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Abstract

Bogomolny's transfer operator { T-operator) method is used to calculate semi-
classical enerry eisenvalues and eigenfunctions for the quantum analogues of several
Hamiltonian systems. The calculations are performed with a finite approximation to
the T-operator in coordinate space. We demonstrate the success of this technique for
the integrable systems, the circle aud the 45° wedge hilliards, as well as for nonin-
tegrable systems. the 41° and 30° wedge billiards (both displaying mixed behaviour)
and the 49° and 60° wedge billiards (both showing hard chaos). For the 49° wedge.
an alternate partition involving the symbolic sequences is studied. We also focus on
properties of the eigenvalues of the T-operator with the objective of finding a reli-
able characteristic to describe the manifestation of chaos in quantum systems. In
particular, we discuss the special counection between the T-operator eigenvalues and
quantum numbers of integrable system. In addition, we investigate the distributions
of phase separations of the T-operator eigenvalues and show that they may reflect

the dynamical properties of Hamiltonian systems.



Chapter 1

Introduction

The primary objective of semiclassical physics is to elucidate the correspon-
dence between classical and quantum mechanics. One of the more recent challenges
in this research area is to understand how chaos, a purely classical concept, manifests
itself in quantum systems. A classical system can either be regular or chaotic de-
pending on its dynamics, the behaviour of which is portrayed by trajectories in phase
space. A Hamiltonian system is chaotic if two trajectories, initially close together
in phase space. move apart at an expouential rate in any direction. This definition
of chaos based on the exponential divergence of nearby trajectories does not apply
to quantuwm systems: in quantum mechanies, the resolution of phase space is limited
by Planck's constant h and consequently, trajectories are not well defined. Thus for
guantunt systems whose classical analogues are chaotic, one can ask if there are any
characteristics that define quantum chaos.

The connections between classical and quantum mechanics are most often

established by semiclassical quantization schemes. For regular (or integrable) Hamil-
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S\

tonian systems, the relationship between classical and quantum mechanics has been
known since the development of quantum mechanics. If a Hamiltonian system with
N freedoms is integrable, there exist N isolated constants of motion I; (action vari-
ables). In this case, the motion of the systen can be described by the /N action
variables /). ....Ix and N angle variables 8;,....0x [18]. The resulting trajectory is
a curve on an N-torus in the 2V-dimensional phase space. A very useful tool for
studying the integrability of Hamiltonian systems is the Poincaré surface of section
(PSS), a (2¥ — 2)-dimensional submanifold of the phase space. In particular, for
a two-dimensional Hamiltonian system. the PSS is a two-dimensional surface rep-
resented by coordinates in two-dimensional plane. A point is drawn on this plane
whenever a trajectory crosses the ISS. If the system is integrable, a trajectory will
create a series of points which lie on a one-dimeunsional curve.

In the *Oid Quantum Theory”. classical and quantum mechanics are related
by the Bohr-Sommerfeld quantization condition which quantizes the action variables

I; according to the iule,

I = /( pdg =2xhn,. (1.1)

Here, C; is a closed trajectory on the torus corresponding to the angle variable 8;
changing by 2w. The n; > 0 are the quantum numbers which have integer values.
Equation (1.1) can be used to quantize any integrable system. However, it is not

possible. in general, to solve for the energy of the system in terms of the quantum
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numbers n; [16]. Over the years, this quantization condition developed into what is

now referred to as Einstein-Brillouin-Ixeller (EBK) quantization:
I =/C pdg = 2ah (i + /4, (1.2)

where the integer v; > 0 is called the Maslov index which counts the number of con-
jugate points (where the semiclassical approximation is not valid} for the trajectory.

For classically nonintegrable {(or chaotic) systems, a comparable quantization
scheme to that of E¢. (1.2) was not available until the early 1970s when Gutzwiller
derived the trace formula [20]. Nonintegrable N-dimensional Hamiltonian systems
have less than .V isolated constants of motion I;. Consequently, the motion of the
system is no longer restricted to an N-dimensional torus and the EBK quantization
scheme, based on action variables, no longer applies. On the two- dimensional PSS,
certain trajectories, if not all, will appear as a scatter of points limited by the classi-
cally allowed region of motion. There are two types of chaotic systems: those which
are composed of a mixture of dynamical behaviours. regular or chaotic, depending on
the initial conditions. and those which are always chaotic. In the first case, the two-
dimensional PSS displays both one-dimensional curves and scattered points. These
systems display mized beliaviour or soft chaos. In the latter case, the entire PSS is
filled with points and this condition is referred to as hard chaos.

Gutzwiller [20] showed that, in the seniiclassical limit, the exact quantum

density of states d(E) = ¥, §( E — E,,) could be approximated by two terms:
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d(E) = drp(L) + dos E). (1.3)

where drp(E) is the Thomas Fermi term. whicl provides a smooth approximation
to the density of states, and d,..{E) is an oscillatory refinement to drp(E). The
osctllatory term d,,.(E) is an infinite sum over all the periodic orbits of the classical

system. More precisely,

< T, (E)cos (A::i‘—LE—' _ k-”-_‘éi)

du.‘w(E) = Z Z

(1.4)

where  labels a primitive periodic orbit, k accounts for the multiple traversals of
these primitive orbits, S,(E} = [p{E)d{ is the action aloug the periodic orbit -+,
T,(E) is the period, o = %1 if the orbit is hyperbolic or inverse hyperbolic, and v,
is the Maslov index. The sum over periodic orbits in Eq. {(1.4) creates peaks in the
density of states at {or near) the quantum energy eigenvalues E,. Thus, the periodic
orbits are the essence of Gutzwiller's semiclassical quantization for chaotic systems.
However, the Gutzwiller trace formula and reformulations of it as the zeta product,
are restricted to systems with isolated periodic orbits, and in most cases, this implies
systems with hard chaos. In addition, the trace formula is an infinite sum which is at
best conditionally convergent due to the exponential proliferation of periodic orbits
in chaotic systems, Hence. there was a need for an efficient (uantization method for
generic Hamiltonian systems.

In 1992, Bogomolny developed the T-operator method [11} [10] which pro-
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Figure 1.1: The transfer operator in coordinate space involves classical trajectories
connecting the points ¢ and ¢’ such that the component of the momentumn normal to
the PSS (¥) at these points is in the same direction.

vides a new quautization condition applicable to any N-dimensional bound Hamilto-
nian systems. Bogomolny's T-operator method reduces an N dimensional Schrédinger
equation to an (N —1)-dimensional integral equation defined on a chosen PPoincaré sur-
face of section (PSS). The essence of the T-operator method is the transfer operator
T(E). For simplicity, consider a two-dintensional system whose boundary in configu-
ration space celimits the classically accessible region {drawn in Fig. 1.1). Choose an
arbitrary PSS in configuration space (S—represented by the dotted line in Fig. 1.1).
The transfer operator T(g, ¢': E) is a semiclassical propagator which maps a point ¢’

to a point ¢ on the PSS. It is formally defined by the integral equation,
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¥a) = [ Tlq.q" E)elq ) dg. (1.5)

where ¢:(q) is a wavefunction defined on the PSS. The transfer operator T'(q.q"; E) is
constructed from properties of the classical trajectories counecting the points g and
g’ such that the component of the momentum normal to the PSS at these poilts is
in the same direction. An example of such a trajectory is drawn in Fis. 1.1. The

T-operator is given by the relation

T(q.¢ E) =)

cl.ir,

1 ‘3’5(‘]-(1?5) exp[?'S((]-f]'?E)/h"imr/z]' (1.6)

(27ih)1/2 Oqdq'

Here, S{q.¢": E) = Jy Pdq is the action at energy E for the classical trajectory con-
necting the points ¢ and ¢’ and crossing the PSS only once in between. The phase
index » is incremented for every point along the trajectory at which the semiclassical
approximation is not valid. The reader is referred to Bogomolny's original paper [10]
for details of the derivation of Eq. (1.6). The T-operator has properties similar to the
tinte dependent Green's function: the most important ones being (i) the convolution

of two T-operators given by
T(q.q:E) = /T(q.q":E)T(q". ¢ E)dq" (1.7)

and (ii) the unitarity (i.e. T7T = 1) of the T-operator in the semiclassical limit.
The quantization condition is obtained in the process of solving for the wave-
functions +:(q) that satisfy the definition in Eq. {1.5). If one writes the wavefunctions

¥(q) as a sum of functions constituting an orthogonal basis {@,(q)} defined on the
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PSS,

v(q) = gcu@u(q)- (1.8)
and if one then substitutes this sum into Eq. (1.5). one obtains the relations

;C“ [bowr = TuwlE)) =0, (1.9)

where T, o (E) = [63(q)T(q,¢" E)ow (¢ )dqdg'. The homogeneous equations (1.9)

have a nontrivial solution if and only if,

det‘Iéu.u’ - Ilt,(t'(E)] ={. (1'10)

Equation (1.10) is Bogomolny's semiclassical quantization condition. The semiclassi-
cal energy eigenvalues are the energies E,, which satisfy E¢. (1.10). For the T-matrix
Tuw(E) to be unitary, its dimensionality is given by the number of Planck cells of
volume (27/)*~1 that fit in the volume of the allowed region on the I'SS. In this way,
the uncertainty principle is incorporated into the formalism. The minimum dimen-
sion for the T-matrix required to obtain all of the semiclassical energy eigenvalues up

to the energy E is,

N(E) = volume of allowed region on the PSS‘

P - (:Zﬂ_h’)‘\'_l (111)

The advantages of Bogomolny’'s T-operator method are that, compared to

quantization schemes involving periodic orbits, it is easier to use for computing ap-
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proximate energy eigenvalues. and it provides a new perspective on the connections
between classical and quantum mechanics. The T-operator method only requires in-
formation about classical paths making one crossing with the PSS, and these. along
with their properties, are much easier to find than periodic orbits. In addition. it
is free of the convergence problems that trouble the Gutzwiller trace formula. The
uncertainty principle is explicitly built into Bogomoluy's quantization scheme unlike
the Gutzwiller trace formula. The T-operator is also referred to as a semiclassical
Poincaré mapping, analogous to the classical Poincaré map. In the same way that
the PSS and the classical Poincaré map are invaluable tools in classical mechanies to
describe the nature of Hamiltonian systems, the T-operator and its properties may
illuminate the meaning of chaos in quantum systems.

Bogomolny's T-operator method is a seneralization of the boundary inte-
gral method which is a technique for obtaining exact quantum solutions for two
dimensional billiards by reducing the two dimensional Schrodinger equation to a one
dimensional integral equation. In a similar way, Bogomolny’s T-operator method
reduces an N dimensional Schirddinger equation to an (N = 1)-dimensional integral
equation. However, it applies to any Hamiltonian system (i.e. it is not restricted
to billiard systems). In addition, the integral equation in Bogomolny's technique is
defined on any chosen PSS, whereas in the boundary integral method, the integral
equation is restricted to the billiard boundary. Finally, the T-operator method in-

volves a semiclassical propagator, the transfer operator (or T-operator), constructed
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from classical trajectories. For this reason, the energy eigenvalues are semiclassical
approximations to the exact quantum solutions. Hence. for force-free two-dimensional
billiard systems in which the billiard boundary is chosen as the PSS. Bogomolny's T-
operator method reduces to the houndary integral method. However, in this case. the
T-operator involves only the first order approximation in J to the exact propagator.

At approximately the same time that Bogomolny’s T-operator method ap-
peared in print. Doron and Smilansky {15] published their work on the scattering
approach to the quantization of billiards. Tleir method is closely related to Bogo-
molny’s T-operator method since it involves constructing a propagator (S-matrix)
along an arbitrary PSS, and the resulting quantization condition has the same form
as Bogomolny's. However, the S-matrix is different from the T-operator since it con-
sists of a product of two scattering matrices of two opened hilliards (i.e. is based on
scattering waves instead of classical paths). Also, the S-matrix is an exact quantum
propagator (or an exact quantum Poincaré mapping) when it includes evanescent
modes {genuinely quantum mechanical). Recently, Prosen [34] generalized the scat-
tering approach to N-dimensional systems and arbitrary bound Hamiltonians {not
restricted to billiards). He showed that the scattering matrix is equivalent to the
T-operator in the semiclassical limit. An advantage of the scattering approach is
its versatility. It can provide exact quantum or semiclassical solutions. However,
Bogomolny's form explicitly shows the connection between classical and quantum

mechanics since it is constructed entirely fron: information related to classical trajec-
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tories, yet it only vields approximate quantum energy eigenvalues. Depending upon
the nature of the system. one approach may offer a distinct advautage over the other.

The focus of this thesis is on applications of Bogomolny's T-operator method
to integrable and nonintegrable Hamilt-ouian systems. Since the T-operator nmethod
is relatively new, there have only been a handful of studies exploring this technique.
Shortly after the appearance of Bogomoluy's epic paper [10]. Lauritzen published a
paper in which he presented a general form for the T-operator of integrable systems
[28]. Soon after, Boasman submitted lis thesis [6] concerning the energy shifts from
the exact spectra of billiards caused by the leading-order semiclassical approxima-
tion. As part of his study. he discussed the T-operator method and applied it to
the circle, the stadium and the Africa billiards. Haggerty [21] was the first to ap-
ply Bogomolny's transter operator to a Hamiltonian system with a smooth potential.
Bogomolny and Caroli [9] have recently studied the T-operator applied to a system
consisting of a particle confined to a surface of constant negative curvature. Finally,
Biechele, Goodings and the author have applied it to simple integrable systems that
are not billiards, namely, the hydrogen atom in one or two dimensions and the two-
dimensional harmonic oscillator.

In the fall of 1992, Tom Szeredi. David Goodings and I began to study
Bogomolny's T-operator method. We applied a finite approximation to Bogomolny's
quantization scheme to the circle billiard, consisting of a free particle confined inside

a circle, and to the wedge billiard, counsisting of a particle confined in a wedge of
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half angle ¢ and subject to a constant force parallel to one side of the wedge. The
circle billiard is an integrable system. whereas the wedge billiard can display all
types of dynamical behaviour depending on the wedge angle ¢, The wedge billiard is
integrable for @ = 45°, exhibits hard cliaos for angles @ > 45° and soft chaos (or mixed
behaviour) for angles @ < 45°. The results of this study led to two publications, of
which I am a co-author. Chapter 2 is our first paper, published in Physical Review

Letters;

Szeredi T., Lefebvre J.H. and Goodings D.A., “Application of Bogomolny's
Transfer Operator to Semiclassical Quantization of a Chaotic System”, Phys Rev Lett,
71, 2891 (1993).

It descrilves how to apply the T-operator method to the wedge billiard and reports
on the results obtained for the first 20 energy eigenvalues for the wedge angle o = 48°
(a classically chaotic case). It also explains how to recover the actions of the periodic
orbits for this system. Chapter 3 consists of our second paper, a more detailed version

of the study reported in our first paper. It was published in Nonlinearity:

Szeredi T., Lefelvre J.H. and Goodings D.A.. *Studies of Bogomolny's semi-
classical quantization of integrable and nonintegrable systems”, Nonlinearity, 7. 1463
(1994).

Here, we report on the results for the circle billiard and five wedge billiards displaying
different dynamical behaviour. In addition. a variant of Bogomolny's method based

on symbolic dynamics is applied to the 49° wedae billiard.
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My contributions to these papers are summarized as follows. I have been
involved in all aspects of the study reported in these papers including the under-
standing and interpretation of Bogomoluy's T-operator method, the development of
analytic and numerical methods, and the analysis and interpretation of the results.
In many cases, Tom Szeredi and I independently developed programs for the same
tasks, to ensure the reliability of the results. In the remaining cases, the nunerical
work was shared between the two of us. The only part of the work for which I was
not involved is Sec. 2.5 of the second paper concerning the finite approximations to
the transfer operator and the dynamical zeta function. In preparing the manuscripts,
Tom and I generated the fizures and. while we Loth provided drafts for parts of the
manuscripts, David Goodings was mainly responsible for writing both papers.

The specific sections of these papers for which I am primarily responsible
are Sec. 2.3.1 (finding the source of the problem causing the spikes and providing a
solution for eliminating them) and Sec. 3 of the second paper (the work relating to
the T-operator and symbolic dynamics). Sonte of the interesting aspects of the latter
work are the programs that I developed: (i) to find the irreducible orbits for the wedge
billiard (based on the list of primitive periodic orbits that Tom Szeredi generated),
(ii) to systematically decipler the pruning rules for the wedge billiard, (iii) to draw
the symbolic partition in phase space, and (iv) to generate the approximate energy
eigenvalues hased on the periodic orbits.

Chapter 4 is a study of the eigenvalues of the T-operator for the circle and
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wedge billiards, The objective of this study is to determine if the T-operator eigen-
values can provide a reliable characteristic to describe the manifestation of chaos in
quantum systems. This idea originates from observations reported in Haggerty's the-
sis [21]. He noticed that, depending on the dynamics of the system, the T-operator
eigenvalues behaved differently as a function of enersy. In addition he observed that
for the integrable case, the T-operator eigenvalues were related in a special way to
the quantum numbers of the system. Based on the work of Lauritzen [28]. I discuss
the connection between T-operator eigenvalues and quantum numbers for the circle
and 45° wedge billiards. In the last section of this chapter, I study the distribution
of the phase separations of the T-operator eigenvalues for a regular system and a
system displaying hard chaos. I show that the difference between these distributions
is statistically significant and therefore may reflect the dynamical properties of the
system. This finding is supported by the recent study of Rouvinez [37] on the phase
separations of S-matrix eigenvalues,

One of the attractive features of Bogomolny's T-operator method is that, in
addition to semiclassical enersy eigenvalues, it is possible to calculate the semiclas-
sical energy eigenfunctions in a relatively simple manner. In Chap. 5, I aumerically
construct the energy eigenfunctions for the circle and wedge billiards and demon-
strate the success of this technique by comparing the results with the exact quantum
solutions. Also, for the circle billiard, I show analytically how one may obtain the

semiclassical WIKB wavefunctions. by starting from Bogomolny's expression for the
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wavefunctions and making use of the stationary phase approximation.

The concluding chapter, Chap. 6. provides an overview of the main results of
this thesis and outlines projects. based on the T-operator method. which are currently
in progress and recommended for future work. Finally, there are four appendices.
Since the exact quantum solutions and the WIB solutions for the circle and 45°
wedge biliiards are often referred to throughout this thesis. they are provided in
appendices A and B. The classical actions for the circle and 45° wedge billiards are
given in Appendix C. The solutions for the wedge billiard are derived in more detail in
Szeredi [39] and Rouvinez [37]. Appendix D is a derivation for the normal derivative
in the plane perpendicular to an arbitrary trajectory, which is required to compute

the wavefunctions.
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Application of Bogomolny’s Transfer Operator to Semiclassical Quantization
of a Chaotic System
T. Szeredi, J. H. Lefebvre, and D. A. Goodings

Department of Physics and Astronomy, McMaster University, Hamtlton, Ontario, Canada L&S M1
(Received 16 July 1993)

The transfer operator developed recently by Bogomolny is used to calculate approximate semi-
clsszical energy eigenvalues for a chastic system. the wedge billinrd. Only four clasaical trajectories.
starting and ending on the Poincaré surface of section and crossing it once in between. are required
to calculate an element of the T matrix. A 100 x 100 T matrix is shown to give excellent results for
the first 20 energy eigenvalues. it is also shown how the actions of the shortest periodic orbits of the
49° wedge can be obtained by calculating the Fourier transforms of T (T™).

PACS numbers: 05.45.+b, 03.20.+i, 03.65.-w

Studies of the correspondence between classical me-
chanics aad quantum mechanics have been mainly con-
cerned with the following problem: given a classical sys-
tem described by a time independent Hamiltonian and a
detailed knowledge of the classical motion, what is the
best method of estimating, in a semiclassical approxi-
mation. the energy eigenvalues and eigenfunctions of the
analogous quantum system? If the classical system is
integrable, one can employ the Einstein-Brillouin-Keller
(EBK) quantization rules (1], which generally give excel-
lent results for all but a few of the lowest energy eigen-
values. However. if the classical system is not integrable,
as is the case for systems showing chaotic behavior, al-
most all approaches to the quantization problem make
use of the Gutzwiller trace formula [1,2] or its reformu-
lation as a zeta product (3, 4]. The main difficultv vith
these methods is that the infinite sum or infir.ic prod-
uct over the periodic orbits of the classical system is not.
in general. absolutely convergent for real values of the
energy £ [5-T), although it may be conditionally coaver-
gent in some cases [8]. Furthermore, one is struck by the
fact that it is necessary to know the intricacies of the
classical dynamics on progressively smaller scales as one
proceeds to longer periodic orbits in the infinite sum or
infinite product of the Gutzwiller theory. This is disturb-
ing because the uncertainty principle implies that. at a
given energy £, there is a point beyond which the quan-
tum system cannot “know"” about the finer details of the
classical motion.

Recently, Bogomolny (9.10) has developed an approach
to the semiclassical quantization problem which is free of
convergence difficulties and, in addition. allows the un-
certainty principle to be built into the theory in a natu-
ral way. His approach is based on introducing a Poincaré
sutface of section (PSOS) which is crossed by many tra-
jectories of the classical svstem. Employing a Green's
function theory closely related to Gutzwiller's original
formulation (2], he developed a transfer operator T{¢". ")
which takes one from an initial point ¢’ on the PSOS to
a final point ¢” on the PSOS. The transfer operator in-
voives a sum over all possible classical trajectories which
cross the PSOS only once in going from ¢’ to ¢" and have

the normal component of the momentum in the same di-
rection at ¢’ and ¢"”. For a system with 2 degrees of
freedom it has the form [see Bogomolny [9], Eq.(4.18)}

. 1 18S(¢",q:E) |}
T4 =§ @Rz | agiaq

x expl[iS(q”,¢'s E)R —ivmf2). (1)

Here S{q¢".q¢’: E) is the action at energy E calculated
aleng a classical trajectory connecting the points ¢" and
¢" and crossing the PSOS only once in between, The
phase index v is related to the number of points on the
trajectory at which the semiclassical approximation is
not valid. For the rectangular billiard, which is inte-
grable, Lauritzen (11| has shown how Eq. (1) and a suit-
able PSOS lead to the exact energy eigenvalues.

Suppose one wishes to calculate the quantum energy
eigenvalues E) of a given system up to a certain energy
E. Associated with the coordinate g on the PSOS and its
conjugate momentum p is & certain area A(E) of phase
space accessible to the system at energy E. The number
of “Planck cells” corresponding to this area is

N(E) = %i—} (2)

One then divides the PSQS into N(E) segments or “cells”
labeled by ©, the width of the nth cel] being An. A sim-
ple finite approximation to the T operator is obtained by
taking matrix elements of T(g”.¢’} in the orthonormal
basis {tn} in which wn(g) = A7 'Y? if ¢ is in cell n. and
otherwise is zero. In this basis, the T operator is repre-
sented by an N(E)} x N{E) matrix, and the condition for
an energy eigenvalue is that

det{bmn ~ Tmn) = 0. (3

where Tmn = T(gm, gn)(AmAn)}? {see Bogomalny (9],
Sec. 8).

In this paper we describe how a finite approximation
to the T operator vields approximate semiclassical en-
ergy eigenvalues for the wedge billiard. a chaotic system
with a nonconstant potential. This system is difierent
from the force-free billiarrs recently studied by Boasman

0031-9007/93/71(18)/2891(4)506.00
© 1993 The American Physical Socicty
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{12], who used a perturbation approach to investigate the
differences between the semiclassical and exact energy
eigenvalies.

The wedge billiard has been studied both classically
and quantum mechanically by a number of people [7,13-
18], It consists of a particle confined to the region be-
tween the y axis and the liney = xcot ¢, where ¢ is the
wedge angle. The particle makes elastic collisions with
the boundaries and is acted upon by a constans force in
the negative y direction. If the mass of the billiard and
the strength of the constant force are chosen to be unity,
the Hamiltonian is

1
H=§(P3+P§)+y- 20, y>zeoto.

{4)
For wedge angles between 45° and 90° this system
exhibits hard chaos [17-18), that is, there are no
Kolmogorov-Arnel'd-Moser (KAM) tori in the phase
space and all periodic orbits are unstable.

To apply Bogomolny's theory, we choose the PSOS to
be a straight line running along the tilted wall of the
wedge. For a given enetgy E, the maximum distance
from the vertex that the classical billiard can reach along
thetilted wallisd = E/coso. Also, it is not hard to show
from Eq. (2) that for this choice of the PSOQS,

22
A

N(E) = Irhcoso

B2 (5)

Thus, if one wishes to calculate the energy eigenvalues £,
up to some energy E, the number of cells along the PSQS
should be at least as large as N(E) given by this equation,
and the width A, assumed to be constant, should be
chosen to be d/N{E).

To construct a finite approximation to the transfer op-
erator, we require the action at energy E for a classical
trajectory connecting points g,, and qn in the centers of
cells m and n. This is given by

S(q",¢ E)=W(q".¢":T) + ET, {6}
with [20)

o - i " " i IV T ! t T3
Wi(g".¢"T) = gl =z (y"—y) -3 +y =37

)
and
a5 aw
T=3 £=-3r (8)

Here (z', y') and (=", v") are the coordinates of the points
¢’ and ¢” on the PSOS. Differentiating Eq. (7) with re-
spect to T and setting the resuit equal to — E, one obtains
a quadratic equation in T. The two soluticns correspond
to the two classical paths connecting ¢’ and ¢, one a
“low path.” the other a “high path.” Substituting the
two solutions for T in (6) yields 5(q",q'; E) for these two
paths. With the help of a computer algebra program, we
can also calculate the second derivatives of S{g", ¢ E)

appearing in Eq. (1).

In addition to the two direct trajectories, which were
denoted as T mappings in previous work [7.16], there are
two trajectories which make a reflection from the vertical
wall in going from g’ to ¢". These will be denoted as V'
mappings. The cotresponding functions S(¢”,¢’; E) are
readily calculated by the device shown in Fig. 1 where the
reflection at the vertical wall is ignored and the particle
ends up on the mirror image of the tilted wall,

Finally, the phase index  must be calculated for each
of the ciassical trajectories from ¢’ to ¢”. For our system
with 2 degrees of freedom, v is equal to the number of
caustics on the trajectory, plus 2 for each reflection from
the boundary, plus 1 for each time the total momentum
becomes zero (at the top of a vertical rise and fall}. For
each of the four trajectories of Fig. 1 it happens that
there is at most one caustic. When a caustic occurs, it
can be detected through a change in sign of the second
derivative §75(g,¢'; E)/0q8¢', evaluated first at ¢ = ¢'
and then at g = ¢

The results of a calculation of the transfer operator for
the 49° wedge are shown in Fig. 2. Because the matrix
elements Ty are complex, what is plotted is the modu-
lus of det|l — T(E)] as a function of the scaled energy
E. [E = Edrr(E)/3, where drr(E) is the Thomas-
Fermi density of states. As a function of £ the mean
spacing between the energy eigenvalues is close to unity
[7}] The T matrix in this calculation was 100 x 100,
cortespunding to 100 ceils of equal width A along the
tilted wall, extending from the wedge vertex out to a dis-
tance of dmex = 15.25 (in units in which k = 1). This
maximum distance corresponds to a maximum energy of
Emax = Ymax = dmaxcos¢ = 10.0. The dashed lines
in Fig. 2 correspond to the exact energy sigenvalues £,
obtained from an accurate solution of the Schrédinger
equation (7). It may be seen from the figure that there
is excellent agreement between the positions of the min-
ima of {det(1 — T'(£}]| and the exact energy eigenvalues,
Taken over the lowest 20 eigenvaluss (which lie below
Emax = 10.0}, the mean deviation of the minima from
the exact £, is (E’m.,. ~ E,) = 0.024, and the rms devi-
ation is ((Emuy — En)?}1/2 = 0.065. The latter value is
smaller than the rms deviation of any of our earlier re-

FIG. 1. Diagram showing the four ciassical trajectories
used to calculate the transfer operator for the wedge billiard.
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|det[1-T(E}]|
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FIG. 2. Plot of Idet|] ~ T{£E}} as a function of the scaled
energy £ for the wedge billiard with @ = 49°, The T matrix
used was 100 x 100. The dashed lines indicate the pasitions
of the exact energy eigenvalues £,.

sults obtained using quantization schemes based on the
dynamical zeta function [7]. To obtain this degree of ac-
curacy we found it necessary to choose the number of ceils
on the PSOS to be about 6 times the number of Planck
cells defined by Eqg. (2). [With Eqa = 10.0. Eq. (5) gives
N(Emax) = 15. Increasing the number of cells beyond
100, however, made very little difference in the resuits
over this energy range.

