recycle stream and inventory

F, +FRey, =) P Vi, t (4.4)
I i
ficy, = ZZ PDUM -Xijkc ¢ = ethane, V't 4.5)
ik
Rey _Inv, =Rey_Inv, , +frcy, —FRey, i = ethane, V't (4.6)

Disjunctive reactor model constraints

As discussed earlier, these constraints model the nonlinear patterns in yields and
coking using a set of linear algebraic equations. To achieve this, the operating conditions
in each reactor are first divided into k disjunctive models, and the optimizer decides to
choose one model. We know that, each disjunctive model represents a combination of
Severity and S/HC ratio. Therefore, selection of feed rate to a particular disjunctive
model decides the operating condition in that reactor. In other words, the flow through

each disjunctive model will reflect the selected operating condition. If the fraction of flow
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is equal to | for a particular disjunctive model, it means that only this model (operating
condition) is selected. Alternatively, if more than one disjunctive models share the
fraction of flow, then the operating condition can be calculated by interpolation. A

schematic is shown in Figure 4-3.

T, SHC,
e e, SRR g

i
Ay o)
PR 1S
AL e
TR GO g i ,
. “odt—— Products

T
)
[l
(SN

e,
(T, SMC, )
Nk e

1T

{

Figure 4-3: Disjunctive reactor conditions

Disjunctive operation is modeled as equation (4.7).

> PD,, =P, Vi, j,t 4.7)
k

The flow through disjunctive models is used in the yield model to calculate the amount of

products produced as shown below.

Product flow rates

Based on the disjunctive model flowrates, production rates of the components are
obtained by the product of disjunctive model flowrates times the component yields as
shown in equation (4.8). The yield data is taken from curves similar to Figure 3-4; the
data used for the disjunctive models is reported in Appendix A. The amount of product

produced from all the reactors at any time is given by equation (4-9).

PRate.

ket

=PDy - X Vi, j,k,c,t (4.8)
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Prod, =Y > > PRate,, Ve, t (4.9)
i)k

Fraction of flow through disjunctive reactors

The fraction of flow for each disjunctive operation is required in the coking model. As
stated earlier, each disjunctive model is related to a particular operating condition and
hence to a particular coking rate. To calculate the coking rate associated with the selected
disjunctive operation, we need to calculate the fraction of flow through the disjunctive
reactors. It can be modeled as shown in equation (4-10). Unfortunately, equation (4.10) is
nonlinear.

PD;, = xjj, - P; Vi, j. k.t (4.10)

ijt

Since our aim is to develop a linear MIP, we propose an approximation scheme here that
maintains model linearity with minimal effect on the model accuracy. Equations (4.11 —

4.16) replaces equation (4.10) and enforces the procedure to calculate the fraction of

flow.

P, =Ry - B Vi, j k.t (4.11)
2 X S1 Vi,jit (@.12)
;
Ky, F8he =000 Vi, j K, t (4.13)
ZG:IILI) = Vi, j,t (4.14)
-

NS =Y S X Vi, jit (4.15)
k k k

0<sy, <I Vi.j.k.t (4.16)
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First, the fraction of flow through each disjunctive model is calculated relative to
the maximum processing rate as shown in equation (4.11). Second, additional variables
are introduced in the form of slack variables (sidm) and new disjunctive model flow

fraction variables ((53:{) that will be used in the coking model. Note that it is not

necessary to penalize these slacks variables in the objective function as they are used to
ensure model feasibility. They are related to ( x{:“ ) as shown in equation (4.13) while also
observing equation (4.14); therefore, the new variables sum to one. Finally, the bounds
on the slack variables are decided by equations (4.15 and 4.16). Hence, variables (0‘3‘[{)

are the approximate fractions of flow through the disjunctive models.

As long as a single disjunctive model (or operating condition) is picked by the
optimizer, this model ensures that there is no error in this approximation, i.c., xj, equals

disj

Oy - However, whenever multiple disjunctive models are picked by the optimizer, there

is a small error in the fraction that is processed at each disjunctive reactor operating

v disj . - . s
conditions  (65;). The maximum error was found to be approximately 0.05%, which

leads to an error of | hr for a 30 day run length. This is negligible for the scheduling

horizon (90 days) considered in the model.

Equations (4.11 —4.16) provide a conceptual approach to approximate the fraction
of flow through each disjunctive model using linear constraints. However, to comply with
feedstock allocation constraints, equation (4.12) should be replaced by equation (4.17),
and to comply with decoke model constraints and guarantee model feasibility, equation

(4.16) must be replaced by equations (4.18, 4.19).

Dog < W, Vi, j,t (4.17)
k

0 < sy, < xjy, + 85 Vi, j, Kt (4.18)
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0<sy, <W, Vi, ik, t (4.19)

Coking and Tube wall temperature

Coking model constraints

The amount of coke in a reactor at any time t, is modeled as the coke present at
time t—1 plus the coke accumulated during the current time interval. This constraint is
modeled as equation (4.20). The coking rate depends upon the disjunctive operation.
Therefore, the amount of coke accumulated during any time interval t is calculated using

the selected severity and the corresponding coking rate data. This is written as equation

4.21).

Coke;, = Coke,_, + Y > ACokey, Vi, jt (4.20)
ik

ACoke,,, = (Reoke,, -a7)- At Vi, k.t 4.21)

Equation (4.21) is the reason that we needed to evaluate the flow fraction
variables (G‘i;ff). It is assumed that coke is additive in two disjunctive models. Also, note

that in this model coke is not proportional to the reactor hydrocarbon feed rate.

Tube wall temperature constraints

Since coke cannot be measured directly, the industrial practice is to infer its value
using the tube wall temperature measurement. Tube wall temperature depends upon the
current reactor coke and the disjunctive operation that is achieved adjusting the reactor
outlet temperature to give the required severity or conversion. It increases with the
accumulated coke in a reactor. Therefore, it 1s correlated with the accumulated coke and

the clean tube wall temperature as equation (4.22).
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XS o) ke, Vi (2

Threshold limits

These are the limits that are imposed on the accumulated coke and the tube wall
temperature to trigger a decoke operation. They are basically the upper bounds on the
accumulated coke and the tube wall temperature of a reactor, which should not be

violated in the model. These restrictions can be posed as equations (4.23 and 4.24).
Coke;, < Coke[™ Vi, j,t (4.23)
Tw, <T™ Vi, jit (4.24)

These limitations require that a furnace be decoked before the bound has been violated.

Energy requirement constraints

The amount of energy required for cracking in furnace j at time t is modeled as
equation (4.25) and the energy required by a compressor (in a single train compression
system) at time t is modeled as equation (4.26). It should be noted that in this model,

furnace energy required depends on the disjunctive model (operating condition) selection.
E?tmmcc — Z Z PDijkl P Eijk V_),t (425)
ik

PRate,, , _
—— 2 |*EC™ Wt (4.20)

) )3

€

MW,

Energy of compression assumes a constant compressibility and efficiency and

constant inlet and outlet pressures. Therefore, it is a linear function of molar flow rate.
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High pressure (HP) and Medium pressure (MP) steam flowrates

Hot cracked gases exiting from the reactors at 800-900" C are immediately cooled
in the transfer line exchangers (TLE’s) to quickly reduce the temperature so that no
further reactions takes place. During this cooling process, heat is recovered to generate
HP and MP steam that is used for various purposes within the plant. The generated steam

flow rates are related to the processing rates in the reactors as shown in equations (4.27,

4.28).

FHPstc:un - Pijl . G HPsteam Vi,j,[ (427)

ijt

Fl.\“{“mm _ Pijl .G MPsteam Vi’j’t (428)

ijt

Decoking constraints

The time required for decoking is considered to be 1 day. Decoking can be
performed at anytime when the tube wall temperature and the accumulated coke in the
reactors are within the threshold limits. However, while scheduling a decoke operation, it
is important to ensure that at any time, no more than one reactor is taken offline for
maintenance. This will ensure that there is sufficient uninterrupted and continuous
product flow in the plant at all times. The decoke decision is modeled using binary
variables with the above described constraint posed as equation (4.29). Also one should
ensure that when a reactor is decoked, (i) the hydrocarbon flow through the reactor is
zero, and (i1) the accumulated coke is completely cleaned. These constraints are posed as
equations (4.30) and (4.31) respectively. The accompanying variables in equation (4.31)

are described in equations (4.32) and (4.33).

3 gk < vt (4.29)
]

prin (1 -840 )< p <P (1 - o) Vi, jit (4.30)

il g —
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Coke, = Coke, , +Z;Z:AC0keijkl — ADecoke | +s§ Vi, j.t (4.31)
1k

M-8 < ADecoke, < M- &7 Vi, )t (4.32)

0<sS < M-y Vi, jt (4.33)

It is clear from these constraints that at any time t, when a reactor j is decoked,

85 =1 and therefore ADecoke,, takes a value equal to M from equation (4.32), where

M is a sufficiently large value chosen to eliminate the accumulated coke in the reactor,
1.e., to make the variable Coke; in equation (4.31) equal to 0. A slack variable s is
added to ensure that Coke;, exactly takes a value equal to 0. Since coke accumulation is
bounded to be non-negative, the decoke task cannot reduce coke below 0; since an
economic debit occurs for any coke accumulation, the coke at the end of a decoke task

will always be 0. Alternatively, when no reactor is decoked, Sfff“'“ is O and both

ADecokey, , sj, are 0; thus, equation (4.31) becomes equation (4.20). Therefore, equation

(4.31) and not (4.20) is used in the scheduling optimizer.
Product inventory and sales constraints

The products obtained from the plant are transported through pipelines for sale
and any excess amounts are stored in the inventory tanks. The model for the product
inventory is given by equation (4.34) whereas the bounds on the inventory are given by
equation (4.35). Additional flexibility can be added to the inventory by proposing either

hard constraints or soft constraints. The sales depend on the predicted demands.

The plant cannot produce a constant rate of products because of periodic furnace
decokes. Therefore, the sales are specified as total production over a period, which for
this study in the output horizon of 90 days. Bounds on the integrated sales are shown in

equation (4.36).
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Inv, =Inv_, +Prod, —Sales Ve,t (4.34)

Inv™ <Inv, <Inv™ Vit (4.35)
Demand!™ <" Sales,, < Demand.™ Ve (4.36)

In ethylene plants products are stored as gas in an underground cavern or in
liquefied form in a tank. In all our case studies, no inventory (or storage) of products was

considered. Inventory (Inv,, ) in equation (4.34) was assumed to be zero at all times. This

means that in this model, all the products are sold as they are being produced. Equation

(4.36) is included to define the integrated product demand.

End point conditions

End conditions are the requirements that are imposed at the end of the time
horizon. In the current study, end conditions are related to the amount of coke
accumulated in the reactors. From computational experience, it was clearly evident that
the optimal solution was unrealistic without the end conditions. Therefore, the end
conditions described in this sub-section were always included in the scheduling model

(with the exception of one case study to demonstrate the need for the end conditions).

There are two end conditions on the coke. The first condition is to ensure a
feasible operational state at the end of the horizon, so that future operation remains
feasible. This condition will make sure that two or more reactors do not require decoking
during the first time period after the optimisation horizon ends i.e., ensuring that no two
reactors are completely filled with coke at the end of the time horizon. A rigorous way of
modelling this condition would require additional binary variables. Therefore, an
alternative approach that reduces flexibility slightly using only continuous variables is
proposed. This approach involves a hard constraint that must be strictly met for feasibility

as shown in equation (4.37). This equation ensures that no two reactors are ready for
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decoke at the end of the time horizon, thus enabling feasible operation beyond the

specified time horizon. The value for Coke"" is calculated based on the number of

endcondition
furnaces in operation to allow feasible operation beyond the time horizon, as shown in

equation (4.38).

Coke,; < Cokeg; Vi o (4.37)

endcondition

Coke!™} = Coke™" — (Nfrs—1) * Coke " (4.38)

endcondition accum/ period

where, Nfrs is the number of furnaces in service, Coke™ is the maximum coke allowed

max
accum/ period

in a reactor before decoking, and Coke is the maximum coke accumulated

during one time period.

