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Abstract

This thesis examines problems in two related subject areas.

The first subject area involves the development orthogonal coilocation on finite
elements (OCFE) models for stagewise distillation processes for use in steady-state
optimization. The OCFE model formulation divides the column sections into smaller
subdomains (finite elements) in crder to track irregularities in the column profiles.
Stages that have feed or sidestreams entering or leaving the cclumn are modeled as
discrete equilibrium stages in the OCFE model. An adaptive element breakpoint
placement procedure determines an element partition for each column section so that a
solution of improved accuracy is obtained. The element pastition is based on the
equidistribution of the material and energy balances residuals around envelopes in the
column. OCFE models converge to the same optimal solution as tray-by-tray models in
less computational time, but have similar sensitivity at the optimum with respect to major
model parameters.

The second area involves the study of parametric sensitivity analysis in process
optimization. A sensitivity analysis procedure is developed that calculates the behaviour
of the optimal solution for changes in one independent parameter using continuation
methods. A procedure is proposed to modify the equation set which allows the study of
the etfects of multiple simultaneous parameter variations along specified directions in the
optimal solution. Special attention is given to the detection and analysis of singularities
in the optimal solution path caused by violation of either the strict complementarity.
linear independence or second-order optimality conditions. The methodology provides
information to determine the range of parameter estimate variation for which the active
constraint set or the characteristics of the optimal solution remain unchanged. The
adjustment of the independent variables in a multiple unit flowsheet, so that optimality is

maintained, is investigated in the presence of model parameter variation.
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1. Introduction

Steady-state optimization of chemical processes aims to determine the operating
conditions that provide the optimum value for a specified economic criterion. There are
two major categories of methods for the steady-state optimization, direct search and

model-based optimization methods.

Direct search methods (Garcia and Morari, 1981, McFarlane and Bacon, 1989)
require a number of different plant operating points in order to determine a direction that
optimizes the objective function. This implies that plant experimentation should be
performed that may upset the plant from its normal operating conditions. Such a situation
is undesirable in many cases since the plant may operate under tight specifications that

may be violated in the presence of smail changes in the operating conditions.

Mode!l-based optimization (Darby and White, 1988), that is considered in this
work, requires a process model that describes the underlying material and energy
balances and operating constraints in the plant. The process models are usually based on
certain assumptions in order to provide an acceptable level of accuracy in predicting the
behaviour of the plant with a degree of simplification that will allow their use in an on-
line environment. An optimization algorithm uses the information from the process
model to determine the optimal operating conditions for the plant. However. the plant-
model mismatch inherited from the simplifying assumptions in the model may result in a
considerable amount of discrepancy between the optimal solution of the model and the

actual plant optimum.

The steady-state optimization is embedded into the more general control
framework of on-line real-ime optimizaton (RTO), which attempts to maintain
optimality for the plant in an environment of continuous variations of economic factors

and production specifications. The RTO layer interacts with the advanced process



control system (Prett and Garcia, 1988). RTO provides a number of setpoints for the
independent manipulated variables to the control system that will ensure economic

optimality given the existing economic factors, product specifications and input variables

to the plant.

A typical schematic of the RTO system is shown in Figure 1.1 (Darby and White,
1988, Forbes, 1993). The different stages of the RTO system are summarized as follows:

a) Input data validation. The measurements obtained from the plant are analyzed to
ensure that the piant is at steady-state. Possible erroneous variable measurements due
to gross errors (sensor failures, leakage from process units) are eliminated. The

measurements are then reconciled so that the material and energy balances are satistied

in an optimal sense.

b) Mode! update. The reconciled plant data from the input data validation stage are used
in order to update the estimates of the model parameters. A nonlinear least squares fit
of the model output to the data is the most commonly used method for the model

parameter update. The parameter estimates are subject to a level of uncertainty mainly

due to random measurement errors.

¢) Model-based optimizer. The model parameter estimates are fed into the model-based

optimizer, a nonlinear programming solver, in order to obtain the optimal values for

the manipulated variables.

d) Post-optimality analysis. The last stage of the RTO system will examine the
applicability of the determined optimal set of manipulated variables and check for
violations of the feasible operating window of the plant. Post-optimality analysis
investigates the level of uncertainty in the calculated optimal solution, due to modeling
error and parameter uncertainty, using sensitivity analysis tools. Parametric sensitivity
analysis provides useful information about the variation of the optimal solution for a

given change in the parameter estimates.
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This thesis mainly focuses on the process modeling and post-optimality analysis
stages of the RTO system. The research involves the development of efficient reduced-
order models for use in steady-state optimization for stagewise multicomponent
distillation units and the investigation of the behaviour of the optimal solution obtained

by a model-based optimizer under model parameter variations.
1.1 Reduced-order Models for Optimization of Distillation Units

A large number of fast and efficient algorithms have been developed for the
solution of the tray-by-tray model for distillation columns (Holland, 1981). However, the
computational effort required for the steady-state optimization of distillation units may
increase dramatically when the simultaneous optimization of multiple units is involved.
In real-time applications, such as RTO, process monitoring and fault diagnosis, the time
frame available to reach a decision is very restrictive. An accurate model prediction must
be obtained in a very short dme. Furthermore, reliability and robustness of the model to
different operating conditions become important factors in the proper selection of a

process model.

Thus process model size reduction is useful in many practical applications. A
requirement for a reduced-order model to perform steady-state optimization purposes 1s
that it must recognize the optimal solution of the plant. The simplified model should
have an optimal solution at the same set of manipulated variables as the actual plant.
regardless of the optimal objective function value (Forbes, 1993). In this work it will be
assumed that for distillation units the full-order, tray-by-tray, model represents an
adequate process model as defined by Forbes (1993). Hence the optimal solution of the
proposed reduced-order model will be compared to the optimal solution obtained by a

tray-by-tray model at the same operating conditions.

The simplifying assumptions in a reduced-order model may lead to significant
information loss, particularly gradient information loss, such that the reduced-order

model fails to predict the optimal solution determined by the rigorous modeling option.



Biegler at al. (1985) showed that an “inside-out” type of algorithm (Kisala et al., 1987),
that uses a simplified model in an inner loop with the rigorous model incorporated in an
outer loop, may fail to converge or converges to a different optimum from the rigorous
model solution. Biegler and coworkers required that the simplified model gradients
match the rigorous model gradients in the operating conditions of interest and has a
Karush-Kuhn-Tucker (KKT) point at the rigorous model optimum. However, it is
desirable that the simplified model not only converge to the same optimal solution as the
rigorous model, but also have the same sensitivity at the optimum with respect to the
major model parameters. The reason for maintaining the same sensitivity at the optimum
is that the actual values of the model parameters are not known exactly, due to random

measurement errors and model mismatch, and hence are subject to variation.

The model size reduction technique that is selected for the development of
distillation unii models is based on orthogonal collocation on finite elements (OCFE)
methods. An existing collocation mode!l formulation based on the work by Stewart et al.
(1985) is modified in order to enhance its accuracy in predicting the tray-by-tray sptimal
solution, A new approach is proposed for stages that have sidestreams leaving or
entering the column in a OCFE model. A finite element formulation within each column
section improves the ability of the OCFE model to track irregularities in the composition
and temperature profiles. A procedure is incorporated within the economic optimization
formulation that allows the OCFE model to adaptively change the finite element partition
in the column depending on the optimal operating conditions, so that a solution of
increased accuracy is achieved. The desirable element partition distributes an estimate of
the approximation error equally within the column. Steady-state optimization and
sensitivity analysis results will be used to assess the performance of the OCFE models for

stagewise distillation units.



1.2 Sensitivity Analysis of Chemical Processes

The optimal solution obtained using a model-based optimization is subject to
uncertainty associated with the estimates of the model parameters. Random measurement
errors, measured and unmeasured distur_bances, and changes in the economic factors and
production specifications may cause ihe optimal solution to deviate from the nominal
operating conditions (at which the mode! parameters have been estimated) thus increasing
the modeling emror. Sensitivity analysis aims to determine the change in the optimal
solution given an estimated error in the model parameters (Gal, 1979, Fiacco, 1983). In

this work, only deterministic model parameter variations are considered.

The objective is to develop a systematic methodology for sensitivity analysis in
process optimization. The main interest lies in the investigation of the changes in the
optimal variable values and the optimal objective function value under multiple
simultaneous parameter perturbations over an expected range of uncertainty. This will
provide useful information about the relationship between the optimal solution and
combinations of parameter perturbations. Nonlinear effects may appear in the optimal
solution under multiple parameter variations that cannot be predicted by a local
sensitivity analysis, that evaluates the behaviour of the optimal solution around a
reference point. Sensitivity analysis will expose the importance of the model parameters
to the optimal solution which can be utilized in the parameter estimation stage by
updating the estimates of those parameters whose impact on the optimal solution is the
most significant. Furthermore, the acquired sensitivity information can be used to
determine the largest magnitude for single or multiple parameter variations for which the
process becomes infeasible. In process optimization, with many process units, sensitivity
analysis can be utilized to investigate the interaction between the different units under the

influence of parameter estimate variations.

The method for sensitivity analysis is based on the pathfollowing of the KKT set

using continuation methods for parameter variation along specified directions. Finite



parameter perturbations may cause the optimal solution characteristics {(current active
constraints set, type of extremum) to change, in contrary to local sensitivity results
(Fiacco, 1983). Pathfollowing of the optimal solution attempts to identify the range of
variation for the parameter estimates for which the characteristics of the optimal solution
remain the same. For example aciive set changes will provide useful information about
the importance of process constraints, such as product specifications and capacity

constraints, in the presence of model uncertainty.
1.3 Thesis Outline

A schematic of the thesis outline is summarized in Figure 1.2. The first section
involves the modeling of distillation units for steady-state optimization using orthogonal
collocation, discussed in Chapters 2 and 3, and the second section deals with the study of

the sensitivity analysis in process optimization in Chapters 4 and 3.

Chapter 2 describes the formulation of the OCFE models for distillation units and
the improvements that have been introduced for existing collocation models. The
performance of the OCFE models in steady-state optimization is then assessed by a

number of multicomponent distillation column examples.

Chapter 3 follows with the development of a new procedure for the adaptive
placement of the element breakpoints in the OCFE model so that a more accurate
economic optimal solution is obtained. The approximation error in the optimal solution
of the proposed adaptive procedure for OCFE distillation models is compared to the
accuracy achieved by an existing adaptive procedure that is commonly used in continuous

systems. A number of examples examine the efficiency of the proposed approach.

A sensitivity analysis methodology is presented in Chapter 4. Based on
established theoretical results, an algorithm that traces the optimal solution path for

different parameter values is described. The algorithm is modified to handle multiple
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simultaneous parameter variations. Special attention is given in situations where

singularities in the optimal solution path occur.

A large variety of sensitivity analysis applications are studied in Chapter 5. The
Williams-Otto plant is used to examine the behaviour of the optimal solution for muitiple
parameter variations. Active set variations are studied for a multicomponent distillation
unit and the interaction of different process unmits under parameter uncertainty is
investigated in a distillation column train example. The sensitivity of OCFE distillation
models (developed in Chapter 2) is calcuiated using the proposed methodology. Another
application that involves the OCFE distillation models is the study of the sensituvity of
the economic optimal solution to variations in the elemsent partition, which links directly
to the subject of Chapter 3. The parametric sensitivity of a reactor model described by a

set of differential and algebraic equation completes the set of applications studied.

Chapter 6 summarizes the conclusions and the contributions achieved by this

work.



2. Orthogonal Collocation on Finite Elements Models for

Distillation Units

2.1 Equilibrium Stage Distillation Models - An Overview

A large variety of modeling options have been developed for stagewise separation
columns. Accuracy and simplicity of structure are two very important features for
distillation models. The discussion considers equilibrium stage distillation medels which
can be classified into four categories depending on their structure: tull-order,
compartmental, collocation and short-cut models. The most popular full-order model is
the tray-by-tray model, that generally results in an acceptable level of accuracy for both
steady-state and dynamic simulations. However, the large dimensionality of the resulting

set of nonlinear equations makes the solution of the tray-by-tray models tedious and time

consuming.

There have been a large number of models developed using simplifying
assumptions in order to reduce the size of the model. Some of the most widely applied
methods for distillation modelling that are based on empirical short-cut techniques are:
the Fenske-Underwood-Eduljee equations (Eduljee, 1975), Smoker's equation, the Smith-
Brinkley method (Smith and Brinkley, 1960) and the methods proposed by Glinos and
Malone (1984) for multicomponent mixtures. The degree of simplification of short-cut
models does not allow them to recognize the same optimal solution as the rigorous tray-
by-tray model. The major reason is that even though short-cut models may resuit in
reasonable predictions of the steady-state behaviour of the process, valuable gradient

information has been lost as a result of the simplified assumptions that are made.

Another category of model size reduction is based on compartmental methods that
were first introduced by Esparia and Landau (1978). The dynamic behaviour of a number

of stages was assumed to be well represented by a single equilibrium stage. They
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proposed a separation of the distillation column into three compartments; the condenser,
the rectifying section and the stripping section with the reboiler. Each group of stages
was described as a homogeneous mixture with constant liquid and vapour enthalpies
within each compartment and liquid holdup equal to the sum of the liquid holdup of the
stages in the given compartment. The formulation of the model does not include energy
balances and the values of the equilibrium constants were estimated using input-output
data from the column. A similar approach was followed by Georgakis and Stoever
(1982a, b) for the solution of the dynamic behaviour of linearized separation models. A
large number of compartments (lumps of stages) of unequal number of stages was used to
represent a staged absorber. They transformed the resulting tridiagonal matrix that
corresponds to each lump of stages into an equivalent diagomal matrix, so that

calculations are facilitated.

A further refinement of the compartmental method is due to Benallou et al.
(1986). In their work the full nonlinear characteristics of the distillation process
introduced by the energy balances were incorporated. The material balances around each
compartment were expressed as a function of the sensifive tray and the distillate or
bottoms concentration depending whether the compartment was located in the rectifying
or stripping section of the column. The sensitive fray corresponds to an actual tray that
best represents the dynamics of the given group of trays. However, the location of the
sensitive tray for each compartment and the sufficient number of the compartments
required to actually simulate the behaviour of the column are selected arbitrarily.
Furthermore, the material balances around the compartments require the evaluation of the
equilibrium K-values at all the locations of the actual trays which leads to a substantial
increase in computations. Bequette and Edgar (1988) used a singular value
decomposition technique for the selection, from a group of trays, of the most sensitive
tray to the input variables. Horton et al. (1991) suggested some guidelines regarding the

choice of the sensitive tray, which plays an important role in the time required for the



simulation, and the division of the column into compartments for binary distillation

processes.

Orthogonal collocation techniques belong to the group of methods of weighted
residuals (Villadsen and Michélsen, 1978; Finlayson, 1980) that solve boundary value

problems of the form:
JriC g/(y("'-l)'y(""z) ,,,,, y('),y,x) x e[a,b] (2.1)

with y¥) (a)=y,, and yV(B)=y,, j=0...m (2.1a)

where x is the independent variable, y is the dependent variable, y*™ denotes the m-th

order derivative of y and y, ;, v, , are the fixed boundary values for the derivatives of y.

The main aspect of the methods of weighted residuals (MWR) is the approximation of the

solution of (2.1) by a polynomial series such as:

y=Yax (2.2)

where (2.2) satisfies the boundary conditions {2.1a) associated with problem (2.1).
Substitution of the polynomial approximation, ¥, into (2.1) results in a set of residual

equations.
v - (i 550, 5 ) = R(x T N) (2.3)

Since V is only an approximation of the exact solution, the residuals are not usually zero
and must be minimized in some optimal sense over the entire domain. This is achieved

by requiring the weighted residuals to be zero.
[0 W, R(x.5: N)dx=0 k=1..N (2.4)

Depending on the choice of the weighting function Pff,‘ , different MWR arise. [n the

collocation method W, =& (x—x,), where & is the Dirac delta function, and then
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R(x,‘,j:'; N ) =0, which means that the residuals are satisfied exactly at certain points,

called collocation points. If we divide the interval [a,b] into subdomains and choose

PfQ=1 within a given subdomain, x,_, < x <x,, and zero elsewhere then we have the
subdomain method. Other methods include the method of the moments and the Gaierkin
method, where the residual function is forced to be orthogonal to a family of weighting

functions which implies that the residuals approach zero as the number of approximation

terms N tends to infinity. In the least squares method W, =3 R/Fa, and the residuals
satisfy

[ R x5 N)ax 2.5)

which results in the minimization of the residuals in a least squares sense.

In orthogonal collocation methods, the peints at which the residual equations are
exactly satisfied are chosen to be the roots of orthogonal polynomials which result in the
least approximation error. The solution in every point in the domain is usually expressed
as a function of the values of the state variables at the collocation points and can take the

form:
N

F()=2p,(x)3(x,) (2.6)

j=0

where (x) are known basis functions and jf"(x j) are the values of the state variables at

the collocation points, x;. First and higher-order derivatives of the solution can then be

easily derived by direct differentiation of (2.6) as follows:

X) _say,lx *5(x) Ldiy (%)
ﬁk}% Yy 2SI )

Relations (2.7) imply that the derivatives of the states at every point depend on the values

of the state variables at the collocation points.
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Orthogonal collocation techniques have been used extensively for the solution and
optimization of process systems described by mixed differential/algebraic equations
(Villadsen and Michelsen, 1978; Finlayson, 1980; Renfro, 1986; Cuthrell and Biegler,
1987). The residual equations are nonlinear algebraic equations that can be solved with a

standard equation-based process simulator or optimizer.

Dynamic models of stagewise separation processes using tray-by-tray models
involve the solution of a set of differential equations with time as the independent
variable. The equations describe the behaviour of the state variables (component
composition. temperature) at the equilibrium stages. In steady-state the model becomes a

set of difference equations relating conditions among consecutive stages.

Orthogonal collocation techniques consider the distance from the top of the
column as an additional independent variable in the system and assume that the spatial
dimension is a continuous domain. Composition and temperature are then considered to
be continuous functions of position in the column. This approach consists the major
difference from the tray-by-tray model, where composition and temperature are
discontinuous and evaluated only at the locations of the equilibrium stages. Orthogonal
collocation can be used for the spatial dimension variation to obtain the solution.
Eventually one may use fewer collocation points than the number of actual trays in the

column. thus obtaining a reduced number of equations in the process model.

The first attempt to implement orthogonal collocation as a model reduction
method was discussed by Wong and Luus (1980). 1hey converted the linearized model
equations into a continuous analog described by a set of partial differential cquations
(PDE) in time and one spatial dimension which was solved by collocation at the roots of
Legendre polvnomials. However. Cho and Joseph (1983a) showed that the
approximation scheme that was used for the derivation of the PDE system in the work by

Wong and Luus (1980) did not satisfy material conservation in the column.
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Cho and Joseph (1983a, b) proposed two different procedures for the model
reduction of dynamic disiillation models using collocation techniques. The first method
is similar to that described by Wong and Luus (1980) but satisfies the material balances
around any enscribed envelope in the column. The second method is a direct
implementation of the orthogonal collocation in the equation set. They used the roots of
Jacobi polynomials as collocation points. Jacobi polynomials treat the spatial domain as
a contintum. However, as mentioned by Stewart et al. (1985) Jacobi polynomials do not
recover the full-order model whenever the number of collocation points is equal to the
number of actual trays that they represent. This disadvantage of the Jacobi polynomials
prompted Stewart and coworkers to use the roots of the Hahn discrete polynomials as
collocation points, The roots of such polynomials coincide with the equilibrium stages in
the limiting case of equal number of collocation points and stages in the tray-by-tray

model.

All these collocation models treat the number of stages as a continuous variable
with the composition and temperature varying continuously throughout the column. The
tray-by-tray equations material and energy balances and equilibrium relations are
assumed to be satisfied exactly at the collocation points. The residual equations are then
solved to obtain the values of the state variables at the collocation points. Although the
collocation point locations do not necessarily have any physical meaning in the model,
since they need not correspond to the location of any stage, the nature of the full-order,

tray-by-tray, model is preserved.

Stewart et al. (1985) and Srivastava and Joseph (1985) studied the effects of
different polynomials and the parameters in the weighting function in the orthogonality
relation of the polynomials, on the accuracy of the solution. These parameters govemn the
distribution of the collocation points in the domain. Hahn polynomials with uniformly
distributed collocation points proved to be superior to Jacobi polynomials in terms of the

magnitude of approximation error achieved.
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Discontinuities in the composition and temperature profiles due to feed streams
and sidestreams were treated by applying different interpolating polynomials above and
below the point of discontinuity (Stewart et al., 1985; Srivastava and Joseph, 1987a,
Pinto and Biscaia, 1988). This formulation is similar to orthogonal collocation on finite
elements (OCFE) with the breakpoints of the finite elements at the points of
discontinuities. However, these approaches do not accurately estimate the distribution of
the feed stream in the two phases. A new approach to handle the feed tray discontinuity
will be presented in Section 2.3.1. Swartz and Stewart (1987) used finite elements in the
simulation of multiphase distillation, where the element breakpoints were located at the

moving miscibility front of the two liquid phases.

Recently, Huss and Westerberg (1994) suggested a variable transformation for
both the stage number and the component mole fractions. Their motivation was to
straighten the composition profiles, in order to represent more accurately flat regions in
the column profiles. However, low-order polynomial interpolation can also provide a

good approximation of flat composition profiles as will be shown in the following

secfions.

Swartz and Stewart (1986) used orthogonal collocation methods for the optimal
design of stagewise distillation columns by transforming the discrete problem into a

continuous one that can be solved by standard nonlinear programming (NLP) methods.

2.2 Full-order Model

2.2.1 Tray-by-tray Model Formulation

The full-order model used for the steady-state simulation and optimization of a
stagewise distillation column is a tray-by-tray model applying mass and cnergy balances

and equilibrium relations at each tray in the column.

Similar to Stewart et al. (1983), the major assumptions made are:



a. Complete mixing of each phase at each stage.
b. Constant holdups of liquid and no vapour phase holdup on each stage.
c. No liquid entrainment from stage to stage.

d. Adiabat’c stages; no heat losses from the column.

17

e. Thermal equilibrium between the leaving liquid and vapour stream from each stage.

On every tray, i, the MESH equations (Material balances, Equilibium relations,

Summation relations and Heat enthalpy or energy balances) are applied as follows:

[

=

[tV I, =V +fa=0 m=1L. NC

mi+| m

Li—l Hl{:] + 4

i*]

HY,, - LH} -V,H! + FHE =0

i+|

where
NC
L:' = Zlmi
m=]

NC
Vi= 2, Vs

m=l

i irtmin

Vs =Kol T Pl Vs )2V, m=1,..,NC

~NC ]

HE = HE (7)

m=l

ij = i %H:.f(vm-z-ﬂ)
m=i i

Index i denotes the tray number and m denotes the component. /.;, v

v 'mi

(2.10)

2.11)

(2.12)

(2.13)

(2.14)

and L, V; are the

component and total liquid and vapour molar flow rates, respectively. 7;and P; are the

temperature and pressure at each equilibrium stage. A and H;" are the liquid and vapour

total molar enthalpies at every stage and H,' and H,;" are the liquid and vapour
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component molar enthalpies. A schematic of a conventional tray distillation column is

shown in Figure 2.1.

A Murphree stage efficiency may be used for each stage

vmj+l Vm.i vmj*l v;u' I3 -
V—"— 7 =Eyy,mj V__? m=1,..., NC (213)

ivl f i+l i

where v,,, is the vapour flow rate of the m-th component if phase equilibrium was

established.

The total number of equations in the model is further reduced by eliminating the
component vapour molar flows using the equilibrium relations (2.12) as suggested by
Holland (1981). The total number of variables involved in a tray-by-tray model for a
fixed feed stream composition and temperature and fixed pressure in the column is equal
to NT(NC+3), where NT and NC are the numbers of trays and components in the colnmn
respectively. The formulation in liquid flow rates evaluates the equilibrium relations for
each component in every tray, only once for every Newton-Raphson iteration. The
advantage of this elimination is that the total number of nonlinear constraints and
variables is reduced and hence the efficiency and the speed of the NLP solver may be
improved, even though the Jacobian matrix becomes denser. On the other hand the
block-tridiagonal form of the Jacobian is preserved. For a typical case involving a four
component distillation column the solution time was reduced by a factor of 2. using

MINOS 5.3 as the equation solver, as a direct result of this formulation.

Equilibrium coefficients, liquid and vapour stream enthalpies are evaluated on
each tray using simplified regressed equations based on fitting rigorous thermodynamic
models. Thermodynamic data were determined for single liquid phase solutions at the
operating conditions of the columns used in the examples and regressed equations were

fit to these data (Bailey, 1991). K-values are determined at each stage using regressed

equations of the form:
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Figure 2.1 Schematic of a conventional tray distillation column.



K,; =exp(a,, +a,,T +a,, I +a,,P) m=1..NC  (2.16)
The component molar liquid enthalpy is given by the following regressed equation:

Hn’;.,.=b,,,.,+bm.2" +b T2 +b T

corrm i m3*corrmi 4 % corrm i

m=1...NC 217

where 7, . is a corrected temperature defined as:

NC NC
I;:)rr.m.l = T; T;.m (Z ka Vc.k} / [Zxk.i Vc.k T::k) m=1,..., NC (2 18)
k=l k=l

where V., and T, are the critical volume and temperature of the m-th component
respectively and x,; are the liquid molar fractions of each component. Finally liquid

molar enthalpy is given by (2.13).
The molar vapour enthalpy for each component is given by the expression:
H::J' =Cm.l +Cm,2pri., -‘!"ijpr,,,_|i +cm.4ﬂ_1pr,1 +Cm.Sy;,,J +cm.6?;':_, m=1,..., NC (219)

where
P, =P, exp(l - T) m=1,...,NC (2.20)

7, and P, = are the reduced temperature and pressure of the m-th component at the i-th

tray. The total molar vapour enthalpy is then calculated by (2.14).

2.2.2 Solution Methods of the MESH Equations

The solution methods for the MESH equations can be classitied into two main
categories: simultaneous convergence methods and equation decoupling methods. The
methods of the first category attempt to obtain the solution by working in the full set of
equations simultaneously. The latter methods are based on a partition of the equation set

that are being solved in a layered approach. An extensive review of most of these



strategies that have developed for the solution of the MESH equations can be found in
Wang and Wang (1981).

The most commonly used method for the simultaneous solution of the MESH
equations is Ncwton-Raphson- method. The convergence rate of Newton-Raphson
method accelerates as it approaches the solution, but the method may fail if the initial
guesses for the variables are away from the solution. Naphtali and Sandholm (1971)
applied the method and showed that the Jacobian matrix is a block-tridiagonal matrix
which can be easily solved by a Gaussian elimination scheme. Buzzi-Ferraris (1981)
showed however that the block tridiagonal structure is destroyed when nonstandard
specifications are incorporated or interlinking between columns exists. For such cases
efficient solution algorithms were proposed by Buzzi-Ferraris (1981). Since the
computational effort to evaluate the Jacobian matrix may become extremely large, a

quasi-Newton approximation to the Jacobian may be used (Rheinboldt, 1984),

In order to alleviate some of the problems of Newton-Raphson method manv
different strategies were developed, including a damped Newton method (Naphtali and
Sandholm, 1971) and continuation methods that can guarantee convergence from a wider

range of initial guesses (Vickery and Taylor, 1986, and Vickery et al., 1988).