It is interesting to see how the periodic orbits of the
system ¢an be obtained from the transfer operator for-
malistn. The key to doing this is the relation (see Bogo-
molay [9], Sec. 6)

In¢s(E) = - Z Z expitn(S, /h = v.7/2)]
i

njdet(MD - 1)]1/2

Nl

==Y~ (@

mm]

Here (5{E} is the Selberg zeta function or dynemical zeta
function, which can be expressed as an infinite product
over the periodic orbits of the system. The sum over ~
is over the primitive petiodic orbits of the system. with
S, the action, M, the monodromy matrix, and v, the
Maslov index of a primitive periodic orbit. The sum over
n counts the number of traversals of a given primitive
periodic orbit, In the sum over m, the trace of T™ is
nonzero only when there is a sequence of m mappings
which starts and ends in the same cell of the P50S. In
order that these m segments make up a periodic orbit, the
trajectories must join smoothly at each crossing and the
initial momentum must be equal to the final momentum.
How this is achieved has been described by Bogomolny(9]

Ha) () ;
. |
SN
g(c) itd) ;r
2 o |
i, . A
¢ 25 3.0

FIG. 3. Results for the 49° wedge of the Foyrier trans-
forms of Tr(T™) ealculated from Eq. (10): {a) | Fi(w)}; (b)
| Fa(w) s {e) | Fs{w) |; (d) | Fe(w)}. The T matrix used was
200 x 200. The dashed lines oceur at the actions 5.(1) of the
shortest periodic orbits,

and by Boasman {12].

The pericdic orbits are obtained by calculating the
Fourier transformm of Eq. (8). Since the actions of
the wedge billiard scale with energy according to |7,16]
Sy(E) = S,{1)E¥? we put ¥ = E¥? and define the
Fourier transform of Tx(T™) as

Uman
Fralw) =j Tr(T™) exp( —iwu)du. (10)
D)

The results for the first four traces for the 49° wedge are
shown in Fig. 3. In order to get good accuracy, the T ma-
trix used in the calculations was constructed using 200
cells extending from the vertex ott to dmax = 62 along
the tilted wall. and the integrand in Eq. (10) was com-
puted at 512 points extending out to tm,, = (40.5)%/2 =
258. The vertical dashed lines in Fig. 3 lie at the po-
sitions 5,(1) of the shortest periodic orbits of the 49°
wedge. (See Szeredi and Goodings {7], Table I, for the
actions of these orbits and their labels.) It is satisfying
to see that Fi(w) has a single peak at the action of the
V orbit. while F3(w) has peaks at the actions of TV and
V2, Furchermore, F3(w) has peaks at the actions of TVV
and V3, and Fy{w) has peaks at the actions of TTVV,
(TV)2, TVVV. and V* (in order of increasing actions).

In our previous work we found that the Gutzwiller pe-
riodic orbit theory gave much better results for the 60°
wedge than for the 49° wedge, a feature we attributed
to rhe greater “pruning” of periodic orbits in the case
of the 49° wedge. In contrast. the results reported here
for the 49° wedge are of comparable accuracy to simi-
lar caleulations performed for the 60° wedge. Mareover,
Bogomolny's method gives excellent results for the 45°
wedge, an integrable case. Thus, the transfer operator
appears to work very well for all wedge angles ¢ > 45°,

In conclusion. we note that finite approximations to
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Bogomolny's transfer operator have several noteworthy
features. First, one needs to take into account only a
small number of different types of tzajectories from one
point to another on the PSOS, in contrast to the infi-
nite number of periodic orbits in the Gutzwiller trace
formula and the dynamical zeta funetion. Although we
have found that good numerical accuracy requires about
6 times more cells on the PSOS than the number of
Planck cells given by Eq. {2), there are no formal con-
vergence problems. Finally, we have shown how taking
the Fourier transforms of Tr(T™) allows one to recover
the periodic orbits. The problem of obtaining the cor-
rect phases for the periodic orbits is more complicated
and will be described in a subsequent paper.

We would like to thank E, Bogomolny for encouraging
us to try this approach and for drawing our attention to
Boasman's Ph.D. thesis. This work was supported by
the Natural Sciences and Engineering Research Council
of Canada.
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Nonlinearity 7 (1994) 1463~1493. Printed in the UK

Studies of Bogomolny’s semiclassical quantization of
integrable and nonintegrable systems

T Szeredit, J H Lefebvre and D A Goodings

Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S
4M]

Abstract. The semiclassical quantization scheme formulated by Bogomolny, employing a
suitably chosen Poincaré surface of section (PSS), has been used to calculate approximate
energy eigenvalues for the quantum analogues of several Hamiltonian systems. Using a finite
approximation to the transfer operator in coordinate space, we have carried out calculations
of the cnergy eigenvalues for the circle billiard and the 45° wedge billiard, both of which
are integrable systems. Calculations have also been performed for the 49° and 60° wedges,
which classically exhibit hard chaos, and for the 41° and 30° wedges which classically exhibit
soft chaos or mixed behaviour. In all cases, the low-lying energy eigenvalues are in excellent
agreement with the exact quantum energy eigenvalues and, in the case of the 49° wedge, are
better than the results obtained using any other semiclassical quantization scheme. We have also
studied a varian: of Bogomolny's approach which employs the symbolic dynamics 1o construct
a representation of the transfer operator. We show explicitly for the 49° wedge billiard how
the accessible part of the PSS in phase space is divided into cells labelled by sequences of n
symbols. This leads to a systematic way of finding the pruning rules for this system. Results are
presented for the 49° wedge based on schemes employing 2-, 3- and 4-symbol cells. Because of
the extensive pruning in this system, this approach cannot be easily implemented for the general
case of n-symbol cells. Furthcrmore, the numerical results are not as good as those obtained
from finite approximations to the transfer operator in coordinate space.

PACS numbers: 0545, 0320, 0365

1. Introduction

This paper reports the results of studies of Bogomolny's semiclassical quantization scheme
(1. 2] for both integrable and nonintegrable systems. Central to Bogomoiny's formalism is a
suitably chosen Poincaré surface of section (PSS) which is crossed many times by a general
trajectory of the system. The PSS is divided into a number of cells having approximately
the same phase-space volume, and a semiclassical transfer operator is constructed which
describes a mapping from one cell to another. Depending on how the cells are chosen, the
transfer operator takes different forms. A semiclassical quantization condition follows from
making a finite approxirnation to the transfer operator.

Bogomolny’s formalism has the appealing features that there are no formal convergence
problems, and the Heisenberg uncertainty principle can be built into the theory in a natural
way. It has been applied successfully to an integrable system, the rectangular billiard [3],
and to systems exhibiting hard chaos, namely the geodesic flow on surfaces of constant
negative curvature [4] and the 49° wedge billiard [5). An interesting study [6] has also
been carried out applying Bogomolny's transfer operator to a smooth nonscalable potential

1 Present address: Department of Applied Mathematics, The Open University, Milton Keynes MK7 6AA, UK.

0951-7715/94/051463+31$19.50 © 1994 IOP Publishing Ltd and LMS Publishing Ltd
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(the Nelson potential) at two fixed energies, corresponding to classical motion being mostly
regular in one case and mostly chaotic in the other. However, there are interesting questions
that arise in applying this formalism to any given system. First, what is the best choice for
the Poincaré surface of section? Second, given a PSS, what is the best way to choose the
cells? For example, does a representation of the transfer operator in terms of the symbolic
dynamics, when known, offer any advantages over a coordinate space representation?
Thirdly, how many cells are required to give good accuracy for the encrgy eigenvalues
E; below some energy E? It would also be interesting to know if there are any significant
differences in applying Bogomolny's quantization scheme to integrable and nonintegrable
systems. Finally, can the transfer operator approach be applied in a straightforward way to
a system which classically exhibits soft chaos or mixed behaviour? There is special interest
in this question since quantization schemes based on the Gutzwiller trace formula [7, 8],
including the dynamical zeta function [9-14], cannot be readily applied when there is a
close intermingling of stable and unstable periodic orbits in the classical phase space.

In this paper we attempt to shed some light on these questions. As examples of integrable
systems we study the circle billiard and the 45° wedge billiard. Examples of nonintegrable
systems are provided by the 60°, 49°, 41° and 30° wedge billiards, for all of which accurate
values of the quantum energy eigenvalues are known. In the next section, we describe
studies of the transfer operator in coordinate space. Section 3 describes how the symboiic
dynamics can be used to construct a representation of the transfer operator. The final section
summarizes and discusses what we have learned.

It should be mentioned that there are interesting similarities between Bogomolny's
formalism, based on a suitable PSS, and the scattering theory approach to the semiclassical
quantization problem for compact billiards developed by Doron and Smilansky [15, 16],
based on removing an interval of the billiard’s boundary and treating the scattering of de
Broglie waves incident on the opening via a long waveguide. Their formulation leads to an
equation similar to (2) below for the energy eigenvalues of the (closed) billiard system, in
which the transfer matrix T'(E) is replaced by the scattering matrix S(E). Further discussion
of the relationship between the two theories may be found in [15, 16].

2. The transfer operator in coordinate space

2.1. Methods for calculating the semiclassical energy eigenvalues

In Bogomolny's theory, the transfer operator is defined with respect to a given Poincaré
surface of section (PSS). Although the PSS can be chosen in many different ways, the
calculations are conceptually simple if one picks a ‘surface’ in the coordinate space that
is frequently crossed by the classical paths. For a system with two freedoms, the PSS is
simply a one-dimensional curve. If ¢’ and ¢” are points on this curve, one obtains the
transfer operator by summing over all possible classical trajectories which cross the PSS
only once in going from g’ to ¢” and have the normal component of the momentum in the
same direction at g and ¢”. The result is (see {1, equation (4.18)]).

1 H
T M‘ ! —
(.9 g PEE
Here 5(¢", ¢’; E) is the action at energy E calculated along a classical trajectory connecting
the points ¢’ and g” and crossing the PSS only once in between. The phase index v is
related to the number of points on the trajectory at which the semiclassical approximation
is not valid.

azs(qn‘ qf: E)
aqnaqf

expfiS(¢”. q¢'s E)/R —ivm/2). (0
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Bogomolny’s semiclassical quantization scheme

One possible way of constructing a finite approximation to the T -operator in coordinate
space is to divide the accessible part of the PSS into N cells, the nth cell centred on Gn
having width A,. In terms of the transfer operator T(qm. qn) from gm in cell m to g, in
cell n, the matrix eleinent T,., is defined to be.

Ton = T{Gm, Gn)(AmAR)'2. )
Then the condition for an energy eigenvalue is that {see [1, section 8]),
det{Smy — Tan(E)] = 0. 3

The dimension of the T-matrix is, of course, equal to the number of cells N on the PSS.

Bogomolny writes down a prescription for the minimum number of celis required for
a reasonably good numerical calculation. Suppose one wishes to calculate semiclassical
energy eigenvalues E; up to some given energy E. The coordinate g along the PSS and its
conjugate momentum p lie within an area A(E) of phase space accessible to the system at
energy £. We shall use the term Planck cell to denote a region of the PSS with phase-space
area equal to Planck’s constant 4. Then the number of Planck cells on the PSS accessible
to the system at energy E is,

Np(E) = A(E)/h = A(E)/(2nh). 4

Bogomolny argues that the T-matrix of dimension Np(E) constructed in this way will
be approximately unitary. He also emphasizes that in performing numerical calculations
one must choose N greater than Np(E) to obtain good numerical accuracy. For force-free
billiards, Boasman {17] has pointed out that Bogomolny’s criterion for the minimum number
of cells, equation (4), corresponds to taking 2 cells on the PSS in coordinate space per de
Broglie wave length at energy E.

The finite approximation leading to (3) has the effect of making the solutions for the
energy cigenvalues E; complex, though usuvally with small imaginary parts, The real parts
can be determined by locating the minima of |det[] — T(E)]| plotted as a function of E.
An example will be shown later in this section (figure 1). However, there is an alternative
method which we have found gives better resuits.

It has been shown by Artuso, Aurell and Cvitanovié [18] and by Bogomolny [1] that
there is a formal relationship between the dynamical zeta function {s(E) and the transfer
operator T(E):

{s(E) = det[1 — T(E)]. {5)

For a system with two freedoms dispiaying hard chaos (all periodic orbits unstable) the
dynamical zeta function can be written as [10],

00

ts(E) = [ [ 111 — explics, /8 = vy7/2) — (m + 1/20u,3). (6)
¥y m=0

where S, is the action, v, is the Maslov index and u, is the stability exponent of the
primitive periodic orbit y. Provided the infinite product in this expression for £s(E) is not

truncated, its zeros are the (real) semiclassical encrgy eigenvalues.
Bogomolny has shown [1] that when E is real, the dynamical zeta function satisfies the

following relation, known as the functional equation:

expl—in N (E)){s(E) = explin N (E)|L3(E). 7

Here the asterisk denotes the complex conjugate and N(E) is the mean number of
energy cigenstates with energy less than or equal to E. From (5) this implies that
exp[—iz N(E))det[l — T(E)] is a real function. When a finite approximation is made
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to T(E), as described above, this function is no longer guaranteed to be real. Nevertheless,
guided by these considerations we assume that with a finite approximation to the transfer
operator, as in (2), the semiclassical energy eigenvalues can be calculated to good accuracy
by finding the (real) solutions of,

D(E) = Relexp[—i7 Nrr(E)ldetldm, — Tma(E))} = 0. (8)

This will be referred to as the functional determinant. It is the basis for most of the
calculations of energy eigenvalues described in the rest of the paper. Note that we have
replaced N(E) by the Thomas-Fermi approximation to the number of energy eigenstates
having energy equal to or less than E.

In the rest of this section we describe how these methods can be used to calculate
approximate semiclassical energy eigenvalues for several different systems, both integrable
and nonintegrable.

2.2. The circle billiard

The circle billiard, in which a free particle is confined inside a circle of radius R, is an
example of an integrable system with two freedoms. Some aspects of the classical motion
have been described by Berry [19). Rezently, Boasman [17] has used the circle billiard as a
test case to study the difference between the energy cigenvalues calculated using the exact
and the semiclassical propagators in the *boundary integral method’. Here we focus on the
semiclassical energy eigenvalues calcuiated by the methods outlined above and compare
them with the exact energy eigenvalues.

A natural choice for the PSS is the circular boundary itself, with the transfer operator
taking the particle from just after a collision with the boundary to just after the next collision,
The coordinate g is simply the distance around the circumference from a chosen reference
point. The PSS is divided into N cells of equal width A = 2 R/N. Between the central
points g» and g, of cells m and n there is only one classical trajectory, a straight Jine which
crosses the PSS just once before being reflected from the boundary and returning to the
PSS. For such a trajectory it is easy to calculate the action S(gm. gy E) and the second
derivative appearing in (1):

S(gm. gn: E) = 2R(2mME)"? sin (Iqmz;q,]) o
a2s CmEY  {Igm — qal

) ' 10

89mdgn 2R ( IR ) (10)

Since there are no caustics along the straight line from qm 10 qn, the phase index v, is
always 2 as a result of the phase change from the single reflection at the circle boundary.

Suppose that we wish to calculate the energy eigenvalues E ; up to some value E. It
is easy to see that the corresponding phase-space arca associated with the circular PSS is
4mR(2mE)'?, and thus Np(E) = 2R(2mE)'/?/R. To obtain estimates of the low-lying
energy eigenvalues of a billiard in a circle of radius R = 2, we choose E = 20, in units in
which m =% = 1. This gives Np(E) = 25. Because the matrix elements T, are complex,
we show in figure 1 the result of calculating [det[d,,, — Tua(E)]| as a function of E over the
energy range spanned by the lowest 19 energy eigenvalues. The dashed lines in the figure
indicate the positions of the exact energy eigenvalues of the Schrédinger equation of a free
particle inside a circle of radius R=2. These are given by,

2
h?. a(")
Ein = 1— (L) an
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Figure 1. Plots of |deif]l — T(£)]| as a function of £ for the circle billiard with R = 2. The
dashed lines indicate the positions of the exact energy eigenvalues given by (11). (a) calculated
with a 25 x 25 T-matrix; (5} calculated with a 100 x 100 T-matrix.

where ;" is the kth zero of the Bessel function Ja(x). figures 1(a) and 1(b) show the

results for T-matrices of dimensions 25 and 100 respectively. We see that there is excellent
agreement between the positions of the minima of |det[! — T(£)]| and the positions of the
exact energy eigenvalues. In fact, even the 14th and 15th eigenvalues, which are very close
together, are found to be resolved when the calculated curve of figure [(b) is enlarged in
this region. However, it is interesting to note that the 25 x 25 T-matrix fails to produce
minima (lying below 1.0) at the 17th and 18th energy eigenvalues, whereas the 100 x 100
T-matrix gives deep minima at these positions.

2.3. The wedge billiard

The wedge billiard has been studied both classically and quantum mechanically by a number
of people [20-28]. It consists of a particle confined (o the region between the y-axis and
the line y = xcot¢, where ¢ is the wedge angle. The particle makes elastic collisions
with the boundaries and is acted upon by a constant force in the negative y-direction, If
the mass of the billiard and the strength of the constant force are chosen io be unity, the
Hamiltonian is,

H=%(P§+P§)+)’ x20 ¥ 2 xcoté. (12)

For wedge angles between 45° and 90° this system exhibits hard chaos [26—28], that is,
there are no KAM tori in the phase space and all periodic orbits are unstable. For wedge
angles less than 45° the system exhibits soft chaos or mixed behaviour characterized by the
existence of both stable and unstable periodic orbits, Separating these two different regimes
is the integrable case of ¢ = 45°.

Of central importance in Bogomolny’s formalism is the PSS, which can be chosen in
many different ways. For the wedge billiard a natural choice is a straight line along the
tilted wall of the wedge, since the billiard bounces repeatedly against this wall and the
classical mappings of this wall into itself are easily written down. For a given energy E,
the maximum distance from the vertex that the classical particle can reach along this wall
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is rmax = E/cos¢. In previous work [5] we divided ry,, into N cells of equal width A.
Let us denote the position coordinate along the PSS as r and its conjugate momentum as
pr. Since at position r and energy £ we must have |p,| < [2(E — r cos@)]'/2, it follows
that cells of equal width A give unequal phase-space areas on the full PSS in phase space.
Although this did not seem to cause difficulties in our earlier work, in the present paper we
shall always choose the cell widths A, to make the phase-space areas equal, as illustrated
in figure 2. This has the satisfying feature that the smaller cell widths near the vertex are

—
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Figure 2. The full Poincaré surface of section in the phase space (r. p,). corresponding to the
tilted wall of the wedge. The areas of the slices are equal, and this determines the cell widths
Fa Y

consistent with the de Broglie wave length being shorter in this region. From the definition
in (4) it is easy to show that for the PSS chosen along the tilted wall of the wedge, the
number of Planck cells accessible at energy E is,

2‘\/2 E3IZ_
3nficos¢
This corresponds to each vertical slice in figure 2 having a phase-space area of exactly 2xh,
which in turn implies that there are two cells per de Broglie wave length at each position
along the PSS in coordinate space,

To construct a finite approximation to the transfer operator, we require the action at

energy E for a classical trajectory connecting points g, and g, at the centres of cell m and
n. This can be obtained from the exact time-dependent function [29],

Np(E) = (13)

W' g T) = (" — x)* + (& - V= iy v - Lis (14)
2T 2 T 24
where. (x’, y) and (x”, y”) are the coordinates of the points ¢’ and ¢” on the PSS. For
a given classical trajectory from ¢’ to ¢”, the quantity we require in (1) is related to
W(q'.4"; T) by a Legendre transformation,

5q".q Ey=W(@".q"TY+ET (15)
with,
3s aw
T=-= -—
o5 and E T (16)
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Differentiating (14) with respect to T and setting the result equal to —E, one obtains a
quadratic equation in 7. The two solutions cormrespond to the two classical paths connecting
g’ and g”, one a ‘iow path’, the other a ‘high path’. Substituting the two solutions for T in
(15) yields S(g", ¢"; E) for these two paths. With the help of a computer algebra program,
we can also calculate the second derivatives of S(g”, ¢'; E) appearing in (1).

In addition to the two direct trajectories, which were denoted as T-mappings in previous
work [23-25], there are two trajectories which make a reflection from the vertical wall in
going from g’ to ¢”. These will be denoted as V-mappings. The corresponding actions
5(¢”.q's E) and their second derivatives are readily calculated by the device shown in
figure 3 where the reflection at the vertical wall is ignored and the particle ends up on the
mirror image of the tilted wall.

Figure 3. Diagram showing the four classical trajectories used to calculate the transfer operator
for the wedge billiard.

Finally, the phase index v must be calculated for each of the classical trajectories
from ¢’ to ¢”. For our system with two freedoms, v is equal to the number of caustics
on the trajectory, plus 2 for each reflection from the boundary, plus 1 for each time the
total momentum becomes zero (at the top of a vertical rise and fall). For each of the four
trajectories of figure 3 it happens that there is at most one caustic. When a caustic occurs, the
second derivative 32S(q", ¢'; £)/3¢" 8¢’ changes sign. A caustic can therefore be detected
by examining the sign of this second derivative and comparing it with the known sign when
no caustic occurs {positive for a T-bounce, negative for a V-bounce).

To review briefly, we first choose Eq,, and Tmax. and divide the PSS into N cells of
equal phase-space area, as in figure 2, the nth cell centred on g~ having width A,. The
corresponding N x N T-matrix is then constructed from (1) and (2) using the method just
described. Finally, the approximate semiclassical energy eigenvalues of the quantum system
are to be determined from either the minima of |det[8,,, — mn(E)]| or from the zeros of
the functional determinant, equation (8). ,

In presenting the results of our calculations and 'comparing them with the exact energy
eigenvalues, it is helpful to introduce a scaled energy E defined so as to make the eigenvalues
evenly spaced on the average, with the mean spacing equal to unity. This can be achieved
in the following way. First we introduce the function Nrr(E), which is the Thomas-Fermi
approximation to the number of energy eigenstates of the quantum system with eigenvalues
less than or equal to E. For the wedge of angle ¢ this is given by [25],

tang _;  (I1+seced) 4, 1
- E - 17
127h? 3./2nh +6 amn

By differentiating with respect to £ one obtains the Thomas—Fermi density of states, drp(E),
which is the mean number of energy eigenstates per unit energy at energy E. The scaled

Nr(E) =
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energy E is then defined to be.

tan¢ 2 _ (1 +scc¢>)E3,2'

£ = Edye(E)/3 = 127h2 6./2nh

(18}

With this definition the scaled energy eigenvalues E, have a mean spacing close to unity.

If we keep only the first term on the right-hand side of (18), we can recast (13) for
Np(E) in a simple form involving E. This gives the following useful approximate result
for the number of Pianck cells accessible to the wedge billiard at the scaled energy E:

N 32 P,
| —— ]| EI. 19
Ne(E) (311' $in ¢ cos q’)) 19

We shall see that the accuracy of our numerical results at the scaled energy E depends on
the ratio N/Np(E), where N is the number of cells on the PSS (or the dimension of the
T-matrix) used in the calculation.

2.3.1.  The problem of caustics close to the PSS. In the wedge billiard system a
computational problem arises whenever a classical trajectory has a caustic close to the
final point of the trajectory on the PSS. (This problem does not occur in force-free billiard
systems like the circle billiard or the stadium billiard, since there are no caustics in such
systems when the PSS is chosen to be the entire billiard boundary.) Consider a trajectory
from g’ to ¢” on the PSS as in figure 3. If a caustic happens to occur precisely at g”, the
second derivative of the action, 325(g", g; E)/3g"3q’, will be infinite at that point. When
this occurs, the two T-trajectories in figure 3 coalesce, reaching their highest point precisely
at ¢”. A similar merging occurs for the V-trajectories at a higher energy. From (I) and
(2), a matrix element of the transfer operator connecting ¢’ to ¢” will be infinite in this
situation.

Now consider what happens if we calculate |det[1— T (E)]} or the functional determinant
D(E) as the energy is gradually increased. When E is small, the classical trajectories are
confined to a few cells on the PSS near the wedge vertex. However. as E is increased
in small increments, the billiard is able to go higher in the wedge and, as a result, more
cells on the PSS gradually come into play. A matrix element T,,,(E). involving classical
trajectories from the cell centred on r,, to the cell centred on r, along the tilted wall of
the wedge, will first become nonzero when the erergy E exceeds r, cos¢ and, for the first
time, is sufficient to make possible a classical trajectory from r,, to r,. In this case, one
or more caustics will lie close to the final point 7, of the two merged trajectories, and the
resulting matrix element T,,,(E) will be abnormally large. It is inevitable that this situation
will occur many times as E is gradually increased from zero up to Ey,.

The effect of caustics may be clearly seen in figure 4(a) which shows the functional
determinant D(E) as a function of E calculated for the 49° wedge using a 25 x 25 T-matrix.
(Emax was chosen to be 14.4 in units in which m =k = 1. This gives Np(Emay) = 25 from
(13).) A spiky appearance similar to figure 4(a) was found in many plots comresponding to
different wedge angles and different dimensions of the T-matrix. In general, the relative
size of the spikes was found to decrease as the dimension of the T-matrix was increased,
leading one to surmise that the spikes might disappear completely in the limit of an infinitely
large T-matrix.

We have found a method of calculating the T-matrix as a function of £ which avoids
the problem of caustics close to the PSS. The method makes use of the following scaling
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(b)

Figure 4. Plot of D(E) as a function of the scaled energy E forthe wedge billiard with ¢ = 49°,
calculated using a T-matrix of dimension 25. (a) calculated using cells with unchanging widths
Ap; (b) calculated using the scaling method described in the text.

relations for the quantities entering the transfer operator, the powers being specific to the
wedge billiard [24, 25]:

S5(gn Gmi E) = E3S(gy, gm; 1) (20)

325(4:" gm; E) — _1_ azs(qm dm; 1) @1
3qnqm E* gy 0gm

V(Gn) Gmi £} = V(gn. gm: 1) (22)

Here the quantities on the right-hand side are calculated for E = |. To begin with we set
E = 1 and calculate the maximum distance along the tilted wall that can be reached by
the billiard, namely, ry,, = 1/cos . Having chosen the dimension N of the T-matrix, we
then divide the interval from 0 to rp, into N cells having equal areas in phase space, as in
figure 2. The classical trajectories Joining the centres of any two given cells will not have
caustics close to the PSS, except perhaps for trajectories reaching the highest cell on the
PSS. (Even for this cell there does not seem to be a problem in the numerical calculations.
This may be because this cell has the widest width A of all the cells and its centre is slightly
displaced from rm,;.) Thus, we calculate the elements of the T-matrix at E = 1 by the
method described above, based on (1) and (2) and the Legendre transformation of (14) to
(16). Our numerical calculations confirm that there are no unusually large matrix elements
in the T-matrix. We can now obtain the T-matrix at any other energy E by scaling the
widths of the cells according to A, (E) = E A,(1} and making use of (2) and (20)~(22) to
calculate Tons(E). A plot of the functional determinant D(E) against £ calculated in this
way is shown in figure 4(b). The curve, which was calculated for the 49° wedge using a
25 x 25 T-matrix, is similar to that in figure 4(a) but is free of the irregularities due to
caustics near the PSS.

In the following subsections we report the results of calculations of the semiclassical
energy eigenvalues performed by scaling the T-matrix and the cells on the PSS in the
manner just described, which we shall refer to as the scaling method. It should be pointed
out that it represents a slight departure from Bogomolny's original conception in that the
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scaling method alters the cell size each time the energy is changed. This results in there
being many cells per de Broglie wave length (along the PSS in coordinate space) at the
lowest energies and a lot fewer at the highest energies. Unfortunately, this means that one
canno! characterize a given calculation by a parameter giving ‘the number of cells along
the PSS in coordinate space per de Broglie wave length’—the parameter b in the work of
Boasman [17]. This seems to be the price that must be paid to circumvent the problem
arising from caustics close to the PSS.