The second end condition addresses the coke build up that will ultimately require
decoking after the optimiser horizon. To define this end condition, a soft constraint is
imposed by penalizing the amount of coke accumulated at the end of time horizon in the
objective function. The penalty term as shown in equation (4.39) adds a cost that is

proportional to the coke accumulation at the end of the optimiser horizon.

coke J

Penalty™" = Ck— : (COS[dccukc
oke .

energy

ohitloss
+ Costun ) (4.39)

Typically, the cost associated with furnace decoke is the cost of energy required to
completely cleanup coke. However, for instance if a furnace is scheduled to operate at
full production capacity (and at its maximum severity), to meet the required product

demand, a decoke under such a circumstance can incorporate a downtime of 1 day,

leading to production loss, thus loss of profit. Both these terms are the costs associated
with furnace decoke (i.e. to completely clean the coke (Cokep,) in the furnace);
therefore, they are included in the penalty term as a cost proportional to the coke

accumulation at the end of optimizer horizon. The energy costs are always present in the
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penalty term; however, the costs related to profit loss are scenario specific. The profit loss

is zero for scenarios where the integrated demand over the scheduling horizon can be met

without operating the furnace at its full production capacity. The costs associated with

both these terms for all the scenarios considered in this thesis are provided in Appendix

B.

Sample optimisation results with and without penalty function (equation (4.39))

are shown in Figure 4-4. It is clear that without penalty, the optimizer avoids a second

decoke at the end of the horizon. It does so by selecting a low severity (low temperature)

for the reactor. This strategy is optimal for the fixed horizon, but it results in the decoking

cost immediately after the horizon and lower overall profit. A more complete case study

on the importance of end conditions is discussed in Section 4.5.1.1.
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Figure 4-4: Sample results to highlight the importance of end conditions

Objective function

Since, the objective of this scheduling problem is to maximize the plant profit, an

economic objective function is formulated in the model that is expressed as the plant

profit less the penalties on coke and recycle feed inventory as shown in equation (4.40).
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The plant profit is expressed in terms of the value of products, cost of feeds and other

utility costs as shown in equation (4.41):

Coke

Objective function = Plant Profit — Penalty“** — Penalty®<¥-"" (4.40)

Plant Profit = Value of products — Cost of feedstocks — Cost of dilution ~ (4.41)
steam — Cost of furnace energy — Cost of compressor energy + Value of

HP and MP steam generated at TLE’s — Cost for furnace decoke.

Details of each term in the profit equation are given as follows:

Value of products = Z;Sz\lesﬂ - Cost " (4.41a)

Cost of feedstocks = ZZF" -Cost ™ (4.41b)

Cost of dilution steam = ZZ;?PDW -pIHC . oyt fiuon (4.41c)

Cost of furnace energy = ZZE?{’"‘“‘C -Cost e (4.41d)
Co

Cost of compressor energy = ZEf“""""”‘" - Cost oy (4.41e)

ijt steam 1t steam

Value of HP and MP steam = > > S E/™" - Cost!\ 4+ > S S EN™ "™ . Cost iy
[ |

(4.411)

it energy

Cost for furnace decoke = Z ZS‘.J““k“ -Cost ok (4.41g)
LS |
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Penalty*-" = 1> > Rey _Inv, (4.41h)
t i

The objective function and all the constraints discussed so far forms the basic
formulation of the scheduling model. The problem size for a case study involving 3
feedstocks and 5 reactors results in 3100 binary variables, 297794 continuous variables,
308629 linear constraints for a scheduling horizon of 90 days with 90 time intervals.
When this MILP was attempted to solve using CPLEX, version 10.1, the solver initially
had difficulties finding a feasible solution and eventually was unable to find the optimal
solution in 100 hrs. This could be mainly attributed to the presence of large number of
binary variables. Therefore, to enhance the computational time and make the model
suitable for online computation, some constraints were reformulated and few tightening

constraints were proposed. Details are discussed in the following sections.

4.3.2 Reformulated constraints

A couple of constraints were reformulated and included in the model. This was

done to avoid the constraint structure that led to computational problems.

Feedstock allocation

Feedstock allocation is a discrete decision which should be made only when a
cleaned reactor becomes available. Therefore, an alternative allocation constraint is
modeled that can propagate the feedstock allocation decision during the normal plant
operation and makes the allocation decision only when a cleaned reactor is available.
This constraint as shown in equation (4.42) is included in the model . Furthermore, this
constraint also ensures that there is no feedstock switching during the normal plant
operation. Upon introducing this constraint, a logical modification has to be made for
equation (4.1), as shown in equation (4.43). Therefore, equation (4.1) is replaced by

equation (4.43) in the model.
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Wy + 2 Wy, <1 Vi, it (4.42)

i"#i

W, <1 (1-8%k) Vit (4.43)

In equation (4.42), the summation is over all feedstocks (i) except the feedstock
currently being processed in the reactor. The benefit of this constraint is to substantially

reduce the feasible region, which should speed the branch and bound search.

Decoking model

As pointed out earlier, constraints (4.31 — 4.33) are used to model the cleaning of
accumulated coke during a decoke operation. They have slack variables and big-M type
constraints which were found to be computationally expensive from various trial runs.

Therefore, those constraints are replaced by equations (4.44 — 4.46) to reduce
computational time. This is done by eliminating the slack variables (sj, ) and modifying

the big-M type constraints.

Coke, =Coke,_, + Y ACoke,, —ADecoke, Vit (4.44)
k

0 < ADecoke, <M -85 Vit (4.45)

0 < Coke, < Cokel™ -{1-8%) Vit (4.46)

Since the economics require a decoke to remove all coke and negative coke
accumulation is not possible, the slack was found to be unnecessary. It was found that
the value of M in equation (4.45) affected the computational time. Experience has shown
that large values of M needed more computational time. This made sense because large
values of M result in larger feasible region; thus, requiring more time for the search.
Therefore, in the model, the value of M was chosen to be no more than the maximum

value of coke, i.e., 300 kg.
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4.3.3 Tightening constraints

Several tightening constraints were formulated that incorporated process
knowledge about the process and economics of an ethylene plant into the scheduling
model. From computational experience these constraints were found to be very effective.
Note that no additional assumptions are required when applying these constraints, except

for the last constraint.

Minimum run length (n days) constraint

In general, operating a reactor at high severity leads to shorter run lengths and low
severity leads to longer run lengths. Accordingly, if the maximum severity of operation in
a reactor 1s known, it 1s possible to calculate the minimum run length for that reactor. In

other words, one can estimate the minimum number of days (saymn) a furnace should be

in operation without decoking. This also means that only one decoke is possible in every

(M) days.

The constraint, as shown in equation (4.47) is modeled as a rolling time window
which assures that over the entire time horizon, at any time only one decoke is possible in
ndays. This is an important and very efficient tightening constraint, because it reduces
the tree search significantly. For example, say the minimum run length is estimated as 20
days. If, a decoke is triggered at day 1, then this constraint will enforce the binary decoke
variables in the next 19 days to take a no decoke value, thus reducing the feasible region

and search time considerably.

t+1
D8k <l Vit (4.47)
U=t
Cokenmx _ Coketlcun _— ) .
where, 1 = and RCoke™" is the coking rate corresponding to

RCOke max

maximum reactor severity.
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(B ) decokes in the defined time horizon

Once the minimum run length 1 is known, we can further calculate the maximum

number of decokes possible for a reactor in the defined scheduling time horizon. This
estimate can then be used to restrict the number of decokes, as shown in equation (4.48).
Similar to the previous constraint, this one also increases the efficiency of tree search by

pruning out the unnecessary node searches.

YEe < Vj (4.48)

1

where, B= iH , TH = Time Horizon (days)
n

No decokes in first () days

Based on the initial coke present in the reactors, we can calculate the minimum
number of days the reactors should operate without triggering a decoke operation, based
on the heuristic that a decoke will not occur before required for feasibility. This estimate
can be used to fix some of the binary variables in the beginning of the tree search thus
reducing the search time. This constraint is more effective when the initial coke present
in the reactor is small, thus allowing more number of binary variables to be fixed. This

constraint is posed as shown in equation (4.49).

1+y
D85 <0 Vj (4.49)
=1

C()ke max Coke initial o ) .
where, y= and RCoke™" is the coking rate corresponding to
RCoke™™ - -

N

maximum reactor severity.

Force decoke within the first (o) days
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If the typical minimum severity of operation is known, it is possible to calculate
the maximum time within which a decoke must occur. This constraint adds less flexibility
by forcing a decoke during the first (o) days, posed as equation (4.50).

i+o

D 21 Vj (4.50)

t=1

(::()}(Gzlnux _ (::()L((:inhinl - ) ‘
Where, o = : and RCoke™" is the coking rate corresponding to
RCOkC min

minimum reactor severity. The value of o must be rounded.

Decoke possible only after a predefined condition

More frequent decokes decreases the life of the reactors. This information is not
included in the model; therefore, if the optimum requires frequent decoking, the
optimizer would select many decokes. To utilize the minimum number of decokes, a

parameter is added to the model, which can ensure that decoking is triggered only after

decoke
allowed

exceeding the limit on the accumulated coke (Coke ). This constraint is posed as

shown in equation (4.51).

Coke,, | > Cokeloke, . gieoke Vit 4.51)

== allowed

This constraint was found to be very useful in the model as it reduced the
computational time greatly. However, it causes conflicts in few scenarios where
premature decokes were advantageous due to changing demand during the horizon.
Therefore, it was removed from the model while dealing with such cases. For example,
this constraint was not included in the model for the scenario described in Section 4.6.1.2.
The use of this constraint would depend on the engineer’s insight; if the user is not sure

that the heuristic is valid, the constraint should not be included.
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4.4 Solution heuristic

Solution heuristics are required when it becomes difficult to solve large scale
scheduling problems using standalone optimization solvers. Several aggregation and
decomposition heuristics have been proposed in the literature (e.g., Pekny et al., 2000 and
Kelly, 2005) to deal with difficult MIP’s and solve them in a reasonable amount of time.
A review of literature on solution heuristics is provided in Section 2.1.1.3. Typically,
aggregation techniques rely on the idea of aggregating the time periods within the
specified horizon in order to reduce the dimensionality of the problem leading to a coarse
model and decomposition techniques rely on the idea of decomposing a large problem

into several small problems and solving them sequentially.

Using the aggregation and decomposition heuristics, we proposed a two-stage
temporal decomposition heuristic that was found to be very effective for solving the
furnace scheduling problem. This heuristic is always used within our scheduling model

and applied for all-the case studies discussed in this chapter.

4.4.1 Two-stage temporal decomposition heuristic

This is a time based decomposition heuristic which is designed to solve the
scheduling model in two stages instead of solving in a single stage. In the first stage, a
coarse grid model is formulated based on aggregation of time periods to reduce the
dimensionality of the problem and solved. The results obtained from this stage are used
to the binary (decoke) decisions in the next stage. In the second stage, many binary
variables in the fine grid model are fixed based on the first stage solution. Finally, the
fine grid model is solved to obtain a fine tuned solution. A schematic of this idea is

shown in Figure 4-5.

The main difference between coarse grid and fine grid models with respect to the

furnace scheduling model is the length of each time period. The fine grid model has more
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(finer) time periods, where as the coarse model has fewer (aggregated) time periods.
Essentially both these models represent the same set of constraints and objective function

with the exception of length of each time period in the scheduling horizon.

For example, consider the scheduling time horizon to be 90 days. In a fine grid
model, the length of each time period is considered to | day, resulting in 90 time periods
over the entire horizon. The length of each time period for a coarse model is considered
to be 3 days; therefore, the total number of time periods over the entire horizon is equal to
30. This reduction in dimensionality reduces the problem size to approximately (1/3") of
the size of fine grid model. Therefore, instead of solving the scheduling (fine-grid) model
directly using a standalone solver in a single stage, this heuristic solves the scheduling
model in two stages to be computationally efficient. The details of the heuristic are

provided as follows.