The category of equation decoupling solution algorithms include the 8-method of
convergence by Holland (1980) and the “inside-out™ algorithms. The main philosophy
behind the inside-out algorithms is that a simpler problem, based on a subset of the total
equations. is solved in an inner iteration loop keeping some of the variables fixed. Upon
convergence in the inner loop the fixed variables are updated in an outer loop. Different
pairings of equations with variables are possible which result in efficient algorithms

(Boston and Sullivan. 1974, Russell. 1983, and Wu and Bishnoi. 1988).
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2.3 Orthogonal Collocation on Finite Elements Models

2.3.1 Orthogonal Collocation on Column Sections

The development of the reduced order models is based on the same assumptions
made for the tray-by-tray model. Distillation columns are separated into sections, each
defined as the group of trays between two sidestreamns leaving or entering the column. A
column with a single feed stream, two product streams and no sidestreams is separated
into two sections, the rectifying and the stripping sections. The number of stages in each
section is considered to be a continuous variable. The condenser, feed tray and reboiler
are treated as discrete equilibrium stages. The formulation of the model can be applied in
any column, regardless of the number of sidestreams, by locating the breakpoints of the

elements at the trays where the sidestreams enter or leave the column.

Liquid and vapour component molar flows, as well as liquid and vapour phase
enthalpies, are expressed as polynomial functions of position in the given column section.
These functions are to be adjusted so that the equations which describe the material,
energy and equilibrium relationships in the column are satisfied exactly at the collocation
points. In every section, the number of # interior collocation points is specified, with the
restriction that » must be no greater than the number of stages, N7, contained in that
section. Also, the boundary points of each section 5,=0 and s, +1=NT+1 are used as
interpolation points for liquid and vapour states respectively. Beginning with the general
formulation of the model, the approximation functions that are used in the collocation

scheme are:

Z,,(s)=iW,j?;(sj) 0<s<NT, m=1..,NC (2.21)

J=0

n+l

T(5)= 2T, (s,) ISSSNT+L m=1..,NC (2.22)

j=



=S, I(s)B4s,)  Osss<AT (2.23)
Ju=
(s)H" (s)= Zl V(s )H" (s;) 1<5< NT+1 (2.24)
J=l
where
NC

V(sy=> ¥,(s) (2.26)

me|

The functions, IVi; and W, are Lagrange interpolation polynomials of order n+1, given

by the expressions:

o) =Il—g  7=0m @.27)
iy

W (s) = 2% =l...n+1 (2.28)

TS A ) Jj=L.., n 22
A

The Lagrange polynomials W) and W,; are equal to zero at collocation points s,, that A=/
and equal to unity when £=;. The numbering in the approximation polynomials for the
liquid and vapour states (2.27 and 7.28) is not the same because interpolation points are

shifted by one to take into account the condenser and the reboiler.

A set of residual equations results from substituting the approximation relations
for the variables (2.21-2.24) into the matenial and energy balance equations (2.8, 2.9) at
the collocation points. The residuals of these equations are required to be zero at the

collocation points. s;.
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Material balance residual equations
L(s, = 1)+%,(s; +1)-T(s,)-7.(5,)=0  m=1..NC j=1..n (229

Equilibrium equations

m=1,.,NC j=1,..n (2.30)

v, (s ; ) n - ~ _
“f;_"(';)' - KM(T(SJ- ), P(Sj ), Im(sj),vm (Sj )) E(Sj)
Energy balance residual equations

E(sj—l)f?"'(sj—l)i—f}'(sj+1)FIV(SJ.+1)~Z(::j)ﬁL(sj)—V(sj)ﬁy(sj)=0 J=lL...n
(23D

Similar to the procedure used in the full-order model, the molar vapour
component flows are eliminated from (2.29) and (2.31) by using the equilibrium
equations (2.30). The vapuur component molar flow rates are not included in the set of
nonlinear variables. The formulation requires the evaluation of the equilibrium

parameters only once per collocation point and iteration.

Those points within the column in which discontinuities in the liquid or vapour
composition occur (such as the condenser, feed plate and the reboiler) are treated as
discrete equilibrium stages by applying separate mass and energy balances. This
approach is similar to that proposed by Stewart et al. (1985) with the exception that in the
present work the feed plate is treated as a separate equilibrium stage. Stewart et al.
{1985} proposed that the liquid and vapour part of the feed stream must be added to the
liquid and vapour streams connecting the two column sections which is correct only in
the case of adiabatic columns of constant molar overflow. In general, the temperature
and composition at the feed plate change in order to satisfy the product quality
specifications. [n addition, feed stream conditions strongly affect the temperature and the
distribution of the feed stream into the liquid and vapour phases. Srivastava and Joseph
(1987) and Pinto and Biscaia (1988) suggested that the feed plate should be a collocation
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point for the approximation schemes in both column sections. However, such a
formulation does not isolate the discontinuity in the composition and temperature profiles
since the feed plate acts as an interpolation and collocation point for the continuous
Lagrange polynomials. This formulation will diminish the accuracy of the approximation
using Lagrange interpolation. Pinto and Biscaia (1988) explored the performance of
several collocation schemes in predicting the full-order behaviour and used a special type
of discrete polynomial in order to place a collocation point at the feed plate that does not
follow the properties of the Hahn polynomials at the limit of equal number of collocation
points and trays. Kim et al. (1989) suggested a sequential modular approach on the
column sections to deal with the feed iray discontinuity; however, this method requires an

additionat iterative procedure to obtain the solution.

Mass balance, equilibrium and energy balance relations are solved at the feed
plate given the feed flow rate and feed enthalpy. The model equations for the condenser,

the feed plate and the reboiler are given below:

condenser
Hg +i -
W) (s5) - L' (s0) -da =0 m=1...NC (2.32)
i=
g+l ) - -
WA, (sy ) Hi sy )= Lo(s))Hi (s} -DH, + 0, =0 (2.33)
1=l
d'n D7 o | rmn(s ) p . A
- KTl ) P (S"))mﬁ =0 m=1..NC (2.34)
feed tray
el Hg - -
Y WIS (sg) + XAV L (54) T (5,00) - L (s5)+ fu =0 m=1...NC
J=1 j=tt



e+l

S 5 (075 ) B (55) + TR (NT) L (55 )AL (55 e (s S ()~
j=l =0 (2.36)
L(so)Hi(s,)+ FHF =0
vnf( n,+l) Fis -~ Z:(Su)
m- K2 (Ty(s0). () AN 0 m=L..NC (2.37)
reboiler
2% W) (NI (55) -3 (531 )-bw =0 m=1.. NC (2.38)
,:

Z W;f(NT;.) Zs(s.ﬁ)‘i};‘ (Sb]i)-f;(snsﬂ )E’: (S,._‘.ﬂ)‘“ B H;’} +0, =0 (239

AT LA

Index R is used for the rectifying section and irdex S is used for the stripping section of
the column. Figure 2.2 shows the formulation of the feed stage. The composition and the
enthalpy of the vapour stream entering the condenser, the liquid stream entering the
reboiler, and the liquid and vapour streams entering the feed plate are determined by
extrapolation using the Lagrange polynomial of the section in which each stream is
located. For the liquid state, component molar flow rates and total enthalpy are evaluated
by extrapolation at points s=NT, and s=NT for the rectifying and stripping sections
respectively, which correspond to the endpoints of each column section for the liquid

states, and for the vapour state at point s=1 for both column sections.

Equilibrium coefficients and component enthalpies are calculated using the

regressed equations (2.16), (2.17) and (2.19).

Stewart et al. (1985) investigated the approximation error using different families

of orthogonal polynomials for the selection of collocation points and showed that the
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roots of the Hahn orthogonal polynomials are the best selection. Hahn polynomials
On(x;a, B,M) obey the weighted orthogonality condition:

M

2 Mxa. MO, (va B M) (xa B M)=0 (m=zn) (241)
where
. _ (a+1)x (JB-}.I)M—x
wxi. 5, M) = x! (M -x)! 242)

Stewart et al. (1985) reported that when both parameters o and § have the value zero,
which results in a uniform weighting to the residuals, then the approximation error
becomes the least among other selections for the values of the parameters. The
collocation points in such a case are distributed uniformly in the given column section

and are the roots of a Hahn orthogonal polynomial (2.41) with x=s-1 and M=NT-1.

Another useful property of the Hahn polynomials is that whenever the number of
interior collocation points is equal to the number of stages in this section then the roots of
the polynomials coincide with the discrete stages and thus the full model is recovered.
The collocation model retains the stagewise structure of the full-order (tray-by-tray)
model and approximates it with fewer equations. At the limit where the number of trays
and collocation points approaches infinity the roots of the Hahn and Jacobi polynomials
become identical and the complete continuous domain is recovered. For more details
about the properties of Hahn polynomials such as analytical expressions for the roots of
up to fourth order polynomials, the reader is referred to Stewart et al. (1985) and Askey
(1975).

2.3.2 Orthogonal Collocation on Finite Elements of Column Sections

The coilocation method on the column sections described in the previous section

uses (n+1)-th order approximation polynomials for each column section where 7 is the
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total number of collocation points in each column section. When the composition
profiles in the column are steep or change rapidly, then a large number of collocation
points would be required to track the steep fronts in the solution and obtain an accurate

approximation. Thus each section is divided into smaller parts, named finite elements.

A more accurate representation can be achieved if the division of each column
section into smaller subdomains is made such that the density of collocation points is
greater in those regions where significant changes in the composition or temperature
occur. Fewer collocation points can be used where the profiles in the column follow a
smooth behaviour. A (k+1)-th order polynomial is defined on every element, where k& is
the number of collocation points in the element and a set of piecewise continuous
polynomials (2.27, 2.28) is used for the approximation. This results in the use of more
low-order Lagrange interpolation polynomials compared with collocation schemes of the
same total number of collocation points and only one element per column section. Each
finite element is bounded by two endpoints (breakpoints). At the breakpoints of each
element, continuity of the polynomials is required, so that the piecewise approximation
function is continuous throughout the entire column section. The formulation of this
technique for a conventional distillation column with two finite elements on each section

is shown in Figure 2.3.

Similar to the method described in the preceding section, 4, interior collocation
points, which are the roots of Hahn orthogonal polynomials. are selected for every finite
element. Also 5;,=0 and s, , = NT, + 1. where NT; is the number of stages in the i-th
element, are interpolation points for liquid and vapour phase approximation polynomials

respectively.

The boundary conditions between finite elements obey zero-order continuity and are

given by:
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liquid phase

Z PKJ,J(NT:)ZM(SL;)=anﬂ(s,q_g) m= 1,...,.’VC (2.43)
j=0
vapour phase
Ko+l
Vs (Ss,k,+1) = Z Yy (l)vm.hl(sid.j) m=1,..,NC (2.44)

j=!

where index i denotes the element. Similar relations are used for the total liquid and
vapour stream enthalpy. Detailed representation of the boundary conditions of the
elements is shown in Figure 2.4. Liquid molar flow rates and enthalpy of the stream
leaving the i-th element are evaluated by extrapolation at point NT; using the Lagrange
polynomial for i-th element. An analogous procedure is used for the vapour molar flow
rates and enthalpy of the stream entering the (i+1)-th element. They are calculated by

extrapolation at point s;,,=1 using the Lagrange polynomial for the (i+1)-th element.

The size of each finite element can be determined such that the total
approximation error in every column section is minimized. Such a procedure will be
presented in Chapter 3. Hahn polynomials can be applied not only for integer values but
also for real values of NT;; the length of every finite element can be any real number. The
only requirement is that the sum of all the finite element lengths in each column section is
equal to the integer number of equilibrium stages in that section. In addition the order ot
the interpolation polynomial used to approximate the behaviour of the variables in a

given element can not exceed the number of equilibrium stages included in the clement.

An alternative method for approximating composition and temperature profiles in
the column is to use cubic splines instead of Lagrange polynomials. Cubic splines may
allow the second derivative of the piecewise cubic interpolation functions to be
continuous at the knots connecting the elements of each section which implies continuity

of curvature (de Boor, 1985). However, since derivative information is not available
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regarding the approximated functions of component composition and temperature,
because of the discrete nature of the full-order model, the properties of splines are not
helpful. Although the models using cubic spline interpolation polynomials approach the
optimum solution, there is no definite advantage both in computational time and accuracy
of the spline collocation model. The set of equations becomes more complicated because
the derivatives of the approximated function need to be estimated, thus making the
optimization problem more difficult to solve. Cubic spline methods were not explored
any further in this work. Higher-order continuity may though be beneficial in the
simuiation of of packed distillation columns where the spatial domain is by its nature
continuous. Such a situation was examined by Wardle and Hapoglu (1994) who

incorporated the use of Hermite interpolating polynomials within each element.

2.4 Steady-State Optimization of Distillation Columns

The performance of the OCFE models in steady-state optimization is tested with
four distillation columns, Two different NLP solvers have been used to determine the
optimal solution for the distillation columns: MINOS 5.3, an augmented projected
Lagrangian algorithm (Murtagh and Saunders, 1990), and a reduced sequential quadratic
programming (r-SQP) algorithm developed for large-scale problems (Schmid and
Biegler, 1994).

2.4.1 Casel: Propylene-propane (Cj;) splitter

This example involves the optimization of a propylene-propane splitter. The main
characteristics of this type of distillation column are: high reflux ratios (which increases
the operating costs) and a large number of equilibrium stages (because of the low relative
volatility of the two components). The conditions of the feed stream as well as other
characteristics and specifications of the column are shown in Table 2.1. The regressed
equations (2.16, 2.17 and 2.19) are used for the evaluation of the thermodynamic

properties of the liquid and vapour phases except tuat absolute temperatures were used for



Table 2.1 Column specifications.

Casel Casell Case [I1 Case [V
Cj3 splitter DIB C3-Cy splitter EB/S
Feed
Total flowrate (Mmol/d) 1.0734 6.4240 74544 0.193%7
Temperature (°C) 46.11 94.80 69.88 110.0
Pressure (kPa) 1860.60 1730.40 1741.00 43.40
Compaosition (Yemol)
ethane - - 0.09 -
propylene 89.73 - - -
propane 10.27 3.83 2211 -
i-butane - 63.76 52.47 -
n-butane - 28.22 23.09 -
i-pentane - 4.19 207 -
pentane - - 0.17 -
cthyi-benzene (EB) - - - 53.52
styrene - - - 46.48
Condenser type equilibrium equilibrium equilibriom equilibrium
Reboiler type equilibrium equilibrium equilibrium equilibrium
Ideal stages
rectifying section 1] 14 9 a5
stripping section 60 1% [ 15
Product specifications
Overhead product (35mol) propane < .25 n-butane £ 3.0 i-hutane < 0.6 styrene < 3.06

Bottoms product (%omol}

propyiene < 4.50

i-butane £ 3.0

propane < 4.0

EB = (130




35

the calculation of the liquid enthalpy. The values of the parameters that are used in the
regressed equations are given in Appendix A. The assumption of ideal solutions was
made for the evaluation of the thermodynamic properties and the present method requires
modification as suggested by Swartz and Stewart (1987) when applied to multiphase
distillation. Pressure is fixed for every tray at the values given by a simulation case. The
pressure at each collocation point is calculated by a linear interpolation of the pressure
values at the two neighbouring trays. If the pressure is not specified at every tray, then
given the total pressure drop within the column and the pressure at the condenser, the
pressure of each tray is calculated by linear interpolation between the values of pressure
at the top and the bottom of the column. The initial point for the optimization is the
solution of a simulation case using HYSIM 1.51 (Hyprotech, 1991) and interpolating
linearly between the equilibrium stages to obtain the values of the variables at the
collocation points. The total number of nonlinear constraints for an OCFE model with n
collocation points, after elimination of the vapour component molar flow rates using the

equilibrium relations, is calculated as follows:
Mass balances: [# + 3] NC
Energy balances: [n + 3]
Summation equations: [# + 3] 2
Molar tractions at the overhead and bottoms products: 2 NC
Reflux ratio relation

In the mass and energy balances, the equations for the three discrete equlibrium
stages in the model (condenser, feed plate and reboiler) are included. There are two

degrees of freedom for the column because pressure and feed conditions are specified.

Two different cases are examined. The first case involves the minimization of a
linear objective function that penalizes the utility costs (steam used in the reboiler and

coolant used in the condenser) required for the separation which takes the form:
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Cost,=Cy @z - C, O (2.45)

The second case-study has a nonlinear objective function which includes the cost

of the utilities and the differential value of the components in the two product streams.
Cost, =Cp Qg +C, Op+Cyy xpp D +Cyx,, B (2.46)
The values of the cost parameters are given in Appendix B.

Optimization resuits for the C,-splitter are shown in Tables 2.2 and 2.3. Both
tray-by-tray and OCFE models converge to the same optimal solution and the same set of
constraints is active at the optimum for both case-studies. In the case of the linear
objective the optimal solution is constrained (Table 2.2), which impilies that there are no
degrees of freedom associated with the optimal solution. The Lagrange multipliers
(marginal values) of the active product specification constraints are nearly identical for
tray-by-tray and OCFE models. The Lagrange multiplier of an active constraint indicates
the magnitude of change in the objective function per unit increase or decrease in the
right-hand-side term of the constraint and show the sensitivity of the optimal solution to
the relaxation or tightening of the given constraint. This is only valid for infinitesimal
changes in the right-hand-side term of the conmstraints. As a reminder, Lagrange
multipliers should not be confused with Lagrange interpolation polynomials being used
in the development of the OCFE models. Optimization results show that a short-cut
model based on the Fenske-Underwood-Eduljee equations failed 1o predict the same

optimal solution as the tray-by-tray model (Table 2.2 and 2.3).

In the case with the nonlinear objeciive function the optimal solution is
unconstrained and the optimal solutions obtained by both the OCFE and the full-order

model are in good agreement.

The OCFE model consists of three elements in each section and three collocation
points are used in every element for fourth-order Lagrange interpolation polynomiais.

The model size is reduced by a factor of 8 compared to the corresponding tray-by-tray
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Table 2.2 Propylene-propane splitter optimization results with linear objective.

Tray-by-tray OCFE modified Stewart Short-cut
et al. approach

Reflux ratio | 19.708 19.701 19.835 17.785
Condenser heat duty (GJ/d) -239.056 -238.972 -240.595 -210.953
Reboler heat duty (GJ/d) 237.743 237.659 239.282 222.815
Qverhead product:

mol% propylene 99.75 99.75 99.75 99.75
Lagrange naultiplier for propane =
0.25 %amol {S/mol frac.) -61,004 -60.949 -62.235 -41.788
Flow (Mmol/d) 0.965 0.965 0.965 0.963
Bottoms product:

mol% propane 99.50 99.50 99.50 99.50
Lagrange multiplier for propylene
= 0.50 %mol ($/mol frac.) -10,358 -10,317 -10,543 -12,209
Flow (Mmol/d) 0.108 0.108 0.108 0.108
VAX 3500 CPU time (s}

r-5QP 49.5 13.7 - -
MINOS 5.3 326.0 13.0 17.8 1.3
number of equations 830 110 110 7
number of variables 382 112 112 9
Objective function value ($/d) 666.203 665.971 670.515 623.883
MINOS 5.5 Options

Lacrangian No No No No
Penalty parameter 0.0 0.0 0.0 0.0
Minor lterations 100 100 100 Default

OCFE model: 3 clements/section (equispaced), 3 collocation points/element.

Short-cut model: Fenske-Underwood-Eduljee equations.




Table 2.3 Propylene-propane splitter optimization results with nonlinear objective.

3R

Solver r-SQP Tray-by-tray OCFE Short-cut
Reflux ratio 20.310 20.309 17.804
Condenser heat duty (GJ/d) 246,229 -246.215 -
Reboiler heat duty (Gl/d) 244909 244,896 -
Overhead product:
mol% propylene 99.795 99.793 99.875
mol% propane 0.207 0.207 0.125
Flow (Mmol/d) 0.965 0.965 0.963
Bottoms product:
mol% propylene 0.597 0.596 0.101
moi% propane 99.403 99.404 95.909
Flow {(Mmol/d} 0.109 0.109 0.109
RS/6000 355 CPU time (s) 17.9 5.4 0.2
number of equations 880 110 7
number of variables 882 112 9
Objective function value (8/d) 898.139 897.910 809.128

OCFE model: 3 clements/section (equispaced), 3 collocation points/element,

Short-cut mode!: Fenske-Underwood-Eduljee equations.




model, and as a consequence, the computational time to obtain the solution is reduced
significantly. The CPU time to obtain the solution on a VAX 3500, using MINGS 5.3 as
the NLP solver, is decreased by a factor of 11 for the OCFE model for the linear objective
case. The OCFE model is about 3.5 times faster than tray-by-tray when the r-SQP code is
used for the optimization for both cases. The reflux ratio and the bottoms product flow
rate are selected as the independent variables in the r-SQP for the decompesition of the
Hessian matrix. The large model size reduction in the OCFE formulation is mainiy due
to the large flat regions in the component profiles of the column as shown in Figures 2.3
and 2.6. These flat regions allow the use of only a few collocation points for an accurate

representation of the tray-by-tray solution.

The temperature and liquid composition profiles at the optimum for both models
are shown in Figures 2.5 and 2.6 respectively. Clearly, OCFE models perform well in

predicting the optimal profile of the C,-splitter.

2.4.2 CaseIl: Deisobutanizer (DIB)

This case involves the optimization of a four component deisobutanizer (DIB).
The column specifications are shown in Table 2.1. The setpoints for the control scheme
are the purity levels in the two product streams. The two objective functions (2.45) and

(2.46) are considered in the DIB optimization.

Tubles 2.4 and 2.5 show the optimization results for the DIB using the two
different objective functions. The OCFE model for the DIB consists of three elements for
every column section and two and three collocation points per element for the rectifying
and stripping sections respectively. Finite elements of different sizes are used because an
equispaced OCFE model with the same total number of collocation points fails to
converge o the optimal solution. Both models converge to the same solution but OCFE
requires about half of the tray-by-tray CPU time using MINOS 5.3 as the optimization
algorithm. OCFE models converge with difficulty when the r-SQP algorithm is used.
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Figure2.5 Comparison of the temperature profiles at the optimum in the tray-by-iray and
OCFE models for the Cs-splitter.
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Figure 2.6 Comparison of the liquid composition profiles at the optimum in the

tray-by-tray and OCFE models tor the Ci-splitter.



Table 2.4 Deisobutanizer (DIB) optimization results with linear objective.

42

Tray-by-tray | Tray-by-tray OCFE A OCFE B Short-cut

Solver -SQP MINOS 5.3 r-SQP MINOS 5.3 MINOS 5.3
Reflux ratic 7.043 7.043 7.043 7.043 7.358
Condenser heat duty (Gi/d) -565.206 -565.206 -565.205 -565.205 -671.317
Reboiler heat duty (GJ/d) 584.191 584.191 584.191 584.190 694.694
Overhead product:

mol% propane 5.63 5.63 5.63 5.63 5.63
mol% i-butane 91.37 91.37 91.37 9137 91.37
Lagrange multiplier for n-butane
= 3.0 %mol ($/mol frac.) -25,737 -25,741 -25,737 -25.737 -21,218
Flow (Mmol/d) 4370 4.370 4,370 4.370 4.370
Bottoms product:

mol% n-butane 81.89 §1.89 81.89 31.89 §1.89
mol% i-pentane 13.11 13.11 13.11 13.11 13.11
Lagrange multiplier for i-butane
= 5.0 %mol ($/mol frac.) -7.195 -7.196 -7,195 -7,194 -11,621
Flow {(Mmaol/d) 2.054 2.054 2.054 2.054 2.054
VAX 3500 CPU time {s) 293 55.5 40.1 29.0 3.5
number of equations 240 240 177 135 14
number of variables 242 242 179 137 16
Objective function value ($/d) 1628.14 1628.14 1628.14 1628.12 1503.66
MINQS 5.3 Options

Lagrangian - No - No No !
Penalty parameter - 0.0 - 0.0 Detuult l
Minor Iterations - 100 - 100 100

OCFE A model: 3 elements/section (equispaced), 3 collocation points/element in rectifying section, 4 collocation

points/element in stripping section.

OCFE B model: 3 elements/section, 2 collocation points/element in rectifying section, 3 collocation points/element in

stripping section. clement lengths: rectifying section: 3.805, 3.740, 4.455, stripping section: 5.784, 4,927, 7.289.

Short-cut modet: Fenske-Underwood-Eduljee equations.



Table 2.5 Deisobutanizer (DIB) optimization results with nonlinear objective.

Solver MINOS 5.3 Tray-by-tray OCFE
Reflux ratio ) 10.078 10.077
Condenser heat duty (GJ/d) -810.458 -810.409
Reboiler heat duty (Gl/d) 831.339 831.292
Overhead product:
mol% propane 5.617 5.617
mol% i-butane 92.241 92.240
mol% n-butane 2.142 2.143
Flow (Mmolid) 4.380 4.380

Bottoms product:

mol% i-butane 2.720 2.718
mol% n-butane 84.110 84.111
mol% i-pentane 13.170 13.170
Flow (Mmol/d} 2.044 2.044
RS/6000 355 CPU time (s) 18.7 9.0
numbet of equations 240 135
number of variables 242 137
Objective function value (5/d) 4560.32 4560.33

MINOS 5.3 Options

Lagrangian Yes Yes
Penalty parameter 10.0 120.0
Minor lterations 100 100

OCFE model; 3 elements/section. 2 collocation pointsrelement in rectifying section, 3 collocation points/element in

stripping section. element lengths: rectifving section: 3.900, 3.900, 4.200, stripping section: 3.230, 4.903, 7.367.



The minimal OCFE model size for which a feasible solution is obtained using r-SQP is
greater than the one achieved with MINOS 5.3. The r-SQP algorithm has proved to be
more sensitive to the initial point than MINOS 5.3. Tables 2.4 and 2.5 report also the
options parameters that are used for MINOS 5.3. In the first case, with the linear
objective, both tray-by-tray and OCFE models converge faster when the augmented
Lagrangian function is not used as the objective function in the linearized subproblems,
but in the nonlinear objective case the use of the Lagrangian is crucial. A penalty

parameter equal to 100 is used with the OCFE model since the initial infeasibilities are
higher than in the tray-by-tray model.

The 1-butane and n-butane liquid molar flow rates at the optimal solution for both
models are shown in Figure 2.7 and verify the agreement of the optimal solution obtained
by the two different process models. The liquid composition profiles for the non-key
components propane and i-pentane are shown in Figure 2.8. The profiles show that
OCFE models predict the composition of nonkey components accurately. Figure 2.9

shows the temperature profile at the optimum as calculated by the two modeling options.

The proposed OCFE models are compared to the existing collocation models
proposed by Stewart et al. (1985). The collocation model proposed by Stewart et al.
(1985) uses only one interpolation polynomial for each column section. However, for
these simulations, Stewart et al. model is implemented with an equal number of finite
elements as the proposed OCFE model and will be called the modified Stewart ct al.
model. The only difference between the original and modified models 15 in the treatment
of the feed plate discontinuity. For the C;-splitter, the optimal solution obtained with the
modified Stewart et al. model is not very different from the tray-by-tray solution but
worse than the solution of the proposed OCFE approach (Table 2.2). However, for the
case of the more complex DIB column, no feasible optimal solution is obtained with

Stewart et al. formulation due to large errors introduced in the feed plate equations.
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Figure2.7 Comparison of the liquid composition profiles for the key components (at the

optimum) in the tray-by-trav and OCFE models for the DIB.