In assessing the numerical accuracy of the results presented below, we shall often quote
values of the ratio N/Np(E) instead of Boasman's b. (N/Np(E) = 1 correspends 1o
b = 2.) The importance of this ratio in determining the accuracy of the semiclassical
energy eigenvalues obtained by Bogomolny’s method may be seen from figure 5. Using the

i -

10 15 20
N/N(E)

(]
o

Figure 5. The differcces £, — £5* as a function of N/Np(E) for the 49° wedge billiard.
Solid curve, £y7; dotted curve, £)5 3 short-dash curve, £1g; long-dash curve, £39; dot-short-dash
curve, E3;; dot-long-dash curve, Ei3; short-dash-long-dash curve, £;.

49° wedge billiard as an example, we have plotted the differences £, — E‘:’“‘“ for the 17th to
23rd energy cigenvalues as a function of the ratio N /Np(E). Here, the E:““ are the exact
scaled energy eigenvalues of the Schrodinger equation for the 49° wedge, and the £, are the
scaled energy cigenvalues found from the zeros of the functional determinant D(E) using
the scaling method described above. The calculations yielding these E, were performed
using T-matrices ranging in dimension from 25 to 225. If, for example, a T-matrix of
dimension N gave a particular value for, say, £, the comresponding value of N/Np(Ezg)
was calculated using (19). It is clear from these plots that when N/Np(E) is greater than
about 10, the values of the E, have settled down to within about 4% of the mean spacing
between the levels, in all the cases shown. This is a useful number to remember in looking
at the results which follow. Similar results have been found by Boasman [17] for the Africa
billiard ([17], figure 4.2: & = 20 corresponds to N/Np = 10.) Boasman has also carried
out calculations for the stadium billiard with & = 10 (equivalent to N/Np = §5). Over the
first 138 energy eigenvalues, the numerical uncertainty appears to fluctuate by about 10%
of the mean level spacing ([17], figure 7.2). Qur results for the relatively low-lying energy
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eigenvalues shown in figure 5 are somewhat better than this at N /Np(E) =5,
We shall now nresent results for five different wedge angles, chosen to illustrate the
cases of hard chaos, integrable behaviour and soft chaos in the classical dynamics.

2.3.2. Results for wedge angles giving hard chaos. We begin with the 49° wedge, which
exemplifies the generic situation in the régime of hard chaos (a positive Lyapunov exponent
for all initial conditions). Figure 6 shows the results for the functional determinant D(E) as
a function of £ caiculated by the scaling method for T-matrices of dimension 25 and 150.
The dashed lines in the figure correspond to the positions of the exact energy eigenvalues
of the 49° wedge obtained by solving the Schrodinger equation by matrix diagonalization
[25]. It may be seen that the zeros of D(E) are close to the exact E, in both cases,
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Figure 6. Plot of D(£) as a function of the scaled energy £ for the wedge billiard with ¢ =49°
(@) T-matrix of dimension 25; (b} T-matrix of dimension 150,

but the 150 x 150 T-matrix gives much better results at the higher energies shown in the
figure. Note, for example, that the 25 x 25 T-matrix fails to give the zeros for the 25th and
26th eigenvalues, whereas the 150 x 150 T-matrix gives good numerical results for these
energy cigenvalues. This improvement in accuracy is a consequence of the much larger
number of cells on the PSS in the latter calculation, and the fact that the ratio N/Np at
this energy changes from about 2 to 11 as N goes from 25 to 150. (More precisely, for
E = 28, equation (19) vields Mp(E) ~ 13.9, which gives N/Np = [.B for N = 25 and
N/Np ~ 10.8 for N = 150. For the sake of comparison, at a lower scaled energy such as
E = 6, the number of Planck cells is Np(E) & 6.4, and thus the ratio N /Np changes from
about 4 10 24 as N goes from 25 to 150.)

Figure 7 shows plots for the 60° wedge billiard similar to those in figure 6. Here too the
greatest improvement in numerical accuracy in going from N = 25 to N = 150 occurs at
the highest energies shown in the figure. From (19), the number of Planck cells accessible
to the system at scaled energy £ = 30 is Np(E) =~ 15.3. Thus, in going from N =25 10
N = 150, the ratio N/Np changes from about 1.6 to 9.8.

How good are these numerical results compared with results from other semiclassical
quantization schemes? To answer this question, a quantitative comparison of several
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Figure 7. Plotof D(E) as a function of the scaled energy £ for the wedge billiard with ¢ = 60°.
{a) T-matrix of dimension 25, (b) T-matrix of dimension 150.

Table 1, Comparison of the mean Jeviation and the root-mean-square deviation of the calculated
semiclassical energy cigenvalues E, from the exact energy eigenvalues of the Schrodinger
equation EF**, for several different semiclassical quantization schemes. Resulls are given for
the 49° and 60° wedge biiliard systems. In cach case, the averages were calculated over the
lowest 30 energy cigenvalues. The values in parentheses give the number of primitive periodic
orbits or pseudo orbits used in the calcutations. Note that £ = Edr(E)/3.

wedge quantization scheme < Ep = ETt 5 o (E, - Egraey? 512
angle

49° staircase quantization (1048) -0.284 0.215
49° zela product and func. rel. (1048) 0.029 0.113
49° pseudo-orbit expansion and func. rel. (26706") 0.046 0.126
49° Berry-Keating erfe, K=50 (26706*) 0.028 0.142
49° ze1a product (16 imed. orbits) and func. rel? 0.017 0.100
49° D(P:‘) from 150 x 150 T-matrix 0.027 0.081
60° staircase quantization (1621) ~0.108 0.058
60° zeta product and func. rel. (1621) -0.031 0.040
60° D(E) from 150 x 150 T-marrix 0.030 0.088

* All pseudo-orbits with word length < 19,
2 There are 16 irreducible orbits with word length < 16.

different calculations is shown in table 1. In each case we have calculated the mean
deviation < (E, — E*) > and the root-mean-square deviation < (E, — E&)? 5112,
calculated over the lowest 30 cigenvalues. Results are given for the 49° and 60° wedges.
The results of the present work are listed as *D(E) from 150 x 150 T-matrix’. All the other
results are taken from tables 1 and II of [25] where the various calculations are described in
detail. The calculations listed as *zeta product and func. rel.” and ‘pseudo-orbit expansion
and func. rel.’ determined the semiclassical energy eigenvalues from

Re{exp{—in Nre(E){s(E)} =0, 23)
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with the zeta function calculated in various ways. The calculation listed as ‘Berry-Keating
erfc, K = 50" was performed using the Berry-Keating smoothed version of the Riemann—~
Siegel lookalike equation [13), which gave good results for the positions of the first hundred
encrgy eigenvalues of the 49° wedge. The staircase quantization scheme, proposed by
Aurich and Steiner [30], determines the jth energy eigenvalue E; from,

Nre(Ej) + Nose(Ej) = j — 3 (24)
where Ny (E) is calculated from the Gutzwiller periodic orbit sum. It pave good results
for the 60° wedge, but failed to give unambiguous eigenvalues for the 49° wedge.,

On the basis of the ms deviations in table 1, we see that for the 49° wedge, the
present calculation employing a 150 x 150 T-matrix gives better results than the other
quantization schemes. Almost as good are the results obtained with a zeta product over
only 16 irreducible orbits (to be defined in section 3). For the 60° wedge, however, the
present calculation does not give as good results as either the zeta product over 1621
primitive periodic orbits or the staircase quantization scheme.

2.3.3. The 45° wedge billiard. The 45° wedge billiard is an integrable system. This is
easily seen by considering a billiard confined in a 90° wedge with a constant force acting
along the bisector of the wedge. In this symmetric wedge, the motion of the billiard can be
decomposed into two independent motions perpendicular to the walls of the wedge. Let us
use X and ¥ to denote these two components of the motion. On putting y = 7|EX + 7IEY in
the Hamiltonian, equation (12), the Schrodinger equation separates into two one-dimensional
equations,

1d%y(X) X _

-3 oy +—\/2W(X)—Ex1ﬁ(x) (25)
1dy(y) v _

~3Tarr T YW = B, (26)

With the boundary conditions that ¥(X) and ¥(Y) are zero along the appropriate walls
of the wedge and that they also go to zero as X and ¥ appreach infinity, these eguations
are those of the ‘quanium bouncer', whose solutions are well known [31]. While the
exact energy eigenvalues are given by the zeros of the Airy function Ai(~z), an excellent
approximation to the eigenvalues, for all but the lowest two or three eigenvalues, is

3npF 13
£ = [y o+ 9 @
where F is the strength of the constant force in the one-dimensional problem. The
corresponding eigenfunctions ¥, can also be written down {31). Then the antisymmetric
wavefunctions for the 90° wedge have the form,

1
75["’5] (X)Wn;(y) - 'I’u; (X)wm (Y)]v (28)

which clearly vanishes along the bisector of the wedge (where X = ¥). It follows that
these antisymmetric combinations, with n, 5 n2, are eigenfunctions of the desymmetrized
45° wedge, subject to the boundary condition that the wavefunction vanish along both walls
of the wedge. The correspording approximate energy eigenvalues are given by (putting
F=-pandm=h=1),

Ir\23
E""":(T) [ + )Y + (nz + 1)) ny > ny. (29)
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This expression allows us to locate, with sufficient accuracy, the positions of the exact
energy eigenvalues of the Schrédinger equation of the 45° wedge. '

Figure 8. Plot of D(£) as a function of the scaled energy E for the wedge billiard with ¢ = 45°,
(a) T-matrix of dimension 25: (b) T-matrix of dimension 150.

Figure 8 shows plots of the functional determinant D(E) against £ for the 45° wedge,
the upper plot being for a 25 x 25 T-matrix, the lower for a 150 x 150 7-matrix. The dashed
lines indicate the positions of the exact scaled energy eigenvalues calculated from (29) and
(18). Just as for the 49° and 60° wedges, the lower energy cigenvalues are accurately
determined by both calculations, but there is a noticeable improvement in the results at
higher energies in going from N = 25 o N = 150. For example, the nearly degenerate
pair of eigenvalues £, and Ex3 are too widely separated in figure 8(a), but are much closer
together in figure 8(b). There is also a slight improvement in the cluster of cigenvalues
Ezs to Ex. (For E = 30, Np(E) ~ 14.3 from (19), giving N/Np = 2 for N = 25 and
N/Np = 11 for N = 150)

It is interesting to note that Bogomolny's method for calculating semiclassical energy
eigenvalues seems to be blissfully unaware of the profound formal differences between
integrable and nonintegrable systems. The calculations just described for the 45° wedge
proceeded in exactly the same way as those described earlier for the 49° and 60° wedges.
This observation led us to try doing similar calculations for wedge angles corresponding to
soft chaos or mixed behaviour in the classical system.

2.3.4. Results for wedge angles giving soft chaos. When the wedge angle ¢ is less than 45°
the system exhibits both regular and chaotic motion [20-22, 27]. For angles close to 45°
some of the invariant tori of the integrable case survive and show themselves as ‘islands’
or ‘invariant curves’ in a suitably chosen Poincaré surface of section. In other parts of the
phase space, where invariant tori have been destroyed, the motion of the billiard is chaotic.
For a sufficiently small departure from 45° this mixed behaviour can be understood on the
basis of the well-known theorem due to Kolmogorov, Amold and Maser (see. for example,
the ardcle by Berry [32]). However, at the wedge angles we have chosen to study, the
KAM theorem almost certainly does not apply. Therefore, rather than use the term ‘KAM
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régime’, we shall refer to systems with ¢ < 45° as belonging to the régime of soft chaos
or mixed behaviour.
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Figure 9, Plot of D{E) as a function of the scaled energy £ for the wedge billiard with ¢ = 41°,
(a) T-matrix of dimension 25, () T-matrix of dimension 150.
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Figure 10, Plot of D(E) as a function of the scaled energy £ for the wedge billiard with
¢ = 30°. () T-matrix of dimension 25; (b) T-matrix of dimension 150.

It is interesting to see whether Bogomolny's theory yields good results for the energy
eigenvalues of the wedge billiard in the mixed régime. Figures 9 and 10 show results for the
functional determinant D(E) as a function of E for the 41° and 30° wedges, respectively. In
both figures the dashed lines comrespond to the exact energy eigenvalues obtained by solving
the Schrodinger equation by matrix diagonalization. The pattern of the results is similar to
that already described in figures 6 -8: at the higher energies shown, there is considerable
improvement in the agreement between the zeros of D(E } and the exact quantum energy
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eigenvalues in going from N = 25 to N = 150. For example, in the case of the 30°
wedge, the 25 x 25 T-matrix fails to obtain the 2Ist and 22nd energy eigenvalues, but
these are accurately determined by the 150 x 150 7'-matrix. (For this case, when £ = 24,
Np(E) = 13.7 from {19), giving N/Np=2for N=25and N=Np = 11l for N = 150.)
Table 2 shows all our resuits for the five different wedge billiard systems studied in this

Table 2. Comparison between the scaled semiclassical energy eigenvalues £,. calculated from
the zeroes of the functional determinant D(E). and the exact scaled eigenvalues £S5 of the
Schridinger equation. for different wedge angles. The averages were calculated for the number
of energy cigenvalues shown in the last column,

wedge T-manix  figure < (En = EFY > < (£, — E8%Y2 542 qumber of

angle dimension eigenvalues
60° 25 6{a) 0.028 0.133 30
60° 150 [T 0.030 0.088 30
49° 25 5(a) 0.046 0.154 24
49° 150 5(b) 0.027 0.081 30
45° 25 T(a) 0.02% 0.093 26
45° 150 Hb) 0.033 0.057 30
41 25 8(a) 0.058 0.137 30
41° 150 8(b} 0.029 0.055 30
3 5 9(a) 0.058 0.093 20
300 150 9(b) 0.029 0.056 30

paper. In each case, the scaled semiclassical energy eigenvalues £, were determined from
the zeros of the functional determinant DY E). In the table we list the values of the mean
deviation < (E, — ES™") > and the root-mean-square deviation < (£, — ESa)2 5172 of
the £, frum the exact energy eigenvalues of the Schrédinger equation E’““ calculated
over the lowest 30 eigenvalues (or fewer if the quantization scheme fallcd to give all 30
eigenvalues—see the last column of the table). For each angle, results are given for T-
matrices of dimension 25 and 150. Remarkably, the rms deviations for the 150 x 150
T-matrices are smaller for the 41° and 30° wedges than for any other entries in the table.

Evidently, the mixed regime presents no great challenge to the transfer operator
approach, in contrast to quantization schemes based on the Gutzwiller trace formula and
the dynamical zeta function. This conclusion is supported by the recent studies of a
smooth nonscalable potential (the Nelson potential) carried out by Haggerty [6]. Instead of
calculating energy eigenvalues, Haggenty determined the eigenstates of the variable 1/k
at two fixed energies. the lower one corresponding to classical motion that is mostly
regular, the higher one to classical motion that is mostly chaotic. In both cases he found
excellent agreement between the exact quantum results and the values calculated by means
of Bogomolny's transfer operator.
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2.4. Periodic orbits from traces of T™

It is interesting to see how the periodic otbits of the system can be obtained from the transfer
operator formalism. The key to doing this is the relation (see [1, section 6]),

2, explin(S, /& — v, 7 /2)] = 1 -

Here {5(E) is the Selberg zeta function or dynamical zeta function, which can be expressed
as an infinite product over the periodic orbits of the system, as in (6). The first sum in
(30) is over the primitive periodic orbits of the system, labelled by y, with S, the action,
M, the monodromy matrix and v, the Maslov index of the primitive periodic orbit y. The
sum over n counts the number of traversals of a given primitive periodic orbit. Finally, in
the sum over m, the irace of T™ is nonzero only when there is a sequence of m mappings
which starts and ends in the same cell of the PSS. In order that these m segments make upa
periodic orbit, the trajectories must join smoothly at each crossing and the initial momentum
must be equal to the final momentum. How this is achieved will be described presently.

The periodic orbits are obtained by calculating the Fourier transform of (30). Since the
actions of the wedge billiard scale with energy according to [23, 25] S, (E) = S, (1)E/2,
we put u = E32 and define the Fourier transform of Tr(T™) to be,

m=l

F"'(w)=j; ™ Te(T™) exp(—iwu)du. &3}

We have previously reported [5] the results of calculations of F,{w) for the first four traces
for the 49° wedge, employing a T-matrix calculated using a fixed division of the PSS into
cells of equal width A. Peaks in the Fourier transforms were found to occur at the actions
of the shortest periodic orbits and their multiple traversals. Here, in figure 11, we show

T T T 3 I . i T T * i 4 T ‘ T i i

(a) {(b)

(e (d)

IF(a)l

Figure 11. Results for the 49° wedge of the Fourier transforms of Tr(T™) catculated from (31}
The T-matrix used was 200 x 200. {(a) Fi{w): (b} Fa{w); (c) Fi(w); (d) Falw).

similar results for the 49° wedge calcuiated from a 200 x 200 T-matrix constructed using
the scaling method. The 200 cells of the PSS extended from the vertex out to rpa = 61.4
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along the tilted wall, and the integrand in (31) was computed at 512 equally-spaced points
extending out to upa, = (40.3)*2 = 256. The vertical dashed lines in figure 11 lie at the
positions S, (1) of the shortest periodic orbits of the 49° wedge. (See [24], table II, for
the actions of these orbits and their labels.) It is satisfying to see that F)(w) has a single
peak at the action of the V orbit, while F>(w) has peaks at the actions of the orbits TV and
V2, Furthermore, F3(w) has peaks at the actions of the orbits TV V and V2, and Fi(w) has
peaks at the actiors of TTVV, (TV)?, TVVV and V*, in order of increasing actions.

(a) (b) i . :

i i :
o \M .

{c) ! (d) ‘

l\_ -’.I J\..-I l‘-"-«-u \- n.n-.f:jl '.b

0 .0 1

.

Figure 12. Results for the 60° wedge of the Fourier transforms of Tr(T™) calculated from (31).
The T-matrix used was 300 x 300. (a} Fi(w); (8) Fa(w): {¢) Falw); (d) Fslw).

Figure 12 shows similar calculations of the Fourier transforms of the traces of 7™ for the
60° wedge, calculated from a 300 x 300 T-matrix. For those peaks which we can identify
with the actions of periodic orbits, indicated by the vertical dashed lines, the agreement
is excellent. However, there are two mysterions peaks in figure 12(d), one Jjust above the
first dashed line (T7TTV) the other just above the third dashed line (TVVV). Unlike the
other unidentified peaks in figure 12(b) and (d), which diminish or shift their positions
when the dimension of the T-matrix is increased from 200 to 300, these two mysterious
peaks in Fy(w) remain fixed in position and actually increase in intensity. This sugges:s
that they have a physicat origin, presently unknown. However, we believe that all the other
unidentified peaks in figure 12(b) and (d) are caused by the numerical procedures.

Figure 13 shows similar calculations of the Fourier transforms F,, (w) for the 45° wedge,
calculated from a 200 x 200 T-matrix. The vertical dashed lines in the figure indicate the
positions of the actions of periodic orbits lying on invariant tori {(wxcept for the V orbit
which is isolated). These actions are readily calculated analytically for the 90° wedge by
requiring that the ratio of the periods of the two independent motions be equal to a rational
fraction. They are given by the formula (in units of A),

8 K pz
S, 2. k) = ck—s——"
(11, 12, k) e
where 4| and 12 are mutually prime positive integers, and k = 1, 2, ..., oo. This expression
also comes from the theory of Berry and Tabor [33, 34] for integrable systems, adapted to

(32)
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Figure 13. Results for the 45° wedge of the Fourier transforms of Tr(T™) calculated from (31).
The T-matrix used was 200 x 200. (a) Fi(w). The peak lies at half the action 5(1. [, 1) for the

90° wedge given by (32). (b) Fa{w). The peak is at S(1. [, 1). {c) Fy(ew). The large peak is at
S, 1. 1. A very small peak occurs at (3/2)5(1. 1. 1). () Fa(w). The peaks lie at S(3. !, 1)
and S({i. 1.2).

the case of the 90° symmetric wedge billiard. Each permissible choice of u,, w2 and
corresponds to a continuous family of periodic orbits on a torus. Figure 13 shows that in
this integrable case we again find excellent agreement between the positions of the peaks
in the Fourier transforms F,,(w) and the actions of periodic orbits obtained from (32). The
other integrable system studied in this paper, the circie billiard. was likewise found to give
peaks in the F..(w) at precisely the actions of the periodic orbits of the circle, which are
easily evaluated analytically.

To complete the picture we show in figures 14 and 15 the Fourier transforms Fp(w) for
the 41° and 30° wedges, calculated in each case using a 200 x 200 T-matiix constructed
by the scaling method. In both figures there is excellent agreement between the positions
of the peaks and the actions of the lowest periodic orbits, indicated by the dashed lines.

We return to the question of how the trace calculations pick out only the classical periodic
orbits among all the joined trajectories. Let us consider the simplest case, Tr(T) = }_ Tj;.
From (1) this sum is approximately equal to the integral,

I
E Crim)72 qu

el

[¥TEN

3%5(q".q': E)
dg"ag’

i v g
exp [’;S(q 5 E)grayi=g — wi] (33)
q'=q'=qg

where Z on the integral indicates the PSS and the sum is over all classical trajectories that
return to the same position on the PSS after one crossing. We now expand S(g",q"; E)
about a point g on the PSS and evaluate the integral in the stationary phase approximation.
The stationary phase condition is

as(qh' qf; E) + as(qﬂ' ql: E) _
aqn aqr -

0 (34)
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1 (@ """‘(h)i

Figure 14. Results for the 41° wedge of the Fourier transforms of Tr(7T™)} calculaied from (31).
The T-matrix used was 200 x 200, {a) F}{w); (b) Falw): (c) Fy(w); (4} Falw).

T T R T S S i T

(a): ' (b)

[F(w)i

0 0.5 i
w

Figure 15. Results for the 30° wedge of the Fourier transforms of Tr(T™) calculated from (31).
The T-matrix used was 200 x 200. (a) F|(©); (b} Fa{w); (¢) Fy{w): (d) Folw).

where the derivatives are evaluated at ¢” = ¢’ = q. This condition, which we assume is
satisfied at a single point g, is equivalent to p” ~ p’ = 0 at the point ¢ = §. Defining

1(323(4"-4':5) 3%8(q".q"' E) = 3°5(¢".q" E)) (35)
2

dg" 39"9q’ dg”?
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where the derivatives are evaluated at the point g” = q' = g, and using the fact that,

f ~ exp [i%(q - 3))dg = (ﬂ) : exp[—ivs:rfz] (36)

) =

where vz =0 for & > 0 and vz = 1 for E < 0, we obtain,

- !l |385,(¢".q" E) i _— . N
Te(T) =~ Z,,: mi | aweg |, P [h Sy(q". 4" E)grageg ~ i(v + vz) 2] (37)
The sum is now over periodic orbits which cross the PSS just once, and the factor in front
of the exponential is exactly the same as in Gutzwiller's derivation of the trace formula
(7, 8. Thus, it can be replaced by [det(M, — 1)]~/2 where M, is the monodromy matrix
for the periodic orbit passing through §. By comparing with (30) we see that the Maslov
index for the periodic orbit is v, = v+ vz, which is exactly the same as Gutzwiller’s result.
Of course, for a finite T-matrix, Tr(T) = Y 7;; will be an approximation to this result. A
similar demonstration of how the trace operation yields the contribution vz to the Maslov
index has also been given by Boasman [17).

The extension of the preceding calculation to Tr(T2) and traces of higher powers of T is
relatively straightforward [17]. Each multiplication of the finite T-matrices is approximated
by an integral over the PSS, which can be evaluated by the stationary phase method. (See
[I, (AL1S(AL.21)].) The stationary phase condition at each intermediate crossing of the
PSS ensures that the classical trajectories will Join up smoothly at the crossings.

1
H

2.5. Finite approximartions te the transfer operator and the dynamical zeta function

The formal relation {5(E) = det{l — T(E)] was introduced in (5). Since we have been
investigating finite approximations to the transfer operator, the question arises as to what
they imply for finite approximations to the dynamical zeta function. In this subsection we
explore this connection.

For a system with two freedoms displaying hard chaos, a finite approximation to {s(E)
can be obtained by retaining only a finite number of primitive periodic orbits in the product
over y in (6). Alternatively, the infinite product can be expanded in a Dirichlet series and
the expansion truncated at some point [11-14]. In this case the expansion has the form,

N
ES(E) = 1+ ) _ CulE). (38)
n=]

Here, the sum is over pseudo orbits—linear combinations of primitive periodic orbits
with energy E, including repetitions, and ordered according to increasing pseudoaction
or increasing word length (when there is a suitable symbolic dynamics for the system),
In the present discussion we shall assume that there is a symbolic dynamics such that the
number of symbols characterizing a pseudo orbit (the word length) is the same as the number
of crossings of the PSS, as is the case for the 49° wedge billiard with the PSS along the
tilted wall of the wedge. Then C,(E) is the contribution to the sum from all pseudo orbits
of word length n.

In the present section we have been considering a finite approximation to the transfer
operator based on introducing N suitably chosen cells along the PSS in coordinate space.
This naturally leads to the following expansion:

N
det(l — T(E)] = eap..v(1a = Tia) (B2 — Tag) ... (Gav — Tww) = 1 + Z An(E} (39)
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where £q..., is the antisymmetric tensor of order N and summations are implied over the
repeated indices. The coefficient A,(E) can be expressed as the sum over all possible n-
dimensional determinants that can be formed by choosing n columns and the corresponding
n rows out of the N x N T-matrix. It can be interpreted as being the contribution from
those trajectories which cross the PSS exactly » times. Because of the determinantal form
of each term contributing to A,(E), the only nonzero contributions are from trajectories
that do not pass more than once through any cell on the PSS.

Bogomolny argues that since the trajectories which cross the PSS N times or less are
the only ones contributing to the right-hand side of (39), it is plausible that the only nonzero
contributions to the pseudo orbit expansion at energy E in (38) come from pseudo orbits
which cross the PSS N times or less, i.e. from pseudo orbits having word length n < N.
This would mean that all the C,(E) for n > N sum to zero in (38), or that C,(E) =0 for
every n > N. It is this lauer possibility which Bogomolny considers (see [1. section 9])
and which we investigate here for the 49° wedge billiard.

In previous work on the 49° wedge billiard [25] we calculated all pseudo orbits with
word length n < 19. It is, therefore, an easy matter to calculate each C.(E) in (38) as
a function of E for n up to 19. If there is a correspondence between the behaviour of
Ap(E) in (39) and C,(E) in the pseudo orbit expansion, then at low energies only crbits
with small n should contribute, and, as E increases, pseudo orbits with longer word length
should begir to contribute, This *cut-in’ behaviour conjectured to oceur in Ch(E) is a
natural consequence of the dynamics. (It is not the same as the ‘smoothed’ cut-in behaviour
described by the complementary error function in the theory of Berry and Keating [13).)
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Figure 16, Plots of |C,(£)] against E for the 49° wedge. Ch(E) is the contribution to the
dynamical zeta function from pseudo orbits in the theory of Berry and Keating |1 1] which collide
n times with the tilted wall. The valve of n is given to the left of each plot. ‘The dashed line is
the position of E*.

In figure 16 we plot the first 19 contributions ICa(E)| to the pseudo orbit expansion,
equation (38), for the 49° wedge billiard. Plotted as a vertical dashed line for each value

of n is
2
3nhcosg\d
Er | 227 5
( 22 ) g @9
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as given by (13), with Np(E) set equal to n. Over the energy range of the calculations
it is not obvious that there is a natural cut-in of the contributions from pseudo orbits of
increasing word length. If there is a cut-in, it is certainiy not sharp.

3. The transfer operator and symbolic dynamics

When any classical trajectory of a given system can be labelled by a sequence of symbols,
drawn from a suitable alphabet, it is possible to construct a completely different partition
of the PSS into cells in phase space. The comresponding transfer operator has a somewhat
different appearance (see (1, (10.14)]). It is interesting to explore the consequences of this
approach and assess the accuracy of the semiclassical energy eigenvalues to which it leads.

