
Temporal Denoising of High Resolution

Video

Temporal Denoising of High Resolution

Video

By

Gang XUE

M.Sc.

A Thesis

Submitted to the School of Graduate Studies

In Partial Fulfilment of the Requirements

for the Degree of

Master of Applied Science

McMaster University

© Copyright by Gang XUE, August 2009

MASTER OF APPLIED SCIENCE (2009)

(Electrical and Computer Engineering)

M.A.Sc. - G. XUE - McMaster - ECE

McMaster University

Hamilton, Canada

TITLE: Temporal Denoising of High Resolution Video

AUTHOR: Gang XUE, M.Sc. (Fudan University, China)

SUPERVISOR: Dr. Xiaolin Wu

COSUPERVISOR: Dr. Sorina Dumitrescu

NUMBER OF PAGES: x, 59

11

Abstract

This thesis is concerned with the removal or reduction of noises in high resolution

video sequences. Many video denoising techniques have been published in the past

two decades) with or without motion compensation. They vary in a wide range of

complexity) performance, and implementation cost. Also) many existing video de­

noisers make simplistic assumptions on noise statistics and motion type, and hence

their performance depends on the validity of the assumed noise and motion models.

To improve the performance and robustness of existing methods) we propose a new

joint spatial-temporal video denoising algorithm that combines multihypothesis inter­

frame motion compensation and directional intra-frame filtering. The algorithm takes

into account general compound motions, including both global camera motion and

individual object motion(s). An affine motion model is used to characterize the global

camera movement, whereas a blockwise translational motion model is used to approx­

imate local object motions. Quadtree data structure is used to organize and speed up

the computations of block-based motion estimation. Quadtree-structured diamond

search is conducted so that a large area can be examined in motion estimation at a

low computational cost.

In order to achieve the best possible visual quality we augment motion-compensated

temporal interframe denoising operation by an intra-frame denoising operation of

adaptive directional filtering. The directional filter is designed for the local signal

waveform and noise level, and it has the advantage of effectively suppressing noises

iii

M.A.Sc. - G. XUE - McMaster - ECE

without blurring edges.

The proposed video denoising algorithm is implemented and tested extensively on

high-resolution digital cinema contents. The experimental results demonstrate the

competitive advantages of the new algorithm in both visual quality and processing

throughput.

iv

Acknowledgement

I would like to take this opportunity to thank and acknowledge the many individuals

who have made the completion of this thesis possible.

First and foremost, I would like to express my appreciation to my supervisor Dr.

Xiaolin Wu. It is an honor as well as pleasure to work with him. His guidance,

encouragement and keen insights are highly appreciated and will always be remem­

bered. I am also grateful to my co-supervisor Dr. Dumitrescu Sorina for her patience

and suggestions.

Special thanks goes to my readers, Dr. Jiankang Zhang and Dr. Shahram Shirani

for their valuable input. Thanks to Cheryl, Helen and all other Electrical and Com­

puter Engineering administrative staffs for their friendly assistance in the past few

years. Sincere thanks goes to my research group Xiaohan, Xiangjun, Zhe, Ning and

Nathan at the Multimedia Signal Processing Laboratory. Their help and friendship

have made this an experience to remember and cherish.

Finally, to my family, no words can describe the gratefulness I feel for your un­

conditional love and support. I truly hope that you will be proud of what I have

accomplished.

v

Contents

Abstract

Acknowledgement

List of Figures

List of Tables

List of Abbreviations

1 Introduction

2 Intra-frame Denoising

2.1 Noise Level Estimation

2.2 Edge Classification ..

2.3 One-pixel-width Edges

2.4 The Directional Filter

2.5 Fast Implementation of Directional Median Filter

3 Motion Estimation

3.1 Fast Global Motion Estimation

3.1.1 Model of Global Motion

VI

HI

v

VIH

ix

x

1

7

7

8

10

11

13

17

18

18

CONTENTS M.A.Sc. - G. XUE - McMaster - ECE

3.1.2 Optimization Problem . . . 19

3.1.3 Extraction of Feature Points 21

3.1.4 Solving the Optimization Problem: Gradient Descent Method 22

3.1.5 Exclusion of Regions With Local Motion 23

3.2 Local Motion Estimation 24

3.2.1 Local Motion Segmentation 24

3.2.2 Multi-Resolution Structure. 25

3.2.3 Directional Diamond Search 25

3.2.4 Quad-tree Structure 27

3.2.5 Cost Function 29

3.2.6 Steps of Local Motion Estimation 30

3.2.7 Fault Motion Removal 32

4 Temporal Denoising

4.1 Weighted Temporal Filter

4.2 Median Temporal Filter .

5 Implementation And Experimental Results

5.1 Algorithm Implementation

5.2 Experimental Results

6 Conclusions

A Fast Implementation of Median Filter

A.l 5-point Median Filter.

A.2 3-point Median Filter.

B Fast Implementation of Block-based SAD

Vll

33

34

35

37

37

38

47

53

53

55

57

List of Figures

1.1 Temporal denoising method .. 5

2.1 Intra-denosing results of three methods: the median filter, the direc­

tional median filter, and our directional median filter with one-pixel-

width edge. 14

3.1 The mapping grid of a current pixel in the reference frame

3.2 Flow chart for global motion estimation subsystem

3.3 Diamond search pattern with searching step = r .

3.4 Quad-tree pattern.

4.1 Part of background.

5.1 Dark background sequence.

5.2 Blow-up part of Swing Angel sequence.

5.3 Waving hand sequence. . .

5.4 Detail blow-up of waving hand sequence.

5.5 Animation robot sequence. . .

viii

20

24

28

29

35

41

42

44

45

46

List of Tables

2.1 The total number of instructs min and max for the N-median filter. 15

2.2 SSE2(R) instructs supports parallelized vector operations minO and

maxO. .. 15

5.1 Descriptions of high resolution test video sequences. 39

5.2 Processing time comparison between proposed method and Neat Video

Denoiser (NVD). 39

IX

List of Abbreviations

LLd.

DS

RGB

SAD

SIMD

SNR

independent identically distributed

Diamond Search

Red, Green, and Blue Color Channels

the Sum of Absolute Difference

Single Instruction Multiple Data

Signal-to-noise Ratio

x

Chapter 1

Introduction

Video denoising plays an important role in video processing. It is critical, since the

presence of noise in a video sequence degrades both its visual quality and the effec­

tiveness of subsequent processing tasks. For example, the compression performance

of a video codec decreases in the presence of noises. This is because noises can greatly

increase the entropy of the contaminated video sequence. Therefore, video denois­

ing can improve not only the visual quality but also the performance of subsequent

processing tasks such as analysis, coding and interpretation.

A video sequence can be viewed as a three-dimensional data set, Le., a temporal

sequence of 2D frames. The noise degradation model of this thesis can be described

by

I(x, y, t) = R(x, y, t) + n(x, y, t) (1.1)

where I(x, y, t) and R(x, y, t) are the observed and the original pixel values, respec­

tively, of the tth frame at spatial location (x, y), and n(x, y, t) is independent additive

zero-mean white Gaussian noise.

The video denoising problem is to find an estimate R(i, j, t) of the true video

sequence R(x, y, t) based on the noisy observation I(x, y, t). This problem belongs to

1

M.A.Sc. - G. XUE - McMaster - ECE

the class of Inverse Problems in image/video processing, which aims to recover a high

quality image/video signal from a degraded version of it. A video denoising algorithm

can operate in both spatial and temporal dimensions, and remove noises by exploiting

sample correlations within a frame as well as between neighboring frames. Temporal

3D denoising methods are more effective than spatial 2D denoising methods, but at

a significantly higher computational cost.

In this thesis we focus on temporal denoising of high-resolution video sequences,

such as those of digital cinema. The problem becomes more challenging for high­

resolution videos due to the following difficulties.

1. High resolution video is more noisy than low resolution video because the signal

to noise ratio decreases in pixel size. The problem is particularly acute when a

high-resolution video camera operates in low luminance conditions.

2. High-resolution video is meant to capture fine high-frequency details in a scene.

For a video denoiser detail preservation and noise reduction are a pair of con­

flicting requirements, and this conflict is more difficult to be resolved as spatial

resolution increases.

3. The computational complexity of video denoising increases quadratically in spa­

tial resolution.

The existing video denoising algorithms can be classified into two classes: spatial

filtering methods and temporal filtering methods. In spatial methods [16] each frame

is filtered individually, ignoring temporal correlations between video frames. This

intraframe approach tends to introduce artifacts into the filtered video sequence due

to temporal inconsistency. Even the most advanced spatial denoisers, such as Wiener

[26] and wavelet filtering [27], can not deliver good video denoising results. Therefore,

pure spatial denoisers methods are not appropriate for video.