46

Liquid molar flow rate (Mmol/d)

25
pentane pentane [xcpane  propane
tray-bytray OCFE tray-by-tray OCEE
J— O —— a
2+
(
1.5
1+
b ’//
\\
\ Q
05 . ~ ~ Fasn B o Q—G——/O
A paw s L L e
B —B — - — @ — — a
B L = L l"“—_ | - P | -
0

5 10 15 20 25 30
Equilibrium stage

Figure 2.8 Comparison of the liquid composition profiles for the nonkey comp:nents (at
the optimum) in the tray-by-tray and OCFE models for the DIB.



147

Temperature (deg C)
65

L temperature temperature
tray-oydray OCFE

60

55

50

45

40

35 ‘ i | | N | L 1 N ! . |
5 10 15 20 25 30

Equilibrium stége

Figure 2.9 Comparison of the temperature profiies at the optimum in the tray-by-tray and
OCFE models for the DIB.



48

The OCFE model is tested for its accuracy when the set of independent variables
change. The independent variables are fixed at their optimal solution value of the
original optimization problem and the simulation solution is obtained using MINOS 5.3.
Two cases are examined. In the first case, the reflux ratio and the reboiler duty are the
independent variables. In the second case, the overhead distillate flow rate and the
reboiler duty are the degrees of freedom. In both cases the solutions are identical to the

original case and in very good agreement with the tray-by-tray solution. The initial
starting point is the sams for all the cases.

24,3 Caselll. C;-C, splitter

The C;-C, splitter is 2 more complex distillation column with six components.
The linear cost objective (2.45) is used in the optimization. The OCFE model that results
in a feasible optimal solution consists of two elements per column section. Each element
in the rectifying section has three collocation points while the two elements in the
stripping section have three and two collocation points respectively. The model size
reduction is smaller in this case and as a consequence only a 20% decrease in the total
solution time is achieved using the OCFE model (Table 2.6). The main reason for this
behaviour is attributed to the increased complexity of the C5-C, splitter compared to the
previous two examples. The C;-C, splitter is modeled with only 20 equilibrium stages.
The ratio of the total number of collocation points used in the OCFE model (11) to the
number of equilibrium stages in the tray-by-tray model (17, excluding the condenser,
rebotler and the feed tray) is greater than in the previous two cases as a result of the

increased complexity of the column.

2.4.4 CaselV. Ethylbenzene-styrene (EB/S) Column

In this example a binary ethylbenzene-styrene column (King, 1980) is optimized
using the nonlinear objective (2.46) with cost parameters given in Appendix B. The

liquid component enthalpy calculation using Equation (2.17) is based on the tray
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Table 2.6 C,-C, splitter optimization results with linear objective.

Tray-by-tray OCFE

Reflux ratio 10.146 10.145
Condenser heat duty (G)/d) -184.716 -184.690
Reboiler heat duty (Gl/d) 224.184 224.184
Overhead product:

mol% ethane 0.47 0.47
mol% propane 98.91 98.91
mol% n-butane 0.02 0.02
Lagrange multiplier for i-butane = 0.6 %omol

{$/mol frac.) -29.460 -29.451
Flow (Mmoi/d) 1.422 1.422
Bottoms product:

mol% i-butane 64.70 64.70
mol% n-butane 28.53 28.53
mol% i-pentane 2.56 2.56
moi% pentane .21 0.21
Lagrange multiplicr for propane = 4.0 %mol

($/mol frac.) -3,760 -3.670
VAX 3500 CPU time (s)

r-3QP 285 -
MINQS 5.3 377 31.4
number af equations 193 39
number of variables 191 141
Objective function value ($/d) 611.99 611.92
MINOS 5.3 Options

Lagrangian No No
Penalty parameter 0.0 0.0
Minor Iterations 100 100

OCFE model; 2 clements/section, 3 collocation points/element in rectifying section, 3-2 collocation points in elements

in stripping section. element lengths: rectifying section: 3.500, 3.500, stripping section: 5.400, 4.600.
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temperature. The OCFE model consists of three elements per column section with three
coliocation points per element Table 2.7 compares the optimal solution obtained by tray-
by-tray and OCFE models. The agreement of the two solution is very good even though
the OCFE model uses about a third of the number of the equations in the tray-by-tray
model. The OCFE model is about 12 times faster than the tray-by-tray model for this
column using MINOS 5.3 as the solver. A dense Jacobian formulation is used for the

tray-by-tray which increases the solution time.
2.4.5 Initial Point Dependence

The dependence of the initial set of variabie values for both the full-order and the
OCFE models on the performance and computational effort required to converge to the
optimal solution is investigated. The initial points tested are constructed by specifying
poor estimates for the component molar flow rates and temperature at the two endpoints
of the column and then calculating the values for the variables in the interior of the
column by linear interpolation. These poor estimates of the variables increase the
magnitude of the initial infeasibilities of the nonlinear constraints. For the OCFE models
the values of the variables at the collocation points are evaluated by linear interpolation of

the tray-by-tray initial variable values for the same starting point at adjacent trays.

The initial protiles for the i-butane molar flow rates are shown in Figure 2.10. In
Table 2.8, the optimization results using MINOS 3.3 for different initial points tor the
DIB are shown. OCFE models are more robust than tray-by-tray models to poor initial
variable values. As the initial point moves further from a feasible initial point, the ratio
of the CPU time required for the tray-by-tray solution to that for the OCFE model
increases. For some initial sets of variable values the tray-by-tray model fails to converge

to the optimal solution.

For the C,-splitter, the tray-by-tray model fails to converge whenever the initial

temperature profile is assumed to be linear. The reason for this behaviour is that the tray-



Table 2.7 EB/S column optimization results with nonlinear objective.

Solver MINQOS 5.3 Tray-by-tray OCFE
Reflux ratio 10.166 10.166
Condenser heat duty (GJ/d) -38.993 -38.993
Reboiler heat duty (GJ/d) 44.762 44,762
Qverhead product:

mol% cthyl-benzene §97.887 97.887
mol% styrene 2,113 2113
Flow {Kmol/d) 105.093 105.092

Bottoms product:

mol% cthyl-benzene 1.058 1,058
mol% styrene 98.942 98.942
Flow (Kmol/d) 88.377 88.578
RS/6000 355 CPU time (5) 121.4 9.4
number of equations 355 110
number of variables 357 112
Objective function value (1,000 $/d) 161.03 161.03
MINOS 5.3 Options

Lagrangian Yes Yes
Penalty parameter Default Detault
Minor Iterations 100 100

OCFE model: 3 elements/section, 3 coltlocation points/element, equispaced.
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Figure 2.10 Comparison between the initial and optimal iC4 liquid composition profiles
for the DIB.



Table 2.8 Optimization results ior the DIB for different initial variable value sets.
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Solver: MINOS 5.3 VAX 3500 Tray-by-tray OCFE
Case 1
i-butane: 37.1 - 2.7 Mmol/d CPU time {s) 55.8 33.5
n-butane: 0.9 - 38.0 Mmol/d CPU ratio 1.67 1.00
temperature: 35 - 60 °C Major itns 8 7
Simulation solution {HYSIM) Minor itns 110 103
Case 2
i-butane; 37.1 - 2.7 Mmol/d CPU time () 55.3 29.0
n-butane: 0.9 - 34.1 Mmol/d CPU ratio 1.90 1.00
temperature: 35 - 60 °C Major itns 8 6
Linear interpolation Minor itns 116 84
Case 3
i-butane: 40.0 - 2.7 Mmol/d CPU time (s) 104.1 42.5
n-butane: 0.9 - 38.0 Mmol/d CPU ratio 245 1.00
temperature: 30 - 65 °C Major itns 10 3
Linecar interpoiation Minor itns 59 200
Casc ¢4
i-butane: 45.0 - 2.7 Mmol/d CPU time (s) 232.6 60.0
n-butane: 1.0 - 42.0 Mmol/d CPU ratio 3.88 1.00
temperature: 30 - 65 °C Mujar itms 11 4]
Linear interpolation Minor itns 401 323
Case 5
i-butane: 48.0 - 2.7 Mmol/d CPU time () No convergence 74.6
n-butane; 1.0 - 45.0 Mmol/d Major itns - 10
temperature: 30- 65 °C Minor itns - 483

Linear interpolation




by-tray modei formulation may induce singularities in the problem due to the large flat
regions in the temperature profile in the rectifying section (Figure 2.5). In addition, the
discrepancy between the final solution profile and the initial linear profile is significant.
The magnitude of infeasibilities in the material and energy balances using the initial
variable values becomes significantly large. The OCFE model converged to the optimal
solution when a linear temperature profile is provided as an initial estimate of the

temperature variation in the column.

The improved ability of the OCFE models to converge to the optimal solution
with a poor initial guess for the variables may be a very useful advantage. when OCFE
models are used under a real-time (on-line) optimization framework. Disturbances in the
real plant may result in the optimal operating conditions moving far away from the initial

point estimate and then the robustness in convergence of the process model becomes very

important.

2.4.6 Approximation Error Analysis

An important issue, for the use of OCFE models for distillation optimization, is
the selection of the proper combination of number of elements for every column section
and number of collocation points within each element. The approximation error defined
as the difference of the OCFE solution from the tray-by-tray solution decreases
asymptotically, as the total number of coliocation points in the column increases. Such
behaviour is expected since the use of the Hahn polynomials guarantee that the full-order
model is recovered when the nw. T of collocation points equals the number of
equilibrium stages in a given column section. OCFE and global collocation models that
use a single element per column section will eventually become identical at the full-order
fimit.

The approximation error analysis has two major requirements:
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a. Given an expected level of model accuracy, determine a sufficient combination of

number of elements per element and number of collocation points per element.

b. Given the configuration of the OCFE model, determine the optimal partition of the

domain sc that the approximation error is minimized.

It would be desirable to provide a method that can fulfill both requirements.
However, the main goal is to achieve the minimum possible size of the OCFE model for

which the tray-by-tray solution is obtained.

The approximation error of a given OCFE scheme depends mainly on the shape of
the composition and temperature profiles in the given column section.  The
approximation error can be minimized by varying the length of the finite elements so that
an optimal distribution of the collocation points (with respect to approximation error) in
the column is achieved, for a constant total number of collocation points. Adaptive finite
element formulation will be investigated in Chapter 3. The order of the approximation
polynomial within a given element length that can represent the tray-by-tray model
cannot be determined a priori. As a result optimization results using polynomials of

different order are analyzed to determine a proper collocation scheme.

The optimal combination of number of elements and number of collocation points
per clement is difficult to determine a priori. Carta et al. (1995) developed charts by
extensive simulations in order to determine the model reduction using OCFE for a given
approximation error. The varying parameters are the relative volatility for a binary
mixture and the purity levels of the product streams. However, the results are valid for a
limited number of simplified distillation columns that cannot be gencralized easily. A
factor that is critical to the minimum size of the OCFE model is tl: - complexity of the
mixture (comparison of the results between the C; and the C,-C. splitters) and the
thermodynamic model (c.g. rigorous evaluation versus constant relative volatility

assumption) that is used.
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The approximation error for the temperature and composition is calculated for the
C;-splitter to investigate the dependence of the accuracy of the OCTE model on different
collocation schemes. The approximation error is defined as the sum of squares of the
differences of the variables (temperature or composition) obtained by the tray-by-tray
model from the values of the same variables evaluated at the location of the equilibrium
stages using the OCFE solution and the Lagrange interpolation polynomials. The crror in

composition and temperature for a single tray ¢, is given by the following relations:

3
e}"ump.f = T-: - Z Hf}'l (S‘ ) T:(SU) (247)
j=0
k,
€ pems = oy = W ()T (5] m=1.nC (2.48)
j=0

where s, is the location of the actual #-th tray inside the i-th element and T,(.s',f ) . T(\r)

are the temperatures and the component liquid molar flow rates at the collocation points

of the i-th element respectively.

Table 2.9 shows the error behaviour for different collocation schemes. For the
cases of 2 and 3 elements per column section, with 2 collocation points per element,
convergence to the optimal solution is not possible, which implies that 3rd order
Lagrange polynomials are not very effective in predicting the tray-by-tray solution. In
addition, one can assess the performance of different collocation schemes. with equal
total number of collocation points, in identifying the optimal full-order solution. Ior
instance, the approximation error is smaller when 3 elements per section with 4

collocation points per element are used compared with a scheme that uses 4 elements per

section with 3 collocation points per element.



Table 2.9 Approximation error in different OCFE schemes for the C;-splitter

2 clements per section

3 elements per section

4 elements per section

2 collucation points per No convergence No convergence 1483
element 1.696

2.934

3 collucatian points per 1.754 0491 0.374
element 2,160 0,165 0.044

3.043 2.394 1.879

4 collocation points per 1460 0.340 0.252
c¢lement 0.117 0.025 0.007

1306 1.713 1262

Table entries are sum of squares of errors for propylene and propane fiquid motar tlow rates and temperature.




2.5 Chapter Summary

Orthogonal collocation on finite elements techniques are used for the model size
reduction of distillation units. Each column section is divided into subdomains in which
orthogonal collocation is applied. The number of equilibrium stages as well as the
component molar flow rates and the total enthalpies are treated as continuous variables of
position in the column. The collocation points are chosen to be the roots of the Hahn
orthogonal polynomials. The condenser, the reboiler and the plates. where a sidestream
leaves or enters the column, are treated as discrete equilibrium stages.  This new
formulation allows the accurate representation of the column behaviour under the
presence of discontinuiti=s in column variable profiles due to feed and side product

streams.

OCFE models are used for steady-state optimization of distillation units and the
optimal solutions are compared to those obtained by the tray-by-tray model. Both models
converge to the same optimal solution but OCFE models require less computational
effort. OCFE formulations are advantageous for columns that have a large number of
equilibrium stages with relatively smooth profiles, since the reduction in model size and
solution time is substantial. As the complexity of the distillation column increases, due to
the addition of more components or the use of more rigorous thermodynamic models, the

minimum number of collocation points for a feasible optimal solution increases.

OCFE models show improved robustness in converging to the optimal solution
when a poor initial point is provided, mainly because of their compact size. For a
constant number of collocation points there is a combination of number of elements per
column section and number of collocation points per element for which a measure of the
approximation error is minimized. At present, the minimum number of elements and
collocation points, which provide the least approximation error, cannot be determined

without a previous solution of the column avatlable.



3. Adaptive Collocation on Finite Elements Models for

Distillation Units

3.1 Introducticn

In Chapter 2 an OCFE model is developed for the steady-state optimization of
distillation units. There is a minimum number of elements per column section and
collocation points per element for which a feasible optimal solution exist for a given
column. However, this lower bound of the approximation model depends on the
operating conditions in the column. The error associated with a given OCFE formulation
depends strongly upon the distribution of the collocation points in the column sections.
The distribution of the collocation points, for a given total number of points, can be
controlled by varying the sizes of the finite elements. Element breakpoint locations may
be used as additional adjustable parameters for the structure of the OCFE model in order
to achieve an optimal element partition of the column sections in terms of the

approximation error.

The adaptation of the element breakpoint locations may allow small OCFE
models, in total number of collocation points, to achieve a more accurate approximation
compared to the corresponding OCFE model with fixed breakpoint locations. Generally,
the approximation error for a given collocation scheme of a distillation process depends
on the shape and the characteristics of the approximated composition and temperature
profiles. However, the features of the state profiles at the optimal solution are unknown a
priori and therefore it can be difficult to select the element sizes. An estimate of the
approximation error, that will be updated as the optimal solution is approached, may

provide a measure of the local “goodness™ of the approximation.
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The choice of equally spaced finite elements does not necessarily result in an
optimal partition. For a steep variation in the column profiles, a large number of
collocation points is required for an accurate representation of the actual solution. On the
other hand, a few collocation points would be sufficient to match the solution when
changes with small slope occur in the column profiles. A criterion for the adaptive
element breakpoint placement may be the distribution of the approximation error equally
throughout the column. An element partition methodology based on error
equidistribution, with a given number of elements per column section and a given number
of collocation points per element, will attempt to place small elements in those regions
where steep changes in the state variables occur and larger elements in those regions
where relatively small changss occur. Since the behaviour of the profiles in the column
play such a decisive role in the element partition procedure, it is desirable that the
procedure is carried out using the profiles at the economic optimal solution. The
procedure for the adjustment of the element lengths is embedded into the nonlincar
program that aims to determine the optimal operating conditions for the separation
process. Therefore, the element partition is based on the shapes of the profiles as they

evolve towards the economic optimal solution.

Simultaneous solution of the error equidistribution and economic optimum
problem has been successfully applied to the optimization of systems described by a set
of differential and algebraic equations, for example by Cuthrell and Biegler (1985). The
method was extended by including a procedure that determines a sufficient number of
finite elements for a flowsheet reactor model using OCFE by Vasantharajan and Bicgler

(1990).

Two different methods are used to determine the optimal eclement length
distribution in OCFE models for distillation processes with a given total number of
collocation points. Both methods are based on the equidistribution of the approximation
error, but they use different techniques for the calculation of an estimate of the

approximation error. The first method uses the residuals of the material and energy
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balances around pre-defined envelopes in the column while the second method uses the

derivatives of the polynomial approximation solution.

3.2 Adaptive OCFE Model for Distillation Units

Error analysis of piecewise polynomial approximations to an isolated solution of
an m-th order nonlinear ordinary differential equation, with the polynomials determined
by collocation at Gaussian points, was made by de Boor and Swartz (1973). De Boor
(1974) proposed a method to determine the optimal location of the element breakpoints
when approximating a function, given implicitly as the sclution of an ordinary differential
equation, by piecewise polynomials. The method is based on the asvmptotic
equidistribution of the approximation error associated with each element and determines
the optimal distribution of element breakpoints rather than the optimal location of each
breakpoint independently. This approach was later implemented in the code COLSYS
developad for the solution of boundary value problems using collocation and piecewise
polynomials or B-splines (Ascher et al., 1979). The method requires the evaluation of the
approximation eror associated with each element. However, the actual solution is
usually not known and thus an estimate of the error must be calculated. Christiansen and
Russell (1978) provided an overview of the most popular methods for estimating the
approximation error resulting from piecewise polynomials using collocation. The
estimates can be calculated by either the derivatives of the approximate solution or by

using the residuals of the differential equations at non-collocation points.

White (1979, 1982) introduced a transformation, vased on the equidistribution of
the arc length of the state variable profile, of the original problem such that the new

problem can be accurately represented by a small number of equally spaced breakpoints.

However, the previous methods deal with problems in a continuous domain. In
the case of approximating the solution of a siagewise separation process, the reduced
order model is applied in a spatiaily discrete domain. The compositions and temperatures

in the tray-by-tray model ave detined only at certain points where phase equilibrium is



usually assumed. Therefore the comparison between the tray-by-tray and the QCFE

models can be made reasonably only at the equilibrium stages.

The element boundaries may be adjusted according to the shape of the
composition profiles in the column. Srivastava and Joseph (1987) used different
collocation schemes to approximate the behaviour of key and nonkey components.
Usually, the composition profiles of nonkey components exhibit {lat regions {or farge
sections in the column, where the composition of the nonkey components is very small.
and steep changes towards the two column endpoints. For nonkey components. more
collocation points are used in those regions where their composition changes rapidly.
while fewer points are used in the regions where the mole fraction is very small and no
significant changes occur. A global collocation scheme for key components is used and
overall material and energy balances are applied at a given total number of collocation
points in this scheme. Interpolation at the collocation points of the global scheme. using
the nonkey collocation scheme, is required in order to transfer the information for the
nonkey components to the points where the overall balances are applied. This strategy
requires a priori knowledge of the profiles in order to determine the regions where steep

fronts exist.

Drozdowicz and Martinez (1988) implemented similar global and local
collocation schemes and used the absorption factor, defined as L/KV, to determine the
location of the steep changes for the state variables in the column. A value of the
absorption factor much different from unity, indicates the presence of steep regions in the
composition profile and then a local collocation scheme with more collocation points is
introduced in this region. This procedure is embedded in a flowsheet solution framework

and the location of the steep regions can be determined during the course of the solution.

Swartz (1987) used the residuals of the material and energy balances at non-
collocation points as an error estimate and located the breakpoints by minimizing the

weighted sum of the residuals. Stewart et al. (1985) gave physical meaning to the
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clement breakpoints by locating them at the points where discontinuities in the flow rates
are introduced due to sidestreams entering or leaving the column. In multiphase
distillation with two liquid phases, the moving miscibility boundary separates the column
section in which one liquid phase exists from the section in which two liquid phases are
present. The boundary provides a natural way to locate the element breakpoint (Swartz

and Stewart, 1987).

Huss and Westerberg (1994) proposed a transformation of the component mole
fractions so that the new variable has a straight profile in the column. This
transformalion aims to approximate more accurately those regions in the column where
some of the components have mole fractions close to one or zero. It was argued that in
such a situation, a polynomial approximation within each element may cause the
composition profile to oscillate thus creating problems by reaching the low bound for the
composition (zero mole fraction) inside the column.  The proposed variable

transformation of the mole fraction that was proposed has the form:
2x,, —1=tanh(%,,) m=1...,NC (3.1)

where x,; is the liquid phase mole fraction for the m-th component. The transformed
variable ¥, ,, goes to negative or plus infinity when x; approaches one or zero,
respectively. An equispaced element partition was then imposed on the straight profile of

the transformed variables.
3.2.1 Residual-based Breakpoint Placement

The residuals of the system equations at non-collocation points can provide an
estimate of the approximation error (Ferguson and Finlayson, 1972; Carey and Finlayson,
1975). Swartz (1987) suggested a residual-based hybrid method for adaptive placement
of the element knots for a collocation model in a distillation column. This method uses
polynomial interpolation to approximate the residuals inside the element. The

interpolation points are roots of a Hahn orthogonal polynomial of order k+1, where k is
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the number of collocation points in the given element. Each residual is evaluated at these
k+1 points, and each interpolated residual is then made to vanish at the zeros of a k-th
order Hahn polynomial. A weighted sum of the square of the residuals at the roots of the
(,+1)-th order Hahn polynomial provides a measure of the residuals for every element.
These measures from different elements are forced to be equal and are embedded into the

formulation of the OCFE model.

Russell and Christiansen (1978) used the residual at the midpoint of the clement

to define a bound for the local approximation error given by:
”e”; =C R(xmxa)AIfm '*'O(‘d’k'?]) (3.2)

where C' is a computable constant, R(x,.ﬂ‘,.:) is the residual of the system equations
evaluated at the midpoint of the i-th element, m is the order of the differential equation,

and 4¢, is the length of the i-th element. An error equidistribution criterion may be then

constructed using (3.2) by requiring that:

At 1R(xi+l.’2)

=const. i=1..NE (3.3)

However, Koster et al. (1993) found that when (3.3) is used as the equidistribution
relation the adaptive element placement problem does not provide an accurate
representation of the actual solution. Therefore they proposed a maodification of (3.3)

expressed by

/_1[;"*"' |R(x,.+|‘,:) =const. i=1,... N (3.4)

where k; is the order of the approximation polynomial used at the i-th element. Error
equidistribution based on the criterion (3.4) proved to result in element partitions that

provided an accurate solution.

Vasantharajan and Biegler (1990) used an error criterion based on the condition

that the residuals at some selected non-collocation peints should be less than a specified



tolerance. However, the selection of the non-collocation points is arbitrary and
avaluation of the residuals at one point does not necessarily reflect the behaviour of the

residuals throughout the entire domain.

A method that is closely related to the nature of the distillation process is
proposed. The methodology uses the residuals of the material and energy balances
evaluated around envelopes enscribed within the column. More specifically. the
envelopes for the rectifying section contain the condenser and the trays included between
the top of the column and the end of each element in the rectifying section. For the
stripping section, the residuals are evaluated around envelopes that contain the reboiler
and the trays included frem the bottom of the column till the top of each element. A
schematic of the envelope configuration is shown in Figure 3.1. The method utilizes the
fact that the material and energy balances must be satisfied around any enscribed

envelope in the column.

The residual equations for the component material balances, with the finite

elements numbered from top to bottom for every column section, take the form:

Rectifying section:

Rysirm =+ 1 (50) =T 50) i=1,...,NE,—1 and m=1,...,NC
Rypurme =4, +ZW,”( D (s)Fulsia) 1= NE, e
Stripping section:
Rurs =bu+Li(50) =i (51, =2,..,NE; and m=1,...,NC
kot _ (3.6)

....
il
—

R.'.r,n‘.m:_b +[m:( ) Z”H} ( j)

Similarly the residual equations for the energy balances become:
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Figure 3.1 Material and energy balance envelopes for a typical adaptive QCFE

distillation model.
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Rectifving section!

R, DH;)'{'OU"'LM( u)ﬁ,‘tl(so)_ﬁ 5.&-,+1)ﬁ'l,(sk|+1) i=1.. NE, -1

. AR G.7)
Rypxgs =D Hy+ 0y + L(NTYAHNT) =P (s ) H (810)  i= NE,
Stripping section:
Ry, =BHE +0,+ L(so) B (5)-Fro(su ) Al{sc) =20 NE, 58
J.

Rr-:.w.. BH;; +0, + L (%)ﬁ (30)‘ ~(1)1E-1;V(1) i=1

Index i denotes the element. The residual relations around the envelopes make use of the
zero-order continuity boundary condition between the elements (Equations 2.43 and
2.44); the liquid stream leaving the i-th element is equal to the liquid entering the (i+1)-th

element.

The magnitude of the total residual for a given element is calculated using the 2-

norm of the residuals of the component material balances and the total energy balance.

12 :
Ripr, = {Rf\m Z Rmr nrr} i=1,...,NE (3.9)

m=]

The total residual of each envelope is forced to be equal to the total residual of the
subsequent envelopes. The equidistribution constraints are embedded in the economic

optimization problem which takes the following form:

Min  {Costs} (P3.1)

s.t. Material & Energy Balances (2.29-2.31)
Riors — Rrorju =0 i=1...,NE-]

Problem (P3.1) determines both the optimal operating conditions of the distillation
column and an element partition such that the envelope balance residuals equidistribution
constraints are satisfied within the feasibility tolerance specified for the nonlinear

constraints.
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The residual-based adaptive breakpoint placement for OCFE models tor
distillation columns is based on the closure of the material and energy balances around
envelopes of adjustable size. The envelope size depends on the lengths of the eclements
included within a given envelope. The use of the max-norm of the material and energy
balance residuals as a measure of the total envelope residual in (3.9) would increase the

difficulty of the problem because of the non-differentiabilities introduced by such a norm.