In stagel, a coarse grid model is solved to obtain an approximate solution. This
model is obtained by aggregating the time intervals in the defined scheduling horizon
leading to a smaller scheduling model. The solution from this model yields three-day

intervals within which the decoke occurs.

In stage2, the solution from stagel is used to fix the binary (decoke) decisions in
fine grid region where decoking may occur and definitely does not occur. As shown in
Figure 4-5, the binary variables in the un-shaded time periods are fixed because decoking
is not possible in this region as reflected in the coarse grid solution. Thus, the binary
variables in the shaded time periods are the only active binary variables in the model to
make decoke decisions. By searching the neighbourhood (9 time periods), this heuristic
provides extra flexibility around the decoking three-day period selected at stage | . Finally,

the fine grid model is solved to obtain a fine tuned decoke solution.
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This heuristic is completely automated so that the optimization model need not be
interrupted between the stages to fix the decisions. Fixing the logical decisions in the
model is achieved by forcing the decoke decisions to take a particular integer value.
Since this heuristic leads to smaller problem sizes in stagel (due to aggregation of time

periods) and stage2 (due to fixing binary variables), the solution can be obtained much

more quickly.

Diecoke time pened in stage 1 solution

Stage 1 P
! 2 - .| wr2 | NTa | wT
.
»// \\
Stage 2 v N
FF‘; legid defisipns ol - ko Fix|logic decidions

Time penods searched for a fine tuned deccke event

Figure 4-5: Illustration of two-stage decomposition heuristic

This heuristic was found to be very effective in reducing the computational time.
The optimum using this heuristic was identical to the optimum using only fine grid in
cases small enough that we could solve the optimisation problem in one stage with a fine
grid. Naturally, a global optimum cannot be guaranteed when this heuristic is employed
for large scheduling problems. As will be discussed in next section, this heuristic has

improved the computational time substantially.

4.4.2 Issues with the coarse grid model

From the above discussion, it is clear that the solution of coarse grid model forms
the basis for fine grid solution search because many of the binary variables in the fine

erid model are fixed based on the coarse grid solution. For instance, if the coarse grid
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model is incorrectly posed, that could mislead the fine grid model solution. Therefore,

proper care should be taken while posing the coarse model.

In a coarse grid model, the length of each time period is equal to 3 days; when the
optimizer chooses a reactor to decoke, it would be shutdown for one time period (i.e., 3
days). For a plant decoking time period of I day, this would result in 2 days of production
loss and no coke accumulation. Over a scheduling horizon of 90 days, this would
propagate inconsistency to the future decoking schedule due to incorrect interpretation of
production and coke accumulation in the cracking coils. Furthermore, the condition that
only one reactor could be decoked in a single time period holds good for a fine grid
model, but could be misleading when used in a coarse grid model because for a reactor to
shutdown, it would have to inevitably wait for 3 days (one time period) after any other

reactor 1s shutdown.

In order to address these issues and model a 1 day decoke in a 3 day time period,
few additional constraints have to be added to the coarse grid model. These constraints
are added only to the coarse grid model and not to the fine grid model. The constraints
are intended to (1) allow multiple (up to three) reactors to decoke in a single time period,
(i) accommodate two days of production when a furnace is decoked in a 3 day decoke
period, and (iii) account for coke build up in a reactor during a 3 day decoke event.

Details of these constraints are provided in the following sub-sections.

4.4.2.1 Decoking multiple reactors

Equation (4.29) ensures that only one reactor can be shutdown for maintenance at
any time period. However, to allow multiple reactors to decoke within a single time
period, equation (4.29) is replaced with equation (4.52) in the coarse grid model. The
maximum number of reactors allowed to decoke (1) in a single time period is calculated
based on the length of time period and the maintenance period. The condition that only
one reactor should be decoked at any time period can be taken care by the fine grid model

in the second stage of the solution heuristic.
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¥ O s Vi (4.52)
i

At . : .
where, T=———, is the number of reactors that can be docoked during each time

At decoke

period. For the coarse grid model in this study, T=3.
4.4.2.2 Accommodate production in the decoke time period

In order to accommodate two days of production in a 3 day decoke time period, an
additional (new) set of production constraints similar to those in the basic scheduling
model are used. The variables in these constraints have star as a superscript to
differentiate them from the variables in the basic scheduling model. These constraints are
used to model production only during a decoke event in a coarse grid model. Therefore,
during normal operation (periods without a decoke), these constraints are effectively
eliminated based on the decoke binary variables (i.e., production variables are forced to
be zero) using equation (4.53).

Pi;nin . 831{60)!@ S P," S Pi_;m“ . Bdccnkc VI, j7t (45"5)

it
During a decoke event, the logic variable S‘i'f“““ =1 and the processing rate
variables are activated according to equation (4.53). During normal plant operation,
3, =0 and the variables are forced to take zero values according to the same

equation.

The feed balance constraint is shown as equation (4.54). Disjunctive reactor
model constraint is shown as equation (4.55) and the production rates are calculated using
equations (4.56 to 4.58). To account for appropriate material balance, the production
during these two days is added to the production variable in the main scheduling model

as shown in equation (4.58a).
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F, =>P; Vit (4.54)

g PDj, =P, Vi, j t (4.55)

PRate;,, = PD;, - X, Vijket  (4.56)

Prod;, = ZZ;PRaIe;m Ve, t (4.57)
T4

Sales,, =Prod Ve, t (4.58)

Prod, =Prod, +Prod., - (At — At*) Vet (4.58a)

These equations account for production during all decoke periods. Note that
equation (4.53) governs the equations (4.54 to 4.58). During normal operation, equation
(4.53) is inactive and so all the production variables are forced to zero. The profit during
the two day production period is calculated as shown in equation (4.61) which should be
added to the objective function (equation 4.40) while solving the coarse grid model. The
profit calculation is shown in equation (4.61). This profit is added to the objective

function as shown in equation (4.62).

steam

profit* _ ( Z Sales:‘ .Cost {?mducl o Z F“ . Cost :’ccd Z Z Z PDUH )S{HL Cos tdxlulmn

— L L L P ”“ . ”,\ LOgtuyLr \ L L L LL = J Ecompl'cssor LOStUM
i)k ik

+3 Z B Costyo, + Z EYMen . Costhr ) At — Ayt ) (4.61)
o] i
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Objective function = Plant Profit — Penalty“** — Penalty* "™, profit* (4.62)

4.4.2.3 Modifications to the coke model

While modelling a 1 day decoke in a 3 day time period, it is assumed that the first
day is allocated for decoking and the next two days for production. The coke
accumulated during the two days of production is added to the subsequent time periods to
maintain consistency in the coking model. Therefore the coke model, described earlier as
equation (4.44), should be replaced with equation (4.63) in the coarse grid model. The

three terms identified in the equation are explained in the table below.

1
A A A_
s h
Coke; =Coke,_, + ZACoke +Coke |, , — ADecoke Vit (4.63)

Term | Description

1 Coke buildup during normal operation

Coke buildup during the 2 days in a 3 day decoke period. This term will add
’ the 2 days of coke buildup to the next time step.
3 Term to eliminate coke during decoking

The tube wall temperature constraint is modified as shown in equation (4.64). The
coke accumulated during the two days is calculated using equation (4.65) and used in

equation (4.66) to calculate the change in the tube wall temperature during those two

days.

Tw W= ZZ(TW iL:c;nl . :i;:ll)_l_ Tw ot CokC Vi, t (4.64)
1 k

Coke;| = Rcoke” - (At — At d““"kc) Vi, t (4.65)
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where, Rcoke™ is the coking rate chosen during the two days of production, At = 3 days

for coarse grid model and At*“** = 1day.

All these constraints are used only in the coarse-grid model to account of 1 day
decoke in a 3 day time period. A complete set of constraints and objective function for
coarse-grid and fine-grid models used in this thesis to solve single feedstock and multiple

feedstock scenarios are provided in Appendix C.

4.5 Computational improvement

By introducing the reformulated constraints, tightening constraints and the
solution heuristic into basic scheduling model, the computational time was significantly
reduced. For example, let us consider a simple scenario where one feed is cracked in 2
reactors (for a one-stage, fine grid model: 180 binary variables, 37080 continuous
variables and 37884 linear constraints). When a stand alone solver (CPLEX 10.1) was
used to solve the basic model, it took approximately 14000 seconds to solve the problem.
However, when the model was solved by introducing reformulated constraints, tightening

constraints and using the solution heuristic, it took approximately 350 seconds.

Improvement in the computational time as research progressed for this scenario is
shown in Figure 4-6. It is clear that the computational time has reduced greatly with the
introduction of tailored schemes such as solution heuristic, reformulated constraints and
tightening constraints to the basic model, during the course of the research. Most notably,
the computational time has been reduced by a factor of 40, which means that the
improved scheduling model (with tailored schemes included) could be solved 40 times
quicker than the basic scheduling model. In case of large models, the computational
improvement was found to be even more. For a scenario with 3 feedstocks and 5 reactors
(for a one-stage, fine grid model: 3100 binary variables, 297794 continuous variables and

308629 linear constraints), the computational efficiency was improved by over 240 times.
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Figure 4-6: Computational improvement as research progressed
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4.6 Open-loop case studies

Several case studies have been formulated and the results are discussed in this
section. These case studies are designed to highlight the flexibility of the scheduler to
handle various scenarios. The results obtained for every scenario are the predictions from
the scheduler, i.e., the solution of the MILP without feedback to account for any model
mismatch. (In the next chapter, the MILP will be the MPC controller in a feedback
control system.) Several single feed and multi-feed scenarios are formulated; these
scenarios are designed to show the importance of formulation features, to demonstrate the
ability of the formulation to solve complex problems, and to evaluate the computing
times. For all the cases, the formulation includes the two-stage solution heuristic,
reformulated constraints and tightening constraints. A complete set of constraints and the
objective function for coarse grid and fine grid models used to solve the open-loop case

studies are provided in Appendix C.

4.6.1 Single feedstock scenarios

Scenarios formulated with a single feedstock are discussed here. Naphtha is the
feedstock used for all the cases. Ethane, obtained in the products is not recycled back for
further cracking; it is sold. The main optimization decisions are to obtain optimal
flowrates, reactor operating conditions and decoke time periods. Yield profiles from
naphtha feedstock for various reactor conditions are shown in Figure 4-7. Severities
corresponding to propylene and ethylene peaks are highlighted in the figure as they are
repeatedly used in the following discussion. Yield profiles from Ethane feedstock for
various reactor conditions are shown in Figure 4-8. (For propane feedstock yield profiles,

refer to Figure 3-4) .
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In Figure 4-8, only ethylene yield is plotted onto the primary y-axis, which is on
the left hand side. All the remaining product yields are plotted onto the secondary y-axis

shown on the right hand side of the graph.

4.6.1.1 Case 1 - End conditions

End conditions are the requirements that we decide must be met to ensure a
feasible operational state at the end of time horizon. In this scenario, we study the effect
of end conditions on the reactor operation and maintenance schedule. This is done by
looking at the results from the scheduling model with end conditions and without end

conditions. A brief description of the scenario parameters are tabulated as shown below.

Feedstock Naphtha

Number of Reactors 2

Time horizon 90 days

Sales limit Unlimited C>H; sales

Fresh feed Unlimited amount available

Degrees of freedom Processing rates, Severity, S/HC and decoke time periods

Discussion of results

Results obtained without end penalties in the model are shown in Figures 4-9 and
4-10. The production details of ethylene and propylene, maintenance schedule in the form
of Gantt chart, coke accumulation details over the entire horizon are depicted in Figure 4-

9. Severity and S/HC profiles for both the reactors are shown in Figure 4-10.

In general, for an unlimited ethylene sales scenario, the reactors should operate at
high severity and S/HC ratios to produce as much ethylene as possible. From Figure 4-10,
it can be seen that severities in both the reactors were high in the beginning; however,
they gradually decrease towards the end of the horizon. On the other hand, both the
reactors are completely filled with coke by the end of the horizon. This leads to a

conclusion that the reactors have been operating at reduced severities to avoid a (third)
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decoke towards the end of the horizon. Although it is an “optimal” solution for the
horizon in the model, it leads to a situation where both the reactors have to be decoked in
the future — immediately after the horizon ends. In such a situation, there would be no
production in the plant until the maintenance is complete, and the plant would have to be

shutdown at a large economic cost.