Trajectories of the wedge billiard are characterized by sequences of two symbols, which
we denote as 7 and V. With the PSS chosen to be along the tilted wall of the wedge, any
classical trajectory can be divided into segments, each consisting of a mapping from one
point on the PSS to another. Each segment can be assigned a symbol, T or V, according
as the mapping is a T-mapping or a2 V-mapping. In our earlier work on the wedge billiard
[23, 24] we found that for wedge angles greater than 45°, every periodic orbit of the system
corresponds to a sequence of T's and Vs which is unique, apart from cyclic permutations
of the symbols. On the other hand, not every sequence of n symbols corresponds to an
actual periodic orbit of the system: some sequences are pruned by the dynamics of the
system {35, 18]. For example, if parentheses are used to enclose a sequence of symbols
which repeats indefinitely, corresponding to a periodic orbit, then the sequence (7T') does
not correspond to an actual periodic orbit for any wedge angle (other than 90°) since the
billiard must eventually coilide with the vertical wall. Another example is that there is no
periodic orbit (TTV) for the 49° wedge, although such a periodic orbit does exist for the
60° wedge. For a given system, one would like to discover the pruning rules specifying
which orbits (periodic or otherwise) exist and which do not. While it may be possible to
discover a few simple pruning rules, in general the number of such rules will be infinite.

When a binary code exists one can obtain a partition of the PSS by identifying phase-
space cells with all possible sequences having a fixed number of symbols [1, 2]. As
an illustration, consider the partition of the PSS derived from 2-symbol cells. Using the
symbols T and V appropriate to the wedge billiard, we have four possible cells, denoted as
TT,TV, VT and VV. (Alternatively, these could be labeiled as 1. 2, 3 and 4.) Thus, for
example, the periodic orbit (TTVVTVV) passes successively through the cells TT, TV,
VV, VT, TV, VV and VT, this sequence being repeated indefinitely. Figure 17 shows the
PSS consisting of the tilted wall for the 49° wedge. The seven points on the diagram are
located at the values of (r, p,) corresponding to the seven collisions made by the billiard
with the tilted wall while traversing the periodic orbit (TTV VTV V). The PSS is shown
divided into four cells, labelled according to the two mappirgs immediately following each
collision. Thus, in our example, the two points located in the VT region have the property
that the next collision with the tilted wall resuits from a V-mapping, while the collision after
that results from a 7-mapping. The boundaries between the cells were found by firing the
billiard out of the wedge vertex at all possible angles, and determining the T or V nature
of the two subsequent mappings in each case. It is noteworthy that the areas of the cells
are not equal, although they are approximately so.

The same procedure is readily extended to 3-symbol cells, denoted by TTT, TTV,
TVT, TVV, VTT, VTV, VVT and VVV. This leads to a partition of the PSS into
eight approximately equal areas labelled by the T or V nature of the three mappings
immediately following each collision. The extension of this procedure to 4-symbol cells is
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Figure 17. The PSS in the phase space (r, p,) of the tilted wall of the 49° wedge. The PSS is
divided into four cells labelled by the two mappings immediately following each collision. The
points shown were generated by the periodic orbit TTVVTVYV.

straightforward.

The resuiting picture of the PSS for the 49° wedge, shown in figure 18, reveals an
interesting feature. Instead of the expected 16 approximately equal areas, only 14 are
found by the method of firing the billiard out of the wedge vertex and determining the
feur subsequent mappings. Cells labelled as TTVT and TVTT were not generated by
this procedure. Furthermore, when the 1048 primitive perodic orbits having word length
n < 19 of the 49° wedge were analysed into sequences of four symbols following each
collision with the PSS, in a manner analogous to the example above for 2-symbol cells, it
was found that the sequences TTVT and TV TT never occurred. We infer that the absence
of these sequences constitutes two simple pruning rules for the 49° wedge.

l [

1 1.5

Figure 18. Panition of the PSS of the preceding figure into 4-symbol cells. Only 14 cells were
generated by the procedure described in the text, the missing cells being TTVT and TVTT.
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It should be possible to use this procedure to find additional pruning rules in a systematic
way. We have not pursued this in great detail, but for 5-symbol cells we have found that
there are 28 cells in the PSS of the 49° wedge, implying that there are no new pruning
rules consisting of forbidden sequences of 5 symbols. For similar reasons, there are no new
pruning rules consisting of forbidden sequences of 6 symbols. However, new pruning rules
have been found to arise for sequences of 7, 8 and 9 symbols.

The division of a suitably chosen PSS into n-symbol cells provides a different way of
calculating approximate semiclassical energy eigenvalues. In this case the elements of the
T-matrix are constructed from the formula (see [1, (10.14)}),

Tk = Amk expli(Sme/f — Vi /2) = timi /2] 41

where Anme = 1 if there is a group of classical trajectories beginning in cell m and ending
in cell &, and is O otherwise. Here S, is the action, va is the phase index, and u,,; is the
stability exponent of a representative classical trajectory from cell m to cell k. In the case
of a partition of the PSS into n-symbol cells, the dimension of the T-matrix is 2°. The
semiclassical energy eigenvalues are to be found from,

det[8,.x — Trni(E)] = 0. (42)

One way of calculating the matrix elements 7, is to relate them to the properties of
the periodic orbits of the system. For any of the wedge billiard systems we define

Xy = expliS, (VE¥? — iv, ()7 /2 — u,(1)/2) (43)

where S, (1), vy (1) and u, (1) are the action, Maslov index and stability exponent calculated
for the primitive periodic orbit ¥ at E = [. For the 49° and 60° wedge billiards these
quantities have been calculated for more than one thousand primitive periodic orbits. (The
values for the shortest primitive periodic orbits are given in tables I and II of [24].) Now,
since any primitive periodic orbit labelled by n symbols is made up of n segments which go
from the PSS back to the PSS, one can determine the initial and final celis for each segment
and use a representative classical trajectory linking each pair of cells to calculate S,z, Vo
and upme. Thus, if a certain periodic trajectory corresponds to the sequence of symbols
(o102...0,) where a; serves to label the ith cell, then we can make the approximations,

Sy:cncr;‘..a. = Scrluz + Sﬂza’; + L + SU’,.U] (44)
Vp=ayt;...00, = Vaiay + Voyoy ... + Vo0 (45)
Uy=a 01..0, 7 Ugygy + Ugyay + ..o+ Ug - (46)

It follows from (41)—(46) that,
XY=0102~--0. = Tﬂlﬂz Ta;a; A To,.a, . (47)

This approximation can be expected to be good if the cells on the PSS are sufficiently smail.

Bogomolny has described in some detail the situation corresponding to 2-symbol cells.
(See [I]. (10.32)(10.37).) In this case the matrix element describing, for example, the
trajectory going from cell TV to cell V'V is denoted as Tryy. The T-matrix has the form,

Trrr Trrv O 0

0 0 Trvr Trvy
Tvrir Tvrv O 0

0 ¢ Tyvr Tyvy

T(E)= (48)
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When det[1 — T(E)] is expanded and set equal to zero, we obain,

1 =Trrr — Tyvw — (Trvr Tvrv — TrrrTvve)

= (TvrvTrvwTvvr — TrvrTvrv Tvwvy)

—(TrrvTrvrTvrr — Trer Trvr Tvry)

—(TrrvTrvvTvvr Tvrr = Trer TvrvTrvy Tovr

~TrrvTrvrTvrrTvvy + TrerTvrv Trvr Tyyy) = 0. (49)

With the approximation of (47) we can now express this equation in terms of the X,'s for
the primitive periodic arbits. The result is

1 =Xy~ Xy~ (Xrv — XrXv) — (Xrvv = XrvXv) — (Xrrv — X7 X1v)
—(Xrrvy — X7 Xrvv = XrrvXv + X7 X7vXy) = 0. (50)

It is interesting to note that the left-hand side of this equation constitutes a cycle expansion
of the kind introduced by Cvitanovi¢ and Eckhardt [35, 18], X7 and Xy being fundamental
cycles and the terms enclosed in parentheses being curvature corrections, up to word length
of 4. However, because each term in the expansion (49) of the determinant consists of
a product of matrix elements in which there occurs one element from each row and one
element from each column, the cycle expansion involves only irreducible orbits. These
are defined by Bogomolny to be primitive perodic orbits which do not pass more than
once through any cell of the PSS. Thus. (50) is the cycle expansion in irreducible orbits
corresponding to the partition of the PSS into 2-symbol cells.

The lowest energy eigenvalues of the quantum system can be found from (50) using Xr,
Xv, Xrv, Xrvv. Xrrv and Xyryy calculated as a function of energy from the properties
of the commesponding primitive periodic orbits. However. as was mentioned at the beginning
of this section, the primitive periodic orbits (T) and (TTV) are pruned in the case of the
49° wedge. We therefore make the approximations,

X e XTTTVV Xrry & XrrvvXrv
TR ——— T —_—.

51
Xrrvy Xrvy Gb

‘With these replacements in (50) we can now evaluate idet[1—T(E)]j or. better. the functional
determinant D(E), as a function of the scaled energy E. The result is shown in figure 19(a).
The vertical dashed lines in figure 19 lie at the exact scaled energies %!, We see that
the first two zeros of D(E) are close to the first two energy eigenvalues, but the curve
fails to give the third and fourth energy eigenvalues. and also the ninth and tenth energy
eigenvalues. These results are not unreasonable for a 4 x 4 T-matrix. (If the number of
Planck cells is 4, equation (19) gives E =~ 2.3.)

A similar calculation can be carried out for the 8 x 8 T-matrix corresponding to 3-
symbol cells. In this case there are 9 independent products of T elements to be estimated
from the primitive periodic orbits. The resuiting curve for D(E) against E is shown in
figure 19(b). Now the first eight zeros lie close to the exact scaled energy eigenvalues, but
the curve misses the ninth and tenth eigenvalues. (When the number of Planck cells is 8,
equation (19) gives £ ~ 9.3.) _ )

Figure 19(c) shows the curve for D(E) against E for the 16 x 16 T -matrix corresponding
to 4-symbol cells. In this case we used the properties of 19 primitive periodic orbits of the
49° wedge to estimate the unknown quantities in the expansion of the determinant. On the
whole, the curve is not an improvement over that for 3-symbol cells, since it now misses
the eighth and ninth eigenvalues. (When Np(E) = 16, equation (19) gives £ ~ 37.)
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Figure 19. Plot of D(E) as a function of the scaled energy £ for the wedge billiard with
¢ =49°, (a), (b) and (c) comrespond to 2.. 3- and 4-symbol cells respectively, with the X y'Ss
for pruned primitive periodic orbits replaced by approxiniate expressions like (51). (d). (e)
and {f) correspond to 2-, 3- and 4-symbol cells respectively, with the X, 's for pruned primitive
periodic orbits set equal to zero.

Instead of making replacements such as those in (51) for the case of 2-symbol cells, one
can try replacing all the X's corresponding to pruned orbits by zeros in expansions such as
(50). This may be just as reasonable a guess for the pruned orbitc as approximations such
as (51). The results obtained for D(E) as a function of & for 2-. 3- and 4-symbol cells
are shown in figure 19(d), (e) and (f). We see that there is perhaps a siight improvement in
comparison with the results of figure 19(a), (b) and {(c), but we do not think the outcome is
significantly better. _

It is instructive to compare the results for D(E) based on the symbolic dynamics with
plots of D(E) caiculated using T-matrices of comparable size in the coordinate space
representation. Figure 20 shows such a comparison. To the right of the curves in figure
20(a), (b} and (c), which are the same as figure 19(a), {b) and (c), we show plots of D(E)
calculated by the scaling method of section 2, using T-matrices of dimensions 4, 8 and 16
respectively. The curves in figure 20(d) and (e) are clearly not as good as the curves in
figure 20(a) and (b) from the symbolic dynamics, but figure 20(f) is definitely superior to
figure 20(c).

To sum up, we note first of all that a quantization scheme based on the symbolic
dynamics requires a knowledge of the shortest primitive periodic orbits and their properties,
unlike the representation of the transfer operator in coordinate space. This is generally
a disadvantage. However, if one has available the shortest primitive periodic orbits, and
if the symbolic dynamics is complete (meaning no pruning occurs), the present method
for n-symbol cells may be implemented by computing the cycle expansion in irreducible
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Figure 20. Plot of Dt} as a function of the scaled energy £ for the wedge billiard with
@ = 49%. (a). () and () are the same plots as (a), (&) and (c) in the preceding hAgure. (d). (&)
and (/) were calculated from T-matrices in the coordinate space representation having dimensions
of 4, 8 and 16 respectively.

periodic orbits having code length up to 2". On the other hand. if some of the periodic
orbits are pruned and the pruning rules are unknown, there is no systematic way of solving
for various products of T-matrix elements in terms of the primitive periodic orbits, making
it difficult to implement the present method for n-symbol cells with n 3> 4. Moreover, there
is no guarantee that a pruned system will provide enough independent relations to solve
for the required products of the T-elements. We conclude that, although this approach is
interesting as an alternative formulation of Bogomolny's transfer operator, it is not a good
way of estimating semiclassical energy eigenvalues.

4. Discussion and conclusions

The studies reported in this paper show that, overall, finite approximations to Bogomolny's
transfer operator in coordinate space are capable of giving excellent results for the
semiclassical energy eigenvalues of a variety of systems. While our calculations have
been limited to the wedge billiard and the circle billiard. the results appear to be about
equally satisfactory for systems showing hard chaos (the 49° and 60° wedges), for systems
showing soft chaos or mixed behaviour (the 41° and 30° wedges), and for integrable systems
(the circle billiard and the 45° wedge billiard), This is the main conclusion of our work.

There are several advantages to the transfer operator approach to semiclassical
quantization compared with quantization schemes based on knowing the periodic orbits
of the system,

I. Most important is the fact that it is not necessary to know about the periodic orbits
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of the system and, therefore, not necessary to have a systematic way of finding them—a
difficult task in a generic system, particularly if a symbolic representation of the pericdic
orbits is not known. Not needing the periodic orbits also implies that there is no problem
regarding the infinite families of primitive periodic orbits with nearly the same action, which
arise in the anisotropic Kepler problem [36] and in the wedge billiard (24, 25]. In periodic
orbit theory, these infinite families cannot be treated in a straightforward manner because
the stationary phase approximation, used to derive the Gutzwiller trace formula, fails as
one approaches the accumulation point of a given family. Bogomolny's theory avoids this
problem because it does not employ the stationary phase approximation to pull out the
periodic orbits of the system.

2. A second major advantage is that, in calculating a finite approximation to the transfer
operator up to some energy Enmg. it is not necessary to know about the classical motion
on a scale very much smatler than a cell of area 2/ on any suitably chosen PSS in phase
space. This is equivalent to saying that one does not need to know the classical motion
crossing the PSS in coordinate space on a scale very much smailer than half a de Broglie
wavelength, Our calculations for the wedge billiard at five different wedge angles bear
this out. Although a division of the PSS in phase space into Np(E) Planck cells (see
equation (4)) does not yield very good results for the energy eigenvalues in the vicinity of
E, increasing the number of cells by a factor of about 10 greatly improves the accuracy of
the results at this energy. Thus, aithough the Planck cells are too coarse, it is unnecessary
to know the details of the classical motion on scales smaller than about one tenth of a
Planck cell in order to obtain very good semiclassical estimates of the energy eigenvalues
by means of the transfer operator in coordinate space. It is in this sense that one can say
that the Heisenberg uncertainty principle is built into the theory in a natural way.

3. There appear to be no formal convergence problems in Bogomolny’s method of
calculating semiclassical energy eigenvalues. This is in contrast to calculations employing
the Guizwiller trace formula or the dynamical zeta function which, in general, are not
absolutzly convergent because of the exponential proliferation of periodic orbits with
increasing action or word length [37, 38, 25].

4. Even if the Guizwiller periodic orbit sum (or zeta product) were absolutety
convergent, the number of primitive periodic orbits required to determine N,, accurate
energy eigenvalues increases exponentially with N,,, whereas in Bogomolny's approach.
the required dimension of the T-matrix increases in proportion to N/? (see (19), with
EV? x Nig(E) from (17) and (18)), which in turn implies that the number of matrix
elements that have to be calculated increases linearly with N,. This difference in the
computational requirements is sufficient to turn an intractable calculation into one that can
be readily performed.

What disadvantages might one encounter in implementing Bogomolny’s method of
calculating semiclassical energy eigenvalues? Since the formalism does not specify how to
choose the PSS, it is conceivable that one might have some difficulty in making a suitable
choice, although this was not a problem in the present work. Probably the best choice
is the one for which it is easiest to calculate the classical trajectories from one point on
the PSS to another, including the actions and phase indices. Another guideline may be
not to choose the PSS to be larger than necessary. (For the wedge billiard, we found that
calculations performed with the PSS chosen to be the vertical wall plus the tilted wall were
not as satisfactory as the ones with the PSS taken to be the tilted wall alone.)

Finally, we would like to mention that there is an interesting connection between the
quantitative aspect of point 2 above and the conclusion reached by Tomsovic and Heller
[39. 40] from their studies of the stadium billiard in the time domain. To obtain close
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agreement between certain correlation functions derived from the semiclassical and the exact
quantum time-dependent Green functions, they found it necessary to include contributions
from classical trajectories propagating over comparatively long times—Ilong enough, in fact,
to produce heteroclinic orbits winding back and forth many times through a given Planck
cell in the phase space. This is similar to our finding that accurate semiclassical energy
eigenvalues require a knowledge of the classical dynamics in phase space on a scale of
about one tenth of a Planck cell. It would be very interesting to know if the converse is
true, that is, whether it is possible to deduce the details of the classical dynamics on this
scale from the exact quantum energy eigenvalues and eigenfunctions. The answer to this
question would tell us a great deal about the precise nature of ‘quantum smoothing of the
classical motion’,
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Chapter 4

Eigenvalues of the T-Operator

In previous chapters, we have used the straightforward definition of Bogo-
molny’s semiclassical quantization condition, looking for energies at which the de-
terminant [det[l ~ T(E)]| becomes zero. However, Bogomolny's semiclassical quan-
tization condition is also the characteristic equation for the T-operator and can be
interpreted as the energy for which an eigenvalue of the T-operator is 1. In this way,
the eigenvalues of the T-operator are responsible for generating the energy eigen-
states of the system. To emphasize the distinction between the eigenvalues of the
T-operator and the energy eigenvalues of the Hamiltonian. it is helpful to note that
the T-operator and its eigenvalues can be calculated for any energy L. The energy
eigenvaiues of the Hamiltonian correspond to the particular energies E = E, for
which one of the eigenvalues of the T-operator is unity. The focus of this chapter is
on the properties of T-operator eigenvalues of the circle and wedge billiards. Some
of the work on the circle billiard presented here overlaps with Boasman's thesis [6].

The T-operator eigenvalues of the wedge billiard have not been studied before.
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The studies described in this chapter were undert.ak.en to explore the con-
Jecture that the T-operator eigenvalues might show qualitatively different behaviour
for the regular and chaotic systems. While studying the Nelson potential (a smooth
potential), Haggerty [21] [22] noticed that the T-operator eigenvalues behave differ-
ently as a function of energy depending on whether the system is ‘nearly’ integrable
or ‘mostly’ chaotic. However, Boasman [6], who discusses in detail the properties of
T-operator eigenvalues for the circle billiard (an integrable system) and qualitatively
investigates the T-operator eigenvalues of the Africa (a mixed system) and stadium
{a chaotic system) billiards, does not find a difference in behaviour of the T-operator
eigenvalues depending on the type of dynamical system. Could these differing results
concerning the behaviour of T-operator eigenvalues come from the fact that Boas-
man was studying force-free billiards where the shape of the boundary determines
the dynamics of the system and that Haggerty's system involves a smooth potential?
Since the wedge billiard involves a combination of a smooth potential and billiard
boundaries, how do the T-operator eigenvalues behave in this case? Are there any
properties of the T-operator eigenvalues which are characteristic of particular types of
dynamical systems? The primary motivation for this chapter is to attempt to answer
these questions.

In addition to the work of Haggerty [21] [22] and Boasman [6] [7], there are
two other papers which discuss, to some extent, the eigenvalues of the T-operator.

Lauritzen [28] presents a general form for the T-operator of integrable systems and
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shows that in the semiclassical limit, Bogomolny’s semiclassical quantization condi-
tion is equivalent to EBK quantization. Also. from this general form. one can easily
deL:i\'e an analytic expression for the T-operator eigenvalues as a function of energy
in the limit # — 0. Bogomolny and Caroli [9] discuss the distribution of T-operator
eigenvalues for completely chaotic Hamiltonian systems defined by surfaces or bil-
liards with constant negative curvature, in the context of demonstrating the unitarity
of the T-operator.

This chapter is organized in the following way. A very brief description of the
general behaviour of the T-operator eigenvalues as a function of energy is presented
in Sec. 4.1, From this, I show how to use the T-operator eigenvalues to find energy
eigenstates of the system. Then, I apply this technique to the circle and wedge
billiards and compare these results with the ones found in Chap. 3. In Sec. 4.2, 1
focus on the T-operator eigenvalues of integrable systems and based on Lauritzen's
work, I describe their special connection with quantum numbers of the Hamiltonian
systen.. The particular examples used to illustrate this are the circle and 45° wedge
billiards. Finally, in Sec. 4.3, I discuss the properties of T-operator eigenvalues in
more detail and investigate the possibility that they can reveal information about the
dynamical nature of the system. These results are related to those of a very recent

study by Rouvinez [37] on the properties of the eigenvalues of the scattering matrix

S(E).
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4.1 Energy Eigenstates from T-Operator Eigen-
values

As mentioned at the beginning of this chapter, one of the two ways to inter-
pret Bogomolny's semiclassical quantization condition is to find the energies £ = E,,
for which one of the eigenvalues of the T-operator becomes unity. These energies
E = E, are the energy eigenstates of the Hamiltonian system. According to Hag-
gerty [21] [22], this method of finding energy eigenstates produces better results than
the method of finding the minima of |det[l — T(E)]|. With the method involving
the determinant, it becomes increasingly difficult at higher energies to resolve the
minima which indicate energy eigenstates of the system. Since the T-operator is only
unitary in the semiclassical limit and, the T-matrix is a finite approximation to the
T-operator, the T-matrix eigenvalue which satisfies the quantization condition is only
approximately equal to one. Consequently, taking the determinant, involving a prod-
uct of all the eigenvalues of the T-matrix. has the effect of obscuring the minima [21]
[22]. However. the problem of resolving energy eigenstates is no longer an issue when
they are obtained directly from the eigenvalues of the T-matrix and all of the energy
eigenstates up to N,(E) can be located. The only drawback of this method is that a
program is required to follow the T-operator eigenvalues as a function of energy and

this can considerably slow down the execution speed.
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4.1.1 General Behaviour of T-operator Eigenvalues

The T-operator eigenvalues vary continuously as a function of energy. In
the complex plane, they trace out curves (subsequently referred to as T-operator
eigenvalue curves) that rotate about the origin in the counterclockwise direction as
the energy is increased (Fig. 4.1). Initially, at low energies, all of the T-operator
eigenvalues hover close to the origin with magnitudes typically less than 0.1. Their
magnitudes gradually increase with increasing energy and, one by one, they spiral
out towards the unit circle. Once they reach the vicinity of the unit circle, they
continue to rotate but remain in that region for all higher energies. The circle billiard
eigenvalue curves shown in Fig. 4.1(b) are from the first ten T-operator eigenvalues
that move out to the unit circle. Although it is not evident on this fizure, each T-
operator eigenvalue spiralled out to the unit circle at a different energy. An interesting
characteristic of the T-operator eigenvalues of the circle billiard is that they all spiral
out with approximately the same rate and begin at the same phase angle.

For a given energy, the T-operator has a subset of eigenvalues which have
reached the proximity of the unit circle and a second subset of eigenvalues near the
origin or in the process of arriving at the unit circle. The T-operator eigenvalues near
the unit circle are the ones which contribute to the energy spectrum. They satisfy
Bogomolny's semiclassical quantization condition as the eigenvalue curves cross the

positive real axis. Since the T-operator is unitary only in the limit A — 0, it is not
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Re(A2(E))

Figure 4.1: The generic behaviour of T-operator eigenvalues AB(E) as a function of
scaled energy E portrayed in the complex plane. The T-operator eigenvalues were
obtained from the 150x150 T-matrix for the circle billiard. (a) The eigenvalue curve
for the 6th T-matrix eigenvalue. (b) The eigenvalue curves for the first ten T-matrix
eigenvalues. There are two T-operator eigenvalue curves. one at ~ 135° and the other
at = 270°, which do not start at the origin. This occurs since when E = 0, F=~1.2,
and the two first eigenvalue curves have already spiralled out from the origin.
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surprising that the T-operator eigenvalues do not lie exactly on the unit circle. Also.
there are errors induced by finite approximations to the T-operator, but these can be
reduced by increasing the dimension of the T-matrix (or, equivalently, the number of
cellson the I’SS). Hence, as the T-operator eigenvalues spiral outward from the origin,
one must decide at which point (with which magnitude) they start contributing to
the energy spectrum. Unfortunately, this critical magnitude depends on the system
and on the amount of errors induced by finite approximations. A ‘bad’ choice for the
critical magnitude can obviously lead to additional or missing energy eigenstates.
Fortunately, for most systems studied to date, a ‘good’ choice for the critical
magnitude has not been difficult to estimate from a brief survey of the behaviour of
the T-operator eigenvalue curves. For example, a critical magnitude of 0.7 poses no
problem for T-matrices of the circle billiard. In she worst case, such as the Nelson
potential in a ‘nearly regular’ régime, the eigenvalue curves spiral out very gradually
making it very difficult to choose the critical magnitude [21] [22]. For this potential,
there is an overlapping region of magnitudes roughly between 0.475 and 0.55 where
T-operator eigenvalues that cross the positive real axis may or may not contribute
to the energy spectrum. Thus, unfortunately, in these cases, the magnitude alone is
not sufficient to distinguish between cases that should or should not contribute to
the energy spectrum. Haggerty found that he could classify these troublesome cases
by comparing the semiclassical staircase with the Thomas-Fermi smoothed staircase

function [21] [22]. Otherwise, for all other T-operator eigenvalues, a critical value of
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0.5 worked well.

A plot of the imaginary part of the T-operator eigenvalues as a function
energy (Fig. 4.2) is another informative way to look at the behaviour of the eigenvalue
curves. From Fig. 4.2, one can see the energy at which each T-operator eigenvalue
begins to move out to the unit circle. The crossing with the positive real axis in Fig.
4.1 corresponds to a crossing of the energy axis from a negative to a positive imaginary
part in Fig. 4.2. These crossings generate the approximate energy eigenstates of the
system and may be compared to the exact energy eigenstates (marked by circles
on the energy axis of Fig. 4.2). In general, the number of T-operator eigenvalues
that have reached the unit circle at a particular energy is given by N{E) (for the
circle billiard, an expression for Ny(E) was derived in Sec. 2.2 of Chap. 3). All
remaining T-operator eigenvalues. the number depending on the dimension of the T-
matrix, have magnitudes less than unity (most of them being close to zero). Hence,
strictly speaking, only a subset of the T-matrix is approximately unitary (the term
‘approximately’ is used since the magnitudes of the T-operator eigenvalues are not
exactly unity except in the limit A — 0). When the dimension of the T-matrix equals
N(E), all of the T-operator eigenvalues are near the unit circle and the entire T-

matrix is approximately unitary. A detailed discussion of this is given by Boasman

[6)-
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Figure 4.2: Eigenvalue curves Im(A8(£)) for the circle billiard plotted as a function
of scaled energy E. The T-matrix used was 150 x 150. The circles on the energy
axis mark the locations of exact energy eigenstates. The numbers above the energy
eigenvalues are the values of the quantum number v (see Appendix A). Notice that a
particular eigenvalue curve locates energy eigenvalues witl: the same quantum number
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4.1.2 New Results for the Circle and Wedge Billiards

Briefly, the numerical procedure for finding energy eizenstates involves fol-
lowing the T-operator eigenvalues as a function of energy. In general, this is achieved
by numerically diagonalizing the T-matrix at discrete energy values incremented by
small energy steps. When a T-operator eigenvalue has a magnitude above the criti-
cal value, it contributes to the energy spectrum whenever it crosses the positive real
axis. Since energy is incremented by small finite amounts, one will obtain energies for
which a T-operator eigenvalue is just below or above the positive real axis. A simple
linear extrapolation can be used to estimate the energy of the crossing. A critical
magnitude of 0.7 and energy increments of AE = 0.01 were used in this study.