In cases of multiphase distillation. where more than one liquid phase is present
within the column, or for heterogeneous azeotropic distillation, an element breakpoint
should be placed at the point where the phase discontinuity occurs. In a formulation
suggested by Swartz and Stewart (1987), the phase stability criteria were solved with the
balance equations simultaneously in order to determine the miscibility boundary of the
two liquid phase mixture. The proposed OCFE model with the adaptive element
breakpoint placement can be used in the region of the two liquid phases provided that an

element breakpoint separates the single phase from the two phase regions.
3.2.2 Error Equidistribution using Spline Approximation to the Derivatives

Following de Boor's methodology (1974) the breakpoints arc located such that a
local error term associated with cach element is made constant. The function y. which
satisfies an m-th order differential equation, is approximated by piecewise polynomials of

order k+1 (degree < k-+1) with breakpoint sequence:
a=t <ty <.<ly,=b

where NE is the number of ¢lements. The breakpoints correspond to the boundarics of

the finite elements.

If y is sufficiently smooth then the local approximation error satisfics the

following inequality (de Boor, 1974):

(k+l)
Y

=5l <C 7 ] ol a0
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where:

|y - _’17||[, ] is the max-norm of the local approximation error term between the function
el

y and the piecewise polynomial approximation function y. In the case of a distillation
column, the function y represents the composition and temperature profiles determined by
the tray-by-tray model and ¥ represents the solution obtained by the OCFE model. The

function y is defined only at the equilibrium stages. A, is the length of the i-th interval.

fhk+1)

Hy is the max-norm of the (k+1)th derivative of the function y in the interval

!

[r,,tm]. C is a constant that depends only upon & and m for a given collocation scheme.

The global error term is O{Ar***) and for sufficiently small elements it can be neglected

(de Boor, 1974).

The accuracy of the approximation can be improved by reducing the size of those
intervals where the (k+1)-th derivative of y is large, for a given number of collocation
points within each element, or by adding more collocation points. In the development of
the adaptive OCFE models, the number of collocation points per element is kept constant.
The approximation error minimization can be formulated as a nonlinear programming

problem.

1itk=1)

Min  Max A, |ly™*Y i=2...NE and j=1,. NE (P3.2)
i J /

f)
s.t. A, 2k i=1...,NE
with £, =0, fy, =NT
where NT is the number of trays in every column section and k is the number of
collocation points in each element, which is assumed to be equal for all elements without
any loss of generality. The problem (P3.2) can be solved to obtain the optimal breakpoint
placement that minimizes the local approximation error, while satisfying the constraint
that an eclement can have no more interior collocation points than the number of

equilibrium stages in that element.
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The optimization problem (P3.2) is difficult to solve since it contains non-
differentiable functions and the function y which is only known approximately. The goal
is not to locate each breakpoint to attain a global optimum. but rather to obtain a local
optimal distribution of element lengths for which the approximation error associated with
each element is constant. The optimality conditions for problem (P3.2), when y is

continuous and there are no active constraints. satisfy the relation (de Boor, 1974):

1fk+l}

Ar, ”y”“”

= const. i=1... NE (3.0

!

De Boor (1974) showed that the distribution of breakpoints that satisiv (3.11) 1s
asymptotically equivalent to that determined by /,,...,f,, such that (Pereyra and Sewell,

1975):

ha . 1/ k+1) L 1 b ke : 1/1k+1) i . - .
) cis_EL PEVE)T ds i=1....NE (3.12)

k140 the domain. However,

The collocation solution is used to approximate y
the (k+1)-th derivative of the collocation solution is equal to zero because the piecewise

polynomials are of degree less than (k+1). Hence the piecewise constant k-th derivative

(kel)

of the collocation soiv*i~n is used and then y is estimated based on a first order

difference approximati. . .cr the elements which is given as follows (de Boor, 1974):

=, on (4.4,)

g(‘“”(s): =z + —, on (II'IHI) i=2""'NE_I (313)

' on ([HI-,‘ Ao )
[Ni-.'+l - tm:-1

where @,,,,=F"*(s) on (1,1,,,), and 46,_,,=0,,,,~0,,,. A schemat’c of the

approximation of the (k+1)-th derivative of the true solution is given in Figure 3.2.
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Derivative approximation
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Figure 3.2 Approximation of the (k+1)-th derivative of the state variable

profile (de Boor, 1974).



In particular. for the case of a staged distillation column. the approximated state
variables are the liquid and vapour component molar flow rates and the total stream
enthalpies. The derivatives of the functions that represent the behaviour of these
variables in the interior of the column are given by the &-th derivatives of the Lagrange

interpolation polynomials within each element.

T (s)=k!}, If(s,)Hm (3.14)

kel &+
v (s)=k!Y {?(5‘,)1—[———]—_— (3.15)

s; denotes the location of the j-th collocation point. Stmilar relations evaiuate the liquid

and vapour total enthalpies.

In the case of a distillation column, there are multiple state variable profiles to be
approximated. The objective is to equidistribute the approximation error associated with
all the variables of interest. The 2-norm of the derivatives is used to determine the total
approximation error (Cuthrell and Biegler, 1987). The max-norm is desirable, but non
differentiable (Equation 3.11); however, the 2-norm is considered to be a good

compromise. The error equidistribution relation thus becomes:

12
i
Al {Zl(e:jj(“”)} =const. i=1..,NE (3.16)
J=

where ¢ denotes the total number of state variables that are approximated.

It is assumed that lg“”‘*” The local error term is

behaves like ‘y”‘*” |

equidistributed among the finite elements in each column section, A continuous and
monotonically increasing function G(s), that calculates the additive local crror term as a

function of the position in the column is constructed.
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G(s)= [ (¢()"“ " ds (3.17)

The new location of the breakpoints is determined by the following expression:

t,, =t +G(s) (i - 1)% i=1..,NE+1] (3.18)

The algorithm that calculates the optimal placement of the breakpoints is utilized
in an outer-loop of the optimization problem, that determines the economic optimum of

the given distillation column and consists of the following steps:

1. Obtain a solution for the economic optimization problem with equispaced elements.

28}

. Estimate the error within each element using the obtained solution (Equation 3.13).

Ll

Adjust the element lengths so that the error is equidistributed (Equations 3.16 and
3.18).

4. Ifv. lement lengths do not change more than a defined tolerance, stop. Otherwise

continue.
5. Solve the economic optimization problem for the new partition.

6. Go to step (2).

The procedure may encounter some difficulties in determining the optimal
breakpoint sequence when some of the intermediate problems (step 5) become infeasible.
In such a situation, the error estimates are calculited using state variables that do not
satisfy the constraints of the model (2.29-2.31) and are subject to discrepancies. The
element lengths are not expected to have a large effect on the economic optimal solution
based on the results of the residual equidistribution approach. There is typically a range
of variation for the element breakpoints for which an optimal solution can be found. The
OCFE model iuils to converge if the element breakpoints fall outside a range of

breakpoint placements.
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An approach that simultaneously determines the economic optimum and the
optimal element partition using (3.11) (Vasantharajan and Biegler, 1990) failed to
converge in our implementation of the OCFE models for distillation columns. Such an
approach involved the solution of a sequence of subproblems in order to deal with the
absolute values in (3.13). However. some of these subproblems did not result in a

feasible solution which caused the failure of the whole procedure.
3.3 Steady-State Optimization with Approximation Error Criteria

Both methods for the adaptive element breakpoint placement are applied to the
steady state optimization of distillation columns. MINOS 53 is used for the
optimization. In a real-time optimization framework, it is not necessary to adjust the size
of the elements of the OCFE model each time a new optimal solution is to be determined.
The adaptive placement of the breakpoints can be performed every time there is evidence
that (due to a measured or unmeasured disturbance) the profiles in the distiflation column
have changed such that the plant optimum has shifted significantly. A new clement
partition may be required to improve the accuracy of the OCFE model. The values of the
material and energy balance residuals may be used to determine whether an update of the

element length distribution is required.
3.3.1 Deisobutanizer (DIB) example

The DIB separates a mixture of 4 components and is modeled with 33 equilibrium
stages, including a partial condenser and reboiler, with 100% tray efficiency (Bailey,
1991). The feed stream properties and the product specifications are shown in Table 2.1.
The OCFE model consists of 3 elements per column section, with 2 collocation points per
element in the rectifying section and 3 collocation points per element in the siripping
section. This implies that third and fourth order Lagrange interpolation polynomials are
used for the rectifying and stripping section respectively. Regressed equations are used

for the calculation of the equilibrium constants and the liquid and vapour enthalpy. The



objective function of the economic optimization problem is the minimization of the utility

costs (2.45) that are required for the satisfaction of the product specifications.

The OCFE model with this structure does not converge to a feasible optimal
solution when equispaced breakpoints are used. An OCFE model with equispaced
breakpoints required the addition of more collocation points in order to obtain

convergence thus increasing the number of equations in the model.

Simultaneous solution of the economic optimization and the optimal breakpoint
selection problem, using the residual-based approach, resuited in a feasible solution close
to the optimal solution obtained by the tray-by-tray model (Table 3.1). The augmented
optimization problem (P3.1) includes an envelope residual equidistribution constraint for
every breakpoint that is allowed to move. Thus the number of degrees of freedom in the
augmented problem (P3.1) are the same as in the original cost minimization problem.
The solution time increases when the material balance residuals are neglected and only
the residuals of the energy balances are equidistributed among the clements. There is no
significant difference between the optimal values of the independent variables in the
column obtained by either formulation of the residual measure, even though the resulted
clement partition is different. The optimal composition and temperature profiles for this

column are shown in Figures 2.7-2.9.

There are multiple combinations of element lengths that satisty the
equidistribution constraints of (P3.1). The problem may become ill-conditioned if too
many breakpoints arc allowed to vary and the optimization algorithm fails to converge.
The characteristic of such cases. using MINOS 5.3, is that the infeasibilities of the model
constraints fall below the specitied tolerance (most typically 10°-10°%) but the changes in
the Lagrange multipliers between consecutive major iterations remain significantly large.
This is an indication that the residual equidistribution has no unique element partition that
results in an economic optimal solution. In order to avoid such a situation, some of the

element lengths are kept fixed or their changes are restricted by imposing upper and



Table 3.1 Optimization results with adaptive breakpoint placement for the DIB (linear

objective).
Mesh A Mesh B Mesh C Mesh D
Tray-by-trav Equispaced Mass & Energy Energy Derivative
Residuals Residuals Lquidis-
Equidistribution Equidis- tribution
tribution
Reflux ratio 7.037 7.057 7.057 7.057 7.0
Condenser heat duty (M1/J) -566.948 -366.850 -366.852 =560.349 -563.488
Rebailer heat duty {MJ/d} 585.936 585.839 385.837 5854834 384751
Marginal value
Overhead prod. ($/mol i) -15.899 NA -25.899 25,899 NA
Bottom prod. {$/mol fT.) -7.239 NA -7.238 -7.234 NA
Objective {$/d) 1633.03 1632.75 1632.75 1632.74 1629 60)
Feasible Infeasible Feasible Feasible Infeasible
VAX 3500 CPU (see)
Solver MINOS 5.3
Optimization only 69.3 37.0 332 41.0 58.0
Optimization with Elem.
Adaptivity NA NA 103.2 134.1 NA
Rectifving section element
fengths
1st - 4.000 3.838 3aos 271
2nd - 4.000 3.679 4317 3282
Ird - 4.000 4,483 4478 6004
Stripping section element
lengths
bt - 6.000 5.807 5.840 7.520
2nd - 6.000 4.819 6.345 5.516
3rd - 6.000 7.374 5.815 4.95%
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lower bounds on the element size. The final element length distribution depends on the
initial values of the variable set. However, the economic objective value and the optimal
set of variable values were insensitive, in this particular example, to different breakpoint
distributions. In Table 3.1, the optimization results for different element partitions are
shown and are compared to the tray-by-tray optimal solution. The solutions obtained
from the OCFE models are in good agreement with the tray-by-tray model, but the CPU

solution time varied for different element partitions from the same starting point.

Breakpoint placement using the derivative equidistribution results in an element
partition for which convergence to a feasible optimal point is not possible. After
typically 5 iterations the equidistribution constraints are satisfied. The resulting
breakpoint placement is different from the one obtained using the residual-based
approach (Table 3.1). In the siripping section the element breakpoints move in opposite
directions depending on the method for adapting the element lengths. For instance, the
residual based method reduces the top element length in that section from its equispaced
value {6.0) to 5.807, while the derivative equidistribution method increases the length to
7.526 in response to larger errors in the bottom of the column. The error measure is scale
dependent and careful scaling of all variables is necessary. No substantial difference is
observed in the element partition when the error associated with fewer state variables is

used in Equation 3.16.

The faiiure of the derivative equidistribution approach may be attributed to the
fact that this method is developed to estimate the approximation error for a continuous
function. However, the approximated solution in distillation models is defined in a
spatially discrete domain with the derivatives of the approximation polynomials having
no physical meaning. According to the requirements of the OCFE models the distance
between two collocation points cannot be greater than the distance between two stages

(equal to unity) in the fictitious stage number domain.
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Table 3.2 compares the error sum of squares of the component molar tlow rates
and temperature for different breakpoint sequences. Using the OCFE solution, the values
of the state variables are calculated at the locations of the equilibrivm stages by Lagrange
interpolation. The calculated values are then compared with those from the tray-by-tray
model. The error sum of squares is comparable for all of the different breakpoint
partitions. Another error measure is the sum of the absolute values of the material and
energy balance residuals when applied to the locations of the equilibrium stages using the
OCFE solution and Lagrange interpolation. Residual-based methods result in element

partitions that have the smallest sum of balance residuals.

Figures 3.3 and 3.4 show the maximumn absolute error in compesition and
temperature for each element for different breakpoint sequences. The meshes obtained by
the residual-based approach have the smallest errors in most of the eclements. The
partition obtained by the derivative equidistribution strategy has the largest errors mainly
because they correspond to an infeasible solution. The largest errors appear at the

elements closer to the two end-points of the column.

As a second case, the nonlinear objective function (2.46) is used. As shown in
Chapter 2 the optimal solution of the tray-by-tray model has two degrees of freedom. An
OCFE model with equispaced elements converges to a totally different optimal solution
having only one degree of freedom (Table 3.3). The reason is that a nonkey {low rate
(propane flow rate in the second element of the stripping section) is set to zero with a
large Langrange multiplier associated with the active variable bound resulting in an
unrealistic composition profile. This is an indication that the given element is oo large to
provide an accurate representation and its size should be reduced. The residual-based
approach determined an element partition that results in an optimal solution that is very
close to the tray-by-tray solution. The derivative equidistribution method fails once more

in this example and results in an infeasible solution.



Table 3.2 Error sum of squares of composition and temperature and sum of absolute

values of balance residuals for different element partitions (meshes) for the DIB.

7Y

i Mesh A Mesh B Mesh C Mesh D
Equispaced Mass & Energy Enerpy Residuals Derivative
Residual Equidistribution Equidistribution
Equidistribution
Error sum of squares
propane (Mmol/d) 7.274 1072 6.576 1072 3943102 3200 100
i-butane (Mmol/d) 8.328 102 7.960 1072 4.759 102 0.447
n-butane (Mmol/d) 7.484 1072 0.127 7.116 102 0.376
pentane (MmoV/d) 3.066 102 0.143 7.544 1072 5.767 102
Temperature (°C) 0.151 0.172 9,836 10-2 7.762 1072
Sum of absolute values
material balance residuals 2,337 1073 1.335 106 4592 106 0.206
energy balance residuals 3.955 107 6.404 10°° 2.778 1079 1.591
Infeasible Feasible Feasible Infeasible
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Figure 3.3 Maximum absolute error in liquid composition in every element for different

clement partitions in the DIB. See Tables 3.1 and 3.2.
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Figure 3.4 Maximum absolute error in temperature in every clement for different

element partitions in the DIB. See Tables 3.1 and 3.2.



Table 3.3 Optimization results with adaptive breakpoint placement for the DIB

(nonlinear objective).
Mesh A Mesh B Mesh C
Tray-by-tray Equispaced Mass & Energy Derivative
Residuals Equidistributicn
Equidistribution
Reflux ratio 10.078 6.273 10.077 5.000
Condenser heat duty (MJ/d) -810.458 -566.850 -810.387 -411.284
Reboiler heat duty (MJ/d) 831.33% 585.839 831.270 469.591
n-butane in overhead (Yoinol) 2.142 3.033 2.143 9417
i-butane in bottoms (%mnd) 2.720 10.314 2,719 1.492
Objective (8/d) 4560.32 6716.18 4560.35 839949
Feasible Feasible Feasihle Infeasible
RS/6000 355 CPU (sec)
Solver MINOS 5.3
Optimization only 18.7 7.4 9.5 NA
Optimization with Elem.
Adaptivity NA NA 28.5 NA
Rectitying section element
lengths
Ist - 4.000 3.900 2.787
2nd - 4.000 3.900 3.354
3rd - 4,000 4.200 6.853
Stripping section element
lengths |
1st - 6.000 5.611 7.838
2nd - 6.000 4.969 5,395
3rd - 6.000 7.420 4,767
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This example shows the significance of the selection of a suitable element
partition of the domain for the OCFE models. A poor seclection of the element
breakpoints, as in the equispaced case, may result in a different optimal solution which

will cause undesirable consequences in a real-time optimization situation.

3.3.2 Cjz-splitter example

Another column example consists of a binary propylene-propane splitter
{Hyprotech, 1991). Due to the low relative volatility of the system the separation requires
a large number of equilibrium stages. As a result, only small changes occur in the
composition and temperature profiles in the rectifying section and most of the variation in
the veriables is in the stripping section (Figures 2.5 and 2.6). The column specifications
are shown in Table 2.1. The OCFE model that is used for this column has 3 elemetits per

column section with 3 coliocation points per eiement.

Both methods for the adaptive breakpoint placement are implemented and the
optimization results are shown in Table 3.4. The residual-based approach resulis in
multiple element partitions, depending on the initial variable values, mainly because of
the large flat region in the column profiles. Upper and lower bounds are imposed on the
element sizes in order to improve the convergence rate to the optimal solution. The
breakpoint sequences obtained by the residual based approach converge to an optimal
solution that is slightly different from the one given by the full-order model. The
derivative equidistribution method converges to an element partition in 5 iterations and
the optimal solution is in good agreement with the one obtained by the tray-by-tray
model. However, all OCFE models have the same set of active constraints in the final
solution. The small discrepancies in the solution obtained by the residual-based approach
may be attributed to the greater sensitivity of the optimal solution to the element length

partition. The optimizer attempts to adjust the element partition so that the objective



Table 3.4 Optimization results with adaptive breakpoint placement for the C;-splitter.

Mesh A Mesh B Mesh C Mesh D
Tray-by-tray Equispaced Mass & Energy Energy Derivative
Residuals Equi- Residuals Equidis-
wistribution Equidis- tribution
tribution
Reflux ratio 20.140 20.129 20.082 20.031 20.131
Condenser heat duty (MI/d) -243.861 -242.726 -243.147 -242.533 -243.734
Reboiler heat duty (MJ/d) 242,548 242,413 241.834 241.222 242,431
Marginal values
Overhead prod. ($/mol fr} -63,973 -63.894 -63.592 -63,281 -63,904
Bottom prod. ($/mol fr.) -10,420 -10,357 9,915 -9,158 -10,365
Objective ($/d) 679.66 679.28 677.66 675.95 679.33
VAX 3500 CPU (sec)
Solver MINOS 3.3
Optimization only 326.0 18.0 223 223 226
Optimization with Elem.
Adaptivity NA NA 722 98.2 NA
Rectifying section element
lengths
1st - 37.667 38.000 38.000 40.734
2nd - 37.667 40.000 40.000 37.304
3rd - 37.666 35.000 35.000 34.962
Stripping section element
lengths
Ist - 19.667 20.000 20.779 19.923
2nd - 19.667 15.000 11.000 19.661
Ird - 19.666 24.000 27.221 19.416




function reaches a minimum, since a wide range of different element partitions satisty the

equidistribution constraints.

Table 3.4 provides the element partition resulting from different error
equidistribution methods. The derivative equidistribution method locates the breakpoints
in an almost equispaced fashion in the stripping section, while the residual-error method

reduces the size of the middle element.

The error sum of squares, the sum of the material and the energy balanrc residuals
(Table 3.5) and the maximum absolute error in cempositicn and temperature for every
element (Figures 3.5 and 3.6) show that the equispaced and the derivative
equidistribution OCFE models result in the smallest discrepancies itom the tray-by-tray
solution. However, the residual equidistribution method has the smallest sumn of balance
residuals. As expected, the largest error in terms of maximum absolute error in

composition and temperature is concentrated in the stripping section of the column.

3.3.3 EB/S column example

The last example involves the optimization of a ethylbenzene-styrene column
(Table 2.1). The column is modeled with 3 elements for every section with 3 collocation
points in every element. The derivative equidistribution method requires 4 elements with

3 collocation points per element in the stripping section.

Optimization results for the styrene column shown in Table 3.6 suggest that
OCFE models approach the same optimal solution as the tray-by-tray model with
significantly less computational effort. Different error criteria lead to different element
partitions but the optimal solution is not very sensitive to the element breakpoint
sequence. The composition and temperature profiles at the optimal solution are shown in

Figure 3.7.

The envelope residual-based approach encounters some convergence difficultics

because there is a wide range of breakpoint sequences for which the residual



Table 3.5 Error sum of squares of composition and temperature and sum of absolute

values of balance residuals for different element partitions for the C;-splitter.

86

Mesh A Mesh B Mesh C Mesh D
Equispaced Mass & Energy Energy Residuals Derivative
Residuals Equiistribution Equidistribution
Eqguidistribution
Error sum of squares

propylene (Mmol/d) 0.182 0.743 1.375 0.170

propane (Mmol/d) 0213 0.945 1.751 0.193

Temperature (°C) 8.277 1073 0.315 0.581 0.134

Sum of absolute values

material balance residuals 1.006 108 6.315 10711 5.464 1078 1.987 10°8
energy balance residuals 3.036 10°8 1.489 10710 1.642 1077 6.090 10°8
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element partitions in the C,-splitter. See Tables 3.4 and 3.5.
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Table 3.6 Optimization results with adaptive breakpoint placement far the EB/S column.

Mesh A Mesh B Mesh C Mesh D
Tray-by-tray Equispaced Mass & Energy Energy Derivative
Residuals Residuals Equidis-
Equidistribution Equidis- tribution
tribution
Reflux ratio 9.634 9.654 9.657 9.637 9.634
Condenser heat duty (GJ/d) -37.635 -37.633 -37.644 -37.643 «37.659
Reboiler heat duty (Gi/d) 43.446 43,441 43.455 43.455 43448
Marginai value
Overhead prod. ($/mol fr) -961.2 -960.6 -961.7 -961.7 “961.2
Bottom prod. ($/mol ft.) -2.965.2 -2,956.3 -2,972.0 -2.970.8 -2,967.9
Objective {§/d) 119.32 119.32 119.35 119.35 119.34
VAX 3500 CPU (sec)
Optimization only 186.2 20.3 23.8 232 253
Optimization with Elem.
Adaptivity NA NA 1s 1004 NA
Rectifying section element
lengths
Ist - 7.667 8.000 8222 6.279
2nd - 7.667 9.000 6.251 7.140
3rd - 7.666 6.000 8.520 9.581
Stripping section element
lengths
Ist - 14.667 18.000 17.723 14.953
2nd - 14.667 13.000 13.277 9.204
3rd - 14.667 13.000 13.000 8.854
4th - - - - 10,989
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equidistribution constraints are satisfied. In order to improve the efficiency of the
optimizer, upper and lower bounds are imposed for the element breakpoints. The
derivative equidistribution method requires the addition of another element in the

stripping section in order to converge in 11 iterations.
3.4 Chapter Summary

OCFE models with adaptive placement of the breakpoints between the finite
elements are developed for multicomponent distillation units. The location of the
breakpoints is calculated by forcing the approximation error to be equidistributed
throughout the colurnn. An estimate of the approximation error is evaluated using the
residuals of the material and energy balances around envelopes in the column. The
residual-based approach is very efficient in determining an element partition that provides
an OCFE model of increased accuracy in steady-state optimization. Consequently, the
optimal solution is close to the tray-by-tray optimum but is obtained with less
computational effort for the economic optimization. Adaptive breakpoint placement
allows OCFE models with smaller total number of collocation points than the
corresponding equispaced QCFE model, to converge to the tray-by-tray optimum. Hence
a greater model size reduction is achieved. Multiple element length distributions may
satisfy the residual equidistribution constraints of problem (P3.1) but they do not affcct
the optimal solution significantly in the studied cases. However, an arbitrary selection of

element breakpoints may lead to an erroneous optimal solution.

The derivative equidistribution method, that uses the derivative of the
approximation function as an estimate for the error, is satisfactory for the C;-splitter and

EB/S column examples but fails in the DIB example.



4, Sensitivity Analysis in Chemical Process Optimization

4.1 Introduction

A systematic methodology for sensitivity analvsis of the optimal solution with
respect to deterministic type of changes in the model parameters is presented in this
Chapter. The proposed sensitivity analysis method aims to estimate the change in the
optimal solution (optimal objective function value and optimal variable values) given an
estimated error, but not a statistical distribution for the error, in the model parameters. A
very sensitive solution, where large changes in the optimal solution result from small
changes in the parameter estimates, will not generally be desirable. This implies thatin a
real-time optimization framework the setpoints to the controllers calculated by the
optimizer may have a large range of possible values even for small model mismatch
(Koninckx, 1988). Model parameaters that have a relatively large influence on the optimal
solution would require a more accurate estimate. Sensitivity information has been
utilized in order to develop process models and designs that are robust 1o model error
(Uber and Brill, 1990) and to determine a criterion for the adequacy of a process model

for use in real-time optimization (Forbes and Marlin, 1994).

Sensitivity analysis methods can be separated into two main categories: a) local
sensitivity methods that calculate the local gradients of the solution wath respect to
infinitesimal parameter variations and b) global sensitivity methods that determine the
behaviour of the solution under simultancous parameter perturbations of arbitrary

magnitude,

Tilden et al. (1981) and Rabitz et al. (1983) survey numerous sensitivity analysis
methods that have been developed for the study of the effects of model parameter
variations to the solution trajectory of a system of differential equations. The sensitivity

analysis of chemical process flowsheets was studied by Volin and Ostrovskiy (1981a, b)



where they presented an adjoint method for a sequential modular process simulation
environment. Leis et al. (1987) utilized the structure of the system and the sparsity
pattern of the Jacobian matrix in order to improve the efficiency of the sensitivity
calculations. Sensitivity analysis methods of nonlinear programs can be grouped as local
sensitivity methods (Fiacco, 1983) and nonlinear parametric programming methods
(Guddat et al.,, 1990). The details of both groups of methods will be examined

extensively in the following sections.

4.2 Local Sensitivity Analysis in Nonlinear Programming

4.2.1 Theoretical Background

The main theoretical results for the stability and the local sensitivity of nonlinear
programs (NLP) are described in Fiacco (1976, 1983). The results describe the behaviour
of the optimal solution subject to parametric variations around a nominal point. The

standard form of the nonlinear parametric program is:

Min f (x ¢)
s.t. h,.(x.s)=0 iel I={1,...,m,} (P4.1)
g,(x.e)<0 jeJ J={l...m}

where x is the n-dimensional vector of the process (state) variables, ¢ is the p-dimensional
vector of the model parameters, A,(x,€), i€l g,(x.€),jeJ are the equality and
inequality constraints in the process model respectively and f (x, g) is the objective

function for the NLP. The process constraints as well as the objective function depend on

the set of model parameters. The Lagrangian of (P4.1) is defined as:

Lx,&,A,1)=f (x,6)+ 2 A, h(x.6)+ D 4, g,(x,8) (4.1)
el

jeJ
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where A,, i€/, u,,jeJ are the Lagrange multipliers that correspond 1o the equality

and inequality constraints, respectively.