In order to overcome such situations, end penalties have been imposed in the
model, and the results obtained after its implementation are shown in Figures 4-11 and 4-
12. The new solution has an additional decoke for each reactor almost at the end of the
horizon. The little coke accumulated in both the reactors at the end of the horizon
provides scope for feasible operation in the future as can be seen from Figure 4-11. Also,
there is no decrease in the severity levels as before; the reactors are operated consistently

at expected levels. This leads to a very reasonable solution.

In conclusion, without end penalties the final operational state could be infeasible
for future operation and the cost for coke present at end of the horizon would not be
included in objective function. Since end conditions overcome such a situation, they are
always embedded in the standard implementation of the scheduling model, including all

further studies reported in this thesis.



Results without end conditions
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Results with End conditions
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4.6.1.2 Case 2 - Variable sales limits

It is possible for the demands for certain products may vary over a 90 day period.
Hence, the sales limits vary accordingly with the demand patterns since demand is
interpreted in these cases as a maximum market sales. In this scenario, we highlight the
flexibility of the optimizer to tackle such a varying demand situation. In this scenario,
there is a sales limit on ethylene for the first 30 days, while there is no limit on ethylene
sales for the remaining 60 days. A brief description of the scenario parameters are
tabulated as shown below. We expect the optimizer to adapt to these changes by choosing

operating conditions and decoke timings that are most profitable.

Feedstock Naphtha

Number of Reactors | 2

Time horizon 90 days

Integrated ethylene 60% of the plant capacity for the first 30 days and
Demand unlimited sales for the last 60 days

Fresh feed Unlimited Naphtha available

Degrees of freedom Processing rates, Severity, S/HC and decoke time periods

Discussion of Results

Results obtained for this scenario are shown in Figures 4-13 to 4-15. During the
first 30 days, there is a limit on ethylene sales. Therefore, the optimizer chooses to
operate both the reactors at the propylene peak corresponding to a severity of 0.82 and
low S/HC of 0.5 as shown in Figure 4-14. The propylene peak is a profitable operating
condition during normal reactor operation. At this peak, the reactors produce as much
propylene as possible, while producing just enough ethylene to meet the ethylene

demand. One can also see that the reactors have around 250 kg of coke accumulated.

During the last 60 days, there is no limit on ethylene sales. Therefore, the reactors
can produce as much ethylene as possible during this period. Thus, the optimizer choose
to operate both the reactors at the ethylene peak corresponding to a severity of 1 and

S/HC ratio of 1.5. During this period of high severity operation, it is also desirable to
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have as little down time as possible. This means that the number of reactor shutdowns for
coke cleanup should be minimum. Therefore, as a solution the optimizer has chosen to
prematurely decoke both the reactors before the 31* day, the day when the unlimited
sales starts. It is clear from the Gantt chart as shown in Figure 4-13, that Reactorl is
cleaned on 29" day and Reactor2 is cleaned on the 30" day. Doing so, the optimizer
made sure that both the reactors are clean and available for production at maximum

capacity from the 31% day.

Numerical results obtained are shown in Table 4-2. The problem sizes,
computational times, and so forth for both the temporal decomposition stages are
highlighted. It can be seen that this problem was solved in less than 15 seconds in two

stages.

Table 4-2: Case 2 - Numerical results

Two Stage decomposition heuristic |
Stage 1 Stage 2

Discrete time intervals 30 90 o
Integer variables 48 28
Continuous variables 14750 27066
Constraints 15114 27474 |
Computational time 4.86 secs 9 secs
Model Profit 38270551.8 $
Solver details CPLEX 10.1
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4.6.1.3 Case 3 - Reactors in service

Sometimes the demand for products may drop significantly. In such a case, it
might be necessary to shutdown one or a few reactors to reduce production. In this
scenario, we highlight the capability of the model to deal with a situation when there is
low demand for ethylene. The main decisions are then to decide which reactors will be in
service at what times during the time horizon. The constraints used to model this
condition are discussed in Appendix B. A brief description of the scenario parameters are

tabulated below.

Feedstock Naphtha

Number of Reactors 2

Time horizon 90 days

Integrated ethylene Demand | 40% of the plant capacity

Fresh feed Unlimited Naphtha available

Degrées of freedom Processing rates, Severity, S/HC, Decoke time
periods and Number of furnaces in operation
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Discussion of Results

In this scenario, the demand for ethylene is very low, which leads to a significant
reduction in ethylene production due to sales limits. As an optimal solution, the optimizer
has chosen to operate both reactors and shut them down intermittently. The results
obtained for this scenario are shown in Figures 4-16 to 4-18. Due to the specified initial
condition, both the reactors start to operate in the beginning. But after the 16" day, we
can observe in the Gantt chart in Figure 4-16 that Reactor 2 remains in operation while
Reactorl is taken offline. The processing rates of the reactors are shown in Figure 4-18.

When the processing rate for a reactor is zero, it means that the reactor is not in service.

The optimizer could have chosen to operate both the reactors for certain period
and then shutdown both of them once the demands were met. But in our formulation, we
imposed an additional constraint that there should be a minimum feed flow into the
reactors to maintain continuous downstream plant operation. Therefore, the optimizer has

chosen to operate at least one reactor by allowing intermittent shutdowns.

Numerical results obtained are shown in Table 4-3. The problem sizes,
computational times etc. for both the stages are highlighted. It can be seen that this
problem was solved in 270 seconds in two stages. The integrated demand for ethylene was

exactly met in this scenario.
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Table 4-3: Case 3 - Numerical results

Two Stage decomposition heuristic

Stage 1 Stage 2
Discrete time intervals 30 90
Integer variables 110 46
Continuous variables 16139 21341
Constraints 16615 19426
Computational time 258 secs 12 secs

Integrated C,H4 Demand 30000000 Kg
Ethylene produced 30000000 Kg
Model Profit 22419400 $
Solver details CPLEX 10.1
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4.6.1.4 Case 4 - Coked reactors

In this scenario, both the reactors in operation initially have a large amount of
coke (250 Kg) so that decoking is required in the near future. However, due to
maintenance constraints only one reactor can be decoked on any particular day.
Therefore, it becomes necessary to prematurely decoke (before reaching the decoke
limits) one reactor to achieve feasible plant operation. Here, we highlight the flexibility
of the optimizer to deal with such a situation and decide which reactors to prematurely
decoke and which to operate at different periods of time. A brief description of the

scenario parameters are tabulated as shown below.

Feedstock Naphtha

Number of Reactors 2

Time horizon 90 days

Integrated ethylene Demand | 66% of the plant capacity

Fresh feed Unlimited Naphtha available

Degrees of freedom Processing rates, Severity, S/HC and Decoke time
periods

Discussion of Results

The results obtained are shown in Figures 4-19 to 4-21. Figure 4-19 clearly shows
that Reactor 1 is prematurely decoked. The maintenance schedule shown in the form of a
Gantt chart shows a cyclic pattern for reactor shutdowns. The severities and S/HC ratios
for reactors| and 2 are shown in Figure 4-20. The processing rates for all the reactors are

clearly depicted in Figure 4-21 .

The results from the simulation study for the same scenario were discussed in
Chapter 3 (Section 3.7). It appears that simulation results (which represent an engineer
making all decisions) and optimal results are the same for reactor maintenance decision
making (compare Gantt chart). However, there are differences in the ethylene production
rates and hence demand met. In optimization it is assured that integrated demand
conditions are exactly met, which could not be assured with manual decision making.

Also, one should note that this is a simple scenario, therefore feasible operation was
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achieved by easy simulation. However, for larger problems where the decisions to make

are complicated, optimization based approach would provide faster optimal decisions.

Numerical results from the optimization based approach are shown in Table 4-4.
The problem sizes, computational times etc. for both the stages are highlighted. It can be
seen that this problem was solved in 12.4 seconds in two stages. The integrated demand

for ethylene was exactly met in this scenario.

Table 4-4: Case 4 - Numerical results

Two Stage decomposition heuristic

Stage 1 Stage 2
Discrete time intervals 30 90
Integer variables 48 28
Continuous variables 14750 27066
Constraints 15114 27474
Computational time 6.4 secs 6 secs
Integrated C;H4 Demand 49500000 Kg
Ethylene produced 49500000 Kg
Model Profit 36929999.06 $
Solver details CPLEX 10.1
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4.6.1.5 Case 5 - Large scale problem

This is a large scale ethylene furnace scheduling problem having the number of
furnaces typical in a full-scale plant. In this scenario, the plant can crack naphtha
feedstock in five reactors for a total plant capacity of 0.75 million MTA ethylene. Here,
we highlight the model capability to handle large scale scheduling problems. To be more
realistic, initial coke in the reactors is considered to be different for all the reactors. A

brief description of the scenario parameters are tabuiated as shown below.
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Ethylene Plant Capacity 0.75 million MTA C,H,4
Feedstock Naphtha
Number of Reactors 5 ]
Time horizon 90 days
Integrated ethylene Demand 60% of the plant capacity
Fresh feed Unlimited Naphtha available
Degrees of freedom Processing rates, Severity, S/HC and Decoke
time periods -

Discussion of Results

The results obtained for this scenario are shown in Figures 4-22 to 4-25. In
general, the optimizer selects an optimal severity and S/HC for the reactors and
manipulates the processing rates appropriately to meet the demands. The optimal
severity is chosen to be 0.82 (Figure 4-23) and S/HC ratio to be 0.5 (Figure 4-24) for all
the reactors during the entire horizon. The processing rates for the reactors are shown in

Figure 4-25.

Severity of 0.82 corresponds to propylene peak in the product yields. At this peak,
plant operates most profitably by producing more propylene and enough ethylene to
meet the demand. S/HC ratio of 0.5 is the minimum steam required for reactor

operation, which reduces furnace energy.

Schedule for maintenance of the reactors is shown in the Gantt chart as shown in
Figure 4-22. It is clear that Reactor 1 has two decokes because of low coke at the initial
condition and low severity chosen to maximize propylene yield, while all the others

have three decokes during the horizon.

Numerical results are shown in Table 4-5. The problem sizes, computational times

etc. for both the stages are highlighted. It can be seen that this problem took 453 seconds
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in stagel and 152 seconds in stage2 for a total of 705 seconds to solve the entire

problem. The integrated demand for ethylene was exactly met in this scenario.

Table 4-5: Case 5 - Numerical results

Stage 1 Stage 2

Discrete time intervals 30 90
Integer variables 136 94
Continuous variables 37412 64953
Constraints 38444 66075
Computational time 453 secs 152 secs
Integrated C,H4 Demand 123750000 Kg
Ethylene produced 123750000 Kg
Model Profit 092443061.13 $
Solver details CPLEX 10.1
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4.6.2 Multiple feedstock scenarios

The scenarios formulated with multiple feedstocks are discussed here. These
scenarios have an additional decision to make over the single feed scenarios discussed
earlier, which is to make an optimal allocation of feeds to the reactors. This decision is

mainly based on the economics and the product demands.

Also, we have an additional condition for these scenarios that at least one reactor
must crack the recycled ethane. Therefore, we have explicitly assigned Reactor 1 to crack
ethane in all these scenarios, leaving the optimizer to select feedstocks for the remaining

reactors. Details of the scenarios and results are discussed as follows.
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4.6.2.1 Case 6 - Ethylene sales price higher than propylene

In this scenario, two feedstocks ethane and naphtha are available to be cracked in
three reactors. Sales on ethylene are unlimited and the ratio of ethylene price to
propylene is 1.46 (ethylene = 0.749 $/kg and propylene = 0.511 $/kg)). Under this
condition, the optimizer should choose the best feedstock to crack in the reactors for the
given product pricing. Here we highlight the model capacity to make additional binary
decisions (choosing appropriate feedstocks over time) besides the regular plant operating
conditions and maintenance schedule. A brief description of the scenario parameters are

tabulated as shown below.

