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1. INTRODUCTION

1.1. RADIATION

The interaction of radiation with matter has been of great

interest in the past as well as at the present time. Living systems

are continuously exposed to various forms of radiation: ultraviolet

(UV) radiation from the sun, ionizing radiation from cosmic rays,

radioactive decay of unstable atoms, etc.

Since their discovery nearly 80 years ago the use of radiation

sources in medical and industrial applications has prolifer.ated rapidly.

At present approximately 50% of all patients with tumors are treated

with ionizing radiation. Though half of the treated patients are

cured successfully, there is still room for improvement which might

. be facilitated by knowledge of the effects of the radiation particularly

at the molecular level.

With regard to molecular effects, radiations are broadly divided

into two types:

1) ionizing radiation

2) non-ionizing radiation

When ionizing radiation (x-rays, y-rays, fast moving charged

or uncharged particles) is absorbed in target atoms, it causes the

removal of electrons from the target atoms, producing along its path



ionized atoms and free electrons. Non-ionizing radiations are those

for which the energy transferred to target atoms in individual inter­

actions is not sufficient to produce ionization (e.g.-ultraviolet

(UV) radiation). Both types of radiation have been shown to be capable

of killing living cells.

Biological damage arising from ionizing or non-ionizing radiation

can be studied at several levels: in whole animals or plants, in cultured

cells or in single-cell organisms (i.e. bacteria).

Many end points have been used: gross survival, cytological

effects, membrane function, macromolecular synthesis, etc. Techniques

also exist which permit the study of molecular damage to proteins and

nucleic acids both in vitro, in isolated macromolecular fractions and,

more recently, in vivo, in living cells.

In this work I will present the results of studies on molecular

damage produced by ionizing radiation on DNA molecules in cultured­

mammalian cells and I shall compare some of the results to those of

survival measurements on the same cells.

For normally dividing cells, the question of whether a cell

survives or not after exposure to a certain dose of radiation is defined

by its ability to divide indefinitely after the exposure. This is

actually measured by irradiating cells and allowing them to proliferate

under the most favourable conditions until many divisions have occurred.

All cells which maintained their dividing ability after the irradiation,

will form with their progeny a colony of cells which can be detected.

The number of colonies divided by the initial number of cells plated

, 2



represents the surviving fraction S.

1.2. CELLS A.~D DNA MOLECULES

In most living cells, the genetic information is contained in

DNA (deoxyribonucleic acid) molecules. This is true for eukaryotic

cells where a nucleus exists and contains the cellular

chromosomes, for prokaryotic cells where the chromosomes are not confined

to a nucleus, and for most viruses. In some viruses, this function is

taken over by RNA (ribonucleic acid). DNA is a major constituent of

prokaryotic or eukaryotic chromosomes since ,it; serves as a primary source

of information for all molecular synthesis in the cell, for the control

of cellular growth and, cell division, for the differentiation and

specialization of the cell. For normal life and reproduction of cells

there must be a continuous flow of information from generation to

generation, thus the DNA molecules must be replicated in each generation.

If the DNA is damaged and not repaired, some of this information

may be lost and death of the cell may result.

The DNA molecule consists of two linear polymers coiled together

to form a double helical structure. Each single stranded polymer is

basically composed of alternating sugar-phosphate pairs joined together

to form a backbone; to each deoxyribose sugar is attached one of four

possible bases: adenosine, cytosine, guanine, and thymine. Each base

is involved in a specific hydrogen bonding with a complementary base

(e.g. thymine - adenosine) from another single stranded DNA molecule

3
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daltons. There is some evidence however that the DNA molecule in E. coli

complementary fashion.

1967). These results of McGrath and Williamsand

If the hydrogen bonding between all of the bases is broken

strands become separated.

and thus the two single stranded polymers are joined together in a

In most known bacterial and animal viruses, DNA exists as one

single continuous molecule. In general, in viruses, it is in the

In prokaryotic cells, for example in bacteria, it is believed

double stranded form with a few exceptions where it exists as a single

stranded molecule. The molecular weighlof viral DNA varies greatly.

* The term "molecular weight" as used throughout this thesis denotes the

mass of a molecule and is expressed in daltons where 1 dalton=1.663xlO-27 kg.

(by means of high temperature, very high pH, etc.) the two single

Polyoma, an animal virus, for example has a molecular weight of ~ 3 x

106 daltons, while the bacteriophage T4 is 1.34 x 108 daltons and PBS-l

is ~ 2 x 108 daltons.

Williams 1966

is composed of several smaller units which, when in the single stranded

form have an average molecular weight of 2.2 x 108 daltons (McGrath and

that the genome is one single piece of double stranded DNA of molecular

wei~ht ~ 2 x 109 daltons as based on autoradiographic measurements of

chromosomal length in Escherichia coli cells (Cairns 1963). The single

stranded molecule then would be one half of that value, ~ 1 x 109

were obtained by using the technique of alkaline sucrose gradients which

is discussed in greater detail in sections 1.3. and 2.3.

In PPLO M. laidlaw B (also a prokaryotic organism) McGrath and

Williams (1967) reported values of 4 x 108 daltons for the molecular










































































































































































































































































