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IX 

Abstract 

Bogomolny's t.ransfer operator (T -operator) method is used to c:.akulate semi­

classical energy eigenvalues and eigenfunctions for the Cjuant.um analop;ues of several 

Hamiltonian systems. The calculations are performed with a fillite approximation to 

the T-operator in coordinate space. 'Ve demonstrate the succ:.ess of this technique for 

the integrable systems. the circle alld the -15' \\'(~dp;e iJilliards, as well as for nonin­

tegrable systems, the -11 0 and ::\00 wedge billiards (both displaying mixed behaviour) 

and the -19 0 and GO° wedge billiards (both sho"'illp; hard chaos). For the -19° wedp;e, 

an alternate part.ition involvinp; the symbolic s('quences is studiecl. 'Ve also focus on 

propenies of the eigenvalues of the T-operator with the objective of findinp; a reli­

able characteristic to describe t.he manifestation of chaos in Cjuant.um systems. In 

partic.ular, we discuss the special connection between the T -operator eigenvalues and 

quant.um lltunbers of intep;rable system. In addition, we ill\'estip;ate t.he distributions 

of phase separations of the T -operator eigell\'allles and sho,,' that they may reflect. 

the dynamical properties of Hamiltonian systems. 



Chapter 1 

Introduction 

The primary objective of semiclassical physics is t.o elucidate the correspon­

dence between classical and quantum mechanics. One of t.he more recent challenges 

in this research area is t.o understand how chaos. a purely classical concept.. manifests 

itself in quantum syst.ems. A cla.ssical syst.em can eit.her be regular or chaotic de­

pending on its dynamics. t.he behaviour of which is portrayed by traject.ories in phase 

space. A Hamilt.onian syst.em is chaot.ic if two t.raject.ories. initially close together 

in phase space. moYe apart. ,n. an exponemial rate in any direct.ion. This definit.ion 

of chaos based on t.he exponent.ial dh'ergence of nearby t.raject.ories does no. apply 

t.o quant.l1IlI systems: in Cjualltum mechanics. t.he resolntion of phase space is limit.ed 

by Planck's constant. h and consequently. t.raject.ories are not. well defined. Thus for 

quant.um systems whose classical analogues are chaotic. one can ask if there are any 

characteristics that define quantum chaos. 

The connections between classical and qualltum mechanics are most. often 

established by semiclassical quantization schemes. For regular (or int.egrable) Hamil-

1 



CHA.PTER 1. LVTRODUCTION 2 

tonian systems. the relationship between classical and quant.lUll mechanics has been 

known since the development. of quamum mechanics. If a Hamiltonian syst.em with 

N freedoms is integrable. there exist N isolated constants of motion Ii (actioll vari-

abies). In this case. the motion of the system can be described by the N action 

variables II ..... Is and N angle variables 01 ..... 0'" [ISJ. The result.ing t.rajectory is 

a curve on an N-torus in the 2N-dimensional phase space. A very useful tool for 

studying the integrabilit.y of Hamilt.onian systems is the Poincare surface of section 

(PSS), a (2N - 2)-dimensional submanifold of the phasE' space. In part.icular. for 

a two-dimensional Hamiltonian system. the PSS is a t.wo-dimensional surface rep-

resented by coordinates in two-dimensional plane. A poim is drawn on this plane 

whenever a t.raject.ory crosses the PSS. If the system is integrable. a trajectory will 

create a series of points "'hidl lie on a onE'-dimensional curve. 

In the "Oid Quant.nm Theory" . classical and quamum mechanics are related 

by t.he Bohr-Sommerfeld quantizat.ion condition which Cjuamizes t.he act.ion variables 

Ii according to the "Ill'. 

Ii = r l' dq = 271:hn;. 
1(:, 

(1.1) 

Here. C; is a closed trajectory on thE' torus corresponding t.o t.he angle variable ()i 

changing by 271:. The lIi ::: 0 are the quant.tllll numbers which have integer valnes. 

Equation (1.1) can be used to Cjuamize any imegrable system. However. it. is not 

possible. in general. t.o solve for t.he eneq~y of the system in terms of t.he quantum 
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numbers ni [IGJ. Over the years. this quant.ization condition developed int.o what. is 

now referred t.o as Einst.ein·Brillouin·Keller (EBK) quamizat.ion: 

Ii= ( pdq = 27rh(ni +IJ;j4). 
lei 

(1.2) 

where the integer Vi 2': 0 is called the Maslov index which count.s the number of con· 

jugate points (where the semiclassical approximat.ion is not. valid) for the t.raject.ory. 