Feedstocks Ethane, Naphtha

Number of Reactors | 3

Time horizon 90 days

Sales limits Unlimited sales on all the products

Fresh feed Unlimited feeds available

Degrees of freedom Feedstock selection, Processing rates, Severity, S/HC and
Decoke time periods

Discussion of Results

The results obtained for this scenario are shown in Figures 4-26 to 4-28. Since
ethylene is sold for a higher price than propylene and no sales demands are active, it
makes sense to operate the reactors at conditions giving the highest ethylene yields.
Therefore, it is clear from the results that the optimizer has selected to crack ethane is all
three reactors at their maximum severity, S/HC and processing rates so that the plant can

produce as much ethylene as possible.

The schedule for maintenance of the reactors is depicted in the Gantt chart as
shown in Figure 4.25. Clearly, all the reactors undergo three decokes during the entire

horizon. The severities and S/HC ratios corresponding to the ethylene peak are shown in

Figure 4-26.
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4.6.2.2 Case 7 - Propylene sales price higher than ethylene

This scenario is the same as Case 6 except for one pricing change; propylene is
sold for a higher price than ethylene. The ratio of propylene price to ethylene is 1.46
(propylene = 0.749 $/kg and ethylene = 0.511 $/kg). Under this situation, the optimizer
should obtain the best feedstock to be cracked in the reactors with optimal operating
conditions and maintenance schedule. A brief description of the scenario parameters are

tabulated as shown below.

Feedstocks Ethane, Naphtha B

Number of Reactors | 3

Time horizon 90 days

Sales limit Unlimited sales on all the products

Fresh feed Unlimited feeds available

Degrees of freedom Feedstock selection, Processing rates, Severity, S/HC and
Decoke time periods
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Discussion of Results

The scenario is the same as Case 6 except that the ratio of prices for ethylene are
propylene are inverted so that propylene is more valuable than ethylene in the market.

The main aim here is to find out which feedstock is profitable for ethylene plants under

such a situation.

Reactor 1 is explicitly allocated to crack recycled ethane. Therefore, the optimizer
has to decide on the feeds to be cracked only in Reactors 2 and 3. From the results, it is
clear that the optimizer has chosen to crack naphtha in reactors 2 and 3 at the propylene
peak. It makes sense to chose naphtha and crack at propylene peak because it has a much
higher yield of propylene, which is the more valuable product in the market. This leads to
a conclusion that when there is no limit on sales for the products and propylene is more

valuable than ethylene, it is most profitable to crack naphtha in the plant.

The results obtained for this scenario are shown in Figures 4-28 to 4-30. The
schedule for maintenance of the reactors is depicted in the Gantt chart as shown in Figure
4-28. Clearly, reactor I undergoes three decokes and reactors 2 and 3 undergo two
decokes during the entire horizon. Severities corresponding to propylene peak are shown

in Figure 4-29 and the processing rates are shown in Figure 4-30.
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4.6.2.3 Case 8 - Large scale problem 1: Sales limit on Ethylene

This is a large scale scheduling problem encountered typical to those in a real
plant. In this scenario, ethylene plant can crack ethane, propane and naphtha feedstocks
for a total plant capacity of 0.8 — 1 Million MTA ethylene. Unlimited amounts of fresh
ethane, propane and naphtha feeds are available for cracking. For a given ethylene
demand scenario, the optimizer should process the best feedstock(s) to be cracked in the
reactors over time with optimal operating conditions and maintenance schedule. A brief

description of the scenario parameters are tabulated as shown below.

Feedstocks Ethane, Propane and Naphtha

Number of Reactors 5

Time horizon 90 days

Sales limit On ethylene: 60% of the plant capacity

Fresh feed Unlimited feed available

Degrees of freedom Feedstock selection, Processing rates, Severity, S/HC and
Decoke time periods
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Discussion of Results

For this scenario, the optimizer selects an appropriate feedstock, optimal severity
and S/HC for the reactors and adjusts the processing rates appropriately to meet the
demands. Reactorl is explicitly allocated to crack recycled ethane. Therefore the
optimizer has to allocate feeds to reactors 2 to 5. Although unlimited amounts of ethane,
propane and naphtha feeds are available for cracking, optimizer selects naphtha feed for
reactors 2 to 5. It is therefore clear that for the specified plant economics, it is most

profitable to crack naphtha than ethane or propane.

The results obtained for this scenario are shown in Figures 4-31 to 4-34. The
optimizer chooses to operate Naphtha crackers (i.e. Reactors 2 to 5) at the propylene peak
corresponding to a severity of 0.82 and low S/HC of 0.5. At this peak, the reactors
produce as much propylene as possible and enough ethylene to meet the ethylene demand
and stay within the sales limits. The processing rates for all the five reactors are shown in
Figure 4-34. The schedule for maintenance of the reactors is depicted in the form of a
Gantt chart as shown in Figure. It is clear that reactors 1 to 4 undergo three decokes

whereas reactor 5 has only 2 decokes.

Numerical results obtained from the two-stage temporal decomposition heuristic
are shown in Table 4-6. It can be seen that this problem took 1263 seconds in stagel and
284.25 seconds in stage2 for a total of 1547.25 seconds to solve the entire problem. This
large problem could be solved in less than 30 minutes, which highlights the efficiency of

the formulation.
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Table 4-6: Case 8 - Numerical results

Stage 1 Stage 2
Discrete time intervals 30 90
Integer variables 577 122
Continuous variables 106006 77086
Constraints 110533 71017
Computational time 1263 secs 284.25 secs
Integrated C;H; Demand 142187500 Kg
Ethylene produced 142187500 Kg
Propylene produced 86850840 Kg
Model Profit 104496482 $
Solver details CPLEX 10.1
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Figure 4-32: Case 8 - Gantt chart and Production details
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4.6.2.4 Case 9 - Large scale problem 2: Sales limit and Limited Naphtha feed

This 1s again a large scale scheduling problem similar to one discussed in Case 7.
In this scenario, ethylene plant can crack ethane, propane and naphtha feedstocks for a
total plant capacity of 0.8 — 1 Million MTA ethylene. An unlimited amount of fresh
ethane and propane feeds are available, while limited naphtha feed is available. For a
given ethylene demand scenario, the optimizer should obtain the best feedstock to be
cracked in the reactors over time with optimal operating conditions and maintenance

schedule. A brief description of the scenario parameters are tabulated as shown below.

Feedstocks Ethane, Propane and Naphtha

Number of Reactors 5

Time horizon 90 days

Sales limit On ethylene: 60% of the plant capacity

Fresh feed Limited Naphtha and Unlimited Ethane and Propane
available

Degrees of freedom Feedstock selection, Processing rates, Severity, S/HC and
Decoke time periods
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Discussion of Results

Reactor! is explicitly allocated to crack recycled ethane. Therefore the optimizer
has to allocate feeds to reactors 2 to 5. In this scenario, limited amount of naphtha is
available. We have seen in the Case 7 that naphtha is the most optimal feedstock. Since
its availability is limited here, the optimizer has to choose between propane or ethane for
cracking in the reactors. From the results, it is clear that the optimizer has selected to
crack naphtha in two reactors and propane in two reactors. This again leads to a
conclusion that propane is the next optimal feedstock after naphtha for this ethylene
sales limited case study because it produces a variety of useful products that have good

market value.

The results obtained for this scenario are shown in Figures 4-35 to 4-38. The
optimizer chooses to operate Naphtha crackers (i.e. Reactors 3 and 5) at the propylene
peak corresponding to a severity of 0.82 and low S/HC of 0.5. It also chose to operate
propane crackers at its propylene peak corresponding to a severity of 0.8 and low S/HC
ratio. For both naphtha and propane crackers, operating at propylene peak produces as
much propylene as possible and enough ethylene to meet the ethylene demand and stay
within the sales limits. The severity and S/HC for ethane cracker can also be seen from

Figures 4-36 and 4-37. Processing rates for all the five reactors are shown in Figure 4-

38.

The schedule for maintenance of the reactors is depicted in the form of a Gantt
chart as shown in Figure 4-35. It is clear that reactors 2 and 4 cracking propane have two
decokes and rest of the reactors undergo three decokes during the entire horizon. This

schedule corresponds to a maximum plant profit.

Numerical results obtained from the two-stage temporal decomposition heuristic
are shown in Table 4-7. The problem sizes, computational times etc. for both the stages
are highlighted. It can be seen that this problem took 1254.5 seconds in stagel and

782.92 seconds in stage2 for a total of 2037.42 seconds to solve the entire problem. This
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large problem could be solved in less than 30 minutes, which highlights the efficiency
of the formulation.

Table 4-7: Case 9 - Numerical results

Stage 1 Stage 2
Discrete time intervals 30 90
Integer variables 147 138
Continuous variables 99796 164360
Constraints 100959 165727
Computational time 1254.5 secs 782.92 secs
Integrated C;H4 Demand 142187500 Kg
Ethylene produced 142187500 Kg
Propylene produced 87908886.43 Kg
Model Profit 105467336.57 $
Solver details CPLEX 10.1
x 108 Ethylene production
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Figure 4-36: Case 9 - Gantt chart and Production details
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Figure 4-39: Case 9 - Processing rates

4.7 Summary

This chapter has covered the details of mathematical formulation of the scheduler
(scheduling optimization model). The basic formulation leads to a large scale MILP
(actual size depends on the scenario). It is important to know that the smallest problem (1
feed and 2 reactors) has a size of 180 binary variables, 37080 continuous variables and
37884 linear constraints. For a scenario representing a typical real size plant, the problem
size was much larger. A stand alone solver (CPLEX 10.1) could not solve this problem to

optimality.

Therefore, tailored schemes were proposed in the form of constraint
reformulation, tightening constraints and solutions heuristics. This had reduced the
computational time by approximately 40 times for small problems, which means that the
scheduling model with tailored schemes was solved 40 times quicker than the basic

scheduling model.
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The scenarios for single feed and multiple feed were formulated to test the model
adequacy and highlight the model capability under various circumstances. The problem
was solved to optimality in reasonable times for an optimization that will be made daily
in a plant. All results agree with qualitative process understanding, as covered in the

discussions of the cases.
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Chapter 5. Reactive (closed-loop) scheduling

This main focus of this chapter is on reactive scheduling framework and the
implementation issues associated with it. The term “reactive scheduling” denotes a
scheduling system that periodically measures selected variables in the plant and resolves
the schedule; the results are implemented using a rolling horizon strategy. Thus, reactive
scheduling is a feedback control system. Several closed-loop cases studies are presented

in this chapter to assess the performance for the reactive scheduling system.

5.1 MPC framework for scheduling

Model predictive control (MPC) has been widely accepted by the process
industries as a tool to effectively control multivariate systems with input and output
constraints (Qin and Badwell, 2003, Marlin, 2000). MPC uses a plant model for
predicting the effects of manipulated variables on output variables, and it solves a
mathematical programming problem to optimize the future process behaviour to obtain
optimal control moves. These control moves are implemented in the plant in a rolling
horizon fashion. The plant model is periodically updated using the feedback information
at each controller execution. This feedback mechanism compensates for prediction errors
due to parametric and structural mismatch between the model and the plant, measurement

errors and forecast errors.

Typical process scheduling methods currently optimize the open-loop behaviour
of a system model. In practice, the methods are employed in a rolling horizon mode,
with results for the current time period (or several time periods) implemented manually
and the entire problem resolved in a batch manner by an engineer. Also, feedback

information (e.g., inventories, feed properties, plant performance) is used to update the
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model, but this feedback is added to the model manually by an engineer. Therefore, the
current, manual scheduling optimization has a structure similar to MPC, and therefore,
MPC framework is chosen as a basic framework for developing a closed-loop reactive

scheduling system in this thesis.
5.1.1 Framework description

MPC framework for reactive scheduling is shown in Figure 5-1, with the set
points, plant inputs, outputs and feedback shown. This structure is general and could be
applied using many plant measurements to update numerous predictions. In this thesis,
the feedback is limited to coke accumulation in each reactor. The scheduler is the
optimizer which solves an open-loop scheduling optimization problem (MILP) at each
scheduler iteration. The optimization results for the current time period (feed to each
reactor, feed rate, reactor severity and S/HC ratio) are implemented in the plant. Note that
the decisions on the number of reactors (furnaces) in operation are not included, since
they should be made with manual review and are considered to be offline decisions. In
addition, only single-feed type is considered, so that feed selection is excluded from this
problem. Just before each scheduler execution, the outputs from the plant are measured
and compared with the model outputs to obtain the bias term, which is used as a feedback
to update the model, and the open-loop optimization problem is solved again. The set

point is imposed on the product demand while obeying the terminal conditions.