The necessary and sufficient conditions for point x* to be an isolated local

minimizer for (P4.1), at a fixed point of the parameter vector £ , are (Fletcher, 1987):

First-order Karush-Kuhn-Tucker conditions:

VLA, e )=V f(x,6) + LAVA( )+ D v.g(xeT) =0 @

iel Jed,
ugfx'.e)=0 jeJ (b)
u; >0 jeld, (c)
h(x',e')=0 iel (d)
gj(x.,a')SO jeJ (e)
(4.2)

Second-order conditions:

zTViL(x',/l',p',a')z> 0  forall nonzero z e R” such that
a. V.h(x"6)z=0 foralliel

.. (4.3)
b. ngj(x E )z_>.0 forallj e J,

c. ngj(f,a')z: 0 foralljeJ,
J, is the index set of the active inequalities at point x defined as
Jy = {j eJ/ g j(x',5°) = 0} and J. is the index set of the active inequalities that have
positive Lagrange multipliers, J, = { jed/ ,u;. >0}. The gradients of the active

constraints {Vxh, V.g Ju} at point x* are assumed to form a set of linearly independent

vectors, known as the linear independence constraint qualification (LICQ) which

guarantees the uniqueness of the Lagrange multipliers at point x’.
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The main sensitivity result given by Fiacco is summarized in the following

theorem:

Theorem (4.1) (Fiacco, 1983)

Given that the functions in (P4.1) are twice continuously differentiable in x and once

continuous defferentiable in & in a neighbourhood of (\5) the second-order
sufficiency conditions hold at point (x’,.s') with A, 7 being the correspending

Lagrange multipliers, LICQ holds at (r s') and that ,u; >0 foralli e J,, then

1. x" is a local isolated minimization poeint of (P4.1) for £ and the Lagrange multiplicrs

A’y are unique.

[N

. for £in a neighbourhood of &, there exist a unique once continuously differentiable

function ¢(¢) = [x(a), Ae), y(a)] that satisfy the second-order conditions for a local
minimizer with ga(s') = (x',;i', y') and hence x(&) is a locally unique minimization
point of (P4.1) for g with Lagrange muitipiiers A(¢) and ().

3. the set of active constraints for & near £ remains unchanged, the strict

complementarity condition (4.2¢) and the LICQ hold at x(g').

The local sensitivity theorem is a direct result of the implicit function theorem and
guarantees the existence of points that satisfy the optimality conditions for infinitesimal

parameter variations around the nominal point.

Differentiation of the first-order optimality conditions (4.1a, b, d) with respect to
the parameter vector £ yields an explicit expression for the variation of the process

variables and the Lagrange multipliers as a function of the model parameters & In order
to reduce the dimensionality of the system only the active coistraints at point (x',.f:')

are considered. The inactive inequalities can then be eliminated since the corresponding
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Lagrange multipliers are equal to zero. The result is summarized by the following linear

system
ViL VK Vg ||V Vi,L
V. h 0 0 ||V, A |=—| VA4 (4.4)
Ve, 0 0 ||V V.8,

where V x", V,1" and V_g" are the local gradients, or local sensitivities, of the process
variables and the Lagrange multipliers with respect to &, at point (x',a') . The gradients
of the Lagrangian and the active constraints of system (4.4) are evaluated at point
(x'.s').

The calculation of the sensitivity of the objective function value to the model

parameters is based on the observation that at an optimal solution the value of the

Lagrangian (4.1} equals the objective function value. Hence the local gradient of the
objective function, V_f ", at point (x',a'), equals the gradient of the Lagrangian with

respect to the parameters at that point. Differentiation of the Lagrangian with respect to
the parameter vector, using the chain rule, will result in an expression for the gradient of

the objective function for problem (P4.1) (Fiacco, 1983):

V. =V f+AVh+u' Vg (4.5)
where V,_f, V, hand V _g are the partial derivatives of the objective function and the
constraints with respect to & In the case where the parametric NLP has the form

Min f(x)
s.t. h(x)=¢ iel I={l..m} (P4.2)
g(x)<e,., jeJ J={l..m}
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where the parameters appear only in the right-hand-side terms of the constraints, then the
sensitivity of the objective function is equal to the Lagrange multipliers of the

corresponding active constraints.

A large amount of research has been carried out on local sensitivity analysis of
NLPs that does not have any direct link to engineering applications. However, the work
by Shapiro (1985) examined the second-order local gradients of the optimal variable
values and the optimal objective function value and the asymptotic behaviour of the
optimal solution of problem (P4.1) given the asymptotic probability distribution of the

model parameters.
4.2.2 Computational Considerations

The solution of the linear system (4.4) involves the evaluation of the Hessian of
the Lagrangian which is a matrix of dimension #nxn. Hessiun evaluation is a
computationally intensive procedure since it requires the evaluatior, of the gradients of
the nonlinear constraints » times. Fiacco and Armacost (1979) and Fiacco (1983)
proposed different methodologies for the solution of the linear system (4.4). They
attempted to utilize the information available after the termination of the optimization
algorithm in order to accelerate the sensitivity computations. Ganesh and Biegler (1987)
presented a procedure based on a block elimination and a finite difference scheme that

accelerate the computational time for the solution of system (4.4).

In most chemical engineering applications, the Hessian matrix is sparse since only
a few variables are involved in every constraint. Powell and Toint (1979) and Coleman
and More (1984) developed efficient procedures for the evaluation of the symmetric
Hessian matrix, given the sparsity structure of the matrix, with the least number of

evaluations of the Jacobian.

A technique that is commonly used for large-scale systems (Gill et al., 1981) is to

examine the reduced space of the optimization problem. The technique is based on the
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partition of the process variables into dependent and independent variables. Even though
the total number of variables may be large, the number of independent variables. or the
degrees of freedom, is relatively small in most applications. This observation is utilized
both in the solution of large-scale optimization problems and in the solution of system

(4.4) for the estimation of the sensitivities.

Following Wolbert et al. (1994), a matrix Z of dimension sx(#n-m) is constructed,
where m is the total number of active constraints at the given optimal point. The columns

of Z form a basis for the null space of the gradients of active constraints,

X

h
V.H= [V }, ie. VHZ=0. Matrix Y is a mxm matrix, whose columns span the
TO4y

range space of V_H T, which implies that Y'Z=0. Matrices Z and Y can be obtained by

performing a QR decomposition of V . H ™.

VH =[Y Z] [1;] (4.6)

where R is an upper triangujar matrix of dimension mxm.

Decomposing the sensitivities of the variables into their null and range space

components, system (4.4) takes the following form:

Z'VILZ Z'VILY 0 v,x, Z'V2 L
Y'VILZ Y'™VILY Y'VH'|Vx, |=-{Y'V,L 4.7
0 V. HY 0 VA vV.H

where V,x_ and st; are the sensitivities in the null and range space, respectively and

. | VA . . .
VA =[ £ ] The sensitivity of the process variables is then given as the sumn of the

V.u

parametric variation in the two subspaces as:
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V,x =ZV,x, +YV x, (+.8)
The individual terms in (4.8) are given by the following relations:

Vx, =-(V,HY)" V.H (4.92)

£

Vo =-(2'ViLZ) (ZTVLL4ZTVILY V. x)) (4.9b)

&

The first-order derivatives of the process constraints and the objective function are

calculated analytically. Large-scale optimization algorithms calculate an approximation

to the reduced-Hessian of the system, ZTV;LZ, which is updated at every iteration
using a quasi-Newton approximation (Fletcher, 1987), and is available after an optimal
solution is reached. Ganesh and Biegler (1987) showed that even though the
approximation of the Hessian may be adequate for the purpose of optimizaticn, its use
may lead to erroneous sensitivity results, because the range space components of the
approximate Hessian are not correct, even upon convergence. The second order
information is determined by numerical perturbation of the gradient of the Lagrangian
along the orthonormal directions of the columns of Z (Gill et al. pg. 160, 1981). Sucha
procedure results in only n-m evaluations of the constraint gradients, while a full Hessian
evaluation would require n evaluations. The estimation of the reduced Hessian is

performed as follows:

V_,L(x + yeiTZ) ~-V, L(x)
4

(eF2'ViL)= i=1,...n—m (4.10a)

where # is the perturbation size in the finite difference scheme and ¢; are vectors of the

canonical basis of %™™. Similarly V2, L is calculated by:
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V L(x+yeZ)~V L(x)
4

i=l...,n—m (4.10b)

(ef27v3,L)=

Matrices Z"V:LZ and Z'V2LY in Equation (4.9b) can then be easily calculated by

multiplying with the proper matrix. Calculation of the sensitivities of the Lagrange
multipliers, V,A’, requires the computation of matrix Y'V2LY, which leads to m

additional evaluations of the constraint gradients,
4.2.3 Parameter Rank Ordering in Sensitivity Analysis

The number of parameters in a process model is usually large as is the number of
process variables, thus the dimensionality of the sensitivity matrix, X=V _x, may
become very large. Inspection of all the individual entries of the sensitivity matrix to
determine the effects of the model parameters to the optimal solution may become a very
tedious procedure. In addition, combined parameter variations may increase the severity
of change in the optimal solution. The determination of those parameter directions that
can cause a large change in the optimal solution may not be possible by a simple
inspection of the sensitivity matrix. The relative importance of each parameter may be
estimated by calculating its contribution to the major directions in the parameter space

that cause the largest variability in the variable space.

Usually the process measurements do not contain sufficient information in order
to update the values of all the model parameters in the parameter estimation stage of the
real-ime optimization loop. Rank ordering the significance of each parameter in
affecting the optimal solution will determine those parameters for which a more accurate

estimate of their actual value is required.

The direction in the multi-dimensional parameter space that causes the largest
change, in the 2-norm sense, in the set of state variables, that consist the solution of a set

of ordinary differential equations, is defined by the eigenvector that corresponds to the
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largest in magnitude eigenvalue of X'X (Hearne, 1985). A similar conclusion may be
derived for the optimal solution of (P4.1) as shewn in Appendix C. By analogy, the
eigenvector that corresponds to the eigenvalue second largest in magnitude eigenvalue,
defines the direction in the parameter space. that causes the second largest variability in
the optimal variable values and so on for subsequent eigenvectors. A similar procedure is
used in the analysis of measurement data in order to investigate the correlation and

variability structure between different measured variables (Wold et al., 1987).

The evaluation of the eigenvectors of X'X can be easily performed using a
singular value decomposition of the X matrix. A singular value decomposition (SVD) of
the X (nxp) matrix results in two unitary matrices U (s1xn) and V (pxp) and a matrix D
(nxp) with the singular values of X in the diagonal and the remaining elements equal to
zero. Given that matrix X is of rank r, then D=diag{c,..., 6,,0,...,0} with the singular
values arranged in descending order. The columns of U and V arc the normalized
eigenvectors of XX' and X'X respectively. The first r eigenvectors correspond to the

nonzero singular values. The decomposition has the form:
X=UDV" “@.11)

The normalized eigenvector v, that corresponds to the largest singular value can
be interpreted as the direction in the parameter space in which the largest variability in

the variable space exists. The individual entries in v, indicate the weight of cach

parameter in this direction. The corresponding oju, can be interpreted as the coordinates
of the variables in the axis defined by v, (Bratchell, 1989). Relatively large entries
indicate that the particular optimal variable value varies significantly for simultaneous
parameter perturbations along the given direction. The eigenvector v, that corresponds 1o
the second largest singular value determines the direction in which the second largest

variability in the entries of matrix X exists and so forth.
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A plot of the entries of the first two gu; may reveal possible similarities in the
behaviour of groups of optimal variable values for perturbations along the corresponding
directions v;. For example, variables with entries in the first two cju; close to zero are
almost unaffected by changes along the corresponding eigenvector directions. Since the
eigenvectors v, are orthogonal to each other. every direction explains a unique mode of

variation in the variable space.

The sensitivities of the optimal objective function value (4.5) may be included as
an additional row in the sensitivity matrix, so that the changes in the objective function
are taken into account in the calculation of the major directions of variation. The

augmented sensitivity matrix X,, of dimension (n+1xp), has the following form:

X, = X 4.12
A Ely s (+.12)

Singular value decomposition is scale dependent; therefore careful scaling of the
variable and parameter values is necessary for meaningful results. It is generally
recommended that the variables and parameters be scaled before optimization. Another

way to scale the entries of the sensitivity matrix is as follows (Tilden et al., 1981):

§x1 EJ

-~ -
CE; X,

i=lL...n j=l...,p (4.13)

The scaling uses the relative change of the process variables with respect to relative
changes in the model parameters and may inflate the sensitivities of variables that have
very small values at the optimum (e.g. composition of nonkey components in distillation

columns).

In addition to this scaling procedure, engineering knowledge may be used so that
the sensitivities of the most important variables, such as output variables, setpoints and

product specifications, have a greater impact on the scaled sensitivity matrix. The
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procedure can be viewed as discarding the least important variables from consideration in

a SVD of the sensitivity matrix.

4.3 Nonlinear Parametric Programming

4.3.1 Literature Review

In Section 4.2 the main local sensitivity results for the parametric NLP (P4.1)
were presented. The method provides the local gradients of the optimal solution with

respect to the model parameters that are only valid for infinitesimal variations around the
reference optimal point (r.s) However, a local sensitivity approach cannot provide

any information about either the behaviour of the optimal solution to parameter variations
of finite magnitude or the interaction effects from simultaneous changes in the parameter
estimates. Finite parameter variations may cause the active constraint set to vary while
optimality is maintained. Ganesh and Biegler (1987) and Wolbert et al. (1994)
formulated a quadratic program for every parameter in order to determine possible

changes in the active set for individual parameter changes.

Nonlinear parametric programming (NLPP) attempts to determine the behaviour
and characteristics of the optimal solution for multiple simultaneous parameter value
changes of arbitrary magnitude. The philosophy of NLPP is to trace the parameterized

first-order optimality conditions for varying parameter estimates.

Kojima and Hirabayashi (1984) developed the theoretical background for the
study of the continuous deformation of the optimal solution due to perturbations of onc
free parameter. The behaviour of the optimal solution path around singular points was
studied by Jongen et al. (1986). Jongen and coworkers classified the singular points into
five types and investigated the characteristics of the stationary points near the singular
points. Tiahrt and Poore (1986) analyzed the behaviour of the optimal path near a

singular point using bifurcation theory. Jongen and Weber (1990) summarized the main
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theoretical results of the parametric analysis of nonlinear programs. Guddat et al. (1990)
and Lundberg and Poore (1993) proposed efficient pathfollowing algorithms that are able
to handle singularities in the solution path of the NLPP using continuation methods.
Hirabayashi et al. (1993) studied the structure of the KKT solution set with two free

parameters.

Continuation methods (Rheinboldt, 1986) may be used for the pathfollowing of
the optimal solution set. These methods have been used extensively for the solution of
nonlinear equation sets by parameterizing the original system in terms of an artificial
parameter, namely the homotopy parameter. At the initial value (usually equal to zero) of
the homotopy parameter the system takes a simplified form whose solution is known.
Then the solution path is traced until a target value for the homotopy parameter (typically
equal to unity) is reached, where the parameterized system takes its original form. This
point represents a solution to the original equation system. Seider et al. {(1991) reviewed
procedures based on homotopy-continuation methods that are used for the solution of
NLP problems. A number of applications of the homotopy-continuation methods are
available including: process design (Wayburn and Seader, 1987), heterogeneous
azeotropic distillation (Kovach and Seider, 1987), continuous reactors (Seader et al.,
1990), countercurrent separation processes (Salgovic et al., 1981), optimization
(Kernevez et al., 1990), multi-objective optimization (Rakowska et al., 1991) and global

optimization (Sun and Seider, 1991).
4.3.2 Parameterized Karush-Kuhn-Tucker Set

The parametric NLP (P4.1) with the first-order Karush-Kuhn-Tucker conditions
for a local minimizer (4.2) is considered. The stationary conditions (4.2a, b), combined

with the feasibility relations (4.2d), form a set of parameterized nonlinear equations.
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ViL(x, A &)
Fo(x Aop €)= h{x, €) =0 ieljel (4.1
iy gj(.\'.e)

A point z, = (xo,lo.,uo). that is a solution of (4.14) for a fixed set of parameter values
&,. 1s called a generalized critical point. When (4.14), LICQ and (4.2¢) are satisfied then
the point is called a critical and KKT point. A point = which satisties (4.14} and has a
nonsingular Jacobian of Fp with respect to = (V,F,, )} is called a regular point of Fp. If

V_F, is singular, then the point is called a singuiar point of Fp.

An active set index strategy that eliminates inactive inequality constraints is used
to reduce the size of the system. Since the Lagrange multipliers that correspond to the

inactive inequalities are equal to zero then the equation set takes the following form:

ViL(x, A u.€)
F(x,A,me)=| hixe) |[=0 el jel, (4.15)
g(x.¢)

The number of equations is equal to (n+m,+m;), where m,<m, is the number of the active
inequality constraints, including (n+m+m,+p) unknowns. Thus the system has p degrees

of freedom, equal to the dimension of the parameter space.

Since the parameter variations are of finite magnitude, the active constraint set, J/,,
may be altered. The changes in the active set can be easily detected by the changes in the
sign of the Lagrange multipliers, #. The set of KKT points for (P4.1) for different values
of the parameter vector is obtained by solving (4.15) with the addition of the strict
complementarity condition (4.2c), that requires positive Lagrange multipliers which

correspond to the active inequality constraints.

An altemative formulation would be to include the strict complementarity

relations (Equation 4.2b) into the equation system as in (4.14). Such a formulation is
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used for the solution of NLP using continuation for fixed parameter values (Seider at al.,
1991). However, the strict complementarity relations are not differentiable when there is
a change in the active set. Mangasarian (1976) proposed an equivalent formulation to the
strict complementarity problem, that consists of a set of continuous once differentiable
nonlinear equations. Such a formulation includes all the inequalities in the equation set,

but only a few of them may be active at any given optimal point.

The implicit function theorem (Fiacco, 1983) states that the solution of (4.15),
(z5.€,), can be parameterized by means of the parameter ¢ in a neighbourhood of
(zﬂ,ga) provided that the Jacobian of system (4.15) with respect to z is nonsingular at the
point (20.80). More specifically there exists a once continuously differentiable function

o(&) such that F{p(e),£)=0 for all enear & and @(s,) =z,. The solution set of system

(4.15) is a p-dimensional manifold.

The entire analysis of the behaviour of the optimal solution path as the parameter
vector & varies is based upon the following theorem.

Theorem 4.2 (McCormick, 1978; Tizhn and Poore, 1986)

Let (z, &) be a solution of (4.14) and assume that f 4, g are twice continuously

differentiable in a neighbourhood of (xo,so). Then a necessary and sufficient condition
that V_F is nonsingular is that each of the following three conditions hold:

C1. Strict complementarity condition (SC); x,, > 0 forall j €J,.
C2. {VJ:,(xu,gn), ieluV,g(x.6)J eJD} is a set of linearly independent vectors.

C3. The reduced Hessian of the Lagrangian Z7V2LZ is nonsingular at (z,, &), where Z
is a matrix whose columns form a basis for the null space of the gradients of the active

constraints.

A direct corollary of Theorem 4.1 is that the characteristic features of a stationary

point may change only when a singular point is crossed in the optimal path trajectory
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{Guddat et al, 1990). Kojima and Hirabayashi (1984) and Guddat et al. (1990)
introduced indices in order to fully describe the characteristics of a stationary point (local
minimum, local maximum, saddle point). Guddat et al. (1990) used the linear index
(linear co-index) as the number of the negative (positive) Lagrange multipliers g4 that
correspond to the active inequality constraints (j € J;) and the quadratic index (quadratic
co-index) which denotes the number of the negative (positive) eigenvalues of the reduced
Hessian of the Lagrangian. For instance, a local minimum has the linear and quadratic
indices equal to zero (all & are positive and the reduced Hessian is positive definite) and
a local maximum has the linear and quadratic co-indices equal to zero. The local
characteristics of the optimal solution can be fully determined by these four indices and
they are invariant under parameter variations until a singular point is reached. The type
of singularity in the optimal solution path. which depends upon the violated conditions
stated in Theorem 4.1, defines the way that the indices will be altered (Jongen et al.,
1986; Poore and Tiahrt, 1990). A detailed analysis of the solution curve around singular

points is presented in Section 4.5.
4.3.3 Simple Variable Bounds

Variable bounds are the simplest form of inequality constraints. Since variable
bounds are present in most practical applications in chemical engineering they will be
examined separately. The standard form of an NLP with equality constraints and simple

variable bounds will be:

N£in flx,8)
s.t. h(x,e)=0 iel, I={1,.,m}
x, —x(e)<0 keK, K={l,..,n

x{g)~x, 0

(P4.3)

where x*(£) and x'(£) are the parameter dependent vectors of the upper and lower

bounds of the state variables.
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The first order stationary condition is then expressed by the relation:

V.L=9, f(x.&)+ 2 4 V.h(xe)+ D (k) - 2 (x), (4.16)

ief Jeliy Jely

where &, and x; are the Lagrange multipliers that correspond to the active variables’ upper
and lower bounds respectively. «, and x obey the SC condition and they are equal to
zero if the corresponding bounds are not active. U, and L, are the index sets that contain
the indices of those variables which are at their upper or lower bound, respectively. The
set of nonlinear equations that is used, after eliminating the inactive constraints, for the

pathfollowing of the KKT points of (P4.3) is given by:

VIL(x, 4K,k &)
h(r.€)
x; - xj(€)
AR A

0 el jeU,kel, 4.17)

4.3.4 Multiple Parameter Perturbations

The parameter vector £ may contain a large number of physical parameters of the
process model. The sensitivity of the optimal solution to multiple parameter
perturbations usually differs from the sum of the effects of individual parameter
variations due to nonlinearities in the process model. Most numerical continuation
algorithms can handle problems with only one degree of freedom; i.e. one independently
varying parameter. However, the equation system can be modified to accommodate the

requirement for multiple parameter changes.

A new scalar parameter (£ ) is introduced which varies betwsen zero and any
defined target value (positive or negative). Additional equations are introduced that
express the functional relation between the changes of the physical model parameters and
the variation of the free parameter ¢, Then the value of each model parameter at a certain

point in the optimal solution curve satisfies the following relation:
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8!!{\6'_8”—
Ae{g,_();g—a,g:o i=l...p (4.18)

(6ny ).

where & and &, are the reference (initial) and the current parameter values vectors.
respectively. The first term comresponds to the relative change of the i-th parameter at the
current point. The relative rate of change is chosen for scaling purposes. The vector &
represents a direction of perturbation in the parameter space which can be selected. by
utilizing engineering knowledge about the most frequently occurring variations, by using
the correlation between the parameters, or by using the major directions of variation for
the reference point as calculated in Section 4.2.3. The error associated with the estimate
of every parameter may be mncorporated in the assignment of the value for 6. The product

8, ¢ at the final point, where ¢ is at its target value, reflects the final relative change of

the i-th parameter from the initial point. Therefore, large values of 8 denote large final
relative change for the i-th parameter. Figure 4.1 shows the relation between the relative
changes for two simultaneously varying parameter values. The slope of the line is equal

to the ratio of the individual entries of vector & for the given parameters.

Equation (4.18) implies that the parameter values vary linearly between an initial
and final value as a function of the perturbation size £. However, relation (4.18) may
take the form of any nonlinear function that describes the change in the parameters (e.g.
catalyst deactivation curve with time, kinetic parameter changes with temperature) as

follows:

g.mf w -

_QJ —dg)  i=le.p (4.19)
ref

£

4e(e.0), :[
i
where d(£) is a nonlinear function that relates the perturbation size with the relative

change of the i-th parameter. An example of a nonlinear behaviour for two model

parameters is shown in Figure 4.1.
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Figure 4.1 Relation between the relative changes of parameters for
multiple model parameter variations, (a) linear relation (Equation 4.18),

(b} nonlinear relation (Equation 4.19).
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4.4 Continuation Methods for the Pathfoliowing of the Optimal Sclution

The solution of the parameterized equation set (4.15), with the addition of the
relations that govern the variation of the physical parameters of the process model,
(4.18)-(4.19), is obtained by continuation methods. Allgower and Georg (1990) reviewed
a large variety of algorithms for continuation methods which can be classified into two
types: predictor-corrector methods (Rheinboldt, 1986} and piecewise linear methods that
approximate the solution curve by a sequence of linear segments. Conjugate gradient
methods are used to handle pathfollowing of large-scale systems. Continuation methods
are able to trace the solution path past bifurcation points, where two solution branches
intersect, but however, in the usual form cannot determine all the solution branches.
Morgan (1987) proposed a numerical procedure to examine the behaviour of the solution
set of polynomials under parametric variations. An algorithm for calculating the zeros of

a homotopy map, HOMPACK, was proposed by Watson et al. (1987).

4.4.1 Description of PITCON

In the present work, a predictor-corrector continuation method is used as
implemented in PITCON (Rheinboldt and Burkardt, 1983 a, b). PITCON allows one

parameter to be varied independently.

The equation system that is to be solved, allows multiple model parameters to

vary as a function of the independent parameter ¢ and has the form

VIL(x, A, p.€)
h(x, £)
g,(x.€)

ae,(£.¢)

Fp(xdpe)= =0 iel jedy k=1...,p (420)

System Fyp has n+m +my+p equations with n+m +m,+p+1 unknowns.
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The predictor stage evaluates the tangent vector to the optimal solution path by

solving the following augmented system of equations which has a unique solution:

i:V”F""}v =e, T(w)zarl 4.21)

P bt

¢
The symbol w denotes the set (x,4, 4,£¢), t the total number of the unknowns, 7(w) is

the tangent vector at the solution curve at point w and e, is the i-th vector of the canonical

basis of 9. The term o defines the sign of the tangent vector and is determined by

o, = sign(vrei) sign(det[v ";fMPD (4.22)
i
The term o is used to prevent taking the wrong direction when two components of the
solution’s manifold cross each other (Rheinboldt, 1986). Such a situation may occur
when there is a bifurcation point in the optimal solution manifold. Variable { acts as the
continuation variable in the augmented system (4.21). In order to provide faster
convergence to the next point in PITCON the variable that has the largest component in
the tangent vector is chosen as the continuation variable for the next predictor step.
However, when a variable value approaches a limit point where its tangent entry changes
sign then PITCON selects this variable as the continuation variable. The user also has

option to defines the continuation variable.
The predictor step continues by taking a step along the tangent direction with a
step-length (&) to determine the prediction point, W**'.