2

M.A.Sc. - G. XUE - McMaster - ECE

Temporal video denoising methods [5], [6] can alleviate the artifacts caused by spa­

tial methods by tracking object motions through frames and thus ensuring temporal

consistency. The temporal denoising approach exploits both spatial and temporal

correlations. By registering a patch of noisy pixels of the current frame are registered

with its counterparts in reference frames via motion estimation, one can perform 3D

low-pass filtering to suppress noises. A spatiotemporal joint filtering scheme (JNT)

was proposed in [20]. The noisy video was first filtered by a temporal Kalman filter

and a spatial Wiener filter separately, and then the two denoising results were com­

bined to improve the video quality further. However, in case of complex motions the

pixel registration is error prone and consequently the temporal denoising methods are

susceptible to oversmoothing of the video frames.

There are two types of temporal denoising techniques: motion adaptive and mo­

tion registered. Motion adaptive methods only check whether a pixel patch is static

between two frames. If there is lack of motion, a temporal low-pass filter is used; oth­

erwise, a spatial denoising filter is used. The advantage of motion adaptive methods

is their low computational complexity, while the disadvantage is that they can not

make full use of temporal correlations. Motion registration (MR) methods estimate

object and/or camera motions between the current frame and reference frames. The

motion registered blocks of pixels are then low-pass filtered through the estimated

motion trajectories. This approach incurs higher computational cost but it produces

better results, if motions can be estimated accurately.

The goal of this research is to develop a fast motion-registered denoising method.

To fully utilize inter-frame correlations we track the motion through multiple reference

frames. This generates multiple estimates of a noisy pixel in the current frame. These

estimates and the current noisy observation are fused by a least square weighting

scheme. Compared to denoising techniques relying on a single reference frame [17]

3

M.A.Sc. - G. XUE - McMaster - EeE

[18] [19] [20], our multiframe motion estimation technique makes the denoising results

more robust, cleaner and sharper. To improve motion estimation precision and speed

up motion search, a general motion model is adopted that allows both affine camera

motion and translational object motions.

To estimate the true clean pixel value R(x, y, t) in (1.1), we adopt a joint spatial­

temporal denoising approach of the following form:

R(i, j, t) = T(S(I(it - z, jt-Z, t - 2)), S(I(it- 1 , jt-b t - 1)), S(I(i, j, t)),

S(I(iH1,jHl, t + 1)), S(I(iHz,jHz, t + 2)))
(1.2)

where S(·) is a spatial denoiser, T(.) is a temporal denoiser, and (iHk,jHk), for

k = ±1, ±2 is the pixel location of frame t +k that is motion registered with location

(i,j) of the current frame. I(i,j, t) denotes the noisy pixel value of location (i,j) of

frame t.

Figure1.1 is a schematic description of our spatiotemporal denoising algorithm.

The algorithm consists of two phases: spatial and temporal denoising processes. In the

spatial denoising phase, the noise energy level of each frame is first estimated. Then

the frame is denoised by a low-pass directional filter whose parameters are tuned to the

estimated noise level and to the gradient of the current pixel. The resulting sequence

of spatially denoised frames are further processed in the temporal denoising phase.

The goal is to improve the results of the spatial denoiser by exploiting interframe

correlations. This is achieved by registering multiple frames via motion estimation

and low-pass filtering of the current pixel along motion trajectory. For best possible

visual quality both global camera motion and local object motions are considered.

This thesis is organized as follows. In Chapter 2, we develop an efficient intra­

frame denoising algorithm and describe its implementation. Chapter 3 details fast

algorithms for global motion estimation and block-based local motion estimation. The

4

predicted
motion
vector

M.A.Sc. - G. XUE - McMaster - ECE

hard disk

noise estimator

spatial denoiser

Temporal denoiser with motion compensation

De-noised Frame i

ImageNideo writer

hard disk

Figure 1.1: Temporal denoising method

5

M.A.Sc. - G. XUE - McMaster - ECE

temporal denoising algorithm is introduced in Chapter 4. We present all experimental

results in Chapter 5, and finally conclude the thesis in Chapter 6.

6

Chapter 2

Intra-frame Denoising

In this chapter, we present the details of the spatial denoising phase of the proposed

spatiotemporal video denoising system. The main result is an adaptive directional

intra-frame denoiser. The purpose of intra-frame denoising is to facilitate the sub­

sequence temporal denoising process by alleviating the effects of noises on motion

estimation.

2.1 Noise Level Estimation

In the design of any denoiser, it is important to have a statistical model of the noise.

In this thesis, we assume that the noise in a video frame is additive white Gaussian of

zero mean. Therefore, our first task is to estimate the variance (i.e., the energy level)

of the noises. The estimated noise variance is an important parameter when designing

our adaptive directional denoiser. For instance, it can set an adaptive threshold for

edge points amid noises.

For motion estimation, the estimated noise level can help the searching iterations

converge fast, and stop when the residual block consists of only noise, which means

the matching is done, and no further searching is required.

7

2.2 Edge Classification M.A.Sc. - G. XUE - McMaster - EeE

According to the spatial local continuous characteristics of the frame content, we

fit the pixels in each 16 x 16 region with a bi-cubic function and estimate the noise

using the residual.

(J

1'1/.
~,J

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

where 1tj is the estimated value of pixel (i, j) by cubic fitting in horizontal direction,

11,j is the estimated value of pixel (i, j) by cubic fitting in the vertical direction, n is

a 16 x 16 block, and (J represents the estimated noise level. The notation min{a, b}

is for the minimum of a and b.

The noise level estimation can be implemented very fast, because bi-cubic fitting

is linear, and can be computed parallelly. We can assume that the noise level is

stationary in neighbor video frames. Therefore, the noise level estimation only need

to be applied once for a series of frames.

2.2 Edge Classification

Edge Classification is required before applying the directional filter. It can be shown

that under rather general assumptions for an image formation model, discontinuities

in image intensity are likely to correspond to:

8

2.2 Edge Classification

• discontinuities in depth,

• discontinuities in surface orientation,

• changes in material properties and

• variations in scene illumination.

M.A.Sc. - G. XUE - McMaster - ECE

Our edge classification relies on the computation of image gradients. The compu­

tation of gradients is sensitive to the noise. Therefore, we apply a Gaussian low-pass

filter on the image to reduce noise sensitivity, and then compute the gradients based

on the low-passed image. These two procedures can be integrated in the following

gradient operators (2.6).

1
1) (Ii,j-2 Ii,j-1 1- '+1 Ii,j+2)T;t::.h· . = - (-1 -2 2t,J 4 t,J

1
(2.6)

t::.v· . = -(-1 -2 2 1) (Ii-2,j Ii- 1,j 1-+1 . Ii+2,j)T;t,J 4 t ,J

where t::.hi,j and t::.Vi,j denote the horizontal and vertical gradient at location (i, j)

respectively.

Given such estimates of first-order derivatives, the gradient magnitude is then

estimated as

(2.7)

Once we have computed a measure of edge strength di,j, the next stage is to

apply a threshold, to decide whether edges are present or not at an image point.

The lower the threshold, the more edges will be detected. Thus the result will be

increasingly susceptible to noise, and also to picking out irrelevant features from the

image. Conversely, a high threshold may miss subtle edges, or result in fragmented

edges. We set the threshold based on noise level (J. Therefore, the decision if a pixel

9

2.3 One-pixel-width Edges

is on an edge is taken as follows.

M.A.Sc. - G. XUE - McMaster - ECE

if di,j > AD', (i, j) is on an edge;

otherwise, (i, j) is not on an edge.
(2.8)

where A > 1 is a thresholding parameter, and D' is the noise level estimated in (2.1).

We can choose an appropriate thresholding parameter A, and a suitable thresholding

values may vary over the image.

Further, we estimate the gradient direction using the first-order derivatives, then

rounding off the gradient direction to multiples of 45 degrees. Let T = ~~id, then all
t,J

edges are classified into four different angles, 0°, 45° , 90°, and 135° as follows.

0° if T E [- tan i, tan i);
135° if T E (tan Z!: tan 37T

8' 8' (2.9)
45° if T E [- tan 37f - tan Z!:).

8 ' 8 '

90° otherwise

2.3 One-pixel-width Edges

From (2.6) and (2.9), we notice that the first-order derivatives can not correctly

estimate the edge direction for one-pixel-width edges. Because both of horizontal and

vertical gradients are zeros on the peak of one-pixel-width edges, a non-directional

filter will be applied on them, which causes an oversmoothing effect.

We can recognize this one-pixel-width edges, and classify them into two classes

by the following method.

10

2.4 The Directional Filter

Let

M.A.Sc. - G. XUE - McMaster - EeE

Then

1
ai,j = 2112Ii,j - (Ii- 1,j-1 + Ii+l,j+1)1-12Ii,j - (Ii+1,j-1 + Ii- 1,j+l)1I,

1
b·· = -112L· - (L_1 · +L+1 ·)1-12L· - (L '-1 +L '+1)11·2,J 2 2,J 2,J 2 ,J 2,J 2,J 2,J

(2.10)

if ai,j > A() (i, j), is on a diagonal one-pixel-width edge;

if bi,j > A(} (i, j), is on a horizontal or vertical one-pixel-width edge;

otherwise (i, j) is not on an one-pixel-width edge.

