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Abstract

This thesis examines problems in two related subject areas.

The fIrst subject area involves the development orthogonal collocation on fInite

elements (OCFE) models for stagewise distillation processes for use in steady-state

optimization. The OCFE model formulatiou divides the column sections into smaller

subdomains (fInite elemeuts) in G~d"r to track irregularities in the column profiles.

Stages that have feed or sidestreams entering or leaving the c,,!umn are modeled as

discrete equilibrium stages in the OCFE model. An adaptive element breakpoint

placement procedure determines an element partition for each column section so that a

solution of improved accuracy is obtained. The element pa11ition is based on the

equidistribution of the material and energy balances residuals around envelopes in the

column. OCFE models converge to the same optimal solution as tray-by-tray models in

less computational time, but have similar sensitivity at the optimum with respect to major

model parameters.

The second area involves the study of parametric sensitivity analysis in process

optimization. A sensitivity analysis procedure is developed that calculates the behaviour

of the optimal solution for changes in one independent parameter using continuation

methods. A procedure is proposed to modify the equation set which allows the ~tudy of

the effects of multiple simultaneous parameter variations along specified directions in the

optimal solution. Special attention is given to the detection and analysis of singularities

in the optimal solution path caused by violation of either the strict complementarity.

linear independence or second-order optimality conditions. The methodology provides

information to determine the range of parameter estimate variation for which the active

constraint set or the characteristics of the optimal solution remain unchanged. The

adjustment of the independent variables in a multiple unit flowsheet, so that optimality is

maintail'ed, is investigated in the presence of model parameter variation.
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