For the circle billiard, it is not necessary to numerically diagonalize the T-
matrix since it has a special form allowing one to write an analytic expression for
its eigenvalues. This special form can be demonstrated by considering the T-matrix

elements (combining Egs. (2).(9) and (10) of Chap. 3),

Ty = (4.1)

ihN? N h SR

i

TREmE): . (b~ x\\® [2REmE)} _ (|k-l=\ .
sin - exp - — 17
where I is the radius of the circle and A is the number of cells along the Poincaré
surface of section (circle boundary) or the matrix dimension. It is easy to see that

. .. .. o =k o e e . . IN-
this T-matrix is symmetric since sin JTE = sin L\'E In addition, since sin ]—-,-\—'E =

sin Jﬂi%’-'l Tny =T;;,; and the T-matrix has the general form
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[t &1 ta -+ to 1
ty fo t; --- 13 it

o t to -+ 13 13
T(E)=| . . . ..
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This matrix is a special case of cyclic matrices (circulants) for which the eigenvalues

are given analytically by

Nl Iwkli
e = 3 e (4.2)
=0

where, in this case,

tal—

i = xXp sin | — {4.3)
h

thiN2 N R

TR(2mE)3 o (m)
N

i2R(2mE)} (zw) .
—_—— -

This expression is equivalent to E¢.(5.66) given in Boasman’s thesis [6], derived in
a slightly different manner. Hence, the eigenvalues of the T-operator for the circle
billiard can be calculated with Eq.(4.2) rather than by numerically diagonalizing the
T-matrix, greatly decreasing the execution time. Unfortunately, there isn’t a similar
analytic expression for the T-operator eigenvalues for the wedge billiard and one must
use a nunierical diagonalization routine.

The scaled semiclassical energy eigenstates £, for the cirele billiard and for
five different wedge billiards, and in eacl. “ase for two matrix dimensions. were recal-
culated using the technique of the T-operator eigenvalue curves. New results for the
mean deviation {(£, — £¢=%¢)) and the root-mean-square deviation (£, — E¢=4t)2)}

of E, from the exact energy eigenstates of the Schridinger equation E¢** are given
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in Table 4.1. This table is very similar to Table 2 of Chap. 3 and it compares the
results obtained from the T-operator eigenvah;e curves {new) with those calculated
from the zeros of the functional determinant D(E) (old). The results for the circle
billiard which were not given in Chap. 3 have been added to Table 4.1. The exact
energy eigenvalues for the circle billiard are zeros of the Bessel function (Appendix
A) and were calculated using Numerical Recipes routines [32]. Similarly, for the 45°
wedge billiard, the exact energy eigenvalues were calculated using the quantum solu-
tion (Appendix A) and Numerical Recipes routines for the Airy functions. For the
wedge angles other than 45°, the exact energy eigenvalues were calculated by Szeredi
[39] using the brute-force method of numerically diagonalizing a large Hamiltonian
matrix (typical dimensions: 4900x4900). The enerzy eigenstates were then scaled
using the Thomas Fermi staircase function: E, = Nrp(E,). For the wedge billiards,
Nrp(E,) is given by Eq. (17) of Chap. 3 while for the circle billiard. it is given by

[29]

mR2E

mENY 1
—2}-1—) +E. {4+.4)

As discussed in Chap. 3, the functional determinant D(E) calculated from
25 % 25 T-matrices often failed to produce 30 energy eigenvalues {the number of eigen-
values we decided to use for the statistical calculations of Table 4.1). For example,
in the case of the 49° wedge, the functional determinant fails to cross the energy axis

at £ ~~ 28 (see Fig. 6(a) of Chap. 3 and Fig. 4.3). Since the scaled semiclassical
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billiard  T-matrix {(E, — E&e)y ((E, ~ Egeoet 27 pumber of

system  dimension new old new old eigenstates
circle 25 0.015 - 0.270 - 30
circle 150 0.015 - 0.015 - 30
60° wedge 25 0.030 0.025 0.084 0.125 30
60° wedge 150 0.025 0.028 0.078 0.081 30
49° wedge 25 0.040 0.042 0.106 0.145 24
49° wedge 150 0.023 0.025 0.077  0.076 30
45° wedge 25 0.039 0.028 0.076 0.087 26
45° wedge 150 0.030  0.031 0.051 0.053 30
41° wedge 25 0.046  0.054 0.077  0.130 30
41° wedge 150 0.028  0.027 0.048 0.051 30
30° wedge 25 0.043 0.053 0.083 0.089 20
30° wedge 150 0.026 0.026  0.050 0.052 30

63

Table 4.1: New results for the energy eigenvalues of the circle and wedge billiards.
Comparison between the scaled energy eigenvalues E,, . calculated from the T-operator
eigenvalue curves (new) and from the zeros of the functional determinant D(E) (old),
and the exact scaled energy eigenvalues E'-,‘,'*“""‘ of the Schrédinger equation. Although
30 energy eigenvalues were obtained with the new method, the averages were cal-
culated for the number of energy eigenvalues that could be obtained with the old
method. The values for the wedge billiard are slightly different than the ones quoted

in Table 2 of Chap. 3 since these were rescaled according to Eq. (17) of Chap. 3.
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energy eigenvalues are determined from the zeros of D(E). no estimates of the 25th
and 26th could be obtained. Figure 4.3 demonstrates how this problem is eliminated
by using the T-operator eigenvalue curves to locate the energy eigenvalues. We had
no difficulty locating the first 30 ener;,;y eigenvalues for all T-matrices of Table 4.1 but
for the sake of comparison with the results listed in Table 2 of Chap. 3. we kept the
same number of energy eigenvalues. Hence, in terms of resolving energy eigenvalues,
the method based on the T-operator eigenvalue curves is more successful.

The comparison made in Table 4.1 shows that the values for (£, — Et=uet))
are not significantly different for the two methods but that the results for ((E,. -
E,‘;““]z)% are consistantly better when the energy eigenvalues are found from the T-
operator eigenvalue curves. The improvement in ((_-‘-:T,, —-.E_f,’;"“"‘)?)% is more pronounced
for the 25x25 T-matrices. Hence, in terms of minimizing the effect of errors caused
by finite approximations, the method hased on the T-operator eigenvalue curves is,
once again, better, In fact, overall, the method based on the T-operator eigenvalue
curves produces better results but, one must be wiiling to accept a longer execution
time.

When I calculated the differences between the scaled semiclassical energy
eizenvalues E,, and the exact energy eigenvalues E,‘,"“"‘, I noticed an overall increase
in the absolute errors as a function of energy. Hence, it appears that Bogomolny’s T-
operator method works better at lower energies than at higher energies. At this point,

it is worthwhile to make the following clarification. The T-operator is a semiclassical
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Figure 4.3: Comparison of: (a) the functional determinant D(£) and (b) T-operator
eigenvalue curves Im(AZ(E)) for the 25 x 25 T-matrix of the 49° wedge billiard.
D(E) fails to give estimates for the 25th and 26th energy eigenvalues (located near
E = 25.5) while the T-eigenvalue curves have no difficulties in locating them.
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propagator in the sense that, in relation to the exact quantum mechanical propagator.
it is correct to leading order of . On this basis alone, the T-operator is expected to
give better approximations to the exact energy eizenvalues in the limit A — 0 (or,
at high energies). However, as energy is increased, larger T-matrices are required
to give a more accurate representation of the physical situation (this is essentially
because ;\;(E- ) increases with energy). In our calculations, we are keeping the T-
matrix dimension &V constant for all energy values (for ' he reasons described in Sec.
2.3.1 of Chap. 3). Consequently. as energy is increased, the “resolution” of the T-
matrix is effectively decreasing since it no longer contains enough detailed information
to be accurate. Perhaps one way to overcome this problem would be to keep the ratio
N /_.\"},(E ) constant for all energies. However, there is no guarantee‘that. the desirable
ratio N/NP(E ) for low energies is the same for high energies (we have not investigated

this in detail).

4.2 T-Operator Eigenvalue Curves of Integrable
Systems

While studying the Nelson potential in the ‘nearly’ regular régime, Haggerty
noticed that the eigenstates produced by a single eigenvalue curve have the same
‘almost good’ quantum number [21] [22]. Similarly. by labelling the eigenstates of

the circle billiard according to their quantum number (Appendix A), we found that
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individual eigenvalue curves produced eigenstates with the same quantum number »
(see Fig. 4.2). This suggested that the relation between T-operator eigenvalue curves
(or T-operator eigenvalues) and quantum numbers might be a general result for all
integrable systems.

In Sec. 4.2.1, I will provide a theoretical explanation for the connection
between eigenvalue curves and quantum numbers based on the work of Lauritzen {28]
on semiclassical quantum maps of integrable systems. In Sec. 4.2.2, T will show how
this theory applies to the circle billiard. The eigenvalue curves for the 45° wedge
billiard are studied in Sec. 4.2.3. In this case, there is a discrepancy between the
theoretical prediction for the behaviour of the eigenvalue curves and their actual trend

obtained from Bogomolny's T-operator.

4.2.1 The semiclassical T-operator for Integrable Systems

It has been demonstrated by Lauritzen [28] that for a separable system with
two freedoms, Bogomolny's semiclassical quantization condition becomes equivalent
to EBK quantization in the limit & — 0. Hence, at relatively high energies, the
semiclassical energy eigenstates obtained with Bogomolny’s T-operator will have the
same values as EBK energy eigenstates. This has been shown explicitly for the
rectangular billiard by Lauritzen [28], and for the circle billiard by Boasman [6]. A
consequence of the connection with EBLK, is that one can write an analytic expression

approximating the T-operator eigenvalue curves. This EBIK form explicitly shows



CHAPTER 4. EIGENVALUES OF THE T-OPERATOR 68

the semiclassical unitarity of the T-operator [28] and provides an explanation for the
relationship between eigenvalue curves and quantum numbers of integrable systems.

Consider the simplest case, a separable Hamiltonian system with two degrees
of freedom described by the position coordinates (x,y). Choose a PSS along one of

the coordinate axes, say the y-direction. In the limit A — 0, the T-operator takes the

form (28]
TEBK(y o E) ’:Z:;o,,n )e\p( =1, (E I, —2"rh(n j: ))—%E) (4.5)

where I. and I, are action variables, and ny is the quantum number which, in the
semiclassical limit, quantizes the action {y. The variables v, and v, are phase in-
dices which have been added to Lauritzen's expression [28] in agreement with EBK
quantization. The sum in Eq. (4.5) is finite and n,,,, defines the maximum value of
n,. The basis function defined on the PSS, o,,(¥). is a particular linear combination
(determined by the boundary conditions) of the EBIX eizenfunctions [44].

825,(y. ny) 12

on, by

BB 1
EBK _

exp (:E%Sy(y.ny)) . (1.6)

where Sy(y.n,) is the one dimensional action

Y ’ I/y ' -
Sy(y, ny) =/ Py (y,Iyz:z:Th ('ny-i-—_L—))dy. {4.7)
Yo

It can easily be shown that the T-matrix corresponding to TEZK (y, y'; E)
is diagonal in the orthogonal basis {¢..(y)} by substituting Eq.(4.5) into the usual

definition for matrix elements:
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TEEK(E) = /[é;l(y)TEB"'(y,y’;E)e"’nu(y’)dydy’

) T

= exn{l ] = AR , ,
= exp (ﬁI_,,- (E.Iy Zﬂ'h(?ly'i- 4)) 2 )6":,:4”61".””- (‘LS)

‘The diagonal elements of the T-matrix in Eq. (4.8) are the semiclassical T-operator

eigenvalues
,\ffK(E) = exp (é[I (E,Iy =27h (ny + VTy)) - w‘;ﬂ) . (4.9)

Equation {4.9) clearly shows that each T-operator eigenvalue is associated with a
particular quantum number n,.

Due to the unitarity of the T-operator in the semiclassical limit, the T-
operator eigenvalues defined by Eq. (4.9) must have unit modulus which implies that
the action [, (E,Iy =27h (ny + ‘-})) must be real. In the examples to be described
later in this section, it will be seen that this sets a restriction on the values of n, and
that for a particular energy E, ny may have integer values from 0 up to a maximum
Nez. The maximum n,,,, implies that the sum in Eq. (4.0) is finite and the cor-
responding unitary semiclassical T-matrix has the dimension n,,,,. Also, the value
of N4, increases as a function of energy, which means that an increasing number of

T-operator eigenvalues are required to give the energy spectrum up to some energy

E. The relationship between n,,,, and Ny (F) will be shown.
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The T-operator can be regarded as a semiclassical operator TE8%X (E) which
acts on the eigenstates ¢, (y) defined on the PSS and has corresponding eigenval-
ues defined by Eq. (4.9). To construct the semiclassical T-matrix for a separable

Hamiltonian system, one must comi)ut.e the matrix elements
T.5"(E) = (alT22%(E)|3) (+.10)

where {|a}} is the orthonormal basis consisting of the normalized EBI eigenstates
of the separable Hamiltonian system defined on the PSS. In other words. if the PSS
is chosen to be = C, where C is a constant, the coordinate space representation of
la) is given by (v = C,yla) = (x = Ciylnzny) = o, (x = C)o,,(y). Since the T-
operator is diagonal with respect to @,,(y), the T-matrix for the Hamiltonian system
will be diagonal with respect to |a) and have corresponding eiszenvalues NEBR(EY =

TEBK Bogomolny's semiclassical quantization condition is satisfied when
Im(ASB¥(E)=0  and  Re(AEBK(E)) =1, (4.11)

By imposing the conditions of Eq.(+.11) on the eigenvalues of the semiclassical T-
operator, one obtains the EBK energy eigenstates. Also. AEBX(E) provides an ap-

proximation for the behaviour of the eigenvalue curves.

4.2.2 T-operator Eigenvalue Curves for the Circle Billiard

Boasman [6] gives an integral form for the T-operator eigenvalue curves of
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the circle billiard and. by evaluating this integral with the method of stationary
phase, he derives a semiclassical expression. He also outlines the EBI solution to the
circle billiard (following Berry and Ozorio de Almeida, [4]) and shows that the EBK
energy eigenstates are equivalent to those obtained from the semiclassical T-operator
eigenvalue curves. In this section, the same form for the semiclassical T-operator
eigenvalue curves is derived, in the context of Lauritzen’s general form. Also, the
connection between the eigenvalue curves and quantuta numbers is emphasized,

In Sec. 2.2 of Chap. 3. we derived an expression for the T-operator of the
circle billiard. In this case, we chose the boundary at r = I as the PSS and the
coordinate g as the distance around the circumference from a chosen reference point.

Combining Eqs. (1), (9) and (10) of Chap. 3, the T-operator takes the form:

T(q,q": E) = 7'==\/‘2"‘2i)'“ sin (J";}f") exp [;7 (21’?(2mE]§ sin (i‘%?ﬂ) - ﬂ'h)] . {4.12)

2mili

With the coordinate transformation ¢ = R0, Eq. (4.12) can be written in terms of the
angular coordinate 8, indicating the angular position of ¢ on the circular boundary.

In this case, Eq. (4.12) becomes

T(0,6',E)= \/2;“‘ \/Rm"ff)m sin (@l) exp[rl; (212(21rn.E)—+ sin (L‘%'i) - Wh)] . (4.13)

Our goal is to show that, in the limit h — 0, the T-operator of Eq. (4.13)
reduces to Lauritzen's form given by Eq. (4.5). We begin by finding the basis functions

P, (0) defined on the PSS. For the circle billiard, the angular momentum is constant
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(Appendix C) and, when quantized, is given by py = nyh. Consequently, the action

for the angular coordinate is given. by
¢
Se(8,n4) = / ngh df’ = nght (4.14)

Substituting Eq. (4.14) into Eq. (4.6), the EBK eigenfunctions for the circle billiard

become

éEBI\'(g) =

T g

exp(Zxingt) (4.15)

27

These eigenfunctions are equivalent to the exact quantum solutions {Appendix A).
Since the only restriction on the basis eigenfunction o, () is that it be single val-
ued (ie. the quantum number ng must be an integer), &u,(0) consists of the linear

combinations of @Z2X(6), which are sine or cosine functions. given by

1
27
Ou,(0) = 71;-(:05(1290)‘ ng 0

71; sin{ngf). ng £ 0

Ny = 0

1

To determine whether the T-matrix is diagonal in the basis &n,,(0). we can

compute the T-matrix elements, using Eq. (4.8), defined by

EBK -y _ 1 /2" [2" . v g , ey
I-“&‘";; (E) - \/‘m o Jo Cna(())T(0~0 H E)ONG(G )dedo . (4'16)

In the limit A — 0, the integrals in Eq. (4.16) can be evaluated using the stationary
phase approximation. Consider the basis eigenfunction G.y(B) = cos{ngf)//7 (the

same derivation and result applies to the other basis functions). Then, Eq. (4.16)
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becomes

2x 2 . T . fed Gt
Tk(E) = oo [ [ [ T(0.0: ) 4 e-imnr (o, 01 Epeis

+e"T(0, 0 E)e™s” + e™°T(0,6' E)e"] dg df’. (4.17)

Now, consider the integral with respect to §. For the first term of Eq. (4.17), the
main contribution to this integral comes from the points @ near the stationary point

Gy for which

Jd|. [6-¢
2n 2771.5-8—6 [sm (—2-—)]

The stationary point obtained from Eq. (4.18) is given by

— ngph = 0. (4.18)

=iy

i)
8y = 0' + 2 cos™ (—""—) 4.19
0 2 cos Ve2mER ( )

Carrying out the saddlepoint integration, the first term of Eq. (4.17) becomes

2r  p2w
L[ e .67 E)e do a0’ = Vamime
X exp [ (2R\/2m - goders g.'R — 2nghcos™! (—l""——) - Wh)]

2mER

X f #e[:’(ng—n;)b"] 4o’ (420}
0

The remaining integral, with respect to ', is simply the kronecker delta function

6,‘0',,3. Hence, the first term of Eq. (4.17) becomes
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2%  p2x X . 4o
fo / e~ ™T (9.8, E)e™ " df d6' = 2m\/2mih
0

exp [ (2R\/2mE 2';;',?_ 2ngh cos™? (ﬁ%ﬁ) - %)] By, {4.21)

The fourth term in Eq. (4.17) produces the same result as the first whereas, the
second and third terms become zero since they involve the kronecker delta function

&g, -t Finally, we are left with

ﬂ ¢ -l
zjﬁ’ff‘(f)_e\p[ (sz\/z,,. — —2nghcos™! ( Auho) ~ 3;’*) ja e (4.22)

Clearly, according to Eq. (4.22), the T-matrix is diagonal in the basis o, (0).

In addition, the exponent involves the sum of the radial classical action (Eq. (C.4)),
_ngh e : - el
L (E. Iy = 2whny) = 2RV2mE1 - Srizme — 2ngh cos 1 (7_3;:1—’!3—3) (4.23)

and a phase factor of —371/2 (Appendix C). Hence. in the limit h — 0. the T-operator

for the circle billiard can be expressed in Lauritzen's EBIs form:

HNmar

TEEN(0.0') = Y o, (0)e;, (0 )exp (II (E. Iy = 2mhny) — %"f) (4.24)

ﬂg—o
The elements of the semiclassical T-matrix for the circle billiard are obtained
from E¢.(4.10) where in this case. the EBK eigenfunctions are represented by {r =

R,0|n..ng) = 6FP%(r = R)o,,(0) (or equivalently, [a) = fng)). Since we are dealing
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with Dirichlet boundary conditions, the wavefunctions are zero along the circle billiard
boundary at r = 2. Consequently, SEBK(r = R) = 0 and the EBK eigenfunctions
éﬁBK(r = R)¢,,(#) are zero along the PSS at » = R. However, technically, the
PSS is an infinitesimal distance ér inside of the billiard boundary. Therefore, we are

actually considering the EBK eigenfunctions ¢£2¥(r = R + ér)a,,(6) which are not

zero. The semiclassical T-operator eigenvalues are

/\fBK(E) — (O‘IITEBK(E)IG')

= (n.;,]TEBI"(EHng)

f

1 37
exp (HI" (E.Iy = 2ahng) — 7) e

= AZPM(E) (4.25)
From Eq.(4.25), it is evident that each semiclassical T-operator eigenvalue curve is
associated with a particular value of the quantum number ny corresponding to v of
the Bessel function (Appendix A). Also, the restriction that I, (E Iy = 27hny) of Eq.

(4.23) must be real sets the maximum value of ny as

2mER?
o = || 2L (4.26)

Equation (4.26) is half the value of N(E) = 2R(2mE): /N which estimates the num-
ber of Planck cells on the PSS that exist at energy E for the circle billiard (see Sec.

2.2 of Chap. 3). Since the semiclassical T-operator involves 2n,,,, + 1 eigenstates at
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energy E then, at high energies, n,,,, and X, »(E) are in agreement.

It is important to emphasize that Eq. (4.26) can also be interpreted as the
minimum energy E,,;, = h )/(2mR?) for which a T- -operator eigenvalue curve
AEBR(EY is defined. For energies £ < E,un. the radial classical action I(E. Iy =
2mwhny) is no longer real and consequently, the T-operator eigenvalue curve /\ff"'(E )
does not exist. Hence, the spiral tails of the T-operator eigenvalue curves, describing
the way T-operator eigenvalues moved out from the origin to the unit circle. are not
predicted by the EBK eigenvalue curves A285(Ej. However, an interesting connec-
tion is made between classical and quantum mechanics. The T-operator eigenvalue,
associated with a particular quantum number ny. reaches the unit circle at the min-
imum energy E,.. for which the corresponding classical motion. with momentum

Py = nph, is allowed.

In au attempt to model the spiral tails of the T-operator eigenvalue curves

AEBA

Tty

(£). I considered the complex action,

V2 E

I(E. Iy=27hny)=i2RVImE [ L ey (ﬁ+ - 1)] (4.27)

which is derived in the same manneras I,(E, I, = 2mhny) (Appendix C) however, with

RO 252

the complex momentum 3, = 2mE\| 58— — 1. The resulting EBI\ eigenvalue

curves are

1.
AEBK(E) = exp (r I (E Iy = 2xhny) — 3?;—"’) (4.28)
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Equation (4.28) correctly models the increasing magnitude of the T-operator eigen-
value (from zero to one) but, fails to reproduce the spiral behaviour since AEBR(E)
does not rotate in the complex plane as a function of E (it simply moves out in
straight line along the direction exp(—i37/2)).

Finally, the semiclassical energy eigenvalues of the circle billiard are obtained

from the quantization condition (Eq. (4.11))

2v2mE \/Rz_("-eh)z nyh _1( noh ) ~ BT o, (4.29)

- cos —_—
k 2mE vemE v2mER

Eq. (4.29) shows that the first energy eigenvalue of the ngy-eigenvalue curve corre-
sponds to n, = 0, while the next energy eigenvalue occurs when n, = 1, and so on.
The index n, is therefore associated with the zeros of the Bessel function Jy,. Hence,
each eigenvalue curve corresponds to a particular Bessel function and the energy
eigenvalues lying on each curve are the zeros of this Bessel function.

In Fig. 4.4, the semiclassical T-operator eigenvalue curves In(MEBK(EY) ob-
tained from Eq. (4.25) are compared to the T-operator eigenvalue curves Im(AZ (E))
constructed from the 50 x 50 T-matrix. The tails (dotted lines) attached to the
T-operator eigenvalue curves Im{ \EEX (£)) are the curves iff"‘(f_:? ) of Eq. (4.28).

The most striking difference between the two types of curves is the range
of values between which they oscillate. The EBI T-operator eigenvalue curves
Im(AEEPH(E)) oscillate strictly between the values of *1. reflecting the fact that

they are derived from a unitary operator. In comparison, the T-operator eigenvalue
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Figure 4.4: Comparison of semiclassical eigenvalue curves Im{Af8X(E)) (in (a) and
(c}) with eigenvalue curves Im(A2(E)) (in (b) and (d)) constructed from the 50 x 50
T-matrix for the circle billiard. The dotted lines in (a) and (c) are the T-operator
eigenvalue curves A\EZ%(E) of Eq. (4.28). The circles drawn on the energy axis indi-
cate the positions of the exact energy eigenstates. Although there are some differences
between the two types of curves, more importantly, they link energy eigenstates in

the same way.
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Figure 4.4: continued.
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curves Im(AZ(E)) are shifted down such that the maximums do not quite reach the
value of 1 and the minimums surpass the value of —1. This shift is to be expected
since the T-operator is not unitary at low energies. In fact, Boasman [6] was able to
demonstrate, analytically, that Bogomolny's eigenvalue curves are shifted along the
direction exp(—i7x/4) from the unit circle in the complex plane. The convergence to
unitarity is seen by following one particular curve. Gradually, with increasing energy,
it moves towards values between +1, Eventually, in the limit & — 0, the eigenvalue
curves Im(AZ(E)) becone identical to Im(AEBK(E£Y),

Another interesting observation is that in this range of energy, the T-operator
eigenvalue curves Im(\? (E)) approximate the exact energy eigenstates better than
the semiclassical eigenvalue curves Im(AEBX(E)). Again, this is not surprising since
Im(AEBX(E)) is derived from Im(AZ(E)) using a stationary phase approximation.
Hence, at low energies, Im(,\fB""(E)) approximate Im()\f(E)).

From Fig. 4.4, it can be seen that the magnitudes of the tails of the T-operator
eigenvalue curves AZ( E) are properly estimated by those of iff”"(E ) {dotted line).
However, the tails ;\fB’"(E ) do not oscillate about the £-axis implying that they do
not rotate around the origin like the those of A2 (E).

Despite these differences, the eigenvalue curves Im(AZ(£)) and Im{\EBK (E))
are similar in the way that they locate the energy eigenstates. The energy eigen-
states connected by one eigenvalue curve Im(AZ(E)} are the same energy eigenstates

conuected by one eigenvalue curve Im(AEBN(E)). In this way. the semiclassical T-
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operator eigenvalue curves yield the quantum numbers of integrable systems.

4.2.3 T-Operator Eigenvalue Curves for the 45° Wedge Bil-
liard

Although the 45° wedge billiard is non-separable, it is an integrable system
with two freedoms for which the T-operator can be written in Lauritzen's EBK form.
However, to develop the EBIX form for the T-operator of the 45° wedge billiard, we
will first consider the 90° symmetric wedge billiard.

Recall from Sec. 2.3 of Chap. 3 that the 90° symmetric wedge billiard can be
described by the XY-coordinate system running parallel to the walls of the billiard.
Consider the straight line along one of the walls. say the X-coordinate, as the PSS.
Referring to Eq.(4.5), to develop the EBI form for the T-operator, we need to express
the classical action variable [y in terms of the total enetgy E and the quantized action
variable [y = 27/i(ny + vy /4). For the symmetric wedge biliard, the expressions for
the classical actions Iy and [y are identical {(Eq. (C.8) of Appendix C with m = 1
and g = 1);

S .
Iy = gEi/z and Iy = §E;{/2. {4.30)

where Ex and Ey are the energies for the X and Y motions respectively, The
Maslov indices related to these action variables are vy = 3 and vy = 3 (Appendix

C). The action variables of Eq. (4.30) are related to each other using the total energy
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E = Ex+Ey. In addition, the EBK quantization of the action variable Iy (Appendix

B) leads to the energy Ey of the form:

2/3
E,, = [3%& (n_\' + %)] . (4.31)

Hence, combining Eqs. (4.30). (4.31) and the total energy relation, we obtain

8 37 313\
Ie(Eony) =3 (E-— [%l(ny—i-l)] ) (1.32)

Consequently, the semiclassical T-operator for the 90° symmetric wecdge billiard takes

the form

TEBK(X X" E) =Z Ou (V)0 (Nexp(£1y- (E.Iy=27h (nx + 3))-97) .(4.33)

ny =0
The basis eigenfunctions o, A (-Y) are constructed from a linear combination
of the EBK eigenfunctions of5%(Y) defined by Eq. (4.6). The action for the .X-

coordinate is given by

) X L A X ..
Sy(X.ny) = /0 px(Ex. X)dN /0 ,/E,,,\—ﬁd.\

4 2 X .
= '?; [Elf_\ - (EH‘\ - '—\/__3)2] . (4'34)

Substituting Eq. (4.34) into Eq. (4.6). the EBIS eigenfunctions for the 90°

wedge billiard become

EBK -y _ l T e [ ae
D (-\)_0(2(5.\'—7\;)) e.\p( iSr [En,‘ (En, \/E)D {4.35)
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Since we require that the wavefunction vanishes at the billiard boundary, the basis
state &y, (X) is the linear combination of these EBI eigenfunctions which gives a
sine function.