(2.11)

2.4 The Directional Filter

Once we know the direction of the edge, we can apply the directional filter, including

the following cases. In frame I, let hj be the intensity of pixel (i, j), and t,j be the

filtered value. We have

• No edge:

L . = MEDIAN2,J

• Horizontal edges (0°):

11

L,
2,J

L+1 '2 ,J

L '+12,J
(2.12)

2.4 Tbe Directional Filter M.A.Sc. - G. XUE - McMaster - ECE

[ll]

ii,j = MEDIAN(Ii,j-l, Ii,j, hj+l)

• Vertical edges (900
):

§
ii,j = MEDIAN(Ii-l,j , Ii,j, IiH,j)

• 450 diagonal edges:

#
t,j = MEDIAN(Ii-l,j+l, Ii,j, IiH,j-l)

• 1350 diagonal edges:

~
ii,j = MEDIAN(Ii-l,j-l, Ii,j, IiH,jH)

• One-pixel-width edges:

Copy the original intensity.

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

where MEDIAN(·) is the operation to compute the median.

Generally, the median filter performs a good noise reduction without blurring

edges. In case of one-pixel-width edges, the median filter will lose the sharpness,

12

2.5 Fast Implementation of Directional Median Filter M.A.Sc. - G. XUE - McMaster - ECE

because the gradient value is underestimated and the leak value on one-pixel-width

edges will be lost by median operation. Therefore, we keep the original pixel values for

one-pixel-width edges. We compared three different filters: non-directional median

filter, directional median filter, and our directional median filter with one-pixel-width

edges. The visual results are shown in Figure 2.1.

Analysis: the non-directional median filter(Figure 2.1 (b)) introduces oversmooth­

ing effect around the hair. The directional median filter(Figure 2.1(c)) provides more

clear and sharper hair than the non-directional median filer. Among the three filters,

our method (Figure 2.1(d)) gives the most sharp single hair, and keeps the highlight

of the thin hair, which is very sensitive to human eyes.

2.5 Fast Implementation of Directional Median Fil­

ter

The directional median filter can be implemented by two stages:

1. Denoise frame I by a 5-point median filter to obtain It;

2. Re-examine frame I, classify edges, choose directional filter for edges and replace

the previous ones in It.

To improve the processing speed of the median filter, we minimize the number

of comparisons and memory accesses (reading and writing memory), and establish

parallel computing technique.

John L. Smith [2] implemented the 9-point median filter with the minimum ex­

change network to produce a median from nine input pixels by the FPGA. Inspired by

his hardware implementation, we develop a fast software implementation using the

fundamental operations "min" and "max". The minimum number of comparisons

13

2.5 Fast Implementation of Directional Median Filter

(a) The original image

(c) Result of the directional median filter

M.A.Sc. - G. XUE - McMaster - ECE

(b) Result of the median filter

(d) Result of our directional median filter

Figure 2.1: Intra-denosing results of three methods: the median filter, the directional
median filter, and our directional median filter with one-pixel-width edge.

14

2.5 Fast Implementation of Directional Median Filter M.A.Sc. - G. XUE - McMaster - ECE

Table 2.1: The total number of instructs min and max for the N-median filter
N 3 5 7

number of minO and maxO 4 10 20

Table 2.2: SSE2(R) instructs supports parallelized vector operations minO and
maxO·

content in a register minO maxO Latency (cycles)
16 8-bit values PMINSB PMAXSB 2
8 16-bit values PMINSW PMAXSW 2
4 32-bit values PMINSD PMAXSD 2

("min" and "max") is listed in Table.2.1. For example, a 5-point median filter needs

at least ten comparisons among five input elements to find the median.

In order to make full use of parallel computing ability of the CPU, we employ SSE2

(Streaming SIMD Extensions 2) instruction set. SSE2 is a Single Instruction Multiple

Data (SIMD) instruction set designed by Intel. It enables the parallel computing for

vectors and can operate on 128-bit registers, which accelerates the computing speed

significantly. The SSE2 instruction set provides operations min(a, b) and max(a, b),

both of which are in high parallelism and have a latency of only two cycles on a

Pentium 4 CPU (See Table 2.2). In Table.2.2, we list the SSE2 instructions for

min and max. Instructs PMINSB and PMAXSB compute parallel minimum and

maximum between two sets of sixteen 8-bit signed values. Instructs PMINSW and

PMAXSvV compute parallel minimum and maximum between two sets of eight 16­

bit signed values. Instructs PMINSD and PMAXSD compute parallel minimum and

maximum between two sets of four 32-bit signed values. The detailed operations of

15

2.5 Fast Implementation of Directional Median Filter

min(a, b) and max(a, b) are described in (2.18).

M.A.Sc. - G. XUE - McMaster - ECE

min(a, b) = {min(ai' bin

max(a, b) = {max(ai, bin

for i = 1,2,'" ,N.

(2.18)

For example, one SSE2 instruction, PMINSW, computes the scalar minimums of two

sets of eight 16-bit signed values within two clock cycles. SSE2 only supports the

comparison operation for signed values. Thus, a conversion from unsigned to signed

values is required, since we input 16-bit unsigned pixel values.

Moreover, our median filter has the minimized number of memory accesses. Dur­

ing the computation of the median, our implementation sequentially reads input data

from the memory to a register only once, sequentially writes the output data from a

register to the memory once, and all other operations are manipulated inside regis­

ters, which significantly improves CPU's computational efficiency and memory cache

efficiency.

For a 5-point median filter, we compared our optimized code against the non­

optimized code. They are applied on a frame with resolution 2048 x 1556, RGB 48-bit

depth. Our optimized code spends 0.08 seconds, while the non-optimized code spends

1.34 seconds, about sixteen times longer than our optimized code. We conclude that

the parallel computing technology improves the computational efficiency significantly.

16

Chapter 3

Motion Estimation

In this chapter, we describe our motion estimation approach with two stages: global

motion and local motion estimation. Motion estimation is the process of determining

the motion vectors that describe the transformation from one 2D image to another;

usually from adjacent frames in a video sequence. It is an ill-posed problem as the

motion is in three dimensions but the images are a projection of the 3D scene onto a 2D

plane. The motion vectors may relate to the whole image (global motion estimation)

or specific parts, such as rectangular blocks, arbitrarily shaped patches or even per

pixel. The motion vectors may be represented by a translational model or many other

models that can approximate the motion of a real video camera, such as rotation and

translation in all three dimensions and zoom.

The motion existing in a scene can be mainly considered as arising from local

motions superimposed to the camera motion (ie., the global motion). The former is

produced by the movement of objects in the scene, and the latter results from the

motion of camera. The global motion can be removed to provide a more precise sub­

sequent local motion evaluation, if the camera motion is estimated. The foreground

consists of objects in local motion, and the background consists of objects in global

motion. The global motion should be estimated only on the background, prevent-

17

3.1 Fast Global Motion Estimation M.A.Sc. - G. XUE - McMaster - ECE

ing from the error caused by local motions. The segmentation of background and

foreground contributes to the accuracy of global motion.

The two stages motion estimation approach is presented as follows. In the first

stage, we obtain the background mask and its initial guess for global motion parame­

ters either by first estimation applied on edges in frames or by tracking and prediction

of the previous mask and parameters. The global motion is then applied on the back-

ground. Next, the global motion compensation is performed, and the background

mask is refined by eliminating more foreground regions from the previous background

mask. Then, the global motion estimation and background refinement are done iter­

atively, until no more foreground can be found in the mask. In the further stage, the

local motion estimation can be performed on the foreground regions.

3.1 Fast Global Motion Estimation

In this section, we describe the detail of global motion estimation which uses the

generalized motion estimation [1].

3.1.1 Model of Global Motion

Global motion is considered a kind of motion caused by the camera. To describe this

complex motion, a perspective model is introduced.

ao + a2XI + a3YI
X2 = --------"-

a6XI + a7YI + 1
al + a4XI + a5YI

Y2=-------
a6XI + a7YI + 1

(3.1)

where ao,'" ,a7 are the motion parameters, (Xl, YI) denotes the spatial coordinates

of a pixel in the current frame, and (X2, Y2) denotes the coordinates of corresponding

pixel in the reference frame.

18

3.1 Fast Global Motion Estimation M.A.Se. - G. XUE - McMaster - ECE

In most cases, global camera motion in movies can be simplified to an affine model,

which corresponds to setting a6 = a7 = 0 in formula (3.1).

(3.2)

In this thesis, we consider that the camera motion obeys an affine model.

3.1.2 Optimization Problem

The global motion estimation is designed to achieve the minimum of the sum of

squared differences between the current frame I and the motion compensated refer-

ence frame h.

mm L [I(x, y) - Int(I', f(x, y, a), a)]2
a

(x,y)EI

(3.3)

where a = (ao,' .. ,a5) denotes the affine parameter vector, f(x, y, a) is the coordi­

nates of the corresponding pixel in reference frame I' by the affine transformation

(3.2) using a, and the function Int(·) estimates the value of pixel (x, y) based on the

motion parameter a and the reference frame I'. In our work, we choose area-based

interpolation [1]. This interpolation method is optimal if box point spread function

(PSF) and no correlation between neighboring pixels are assumed.