For classically nonimegrable (or chaot.ic) systems. a comparable quant.izat.ion 

scheme to that. of Eq. (1.2) was not. available until the early 1970s when Gut.zwiller 

derived the trace formula [20J. l\onintegrable ;V-dimensional Hamiit.onian systems 

have less than ;V isolated const.ams of motion 1;. Consequently. the motion of the 

syst.em is no longer restrict.ed t.o an ;V·dimensional t.orus and the EBI';: quant.ization 

scheme. based on act.ion variables. no longer applies. On t,he t,wo, dimensional PSS. 

cenain t.raject,ories. if not. all. will appear as a scatt.er of point.s limit.ed by t.he classi· 

cally allowed region of mot.ion. There are t.wo t.ypes of chaot,ic syst.ems: t.hose which 

are composed of a mixt,ure of dynamical behaviours. regular or chaot.ic. depending on 

t.he initial condit.ions. and t.hose which are always chaotic .. In the first, ease. the t.wo· 

dimensional PSS displays bot.h one·dimensional eUl'\'es and scat,t.ered points. These 

syst.ems display mixed behavio1l7' or soft chaos. In t.he lat.t.er case, t.he entire PSS is 

filled wit,h points and this condit,ion is referred t.o as hanl chaos. 

Gutzwiller [20J showed that. in the semiclassieal limit.. the exact. quantum 

density of stat.es d(E) = E" b(E - E,,) could be approximat.ed by two terms: 
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(1.3 ) 

where dTF(E) is the Thomas Fermi t.erm. which provides a smooth approximation 

to the density of states. and da,e(E) is an oscillatory refinement. to dTF(E). The 

oscillatory term da.e(E) is an infinite SUlll O\'er all the periodic orbits of t.he classical 

syst.em. More precisely. 

( lA) 

where '( labels a primitive periodic orbit.. k account.s for t.he multiple traversals of 

these primitive orbits. S)(E) = .r ji(E) dij is the action alollp; the periodic orbit '(, 

T)(E) is t.he period. a~ = ±1 if the orbit. is hyperbolic. or inverse hyperbolic, and 1/) 

is the !daslo\' index. The StUll over periodic orbits in Eq. (IA) creates peaks in the 

density of states at. (or near) the quantum enerp;y eip;envalues E". Thus. the periodic 

orbit.s are the essence of Gutzwiller's semiclassical quant.izat.ion for chaotic syst.ems. 

However. t.he Gutzwiller trace formula and reformulations of it. as the zeta product. 

are resnict.ed to systems "'ith isolated periodic orbits. and in most cases. this implies 

syst.ems with hard chaos. In addition. the traee formula is an infinite StUll which is at 

best. conditionally converp;ent. due to the exponential proliferation of periodic orbit.s 

in chaotic syst.ems. Hence. there was a need for an efficient quant.ization met.hod for 

p;eneric Hamiltonian syst.ems. 

In 1992. Bogomolny developed the T-operator met.hod [l1J [lOJ which pro-
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Figure 1.1: The transfer operat.or in coordinat.e space invoh'es classical t.raject,ories 
connecting the point.s q and r/ such t.hat, t.he component of the moment,lllllnormal t,o 
the PSS (~) at, these point.s is in t.he same direet.ion. 

vides a new quantization condit, ion applicable t,o any N-dimensional bound Hamilt.o-

nian systems. Bogomolny's T -operator method reduces an N dimensional Sehrodinger 

equation to an (IV -1 )-dimensional int.egral equation defined on a chosen Poincare sur-

face of section (PSS). The essence of the T -operat.or method is t,he transfer operator 

T(E). For simplicit,y. consider a t,wo-dimensional syst.em whose boundary in configu-

ration space delimits the classically accessible region (drawn in Fig. 1.1). Choose all 

arbitrary PSS in configuration space (~-represent.ed by the doned line in Fig. 1.1). 

The transfer operator T(q, q': E) is a semiclassical propagator which maps a point. q' 

to a poim q on the PSS. It is formally defined by t,he int,egral equation. 














































































































































































































































































































