What differentiates the 90° wedge billiard from the 45° wedge hilliard, is the
basis states {ja}}. For the 45° wedge, the energy eigenfunctions must vanish along
the line X' = 1" (to satisfy the boundary condition that the wavefunction vanishes
along the vertical wall). This condition is achieved with the antisymmetric linear

combination of the primitive wavefunctions O, (X)), (Y),

(XYY = A (00, (N)0n,(Y) = 0,,(X)a,, (1))

= Awa, (N Y ma) = (X Y [ng,ny)) {4.306)

where A4, ., is the normalization constant, equal to 5 for ny = ny and % for ny # ns.
For the 90° wedge billiard, both the antisymmetric and symmetric linear combinations
are allowed. In general, Eq¢.(4.36) is a nontrivial solution only when n; # n.. Hence.
the energy spectrum for the 15° wedge billiard consists of the energy eigenstates of
the 90° wedge billiard with quantum nnmbers ny # na. Along the PSS, the enersy

eigenfunctions for the 15° wedge billiard are given by

Pa( XY =0) = Ay, (VY = 0nsima) = (XY = 0fnamy))

'4"1.11.2 (C"'_'("Ylno - C"l (_X-I??.;g)) ¥ (43?)
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where C,, = ¢, (Y = 0) is a constant. As discussed in Sec. 4.2.2, the ’SS is technically
an infinitesimal distance Y from the billiard boundary. Hence, C, = o,(Y = 0) is
nonzero and the energy eigenfunctions of Eq, (4.37) are not zero. In addition, since
the I’SS is very clese to the boundary, Cu, = C,,.

Operating the semiclassical T-operator on the energy eigenfunctions Eq.

(4.37) produces the result,
TEEK( E)a) = Aui iy (Coy exp(ilx(E n) /Rl ) = C,, exp(ilx(E.ng)/h)[no)) . (4.38)
Setting o = ng—n) with ny > n; (to avoid double counting) in Eq.(1.38}, one obtains

TEEK(E)a) = Au (Cosn, explilx(E.ny) JR)jny)

—Cu explilx{E .o+ ny)/h)|a +n))) (4.39)

Since ny # na for the eigenstates of the 15° wedge billiard, @ > 1. Finally. the
semiclassical T-operator eigenvalues are obtained by evaluating the matrix elements

based on Eq. (4.10),

MNER(EY = (o'|TEP¥(E)|o)
= -4(g'-"1-(| [Cu'+rl'lcu+\‘!1 exp( f‘l‘-\"(‘E-‘ ”1 )/h')(n’llnl)
—C,,:l Coarm expUELx{E 0}/ R){a" + ni|n))

—Coran Cny explilx(E o+ n)/h) (0o + ny)
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+Cou Cuy explilx(E. o + ny) /AN’ + n)|a + nl)]

3 \Catn, exp(ifx(E.ny)/h)

+C, exp(il(E.a +n1)/R)) 6.ty bur e (4.40)

ny

where the energy E is determined by,

3T 3 KFis 3 '
E = (-4— (cr+-nl+i-)) +(T (711-}-:}')) . (.41}

An interesting point that one draws from the final expression in Eq. (4.40) is that the

e
e

semiclassical eigenvalue curves are associated with the difference in quantum numbers
« = ny —ny rather than a single quantum number n, or n,. Also, keeping the integer
a constant and varying the energy F forces the quantum number n; to vary according
to Eq. (+.41). By substituting Eq. (4.41) into Eq. (4.40), AEBN(E) = exp(27n,). and
it becomes clear that Bogomolny’'s semiclassical quantization condition is satisfied
for every integer value of n;. Hence. the first energy eigenvalue encountered by a
semiclassical eigenvalue curve has the quantum number n, = 0, the second one has
n; = 1, and so on.

To recover the full solution for the 90° wedge billiard. the matrix elements
are computed with the symmetric wavefunctions as well as the antisymmetric ones.
The semiclassical T-operator eigenvalues calculated with the syuinletric eigenstates
are given by the same expression as Eq. (4.40) for indices a > 0 (since a = 0 is

allowed for the symmetric eigenstates). Hence, for the 90° wedge billiard. there exists
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one eigenvalue curve with index a = 0 and two identical eigenvalue curves for every
index a > 0.

Fig. 4.5 is a comparison of the semiclassical eigenvalue curves Im(AZ84 (£))
with the eigenvalue curves Im(\? (E)) of the 150 x 150 T-matrix. Since the T-
operator is not unitary at low energies, the eigenvalue curves Im(AZ (E)) do not
oscillate strictly between the values of 1. Unlike the eizenvalue curves of the circle
billiard, these eigenvalue curves are not obviously shifted in any preferential direction
in the complex plane. Gradually, as the energy is increased. the eigenvalue curves
Im(AB(E)) are expected to become identical to Im(AEBRK(E)). For the reasons dis-
cussed in Sec. (4.2.2), the eigenvalue curves Im{AZ(E)) approximate the exact energy
eigenstates better than the semiclassical eigenvalue curves Im(NEBR(E)).

An unexpected result. demonstrated in Fig. 4.5, is that the eigenvalue curves
Im(AZ(E)) for the 45° wedge billiard do not always link energy eigenstates with the
same quantum number «. There appear to be repulsions between T-operator eigen-
value curves Im(A?(E)) when certain T-operator eigenvalues approach each other
in the complex plane. For example, near energy £ = 3, the 3rd and Gth eigen-
value curves Im(,\f(E)) (Fig. 4.5(1b)} repel each other rather than crossing as the
3rd and Gth semiclassical eigenvalue curves Im{AEPK(E)) do (Fig. 4.5(a)). Con-
sequently, the successive energy eigenstates located by the 3rd and 6th eigenvalue
curves Im{ Af(E)) are different from those obtained from the 3rd and Gth eigenvalue

curves Im(AZFX(E)). The eigenvalue curve repulsions appear to be similar to energy
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Figure 4.5: Comparison of semiclassical eigenvalue curves Im(A£55(£)) (in (a) and
(c)) with eigenvalue curves Im(AZ(E)) (in (b) and (d)) from the 150 x 150 T-matrix
for the 45° wedge billiard. The circles drawn on the energy axis indicate the positions
of the exact energy eigenstates. The two tvpes of eigenvalue curves do not link the
same energy eigenstates. There appear to be repulsions between the eigenvalue curves

Im(\B(E)).
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level avoided crossings. Other eigenvalue curve repulsions can be seen near energies
E~8and E ~ 11 in Fig. 1.5.

Are the eigenvalue curve repulsions a real effect or a fabrication resulting
from numerical inaccuracies? In other words, is the finite approximation to the T-
operator responsible for these repulsions and is the connection between eigenvalue
curves and quantum numbers only valid in the semiclassical limit? Fig. 4.6 is a
comparison of the eigenvalue curves In{AEFN( £) of the 25 x 25 T-matrix with those
from the 150 x 150 T-matrix (Figs. +.5(») and (d)). First of all. the programs used to
compute the eigenvalue curves were written with double precision variables and the
energy increment used in most calculations was AE = 0.01. Hence. the differences
between eigenvalue curves in Fig. 1.6 most likely result from the different T-matrix
dimensions. While some of the T-operator eigenvalue curve repulsions observed for
the 25 x 25 T-matrix become more pronounced for the 150 x 150 T-matrix (for example
at E =~ 5,11andl7.5), other repulsions diminish {like those at £ a~ 13and15.5). One
would think that if the repulsions were artifacts caused by the finite approximations
to the T-operator, that all the repulsions would diminish with an increase in matrix
dimension, in contrast to what we have found. Futhermore, these results did not
change with a further increase in matrix dimension to N = 300. Hence, one can only
conclude that for this range of energy, the T-operator eigenvalue curves AB (E) of the
45° wedge billiard do not correspond to particular quantum numbers. We do not

understand why this happens.
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Figure 4.6: Comparison of T-operator eigenvalue curves Im(\2 (E)) from the 25 x 23
T-matrix (in (a) and (c)) with those from the 130 x 150 T-matrix (in (b) and (d)) for
the 45° wedge billiard. The circles drawn on the energy axis indicate the positions
of the exact energy eigenstates. Some of the eigenvalue curve repulsions observed for
the 25 x 25 T-matrix become more pronounced for the 150 x 150 T-matrix, while
other repulsions diminish.
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Generally, energy level repulsions occur between eigenstates with the same
symmetry. Hence, at the avoided crossing of doubly degenerate energy levels, one ex-
pects that odd eigenstates will repel each other (or equivalently, the even eigenstates)
but that an even and odd eigenstate will cross each other. Does this effect also occur
in the 90° symmetric wedge billiard? The eigenvalue curves for the 150 x 150 T-matrix
for the 90° symmetric wedge billiard are shown in Fig. 4.7. For the symmetric wedge
billiard, the PSS is along the entire boundary. Hence. a T-matrix with dimension
N = 150 has 73 divisions along each wall. The odd eigenvalue curves are identical
to the ones obtained from the 45° wedge billiard. Most even eigenvalue curves obvi-
ously repel each other whenever odd eigenvalues curves avoid each other. For these
energies, there are no instances where an odd and even eigenvalue curve interact with

each other. This is consistent with symmetry arguments.

4.3 Distribution of T-Operator Eigenvalues

The main reason for studying the T-operator eigenvalue curves is to deter-
mine if they have distinguishing characteristics depending on the dynamical behaviour
of the system (regular, chaotic or mixed). What prompted this investigation was the
results of Haggerty [21] [22] showing that for the Nelson potential. there is a quali-
tative difference hetween the T-operator eigenvalae curves of the system in a “nearly

regular” régime and those obtained for the system in a “mostly chaotic” régime. The
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Figure 1.7: Eigenvalue curves Im(AE(E‘)) of the 150 x 150 T-matrix for the 90° sym-
metric wedge billiard. The circles drawn on the energy axis indicate the positions of
the exact energy eigenstates. Some of the even and odd eigenvalue curves are repre-
sented by solid and dotted curves repectively to illustrate that repulsions only occur
between eigenvalue curves of the same symmetry.
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first dissimilarity is in the way that the T-operator eigenvalue curves spiral out from
the origin to the unit circle in the complex plane. The T-operator eigenvalue curves
of the “nearly regular” system spiral out significantly more gradually, making several
more rotations around the origin, than those of the “mostly chaotic” régime. The
second distinction is in the smoothness of the curves. T-operator eigenvalue curves
of the “mostly chaotic” system are ki, ked, such that they avoid crossing each other,
whenever they approach each other in the complex plane. On the other hand, T-
operator eigenvalue curves of the “nearly regular” system are smooth and tend to
cross each other. Could it be that T-operator eigenvalue curve repulsions (discussed
in Sec, 4.2.3) is a trait of chaotic svstems? Two questions that arise from these
observations are: Are these qualitative differences generic? What happens to the
T-operator eigenvalue curves in a régime of mixed behaviour?

Contrary to Haggerty's findings, Boasman [G] does not find any cualitative
differences in the spirals of the circle, stadium and Africa billiards. despite the fact
that these billiards are considerably different in their dyvnamical behaviour. He con-
Jectures that the shape of the spiral near the origin reflects the ‘local behaviour around
each point of the boundary' rather than the global shape of the boundary determin-
ing the type of dynamical system. Tlhe global shape of the boundary is more likely
reflected by the T-operator eigenvalue curves as they approach the unit circle [6].
Hence, billiards with similar smooth curved boundaries should have similar spirals

near the origin but are not expected to be similar closer to the unit circle. This argu-
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ment does not conflict with Haggerty's findings. Nevertheless, the spirals of the circle,
stadium and Africa billiards look she same near and away from the origin, indicating
that in these cases, the spiral nature of the T-operator eigenvalue curves does not ive
any indication of the type of dynamics. Could the different results of Haggerty and
Boasman be related to the fact that in one case the systems are force-free billiards
while in the other case the systems involve a smooth potential? While we will not be
in a position to answer this question, we have studied the wedge billiard. a system
which can display all three types of dynamical behaviour (regular, chaotic and mixed)

and has aspects of a billiard (hard walls) and of a system with a smooth potential.

4.3.1 Spirals of T-operator Eigenvalue curves

Figure 4.8 compares the spiral behaviour of T-operator eigenvalue curves for
the 45° wedge and 49° wedge billiards. In particular, each plot of Fig. 4.8 shows the
distribution of 2300 T-operator eigenvalues with respect to the unit circle (solid line)
in the complex plane. The T-operator eigenvalues were calculated from 10 matrices
with dimensions between N = 100 and N = 145, and for the ratio .-\"/.n‘\",,(E: ) = 2.
From Eq. (19) of Chap. 3. these T-operator eigenvalues correspond to relatively high
scaled energies ranging from £ & 5745 to E = T200. The approximate unitarity of the
T-operator. in this range of energy. can clearly be seen from the scatter of T-operator
eigenvalues about the unit circle. The cluster of points at the origin are “subunitary”

T-operator eigenvalues circling closely around the origin. In this region, there is
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Figure 4.8: Comparison of the spiral pattern formed in the complex plane by the
T-operator eigenvalues of: (a) the 13° wedge billiard (regular) and. {b) the 49° wedge
billiard (chaotic). In both cases. the T-operator eigenvalues were obtained from 10
T-matrices with dimensions between V' = 400 and N = 445. and with N/N(E)=2.
The solid line is the unit circle. The shapes of the spirals look similar and hence. do
not reflect the nature of the dynamics.
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no apparent trend in the movement of T-operator eigenvalues, whereas. further away
from the origin, the T-operator eigenvalues line up along a spiral direction. The shape
of the spirals and the angles at which they approach the unit circle are qualitatively
the same for both wedge angles. Similar results were found for the 30° and G0° wedge
billiards. Hence, it appears that for the wedge billiard, the form of the spiral gives

no indication about the type of dynamical system.

4.3.2 Repulsions of T-operator Eigenvalue curves

In this section, we investigate the possibility that T-operator eigenvalue
curves repel each other more frequently in chaotic systems than in regular systems.
Such a result would identify a new feature associated with chaos in a, quantum sys-
tems and could conceivably be used to interpret the energy spectra of systems with
mixed behaviour. It was proposed by Percival [33] that. for systems exhibiting soft
chaos in the classical regime. the energy eigenvalues of the analogous quantum sys-
tem can be divided into a regular part (associated with the regular behaviour of the
classical system) and an irregular part (associated with the chaotic motion in the
classical system). This separation has been successfully demonstrated by Bohigas et
al. [14] who studied the two coupled quartic oscillators. In terms of the distribution of
T-operator eigenvalues. one should find more repulsions (i.e. more even distribution
of T-operator eigenvalues on the unit circle) at energies corresponding to irregular

energy eigenvalues than at energies close to regular energy eigenvalues,
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Figure (4.9) shows the distribution of T-operator eigenvalues in the complex
plane for the 45° and 49° wedge billiards at one particular scaled energy E. In both
cases, the T-operator eigenvalues were calculated from a 445x 445 T-matrix and with
the ratio N/.r\'},(E ) = 2. As examples we chose E = 7127 for the 45° wedge and
E =~ 7195 for the 49° wedge. Considering only the T-operator eigenvalues on the
the unit circle in Fig. (4.9), there appears to be more clustering for the 45° wedge.
resulting in larger gaps between some of the T-operator eigenvalues, whereas for
the 49° wedge the eigenvalues seem to he more evenly spread. This observation.
in agreement with Haggerty. suggests that repulsions between T-operator eigenvalue
curves are more likely to occur for chaotic systems than for regular systems.

To quantify this result. we calculated the angular differences Ay between
nearest neighbour T-operator eigenvalues on the unit circle. These values were nor-
malized by dividing them Ly the average angular spacing between NP(E ) nearest
neighbours on the unit circle given by the simple expression 3 = 27.'/.-\",,(5 ). With
145 %445 T-matrices and _-\’/_-\’1,(4@ ) = 2, approximately 223 T-operator eigenvalues
lie on the unit circle and this is not a relatively large sample from which one can
obtain reliable statistics. To overcome this problem, the nearest neighbour spacings
from 19 T-matrices with dimensions between N = 355 and N = 445 (the same ones
used in Sec. 4.3.1) were binned together. This way we increased our sample of nor-

malized nearest neighbour spacings to approximately 3800, improving the statistics

considerably. The histograms constructed from 3800 normalized nearest neighbour
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Figure 1.9: Distribution in the complex plane of the T-operator eigenvalues for: (a)
the 43° wedge billiard (regular) and (b) the 19° wedge billiard. The T-operator
eigenvalues were obtained from one T-matrix with dimension ¥ = 145. and for
.\’/;\"p(E) = 2. The solid line is the unit circle. The T-operator eigenvalues on
the unit circle in (a) are more clustered than those in (b).
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spacings for the 45° and 49° wedge billiards are shown in Fig. 4.10(a). The histograms
were normalized to give the probability density 1( Ay/Ay). Figure 4.10(b) displays
the cumulative distribution functions for the histograms of Fig, 4.10(a). There are
definitely more T-operator eigenvalue repulsions for the 19° wedge than for the 15°
wedge.

The histograms in Fig. 4.10 (a) appear to follow the same distributions (solid
and dotted curves overlayed on the histograms) expected for the energy level spacings
[13] [12]. The energy level spacing distribution of integrable systems is expected to
follow the Poisson distribution given by

Pla) = exp(—ur) (4.42)

whereas for chaotic systems with time reversal symmetry, the energy level spacing

distribution is expected to follow the Wigner distribution:

Plx) = %.‘l-‘ exp (—Err"’) . (4.43)

a—

These conclusions are supported by the recent findings of Rouvinez [37]. Rouvinez
[37] has applied the scattering approach to the wedge billiard and has shown that the
phase spacing distribution for the eigenvalues of the S matrices are well represented by
the Poisson distribution {Eq. (4.42)) for the 45° wedge and by a Wigner distribution
(Eq. {(4.43)) for the G0° wedge, The connection between the distributions of energy

level spacings and S matrix eigenvalue phase spacings is made through a formula
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Figure 4.10: Quantitative analysis of the distribution of T-operator eigenvalue phases
for the 45° (solid line) and the 49° {dotted line) wedge billiards. (a) Probability P(s)
of normalized T-operator eigenvalue phase spacings per bin of width 0.05. The curves
overlayed on top of the distributions are the theoretical expectations. (b) Cumulative
distribution functions (C.D.F.) of the normalized T-operator eigenvalue spacings for
the histograms in (a). The normalized T-operator eigenvalue spacings were calculated
from 19 T-matrices.
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which relates the density of states and the phase velocities (Eq. (4.29) of [37]). Since
it has been shown by Prosen [34] that the scattering approach reduces to Bogomolny’s
theory in the semiclassical limit, the findings of Rouvinez are comparable to ours.

In Fig. 4.11, the distributions for the 45° and 49° wedge billiards are compared
to that of the 41° wedge (constructed from: 19 T-matrices as described in the above
paragraph). Technically, for the 41° wedge billiard, the distributions of T-operator
eigenvalues obtained at different energies should not he binned together since we lose
information about whesher particular energies belong to the regular or irregular part.
However, combining them should simply average the regular and chaotic distributions
and produce a distribution intermediate to those of the regular and chaotic cases [5].

To investigate Percival's conjecture, one needs to study the distribution of
T-operator eigenvalues at particular energy eigenvalues of the system. Unfortunately,
the number of T-operator eigenvalues on the unit circle at a particular energy E
is limited by J\’],(E ). Consequently, the only way to obtain a large number of T-
operator eigenvalues (for reasonably good statistics) is to consider very high energies
and consequently, very large T-matrices. The minimum T-matrix dimension required
at an energy Eis N = Nl,(E ) {equivalent to the ratio N/NP(E ) = 1). However, as
discussed in Sec. 2.3.1 of Chap. 3. the nncertainties caused by finite approximations
are reduced by increasing the ratio N/N,(E) implying a further increase in the T-
matrix dimension .N¥. For example, suppose that for reasonably good statistics, we

need a sample size of approximately 500. Then, at the minimum, the T-matrix
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Figure 4.11: Comparison of the distributions of T-operator eigenvalues for: (a) the
45° wedge (regular) and. () 49° wedge (chaotic) with the 41° wedge (mixed).



CHAPTER 4. EIGENVALUES OF THE T-OPERATOR 104

dimension should be N = 500 and, to improve the accuracy of the normalized nearest
neighbour spacings, ¥ should be increased to even higher values (ideally up to at
least .-\"/."\’I,(E) = 10). It is evident that quickly, we are limited by the size of the
T-matrix dimension and, as a result, this method would not make a practical way to
classify energy eigenstates of systems with mixed behaviour. However, regardless of
the limitations caused by the size of T-matrices. it would he worth studying, in more
detail, if there exists a correlation between T-operator eigenvalue distributions and
the energy eigenvalues of mixed systems. One way to proceed would involve adapting
the technique developed by Bohigas et al. to the wedge billiard. to identify the energy
eigenvalues that belong to either the regular or irregular part of the energy spectra.
Then. the results could be compared with the energy eigenstates which have been
classified independently according to the normalized nearest neighbour distribution
of T-operator eigenvalues. It would be of fundamental importance if the two methods

vielded consistent results.



Chapter 5

Wavefunctions from the
T-Operator

In the previous chapters, the emphasis has been on the semiclasscial en-
ergy eigenvalues calculated from Bogomolny’s T-operator method. In this chapter,
we turn our attention to semiclassical wavefunctions and explore the capabilities of
Bogomolny's T-operator method with respect to determining energy eigenfunctions.
The energy eigenfunctions are constructed from the eigenfunctions of the T-operator
defined on the PSS, and for this reason. one would expect that the T-operator eigen-
functions reflect properties of the system. In his thesis. Haggerty [21] preseuts a
picture gallery of T-operator eigenfunctions on the PSS for the Nelson potential and
discusses their relation to the exact energy eigenfunctions of the system. To date, no
other study related to energy eigenfunctions obtained from the T-operator method
has been published.

There exist two other semiclassical techniques for estimating energy eigen-

functions of general Hamiltonian systems {integrable and nonintegrable). In the en-

105
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ergy domain, apart from the WKB approximation method (Appendix B) applying
only to integrable systems, there is the scattering matrix method of Doron and Smi-
lansky [15]. This method, which is closely related to Bogomolny's T-operator method,
has been applied to the wedge billiard by Rouvinez and Smilansky[36] and Rouvinez
[37]. Tomsovic and Heller [43] extract energy eigenstates for the stadium billiard from
a wave-packet propagated in the time domain. Provost and Brumer [35] demonstrate
the success of this method applied to a smooth chaotic systeni.

Other work on semiclassical wavefunctions has focussed on energy-averaged
functions, not individual eigenstates, since it has been found that energy-averaged
coordinate space wavefunctions are localized in the vicinity of short unstable periodic
orbits (a phenomena studied and named scarring by Heller [23]). Individual states
have contributions from many periodic orbits (Aurich and Steiner {2]). A theoretical
explanation for this scarring phenomena. based on periodic orbit theory, has been
provided by Berry {3] and Bogomolny [8]. In a similar way, the T-operator eigenfunc-
tions depend on several classical trajectories aud Haggerty [21] {22] has shown how to
recover the actions of the trajectories which contribute to a T-operator eigenfunction.
Readers are referred to a paper by Meredith [30] for an excellent review of current
progress on studies of semiclassical wavefunctions.

In Sec. 5.1, we outline the general procedure for calculating semiclassical en-
ergy eigenfunctions using Bogomolny's T-operator method. In Secs. 5.2 and 5.3. this

method is applied to the circle and wedge billiards. The success of this method is
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evaluated in a qualitative fashion by comparing the results to exact quantum solu-
tions. For the integrable cases, the wavefunctions are also compared to the WIKB

wavefunctions.

5.1 The General Relation

Analogous to the association between the T-operator eigenvalues and the
energy eigenvalues of the system. there exists a correspondence between T-operator
eigenfunctions, defined by Eq. (1.5). and the energy eigenfunctions of the system. At
an energy £ = E, satisfying Bogomolny's semiclassical quantization condlition. the T-
operator has en eigenvalue equal to one and an associated eigenfunction v, (q) defined
on the P'SS. This particular T-operator eigenfunction describes the dependence of the
energy eigenfunction ¥,(F) on the coordinate ¢ along the PSS. In this way, the T-
operator eigenfunctions reflect properties of the eneray eigenfunctions of the systen.

The coordinate-space energy eigenfunctions P, {¥) can be recovered from the
T-operator eigenfunctions v+,(g) defined on the PSS using the relation [10]

T(#) = [ G(F.q: Eavnlg) da. (5.1)

where G(&,¢; E) is a semiclassical propagator given by

G(&.q: E,)
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In Eq. (5.2), the summation is taken over all classical trajectories that connect a
point g on the PSS to a point 7 in the allowed region of motion in coordinate space
{(and which do not come back and re-cross the PSS), S(#, q; E,,) is the classical action
for these trajectories and v is the related phase index whose value depends on the
number of points where the semiclassical approximation breaks down (see Eq. 4.22
of Bogomolny {10]). The coordinate 7 is in the plane perpendicular to the classical
trajectory at point ¥, and |j{F)| is the magnitude of the momentum at point ¥. In
this study, we are only dealing with two-dimensioial systems. and in this case, the
determinant in Eq. (5.2) simply involves one term. A general expression for the partial
derivative with respect to the coordinate 7 perpendicular to a trajectory at a point
& = (v.y) is derived in Appendix D. From Eq. (D.G). the second derivative of Eq.

(5.2) becomes

FS(T.q¢;E,) 1 J PS(E.q; E,) . O*S(F.q: E,)
ndg A\ ordq P ayaq '

9.1.1 Numerical Computations

For the systems discussed in this study, we lave chosen to construct the
energy eigenfunctions numericaily from the finite T-operator. The first major step
involves finding the semiclassical energy eigenvalues of the system by the methods

deseribed in Chaps. 3 and 4. Then. for a particular energy eigenvalue E,,, we construct
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the T-matrix in the usual fashion and nuerically diagonalize it. The T-operator
eigenfunction v,(g) corresponding to the T-operator eigenvalue closest to 1 is the
appropriate function which gives the value of the energy eigenfunction W, (F) along
the PSS.

Since we are dealing with the finite form of the T-operator, v:,(q) is a piece-

wise constant function which has an amplitude

Ciy

1.‘,':" ( q"l ) = JA_

{5.4)

for the cell centred at g, of width A,,. The constants ¢ Which are generally complex,
are the values obtained from the diagonalized T-matrix. Hence, if one wants to
compare the amplitudes of +,{q) with exact solutions. one must remember to divide
the constants ¢,, by /A, and to normalize the entire function ¥4, (g} to one. In
addition, there exists an overall phase factor for the function ¢, {q) which can be
chosen to minimize the imaginary part of vn(q) [21) [22]. Since in this study we
present the probability densities. the additional phase factor is not of any importance,

The energy eigenfunctions \,,(F) are determined from the finite form of Eq.
(5.1) in which the continuons variable q is replaced by a sum over the cells on the

I’SS:

N
‘I!"(f) = G{ ‘i?‘ qm: -En )L;"n ( qm )Am
m=]
N

= G(ra (s -Eu) Am“m- ( ).
1

=

[uiy ]
(ol §
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where G(Z, q,.; E,,) is the propagator given in Eq. (5.2) evaluated at the discrete points
¢m on the PSS. When computing Eq. (5.5), one must keep in mind that, depending
on the system, there may be points & for which G(7, gm; Ey) is infinite (or very large).
In this case, one might choose to use a gaussian smoothing algorithm to deal with

these singularities. However, as discussed in Sec, 5.4.1. this may not be necessary.

5.2 The Circle Billiard

For the circle billiard. we have chosen the circular boundary as the PSS and
the coordinate q as the distance around the circumference from a reference point (see
Sec. 2.2 of Chap. 3). In this case. there is only one classical trajectory, a straight line
connecting a point ¢' = (R.#’) on the circular boundary to a point .¥ = (r.f) inside
the billiard domain. The classical action for this trajectory is simply given by

S(T.0"E) = 2mE)*(R* 4+ 17 = 2rReos(f - 0'))1/? (5.6)

where (2mE)'/? is the magnitude of the total momentum. The second derivative
appearing in Eq. (5.2) is obtained by transforming E¢. (5.3) to polar coordinates.