In order to reduce the sensitivity to noise, we only choose pixels near edges as

feature points. Thus, we find edges by the gradient magnitude in the current frame

I.

There is a problem that edges with higher gradient will take greater weight in the

cost function (3.3), but it effects the accuracy of the motion estimation. Therefore,

19

3.1 Fast GloballVIotion Estimation

................

M.A.Sc. - G. XUE - McMaster - EeE

Figure 3.1: The mapping grid of a current pixel in the reference frame

we normalize the weight of all extracted edges, and thus, (3.3) is adjusted to (3.4) .

. F() '" [I(x, y) - Int(1', f(x, y, a), a)]2
mm a = L...J '

a ~y
(x,y)EE '

(3.4)

where CYx,y denotes the gradient magnitude of pixel (x, y), and E represents the set of

pixels near edges. a = (ao,' .. l a5) denotes the affine parameter vector, f(x, y, a) is

the coordinates of the corresponding pixel in reference frame l' by the affine transfor­

mation (3.2) using a, and the function IntO estimates the value of pixel (x, y) based

on the motion parameter a and the reference frame 1'.

The other benefit of (3.4) is that we reduce the weight of difference caused by

noise, since the gradient intensity is proportional to the noise.

The estimation of intensity value of current pixel is illustrated in Figure 3.1. Our

estimation function Int(·) can be described as follows.

Int(·) = ~L rJ'(i)
i (3.5)

where R is the area of the pixel of the current frame on the grid of the reference frame

1', ri is the area of intersection of current grid and reference grids, and l'(i) denotes

the intensity value of pixel i in frame 1'.

20

3.1 Fast Global1VIotion Estimation

3.1.3 Extraction of Feature Points

M.A.Sc. - G. XUE - McMaster - ECE

The global motion estimation only relies on the background information. In the

background, smooth areas do not have discrimination power in motion estimation,

due to lack of features. Consequently, those areas without features can be safely

disregarded in the motion estimation without loss of precision. This significantly

reduces the computational complexity. In this work the feature selection is performed

only in the current frame. Motion estimation is done by matching selected pixels

(with features) of the current frame with pixels of the reference frames. We extract

large-scale edges as good reliable features. The edge map is subject to an erosion

operation to exclude isolated pixels selected by the high-pass edge detector because

there is a high possibility that the corresponding features have noise origin. This

is followed by a dilation step to allow pixels adjacent to the edges to participate in

motion estimation. The last step is intended to make the algorithm robust against

inaccurate edge detection. For video frames with negligible noise the edge detection

step can be replaced by inexpensive high-pass filtering and thresholding. We found

that less than 10 percent of the total number of pixels can be selected for very accurate

registration of video sequences. The matching technique is applied only on the pixels

near the edges, which reduces significantly the computational cost.

We can compute the gradients to find the set E of feature points in the current

frame I .

(3.6)

where TJ is the threshold of edge detection.

21

3.1 Fast Global Motion Estimation M.A.Sc. - G. XUE - McMaster - ECE

3.1.4 Solving the Optimization Problem: Gradient Descent

Method

Generally, the cost function (3.4) is non-convex. However, if the initial guess is close

enough to the global minimum, a gradient descent algorithm can provide a numerical

solution. Since the motion in a scene is continuous, the previous motion between

frames Ii- 1 and Ii can be considered a good initial guess for the motion between Ii

and Ii+l' In this thesis a modified Newton-Raphson method is applied for solving

the optimization problem of (3.4). If VaF is the gradient of the cost function w.r.t.

motion parameter vector a and V;F is the corresponding Hessian, then one iteration

of the modified Newton-Raphson algorithm is given by

(3.7)

where ak+l and ak are the estimated motion vectors in the (k + l)th and kth iteration,

respectively, and ak+l is a constant such that 0 < ak+l :s; 1. The algorithm starts

with an initial estimate ao obtained from previous affine parameter. The following

steps are required in each iteration.

1. Initialization: Compute F(aa), V F(ao) and V 2F(aa). Set k = 0 and, = 1.

2. Compute

Reduce " if a violates any bound on parameters and re-compute a.

3. If the absolute value of (ak - a) is too small for all parameters, set au as the

solution. Exit function.

4. If F(a) < F(ak), set ak+l = a and ak+l = ,. Goto step 8.

22

3.1 Fast Global Motion Estimation

5. Let "I = i'Y, Goto step 3.

M.A.Sc. - G. XUE - McMaster - ECE

function.

7. k = k + 1. If k > M axIteration, ak+1 is the solution, and Exit function.

8. "I = min(l, 2"1), and goto step 3.

We use the thresholds (1 = 0.0001 and (2 = 0.001. The algorithm converges within

less than eight function evaluations (k < 8) for all video sequences in our experiment.

Next, we exclude the local motion regions, and do the estimation again, until no

more local motion region can be found.

3.1.5 Exclusion of Regions With Local Motion

Because the extracted feature points P may contain edges with both local motion and

global motion, feature points in local motion segments will degrade the accuracy of

global motion estimation. It is necessary to exclude the local motion segments from

feature points P. We check the normalized difference between aligned pixels, and

find feature points in the local motion segments L by thresholding the normalized

difference as follows.

L = {'II I(i) - h(G(i)) I 'P}
1 Grad(i) >c,IE , (3.8)

where L denotes the feature points located in the local motion segments, the notation

GradO computes the gradient intensity, G(i) represents the motion vector of pixel i,

I and h denote the current frame and the reference frame respectively, and c > 0 is

a threshold parameter.

23

3.2 Local Motion Estimation M.A.Sc. - G. XUE - McMaster - ECE

NO.

Is there local
motion?

global
motionNomalized Global

Motion Estimator
(gradient decent)

1""::::======:::::----====----1Yes

frame i
fram~'='===========::1

store edge
map for next
GME

Output to
Local Motion
Estimator

Figure 3.2: Flow chart for global motion estimation subsystem

After excluding segments in local motions, we solve the optimization problem

(3.4) again to improve the global motion estimation. We repeat the iteration until no

segment in local motions can be excluded.

The whole procedure of our recursive global motion estimation is illustrated in

Figure 3.2. In the work flow, the last 4 global motion vectors are required to be

stored for the subsequent processing.

3.2 Local Motion Estimation

Different from global camera motion, local object motions can be approximately con­

sidered as blockwise translation motions. This type of motions is well estimated by

variable block-based motion estimation.

3.2.1 Local Motion Segmentation

Once the global motion is estimated, we segment the frame into regions with either

global motion or local motion. First, we transform the reference frame into a compen­

sated frame by using the estimated global motion. Second, we analyze the difference

between the current frame and the compensated frame. It is also very important to

24

3.2 Local Motion Estimation M.A.Sc. - G. XUE - McMaster - ECE

reduce the effect of noise. At last, we obtain a map indicating the segments with

global motion and with local motion.

IL
= {()1z.=(i,j)ER(X,y) II(i,j) - Ie(i,j)1 }

x, Y G d() > Cra x,Y
(3.9)

where IL is the set of local motion regions, (x, y) denotes the coordinates of a pixel, I

is current frame, Ie is the motion compensated frame, c is a positive constant, R(x, y)

is a set of neighborhoods of (x, y), and Grad(x, y) represents the gradient at (x, y).

3.2.2 Multi-Resolution Structure

To further improve the robustness and efficiency, a hierarchical scheme is imple­

mented. A three-level pyramid of the image is built by using a three-tap filter with

coefficients [1/4,1/2,1/4]. The time complexity of block-based motion estimation is

o(whNIxMy), where w, h indicate respectively the width and height of a block, and

Mx, My denote the maximum motion along x and y direction respectively. In the

case of high resolution, such as 4096 x 2048, NIx, My are about 100 for slow motion,

and larger than 250 for fast motion. The computational cost is unacceptable if ex­

hausted motion search is performed on the original resolution. By using the pyramid

structure, we can do motion search with large range for the top of the pyramid, e.g.

lowest resolution, then in other resolutions, we do motion search with small range

constrained near the motion vector obtained from the previous lower resolution. The

computation is considerably reduced without precision loss.

