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SCOPE AND CO~~ENTS:

Computer-aided system modelling and design for, minimax objectives
\, .

have been considered in detaiL A new algorithm for minimax approximation,
\ .

'calied the grawr search meth~,.has been proposed and successfully used

on ~ number of. network design problems to test the reliability and effi

ciency of the method. A critical' co~parison of the method with existing

algorithms has shown the IT.a:or search algoritt. tobe reliable in most-of
•
the problems' considered. Practical ideas have been presented to deal wi~h

, '

constrained minimax optimization problems and to investigate a,solution for

minimax optimality. Two user-oriented computer progr.., incorporating

these ~deas have been included as part of the thesis. Lower-order modelling

of a high-ord~r system has.be~n consid~red for .iniaax objectives. and the
f ' ~

suggested ide15 make it feasible to design autClllated .odels for a variety

of transient and steady-state constraint specifications .
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CHAPTER r

INTRODUCTION

computer-Aided design is now increasingly being accepted as

a valuable tool whenever classical design techniques fail to achieve

'acceptable and realistic design criteria. This is especially true in

electrical network analysis and synthesis where classical circuit theory

restricts the network confizuration and the deiTees of freedom that may

be deaanded by the designer. Ca.puter-aided n~twork design has thu~'be-
(.

cOllle a state-of-art which tries to acco.adate the design specifications
/'

and constraints in a meaningful way so that design objectiyes, which

would have been considered difficult by Classical designers have now

not'only becoae feasible but are reJUlarly being t.pleaented on the.,
digital computer. Many optiaization algorithas have now been tested on

a maber of circuit design probleas with the ai. of i~roving circuit

perfot1l&llce and convergence towards an· opti_l solution. The algorithas

differ both in the way they generate downhill directions (directions of

decreasing objective function value) and tile cOlllplrtational effort involved.

It is thus apparent that there are two steps which are rele-

vant to the ciTcuit designer - the first one being that the design speci

fications, constraints involvina ~ ~el p~ters, and the objective
\-') ,

function, have to be explicitly specified in advance, and the other be-

ing that a reliable and efficient ala0ritha has to be chosen for the op-.
tiaization of the design variables., The .-phasis of thiswork'has been

to bring both the systea .cdellina and optiaization techniques tnto the

1
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foreground so that the advantages and pitfalls encountered in tile area

of cOlllputer-aided design can be ~ll ,ppr!lciated.
I

This thesis concentrates aainly on ainiaax objectives, and

Chapter II gives a brief review of existing ainiaax optiaization me

thodS. s~h as those by Osborne and Watson (1969), Sandler and Macdonald

(1969b). and Sandler and Charalaabous (1972d).

A new algoritha called the srazor search .ethod has been de-
,

veloped which is iURranteed to converae under certain conditions. See

." Sandler and Srinivasan (1971) and Sandler, Srinivasan and Charalambous

(.1972). The prob~ea of function ~ni.hation subject to constraints

can now be forsulated as a miniaax problea (8andler and Charalaabous

1972a) . This approach can be extended to tackle .iniaax opti.hation. "

probletlS subject to constraints (Sandler andiSrinivasan 1973a) • Once

a .iniaax ~Olution has be,en achieved by the systeas desianer, it aay b~ \

, required' to investiaate the solution for optlaal1ty, and suitable ae- \
,

thods are available for this investiaation (Sandler and Srinivasan 1973c).

Chapter III considers the above ~tioned approaches to the .iniaax

problea.
{','

Chapte~ IV,deals with the area of coaputer-aided electrical

circuit desian for ainiaax ~jectiv.s. The prabl'" considered include
, .

,the desicn of l~ LC transforaer~ and cascaded tran~ission-line

netwo~ks actina as transforMn' or fUter.. A. critical ca.parilon has

been, llade between the aruOr .eudl ..thod and other optlaintion'.. ..

.ch~s forreliabUity ad efficlftCY in converaftc:. tOlrUl!s the opUaa.

_5yst• .ac$elllq i. Ul ana wMch cl-.-ls aitentlOllprl.arUy

beQuse of the e-plaitj' aDd CClIIpUUtloaal effon bYolveclwben, - .
I"~

'. '
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"considering the original system, and the introduction of ju~cious1y
,

" .
chosen models can not only reduce the complexity but also iimprove the

computation time. It is now possible to model a high-order system and'

control this system on-line or off-line by dealin& with the lower-order

modeb,.direct1y. Chapter V deals with lower-order modelling of high-

order systems for a variety of objectives and desi~ considerations.

Minimax objectives subject to arbitrary transient and steady-state con

straints have been considered, and a method suggested by means of'which

the whole modellin&procedure can be automated. See Bandler, Markettos

and 'Srinivasan (1972, 1973), and Band1er arid Srinivasan (l973b. 1973e).

Discussions and conclusions on the proposed methods are in-

eluded in Chapter VI, while, the Appendices A and B provide two computer

program descriptions for ainiaax objectives (Bandler and Srinivasan 1972,

1973d).

The adjoint network method of evaluatin& the first-order de

rivatives was used for network desi&n problems (Director and Rohrer

1969, Bandler and Seviora 1970).

numerical experiaent:t

The purpose of his work

some of the &aps existin n the

system aodellinl.

,

The CDC 6400 computer was used for the

can be described as an attecpt to fill

areas of approxiaation.optimi~ationand

'---~



CHAPtER 11

REVIEli OF MINIMAX ME1llODS

,,

2.1 . Introduction, J

. Minimax optimization methods are assuming significa~ce in the

computer-aided system design area and much effort has gone into the ~e

velopment 01 suitable algorithms for minimax obje~tives. The methods

have been used to optimize electrical networks where the objective is-
to m~nimize the maximum deviation of a network. response from an ideal

response specification. This chapter gives a brief review of minimax
.

optimization techniques.

2.2 Function Minimization

~problem O.f unconstrained function minimhation consists of

minimizing with respect to + a real function

"

,

(2.1 )

where

(2.2)

is'a coluan vector consisting of k independent parameter el~nt5._T

denotes the matrix transpose and f is the objective function.

The constrained version of the above probl_, also knovn as the

nonlinear progr...ing probl_, consist,

gi(+) >'0
...

•

of minimizing f(+) subject to
...

i • 1,2, ... , m (2.:l)
























































































































































































































































































































