Feed rate
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Figure 5-1: MPC framework for closed-loop scheduling

119



Disturbances entering the plant are represented as D, and the measurement errors
are represented as M in the figure. Disturbances and measurement errors are very
common in plants. Therefore, there is always a mismatch between the plant information
and model prediction, mainly due to: (1) model error (parametric and structural mismatch
in the model) (2) measurement error and (3) disturbances. This mismatch is often
considered as uncertainty in the model. Any errors in the model prediction due to this

uncertainty will be compensated through feedback model updating in the MPC

framework.

For the closed-loop system considered in this thesis, as shown in Figure 5-1, the
plant and the controller model are considered to be the same except for coke rate.
Therefore, the model error is only in the coke build up and hence the tube metal

temperature.

As a representation for the true plant, a plant simulation was performed (in
AMPL) at every scheduler iteration. Therefore, the measurements obtained from the plant

simulation represent the measurements from the true plant.

5.1.2 Available measurements and model updating

Typically, the measurements available from a plant are the production rates of the
products and tube metal temperatures. Production rates are used to keep track of the
demand met at every scheduler iteration, while tube metal temperatures are used to

update the reactor model via feedback mechanism.

As discussed in Chapter 4 and shown here in equation (5.1), the tube metal

the reactors changes, the tube metal temperature changes, as modeled by the following

equation.

ijkt

Tw i = 375 (Tw e - 68 )4 Tw ™ - Coke™™ Vj, T (5.1)
k
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where, the subscript T denotes time (days) in closed-loop implementation.

This model is used on-line to predict the tube metal temperatures at every
scheduler iteration to compare with the measured plant values. Due to the model errors,
there will always be a mismatch in the model prediction and the measured value. In order
to compensate for those prediction errors in the tube metal temperatures, reactor coke is
updated at every scheduler iteration. Reactor coke is not available as a direct

measurement from the plant; however, it can be estimated from the plant measurement of

plant

tube metal temperature (ij.,, ) The coke in each reactor is estimated prior to each

scheduler execution. First, the error in the tube metal temperature model is calculated.
T\V Tllm =Tw ?»:‘t”“ _ T\N ;\:;(_vd el Vj,T (52)

plant

where, Tw™ is the tube metal (wall) temperature from plant simulation and Tw 'i‘.{f’d“" is

obtained from the controller/optimizer model. We know through equation (5.1) that tube
metal temperature is modeled as a function of reactor coke and the reactor severity. Since
the severity effect is the same in the model and plant, the mismatch is attributed to the

coke, and the coke bias updating can be calculated as shown in the following.
Tw 3’1‘“ =Tw ™ = Coke?}‘.“ V), T (5.3)

Finally, the coke model is updated as shown in the following equation.

L omodel _ . model . bias -
Coke" = Coke " + Coke ' Vi, T (5.4)
where Coke ' is the accumulated coke from the model. Note that this updated coke is

used as the initial condition by the scheduler for the optimization. The formulation for the

open-loop optimization performed in each MPC iteration is defined in section 5.3.
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5.2  Modifications to scheduling optimization for closed-loop

implementation

During closed-loop implementation, an open-loop optimization problem is solved
at each scheduler iteration. In addition, very large, frequent changes in reactor operation
may reduce the life of the furnaces, because of their operation near maximum metal
temperatures. These fluctuations are undesirable; therefore, additional constraints should
be included in the model so that changes in decision variables are penalised in order to
ensure that closed loop response is smooth. Therefore, “move suppression”™ similar to
process control MPC design is included in the scheduler to make it suitable for online

implementation.
5.2.1 Move suppression

Move suppression on the process manipulated variables is important to ensure that
the process operating conditions do not deviate excessively from their previous state in
one controller iteration. It can be accomplished by penalizing the current optimization
moves, i.e., the change from the previous optimization manipulated variables. This way,
at each iteration, the optimization results remain “closer” to the previous optimization
results, which ensures that there are no large changes (fluctuations) in the reactor
operating conditions. This is important because these fluctuations affect the reactors and

downstream processes and in turn the profitability of the plant.

A sample result is shown in Figure 5-2 (obtained for a scenario with two reactors
and naphtha feedstock), where the effect of move suppression in the scheduling model is
clearly demonstrated. One can see that without move suppression, the processing rates
{fluctuaie excessively, which would be undesirable. With move suppression, the reactor
feed rates are constant between decokes. Importantly, the profits for these two cases are

the same; therefore, we see that the move suppression does not have an adverse effect on

the profit.
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The sharp decrease in the flows to zero is due to reactor decoke operation when
the reactor should be shutdown, which is unavoidable. Therefore, while penalizing the
moves in the move suppression model, additional care should be taken to make sure
decoking moves are not penalized. Move suppression is implemented as a penalty
appearing in the objective function. An appropriate value of the penalty coefficient is

important to ensure a balance between the operational changes and plant profit.
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Figure 5-2: Effect of move suppression in closed-loop scheduling

5.2.2 Move suppression constraints

Move suppression in the ciosed-loop implementation is modeiled as a soft
constraint. This was accomplished by determining the change from the feed flows values
to the disjunctive reactors in the previous optimal solution. The absolute difference

between the disjunctive moves is obtained as shown in the following equation.
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—Amy,,; < (PDijk'l' —PDjyr )S Amyy Vi, kT (5.5)

where, PDy,,, is the previous optimization result, PDy,, is the current optimization

result.

Move suppression could be accomplished by penalizing the summation of the

moves ZAmijk.,. in the objective function during each scheduler evaluation time T, to
ik

ensure a smooth response in the operating conditions. However, if we penalize

(ZAmijkT) in the objective function, that will introduce a penalty for all moves,
iik

including the decoke moves. (Recall that a large change in the production rate during

decoke is required.)

It is therefore necessary to modify the constraint in such a way that it suppresses

all the moves except the decoke moves. A new set of variables AM . is defined as

shown in equation (5.6).
AM o 2 Amy, (1-8,-8,,,) Vi, jk.T (5.6)

The left hand variables represent the absolute differences between the disjunctive

models for all the moves except the decoke moves, including when the reactor is

reduction for shutdown and the increase for starting up. Finally, Z‘AMH,&,r is penalized in
ijk

the objective function with an appropriate penalty coefficient. In equation (5.6), the left-
hand side is zero for the times when the reactor is shutdown and started up; thus, the
penalty is zero for these situations. (This constraint assumes that the reactors shall
resume immediately after decoke.) The discussion on the penalty coefficient is covered in

the next sub-section.
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One can notice that equation (5.6) is nonlinear due to the product of continuous
variables Am,; and binary variables 8,;, 6, ,. A reformulation technique discussed by

(Gueret et al., 2000) can exactly reformulate bilinear constraints, shown in equation (5.6),
as a set of linear constraints. Details regarding the technique are discussed in Appendix

B, while the reformulated constraints are provided here.

First, equation (5.6) can be re-written as shown in equation (5.7)

AM kT = Amyp — Am;k'l‘ —Am |\;H‘ Vi, .k, T (5.7)
where,

Amg, =Am, -8, (Non-linear) Vi, j,k, T (5.8)
Amj . = Amy,, -8“;, (Non-linear) Vi, j,k, T (5.9)

The exact linear reformulation of equations (5.8 and 5.9) are shown below with all

continuous variables being non-negative.

- [ ¥ e
Non-linear Amijk'r = ArnijkT -0 iT AInijkT = Amijk'l' X =1
constraints
Amg < Amy, (5.8a) Amj . < Amy, (5.92)

Exact linear . max 5 max
. Amjyy 2 Amgy, —P™ (-8 ) | Amy, = Amy, —P™ (1=, )
reformulations

(5.8b) (5.9b)
Am:

i SP™ 8 (5.8¢) Aml, SP™ -8, (5.9¢)

Where, P™" is the maximum processing rate in the reactors

Equations (5.5), (5.7), (5.8a, 5.8b, 5.8¢) and (5.9a, 5.9b, 5.9¢) constitute the move
suppression constraints. These equations were added for every i, j, k and the summation

of the penalties (AM ;) were included in the objective function.
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5.2.3 Penalty coefficient

It is important to select an appropriate penalty coefficient that considers the trade-
off between operational changes and the plant economics. Obviously, if the penalty
coefficient is higher the fluctuations will be reduced; however, the move suppression can
result in lower profits because it reduces the operational flexibility. Figure 5-3 depicts the
behaviour clearly. The term “number of fluctuations™ used in the figure refers to the

number of operational changes, i.e., the number of non-zero AM,,, . One can see that,

when there is almost no penalty on the operational moves (i.e. penalty=1E-9), there are
many fluctuations in the operating conditions and gradually they are reduced as the
penalty increases. On the other hand, plant profit also decreased with the increasing
penalty. From Figure 5-3, a penalty coefficient of 0.0001 appears to be a good choice that
considers the trade-off between the number of operational changes (fluctuations) and
plant profit. The closed-loop scenario (Case 12) was chosen to perform this analysis. Six
different values of move suppression penalty coefficients were used in the closed-loop

optimization to obtain this graph.

3 e - — 37000000
Plant Profit

30 | 1 36500000
% 25 | 36000000
= 35500000 2
g 2 5
3 \ 35000000
5 15 I =45 =
o 34500000 =
2 - Number of fluctuations .y 2
£ i t 34000000
é i .B\\ =

5 1 5 { 33500000

| T2
g L _ S : ; : ; ; 33000000

1E-09 1E-08 1E-O07 1E-06 1E-05 00001 0001 001 01 1

Penalty coefficient

Figure 5-3: Effect of move suppression penalty coefficient on the plant profit and

number of operational changes
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5.3 Closed-loop scheduler details

The open-loop scheduler model (MILP) is solved every day during the online
implementation. For performing a closed loop analysis, in this thesis, only single feed
optimization model is considered for simplicity. Therefore, the constraints and objective
function of the single-feedstock open-loop scheduler model used in the closed-loop

analysis are listed here.
Constraints

Feed balance constraints and

E, =3P, Vi,t (5.10)
]

Disjunctive reactor model constraints

Z PDijkl = Piju Vi, j,t (5.11)
k

Production rates

PRatey,, =PDy, - X Vijket o (5.12)

Prod, = > > PRate,, Ve (5.13)
i)k

Sales , = Prod Ve (5.14)

Fraction of flow through disjunctive reactors

PDi, =Xy B Vi, .kt (5.15)

Y Xy 51 Vi, jt (5.16)
k
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—

i i koo

Steam generated

HPsteam _ HPsteam
Fijl = ijt -G

MPsteam MPsteam
Fij( - Pijl -G

Tightening constraints

t+r

i
64gcoke <]
jt
U=t
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Move suppression constraints

~Amy, <(PDy,, —PDy, )< Amy,, Vi, ik, T (5.39)
AM i 2 Amy . —Am ;H —Am .\,u Vi, 3.k, T (5.40)
Ami < Amy, Vi, kT (5.41)
Am > Amy, —P™(1-5,,) i, ik, T (5.42)
Am, <P™ .3 Vi, ik, T (5.43)
Amg, < Amy, Vi, .k, T (5.44)
Aml, > Amy, —P™ (1-5,,) Vi ik, T (5.45)
Am;‘jk.l. <p™ ‘6_,14 Vi, .k, T (5.46)

Data on current operation

During closed-loop implementation, (i) coke accumulated in the cracking coils is
updated through bias update, and (ii) the disjunctive flow rates from previous
optimization are used for move suppression. Therefore, the data required for current

operation are Coke ., in equation (5.21) and PDy, , in equation (5.39). As discussed
earlier in section (5.1.2) coke (Coke;; ;) is estimated from tube-metal temperature

(Tw ;) measurement.