3.2.3 Directional Diamond Search

The Diamond Search algorithm (DS), proposed by Shan Zhu and Kai-Kuang Ma

[11], is based on the study of motion vector field distributions of a large population

25

3.2 Local Motion Estimation M.A.Sc. - G. XUE - McMaster - ECE

of video sequences. Diamond search (i.e., other than exhaustive search) reduces the

number (or the complexity) of "sum of absolute difference" (SAD) computations. The

diamond pattern as presented in Figure 3.3 is derived from the probability distribution

function as those locations corresponding to the highest probability of finding the

matching block in the reference frame. The algorithm starts in the co-located macro­

block in the reference frame and performs eight additional SAD's around the diamond

center. This contrasts to full search (FS) which computes all possible overlapping

SAD's. Once the minimum SAD location is found, the diamond center is displaced

to the optimum location and a new diamond search is executed. The new search

will require fewer SAD computations. The search stops once the position of the

minimum SAD is located in the center of the diamond. On average the best matching

block will be found within a few diamond search iterations, thus requiring fewer

SAD's per macro-block than FS. The algorithm offers the advantage of extending the

search support area, allowing more reference frame coverage with fewer computations.

However, due to the sparse nature of the diamond, one may miss an optimum matched

block near the center. Various algorithms based on DS have been proposed to do a

hierarchical search, so that once the best matching macro-block is found an inner

diamond search is performed to cover points interior to the diamond.

Furthermore, we employ dynamic initial searching step to increase the speed of

searching the minimum SAD as follows.

So = 2M
;

(3.10)

where ¢ is a constant, Ab denotes the area of the block b, SADo denotes the SAD at

the center of first diamond, and p, denotes the exponent part of initial searching step.

26

3.2 Local Motion Estimation M.A.Sc. - G. XUE - McMaster - ECE

The steps of the algorithm are presented as follows.

1. Input: frame ii, ij, block b, predicted motion vector va;

2. Compute SADo = SAD(vo) for block b.

3. Compute (so, Sl,' ..) by formula (3.10).

4. Set k = 0, r = so, v = va.

5. Search the local minimum SAD in Diamond pattern with searching step r

centered at v, and motion vector v is obtained.

6. We draw a conclusion:

If r == 1, v is the solution, return v. Done.

If Ilvll > M axRange, motion vector can not be obtained in the searching range,

and return failure.

If v == v, set k = k + 1, r = Sk, v = v, and goto step 5.

Otherwise, set v = v, and goto step 5.

where M axRange denotes the maximum dynamic range we handle. We set

lVIaxRange = (300,150), which means that the max dynamic range is [-300, +300]

at X-axis, and [-150, +150] at Y-axis.

3.2.4 Quad-tree Structure

Constant size block-based motion estimation is insufficient to describe complex mo­

tion, such as rotation and zooming. On one hand, the true motion can be simulated

more accurately by smaller blocks. On the other hand, evaluating motion using

smaller blocks results in more local minima without sufficient constraints.

27

3.2 Local1vIotion Estimation

X search

/ ~
/ ~"
i".

c

/
r'Ya/ '- / ", V ~ r "'-
"'",- "~ l./ /

r-..., / , /

M.A.Sc. - G. XUE - McMaster - ECE

Figure 3.3: Diamond search pattern with searching step = r

During block based motion estimation, we apply the quad-tree structure of vari-

able block size. Figure 3.4 illustrates the quad-tree pattern. Firstly, a motion vector

is computed initially by some large block size. If the SAD is larger than the threshold,

4 sub-blocks are generated to do the block-based search recursively.

Secondly, quad-tree blocks provide a trade-off between precision and convergence

of block-based motion estimation. On the top level, block-based matching is applied

to a big block, and we obtain the first motion vector VI. Then, if SAD is not lower

than some threshold, four sub-blocks are split from their father block. Using VI as

the prediction (initial motion vector), we employ the matching on those sub-blocks.

And this process is performed iteratively, until block's SAD either is lower than the

threshold or converges.

Since each quad-tree is independent from each other, motion estimation can be

applied to each quad-tree in parallel threads.

28

3.2 Local Motion Estimation M.A.Sc. - G. XUE - McMaster - ECE

*
*

Figure 3.4: Quad-tree pattern

3.2.5 Cost Function

The cost function of motion search is described as follows.

mm SAD(i,j) + position penalty;
i,j

M N

s.t. SAD(i,j) = L L II(m, n) - h(m + i, n + j)1;
m=O n=O

position penalty = wx(lvxl + Ivx - vxol) +wy(lvyl + Ivy - vyol);
1

W x +wy = 2'

(3.11)

where W x , and wy are fixed weights for horizontal and vertical components, (vx , vy) is

motion vector of the candidate block and (vxo, vyo) is the predicted motion vector of

the candidate block. I and h are the current frame and reference frame, respectively.

A position penalty [10] is added to the cost function (3.11) to regulate the motion

field.

With the cost function containing position penalty, there are more chances of

29

3.2 Local Motion Estimation M.A.Sc. - G. XUE - McMaster - ECE

choosing a motion vector with minimum distortion as the position penalty is uniformly

distributed. Furthermore, it forces the motion vectors to promise a small motion

vector difference between predicted motion and obtained motion.

3.2.6 Steps of Local Motion Estimation

The local motion estimation consists of the following steps.

1. Input: a (Affine global motion vector), fi, fj (2 spatial denoised frames, Y

component required).

2. Compute the local motion region lL by the method described in Section 3.2.1.

3. Compute the pyramid structure for frame fi and fj by the method described in

section 3.2.2. Only Y component is computed.

4. Push all blocks bk E lL, its pyramid level (lk = 2, top level), and its predicted

motion vector Vk = (0,0) into a stack H = {(bk, lk' Vk)}.

5. If stack is not empty, pop the top value (b, l, vp) from the stack H. Otherwise,

done.

6. Compute the median vector [25] Vm among vp and neighborhoods' motion vec­

tors of block b. Vm is the predicted motion vector for Diamond searching. Try

Diamond Searching (Section 3.2.3).

ee=----
Area(b, l)

(3.12)

where e denotes the minimum SAD corresponding to the motion vector v,

DS(.) denotes diamond searching, e denotes the average absolute difference,

and Area(·) computes the area of the block.

30

3.2 LocallVIotion Estimation M.A.Sc. - G. XUE - McMaster - ECE

7. Let elast represent the average absolute difference of the previous diamond

searching.

Different conditions are listed below:

Ie - elastl < Eelast: Reach convergence, and no more composition is required. E

is a positive constant. If l > 0, go down to the lower level to do matching,

Push (b, l - 1, 2v) into stack H, and goto step 5; If l == 0, go to the next

condition.

e <= c and l == 0 (lowest level): store the motion vector v for block b. End

of current block b. Goto step 5;

e <= c and l > 0 (top level or intermediate level): push (b, l-l, 2v) into

stack H, and goto step 5;

e> c and Area(b, l) <= 16 and l == 0: mark block b "not matched". Goto

step 5;

e > c and Area(b, l) < 16 and l > 0: go down to the lower level to do match­

ing. Push (b, l- 1, 2v) into stack H. Goto step 5;

Otherwise: decompose b into four sub-blocks (b1 , b2 , b3 , b4). Push (bk , l, v), k =

1,2,3,4 into stack H. Goto step 5.

where c is proportional to the estimated noise strength, and E denotes a small

positive constant.

In step 4, we choose (0,0) as the initial predicted motion vector, and we also can

set it as the motion vector for the block derived from global motion.

31

3.2 LocallvIotion Estimation M.A.Sc. - G. XUE - McMaster - ECE

3.2.7 Fault Motion Removal

Finally, we try to remove the fault motion vectors from the motion fields obtained

above. Because motion estimation can introduce artifacts in the areas where motion

is not trackable, for example in the newly exposed or occluded areas. To remove those

undesired artifacts of motion vectors, we develop the following method according to

the consistent characteristics of directional local motion fields, Le., motion vectors of

pixels inside a rigid object are consistent. The method to remove fault motion vectors

can be described as follows.

lIIIfault = {(x,Y)1 L IIVx,y - vi,jll > 7.;,}
(i,j)ERx,y

(3.13)

where Vx,y denotes the motion vector on pixel (x, y), Rx,y is the set of neighborhoods

of pixel (x, y), 11·11 denotes the normal operator, 7.;, represents the threshold of motion

vector's difference, and Mfault denotes the set of pixels with fault motion estimation.

All pixels in Mfault are marked as non-trackable, and will not be utilized in the

following compensation process.

32

Chapter 4

Temporal Denoising

In general, video signals are more temporally redundant, and temporal denoising

provides better performance. Use of spatial denoising is only limited to the area

where temporal denoising is not possible (i.e., no match is found for the area in

its neighbor frames). As both global camera motion and local object motions are

estimated, we can compensate all reference frames for the current frame. If there

are two forward frames and two backward frames, we can obtain four corresponding

compensated frames. Then a temporal denoising filter will be applied to these four

compensated frames and the current frame.

Assume that we have a frame sequence S = {Ii Ii = 1,'" ,N} including N

frames. Without losing generality, we apply our algorithm on the sub-sequence

{Ik- 2,Jk-l,Jk,Jk+l, Ik+2} to de-noise the current frame I k . For each pixel I:,y in

a frame, we can establish a pipe as follows.