W = w18, T(w") (4.23)

The size of the step-length is calculated by estimating the distance of the prediction point

to the solution manifold. Starting from the prediction point w**'a corrector action is

taken by solving the following system.
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~

B =] vt | =0 (#.24)
(ei) (w—w )

The solution to this system is obtained by an iterative method based on the

modified Newton’s formula:

wt = =, F (W) Fp(w) j=0L.. =it (4.25)

where the Jacobian of F\; is evaluated numerically at the beginning of every continuation
step. In large-scale mildly nonlinear problems, the Jacobian may be updated only at the
continuation steps that the corrector stage fails to converge. Then the predictor and the
corrector stages are repeated using the updated Jacobian. A schematic of the predictor-

corrector procedure is shown in Figure 4.2.

The solution of the linear system (4.21) is performed by block elimination using
the LINPACK package (Dongarra et al., 1979). The system of equations that appears
during the course of the continuation method includes the Jacobian of Fy, (4.21), which

has the following form:

viL v,H' vi L 0
V.Fp=|YH 0 VH 0 (4.26)
0 0 I £y

where 1 is the (pxp) identity matrix and &, is a (px1) column vector made up of the
reference values of the parameters. The matrix in (4.26) contains the full Hessian of the
Lagrangian function which is evaluated numerically; a procedure that requires great
computational effort. Null space decomposition techniques can be incorporated in order
to invert or factor the Hessian of the Lagrangian for large-scale systems. In cases where
the reduced Hessian becomes singular as the optimal solution path reaches a singular
point specialized factorizations for indefinite matrices should be used (Lundberg and

Poore, 1993). However, in the present work, the full Hessian of the Lagrangian as it



1i4

Optimal Solution Path

Predictor step

Figure 4.2 Schematic of the predictor-corrector procedure in PITCON
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appears in Equation (4.26) is evaluated numerically at the continuation points that the

corrector step fails to converge.

4.5 Singularities in the Optimal Solution Path

In this section the discussion involves the detection and study of the behaviour of
the optimal solution path around singular points. Without any loss of generality, the
analysis is performed for system F, equation (4.13), and it is assumed that = is one-
dimensional. The extension of the results to system F,;;, with  being the free parameter,

is straightforward.

4.5.1 Violation of the Strict Complementarity (SC) Condition

In this case, the SC condition is violated at point (z, ,) causing V.F to become
singular. It is assumed that both linear independence and second-order optimality
conditions hold. There are two distinct cases for violation of the SC condition. The first
case involves the situation where one multiplier which corresponds to an active inequality
crosses zero (SC violation). The second case occurs when one of the inactive inequality
becomes infeasible (feasibility loss). In the first case, the corresponding inequality is
removed from the set of binding constraints and the pathfollowing continues on the
modified set of equations. In the latter case, the opposite action is taken by adding the

constraint that became infeasible to the equation se.

Jongen et al. (1986), Guddat et al. (1990) and Tiahrt and Poore (1990) studied
extensively the behaviour of the characteristic indices around a singular point where SC
is violated. Tiahrt and Poore (1990) allowed multiple violations of the SC condition at
the same poj:t and showed that under certain conditions there exists at least one branch

of solutions for €<gy and one for £>¢ that is comprised of local minimizers.

The check of the satisfaction of the strict complementarity and the feasibility

conditions is carried out at the end of every continuation step before advancing to the
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calculation of the new point. The algorithm detects changes in the active constraint set
and then modifies the nonlinear set of equations involved in the continuation stage
accordingly.

Strict complementarity at the 4-th continuation point is expressed in the form
#,>0 forall; eJ,* and feasibility is expressed as gj(x, £)<0 forall j eJVJ, .
At every point in the optimal solution path (continuation point) the Lagrange multipliers
of the active inequality constraints are examined if they are positive and the inactive
inequalities are checked for feasibility. If both tests are successful, then the active set
index remains the same and the algoritiun proceeds for the computation of the next
continuation point.

Let j, €J be an index, for which either the strict complementarity or feasibility
conditions are violated and the active set index must be modified. In the case where

J, € Ji( #;, £ 0; SC violation) then the corresponding constraint is removed from the
basis and the active set index for the next continuation point will be Ji*! = J¥ \{ jq} ; the
previous active set index without j,. In the case where j, € J1J; (g, (x,€)>0;

infeasible point) then the corresponding constraint is added to the equation set and the

active set index used in the calculation of the next point will be J;*!' = J§ U { jq} :

A simple example illustrates the behaviour of the optimal solution path around a

stngular point of this kind. The parametric NLP is taken from Fiacco (1983).

Min  f(x.%)=(x ~&) +(x, +1)
st gfx.x)=x-x,<0 (P4.4)

gz(x,,xz) =-Xx, =X, £0

The objective function is the minimization of the distance from the feasible region to

point (&-1). For £=-2.0 (point A in Figure 4.3), constraint g, is active. At point B where
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Figure 4.3 Optimal solution path for problem (P4.4).
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£=-1.0, constraint g, becomes active and the active set is properly modified.
Continuation on the dashed curve causes g, to be infeasible. In the segment B-C both
inequality constraints are active at the solution with both x, and x, equal to zero. At point
C (£ =1.0) the Lagrange multiplier that corresponds to g, becomes equal to zero which
results in a SC violation case. The constraint is removed from the active set and the

optimal solution path is traced until point D (£=2.0).

The tests for the violation of SC and feasibility are performed after the evaluation
of every continuation point on all the inequality constraints. In the case of SC loss, for
only one active inequality, the continuation direction is reversed temporarily to calculate
the point where the respective Lagrange multiplier is equal to zero. Then the
corresponding constraint is removed from the equation set and the continuation algorithm
proceeds on the modified set. This procedure is followed in order to calculate as close as
possible the point in the optimal sclution path at which the SC condition is violated. In
the case of feasibility loss, the inequality constraint that becomes infeasible is included in
the equation set with its associated Lagrange multiplier. The continuation algorithm
performs a corrector step to adjust the point so that the Lagrange multiplier of the added
constraint is equal to zero. Then, the continuation procedure begins on the altered set of

equations.

Usually the calculated continuation point at which multiple violations are
detected, does not coincide with the exact point where the active set has to be altered. In
a situation, where multiple violations of SC and feasibility are encountered, the last
continuation step is performed again using a smaller step-length in the predictor stage.
The objective is to identify the set of constraints that first violated the conditions. If there
are any constraints that violate any of the SC or feasibility conditions at the exact same
point in the optimal solution curve then the corresponding constraints are removed or

added into the equation system (4.15) accordingly. The continuation method proceeds on
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the modified equation set. There may be bifurcation points where different active set

selections result in branches consisting of local minimizers for problem (P4.1).

4.5.2 Linear Independence Loss

Let (z,, &) be a solution of /=0 and the rank of V H at that point is equal to (m-
1), where m=m+m;, while around this point the rank of V_H is m. Then V_F is singular

at (z5, &). It is also assumed that the rank of V(”)F is equal to s+m, which implies that

V_F does not belong to the range space of V_F. It can then be shown that the optimal

solution path of (P4.1) exhibits a quadratic turning point (Jongen et al., 1986; Keller,
1987).

Lagrange multipliers, that correspond to the constraints that cause the rank
deficiency, tend to infinity when the LI condition is violated. As a consequence, the
optimal solution path cannot be calculated using the described continuation method near
the singular point. Guddat et al. (1990) suggested that a constraint should be imposed on
the magnitude of the multipliers in order to approach the singularity. The stationary
conditions are thus modified by introducing a multiplier for the gradient of the objective

function.

V. L(x, A, pe)=vV, fx,e)+ > A,V h(x,e)+ > u, V. g,(xe)=0 (427

tef Jjedy

At KKT points, vis assumed to be equal to 1. The imposed constraint has the following

form:
Ve d+y u=p (4.28)

The term g3 2 is a constant scalar that is equal to the sum of squares of the Lagrange
multipliers including v* at the point where v is to be introduced. In a case of LI loss, as

some of the Lagrange muitipliers approach infinity the value of v decreases, so that

Equation (4.28) is satisfied, and eventually for some parameter values will cross zero.



The system, for which the solution set is to be calculated, thus becomes:

v, L(x,v,A,1.€)
hie.o)
g,(x.¢)

Vs A A+ u u-

F,(x,v, A, 1,6) = =0 iel, jed, (4.29)

The solution of system (4.29) is equivalent to the solution set of (4.15) with the Lagrange

H;

- A -
multipliers given by 4, == ie/, and jg;=— jeJ;, (Guddatetal, 1990). As
v 1%

v approaches zero, then A and jt—.

If 1=0, then the matrix V_H is rank deficient (the Lagrangian becomes

S AV.h+ > u,V, g, =0 with nonzero multipliers). If V, H is full rank then v=0

iel jeds

(because if v=0, then V H would be singular). This simple test is used to detect the LI
violation in the optimal solution path. v is normalized by dividing the stationary
conditions by the numerical value of v, after it crosses zero and takes negative values.
The variables x will remain unchanged but all the Lagrange multipliers will reverse sign
and so will the eigenvalues of the reduced Hessian (Tiarht and Poore, 1990). A direct
consequence will be that a path consisting of local minimizers will become a path
consisting of local maximizers when a singular point due to LI loss is crossed. The
branch of the local maximizers can be traced numerically using continuation but in the
opposite direction. In practical applications LI loss may occur when the varying

parameters appear in the set of nonlinear constraints.

An example of LI loss is given by considering the following simple minimization

problem (Guddat et al., 1990).

Min  f(x)={x-3)

P4.5
s.t. h(x):%x’—%xz—Zx-i-S—B‘.Sa (P4.3)
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& varies from 1 to 0. For £ =1 the minimum is at x=3 (Figure 4.4). The Lagrange
multiplier for # approaches infinity at x=2 and £=0.48, since the gradient of the constraint
becomes zero at that point. This is a case that the LI condition does not hold. the optimal
solution path exhibits a quadratic turning point and the local minima branch tums to a
local maxima branch. At x=1 the gradient of the constraint becomes zero again and
there is another turning point in the solution path with the characteristics of the optimal
solution changing to those of a local minimum. Figure 4.4 shows the case of multiple

minima for the same parameter value which are calculated by the continuation method.
4.5.3 Special Case of LI Loss

In many practical applications of NLPP, where inequality constraints are
involved, it is possible that the total number of active constraints {equality + binding
inequality constraints) exceeds the number of process variables. Such a situation may
occur when the solution of a fully determined system hits another process constraint due
to variation in the model parameters. More specifically, the case where m+m=n+1 will

be examined based on the work by Jongen et al. (1986) and Guddat et al. (1990).

The analysis requires that the number of active constraints is n+1 with m,22 and

V_H does not belong to the range space of V H, which implies that
{V(xlr)h,,i el, V.18 J eJo} is a set of linearly independent vectors (V, ,H has

rank equal to #+1). Since LI does not hold, then the set of Lagrange multipliers do not

have a unique set of values.

A weaker constraint qualification than the LICQ was introduced by Mangasarian
and Fromowitz (1967) denoted as Mangasarian-Fromowitz constraint qualification

(MFCQ) which requires that

i,V h iel isasetof linearly independent vectors and
ii. 3w e R" suchthat V. hw=0 iel, V,gw<0 jelJ,
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parameter, {

Figure 4.4 Optimal solution path for problem (P4.5).
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The Lagrange muitipliers are bounded and unique up to a common multiple when the

MFCQ is satisfied (Kojima and Hirabayashi, 1984).

The system of equations (4.15) is feasible only at one point (2, ). when n+1
active constraints are present. In the neighborhood of the point (z, &), the stationary
conditions are satisfied if one of the active inequalities is removed. The set of
generalized critical points will consist of the union of solution branches that correspond
to the different problems in which one active inequality has been removed from the basis
(Figure 4.5). However, not all of these branches will necessarily be comprised of local
minimizers. Jongen ct al. (1986) proved that if MFCQ hold at point (=, &) then there is a
solution branch consisting of local minimizers for €>gy. In contrast, if MFC(Q does not
hold at (z,, &) then this point is a boundary point for the KKT set. This implies that there
are no local minimizers for £>gy, thus defining the boundary of the feasible region for
problem (P4.1). The boundary point will determine the range of parameter changes for
which the system has no feasible solution. In such a situation the Lagrange multipliers of

the active inequalities will tend to infinity since MFCQ does not hold at (z, &,).

The tracking of the optimal solution around a point where a special case of LI loss
occurs is handled similarly to the procedure described in Section 4.5.2. When the number
of active constraints exceed the number of state variables then the modified system (4.29)
is used. If at point (=, &) MFCQ holds, then a SC violation occurs, which is detected by
the sign of the Lagrange multipliers, and the corresponding constraint is removed from
the active set. The pathfollowing switches back to the original system (4.15). If
however, MFCQ does not hold, then a LI loss case occurs at point (2, &) and the same

procedure described in Section 4.5.2 is followed.



124

MFCQ holds i MFCQ violation

y

Figure 4.5 Optimal solution path around a point where a special case of LI

occurs (solid curves: local minimizers, dashed curves: generalized critical

points).
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4.5.4 Singularity of the reduced Hessian

In this section it is assumed that SC and LI conditions hold and exactly one
eigenvalue of the reduced Hessian of the Lagrangian vanishes at point (z,g). The
optimal solution path exhibits a quadratic tuming point at (z, &) with one eigenvalue of
the reduced Hessian changing sign (Jongen et al., 1987). Therefore a solution branch that
consists of a sequence of local minimizers will turn to a branch of saddle points. This is
equivalent to loss of the second-order optimality condition. The active set remains
unchanged and so does the linear index when the optimal solution path crosses such a

point. Consider the following one-dimensional problem:

Min f(x)= %xs —% & x* —% e(x-2)’ (P4.6)

Figure 4.6 shows the optimal solution path as the parameter ¢ varies from | to 0. At &=0
the second derivative of the objective becomes zero and the second-order optimality
condition is violated. The optimal solution has a turning point and the second derivative

changes sign and becomes negative, which results in a branch consisting of local maxima.

The presence of this kind of singular point can be detected by inspection of the
sign of the eigenvalues of the reduced Hessian (Z"V2LZ). Matrix Z has size nx(n-m,-
m,) and columns that form a basis for the null space of V,H. Z can be easily calculated
by performing a QR decomposition of V H (Equation 4.6). However, a QR
decomposition is computationally intensive for a large-scale problem. An alternative way

to evaluate Z would be to find a matrix that is orthogomal to V H. If
! fied for th f

_ . . 0 e ontd .
Z= “(VJ*FH) (V.r.,dH) , the requirement that V_H Z=0 is satisfied for the partition o

the variables into independent (x;,,,) and dependent (x,.,).

The reduced Hessian is then calculated numerically by perturbing simultaneously

all the variables along the directions defined by the columns of Z (Equation 4.10). In



1.5 T T T T T

1L min i

Ak _ d

1.5 max .. B 1

L Il

_2 1 I L 1
-0.2 0 02 0.4 0.6 0.8 1 1.2

parameter, ¢

Figure 4.6 Optimal solution path for problem (P4.6).
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cases where the number of active constraints is equal to the number of variables (no
degrees of freedom) the reduced Hessian cannot be defined since the null space of V_H

has dimension equal to zero.

PITCON has the ability to trace solution curves that exhibit tuming points (limit
points) in some of the variables. A limit point for a variable occurs when the tangent
element that corresponds to this variable changes sign. A simple inspection of the
tangent elements in the predictor stage will detect such a situation. The eigenvalues of
the reduced Hessian do not change unless a singular point is encountered. Hence the
reduced Hessian will be examined for positive definiteness only when the optimal
solution path crosses singular points. Such situations can be detected when there is a
limit point in the perturbation parameter £ and when any of the SC or LI conditions is

violated.

4.6 Algorithm for the Pathfollowing of the Optimal Solution

The tests for the detection of singularities in the optimal solution and the actions
that are taken in order to trace the optimal solution around singular points are embedded
into the pathfollowing algorithm. The block diagram of the algorithm is shown in Figure
4,7. The conditions and tests that are given correspond to that for a local minimizer, but

can be easily transformed to accommodate a local maximizer.

A series of tests is performed for a given continuation point (x",)f, whet g ")

and an active index set J¥. First variations in the active set are examined. If cither the
SC or the fezsibility conditions are violated, then the active set that will be used in the
next continuation point is modified by proper addition or removal of constraints. The
next step involves the LI condition. If LI loss is suspected, because some of the Lagrange
multipliers tend to infinity for very small changes in the perturbation size ¢, or an

overconstrained case is encountered (where special case of LI loss occurs), then the
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pathfollowing switches to the equation system Fi; (4.29). When the continuation is
performed in system F|,, then the value of vis also checked. If vcrosses zero then the LI
does not hold at the point where v is equal to zero. Then the procedure continues on the

set of local maximizers of the original system by normalizing the value of v. The second-
order optimality conditions are checked whenever a turning point is detected or a singular
point due to violation of another condition is crossed by examining the signs of the
eigenvalues of the reduced Hessian. Upon violation of the second-order optimality
condition (at least one eigenvalue becomes negative), PITCON performs a limit point
calculation. The final test examines if the perturbation size has reached the specified
target point. If not, then the pathfollowing continues on the equation set taking in

account the modifications dictated by any violating conditions.

The proposed algorithm can handle multiple violations of the conditions stated in
Theorem 4.2. The procedure described in Section 4.5.1 for multiple active set changes is
extended to accommodate simultaneous violations of more than one test in the algorithm
flowsheet shown in Figure 4.7. The last continuation step is repeated with smaller
predictor step-length. A sufficiently small step-length will permit the determination of
the condition(s) that cause failure and the exact point where these violations occurred.
Proper action, as described in Sections 4.5.1-4.5.4, will be then taken depending on the

violated condition.

4.7 Chapter Summary

The relative significance of each parameter and combination of parameter
variations in affecting the optimal solution is determined by evaluation of the
cigenvectors of matrix X'X. The eigenvector that corresponds to the largest eigenvalue
of X"X can be interpreted as the direction in the parameter space that causes the largest

changes in the optimal variable values around the reference point. The contribution of
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cach model parameter to the major directions of perturbation defines the parameter’s

relative importance in the optimal solution at the given optimal point.

A sensitivity analysis methodology of nonlinear programs that allows multiple
simultaneous changes along specified directions of arbitrary magnitude in the model
parameters is proposed. The method is based on the pathfollowing of the solution of the
parameterized first-order optimality conditions for different parameter values. The
parameter variations studied are of deterministic type. The solution method that is used is
based on a predictor-corrector type of continuation technique as implemented in

PITCON.

The methodology can handle variations in the active constraint set by examining
the sign of the Lagrange multipliers of the binding inequalities and the inactive
constraints for feasibility at every peint in the optimal solution path. At a point of the
optimal solution path where a LI loss is suspected, the equation system is modified by
imposing a constraint on the values of the Lagrange multipliers. The solution set can
then be traced around the point where LI loss occurred. The second-order optimality
cond;tion is checked whenever there is either a turning point in the optimal solution path
or when a singularity due to violation of either the SC or LI condition is encountered.
The eigenvalues of the reduced-Hessian are evaluated using a null space decomposition
that requires the process variables to be partitioned into independent and dependent

variables.



5. Parametric Sensitivity Analysis for Chemical Processes

5.1 Williams-Otto Plant

The optimal solution path of the Williams-Otto plant shown is calculated for
model parameter variations along specified directions. The combined effects of multiple
parameter changes in the optimal solution are investigated. The Williams-Otto plant
shown in Figure 5.1 consists of a continuous stirred tank reactor, a heat exchanger, a
decanter and a distillation column (Williams and Otto, 1960). A three reaction model
(Figure 5.1} is used in the reactor, where component ‘p’ is the product and component ‘g’
is the undesirable by-product. Pure components ‘a’ and ‘b’ (streams SA and SB) and a
recycle stream (SL) are fed into the reactor, which is assumed to be perfectly mixed. All
three reactions are exothermic with Arrhenius temperature dependent kinetic parameters.
There is a heat removal system from the reactor, and the reactor’s effluent is further
cooled at a target temperature in the heat exchanger. A logarithmic mean temperature
difference (LMTD) is used for the heat exchanger’s energy balance. There is no
constraint imposed on the temperature of the heat exchanger’s outlet stream. The
decanter removes all the amount of component ‘g’ from the system. The distillation
column is modeled as a simple split with the overhead product consisted of pure product

‘p’. The reference model parameter values are given in Table 5.1.

The objective function to be maximized is:
nsir

% return = Y ( price, FLOW,) - C,(FUXW + FURW) - C,(TURW -T,)"  (5.1)
i=1 .

FLOW; denotes the flow rate of the i-th stream, FUXW and FURW are the heat
exchanger and the reactor cooling water flow rates, TURW is the outlet temperature of

the reactor’s cooling water flow rate, 7, is a reference temperature for the cooling water
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Table 5.1 Model parameter values and directions of perturbation for the Williams-Otto

plant.
Madel parameter Reference & in !st & in2nd #in
Value eigenvector eigenvector | scenario 2
direction direction direction
Reactor cooling jucket heat transfer coefficient, 26 167 -0.1883 -0.2384 -
kJ{m® s K)

Heat exchanger heat transter coefficient, kJ/(s K) 4457 10° -0.0674 0.0108 -
Arrhenius gain in reaction 1. (s wt frac)" 2.7778 0.0015 0.0027 -
Arrhenius gain in reaction 2, (s wt frac)? 4.1667 0.0004 -0.0002 -
Arrhenius gain in reaction 3, (s wt frac)” 5.5536 -0.0003 0.0043 -

Arrhenius exponent in reaction 1, (AE/R,), K 6,666.7 -0.0066 -0.0130 0.5773
Arrhenius exponent in reaction 2, (AE/R,), K 8,333.3 -0.0005 0.0013 -.5773
Arrhenius exponent in reaction 3, (AER,), K 11,111.1 0.0004 -(.0016 0.5773
Heat of reaction 1, kl/kg 0.523 0.2868 0.3869 -
Heat of reaction 2, ki/ke 0.209 0.3431 0.4603 -
Heat of reaction 3, kl/kg 1.599 0.0592 0.0742 -
Reactor cooling water inlet temperature, °C 15.7 0.0441 0.0635 -
Heat exchanger cooling water inlet temperature, °C 15.7 0.5807 -0.0916 -
Flow rate of stream SA (reactant a), kg/s 1.827 0.2144 0.2045 -
Temperature of stream SA, °C 213 0.0938 0.1348 -
Temperature of stream SB, °C 21.3 0.1880 0.2524 -
Temperature of stream SL, °C 38.0 0.5719 0.6555 -
Mass holdup of the CSTR reactor, kg 2,104.7 0.0003 0.0006 -

(9%
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outlet temperature, price; is the value per kg of each stream (negative for feed streams,
positive for product streams, zero for intermediate streams), C, is the cost factor for the
cooling water requirements and C, is the cost factor for the temperature deviation of the
reactor’s cooling water from the reference temperature. The values of the economic

factors appearing in the objective function are given in Appendix B.

The values of the decision variables and the model parameters are scaled so that

their values lic between zero and one.
5.1.1 Parameter Variation along Eigenvector Directions

The optimal solution is obtained using MINOS 5.3 for the reference parameter
values as given in Table 5.1. There are three independent variables at the optimal
solution, after a degree of freedom analysis of the active constraint set. A locai
sensitivity analysis using the reduced space approach is performed for the 18 parameters
of Table 5.1 at the optimal solution. An inspection of the absolute values of the
individual entries of the sensitivity matrix, reveals that the most sensitive variable is the
heat exchanger’s cooling water flow rate (FUXW). In order to determine the significance
of each parameter and combination of parameters on the optimal solution a singular value
decomposition of the sensitivity matrix is performed. The individual entries of the first
and second eigenvector directions in the parameter space are shown in Table 5.1. The
relative importance of the model parameters to the optimal solution may be assessed by
the contribution of each parameter to the eigenvector directions. However, the results are
only valid at the reference optimal point because the eigenvectors are calculated using

local sensitivity information.

Inspection of the magnitude of the individual entries of vector o,u, reveals that
parameter perturbation along the first eigenvector direction wiil cause the largest change
in variable FUXW. Similarly, perturbation along the second eigenvector direction will

mainly influence the process stream flow rates (streamns SL, SR, SX, SE, SS and ST).
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Such a conclusion does not imply that parameter variation along each of the eigenvector
directions will not affect the remaining process variables. However, each parameter
combination, as defined by the eigenvectors, affects the most, in a 2-norm sense. a
specific group of process variables. The individual entries of the first eigenvector
directions (Table 5.1) indicate that the heat exchanger’s cooling water inlet temperature,
the target temperature of the heat exchanger’s outlet process stream (equal to the
temperature of strearn SL) and the heat of the first and second reactions have the largest
contribution in the first eigenvector direction. Similarly the temperature of stream SL
and the heat of reaction for the first and second reactions have the strongest impact on the

second eigenvector direction.

The optimal solution path is traced for changes along the first and second
eigenvector directions. This will provide useful insight about the behaviour of the system

under an extreme situation. There are 150 unknowns (67 process variables, 64 Lagrange

multipliers, 18 model parameters and the perturbation size ') and 149 equations (67
gradients of the Lagrangian function, 64 equality constraints and 18 relations for the
parameter moves, Equation 4.18). The optimal solution paths for the objective function
value, the heat exchanger’s cooling water flow rate, the reactor’s temperature and the
flow rate of the reactant ‘b’ are shown in Figures 5.2a-d, respectively. The cooling water

flow rate rapidly increases as the perturbation size increases until it reaches a maximum

value at ¢=0.03 and 0.054 for the first and second eigenvector direction respectively; then
decreases due to quenching of the reaction. The pathfollowing sensitivity analysis
reveals that a 1.7% increase in the heat exchanger’s cooling water inlet temperature and
in the target temperature for stream SL. when combined with smaller variations in the
values of the remaining parameters, may cause FUXW to triple (Figure 5.2b), if
optimality is to be preserved. The profit decreases for perturbations in both eigenvector
directions but in the first case the slope is steeper. The marginal parameter values for

which the plant remains profitable can be determined from Figure 5.2a. This may be
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more beneficial in a case where the perturbed parameters are cost terms or market values
in the objective function. The inlet temperature of reactor’s and heat exchanger’s cooling
water vary differently. The proposed sensitivity analysis method is capable of examining
the nonlinear effects arising from multiple parameter changes that cannot be predicted by

a local sensitivity analysis.

The optimal solution path obtained by PITCON is compared with the optimal
solution calculated by MINOS 5.3 for the same parameter values at every continuation
point. Both MINOS and the continuation method give identical solutions for the same
parameter values. Each case in MINOS used the previous basis and variable values as a
starting point. The main advantage of the continuation method over the case study
approach for sensitivity calculations is that it systematizes the procedure by adaptively
controlling the step size, so that convergence is facilitated. The continuation approach
identifies the parameter values at the points where the active set varies or a singularity
occurs. Furthermore, continuation allows the pathfollowing on branches that do not
correspond to KKT points. Hence, the characteristics of the solution set can be identified
and possible multiple KKT points can be calculated for the same parameter values in the
same connected path. In the case study approach to sensitivity analysis, the sampling
points are chosen arbitrarily and this may result in failure of the optimizer to converge.
Consider the following example to support this statement. The optimal solution path,

between the initial and final values of ¢, is divided into equispaced intervals with respect

to the perturbation size ¢ and the optimal solution is calculated by MINOS for the
parameter values that correspond to these sampling points. The starting point for MINOS
is the optimal solution obtained in the previous sampling point. For the case of 10
intervals, MINOS converges to a different optimal solution, that may belong to another
branch of local minimizers, after the 7th interval. A different set of variable bounds is
active at the solution. For a partition of the range of interest into less than 10 intervals,

MINOS fails to converge at some of the selected sampling points.