Objective function

The objective function for every scheduler optimization is given as shown in equation

€
5.37).

—~

Obj, = Profit}™ —Penalty“™ —@-> > > AM,,, (5.47)
i )k

! J

Where, o is the penalty coefficient for move suppression.
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Profit?™ = Value of products — Cost of feed stocks — Cost of dilution (5.48)

steam — Cost of furnace energy — Cost of compressor energy + Value of

HP and MP steam generated at TLE’s — Cost for furnace decoke.

Details of each term in the profit equation are given as follows:

Value of products/ Income = Sales,, - Cost P! (5.49a)
p ct ¢

Cost of feedstocks =Y >'F, - Cost ;" (5.49b)

Cost of dilution steam = Y > > > PD,,, - p3"* - Cost e (5.49¢)
toioj ok

Cost of furnace energy = ZZE?‘""““ - COst g (5.49d)
C

Cost of compressor energy = Z BT Cost ¥ (5.49¢)

ijt steam ijt steam

Value of HP and MP steam = > > > E"™™ - Costll,, + > Y. » Fy™" . Cost
t i [ T |

(5.49f)
Cost for furnace decoke = 226}‘[""‘*” -Costiemy (5.49g)
vt
ZCokeJNI
Penalty®™©= 1 .(Cost™® 4 Costieitks ) (5.49h)

The equations (5.10) to (5.49) form the open-loop scheduler model (MILP), which
is solved each day (T) during online implementation. At the end of every day, the coke
model is updated as discussed earlier using equations (5.1) to (5.4), and the scheduler

model is resolved the next day.
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In order to evaluate the closed loop performance of the framework, only single
feedstock and two reactors case studies were considered in this thesis. The solver CPLEX
10.1 was able to solve the problem in around 300 seconds without using the two-stage
solution heuristics. Therefore, the two-stage decomposition heuristic was not used in the
closed-loop implementation for all the case studies. However, when the closed-loop
approach is applied to larger problems, the two-stage solution heuristic would have to be

applied.

54 Closed-loop case studies

The closed-loop reactive scheduling is implemented daily using a rolling horizon
approach for a 90-day horizon. For the first day, no feedback information is assumed
available; therefore, an open-loop optimization problem (MILP) is solved. The results for
the first day are implemented in the simulated plant, which can have mismatch from the
model used in the scheduler. At the end of each subsequent day, the model (coke per
reactor) is updated based on the plant measurement of tube metal temperature, and the
scheduler open-loop optimization is solved. Again, the results for the first day are
implemented in the simulated plant. Therefore, the results we see in this section are the

plant operation for 90 days with daily reactive schedule update.

5.4.1 Single feedstock scenarios

For simplicity, only scenarios with a single feedstock and two reactors are
considered in the case studies to study the effect of move suppression, measurement error
and model error on the closed loop results. They are also used to highlight the capability
of the closed-loop framework to handle model errors and disturbances via the feedback
mechanism. Measurement error is considered in all the scenarios. A uniformly distributed
white noise with mean 0 and standard deviation of (0.1) is used to simulate measurement
error in the tube metal temperatures. No filtering was applied to the measurement before

updating the coke model.
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5.4.1.1 Case 10 - Perfect model without move suppression

This scenario is designed to highlight the importance of move suppression in
closed-loop implementation. A perfect model (no model error) is considered and move
suppression constraints are not included in the scheduling model. Naphtha is the only
available feedstock. The main requirement is to exactly meet the integrated demand on
ethylene by the end of the horizon i.e., by the 90" day. A brief description of the scenario

parameters are tabulated as shown below.

Feedstock Naphtha

Number of Reactors 2

Prediction horizon (open loop) 90 time steps

Time horizon (closed loop) 90 days

Integrated Ethylene Demand 4.95 E+7 Kg

Fresh feed Unlimited Naphtha available

Degrees of freedom Processing rates, Severity, S/HC and Decoke
time periods

Move suppression coefficient 0

Measurement error Yes (Uniform white noise)

Plant-model mismatch No

Disturbances No

Discussion of Results

Results obtained without move suppression are shown in Figures 5-4 to 5-6.
Ethylene production rates, maintenance schedule, coke accumulation over the horizon are
depicted in Figure 5-4. Severity and S/HC profiles are shown in Figure 5-5 and the

processing rates are shown in Figure 5-6.

As an optimai operating condition for this case, the optimizer selects operating the
reactors at a severity corresponding to propylene peak and S/HC corresponding to its
lower bound to save energy costs. The optimizer maintains this condition throughout the
horizon without making any further changes. However, there are fluctuations in the

processing rates which are highlighted as dotted circles in Figure 5-6. These fluctuations
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are undesirable for plant operation as they affect the dynamics of the downstream
processes by acting as continuous disturbances. It is therefore, necessary to reduce the
fluctuations and remain as close as possible to the existing operating conditions.

Implementing move suppression in the model can solve this problem.

The typical problem size of each open-loop optimization problem for this scenario
is around 171 integer variables, 27906 continuous variables and 32889 constraints. The
computational time required to solve an optimization problem of this size every day is
around 285 seconds. The integrated ethylene demand was exactly met by the end of the

horizon, and the resulting plant profit over the entire horizon is 36947005 §.
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5.4.1.2 Case 11 - Perfect model with move suppression

Similar to the earlier scenario, a perfect model in considered but in addition move
suppression constraints are implemented in the model. Naphtha is the available feedstock.
The requirement is to exactly meet the integrated demand on ethylene by the end of the
horizon i.e., by the 90" day. The results should show a smooth closed-loop response as
apposed to the earlier scenario without move suppression. A brief description of the

scenario parameters are tabulated as shown below.

Feedstock Naphtha

Number of Reactors 2

Prediction horizon (open loop) | 90 time steps

Time horizon (closed loop) 90 days

Integrated C;H4 Demand 495 E+7 Kg

Fresh feed Unlimited Naphtha available

Degrees of freedom Processing rates, Severity, S/HC and Decoke
time periods

Move suppression coefficient 0.0001

Measurement error Yes (Uniform white noise)

Plant-model mismatch No

Disturbances No

Discussion of Results

Results obtained by implementing move suppression in the model are shown in
Figures 5-7 to 5-9. Ethylene production details, maintenance schedule, coke
accumulation over the horizon are depicted in Figure 5-7. Severity and S/HC profiles are

shown in Figure 5-8 and the processing rates are shown in Figure 5-9.

The severity and S/HC ratio profiles are same as the solution without move
suppression. However, we notice that after implementing move suppression, the
fluctuations in the processing rates have disappeared and the response has smoothened a
lot. This is the most desirable condition to operate a reactor. As a result, we remain close
to the existing schedule without making any drastic changes in the schedule. Move
suppression constraints are therefore, very important and should always be embedded in

the scheduling model.
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The typical problem size of each open-loop optimization problem for this scenario
is around 171 integer variables, 30786 continuous variables and 38649 constraints. The
computational time required to solve an optimization problem of this size at each
iteration is on an average 296 seconds. The main requirement of meeting the integrated
ethylene demand was exactly met by the end of the horizon and the resulting plant profit
over the closed loop horizon (90 days) is 36947005 $. It is important to notice that the
profit remained the same as for Casel0 . This result demonstrates that there are alternate

solutions for this case study.
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5.4.1.3 Case 12 - Plant-model mismatch case

This scenario is designed to study the effect of model error on the closed-loop
results. The plant-model mismatch (model error) is considered due to the difference in the
coking rates between model and plant. Naphtha is the available feedstock and the
requirement in this scenario is to meet the integrated demand on ethylene by the end of

the horizon. A brief description of the scenario parameters are tabulated as shown below.

Feedstock Naphtha

Number of Reactors 2

Prediction horizon (open loop) 90 time steps

Time horizon (closed loop) 90 days

Integrated C;H s Demand 4.95 E+7 Kg

Fresh feed Unlimited Naphtha available

Degrees of freedom Processing rates, Severity, S/HC and Decoke
time periods

Move suppression coefficient 0.0001

Measurement error Yes (Uniform white noise)

Plant-model mismatch Yes

Disturbances No

Discussion of Results

In order to model the mismatch for this scenario, it was considered that the
coking rates of the model used in the MPC are 5% lower than the coking in plant. The
results obtained for this scenario are shown in Figures 5-10 to 5-12. These results are

compared with the results of Case 11 to envision the differences.

Similar to Case 11, the optimizer chooses to operate both the reactors at propylene
peak and low S/HC ratio as they are the optimum operating conditions. However,
because of the model error, the coke prediction from model is different from actual coke

deposited in the plant. This mismatch has altered the maintenance schedule by a small

extent in comparison to that of CaselI.
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In Case 11, Reactor 1 was decoked on 8", 42" and 76" days respectively, where
as here they are decoked on 9", 41%, and 75" days. Similarly, Reactor 2 was earlier
decoked on 13", 47" and 80™ days whereas now it is decoked on 11", 45™ and 79" days.

Clearly there is a change in the maintenance schedule.

The computational time required to solve an open-loop optimization problem at
each iteration is around 300 seconds. The integrated ethylene demand was exactly met for

this scenario and the resulting plant profit is 36946997 §.
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54.14 Case 13 - Plant-model mismatch and Disturbance effect

This is a more realistic scenario encountered in ethylene plants. It is formulated to
study the effect of model error and disturbances on the closed-loop results. (1) Plant-
model mismatch is modeled due to the difference in the coking rates between model and
plant. (2) A disturbance in modeled as reduced available feedstock for a period of one
month during the horizon (from 15" day to 45" day), i.e., during this period only 70% of
the usual amount of feedstock was available for cracking. During the remaining days,
unlimited feed is available. The scheduler is aware of the disturbance and its occurrence
period on and after the 15" day, i.e., the optimizer has no prior knowledge of the
disturbance. Limited feed availability is common in ethylene plants due to delay in the

feedstock delivery or feed processing equipment problems.

Naphtha is the available feedstock and the requirement in this scenario is to meet
the integra{ed demand by the end of the horizon. The results should highlight how the
closed loop system reacts to the disturbances and model errors while meeting the
integrated demand on ethylene. A brief description of the scenario parameters are

tabulated as shown below.

Feedstock Naphtha

Number of Reactors 2

Prediction horizon (open loop) 90 time steps

Time horizon (closed loop) 90 days

Integrated C,H; Demand 4.95 E+7 Kg

Fresh feed Unlimited Naphtha available

Degrees of freedom Processing rates, Severity, S/HC and
Decoke time periods

Move suppression coefficient 0.0001

Measurement error Yes (Uniform white noise)

Plant-model mismatch Yes

Disturbances Yes
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Discussion of Results

The results are shown in Figures 5-13 to 5-15. From the results, it is clear that
during the first 15 days, when no disturbance is anticipated (unlimited naphtha available),
the severity, S/HC ratio and processing rate profiles show a smooth response. The
optimizer is not aware of the disturbance till the 15" day. Therefore, it selects optimum
operating conditions for the reactors in the form of propylene peak for severity and low

S//HC as shown in Figure 5-14.

However, when disturbance enters on the 15" day, the operating conditions in the
reactors are changed. From Figure 5-15, we can see that the flow rates are reduced due to
the limited availability of naphtha feedstock. The optimizer reacts to this disturbance by
increasing the severity in the reactors, shown in Figure 5-14, to compensate for the lower
ethylene production due to reduced flow rates and to meet the ethylene demand. This

behaviour is seen as long as the disturbance is present, i.e. until the 45" day.

Once the disturbance disappears, the plant returns to its normal operating state.
The optimizer chooses to operate the reactors at the propylene peak and low S/HC ratio.
However, during this period the processing rates are appropriately adjusted to meet the

demands on ethylene exactly by the end of the horizon.