(4.1)

where I:,y represents the intensity value of pixel (x, y) in frame I k , lv!Vk,k+j(X, y) de-

33

4.1 Weighted Temporal Filter M.A.Sc. - G. XUE - McMaster - ECE

notes the motion vector of pixel Ik (x, y) between frames I k and Ik+j, and T k (j, x, y)

denotes the coordinates of the compensated pixel in reference frame Ik+j correspond­

ing to the current pixel (x, y) in frame I k .

4.1 Weighted Temporal Filter

First, the pixels in each neighboring frame are registered (compensated) according to

the estimated motion vectors, to produce temporally redundant copies of the current

frame. Second, for each compensated frame, they are used for weight calculation,

such that a better match has more weight in making the temporally denoised frame.

The average absolute difference per pixel (ADPP) measures the match quality,

and determines the weight of each compensated pixel. ADPP of each compensated

pixel can be obtained during motion estimation. ADPP for the current frame is set

to that of its closest match among the neighbors.

Our weighted temporal denoising filter can be described as follows.

(4.2)

where i:,y denotes the denoised value of pixel (x,y) in frame I k, and (Wj), for j =

-2, -1, 0,1,2 is the weight kernel which can be obtained by (4.3).

t·w.= J
J ~2 t'

L...tq=-2 q

Wo = m?JC{Wj}, for j = -2, -1,1,2.
J

t
j

= { (~~~~ + ~),6, if compensation

0, if compensation

is available in frame Ik+j;

is unavailable in frame Ik+j.

(4.3)

where ~~~! denotes the average absolute difference for the current pixel (x, y), and

34

4.2 Median Temporal Filter M.A.Bc. - G. XUE - McMaster - ECE

(a) original part of background (b) weighted temporal filter (c) median temporal filter

Figure 4.1: Part of background.

f3 is a constant used to control the shape of filter kernel. We recommend f3 = -2.

Wj is non-zero when there is an available compensated block in reference frame Ik+j,

otherwise Wj = O.

4.2 Median Temporal Filter

Weighted temporal filter is very efficient for the data corrupted by Gaussian noise.

However, because of the nonstationarity of the temporal signals, local distributions

within a temporal window are generally not Gaussian in case of real data captured

by digital camera or scanner. Therefore, a median filter provides a better estimate

of the true signal. Temporal median filter is very suitable to remove impulsive noise,

because most temporal signals without noise are root signals of a median filter [24].

The median filter is much more efficient to remove impulse noise than the weighted

filter. Referring to Figure 4.1, the weighted filter averages the strength of impulse

noise, and introduces oversmoothing effect, while the median filter provides a much

more clear background.

Our median temporal denoising filter is described by (4.4).

35

4.2 Median Temporal Filter M.A.Sc. - G. XUE - McMaster - EOE

where i;,y denotes the denoised value of pixel (x, y) in frame Ik, and M edian5 (.)

denotes a 5-point median filter.

It should be noticed that there are cases of less than four available compensated

neighbors (i.e., motion compensation is not available in some reference frames). To

account for such cases, our temporal filter is developed as follows:

4 compensated neighbors are found: 5-point median filter.

3 compensated neighbors are found: the weighted temporal filter described by

(4.2).

2 compensated neighbors are found: 3 point median filter.

1 compensated neighbor is found: mean filter on two values.

no compensated neighbor is found: Copy the previous spatial denoised pixels

for high deviation regions, and apply Gaussian filter for low deviation regions.

With the help of fast implementation of the median filter (See Appendix A), we

can do the median temporal denoising more efficiently.

36

Chapter 5

Implementation And Experimental

Results

In this chapter) we will detail our implementation and explain our experiment re­

sults. First, we introduce our experimental environment and detail our algorithm

implementation.

5.1 Algorithm Implementation

vVe implemented our proposed algorithm by C/ C++ and assembler language. The

PC configuration in our experiment is listed as follows.

Operating System: Windows XP with sp2;

CPU: Intel Duo Core 2.2Gj

Memory: 2Gb, DDR533;

Next, we present some highlights of our implementation as follows.

37

5.2 Experimental Results M.A.Sc. - G. XUE - McMaster - ECE

1. Multi-threading technology takes the computational advantage of Duo Core

CPU. The computational resource of CPU can be taken full use of by our algo­

rithm, and I/O operations and computing operations are processed in parallel.

2. Denoising a sequence can be divided into several processing threads each of

which applied our fast denoising algorithm. The advantage is the parallelization

of I/O operation and CPU computation. The denoising process has a large

number of I/O operations, such as input frame reading, output frame writing,

etc. These operations are independent between different threads.

3. For local motion estimation, there are two facts allowing parallelization. First,

local motion estimation can be divided into two independent processes: forward

motion, and backward motion. Forward motion and backward motion estima­

tion are independent with each other, and can be computed parallelly. Second,

the motion searching of blocks is independent with each other.

4. We use SSE2 instructions to optimize some time-consuming parts, such as me­

dian filter, and SAD computation. Parallel computing technology highly accel­

erates the processing speed.

5.2 Experimental Results

We set up our experiments with high-resolution videos, which mainly include some

video sequences from digital cinema camera and film scanner that incorporate differ­

ent types of motion, including one slow motion sequence, one fast motion sequences,

one natural scene, and one animation sequence. A more detailed description of the

sequences used can be found in Table.5.1.

In order to demonstrate the higher processing throughput and better performance,

we compare our proposed method with "Neat Video" Denoiser [15], one of the most

38

5.2 Experimental Results M.A.Sc. - G. XUE - McMaster - ECE

Table 5.1: Descriptions of high resolution test video sequences.
Sequence Number of Frames Resolution and color space

Swing Angel 40 4096 x 2048 (RGB48)
Waving Hand 40 2048 x 1556 (RGB30)

Animation Roberts 40 1920 x 1436 (RGB30)
Dark Background 40 2048 x 1556 (RGB30)

Table 5.2: Processing time comparison between proposed method and Neat Video
Denoiser (NVD).

Our Algorithm Neat Video Denoiser
Video Sequences Total time Average time Total time Average time

(seconds) per frame (sec.) (seconds) per frame (sec.)
Swing Angel 197.1 4.93 997 24.9

Waving Hand 81.6 2.04 383 9.6
Animation Roberts 77.5 1.87 357 8.9
Dark Background 82.7 2.07 409 10.2

well-known commercial denoisers. "Neat Video" denoiser (NVD) is a digital video

filter. Its main function is to reduce noise in digital video sequences. We use the

preset "hard noise" in the NVD.

The overall and average processing time of proposed method and NVD are listed

in Table.5.2. Obviously, the processing time results show that the proposed method

is almost five times faster than NVD.

Next, we analyze the performance of the proposed temporal denoiser, and com­

pare visual quality with that of NVD. Because these noisy test sequences are directly

captured by digital cinema cameras and there are not corresponding true video se-

quences without noise, we can not evaluate the performance by peak signal-to-noise

rate (PSNR). Therefore, we evaluate the performance by the visual quality of denoised

video frames.

1. Dark background. Resolution 2048 x 1556, 30-bit depth.

In this sequence, the digital camera captured an indoor scene at night. The

39

5.2 Experimental Results M.A.Sc. - G. XUE - McMaster - ECE

signal-to-noise rate is serious low. The global motion and local object motion are

slow. Figure.5.1(a) shows part of a frame. The noise is much higher in the dark

background, for example the floor carpet. vVe can not recognize the pattern on the

carpet in the original frame, because the signal-to-noise rate is too low. The global

motion is caused by the camera motion, and there are some random local motion

for some lights. Figure.5.1(b) and Figure.5.1(c) show the result of our proposed

method and Neat Video Denoiser (NVD) , respectively. They both reduce noise, and

provide good visual quality. The former gives a bit more crisp pictures, and prevents

edges from blurred. The latter introduces oversmoothing effects, and make the edges

blurred. The differences between results of two methods are obviously shown in

the detail blow-up Figure 5.1(e), 5.1(h)), 5.1(f) and 5.1(i). There are some visual

improvements in the proposed result: the remoter on the desk is more clear than that

of NVD, and the pattern of the tablecloth is sharper than that of NVD. The average

processing time of proposed method is 2.07 seconds per frames, which is much less

than that of NVD, 10.2 seconds.

2. Swing Angel. Resolution 4096 x 2048. 48-bit depth.

This sequence contains high-level noise. In this sequence, a girl wearing two

artificial swings is sitting at the front of a blue background. There is a slight motion

for her body and swings. The motion is slow. We show a part of a frame (Figure

5.2(a)), including a red gem on her swings. The red gem is surrounded by several

small white diamonds. Figure 5.2(b) is the result of proposed denoising algorithm,

and Figure 5.2(c) is the result of NVD. The former removes noise, and keeps excellent

sharpness of edges and highlighted small white diamonds. The latter removes noise,

but at the same time introduces oversmoothing effects, and blurs edges and some

details, for example the white small diamonds below the red gem. Therefore, the

proposed method removes noise and preserves more details than NVD. For this high

40

5.2 Experimental Results M.A.Se. - G. XUE - Me.Master - EeE

(a) original frame

(d) Original detail 1

(g) Original detail 2

(b) Result of proposed method

(e) Proposed method's result

(h) Proposed method's result

(e) NVD's result

(f) NVD's result

(i) NVD's result

Figure 5.1: Dark background sequence.