5.1.2 Kinetic Parameter Variations

The optimal solution path of the Williams-Otto plant is calculated tor changes in
the activation energy estimates of the three reactions. It is assumed that there is a
negative bias for the activation energy of the first and third reaction and a positive bias
for the activation energy of the second reaction. The values of the 0 coefficient. shown in
Table 5.1, are equal for all three activation energies which imply that the absolute relative

change for every parameter is the same at every point in the optimal solution curve.

The optimal solution curve for the reactor and cooling water in the heat exchanger
temperatures are shown in Figure 5.3. As the kinetic parameter estimates change, the
reactor’s optimal temperature decreases in order to favor the desired second reaction that
produces the valuable component ‘p’. For a perturbation size of -0.232 (13.4% relative
change, positive for the second and negative for the fist and third reaction, in the Kinetic
parameter estimates) the temperature difference at the two sides of the counter-current
heat exchanger become equal (40°C), which causes the logarithmic mean temperature
difference model for the heat exchanger to fail. In order to avoid numerical instabilitics
an approximation to the logarithmic mean temperature difference is used as suggested by
Prasad (1988). The use of the approximate LMTD allows the continuation method to
trace the curve around the turning point at {=-0.232 (AE1/R,=3773 K, AE2/R =9450 K,
AE3/R,;=9622 K). A calculation of the (3x3) reduced Hessian reveals that one of the
eigenvalues vanishes at this point. This results in a transition from a branch of local
maximizers to a branch of saddle points. The direction of the predictor step in the
continuation procedure is reversed and the solution curve is traced until the temperatur:
of the reactor and the heat exchanger cooling water approach to the same value which

results in an infeasible sitaation.

The sensitivity analysis reveals some significant aspects of the solution curve of
the stationary conditions. The magnitude of variation of the activation energies in the

specified direction is determined for which the system loses its optimality due to the



140

Temperature, °C

80 . r 1 .
70}
Reactor temperature
80+ .
A
50 4
apt :
A .
20 Cooling water temperature
20 1 L 1 1
-0.25 0.2 -0.15 0.1 -0.05 0

perturbation size, £
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violation of the second-order optimality condition. Multiple solutions of the stationary
conditions for the same set of parameter values are calculated. but not all of them

correspond to local optima.

5.2 Multicomponent Distillation Units

5.2.1 Deisobutanizer (DIB) with a Tray Efficiency Model

This example involves the study of the optimal solution path under fecd
composition variations for a single muiticomponent distillation column. The efficiency
of the methodology to handle active set changes on the optimal solution path of the
column is examined. Active set variations alter drastically the behaviour of the process
variables to parameter changes. The range of feed composition variation for which no

feasible optimal solution exist is determined.

A tray-by-tray model based on the MESH equations, as described in Chapter 2, is
used to model the DIB column. The thermodynamic properties of the components and
the phase equilibrium data are computed by regressed equations (2.16, 2.17 and 2.19). A
model based on the Hughmark correlations (Lockett, 1988) is used to estimate the
Murphree tray efficiencies. The size of the model is 374 equality constraints with 372
process variables. The objective function to be minimized is the total cost for the
separation, which includes the utility costs and the differential product cost for the 1T
and nC, lost in the bottoms and overhead product streams respectively as given by (2.46).
The setpoints for the control system are the iC, and nC, purity levels in the two product

streams (Bailey, 1991).

The base optimal solution is obtained for iC,=4.09594 Mmol/d and nC,=1.81285
Mmol/d with MINOS 5.3, which has two degrees of freedom and none of the variables
are at their upper or lower bounds. The optimal solution path is traced for a disturbance

in the feed composition. The feed flow rate of iC, (light key) decreases linearly from its
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reference value to a final value, but the feed flow rate for nC, is changing in such a way,
so that the total feed to the column is kept constant. The parameterized set of optimality
conditions has 747 equations which includes the relation that governs the variation of the
feed composition of the key components. The upper and lower bounds imposed on some
of the variable values are shown in Table 5.2. For the remaining variables (component

and total flow rates and tray temperatures) a lower bound equal to zero is imposed.

Figures 5.4a-d show the optimal solution path for the objective function value, the
reflux ratio, the reboiler heat duty and the iC, molar iraction in the bottoms product and
Table 5.3 provides information about the type of singularity encountered in the optimal
solution path. Starting from the base case (point A) with the feed composition estimates
varying linearly as described in the previous paragraph, the reflux ratio and the reboiler’s
heat duty are increasing in order to anticipate for the increased losses of nC, in the
overhead product that are penalized in the objective function. At point B of the optimal
solution path (relative change in feed flow rates, iC,=-10.4% and nC=+23.6%) , the
upper purity level of the overhead product (3.5% mole in nC,) is reached and one degree
of freedom is removed from the optimal solution. Beyond point B, the reflux ratio and
the reboiler heat duty increase at a higher rate, because of the lost degree of freedom, in
order to anticipate for the continuing change in the feed composition. At point C (iC,=-
15.0% and nC,=+33.9%), the reboiler reaches its highest heat duty level (800 MJ/d)
resulting in a system with no degrees of freedom. The optimal solution at this point is
simply the solution of the fully determined set of the nonlinear equations (with two fixed
variables, nC, mole fraction in overhead and reboiler’s heat duty) for different values of
the feed composition. As the pathfollowing procedure progresses, ine increasing reflux
ratio violates its maximum allowable level of 12.0 at point D in the optimal solution path
(iC,=-19.1% and nC,=+43.2%). The value of the reflux ratio is fixed at its upper level
which results in an overconstrained problem with 3 fixed variables. Therefore the system
can be satisfied only for a unique feed composition. This is a situation where the path

encounters a point that a special case of LI loss occurs, The Lagrange multipliers



Table 5.2 Variable bounds for the DIB.
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Upper Bound Lower Bound
Bottoms product flow rate, B (Mmol/d) 3.0 1.5
Overhead product flow rate, D (Mmol/d) 52 3.0
Reflux ratio, RF 12.0 8.0
Reboiler heat duty, Qg (MI/d) 800.0 700.0
Condenser heat duty, Qg (MJ/d) -650.0 -800.0
iC., molar fraction in bottoms product, Xg(iC,} 0.040 0.0
nC, molar fraction in overhead product. xp(nC,) 0.035 6.0
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Figure 5.4 Optimal solution path for changes in the feed composition estimates of the
DIB: (a) objective function value, (b) reflux ratio, (c) reboiler heat duty and (d) iC, molar
fraction in bottoms product (solid curves: local minimizers, dashed curves: local

maximizers).
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Table 5.3 Singularities in the optimal solution path for the DIB.

iC, feed flow | nC, feed flow | Continuation Singular point type Active set
rate (Mmol/d) | rate (Mmol/d) points Upper level
min 4,0959 1.8129 Starting point 1]
min 3.6687 2.2401 21 Upper bound violation Ixp(nCy)}
for xp(nC,)}=0.035
min 34816 24272 24 Upper bound violation {xp(nC,), Qp}
for Qp=800 Mi/d
min 3.3133 2.5955 45 Upper bound violation {xp(nCy), Qu, RF}
for reflux RF=12.0
min 3.3133 2,5955 4 SC violation for Qpul {xp(nC,), RF}
nin 32015 2.7073 74 Upper bound violation {xp(nC,), RF, x5(iCy)}
for xp(iC,)}=0.040
3.2015 2.7073 109 Linear Independence {xa(nCy), RF, x{iC,)}
loss
Transition min--»max
max 3.2015 2.7073 183 SC violation for {RF, xg(iCs}}
xp(nC,ul
max 3.3351 2.5737 9 Upper bound violation {RF, xg(iCy), Qp}
for Qp=800 M1/d
max 3.3351 2.5737 3 SC violation for RFul {xa(iC,), Qa}
max 4.1088 1.8000 31 Target point reached {xg(iC,), Qp}
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associated with the active inequalities are changing dramatically for infinitesimal
perturbations in the feed stream. According to the analysis described in Section 4.5.3 the
stationary condition system is augmented as in (4.29), so that the multipliers are bounded
and allow for possible LI violations to be detected. At point E, which coincides with
point D (same values for the feed composition estimates), the Lagrange multiplier
associated with the active upper bound on the reboiler’s heat duty crosses zero, violating
the SC condition, which implies that MFCQ is satisfied at this point. The constraint that
sets the reboiler’s heat duty to be at its upper bound is removed from the basis thus

leaving two fixed variables in the optimal solution.

At point F (iC,=-21.8% and nC,=+49.3%) the upper bound for the purity level in
the bottoms product (4.0% mole of iC,) is reached. When the corresponding constraint,
that fixes the bottoms purity level at its upper bound, is added to the basis all the
Lagrange multipliers of the binding inequalities increase rapidly for infinitesimal changes
in the feed composition. The augmented system {4.29) is used again and allows the
continuation method to calculate the solution very close to point G where +=0 and the LI
condition does not hold. This point also defines the boundary of the feasible region for
the column for the given parameter variation. No optimal solution can be obtained for
any feed composition change beyond this point. At point G, the direction that the
continuation method traverses the optimal solution path has to be reversed. The
pathfollowing continues for negative values of v in order to avoid division by zero and
then switches back to system (4.20) (point G). The transition from system (4.29) to
(4.20) is achieved by dividing the optimality conditions by the current value of v, thus
normalizing v and switching back to the KKT conditions. The optimal solution path is
comprised by local maximizers since all Lagrange multipliers and all eigenvalues of the
reduced Hessian change sign (v is negative). The local maximizers do not have any
practical application (path of maximum costs) in this case but the path is traced to show

the optimal solution type change.
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At the local maximizer branch-points H, I and J, different types of singularities
are encountered that are explained in detail in Table 5.3. The calculation is terminated at
point K where the reboiler’s heat duty and the iC, molar fraction in the bottoms product
are the active constraints which actually represent the operating conditions that result in

the greatest cost for the given process constraints.

Figure 5.4a shows the variation of the optimal objective function value given the
change in the feed composition estimates. It is of interest to calculate the difference
between the optimal solution path as shown in Figures 5.4a-d and the solution of the
process model with fixed setpoints as determined by the optimizer at the reference point
(A), under the same variation in the feed composition estimates. The difference between
the objective function values at the two points will indicate the necessity for the

calculation of a new optimal solution at the updated parameter estimates.

Such a case is examined for the DIB. The setpoints are the purity levels in the
two product streams and are fixed at the values determined by the optimizer for the
reference values of the feed composition. The system is solved using the pathfollowing
methodology for varying feed composition. It should be noted that with the two purity
levels fixed the column does not have any degrees of freedom. The solution path for the
objective function value and the reflux ratio are shown in Figures 5.5a-b. At point Z in
Figures 5.5a-b, that corresponds to a 10% relative change in the iC, feed flow rate, the
upper level for the condenser’s heat duty (-820 MJ/d) is reached. Point Z is equivalent to
a point where a special case of LI loss occurs. The simulation shows that there is no
solution that satisfies the system of equations for larger parameter =stimate variations. If
the change in the feed composition estimates is greater than 10% in the iC, feed flow rate,
then there is poing to be a steady-state offset from the setpoint values of the reference

case for the column and the difference in the cost will be larger between the two curves.

However, one can observe that for small changes in the feed composition, there is

no substantial difference between the ‘ideal’ curve (if the parameter values were known at
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every point and a new optimal solution was obtained) and the actual curve (for fixed
setpoints and some model mismatch) in the value of the objective function (Figure 3.52).
Changes in the manipulated variables, such as the reflux ratio. may be more severe than

in the ‘ideal’ case (Figure 5.5b).
5.2.2 Column Train Example

This example involves the simultaneous optimization of three nuiticomponent
stagewise distillation columns in series (Figure 5.6). The behaviour of the optimal
solution path is studied for variations in the feed composition estimates. It is of great
interest to investigate the interaction between the different units under the influence of

simultaneous parameter variations.

The feed to the column train is a 12 component mixture of hydrocarbons. The
debutanizer (DB) separates pentane and heavier components from the mixture which are
used as fuel gas. The C,-C, splitter (SP) separates propane and lighter components, with
the overhead product priced as pure propane. The overhead and bottoms products from
the deisobutanizer (DIB) are priced as pure iC, and nC, respectively. The economic data
are taken from Bailey et al. (1993). The columns are modeled using tray-by-tray models
and the thermodynamic properties are calculated using regressed equations (Bailey,
1991). The system originally has six degrees of freedom and the setpoints to the

multivariable controller are:

a) The reflux to feed flow rate ratio in the DB

b) The nC, molar fraction in the bottoms product in the DB
¢) The iC, molar fraction in the overhead product in the SP
d) The C, molar fraction in the bottoms product in the SP

e) The nC, molar fraction in the overhead product in the DIB

f) The iC, molar fraction in the bottoms product in the DIB
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Figure 5.5 Comparison between the optimal solution path and the trajectory of the
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(a) objective function value, (b) reflux ratio.
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In this case, the iC, molar flow rate in the feed increases from a base case value of
3.975 Mmol/d to an upper estimate of 4.3 Mmol/d linearly, while the nC, decreases at the
same rate from 1.7559 Mmol/d to 1.4322 Mmol/d, so that the total feed flow rate in the
system is kept constant. The upper and lower bounds for the variables are shown in
Table 5.4. The optimal solution for the initial values of the feed composition (iC,=3.975,
nC,=1.7559 Mmol/d). which is obtained using MINOS 3.3, has two degrees of freedom
with four independent variables found at their bounds. The total number of equality

constraints in the model are 855 and the equation set {4.20) has 1715 equations.

The light and heavy keys for the DIB are the iC, and nC, respectively. As a
result, the main effects of the variation in the feed composition are initially noticed in the
DIB where the bottoms flow rate reaches its lower bound and the bottoms purity level its
upper bound for very small changes in the feed composition (0.2% increase in iC;). The
system at this point has no degrees of freedom with the DIB overconstrained (3 active
variable bounds). In order to compensate for any changes in the feed quality estimate, the
active bound on the upper level of the bottoms flow rate in the DB becomes inactive. The
profit starts to decrease since the DB bottoms product stream whose flow rate decreases
has the highest molar value. As a result heavier components (mainly pentanes) are sent
into the SP and DIB so that the level of the iC, in the DIB bottoms could satisfy the
product specification. The DIB column is sensitive to this particular kind of feed
composition disturbance and forces the degrees of freedom in the other columns to adjust

so that the entire system remains feasible.

At point K, that corresponds to .. relative change for iC; equal to +8.1% and for
nC, equal to -18.4%. the upper bound on the molar fraction of pentanes and higher
components in the DIB bottoms product is reached. The system could not absorb any
turther changes in the feed stream composition and there is a sequence of active set

changes for infinitesimal changes in the feed.



Table 5.4 Vanable bounds for the distillation column train.

Lh
(99

Debutanizer (DB) Upper Bound Lower Bound
Bottoms product flow rate (Mmol/d) 1.50 0.90
Reflux ratio 1.030 .90
Reflux to Feed ratio 1.20 0.80
Reboiler heat duty (MJ1/d) 90.0 74.0
Condenser heat duty (MI/d) -130.0 -170.0
iC, molar fraction in bottoms product 0.01t 0.0
nC, molar fraction in bottoms product 0.022 0.0
C,-C, Splitter (SP)

Overhead product flow rate (Mmal/d) 2.00 1.00
Reflux ratio 8.0 11.0
Reboiler heat duty (MJ/d) 260.0 2100
Condenser heat duty (MJ/d) -180.0 -220.0
iC, molar fraction in overhead product 0.015 0.0
C, molar fraction in bottoms product 0.015 (0.0
Deisobutanizer (DIB)

Bottoms product flow rate (Mmol/d) 2.30 1.70
Reflux ratio 10.0 8.0
Reboiler heat duty (MJ/d) 840.0 68010
Condenser heat duty (MJ/d) -63(1.0 -790.0
nC, molar fraction in overhead product 0.027 0.0
iC, molar fraction in bottoms product 0.032 0.0
iCs+nC;+C, molar fraction in bottoms product 0.170 .0
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Table 5.5 shows the details of the type of singularities encountered in the optimal
solution path for the column train. Figures 5.7a-e show the optimal solution path for the
profit, the bottoms product flow rate and the reflux to feed flow rate ratio in the DB, the
reflux ratio in the DIB and the iC, molar fraction in the overhead product of the SP,

respectively.

5.2.3 Comparison of Parametric Sensitivity Results between Tray-by-tray and

OCFE Models

One of the requirements for the adequacy of a simplified process model to
represent the full-order model in process optimization is that both the simplified and the
full-order models should have the same sensitivity with respect to the major model
parameters at the optimal solution (Biegler et al., 1985; Forbes and Matlin, 1994). In
Chapter 2 OCFE models for stagewise distillation units that provide the same optimal
solution as the full-order, tray-by-tray model, have been developed. In this section the
pathfollowing methodology will be used to study the parametric sensitivity of the OCFE

model and compare it to the tray-by-tray sensitivity results.

Variations in the feed composition estimates and the column pressure estimates
are investigated separately. The OCFE model for the DIB column in Chapter 2 is
considered with the nonlinear objective function (2.46). The error in the feed stream
composition estimates affects the two key components in the column in a similar fashion
as in section 5.2.1. Table 5.6 presents the singular points and the active set in the solution
path for the OCFE and the tray-by-tray models. Both models show an almost identical

behaviour for this type of disturbance.

A second scenario involves a variation in the pressure estimates of the column.
Given a total pressure drop for the column, the pressure estimate in the condenser is

subject to positive variation. The results obtained using both tray-by-tray and OCFE



Table 5.5a Singularities in the optimal solution path for the distillation column train.

DOF | iC, feed flow | nC, feed flow Singular point type Active sct
rate (Mmol/d) | rate (Mmol/d}
A 2 3.9750 1.7559 Starting point [1.2.3,.4)
2 4.0634 1.6675 Lower bound violation for bottoms L2340 5
preduct flow rate in DIB (1.7 Mmol/d)
c I 4.0713 1.6594 Upper bound violation for purity level in 123,456}
DIB bottoms product {x5=0.032)
D 0 4.0715 1.6594 SC violation for bottoms product flow 12,3.4,5. 6}
rate upper bound in DB
E 1 4.1284 1.6025 SC violation for reflux ratio upper bound {3,4,5, 6}
in DB
F 2 4.1744 1,5565 Lower bound violation for reboiler heat 13,4,5,6,7)
duty in DB (74.0 MJ/d)
G ) 4.1984 1.5325 Lower bound violation for reflux to fved 13,4,5.6,7, 8}
ratio in DB (0.80)
H 0 4,1984 1.5325 SC violation For reboiler heat duty lower {3.4,5,0,8)
bound in DB
l | 4.2234 1.5075 Upper bound violation for reboiler heat {3,4,5,6,8, 9}
duty in DIB (840.0 MJ/d)
J 0 4,2234 1.4322 SC violation for reflux ratio upper bound {3.5,6,8,9)
in DIB
K | 4.2987 1.4322 Upper bound violation for pentane and 13,5,6,8,9, 1)
heavier in DIB bottoms product (.17}
L 0 4.2987 1.4322 Upper bound violation for iC, motar {3,5,6,8,9,10, 11}
fraction in SP overhead product (0.015)
M - 4.2987 1.4322 Special case of LI loss {3,5,6,9,10, 11}
SC violation for reflux to feed ratio lower
bound in DB
N 0 4.2987 1.4322 Upper bound violation for reboiler heat {3,5,6,9, 14,11, 12}
duiy in DB (50.0 MJ/d)




Table 5.5b Constraint numbers for Table 5.5a.
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Constraint No

Description

Numerical Value

| Upper bound on bottoms product flow rate in DB 1.50 Mmol/d

2 Upper bound on reflux ratio in DB 1.05

3 Upper bound on reboiler heat duty in SP 260.0 M1/d

4 Upper bound on reflux ratio in DIB 10.0

5 Lower bound on bottoms product flow rate in DIB 1.70 Mmol/d

6 Upper bound on iC, motar fraction in DIB’s bottom product 0.032

7 Lower bound on reboiler heat duty in DB 74.0 MIid

3 Lower bound on reflux to feed ratio in DB 0.80

9 Upper bound on reboiler heat duty in DIB 840.0 M)/d

10 Upper bound on molar fraction of pentanes and heavier in DIB’s bottoms 0.17
product

11 Upper bound on iC, molar fraction in SP’s overhead product 0.015

12 Upper bound on reboiler heat duty in DB 90.0 MJ/d
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Figure 5.7 Optimal solution path for changes in the feed composition estimates in the
column train: (a) profit, (b) DB bottoms product flow rate, (¢) DB reflux to feed flow

rate ratio, (d) DIB reflux ratio and (e) iC; molar fraction in SP overhead product.
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models are shown in Table 5.7. The element partition in the OCFE model remains

unchanged during the continuation procedure.

The results in Tables 5.6 and 5.7 show that both tray-by-tray and OCFE models
have similar behaviour in the optimal solution under vanatiens in the estimates of the
feed composition and column pressure. The same active set changes occur for the same
set of parameter values. The results suggest that the OCFE model represents accurately

the tray-by-tray optimal solution for a range of model parameter values.

5.2.4 Optimal Solution Sensitivity to Element Partition Variations for OCFE
Models

In Chapter 3 the effect of the finite element partition on the OCFE optimal
solution has been examined and a method for the adaptive placement of the element
breakpoints, to minimize the approximation error has been developed. A conclusion that
was drawn from experience with the adaptive placement methodology was that there may
be a wide range of element partitions that satisfy the imposed residual equidistribution
criterion. As mentioned in Chapter 3, the simultaneous economic optimization and
residual equidistribution problem may become ill-conditioned if too many element

breakpoints are allowed to vary.

In this Section the sensitivity information obtained by the pathfollowing
methodology is utilized in order to identify the finite element lengths that have the
greatest impact on the economic optimal solution. Based on this result, the effort for the
optimal distribution of the element breakpoints would be concentrated in the most
sensitive elements in the model. Sensitivity analysis using continuation wiil be used to
determine the range for the element size variations for which the economic optimization

problem remains feasible.

Furthermore,  sensitivity analysis with respect to the element partition may

provide an indication about the sufficiency of the total number of collocation points in the
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Table 5.6 Singular points in the optimal solution paths obtained by tray-by-tray and

OCFE models for variation in the feed composition estimate.

Tray-by-tray OCFE
iC, feed flow rate | iC, feed tlow rate Singular point type Active set
{(Mmol/d) (Mmol/d) Upper or Lower level
A | min 4.096 4.096 Starting point ©
min 3.982 3.981 Lower bound violation for WQp !

Qp=-820.0 MJ/d

C | min 3.671 3672 Upper bound violation tor { Qnyp xp(nCaly
Xp{nC,)=0.025

D | min 3454 3.454 Upper bound violation for { Qo XpfnCyly REy}
reflux RF=12.0

E | min 3.454 3454 SC violation for Qq { xpinCyy REy )

F | min 3.369 3.369 Upper bound violation for { xp(nCyoly. REy, xaliCihy)

%3(iC,)=0.030
G 3.369 3.369 Lincar Independence loss { xp(nC.)y, REy xp(iCydu}
Transition min—max

OCFE model: 3 elements per column section, 2 collocation points per element in rectifyinmg section, 3 collocation

points in the stripping section

Notation: subscripts U and L denote that the variable is at its upper or lower bound, respectively.
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Table 5.7 Singular points in the optimal solution paths obtained by tray-by-tray and

OCFE models for variation in the cofumn pressure estimate.

Tray-by-tray

OCFE

Condenser

Pressure (kPa)

Condenser

Pressure (kPa}

Singular point type

Active set

Upper aor Lower level

A | min 479.90 179.50 Starting point 5]

B mir 199,97 500.07 .ower bound violation for {Qpr)
Qp=-320.0 MJ/d

C | min 542.69 343.05 Upper bound violation for £ QoL xsliCae }
xp(iC,)=0.030

D | min 554.50 554.50 Upper bound violation for ! Qor s x6(iCou xp(nCidy }
xp(nC,)=0.025

E 554.50 554.30 Linear Independence loss ! Qo . Xal{iColu. xp(0Cily }

Transition min—max

-

OCFE model: 3 elements per column section, 2 collocation points per element in rectifying section, 3 collocation

points in the stripping section

Notation: subscripts U and L denote that the variable is at its upper or lower bound, respectively,
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OCFE model. More specifically. an element whose element size variations have a large
effect on the optimal solution, even for small variations. may be considered as a candidate
for a collocation point addition. If the opposite is true, a collocation point may be
removed from the given element. The redistribution of the collocation points may be
performed in such a way so that the resulting OCFE model becomes less sensitive to the

element partition.

The DIB column as described in Chapter 2 is considered with the nonlinear
objective function (2.46). The OCFE model that has 3 elements in cach column section is
partitioned using the residual-based approach as follows: element lengths 3.900, 3.900,
4.200 in the rectifving section and 5.230, 4.903, 7.867 in the stripping scction. The first
set of simulations i=-slve the variation of the element partition at the rectifying section
while keeping the stripping section partition fixed. The first element’s length in the
rectifying section increases linearly with respect to the perturbation parameter ¢, while
the second and third element lengths decrease at half the rate of increase in the first
element length. The changes in element lengths are defined in such a way so that the sum

of the lengths of the elements in each section is constant.

The change in the economic optimal solution does not seem to be significant until
the first element length reaches the value of 4.283. At this point. the flow rate for pentane
(nonkey component), at the first collocation point of the first element becomes equal to
zero. For larger values of the first element length, the pentane flow rate becomes
negative leading to an infeasible problem. Pathfollowing continues on the modified
system of equations that include the additional active bound constraint for the pentane
flow rate. For values of the first element length greater than 4.283, the accuracy of the
optimal solution starts deteriorating and the composition profile becomes unrealistic. fThe
behaviour of the optimal reflux ratio and the cost are shown in Figures 5.8a-b. According

to the sensitivity results there is an upper bound for the first element length, given the
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Figure 5.8 Optimal solution path for an OCFE DIB model for variations in the

clement partition of the rectifying section: (a) objective function value, (b) reflux ratio.
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order of the interpolation polynomial used in the element. for which an accurate solution

is achieved.

A similar situation is examined by decreasing the length of the first element while
increasing the lengths of the other two elements in the section by half the rate of decrease
in the first element. At an element partition of the rectifving section at points 3.666.
4.017 and 4.517. the pentane flow rate in the first collocation point of the third element
reaches its lower bound. This implies that the element partition cannot provide an

accurate optimal solution composition profile for pentane.

The reason for the inaccuracy of the OCFE model for some element partitions is
that the model fails to predict the behaviour of the nonkey components. The predicted |
profiles may provide unrealistic values at small component compositions duc to

inadequate model resolution.

A similar case is examined for the partition of the stripping section. The
pathfollowing on the KKT set shows that the length of the third stripping section does not
cause any significant changes in the optimal sc'ution or undesirable behaviour in the
composition profile of the nonkey components. The second element’s length could not

be increased above the value of 5.058 because the propane flow rate becomes negative.