Numerical results have shown that during each iteration, the optimizer needed 305
seconds to solve an optimization problem. The main requirement of meeting the

integrated ethylene demand was exactly met and the resulting plant profit is

36542227.6%.
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In Figures 5-14 to 5-15, the fluctuations in the operating conditions are encircled.
These fluctuations may not be acceptable in a real plant. They can be reduced by
adjusting the move suppression penalty coefficient; however, feed rate changes are
required to satisfy the product demands. Results with a higher penalty coefficient (0.01)
are shown in Figures 5-16 to 5-18. Although, the operating conditions are smooth here,
the plant profit is reduced to 36298834.5$. There is a trade-off between the operation
performance and plant profit. One should understand that each plant has a different
operating strategy. An engineer has to analyse the situation and select an appropriate

trade-off. Therefore, it is up to an engineer to pick a suitable penalty coefficient.
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5.5 Summary

This chapter highlights the reactive scheduling framework and some online
implementation issues. The open-loop schedule implementation structure resembles
MPC; therefore, MPC framework has been chosen as the basic framework for developing
the reactive scheduling system. The coke model was updated through a feedback
mechanism just prior to every scheduler execution. The main advantage of this
framework lies in its feedback model updating capability so that model prediction always

remains close to the true plant behaviour.

The process variable trajectories should be smooth over the scheduling horizon. If
not, the fluctuation will affect the operability of the plant and the plant profit in ways that
are not included in the scheduler objective function. Therefore, move suppression

constraints were developed as soft constraints which penalized all the moves except the

decoke moves.
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Several case studies were formulated to highlight the capability of the reactive
scheduling system to handle the uncertainties in the form of measurement errors, model
errors and disturbances. The case studies have shown that there are several alternate
solutions for this problem. This was evident from the results of Casel0 and Casel 1. The
effect of measurement errors and model errors on the maintenance schedule was clearly

seen by comparing Case 12 with Casel I.

Finally, a more realistic case encountered in ethylene plants was considered in
Case 13. During the presence of disturbance, the system modifies the operating
conditions to compensate for the changes in the plant and to meet the integrated ethylene
demand on time. It was found that the results of the scheduling system to handle the
disturbances depends on appropriate penalty coefficient for move suppression. Since each
plant has a different operating strategy, it is up to the engineer to consider the trade off
between the operation performance and plant profit and use an appropriate penalty

coefficient.
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Chapter 6. Conclusions and Recommendations

for future work

The main aim of this research work was to develop a reactive (closed-loop)
scheduling system that automatically generates a schedule that can be implemented in the
plant in real time. To develop such as system, the work was carried out in two phases. In
the first phase, an open-loop scheduling model was formulated using rigorous
optimization techniques. The goal was to ensure that the model can be solved in
reasonable computing time, giving an optimal, feasible solution during the schedule
horizon and leaving the plant in a state at the end of the horizon that provides the
opportunity for feasible and continued profitable operation. In the second phase, this
model was applied in a prototype closed-loop framework to develop a reactive scheduling

system that can assist engineers to make appropriate decisions in a timely manner.

While these goals were successfully achieved, the technology (reactive scheduling
system) developed in this thesis needs to be further improved before being directly
applicable in the industry. The major conclusions and contributions of the research and

the recommendations for future work are discussed in the following sections.

6.1 Conclusions

6.1.1 Open-loop optimization

= A comprehensive scheduling model has been developed in this thesis for
scheduling the maintenance and operation of furnaces in ethylene plants. The

model was formulated as a Mixed Integer Linear Programming problem
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(MILP) using a discrete time representation and disjunctive modelling

resulting in a large scale optimization problem.

To preserve the linearity of the model, a disjunctive modelling approach was
employed to formulate the nonlinear relationships in the reactor yields and
coking rates as linear constraints. Also, the large number of binary variables
associated with this approach was minimized by using only continuous
variables in the disjunctive model. The results from the cases considered in
the thesis have demonstrated that this approximation did not lead to any
interpolation between the operating conditions, as unique solutions were
obtained without integer variables. Although, this approximation is valid for
this furnace scheduling problem, it may not be suitable for direct application

to other problems without careful analysis during the model formulation stage.

The combinatorial nature of the scheduling model (MILP) when accompanied
by large problem size made it exceptionally difficult to solve in a reasonable
amount of time. Therefore, to overcome these computational challenges, a
tailored formulation was developed during the course of the work to improve

the model structure and make it computationally tractable.

Firstly, several reformulated constraints and tightening constraints were added
to the scheduling model. Most notably these constraints reduced the
integrality gap of the relaxed model (all continuous variables), thus making it
a better model. Integrality gap is defined as the gap between the best current
all-integer solution and the best current relaxed solution. Naturally, the

smaller the integrality gap, the better is the formulation.

Secondly, a two-stage temporal decomposition heuristic was proposed as an
efficient solution strategy to solve the model in two-stages. Results have
shown that even large models were easily solved using this heuristic which
were unsolvable or needed excessive computational time. It was also

confirmed (for a small problem: | feed, 2 reactors) that this heuristic did not



affect the optimal solution of the MILP when solved in two stages. Even if the
heuristic affects the optimality for larger problems, it achieved a good feasible

solution at all times, avoiding problems during online applications.

= Overall, the proposed tailored schemes had a profound effect on the
computational time of the scheduling model as it improved the computational
efficiency by over 240 times. For example, an industrial size furnace
scheduling problem with 3 feedstocks and 5 reactors would end up in a
problem size of 3100 binary variables, 297794 continuous variables and
308629 linear constraints for a scheduling horizon of 90 days. This model was
unsolvable in 5 days of computation without the tailored schemes, whereas
with them it was solved in about 2050 seconds (34 mins) with the

reformulation.

The key contributions of the work in open-loop optimization are:

=  MILP model: The open-loop scheduling model developed in this thesis is the
first MILP formulation for furnace scheduling reported in the literature. This
model enables the optimizer to make all key decisions (feed type, feed rate,
reactor conditions, decoking) in an integrated manner. All the previous models
are MINLP formulations (Schulz et al., 2006, Lim et al., 2006, Kelly, 2005
and Grossmann et al., 1998), which posed severe computational difficulties

leading to many assumptions in the models as reported in Chapter 2.

= Novel formulation: A tractable formulation tailored to the furnace scheduling
problem was developed in this thesis. The main features of this formulation
include (a) Tractable disjunctive model, (b) Reformulated and Tightening

constraints, and (c) Two-stage temporal decomposition solution heuristic.

151



6.1.2 Closed-loop optimization

= Model Predictive Control (MPC) framework was chosen for developing a
closed-loop implementation of the scheduling model because of its feedback
mechanism that compensates for model errors, measurement errors and
disturbances. Since the open-loop scheduling model is an MILP, the closed-
loop system resembled a hybrid MPC problem. During every closed-loop
execution, a MILP was solved and the implementation was carried out n a
rolling horizon manner. Since the open-loop model was tractably formulated
using tailored formulation and solution schemes, the hybrid MPC problem
was solved successfully, i.e., with reasonable computing times, acceptable

manipulated variable behavior, and solved to optimality.

= During closed-loop implementation, fluctuations (large higher frequency
changes) in the optimization results were observed. To eliminate these
undesirable fluctuations, move suppression constraints were added to the
model in the form of soft constraints. These constraints were tailored to the
scheduling problem, penalizing all the moves except the large decoking
moves, which are required during maintenance. The results have indicated that
besides obtaining a smooth closed-loop response, the move suppression did

not have a significant adverse effect on the closed-loop profit.

= The closed-loop implementation was tested for different scenarios over a 90-
day scheduling horizon. The results demonstrated that the scheduling system
is capable of adjusting the optimization results appropriately in real time when
unexpected process disturbances affect the plant operation. The results also
indicated that since every plant has different operational performance criteria,
it is up to the engineers to use appropriate move suppression penalty

coefficients to achieve significant economic benefits.
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The key contributions of the work in closed-loop optimization are:

= Hybrid MPC framework: MPC framework was chosen as the prototype for
implementing the closed-loop scheduling system. Since the open-loop
scheduling model (MILP) had integer variables, the MPC framework with
integer optimization at each optimizer execution would resemble a hybrid
MPC problem. The main contribution in this context is related to successful
implementation of the hybrid MPC framework over a 90-day period without

encountering adverse dynamic behavior.

6.2 Recommendations for future work

In order to make the closed-loop scheduling system developed in this thesis ready
for industrial application, some improvements have to be made to the scheduling model.

The following are the recommendations for future work.

6.2.1 Better Furnace model

The furnace model used in this thesis is based on the data obtained from literature
as reported in Appendix A. Since only limited information was available from the
literature, the effects of the most important variables were considered in the model. For
example, coking in the reactors was modelled only as a function of reactor severity and
S/HC ratio. Feed flow rates also effect coking in the reactors, but this effect was not
considered in the model due to limited available information. The section on modelling
assumptions (Section 3.5) clearly states which variable effects were not included in the
model. Therefore, in order to develop a scheduling system that is applicable in industrial
practice, it is important to build a comprehensive furnace model that considers all the
process variables and their effects on the furnace operation. Such a model can be
developed by collaborating with an industrial partner. Plant engineers at ethylene plants

could not only provide the data we require but also a lot of insight on the furnace
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operation. Alternatively, vendors who develop process solutions (e.g. scheduling
software) for industries such as Aspen Technology or Honeywell could also provide us

some information from their state-of-the-art simulation tools.

6.2.2 Uncertainty

The scheduling model developed in this thesis is deterministic which assumes exact a
priori knowledge of the model parameters (market demands, prices, feed characteristics).
This is almost never the case in reality e.g., the market demand changes very often. In
general, uncertainty is always prevalent in scheduling systems. The common sources of
uncertainty arise due to fluctuations in the market prices, raw material qualities, customer
demands, product specifications and plant-model mismatch. Measured disturbances
occurring due to planned feed deliveries, product shipments, equipment maintenance and
other causes can also be decisive in the optimal decision making process. In such highly
uncertain environment, deterministic approaches have limitations for decision-making.
Therefore, uncertainty handling capability should be included in the scheduling systems.
Open-loop uncertainty an(-i closed-loop uncertainty are the two main directions of
research in this regard. Appendix D provides some literature on optimization under

uncertainty, which is applicable for scheduling optimization.

6.2.3 Integration of Scheduling and Real Time Optimization

When automating the scheduling system, an important consideration is the
integration of scheduling and real-time optimization. Closed-loop real-time optimizers
(RTO) are becoming a standard in the olefins industry. Real-time optimizers are based on
non-linear models and optimize plant operations on an hour-by-hour basis. Schedulers
use a simplified model and are executed once a day to generate schedules for reactor
operation and maintenance. These decisions have to be transferred to the RTO
optimization layer, where they are fine tuned by the real time optimizer before
implementing into the plant. Similarly, the scheduler would need some information from

the real time optimizer to initialize the scheduling model, e.g. the operating conditions
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that were implemented in the plant. Therefore, there is an exchange of information
between these two layers. Proper integration of these two systems should resolve any

conflicts arising during real time operation.

6.2.4 Relaxation of Binary Variables

In this application of MILP, many integer variables for selecting the disjunctive
models were removed from the formulation. The result was a model that yielded
solutions that could be implemented in the plant, closely or exactly matching the best
integer solution, and could be computed in reasonable times. This approach was
developed from “engineering insight” in this specific problem. A more fundamental
method for recognizing when such a relaxation would be beneficial would be helpful for
the engineer when building models. Also, a modified branch and bound strategy could
perhaps take advantage of the solution obtained from the fully relaxed disjunctive integer
variables by intelligently adding (a few) integer variables when the current approach did
not yield an all-integer solution or a solution that could be interpolated, as discussed in

Appendix B.

6.2.5 Move Suppression in Hybrid Models

Hybrid models have integer and continuous variables. The move suppression
approach developed for MPC and used in this study penalizes changes in the manipulated
variables from values in the previous solution. This approach is generally appropriate for
process control, where it provides stability for moderate model mismatch and reduces
manipulated variable variance. However, there are instances when a large fixed cost is
incurred for any change in a manipulated variable; in other instances, changes in many
contiguous time periods are unacceptable. Therefore, novel methods for modeling the
cost of manipulation are needed in production scheduling, some of which might require

integer variables.
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