41

5.2 Experimental Results M.A.Sc. - G. XUE - McMaster - ECE

(a) A part of a original frame (b) Result of proposed method (c) Result of NVD

Figure 5.2: Blow-up part of Swing Angel sequence.

resolution video (a 4K video), the proposed algorithm obtains a high speed, 4.93

seconds per frame on average, while NVD consumes 24.9 seconds per frame.

3. Waving Hand. Resolution 2048 x 1556, 3D-bit depth.

This sequence is characterized by high-level noise, fast object motion. The camera

captured a scene in which a girl in white is waving her hands in front of a building.

The camera motion is slow, but the motion of waving hand is fast. Figures 5.3(a ­

e) show part of five frames, including her right hand and the building. The building

obeys global camera motion, and the waving hand introduces local motion. There

are three facts making the local motion estimation very hard. Firstly, the waving

hand is moving fast, and the motion search range is very large (about 107 pixels

between Figure 5.3(c) and 5.3(e)). Secondly, the waving hand is not a rigid object,

i.e. the shape of her hand is keeping changing. Thirdly, there is motion blur effect

around her hand. Our proposed method overcomes these difficulties: Global motion

estimation will estimate the global motion of the building; The local motion area

can be excluded from global motion area; The local motion estimator is capable of

track the motion with large range. The hand is decomposed into small blocks by

quad-tree structure to simulate its reshaping, and fault motion vectors are removed

42

5.2 ExpeTimental Results M.A.Sc. - G. XUE - McMaster - ECE

by motion analysis. Compared with NVD's result (Figure 5.3(h), result of proposed

method (Figure 5.3(g)) removes noise without blurring edges. From the detail blow­

up (Figure 5.4 (c - f)), proposed method preserves sharper high frequency barrier.

For this 2K video, proposed method reaches the speed at 2.04 seconds per frame on

average, which is almost five times faster than NVD.

4. Animation robots. Resolution 1920 x 1436, 3D-bit depth.

This sequence was digitized from films by a motion picture scanner. The video

sequence is characterized by high-level noise, and fastjincontinuous motion in rela­

tively small areas. In this sequence, an artifact robot is shooting. The motion of

the flashing light is incontinuous, and is hard to accurately estimate. With the help

of motion analysis, we can find unmatched regions near the flashing light. We only

apply the intra-frame filter on those regions. Figures 5.5(a - e) show part of first

five frames. Figure 5.5(g) and 5.5(h) show the result of proposed method and NVD,

respectively. Both methods provide good visual quality for this animation sequence,

and their performance are similar. The advantage of the proposed method is its high

processing speed, which is more than four times faster than NVD.

43

5.2 Experimental Results j\lLA.Sc. - G. XUE - McMaster - ECE

,_ 1-:
_' 1~ I

·1
£ _L. :., I

./ ' '.1-1

(a) Original fram.e l(b) Original frame 2(c) Original frame 3(d) Original frame 4e) Original frame 5

(f) Original frame 3

(g) Result of proposed method

(h) Result of NVD

Figure 5.3: vVaving hand sequence.

44

5.2 Experimental Results M.A.Sc. - G. XUE - :McMaster - ECE

(a) Blow-up of hand part (b) Blow-up of barrier part

(c) Result of proposed method (d) Result of proposed method

(e) NVD's result (f) NVD's result

Figure 5.4: Detail blow-up of waving hand sequence.

45

5.2 Experimental Results M.A.Sc. - G. XUE - Mci\tIaster - ECE

(a) Original frame l(b) Original frame 2(c) Original frame 3(d) Original frame 4e) Original frame 5

(f) Original frame 3

(h) NVD's resnlt

(g) Result of proposed method

(i) Original detail

(j) Proposed method

(k) NVD

Figure 5.5: Animation robot sequence.

46

Chapter 6

Conclusions

In this thesis we investigated the problem of video denoising, which plays an im­

portant role in many applications of video processing. Funded by an industrial re­

search grant on digital cinema, we are primarily interested in the removal of noises

in high-resolution movie contents, either scanned film or the raw data of digital cin­

ema cameras. In pursue of best possible visual quality, we adopted the approach

of motion-compensated temporal video denoising. Our study exposed some weak­

nesses of existing video denoising algorithms, such as their incapability of modeling

and tracking complex motions, the use of overly simplistic noise models, and high

computational cost.

To overcome these weaknesses and improve the performance and robustness of

existing video denoising methods, we proposed a new joint spatial-temporal video

denoising algorithm that combines multiframe inter-frame compensation and direc­

tional intra-frame filtering. In the algorithm a noisy video is cleaned in two phases:

spatial (intra-frame) denoising followed by temporal (inter-frame) denoising. In the

spatial denoising phase, each video frame is denoised by a low-pass directional filter

whose parameters are tuned to the estimated noise level and to the gradient of the

current pixel. The directional filter has the advantage of effectively suppressing noises

47

M.A.Sc. - G. XUE - McMaster - ECE

without blurring edges. The resulting sequence of spatially denoised frames is further

processed in the temporal inter-frame denoising phase to improve the results of the

intra-frame denoiser by exploiting inter-frame correlations. This is achieved by reg­

istering multiple frames via motion estimation and low-pass filtering of the current

pixel along motion trajectory. During motion estimation, general compound motions

are taken into account, including both global camera motion and local object mo­

tions. We use an affine motion model to characterize the global camera motion, and

a blockwise translational motion model to approximate local object motions.

The proposed video denoising algorithm is implemented and tested extensively on

high-resolution digital cinema contents. Great efforts are devoted to achieving high

throughput of our video denoiser. In particular, parallel processing techniques at

machine instruction level are adopted to remove computation bottlenecks in temporal

denoising, such as median filtering and block matching in motion estimation. We are

able to achieve a throughput five times higher than a commercial video denoising

package, and at the same time obtain better visual quality of the denoised video

contents. In our experiments the proposed new video denoising algorithm also exhibits

an improved level of robustness. Its performance does not dramatically deteriorate

in difficult cases of discontinuous and sporadic motions and object occlusions.

48

Bibliography

[1] Abhijit Sinha, Xiaolin Wu, "Fast Generalized Motion Estimation and Superreso­

lution" ,Image Processing, 2007, ICIP 2007. Vol.5, ppA13 - ppA16.

[2] John Smith, "Implementing median filters in XC4000E FPGAs",

http://www.xilinx.com/xcell/xl23/xl23_16.pdf

[3] F. Cocchia, S. Carrato, and G. Ramponi, "Design and real-time implementation

of a 3-D rational filter for edge preserving smoothing", IEEE Transactions on

Consumer Electronics, vol.43, noA, pp.1291 - 1300, Nov. 1997.

[4] R. Kleihorst, R. Lagendijk, and J. Biemond, "Noise reduction of image sequences

using motion compensation and signal decomposition", IEEE Trans. on Image

Processing, volA, no.3, pp. 274 - 284, Mar. 1995.

[5] R. Rajagopalan and M. Orchard, "Synthesizing processed video by filtering tem­

poral relationships", IEEE Trans. on Image Processing, vol. 11, no. 1, pp. 26 - 36,

Jan. 2002.

[6] G. Haan, "Ie for motion-compensated de-interlacing, noise reduction and picture

rate conversion", IEEE Trans. on Consumers Electronics, vol. 45, no. 3, pp. 617 ­

623, Aug. 1999.

49

BIBLIOGRAPHY M.A.Sc. - G. XUE - McMaster - ECE

[7] G. Haan, et aI., "True-Motion Estimation with 3-D Recursive Search Block Match­

ing", IEEE Transactions on Circuits and Systems for Video Technology, vol. 3,

No.5, pp. 368 - 379, Oct. 1993.

[8] J. Canny, "A computational approach to edge detection", IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 9, pp. 679 - 698, Nov. 1986.

[9] P. L. Rosin, "Thresholding for change detection", in Proc. IEEE Int. Conf. of

Computer Vision, India, pp. 274 - 279, Jan. 1998.

[10] H. Yeo, C. A. Gonzales, et. aI., "A cost function with position penalty for motion

estimation in mpeg-2 video coding", IEEE IntI. Conf. of Multimedia And Expo,

2000, NY, USA, pp. 1755 - 1758.

[11] Shan Zhu, Kai-Kuang Ma, "A new diamond search algorithm for fast block­

matching motionestimation", IEEE Trans. Image Processing, Vol. 9, no. 2, pp.

287 - 290, Feb. 2000.

[12] A. N. Avanaki, "A Spatiotemporal Edge-preserving Denoising Method for High­

quality Video", in Proc. IEEE ISSPIT, 2006.