The partial derivatives with respect to the x and y coordinates become

= t:oslf)2 - ——Sm( —0— (

9
dx ar roOf

oy |
=1

and
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—_— = o 6_3_.[._(:059_?_ |4
dy = s or r 08° (5.8)

Since we are considering a force-free billiard, the direction angle « of the vector PT)

at (r,0) is defined by,

. rsin@ — Rsind rcosf — Rcosé'
sina = 3 and cosa = 7 . {5.9)

where d = (R%2 + r? - 2rRcos(f — 0'))!/2 is the distance between the point (R.6') on
the I’SS and (r, #) inside the billiard, Substituting Eqs. (5.6), (5.7). (5.8)., and (5.9)

into Eq. (5.3), we obtain,

9*5(%,6'; E}| _ J|(Rsint-0) & (Reost—8)-r) &% \. _ .

dnad’ = (2mE): d oo rd 8039’) S0 !E)‘
Ey/2

= (z—m-(g)—-R(R—rcos(O—G')). (5.10)

Since there are no caustics. turning points or hard wall collisions for the classical
trajectory between (2. 0') and (r,#), the Morse index v is zero. Hence. for the circle

billiard, eq. (5.2) becomes

20 E) = 1 R reost0— ) e (5070 £ 1) (5
G(#.0:E) = gpmziys (R = reostd ~ ) exp (5S(7.04E,)) (511

5.2.1 The Connection with the WKB Approximation

In Sec. 4.2, it was shown that, for the circle billiard, the T-operator can be
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approximated by a matrix which provides an analytic expression for the T-operator
eigenvalue curves. The energy eigenvalues obtained from this approximate form of the
T-operator are equivalent to those derived from the WIB approximation. One won-
ders if, analogously, the energy eigenfunctions from the T-operator method are also
approximated by the WKB eigenfunctions. The following derivation is an attempt to
answer this question.

Beginning with Eqs. (5.1) and (5.11). and using oEBR(§') of Eq. (4.15) (with

o = %1) for the value of the eigenfunction along the PSS. the energy eigenfunction

for the circle billiard can be written as.

27
WE) = [ G0 BNy, o(0) d
40
1 2 (R R
= (SR E2nin) e /o (E(R = reos(f —6 ”)
?. = . l . i ] ' ol ¥
esp (£5(7.0:E)) ST (£xhove') ao (5.12)

where o = 1. In the limit & — 0. and as long as the prefactor is a slowly varying
function of ', the integral of Eq. (5.12) can be evaluated using the stationary phase
approximation. Essentially, in the limit 2 — 0, the phase in the exponential terms
varies rapidly causing all sorts of cancellations. The main contribution to this integral

comes from the points ¢ near the stationary points 6, for which

dS(F. 0" E)

5 + hov = 0. (5.13)

=10

Substituting Eq. (5.6) into Eq. (5.13) leads to the equation
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—(2mEY2Rr sin(6 — ¢)
d

+ohr =0, (5.14)
8=ty

Squaring Eq. (5.14), we obtain the quadratic equation

cos®(8 — 6y) —

2 (h202:;2

h202y2 2
I _—-_QHI.E1'2) cos{f — 6y) + ( 1

SmErZ L 1T 1_25) ~1=0. (5.15)
One way of solving for 8y is by letting

how

V2mEr

With this substitution, we are restricting r to the values r > hw/v2mE. In this case,

cosa = {5.16)

we find two stationary points with the principal values aiven by

bp=0—0¢ (cos‘l (—h’i—) Fcos™! (_h{/_) . (5.17)
v2mER va2mEr

For these points, the classcial action is

. h22 \/ I
- . — (9mF 172 2 _ »2
S(T.00; E) = (2mE) (\/R ImE Fyr 21115)

and, the prefactor (including the contribution from the Fresnel integral) becomes

a?S(f.e':E)F I ! (5.19)
— TS ETE = T V-
0noy’ s, ErEmEW /L - e

The contribution to the integral from the first stationary point (the upper
sign in Eq¢s. (5.17), (5.18) and (5.19)) is exactly the Langer WILB solution for the circle
billiard (Appendix B) and in this way, wavefunctions from the T-operator are related

to those of the WIKB approximation. However, the integral includes a contribution
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from both stationary points and the final form is

i 1

U(F) = —

@ -“‘l\J r2mE) 1 - e
«[owws (22222 (V= B - - B

X exp [z',v (cos'l (72':',2—5) — cos™! (7:%’3—3))]

- o 1€ s [ 2iEY/E ¢ 2 A »2 fte?
+ exp(—iT/2)expi ('__"'n ( I —-m+\/r — 55

X exp [iu (cos'i (ﬁ:ﬁ-) + cos™! (75%:43-}))” (5.20)
xmei”” (5.21)

5.2.2 The Numerical Results

The energy eigenfunctions for the Ist and 19th excited states (chosen arbi-
trarily) were numerically constructed as outlined in Sec. 5.1.1. using T-matrices of
dimension ¥ = 25 and .V = 150. The resulting probability densities are displaved as
contour plots in Figs. 5.1 and 5.2 along with those generated by the exact quantum
mechanical treatment (Appendix A) and the WIKB approximation method (Appendix
B). All of the probability densities shown are unprocessed {no smoothing procedure
was employed) and have been properly normalized {analytically for the exact solu-
tions and numerically for the Bogomolny and WIKB solutions). The contour levels

are set to the same values in all cases. It is evident that, even at low energies, the



CHAPTER 5. WAVEFUNCTIONS FROM THE T- OPERATOR 115

i (a)

(b)

Figure 5.1: Comparison of energy eigenfunctions for the 1lst excited state of the
circle billiard constructed from: (a) the exact quantum solution: (b} Bogomolny's
T-operator method with a 25 x 25 T-matrix: (c) Bogomolny’s T-operator method
with a 150 x 150 T-matrix: (d) the WKB approximation. The probability densities
['e(r,8)|% are shown with contour levels starting at 0.05 and incremented by 0.1 up
to 1.15
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(c)

(d)

Figure 5.1: continued.
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(b)

Figure 5.2: Comparison of energy eigenfunctions for the 19th excited state of the
circle billiard constructed from: (a) the exact quantum solution; (b) Bogomolny's
T-operator method with a 25 x 256 T-matrix: (c) Bogomolny's T-operator method
with a 150 x 150 T-matrix: (d) the WIKB approximation. The probability densities
| &(r,0)]? are shown with contour levels starting at 0.03 and incremented by 0.2 up
to 1.25.
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wavefunctions obtained from Bogomolny's T-operator method (Figs. 5.1(b) and {c),
and 5.2 (b) and (c)) are excellent approximations to the exact solutions (Figs. 5.1(a)
and 5.2(a)).

There are two obvious differences between the energy eigenfunctions from
the T-operator and the exact solutions. First. the nodal lines, indicated by the
dashed lines in Figs. 5.1() and (c), are rotated off the z-axis by a significant amount
for ¥ = 25 and to a lesser extent for ¥ = 150. This is clearly an effect of the
discretization of the boundary since the angle of rotation corresponds to @y, the angle
of the first discrete point on the PSS. This effect would not have occurred had we
chosen the centre of the first cell on the PSS to coincide with the r-axis.

The second difference is that near the billiard boundary, the contours are
distorted by spurious spikes. The distortions are more pronounced for the energy
eigenfunctions calculated with 25 x 25 T-matrices (shown in Figs. 5.1(b) and 5.2(b))
than for those obtained from T-matrices with dimension N = 150 {shown in Figs.
5.1(c) and 5.2(c)). Once again, the spikes, and consequently the distortions, result
from the finite approximations. The spikes occur whenever the propagator G(7.0,; E)
calculated from Eq. (5.11) becomes infinite. It is evident from the expression for d that
G(%,0,;E) — 0o as + — Il and 0 — 6,. Hence. one expects spikes to happen near
the points (R.4,). However. since a point inside the billiard involves a contribution
from every poiut on the houndary, the singularity is diminished. This explains why

they are less pronounced in the cases with N = 150.
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It can be seen from Figs. 5.1 and 5.2 that energy eigenfunctions from Bogo-
molny’s T-operator method are better estimates of the exact solution than those of

the WKB approximation.

3.3 The Wedge Billiard

The procedure for constructing the energy eigenfunctions of the wedge bil-
liard is much like that of the circle billiard except that it involves more classical paths
and phase indices come into play. For the wedge billiard, there are four classical
paths joining a point ¢, on the tilted wall (the PSS) to a point ¥ = (&, y) inside the
wedge. These paths are similar to those that connect two points on the PSS (Sec. 2.3
of Chap. 3). There are two paths. a high' and a ‘low’, that go directly from a point
gn on the PSS to a point F iuside. and two paths. again a ‘high’ and a ‘low’, that
collide with the vertical wall in transit from qn to F. The classical actions for these
paths are derived in the same way as described in Sec. 2.3 of Chap. 3. using Eqs. {14),
(15) and (16) of Chap. 3. However. in this case. (2", 4"} is no longer a point on the
I’SS but a point inside the billiard region. By differentiating Eq. (14) with repect to
T and setting the result equal to —E, one obtains the following relation for the times

T along the classical trajectories from ¢/, to (2", y"):

(" = g, sin0)* + (y" — ¢, cos 0)2) % (5.22)

2 = S TP ! ‘0% _
Ti ("LE ‘-(y +1, 0050]) 1+ (1 (25 - yu - f]:, cos 0)2

where the plus or minus sign refers to the ‘high' or ‘low’ paths, (g, sin o, g}, cose) is

a discrete point on the PSS and o is the wedge angle. Setting +” in Eq. (5.22) to a
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positive value gives the times for the two direct paths whereas setting =" to a negative
value produces the times for the paths which involve a collision with the vertical wall
(the mirror image property discussed in Sec. 2.3 of Chap. 3). The final expressions
for the actions S(&, q,: E) and second derivatives 825 (Z,qu; E')/Ondq,, were obtained
by substituting Eq. (5.22) into Eqs. (14) and (15) of Chap. 3 and simplifying with
the help of Maple, a computer language that specializes in symbolic manipulations.
The phase indices v were calculated for each classical trajectory using a
prescription similar to that described in Sec. 2.3 of Chap. 3. v is an integer which is
incremented by 2 for paths reflecting on the vertical wall, by 1 for each caustic along
the trajectory, and by 1 whenever the total momentum becomes zero (at the turning
point of a trajectory moving straight up along the y-direction). For the wedge billiard,
the classical trajectories joining a point q» to a point ¥ will have at most one caustic.
A caustic exists whenever the second derivative P*S(F. q,: E) /ndn,, changes sign
(n and 7,, are the normals to the trajectory at . and ¢, respectively). Using this
definition for detecting caustics involves calculating the x and ¥ components of the
momentum at the inital and final points and applying Eq. (D.6) twice for the normal

derivative.

5.3.1 The Numerical Results

Figures 5.3 and 5.4 show contour plots of the probability densities for the
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1st and 19th excited states (chosen arbitrarily) obtained from the exact quantum
solutions {Appendix A), the T-matrices of dimension N = 25 and N = 150, and the
WIB approximation (for the 15° wedge) (Appendix B). As for the circle billiard, the
probability densities shown are unprocessed (no additional smoothing procedure was
employed) and have been properly normalized {analytically for the exact solutions
and numerically for the Bogomolny and WIKB solutions).  The agreement of the
T-operator eigenfunctions (Figs. 5.3(b) and (c), and 5.4 (b) and {c)) with the exact
solutions (Figs. 5.3(a) and 5.4{a)) is good, in the sense that the main features are
reproduced. However, the contours of the the T-operator eigenfunctions are relatively
Jjagged—spiked in some places and smeared near the top part of the wedse. These
wregularities are more frequent in the upper region of the wedge and more pronounced
in the case of the 25 x 25 T-matrix. The source of these deformities is the presence of
caustics which, once again. plague the wedge billiard. Unfortunately, there does not
seem to be an ingenious way to deal with these caustics (like the scaling technicue used
in Chap. 3), apart from perhaps using some standard gaussian smoothing algorithm
to reduce their effect. So. we have to learn to live with them. On the other hand,
since the detrimental effect of caustics is reduced with higher T-matrix dimensions (as
shown from the results of tie 150 x 150 T-matrix). the caustics are not as problematic
as they initially seem to be.

The caustics occur whenever the second derivative of the action 925 /Ondg,.

appearing in the prefactor of Eq. (5.2), becomes infinite, As discussed in Chap.3,
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4 - (a)

(b)

Figure 5.3: Comparison of energy eigenfunctions for the Ist excited state of the 45°
wedge billiard constructed from: (a) the exact quantum solution: {b) Bogomolny's
T-operator method with a 25 x 23 T-matrix: (c) Bogomolny's T-operator method
with a 130 x 150 T-matrix: (d) the WKB approximation. The probability densities

|'¥(r.8)|? are shown with contour levels starting at 0.05 and incremented by 0.1 up
to 0.93
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Figure 3.3: continued.
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(a)
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Figure 5.4: Compariscn of energy eigenfunctions for the 19th excited state of the 45°
wedge billiard constructed from: (a) the exact quantum solution: {(b) Bogomolny's
T-operator method with a 25 x 25 T-matrix: (¢) Bogomolny's T-operator method
with a 150 x 130 T-matrix; (d) the WIB approximation. The probability densities
| (r,8)|* are shown with contour levels starting at 0.03 and incremented by 0.05 up

to 0.23.
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Figure 5.5: Caustic lines of the 45° wedge billiard. The probability density shown
is for the st excited state (same as in fig. 5.3) calculated from a 25 x 25 T-matrix.
Since in this case, there are 25 discrete points on the tilted wall, there are 50 caustic
lines on this graph (two for every point on the PSS). The solid lines are the caustic
curves arising from the merging of direct paths while the dotted lines come from the
paths which hit the vertical wall.

this happens at points & = (&, y) such that the two direct paths or the two paths via
the vertical wall merge. These puints can be determined analytically by setting the
discriminant in Eq. (5.22) equal to zero. This produces two curves (caustic lines) for
every point q, on the PSS. To illustrate their effect. the caustic lines from 25 points
gn Were superimposed on the 1st excited state in Fig. 5.5. The 25 lines drawn for the
direct paths (solid) and 25 lines for the paths that hit the vertical wall (dotted) align
well with the fractures and spikes of the probability density. In addition. the fact

that they are more concentrated in the upper region of the wedge explains why the
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contours are more distorted in that part of the billiard domain. For higher T-mairix
dimensions. the density of caustic lines increases and, hence, one might expect this
to cause the results to deteriorate. However, the probability density at each point
& = (x,y) inside the billiard domain involves a contribution from all the points g,
on the PSS. It appears that the sum of these contributions has the effect of reducing
the influence of caustics. Hence. the results improve with higher T-matrix dimension
although the number of caustic lines has increased.

Since the wavefunctions from the T-operator are constructed from classical
paths, the probability densities do not extend beyoud the region of allowed classical
motion. However, because of the distortions. it is difficult to judge whether the
contour lines of the T-operator eigenfunctions, if extrapolated stmoothly, would extend
to the classically forbidden region as in the case of the exact quantum solution, The T-
operator eigenfunctions themselves are only defined up to some point ¢,,,,. the highest
classically accessible point on the PSS. In his recent thesis, Hagoerty [21] presents a
picture gallery comprising a selection of T-operator eigenfunctions for the Nelson
potential. He compared them to the exact values and noticed that the T-operator
eigenfunctions are compressed into the classically accessible region on the PSS. The
probability density decreases more rapidly near the edge of the classically accessible
region as compatred to the exact solutions. This effect is not consistently observed for
the wedge billiard. Fig. 5.0 compares the T-operator eigenfunctions for the 1lst and

19th excited states with the exact quantum solutions. The PSS eigenfunction for the
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Ist excited state appears to be compressed, whereas this effect is not observed for
the PSS eigenfunction for the 19th excited state. Note that, technically, the PSS is
an infinitesimal distance inside the billiard boundary, and consequently, the energy
eigenfunctions along the PSS are not zero. The exact energy eigenfunctions plotted
in Fig. 5.6 are defined on the surface at r = R — ér.

It would be interesting to see if one could calculate the probability density in
the space that extends bevond the classically accessible region by including complex
actions from fictitious paths in Bogomolny's expression. A classical path between the
points (g, sin ¢, g}, cos @) and (=", y") exists whenever Eq. (5.22) is real. The fictitious
paths would be those for which Eq. (5.22} is complex and consequently, would have
complex actions. However. it isn't clear what one would assign to the values of the
Merse indices for these paths.

It is evident that the energy eizenfunctions from Bogomolny's T-operator
method are much better representations of the exact solution than those of the WILB
approximation, especially at low energies. The problem with caustics is resolved
with higher T-matrix dimensions, whereas the singularities are inherent to the WKB
solution with no chance of removing them. The only drawback of the T-operator
approach is that, for the wedge billiard, the energy eigenfunctions can only he con-
structed numerically, and using Bogomolny's expression in the present form, can only
provide probability densities in the classically allowed region of motion.

A few energy eigenstates for the 60° wedge billiard are plotted in Fig. 5.7



CHAPTER 5. WAVEFUNCTIONS FROM THE T-OPERATOR 130

0.6

- 04
()
0.2

(b)
0.4 [

lv(q)?
0.2 |-

T

Figure 5.6: T-operator eigenfunction for the 1st and 19th excited state. The prob-
ability density along the PSS from the exact quantum solution (solid line). from a
25 x 25 T-matrix (dotted line), and from a 150 x 150 T-matrix (dashed line). The
vertical line indicates the limit of the classically allowed region. In (a). it appears
that the T-operator «igenfunctions are squeezed into the classically allowed region.
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and are compared to the exact results (insets) calculated from the diagonalization
of the Hamiltonian matrix (as described in Chap. 4). The fact that the energy
eigenfunctions can be recovered from the T-operator eigenfunctions defined on the
PSS suggests that the T-operator eigenfunctions contain the essential information
about the energy eigenfunctions and that they are equally as good candidates as the
¥,.(%) for studying the manifestation of chaos in semiclassical wavefunctions. This
is certainly advantageous since the T-operator eigenfunctions, being one dimension
less then the true energy eigenfunctions. are much easier to deal with, It would be
interesting to see if scarring also occurs with T-operator eigenfunctions. In this case,
the scarring might correspond to peaks near the intersections of periodic orbits with
the PSS,

A firal point of interest concerns recovering the even energy eigenstates of
the symmetric wedge billiard from the T-operator of the desymmetrized wedge bil-
liard (which provides only the odd eigenstates of the symmetric wedge billiard). In
principle, one should be able to recover the even eigenstates of the symmetric wedge
billiard [47] by effectively removing the vertical wall from the wedge billiard prob-
lem. This is achieved simply Iy omitting the contribution of 2 to the phase index for
classical paths that bounce against the vertical wall. To test this jdea. we chose two
energy eigenvalues calculated from the T-operator of the symmetric 90° wedge billiard
(described in chap 4). The first energy eigenvalue, corresponding to n, = n, = 1,

does not exist in the 45° wedge problem. while the second corresponds to a degen-
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Figure 5.7: Energy eigenfunctions from the T-operator method for the 60° wedge
billiard. All of the probability densities shown where obtained from a 150 x 150 T-
matrix. (a) the ground state, (b) the Ist excited state, {c) the 19th excited state and
(d) the 29th excited state. Insets are the exact quantum solutions.
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erate eigenstate (the 1ith excited state of the symmetric 90° wedge billiard); the
odd eigenstate belongs to the 11th excited state of the 15° wedge billiard. Then, we
simply calculated the T-operator for the 45° wedge using these energies and ignored
the contribution to the phase index for paths which collide with the vertical wall.
Using the resulting T-operator eigenfunctions. we constructed the energy eigenfunc-
tions with the 45° wedge program, again ignoring the vertical wall. The results from
these calculations using 75 x 75 T-matrices are shown in fig. 5.8. Based on the
good agreement of these even energy eigenstates with the exact quantum solutions, I
conclude that it is indeed possible to regain the even excited states of the symmetric
wedge problem with the T-operator for the desymmertrized wedge billiard. Hence.,
one can simply work with a desymmetrized system knowing that the solutions to the

full system can easily be recovered.
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Figure 5.8: Energy eigenfunctions for the 3rd (E = 5.15) and 11th (E = 8.41) excited
states of the symmetric 90° wedge. The energy eigenfunctions in (a) and (c) are the
exact quantum solution. The energy eigenfunctions in (b) and (d) were calculated
from a 75 x 75 T-matrix for the 43° wedge effectively ignoring the vertical wall by
removing the contribution to the phase index of classical paths colliding with the
vertical wall.
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Figure 5.8: continued.



Chapter 6

Concluding Remarks

We have employed finite approximations to Bogomolny’s T-operator in co-
ordinate space to calculate semiclassical energy eigenvalues for a variety of integrable
and nonintegrable systems. We have shown that. overall. this method gives excellent
results for the integrable systems, the circle billiard and the 15° wedge billiard. as well
as for the nonintegrable systems, the 19° and G0° wedge billiards {both showing hard
chaos) and the 41° and 30° wedge billiards (both showing mixed behaviour). With
Bogomolny’s semiclassical quantization condition. one has better success estimating
energy eigenvalues from the T-operator eigenvalue curves rather than looking for the
minima of the determinant [det[l — T(E)]]. Results obtained from the finite approx-
imation to Bogomolny's T-operator appear to be sensitive to the choice of the PSS
and the partition in phase space. Forthe 49° wedge billiard, an alternate partition
of phase space involving the symbolic sequences did not give good results for higher
T-matrix dimensions.

As a technique for obtaining semiclassical energy eigenvalues, Bogomolny's
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T-operator method is easier to use than the Gutzwiller trace formula and other quan-
tization schemes based on periodic orbits. The difficult task of finding a large number
of periodic orbits is no longer an issue. Instead. one only needs to find the classical
trajectories from one point to another on the PSS. In addition, there appear to be no
formal convergence problems in Bogomolny’s method, in contrast to the Gutzwiller
trace formula which is at best conditionally convergent. Yet, one can still recover
information about the periodic orbits of the system from Bogomolny's T-operator
method. As we have shown. the actions of the periodic orbits are obtained from
Fourier transforms of traces of products of T-matrices.

One of the attractive features of Bogomolny’'s T-operator method is that. in
addition to semiclassical energy eigenvalues, it is possible to calculate the semiclassical
energy eigenfunctions in a relatively simple manner. The energy eigenfunctions of
the system are constructed from the T-operator eigenfunctions defined on the PSS.
In this way, the T-operator eigenfunctions reflect properties of the system and these
may be used, intead of the complete energy eizenfunctions. for future studies of the
manifestations of chaos in wavefunctions. In particular, it would be interesting to see
if energy averaged T-operator eigenfunctions show sizns of scars of periodic orbits
that cross the I’SS.

Bogomolny's T-operator provides a new perspective on the connection be-
tween classical and guantum mechaunics: specifically, the T-operator eigenvalues play

an important role. For separable Hamiltonian systems. it can be shown that. in
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the semiclassical limit, the T-operator eigenvalue curves are related to the quantum
numbers of the system (from Lauritzen's EBIy form) and consequently, the phase
space tori of the corresponding classical system. Each T-operator eigenvalue curve
AZPX(E) for the circle billiard can be labelled by a quantum number a = v whereas
for the 45° wedge billiard, they are labelled by the difference in quantum numbers
@ = n) — ny. For unknown reasons. there is a discrepancy between the T-operator
eigenvalue curves from Bogomolny's T-matrix AB(E) and those from Lauritzen's EBK
form AEZX(E) for the 45° wedge billiard. This discrepancy may disappear at high
energies.

Since Bogomoluy's T-operator is defined for any type of dynamical system.
it may hold the key to the characterization of chaos in quantum systems. In addition.
it opens a new door for the stndy of mixed systems. We have shown that. much like
the expected nearest neizhbour energy level statistics. the phase separations of T-
operator eigenvalues for the 45° wedge billiard {a regular syvstem) follow the Poisson
distribution and that those for the 19° wedge billiard (a chaotic system) follow the
Wigner distribution. For mixed systems. I conjecture that the distribution of T-
operator eigenvalue phase separations will vary for different. energy eigenvalues of the
system. For the energy eigenvalues helonging to the regular part of the spectrum
(associated with the regular behaviour of the classical system). the phase separations
of the T-operator eigenvalues will tend towards a Poisson distribution, whereas for

energy eigenvalues belonging to the chaotic part of the spectrum (associated with the
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chaotic behaviour of the classical system), the phase separations of the T-operator
eigenvalues will follow a Wigner distribution. To test this hypothesis, I would first
need to classify the enersy spectra of a wedge billiard displaying mixed behaviour
with a numerical method such as the one presented by Bohigas et al. [14]. Then, I
could study the distribution of the phase separations of the T-operator eigenvalues for
‘regular’ or ‘chaotic’ energy eigenvalues. However, to get reasonably sood statistics
for the distribution of phase separations at a particular energy, it would be necessary
to study high energy values since the number of T-operator eigenvalues on the unit
circle depends on energy. Consequently, this would require diagonalizing very large
T-matrices, ideally with dimensions approximately 6x the number of T-operator
eigenvalues, to ensure accurate results.

This thesis has only begun to explore the possibilities of Bogomolny's T-
operator method as a tool for semiclassical analysis. I hope that the results of this
thesis will encourage others to pursue further studies employing this technique. The
following paragraphs discuss two projects involving Bogomolny's T-operator method
that are currently in progress but have not been mentioned so far in this thesis.

The first is a study of the effect of billiard boundary distortions on the clas-
sical periodic orbits of the system and on the spectra of their quantum analogues.
Intuitively, one would expect that for a boundary distortion that is small compared
to the de Broglie wavelength. the quantum energy eigenstates would essentially be

unaffected, whereas many of the periodic orbits of the classical billiard would be de-
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stroyed. If this is the case, how does the Gutzwiller trace formula relate a completely
different set of classical periodic orbits to the same quantum energy eigenstates:
Bogomolny's T-operator is ideally suited for this study since it can easily be
implemented for billiard systems with any boundary shape. Moreover. the actions
of the periodic orbits, if they exist. can be recovered by taking the Fourier trans-
form of the traces of Bogomolny's T-matrix. David Goodings and I have carried
out calculations for a circle billiard whose boundary is distorted into sine waves of
different wavelengths and ampiitudes {since an irregularity on the boundary can be
analyzed into Fourier components). Preliminary results of this study were presented
at the Symposium on Classical and Quantum Billiards in Ascona. Switzerland, in July
1994. We have found discrepaucies in the energy eizenvalue shifts calculated from Bo-
gomolny’s T-operator method and Ist order perturbation theory (given in Morse and
Feshbach [31]). The Fourier transforms of traces of products of the T-matrix show
that the shorter periodic orbits are not destroyved by the sinusoidal distortions on the
billiard boundary. This project is being completed in collaboration with Nina Snaith.
As a final note, in Ascoua, we learned that the sinusoidally distorted circle billiard
models collective surface modes in nuclear systems. Fendrik et al, [17] have shown,
by numerically caleulating the Lyapunov exponent and drawing the surface of section.,
that this billiard is chaotic for various amplitudes and frequencies of distortions.
Szeredi [42] has succeeded in providing a connection between unperturbed

periodic orbits and first order quantal energy shifts for boundary perturbations of
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billiards. His expression involves the first derivative of the actions S,(E,n) of periodic
orbits (labelled by ) with respect to a perturbing parameter 7. If a periodic orbit is
destroyed by a small change é7, one would expect that a5,(E,n)/0n would no longer
be defined. In this way, Szeredi's expression may provide a way to learn about the
classical periodic orbits that are destroyed by billiard boundary distortions.

This worl on billiard boundary distortions could easily be extended to study
the effect of boundary distortions on the conduction properties of microstructures,
solid-state devices that confine electrons to two-dimensional areas a few hundreds
of angstroms in size. Quantum conductance fluctuations have been simulated with
semiclassical theory by Lin et al. ({29], who assumed that imperfections will ran-
domly scatter trajectories. Using the discrete form of Bogomolny's T-operator, one
could easily put random discrete distortions around a boundary and calculate the
transmission amplitudes connecting the incoming and outgoing channels to the mi-
crostructure. Using a formula developed by Jalabert et al. [24]. one could calculate
the conductance fluctuations and compare then with the results obtained by Lin et
al.