The information regarding the sensitivity of the optimal solution to the element

partition is utilized in order to:

a. Determine if a smaller OCFE model can be obtained by removing collocation
points from those elements, whose length variation does not affect the optimal

solution.

b. Decide about a proper distribution of the collocation points among the clements,
by relocating the collocation points, thus changing the order of the approximation
polynomials within each element, from the least sensitive clements to the most

sensitive.
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Different scenarios are cxamined for the DIB column. In the first scenario, a
collocation point is added in the second element of the rectifying section, in order to
improve the robustness of the optimal solution to changes in the element partition of the
rectifving section. The additional collocation point allows the element length to be larger,
thus making the other two elements smaller in size. The result is an improved model
resolution, since the density of collocation points is increased in the rectifying section.
The optimal solution of OCFE 2 shown in Table 5.8 is closer to the tray-by-tray solution

than the original OCFE 1 model.

In the second scenario, a collocation point is removed from the third element of
the stripping section because of the robustness of the optimal solution to variations in its
length. A new element partition is obtained using the residual-based approach and a new
optimal solution is calculated. Table 5.8 shows the new optimal solution for OCFE 3
model, that converges faster than the original OCFE | model but the approximation error
has slightly increased. Moreover, the sensitivity of the optimal solution has increased for

changes in the length of the third element as shown in Figure 5.9.

A third scenario considers the relocation of the removed collocation point from
the third element (second scenario) to the second element of the stripping section. Thus
the interpolating polynomial in the second element becomes fifth-order. The optimal
solution obtained by OCFE 4 model is shown in Table 5.8. The accuracy of the optimal
solution is slightly reduced compared to OCFE 1 model and so is the solution time.
However, the optimal solution becomes more insensitive to changes in the second

element’s length.

The sensitivity results may be utilized to understand the effects of the element
partition in OCFE models for distillation units on the economic optimal solution.
Determination the sections in the column where the approximation model is the most

sensitive to partition changes allows the selection of a more robust collocation scheme.
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Table 5.8 Comparison of the optimal solution of different OCFE models

Tray-by-tray OCFE 1 QOCFE2 OCFE 3 OCFE 4
Reflux ratio 10,078 10.077 10.078 10.057 10.066
Condenser heat duty (MJ/d) -510.458 -310.409 -810.458 -808.610 B0 .463
Reboiler heat duty (MJ/d) 831339 851.292 83134 829.477 830,340
nC4 %6 mole in overhead 2,142 2143 2142 2143 2143
iC4 % mole in bottoms 2.720 2718 2.718 2759 2740
Cost 3/d 4360.3 4560.2 4360.2 15684 4365.0
RS/6000 355, CPU time (s) 18.7 9.0 10.0 7.8 8.4
OCFE models
Collocation points per element
Rectifving section - 2.2.2 2.3.2 2.2,2 2.2.2
Stripping section - 3,3.3 3.3.3 3.3.2 3. 42

All OCFE models: 3 clements per column section.

Element partition;

OCFE 1: 3.900. 5.900, 4.200 rectifying section, 5.230, 4.903, 7.867 stripping section
OCFE 2: 3.800. 4.100, 4.100 rectifving section, 5.230, 4.903, 7.867 stripping section
OCFE 3: 3.900, 3.900, 4.200 rectifying section, 5.230, 6.403, 6.367 stripping sectica
OCFE 4: 3.900, 3.900, 4.200 rectifving section. 5.430, 3.303, 7.267 stripping section
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Figure 5.9 Optimal solution path for the reflux ratio for variations in the length of the
third element in the stripping section, (0) fourth-order polynomial approximation, (x)

third-order polynomial approximation.
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The choice of the structure of the OCFE model will have to compromise between

solution speed and prediction accuracy.

5.3 Ammonia Synthesis Reactor

5.3.1 Parametric Sensitivity Analysis

Sensitivity analysis of system described by differential/algebraic equations has
been studied by Caracotsios and Stewart (1985) and Leis and Kramer (1985). They
proposed efficient algorithms for the estimation of the local sensitivities of such systems
simultaneously with the calculation of the trajectory of the state variables. In this
-.:ample the parametric sensitivity of an OCFE model that describes the behaviour of a

differential/algebraic system is examined.

The sensitivity analysis method using continuation will be implemented in a
ammonia synthesis reactor system described by Murase et al. (1970) and Vasantharajan
and Biegler (1990). The production of ammonia is performed in a Haber-Bosch catalytic

reactor that operates at high pressure. The reaction that takes place is:
N, +3H, < 2NH,

Figure 5.10 shows a schematic of the reactor, which is separated in to a reaction
and a cooling tube zone. The reaction zone contains the catalyst with the cooling tubes
inserted vertically through the reaction zone. The feed gas goes through a heat exchanger
and then through the cooling tube, where it removes heat from the exothermic reaction.
The removed heat brings the feed gas at the proper temperature to initiate the reaction in
the catalyst zone and enhance the ammonia conversion. The feed gas changes direction
of flow at the end of the cooling tube zone and enters the reaction zone. Murase et al.
(1970) considered the optimization of the reactor in order to determine the optimal length

of the reactor and the optimal heat transfer coefficient profile along the reactor.
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Figure 5.10 Schematic of the ammonia synthesis reactor.
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Following the model formulation described in the mentioned references the

system of differential equations that represent the ammonia synthesis are summarized
below:

X,

ra =-K U(X, - X)) (a)
dX, . .

L =K U(X,-X,)+K R, b 3.2)
dx, U =) KR © (
ax,

=—K. R.
dx, P ©

where the following dimensionless variables are defined as:

Xo=xy/ L, €[0]]
X, =T,/T, &[12]
X,=T,/T, 21

X, =N, /G <[0]]

and the parameters K|, K,, K, and K, given by:

Table 5.9 prcvides the nomenclature and the values of the parameters for the system

equations. The reaction rate expression is given oy:

[ S A

L PNH, B (P”: )1.5

(5.3)

The partial pressures of each component are evaluated using the stoichiometry of the

reaction as:



Table 5.9 Notation and data for the ammonia synthesis reactor
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Independent and dependent variables

xz = | Total reactor length, m
x, = | Length of the first reactor section, m
Ny, = | Molar flow rate of N, per unit area catalyst. kg mol hr' m?
Tt= | Temperature of feed gas, K
T, = | Temperature of reacting gas, K
Parameters
Cpe= | Heat capacity of feed gas = 0.707 keal kgr" K
s = | Heat capacity of reacting gas = 0.719 keal ker' K
R, = | ldeal gas constant = 1.987 kcal kmol! K
k= | Rate constant 1 = 1.78954 x 10* exp[-20,800 /(R T)]
k» = | Rate constant 2 = 2.5714 x 10" exp[-47,400/ (R T,)]
£ = | Catalyst activity = |
= | Heat of reaction = - 26,600 kcal kmol N,
Ni. | Molar flow rate of ith-component through catalyst zone
P;. | Partia! pressure of ith-component, atm
Pt | Total reactor pressure = 286 atm
Si - { Surface area of catalyst tubes per unit reactor length = 52 m
;. | Cross-sectional area of catalyst zone = 0,78 m’
Tier. | Reference temperature = 127 °C =400.15 K
Lieac « | Reference length = 10 m
(/= | Overall heat transfer coefficient = 100 kcal m™ hr'! K™
W= | Total mass flow rate = 26,400 kgr hr!
pr- | Density of feed gas = 10,5 kgr kmol™
G = | Total molar flow rate = 3,223 .44 kmol b’ m™
&= | Profit objective function, $ yr'
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N,
P=P | —— i =N,, H,, NH 5.4
¥ mr[G_zé_—RJ ! P 2 3 (D )

where & is the extent of the reaction, which is calculated as:

¢ - -
e =Ny, =Ny (5.3)
The molar flow rates for the components are given by the following relations:
N, =N, =3¢ -
Npg, =Ny, =gy (a) .
: _ (5.6)
N.\'H_\ = N.\'H_, + 2‘::( (b)

with A% (i=N., H, and NH,) being the molar flow rate of each component at the feed gas
stream. The mole fraction for N,, H, and NH, are 0.21753, 0.6525 and 0.05 respectively.
The integration along the length of the reactor begins from the top of the reactor to the

bottom, with initial conditions for the dimensionless variables, X=1.0. .\,=1.00 and

X,=0.2175.

The heat transfer coefficient, U, is allowed to vary along the reactor which is
divided into two subsections as proposed by the work of Murase et al. (1970). The first
section operates at a constant heat transfer coefficient, set at a maximum value, U/,,.. In
the second section U decreases monotonically in a quadratic manner (U=ax*+hx+c), as
shown in Figure 5.11, until the end of the reactor. This type of profile is proposcd by

Murase and coworkers to be the optimal selection.

The independent variables are the lengths of the two reactor subsections and the
coefficients in the quadratic relation for I/ in the second section. The profit objective

function that is minimized is given by (Murase et al., 1970):

®(x10°) = -027981.X, +028174 X, -55070 X, -
(5.7)
10(3:4566 107 +1.9837 10° X, )" +133543
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Figure 5.11 Typical optimal heat transfer coefficient profile for the ammonia reactor.
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An OCFE model consisting of three elements in the first section and two elements
in the second section with fifth-order Lagrange interpolating polynomials in each clement
is used. An element breakpoint is placed at the boundary point between the two reactor
sections due to the discontinuity in the heat transfer coefficient profile at this point. For
the nominal case with U, =100 keal/(m® hr K) the optimal values for the two reactor
subsections are 4.01 and 5.99 m, respectively, which yields a 23.96% ammonia
conversion at the exit of the reactor. The variable profiles at the optimal solution are
shown in Figure 5.12 and are compared with the profiles obtained using a 4th-3th order
Runge-Kutta integration method evaluated at the optimal values for the independent
variables. The profiles recommend that the OCFE model predicts accurately the profiics

in the reactor.

The parametric sensitivity studies using continuation involve the variation of the
Una value in the first section of the reactor. Initially, the optimal solution path is traced
for increasing values of U,,,. For a U,, value of 157.5 kcal/(m® hr K) (point B), the
optimal solution path exhibits a turning point due to violation of the sccond-order
optimality condition. More specifically, one eigenvalue of the reduced Hessian vanishes
at this point and the solution points turn to saddle points. The continuation direction is
reversed and the value of U, starts decreasing. At point C, where {/,,=146.3 kcal/(m’
hr K, the restriction on the size of U at the boundary between the two sections, that does
not allow the heat transfer coefficient in the second section to be greater than the value of
{/na» 18 reached. The active bound is then included in the equation set. However, the
addition of the new active constraint, causes the reduced Hessian to become negative-

definite and hence the points correspond to local maximizers. The pathfoilowing

continues for decreasing values of U, until point D.

From point E in the optimal solution that corresponds to U,,,=200 kcal/(m® hr K)
the optimal solution path is calculated for decreasing values of {/,,,. At point F where

U,=168.75 kcal/(m’ hr K) the upper bound for the value of U at the section boundary is
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Figure 5.12 Comparison of the simulation profiles in the ammonia reactor between an

orthogonal collocation solution (o) and a Runge-Kutta integration solutnio (solid lines).
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reached. The pathfollowing continues and at point C the optimal solution path coincides
with the one calculated starting from point A. The optimal solution paths for the length

of the first reactor section and the profit are shown in Figures 5.13a-b.

If the restriction on the value of U at the section boundary had been raised, then
the optimal solution path for the length of the first reactor section would have been as
shown in Figure 5.14. We observe that the optimal solution path consists of two
disconnected branches of solutions. There are more than one solution to the stationary
conditions for the same value of U,,,, however not all of them correspond to a local
maximizer as shown in Figure 5.14. Since it is not possible to calculate both solution
branches starting from the same nominal point using the continuation methodology as

described, MINOS 5.3 is used to find a solution point in the second branch.

Parametric sensitivity using continuation provides insight about the characteristics
of the optimal solution path and can identify multiple solution points to the stationary

conditiors in the same connected path.
5.4 Chapter Summary

The pathfollowing methodology for the sensitivity analysis of parametric NLPs is

applied to a number of problems, that involve single and multiple process units.

Multiple parameter variations will reveal the nonlinear effects on the optimal
solution. The range of the parameter variation is determined for which the active set
remains unchanged. Active set changes will identify the limiting constraints under
different types of parameter estimate variations. The magnitude of the parameter
perturbation can be evaluated for which the system remains feasible. In such a situation a
special case of LI loss is detected, and the singular point is a boundary point of the KKT
set. In cases where the optimization of multiple unit processes is involved sensitivity
analysis can provide information about the interaction of the difierent units under the

influence of disturbances so that optimality is maintained. Multiple solutions to the
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stationary conditions, that are in the same connected path. can be calzulated and the

characteristics of the solution points can be explicitly determined.

The pathfollowing methed can be used to calculate the difference between the
optimal solution with all the independent variables varving and the solution of the svstem
constraints with the setpoints fixed at the values determined at the reference point for
changes in the parameter estimates. The difference between the two points can be used to
determine the margins for the parameter changes for which a new optimal solution is

necessary.

The sensitivity of the optimal solution of OCFE models for distillation units to
different element partitions is investigated. The results can be utilized to define a
structure for the OCFE model, so that an accurate and robust to element partition: changes

solution is obtained.



6. Conclusions

This thesis involves contributions in two different subjects that are tied under the
RTO framework. The first subject focuses in the refinement and enhancement of the

collocation models for the steady-state optimization of stagewise distillation units.

In Chapter 2, a number of modifications in the formulation of existing OCFE
models for distillation columns have been introduced, thus improving the performance of

the OCFE models in the steady-state optimization of distillation units:

a) Finite elements are used within each column section in order to track irregularities in

the column profiles.

b) All stages in the column that have intermediate feed or product streams entering or
leaving the column are modeled as discrete cquilibrium stages. Such a formulation
atlows a more accurate representation of the column behaviour compared to existing

models.

¢) An extension to the previous statement is that depeiiding on the allowable level of
modél size reduction, some sections of the column may be modeled using OCFE while

other sections using tray-by-tray formulation.

Based on observations from a number of simulated examples involving

multicomponent distillation columns the following conclusions were drawn:

a) The OCFE models recognize the same optimal solution and have similar sensitivity
with respect to major model parameters, such as feed composition and column

pressure, as the rigorous tray-by-tray model.

b) The optimal solution for the OCFE model! is obtained in less time than the tray-by-tray

model.
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c) OCFE models have a wider range of starting points for which convergence to the
optimal solution is possible compared with the tray-by-tray models. which results in

improved robustness of the OCFE models to the initial variable values.

d) The OCFE modeling alternative is beneficial for columns that have large sections with
flat composition and temperature profiles, but is not generally recommended for

multicomponent columns with multiple sidestreams or a small number of equilibrium

stages.

The quality of the optimal solution obtained by the OCFE model is enhanced by
adaptively placing the element breakpoint so that the approximation error for the

distillation column is minimized {(Chapter 3).

a) A new method for the estimation of the error it introduced based on the residuals of
the material and energy balances around envelopes that include certain parts of the
distillation column. The magnitude of the residuals around different envelopes is

equidistributed throughout the column.

b) An approach that aims to determine the optimal economic operating conditions for the

column and the optimal element partition simultaneously is developed.

c) The residual equidistribution method results in element partitions that an economic
optimal solution of improved accuracy 1s achieved for a given number of collocation
points and elements. However, the procedure may converge to multiple element
partitions. The optimization problem may become ill-conditioned if too many element

breakpoints are allowed to move.

d) Derivative equidistribution method does not always result in an element partition for

which an accurate economic optimal solution exists.

The second part of the thesis involves the study of the sensitivity analysis in

model-based process optimization. A sequence of KKT points of a parametric nonlinear
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prograra is traced for varving parameter values using a continuation method as

implemented in PITCON.

a)

b)

Based on local sensitivity results the directions in the parameter space that cause the
largest variability in the state variable space are determined, by performing a singular
value decomposition on the sensitivity matrix. The relative significance of each
individual parameter and combinations of parameters on the optimal solution can be

evaluated.

Multiple parameter perturbations of finite magnitude along any selected direction are
implemented for the pathfollowing of the optimal solution. The procedure allows

only deterministic type of variation in the parameters.

Modification of the continuation algorithm so that the optimal solution path is
calculated around singular points. Simple tests are implemented for the detection of

the type of singularity encountered.

Sensitivity analysis is performed in chemical processes with respect to multiple

sunultaneous parameter changes of arbitrary magnitude along a specified direction, that

can explicitly handle active set changes, linear independence constraint qualification loss

and second-order optimality condition violation. The approach allows the study of

nonlinear behaviour and the combined effects of group of parameters in the sensitivity of

the optimal solution. A large variety of sensitivity analysis applications have been

examined in Chapter 5.

a)

b)

Determine the range of model parameter variations for which a feasible optimal

solution exists.

Determine the range of model parameter variations for which the active constraint set

remains unchanged.

Study the optimal solution behaviour of more than one unit under the influence of

model parameter variations.
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d) Sensitivity analysis of the optimal solution of OCFE models for distillation units with
respect to changes in the element partition. The resuit may provide information to

determine the most sensitive elements in the model.

¢) Parametric sensitivity analvsis of systems described by differential and algebraic

equations using OCFE models.
6.1 Recommendations for Future Work

The ability of the adaptive OCFE models to accurately predict the optimal
solution of the tray-by-tray model with less computational effort can be utilized in the
size reduction of more detailed distillation models. Nonequilibrium stage models
(Krishnamurthy and Taylor, 1983) and packed column models based on mass and energy
transfer equations are of increasing interest in the modelling of distillation processes.
However, the complexity of the model increases significantly with the inclusion of the
mass and energy transfer relations for the calculation of the bulk liquid and vapour phase
compositions. The multicomponent diffusive mass transfer coefficients require the
solution of the Maxwell-Stefan equations at every stage. An OCFE approach would
require the solution of the model equations at fewer points than the actual number of
stages leading to considerable savings. Due to the complexity of the model, the OCFI:
model would probably need better tuning through the selection of the variables to be

approximated and selection of the order of the approximation polynomials within cach

element.

The parametric sensitivity analysis examines the behaviour of the optimal soiution
for parameter variation along a unique direction in the parameter space. The parameter
variations in a real plant, however, may cover a large range of directions. The
information acquired by the pathfollowing of the optimal solution can be utilized to
construct a response surface for the optimal solution. A low-dimensional space can be

selected that is spanned by the dominant directions of parameter variation. These
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dominant directions of variation can be the eigenvector directions of the sensitivity
matrix as derived in Chapter 5. The behaviour of the optimal solution can be easily
examined using the pathfollowing methodology for variations along the dominant
directions or linear combinations of the dominant directions. The objective would be to
construct a function that would approximate the behaviour of the optimal solution in the
reduced space of the dominant eigenvector directions. The response surface information
can be utilized in order to operate the plant in conditions less sensitive to parameter

variations.

The stochastic behaviour of the model parameter estimates would be of great
interest to incorporate in the proposed sensitivity analysis methodology. Parameters with
relatively low sensitivity may cause large uncertainty in the optimal values of the
decision variables if the parameter is associated with large uncertainty. The problem
becomes even more complicated when multiple parameters are considered. The
approximation of the stochastic distribution of the parameter estimates using some
deterministic equivalent mode! (DiNaro et al., 1994) will allow the study of the behaviour

ol the optimal solution under the presence of stochastic type of variation.

In terms of applications in real-time systems, the pathfollowing methodology can
be utilized in deciding an opimal policy under parameter variations. In large systems
with multiple units and a large number of degrees of freedom, the pathfollowing
sensitivity analysis method provides an optimal path for the entire plant by adjusting the

degrees of freedom in order to compensate for the effects of the parameter variations.
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Appendix A: Coefficients for the regressed Equations 2.16, 2.17 and 2.19.

Table Al. Regression coefficients for K-values used in the C; splitter.

a, a, a, a,
propylene 8.020373e-1 -1.775595e-2 5.587970e-3 ~3.647275e-4
propane 6.854639e+1 -4.326426e-1 6.837252¢-4 -10,58095¢-4

Table A2. Regression coefficients for K-values used in the Deisobutanizer (DIB).

a, a, a, a,
propane -9.85809 5.45316e-2 -5.79078¢e-3 -1.39112¢-3
i-butane -3.67673 3.65983e-2 -2.08579e-5 -1.46492¢-3
n-butane ~15.41127 7.80988e-2 -8.8983%e-5 -1.17645¢-3
i-pentane -19.12111 9.46910e-1 -1.12866e-5 -9.97234e-d
Table A3. Regression coefficients for K-values used in the C,-C, splitter.

a, a, a, a,
ethane -5.420597 3.48876e-2 -3.88490¢-5 -5.09808¢-4
propane -13.133830 6.91381e-2 -8.13411e-5 -4.12676¢-4
i-butane -14.462616 6.88440e-2 -7.54950¢-5 -3.41044¢-4
n-butane ~-17.345122 8.25619e-2 -9.32420e-5 -3.17356e-4
i-pentane -20.023894 9.122537e-2 -1.01955¢e-4 -2.39818e¢-4
n-pentane -22.205646 1.01407e-1 -1.114963e-4 -2.20114¢-4

Table A4. Regression coefficients for K-values used in the EB/S column.

a, a, a; a,
ethyl-benzene 1.304356e+1 -7.516728e-2 1.086927¢-4 -4,669269¢-3
benzene 1.128412e+1 -6.600091e-2 9.51345%¢-5 -3.973728e-3
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Table AS5. Regression coefficients for liquid phase enthalpy used in the C; splitter.

b, b, b, b,
propanc -5.507860e+5 5.180234e+3 -1.673919e+1 1.845696e-2
propylene -2.336810e+5 2.168266e+3 -7.086567 8.169412e-5

Table A6. Regression coefficients for vapour phase enthalpy used in the C; splitter.

Tl Cs Cs c Cs Ce
propane -5.72554e+3 | -5.10174e+3 | -2.00812e+4 | 2.08929e+4 | 2.09357e+4 | -1.15250e+3
propylene -7.38623e+3 | -7.98970e+3 | -3.17627e+4 | 3.67828e+4 | 3.86803e+4 | -1.26688e+4

Table A7. Regression coefficients for liquid phase enthalpy used in the Deisobutanizer
(DIB) and the C;3-C, splitter.

b, by b, b,
propane -4.114596e+5 3.948232¢+3 -1.25025%¢e+1 1.363845¢e-2
i-butane -2.013476e+5 1.838203e+3 -5.425727 5.811588e-3
n-butane -1.674945e+5 1.494509e+2 -4.239655 4.503788e-3
i-pentane -9.877590e+4 8.301663e+2 -2.136380 2.317351e-3
n-pentane -1.041395e+5 8.668001e+2 -2.195377 '2.332018e-3

Table A8. Regression coefficients for vapour phase enthalpy used in the Deisobutanizer
(DIB) and the C5-C, splitter.

¢ ¢ C3 c, Cs Ce

cthane 3.41889e+3 | -1.13518e+4 | 1.24400e+4 | -2.53216e+3 | 1.20954e+d | 4.12111e+3
propanc 1.87050e+4 | -5.40087e+3 | -5.92078e+3 | 5.5829%e+3 | 5.24836e+3 1.30895e+4
i-butane 2.34751e+4 | -6.88974e+3 | -7.34538e+3 | 8.12559¢+3 2.8715e+3 2.32235e+4
n-butane 2.75293e+4 | -9.09605e+3 | -6.53993e+3 | 9.38289%e+3 | -9.33633¢+2 | 2,68593e+4
i-pentane 2.6537de+d | -7.98028e+3 | -7.44774e+3 | 1.00612e+d | 7.00015e+3 | 3.49152e+4
n-pentane 2.71551e+d | -7.97346e+3 | -1.05076e+4 | 1.07723e+4 | 1.08482e+4 | 3.44538e+4
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Table A9. Regression coefficients for liquid phase enthalpy used in the ES/B column.

b,

b

by

b,

ethyl-benzene

-4.677991e+4

2.188577e+1

1.946613e-1

benzene

2.893203e+5

4.531152e+1

1.946613¢-1

Table A10. Regression coefficients for vapour phase enthalpy used in the EB/S column.

Cl C: C} C.l. CS ch
ethyl-benzene | 1.477809%¢+3 | -8.879201e+3 | -2.475060e+3 0.0 5.635510e+3 [ 7.73A886c+d
styrene 3313887e43 | 2.31842detd | 7.618124e+3 | 3427691 e+d | 5.635510e+3 | 7.735896¢+d




Appendix B: Cost coefficients for Equations 2.45, 2.46 and 5.1

Table B1. Cost coefficients for objective functions 2.45 and 2.46.

201

C, splitter DIB C;-C, splitter EB/S
Cy 2.40 2.40 2.40 2.40

Cy -0.40 -0.40 -0.40 -0.40

Cu 80,000 15,000 0.0 15,000

Ch 30,000 15,000 0.0 5,000

Table B2. Cost coefficients for objective function 5.1.
price

SA SB SD SG SP SR Ca Cg
-168.0 252.0 50.04 -84.0 2207.52 -2.22 0.75 250
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Appendix C: Eigenvector directions for matrix X'X

Let X be the (nxp) first-order sensitivity matrix at the reference point (x’.&)
calculated by (4.4). The local behaviour of the optimal values for the process variables

for variations in the parameter values can be approximated by the following expression:
x(g) = :c(f:')+ X(a—a')+0([|51|) (C.1)

where 0(||.9|[) is the approximation error estimate which is proportional to the magnitude
of variation in the parameter space. The change in the variable space can be defined as
x(&) - x(a") = Ag. Without any loss of generality it is assumed that £=0 at the reference
point.

The objective is to determine the direction in the parameter space that causes the

greatest change in the optimal values of the process variables. A measure of variation in

the variable space is defined to be the sum of squares of deviation from the optimal

solution (x",£). More specifically the problem takes the following form:

Max Ae’ de=6"X"Xe
‘ P.Cl)
st ele=1

The constraint imposes a bound on the magnitude of the parameter perturbation. The
solution to problem (P.C1) is given by forming the Lagrangian and setting its dertvative

with respect to &, equal to zero.

dig[g"'xTx(;— n(s’"g— 1)] =0 (C2)

where ris the scalar Lagrange multiplier associated with the constraint. (C.2) results in:

X'Xe-7e=0 (C.3)



bwd
o
(VS

The optimality conditions (C.3) for problem (P.C1) implies that & is an
cigenvector of matrix X"X with 7 the corresponding eigenvalue. Hence, the maximum

value for the objective function in (C.P1) is attained when ¢ is selected to be the

eigenvector of X"X that corresponds to the largest in magnitude eigenvalue.
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Appendix D: Conventions for vector differentiation

vV.f (x):[éf [éx, - Ef /é‘x"], the gradient of the real-valued function f with

respect to the n-dimensional vector x.

Vo (e =[7.f(x8) 7, (x.e)]

T 3 ]’. - . -
V A(x)= [Vxhif V_,hm?] . the mxn Jacobian of the m-dimensional vector /. with
respect to the n-dimensional vector x.
Vif(x)= VI[fo(x)T] . 15 the nxn Hessian matrix of a real-valued function fwith ij-th

element equal to 8° f /2~ Ox,.

| Velof/ox) .
Vif(xe)=V[V.f(xe)]= ( 5/ )=[Vi;f(x-€)]
V. Ef [ox,
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