[13] Dalsa(R) digital cinema website:

http://www.dalsa.com/dc/4K_products/4K_products.asp

[14] Imagica motion picture scanner website:

http://www.imagica-technologies.com/english/imagerXE/index.html

[15] Neat video denoiser home page:

http://www.neatvideo.com/index.html

50

BIBLIOGRAPHY M.A.Sc. - G. XUE - McMaster - ECE

[16] A. K. Katsaggelos, Ed., "Digital Image Restoration", vol. 23., chapt. 1, New

York: Springer-Verlag, 1991.

[17] A. J. Patti, A. M. Tekalp, and M. 1. Sezan, "A new motion-compensated reduce­

order model Kalman filter for space-varying restoration of progressive and inter­

laced video", IEEE Trans. Image Process., vol. 7, no. 4, pp. 543C554, Apr. 1998.

[18] E. J. Balster,Y. F. Zheng, and R. L. Ewing, "Combined spatial and temporal

domain wavelet shrinkage algorithm for video denoising", IEEE Trans. Circuits

Syst. Video Technol., vol. 16, no. 2, pp. 220C230, Feb. 2006.

[19] A. Buades, B. ColI, and J. M. Morel, "Denoising image sequences does not require

motion estimation", in Proc. IEEE Int. Conf. on Adv. Video and Signal Based

Surveillance, Sep. 2005, pp. 70C74.

[20] R. Dugad and N. Ahuja, "Video denoising by combining Kalman and wiener

estimates", in Proc. IEEE Int. Conf. on Image Process., Oct. 1999, pp. 152C156.

[21] H.-H. Nagel, "On the estimation of optical flow: relations between different

approaches and some new results", Artificial Intelligence, vol.33, no. 3, pp.298 ­

324, Nov. 1987.

[22] J. K. Kearney, W. B. Thompson, and D. L. Boley, "Optical flow estimation: an

error analysis of gradient-based methods with local optimization", IEEE Trans.

on Pattern Analysis and Machine Intelligence, vol.9, no.2, pp.229 - 244, 1987.

[23] A. Verri, T. Poggio, "Motion Field and Optical Flow: Qualitative Properties",

IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.ll no.5, ppA90­

498, May 1989.

51

BIBLIOGRAPHY M.A.Sc. - G. XUE - McMaster - ECE

[24] S. S. H. Naqvi, N. C. Gallagher, and E. J. Coyle, "An application of median

filters to digital television", in Proc. IEEE Int. Conf Acoust., Signal Process.,

Tokyo, Japan, 1986, pp. 2451 - 2454.

[25] L. Alparone, M. Barni and F. Bartolini, "Adaptively weighted vector-median fil­

ters for motion-fields smoothing" , ICASSP, pp.2267-2270, 1996.

[26] A.K. Jain, "Foundimentals of Digital Image Processing", Englewood Cliffs, NJ,

Prentice-Hall, 1989.

[27] C.Q. Zhan and LJ. Karam, "Wavelet-Based Adaptive Image Denoising With

Edge Preservation", Proc. of the IEEE 2003 Int. Conf. on Image Process., MA­

L2, Sept. 2003.

[28] A. K. Katsaggelos, R. P. Kleihorst, and et aI., "Adaptive image sequence noise

filtering methods", in SPIE Proc. Vis. Comm. and Image Process., Nov. 1991,

Boston, MA, vol. 1606, pp. 716-727.

52

Appendix A

Fast Implementation of Median

Filter

A.I 5-point Median Filter

The 5-point median filter is implemented by assembler language employing SSE2

instructions. RGB pixels are planar, and each component is 16-bit depth.

const __declspec(align(16)) unsigned short MIN_SHORT_ARRAY[8] = {

Ox8000, Ox8000, Ox8000, Ox8000, Ox8000, Ox8000, Ox8000, Ox8000

};

inline void med5_1(unsigned short *p, unsigned short *d) {

__asm {

movdqa xmm7, [MIN_SHORT_ARRAY]

push esi

push edi

push ecx

mov esi, [p]

mov edi, Cd]

mov ecx, 96 - 16

L_LOOP:

53

A.l 5-point Median Filter M.A.Sc. - G. XUE - McMaster - ECE

//read 8 red value from the first block, 16-bit depth

movdqa xmmO, [esi + ecx + 0*96]

//convert unsigned short to signed short

psubw xmmO, xmm7

//read 8 red value from the second block, 16-bit depth

movdqa xmm1, [esi + ecx + 1*96]

psubw xmm1, xmm7

//read 8 red value from the third block, 16-bit depth

movdqa xmm2, [esi + ecx + 2*96]

psubw xmm2, xmm7

//read 8 red value from the fourth block, 16-bit depth

movdqa xmm3, [esi + ecx + 3*96]

psubw xmm3, xmm7

//read 8 red value from the fifth block, 16-bit depth

movdqa xmm4, [esi + ecx + 4*96]

psubw xmm4, xmm7

//save a copy

movdqa xmm5, xmmO

//min operation with 8 value parallelly

pminsw xmmO, xmm1

//max operation with 8 value parallelly

pmaxsw xmm5, xmm1

movdqa xmm6, xmm3

pminsw xmm3, xmm4

pmaxsw xmm6, xmm4

pmaxsw xmm3, xmmO

pminsw xmm5, xmm6

movdqa xmmO, xmm5

pminsw xmm5, xmm2

pmaxsw xmmO, xmm2

pminsw xmmO, xmm3

//get the median value of 5 value with 8 parallelly.

54

A.2 3-point Median Filter M.A.Sc. - G. XUE - McMaster - ECE

pmaxsw xmmO, xmm5

//convert signed short to unsigned short

paddw xmmO, xmm7

//write 8 median values to destination.

movdqa Cedi + ecx] , xmmO

sub ecx, 16

jns L_LOOP

pop ecx

pop edi

pop esi

}

}

A.2 3-point Median Filter

The 3-point median filter is implemented by assembler language employing SSE2

instructions. RGB pixels are planar, and each component is 16-bit depth.

inline void med3_1Cunsigned short *p, unsigned short *d) {

__asm {

movdqa xmm7, [MIN_SHORT_ARRAY]

push esi

push edi

push ecx

mov esi, [p]

mov edi, Cd]

mov ecx, 96 - 16

L_LOOP:

//read 8 pixel value from the first block

movdqa xmmO, [esi + ecx + 0*96]

//convert unsigned short to signed short

55

A.2 3-point Median Filter M.A.Sc. - G. XUE - McMaster - ECE

psubw xmmO, xmm7

//read 8 pixel value from the second block

movdqa xmm1, [esi + ecx + 1*96]

psubw xmm1, xmm7

//read 8 pixel value from third block

movdqa xmm2, [esi + ecx + 2*96]

psubw xmm2, xmm7

movdqa xmm5, xmmO

pminsw xmmO, xmm1

pmaxsw xmm1, xmm5

pminsw xmm1, xmm2

pmaxsw xmmO, xmm1

paddw xmmO, xmm7

movdqa Cedi + ecx] , xmmO

sub ecx, 16

jns L_LOOP

pop ecx

pop edi

pop esi

}

}

56

Appendix B

Fast Implementation of

Block-based SAD

The computation of SAD between two 8x8 blocks is implemented by assembler lan­

guage employing SSE2 instructions. RGB pixels are planar, and each component is

16-bit depth.

ecx

xmm5, xmm5

xmm6, xmm6

xmm7, xmm7

esi, [r]

edi, [c]

eax, [pitch]

ecx, [eax * 8]

ecx, eax

xmm1, [esi + ecx * 2]

xmmO, Cedi + ecx * 2]

57

lea

sub

movdqu

movdqu

mov

mov

mov

unsigned int SAD_A_8x8CTIMG *r, TIMG *c, unsigned int pitch) {

__asm{ push esi

push edi

push

pxor

pxor

pxor

L_LOOP: movdqa xmm2, xmml

psubusw xmml, xmmO

psubusw xmmO, xmm2

por xmmO, xmml

sub ecx, eax

movdqa xmm3, xmmO

movdqa xmm4, xmmO

movdqu xmml, [esi + ecx * 2J

movdqu xmmO, Cedi + ecx * 2J
punpcklwd xmm3, xmm7

punpckhwd xmm4, xmm7

paddd xmm5, xmm3

paddd xmm6, xmm4

jnz L LOOP

movdqa xmm2, xmml

psubusw xmml, xmmO

psubusw xmmO, xmm2

por xmmO, xmml

paddd xmm6, xmm5

movdqa xmm3, xmmO

movdqa xmm4, xmmO

punpcklwd xmm3, xmm7

punpckhwd xmm4, xmm7

paddd xmm6, xmm3

paddd xmm6, xmm4

movdqa xmmO, xmm6

psrldq xmm6, 8

paddd xmm6, xmmO

movdqa xmmO, xmm6

psrldq xmm6, 4

paddd xmm6, xmmO

movd eax, xmm6

58

M.A.Sc. - G. XUE - McMaster - ECE

pop ecx

pop edi

pop esi

}

}

59

M.A.Sc. - G. XUE - McMaster - ECE