The second project which is currently in progress. in collaboration with David
Goodings and Nina Snaith, is to implement the effect of diffraction in Bogomolny's
formalism. In its present form, the T-operator is constructed entirely from classi-
cal trajectories. Hence, Bogomoluy's method cannot reproduce the effects caused

by diffraction—a genuine quantnm phenomena, To illustrate these effects, we are
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studying a two-dimensional circle billiard with a small concentric disk. In the purely
classical case, the disk is an obstruction which deflects trajectortes, whereas in the
quantum case, waves (creeping waves) can diffract into the shadowed classically for-
bidden region. Our goal is to introduce diffractive paths in Bogomolny’s formalism
by considering a special form for the Green’s function representing the diffraction

process [45].



Bibliography

[1] Arfken G Mathematical Methods for Physicists 3rd ed {Academic Press Inc San

Diego 1985)
[2] Aurich R and Steiner F 1991 Physica D 48 445
[3] Berry M V 1989 Proc R Soc Lond A 423 219
[4] Berry M V and Qzorio de Almeida A M 1973 J Phys A 6 1451
[5] Berry M V and Robnik M 1984 J Phys 4 17 2413
[6}] Boasman P A 1992 Ph.D. thesis University of Bristol
[7] Boasman P A 1994 Nonlinearity 7 485
[8] Bogomolny E B 1988 Physica D 31 169
[9] Bogomolny E B and Carioli M 1993 Physica D 67 88
[10] Bogomolny E B 1992 Nonlinearity 5 805

[11] Bogomolny E B 1992 CHAOS 2 5

143



BIBLIOGRAPHY 144

[12] Bohigas O and Giannoni J M 1984 Lecture notes in Physics 209 1
[13] Bohigas O Giannoni J M and Schmit C 1984 Phys Rev Lett 52 1
[14] Bohigas O Tomsovic S and Ullmo D 1990 Phys Rev Lett 64 1479
[15) Doron E and Smilansky U 1992 Nonlinearity 5 1055

[16] Einstein A 1917 Verh Dtsch Phys Ges 19 82

[17) Fendrik A J Vega J L Dorso C O and Bernath M 1991 Nonlinear Phenomena
in Fluids, Solids and Other Complex Systems Cordero P and Nachtergaele B

(editors) 447

[18] Goldstein H Classical Mechanics ?nd ed (Addison-Wesley Publishing Company

Inc US 1981)
[19] Goodings D A and Szeredi T 1991 Am J Phys 59 924

(20] Gutzwiller M C 1971 J Math Phys 12 343: Gutzwiller M C Chaos in Classical

and Quantum Mechanics {Springer-Verlag New York 1990)
[21] Haggerty M R 1994 PL.D. thesis NLLT.
[22] Haggerty preprint
[23] Heller E J Phys Rewv Lett 53 1515

(24] Jalabert R A Baranger H U and Stone A D 1990 Phys Rev Lett 65 2442



BIBLIOGRAPHY 145

[25] Kac M 1966 Am Math 73 1

[26] Kaudson S K and Noid D W 1989 J Chem Edu 66 133
[27] Langer R E 1937 Phys Rev 51 669

28] Lauritzen B 1992 CHAOS 2 409

[29] Lin W A and Delos J B 1993 CHAOS 3 655

[30] Meredith D C 1992 J Stat Phys 68 97

[31] Morse and Feshbach 1953 Methads of Theoretical Physics (McGraw-Hill New

York 1953)
[32] Numerical Recipes 2nd ed (Cambridge University Press US 1992)
[33] Percival I C 1973 J Phys B 6 L229
[34] Prosen T 1994 J Phys A 27 L709
[35] Provost D and Brumer P Phys Rev Lett 74 250
[36] Rouvinez C and Smilausky U 1995 J Phys 4 28 77
[37] Rouvinez C 1995 PL.D. thesis Ecole Polytechnique Fédérale de Lausanne
[38] Schiff L I Quantum Mechanics 2nd ed McGraw-Hill New York 1955

[39] Szeredi T 1993 Ph.D. thesis McMaster University



BIBLIOGRAPHY 146

{40} Szeredi T and Goodings D A 1993 Phys Rev E 48 3518

[41] Szeredi T and Goodings D A 1993 Phys Rev E 48 3529

[42] Szeredi T 1995 preprint

[43] Tomsovic S and Heller E J 1993 Phys Rev Lett 70 1405

[44] Van Vleck J H 1928 Proc Nat Acad Sci 14 178

[45] Whelan N 1995 preprint

[46] Whelan N Goodings D A and Cannizzo J K 1990 Phys Rev A 42 742

[47] Whelan N personal communication



Appendix A

The Exact Quantum Solution

A.1 The Circle Billiard

The circle billiard is a two-dimensional system consisting of a particie of mass
m moving freely inside a circular region of radius » = R. The quantum mechanical
description of this particle’s motion is given by the time-independent Schrodinger
equation, expressed in terms of cylindrical coordinates (r. o).

h?(a? 19 1&

T om \ 92 + ror + r? Je?

) P(r.0)=E¥P{r.a), for 0<r<R, {A.1)
along with the Dirichlet Lhoundary condition ¥(R.¢) = 0. By setting ¥(r.0) =
It(r)® (&), Eq. (A.1) separates into two differential equations,

Ty
ic%z_ol + 12 D(e) = 0 {A.2)

for the angular dependence, and

2 . S F
r2d R(r) + ~dR({r) + (ZmE'_._,

— P A1) = A.
ar T T & ”) firy =0 (3.3)
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for the radial direction. In Eqs. (A.2) and {A.3), v is the constant of separation.

The normalized solutions of Eq. (A.2) are the oscillatory functions,

1

By () = —e*ive, Ad
() Wor (A.4)

Since ©,(¢) of Eq. (A.4} must be single valued, v is restricted to integer values, The

solutions to Eq. (A.3) which are regular at » = 0 are,

(A.5)

5) .
R(r)=AJ, ( " ';”E,-)
)

where J, is the Bessel function and A is a normalization constant, The Dirichlet
boundary condition implies that the radial function ,(r) of Eq. {A.5) must vanish

at the circle boundary r = R and this provides the quantization condition,

1, ( v 2”'512) =), (A.G)

h

From Eq. (A.G), the exact energy eigenvalues for the circle billiard are.,

horavy\?
e AT
B 2m ( It ) (A7)

where aj is the n' zero of the Bessel function J,. An analytic expression for the
normalization constant 4 of Eq. (A.J) can be obtained for energies £ = E, , and is

given by ([1] p.593)

1
v

) s
."ln v = —';— . A.S
) (Rz']f-e-l(“‘::)) ( )
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Hence, combining E¢s. (A.4), (A.5), and A.7), the normalized exact energy eigen-

functions for the circle billiard are

; Ay v T i
T.""'n,u(rs 9) = \/2;"1'.]" (('n]i-i') =t (.—\9)

A.2 The 45° Wedge Billiard

The 45° wedge billiard is a two-dimensional system consisting of a particle
of mass m subject te a constant force ntg and confined to a wedge of half angle @. In
quantum mechanics, the motion of this particle is described by the time-independent

Schridinger equation
(e o

e

(83:2 y?

2 ) Tlevy) +mgy¥(z.y) = E¥{a.y), (A.10)
m

for # > 0 and y > wcot{®). The Dirichlet houndary couditions are (0, y) = 0 and
Uz, rcot(@)) = 0. To obtain the quantwm solution to Eq. (A.10), one considers
the 90° symmetric wedge described by the same Hamiltonian but with the boundary

conditions W(x£|z], |a| cot(¢)) = 0. Introducing the coordinate transformations.

T et o |
ﬂ and Y = Y

V=7 7

(A.11)

to variables .\ and " runuing parallel to the walls of the 90° symmetric wedge. Eq.

(A.10) becomes:
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h2 82 82 - xr myg - I . ¥4 A %4 A
5 (W—FB‘I—E) (XL} )+$(A +¥Y) I (X\Y)=FET(X,Y), (A.12)

for X > 0 and ¥ > 0. Equation (A.12) separates into two identical one-dimensioral

equations of the form,

9? 2mg ( VRE
—_— (=~ — | — =z ) Iz} =0, rz > U, A.
o ( H\/ﬁn? ( o ) Hz) =0 for z>0 (A.13)

Changing to the dimensionless variable

f 2 'é' )
S = (2 L VR2EY (A.14)
Vv2h mg

Eq. {A.13) becomes:

a‘Z
ﬁ I’(:I) - :"I’(:’) = {. (A.1D)

The solution to Eq. (A.15) which does not increase exponentially with =’ is the Airy

function 4¢(z’). Therefore,

Tl - — | 2mg
I(z)=C s [(——\/Eh,_,)

where C is a normalization constant. The Dirichlet boundary condition implies that

e

( _QE) ‘ (A.16)

T omy

the function V(=) of Eq. (A.1G) must vanish at the boundary : = 0 and this provides

the quantization condition.

1 2m3g 3 V2E
_? V2h nry

From Eq. (A.17). the exact energy eicenvalues are

= (. {A.17}
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En =

_mgay, ( V2h?

1
. i >0, A,
"o 2ng) with n; > 0, (A.18)

where ay, is the n{* zero of the Airy function 4i(z). The normalization constant C

of Eq. (A.16) for energies E = E,,, is given by [37]

2m?g : 1
Cn, = . - . Al
. (@) lan) (4-19)
The energy eigenvalues for the 90° wedge billiard are given by the sum of the

energy eigenvalues for the .\ and ¥ equations:

W

(aﬂ + an_,)
E"'lr"'-' = E"l + Ert: == I\/§

for ny,ne 2 0. (A.20)

\/‘§ﬁ2)

2m2g

The normalized energy eigenfunctions are given by the symmetric and antisymmnetric

linear combinations of the primitive wavefunctions:

C‘l’l 1 Cn 2

'l.‘:"ﬂ-l i) (‘:\-' 1’) = \/i

[ A, (X) A4, (1) £ 4, (X) A4, (V)] (A.21)

For the 45° wedge billiard, the wavefunction must vanish along the line \' = Y.
Hence, the exact enersy eigenfunctions for the 45° wedge billiard are given by the
antisymmetric linear combination of Eq. (A.21). Furthermore. from Eq. (A.21), one
sees that v, ,,(X,Y) is zero when n, = n2. The exact energy eigenvalues for the
45° wedge billiard are the same as those of the 90° symmetric wedge billiard with the

restriction n; # no.



Appendix B

The WKB Approximation

The WBK (Wentzel-Kramers-Brillouin) approximation is a semiclassical me
-thod which applies to multidimensional separable Hamiltonian systems. It is an ef-
ficient method for caleulating approximate solutions to the Schrédinger equation in
the limit 2 — 0 or, equivalently, for highly excited states. In addition. and perhaps
more importantly, it establishes a connection between classical and (uantum mechan-
ics. In this appendix, the WKB solutions to the circle and 45° wedge billiards are
provided. Details of the development of the WILB approximation are not presented
here since they can be found in many textbooks on quantum mechanics {Schiff [38])

and in journal articles {Wnudson and Noid [2G]).

B.1 The general solution

Consider one-dimensional Schrédinger equations of the seneral form

d*ufx)
da?

+ B (rhdr) = o, with £*(x) > 0,
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d?u(x)
dx?

- z)u(x) = 0,  with x3(2) >0, (B.1)

and with,

kKz) = +% [2m (E - V(:a:)]]% when V(z) < E,

k(z) = +% [2m (V(2) - E)]% when V(z) > E. (B.2)

The first expression in E¢. (B.2) pertains to the classically allowed region V(&) < E
whereas the second formula refers to the classically forbidden region V{x) > E. For
the cases where Eq. (B.1) cannot be solved explicitly and V'(.x) is a slowly varying
function of the position . it is possible to obtain approximate solutions. to the order

of k, given by

uVEB () = Al(a)-3 e\p (i? / k(. ch) when V(a)< E
a8 () = An {r)72 e\p (i / w( rh) when Vix) > F (B.3)
where 4 is a normalization constant and z, is usually chosen to be a zero of k{x) or
K{a).

The conditions for which the WIKB approximation is valid can be aetermined
by substituting Eq. (B.3) into Eq. (B.1) and writing the result as (only shown for the

case V() < E since the following analysis also applies to the case when 17( ) > E),
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2, ( o
d—g%-)- + (k3(2) — wla))u(x) = 0. when V(a) < E (B.4)

where

3(M(x))2 AM(a)
$k2(x)  2k(x)

w(x) =

(B.5)

The WKB solutions, Eq. (B.3), are good approximations to the exact solutions u{x)
if one of the following conditions is satisfied [4]:

(a) k%(2) is bounded and nonzero, w(r) is bounded.

(b) k2(a) diverges, h*w{x)/2mi2(x) is nenlisible.

(e} k*(z) is zero (a classical turning point), w(x) = 0.

The bound states are obtained by matching the solutions of Eq. (B.3) at the
classical turning points, where £ = V{x). However. since the WKB approximation
breaks down in the vicinity of classical turning points, one must use connection for-
mulae. Cousider the case when the WK B solution in the classically forbidden resion
decays as » tends away from », (The other possibility. an exponential increase, will
not be discussed since it is not required for the derivations presented in this Ap-
pendix). At a left-hand barrier, when V() > E for & < rpand V() < E for x > ay,

the connection formula can be expressed as
w{2)" T exp [—1— /4»}'( 1')r1r] 20k()] 77 cos [l [z k(r)dx E] (B.G)
o hde, 700 R B VI PR ’

For the right-hand barrier, when V() < E for & < 2 and Vi{a) > E for & > a9, the
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(13

connection formula is given by
1l g= T 1 =
2lk(z)]~2 [—— Ela .t——] ()% ex [— o ] T
[k(2)]~% cos fl/;:.» (a)da n — k(x) 7 exp ﬁfn k{z) da (B.7)

The arrows in Eqs. (B.6) and (B.7) indicate the direction in which the connection can
safely be made. Hence, knowing that the WIB solution is exponentially decreasing
on the left side of the turning point 2, the WKB solution sufficiently far to the right
of x; is a cosine as shown in Eq. (B.G). Similarly, the WKB solution sufficiently far
to the left of x5 is a cosine as shown in Eq. (B.7). By requiring that the solutions

inside the classically allowed region must be equal. we obtain the condition

2[k(x)] 3 cos [% | [ " k(w) dr — E] = 22[k(x)] 4 cos [—% [ “h(x) dx — -}J . (BS&)

b Sy

which leads to the Bohr-Sommerfeld quantization condition
2 | 1 -
2f Ela)de = 2ah (-n -+ —2-) n=0,1,2,.. {B.9)
<1

Finally, the WKB solution at a rigid wall. ¥/(2,) = oc. has the asymptotic solution

of the form

[k(:z.')]"% sin [% /: k() dm] X (B.10)

JIs

in the classically accessible region.
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B.2 The Circle Billiard

The WBK solution for the circle billiard presented here is based on a pa-
per by Berry and Ozorio de Almeida [4] detailing the WIKB treatment to two-
dimensional Schrédinger equationsin cylindrical coordinates. If one wants to solve the
Schrédinger equation for a particle in a circle (with constant potential) by the WKB
approXimation, on first separates variables and has solutions of the form v (r,o) =
R, (r)exp(£ivo) for » = 0,1,2,.... The angular part is exact. The WIKB approxima-
tion is concerned only with the radial part.

By setting R,(r) = r"%u,,(‘r) in Eq. (A.3). the radial equation takes one of

the forms
d?u,(r) 2 . 2
— = A u(r) = . with &5(r) > 0
dr
2, (o
M - H;':(-r]u,.(r‘) = 4. with htf('r) >0 (B.11)
dr?

and with

20 ~
ko(r) = h? 2mEr?
omE [h* (v =1
W2(r) = 2mE ( ~ %) -1/, (B.12)

h? YmEr

R {vi=1/4)

For a particular energy E. the first formulain Eq. (B.11) applies when 7% > SiE

W (vi-1/4)

3 . 2
and, the second formula pertains to values r? < ——
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Since both £2(r) aud x2(r) diverge at the origin r = 0, one must consider
condition (b) to determine the validity of the WKB approximation at the origin. In
this case,

}-1—{% k2(r) - r-—l-U E2(r)

wyfr) _ 1 (3(k:,(rn2_k::(v-)) 1 (B.13)

= w2y e(r)) T mE—T

Clearly, from Eq. (B.13), w,(r) /k%(r) is not negligible for small values of v,
and consequently the WIKB approximation fails at the origin for small values of ».
This result also applies for x2(r). This difficulty at the origin can be removed by
making a Langer transformation [27] setting r = ¢ and w,(r) = e?¢, (). In this

case, Eq. {B.11) becomes

d27¢'.’-u(ﬂ:) 2 ' , . 5 A
dr2 +q°()e. () = 0, with g (x) >0
2 (o ‘ |
: 2:-5(!3) = Q*rlyu(x) = 0. with Q*(x) >0 (B.14)

where
2mE [ . h2?
2000 2
g{x) = h? {e EmE]
2mE [ B2 .
2 a = — -_— JI B.lr
@) h? [ZmE ¢ ] ( %)

The only turning point occurs when ¢{r) = 0 (or ¢, ¢) = 0). which happens when
= e* = . Tle first form in Eq. {B.14) refers to values of + > r, and the

o v2mE"

second form is valid for valnes r < r,. At the origin r = 0 (or equivalently v = —o0),
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Q*z) = v? (and g*(z) = —1?). When » # 0, Q{x) is bounded and not zero.

According to condition {a), since

: frayy2 HE o,
lim Wie) = i 2EWS Q)

0 3Q2x) 20~ (B.16)

the WKB approximation is suitable at the origin. However, when v = 0. Q%x) =0
and, since Hm,__ W(r) = oc. the Langer WKB form fails (condition (c)). The
failure of the WINB approximation at the origin for v = 0 is only important when
calculating the bound states for ¥ = 0 and additional measures must be used to deal
with this case. However, Berry and Qzorio de Almeida [4] have shown by a careful
analysis that, in the end. the quantization condition presented below also applies for
the case v = 0. The Langer form of the WISB approXimation (Egs. (B.14) and (B.15))
is valid for all cases. The WIB solutions for the classically allowed region. based on

Eq. (B.3). are given by.

u‘[j"!\.B(r) — -"1(“""2l"r{-“"y(r“-!\'B{-r)

AWL:;;T exXp (:i:." l[x qlr) dn')

= .-l[.f.'l{r]]'% exp (:{:i‘/!; ATI(I")([!") . for r,<r< R (B.17)

Il

where A is a constant. R is the radius of the circle,

2 2mE hii?
K (r) = %- {1 . ] (B.18)

2 Er?
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and,

/" vVZ2mE 2 R2u2 huy os-! hy
T 2. c
2mE \omE V2mEr

h2p2 hy hy
_ R? - - I [P ) B.19
( 2mE /[ ImE cos (\/2711.512))] ( )

Since the WKB eigenfunctions for the circle billiard must vanish at the circle boundary
r = R, the eigenfunctions are coustructed from the linear combination of the solutions

(B.17) which produces the sine solution of Eq. (B.17).
uLVI(B(r) —_ -“1[’\:](?')]-% Sin (-/I‘?' k](']") al,'.f) (B-2U)

with the integral given by Eq. (B.19). Thisis actually the “Langer-type WKB approx-
imation”. Similarly, the WKB solutions for the classically forbidden region. based on

Eq. (B.3), are

uLVKB(v‘) = [h‘.l(!‘)]_% exp (i _/r wi(r) d’r) for O<r<r, (B.21)
where

2 2mE [ h*7 N

2(r) = 22 -1 B.22

wi(r) ht [QmEW2 J ( )
and,

’"K (') dr,_\/m hu? e hi In 7—;":5 + 4/ %ﬁ% + r? (B.23)

]r,, ! T h 2mE V2ImE r '
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In the classically forbidden region, we want the solution to the WBI energy eigen-
functions (Eq. (B.21)) that decays as » — 0. This corresponds to the positive sign in
Eq. (B.21).

The WKB bound states for » # 0 are obtained from the connection formulas
joining the asymptotic WIB solutions at the turning points. The special treatment
required to deal with the case v = 0 will not be presented here since it is given in

detail in the paper by Berry and QOzorio de Almeida [4]. and the bound states for v = ()

have the same form as those for » # 0. At r, = ‘/’,‘:—‘-E the appropriate connection

formula is

k(r)~3 cos ([: Kr'Ydr' = - ) {B.24)

=1

in the classically allowed region. At the hard wall collision at » = . the connection

formula has the form
k(r)~¥ sin ( / Y ;-'),h-’) (B.25)
R

in the classically allowed region. Since Eqgs. (B.24) and (B.25) both describe asymp-
totic forms in the classically allowed region of motion. they must be equal. and this

leads to the quantization condition
R 3 .
2 [“ktrydr = 2 (n + 1) (B.26)

The energies £ = EEPN which satisfy Eq. (B.26) are the approximate enerev eizen-
O /] v [ O o
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values for the circle billiard. Equation (B.26) applies for all values of 1.

B.3 The 45° Wedge Billiard

The WIB solutious to the 45° wedge billiard derived in this section are also
given in Goodings and Szeredi (19], Szeredi [39], and Rouvinez [37]. Similarly to the
exact quantum solution (Appendix A), the WIKB solution to the 45° wedge billiard
is obtained from the solution to the 90° syminetric wedge billiard. As discussed in
Appendix A, the Schrédinger equation for the 90° symmetric wedge can be written in
terms of the .X'Y-coordinates running parallel to the walls. In this case, it separates

into two identical one-dimensional equations {Eq. (A.13)) which takes one of the forms

200 4
fii(l—) + A () = 0, with &3(a) >0
dx?
2,0 0
d;(;_.) - R ) = 0, with w3(x) >0 (B.27)
X

and with

1 g i .
KA () = = [Qm (’”\/9'3' -~ E)J . (B.28)
For a particular energy E. the first formula in Eq. (B.27) applies when & < % and

the second formula pertains to values « > % In fact, &y = %‘5 is the only turning
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point for this system.
Both &(x) and r(x) are finite and nonzero, and satisfy condition {a) (see Sec.
B.1). Hence the WKB solutions for the classically allowed and forbidden regions,

based on Eq. (B.3). are given by,

uWVEB() = Alk{a) -1 exp (:I:z A k(z') dx ) for 0 <2< ay

A[w{e)] "% exp (:l:/

L

il

u'WfB(;,:) K(x )d?) for 1g < <oc (B.29)

where A is a constant, and

M da = — 2 s _ (p_ marY
|k de = g | B B ) ]

)
= o 4 ?HJI -
[.c., Ma)da’ = .‘.’.ml/'.’gh ( \/— } (B.30)

Since, in the classically allowed region, the WIKB eigenfunctions must vanish at x = 0,
the eigenfunctions are constructed from the linear combination of the solutions (B.29)
which produces the sine solution of E¢. (B.29).

ull"l\'B(.F) = A[A(;)]*% sin (/;J A:(.l.") (1.?") (B3l)

with the integral given by Eq. (B.20). In the classically forbidden region, the WIkB
eigenfunctions must vanish at & = oo and therefore. are given by the solution of Eq.
(B.29) involving the exponential decay.

The WKB bound states are obtained from the connection formulas joining



163

o the appropriate

APPENDIX B. THE WKB APPROXIMATION
(B.32)

the asymptotic WKB solutions at the turning points. At zg = J@

connection formula is

-4 F T
kE(x)~2 cos (_/u k{a") da 4)
in the classically allowed resion. At the hard wall collision at & = 0, the connection
(B.33)

) both describe asymp-

formula has the form

k(x) "sm(/l. rh)

in the classically allowed region. Since Egs. (B 32) and (B
totic forms in the classically allowed region of motion. they must be equal, and this
(B.34)

leads to the quantization condition
3
{B.35)

2/ kladr' = 2% (-n+i—).

Using Eq. (B.30), the WKB energy eigenvalues EEPN which satisfv Eq. (B.34) are

120 h o7
3m'~gw ’(" +3/4)} . with n > 0

3rn.”2g7rh

wedge are given by the sum of the energy eigenvalues for the X and 3 equations
n;+.‘3/—L)} +[ 1

it

EWKB _ |:
' 4
As discussed in Appendix A, the energy eigenvalues for the 45° symmetric
(ne +3/4 ] (B.3G)

ERI Im!gnh
'E"’ = (
4
with the restriction n; # na. The energy eigenfunctions are given by the antisvm-
gne ; e Sl

EBK _ pEBK |
E =E;
metric linear combination of the primitive eigenfunctions siven by Eqs. (B.29) and

.2
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(B.30}:

GEB(N,Y) = Clu!V K B(X)ulVEB(Y) — VKB X)ulY FE(Y)). (B.37)

mny "y na nj



Appendix C

Classical Actions and Related
Phase Indices

C.1 The Circle Billiard

The classical Hamiltonian for the circle billiard (described in Appendix A)

is most conveniently written in terms of cylindrical coordinates as

2 2
P Dy
2m + 2mr? ( )

Since this Hamiltonian is cvelic in the ansular coordinate . the angular momentum
% (9] oy
Pe is a constant of motion. Thus, the classical action in the angular direction is also

a constant of motion given by
Iy = j{py df = 27py. (C.2)

Since there are no turning points, hard-wall collisions or caustics for a trajectory
along the angular direction, the Maslov index for Iy is 1y = 0.

The radial momentum p, can be written in terms of its canonical variable r

165
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by solving for p, in Eq. (C.1). The result is

pr = Ep(E.v)

s
= + 21?:E—r—,_,. (C.3)

Consider a classical trajectory which starts at a point 7y with a negative radial mo-
mentum —p,.(E,rp). In this case, the particle is moving away from the inner cireular
region and heading towards the circle boundary at r = R. The particle then makes
a hard-wall collision with the circle bonndary and is directed back towards the inner
circular region. At the minimum distance from the origin r,,;,. the radial momentum
is pr(E, 7in) = 0. By setting p, = 0 in Eq. (C.1). rppi = VL.TfTE’ A complete cycle
ends when the particle returus to ro with momentum —p{E.rg). The radial classical

action becomes

I, = j{p,.dr

Fis Frarn rp
= f PAE P dr + / -pdE.r)dr + m(E . r)dr
ro JR

Y FPmn

— ST 3 _ P;’;! _ Dy -1 Py
= 2V2mL |\ R T E mcos (_—_\/J—mff?) . (C.4)

For one cycle of the radial component. the related phase index is v, = 3. obtained
by counting 2 for the momentumn reversing collision at r = R plus 1 for the turning

point at r = r,,;,.
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C.2 The 90° Symmetric Wedge Billiard

The classical Hamiltonian for the 90° symmetric wedge (decribed in Appendix
A) expressed in terms of the canonical variables parallel to the sides of the wedge is
given by

% mgX P2 mgY
Q._i.n_g_.i.&_i_’_g__—_ﬁ‘ (C.5)

2m V2 2m 2

where X' > 0 and ¥ > 0. This Hamiltonian separates into two identical one-

dimensional Hamiltonian systems.

23 -
Py omgX
X om -+ \/E X
2 r
7% mal .
Hy = &, M9 _ g (C.G)

with £ = Ex + Ey. Hence, the following results obtained for the variable 17 apply
to the variable .\,

Solving for py in Eq. (C.0) leads to expression.
py = Epy(Ey.1)

= isz (E,- _ ”3; ) (C.7)

With an arbitrary starting point 1, and an initial momentum +py( Ly Y5 ) the par-

ticle moves away from the origin and reaches a maximum height ¥4 = \/EE;/ (mg)

at the turning point when py: = 0. The momentum then changes sign and the particle
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falls back to towards the origin where it makes a hard-wall eollision with the billiard
boundary. Finally, the particle returns to its initial state (Yo, +py(Eyv,Y,)). The

classical action for the motion along the Y- direction becomes

Iy = ;f prdY

rma; 0 Yo
- [ Py By, 1YY + [ —py(Ev, Y)Y + [ pr(Ey. Y)Y
JY, AN JO

= S _pw (C.8)

3mz g

The Maslov index for this circuit is 14 = 3 which includes the contribution of 2 for

the hard-wall collision at " = 0 and 1 for the turning point at Y., = V2E;-/(mg).



Appendix D

The Normal Derivative in Two
Dimensions

Our goal is to derive a general expres-.on for a partial derivative with re-
spect to the coordinate perpendicular to a classical trajectory in a two-dimensional
cartesian plane. We begin by considering an arbitrary trajectory described by carte-
sian coordinates (z,y) as shown in Fig. D.1. A second coordinate system has been
drawn with its origin at the point &, = (2.y;) along the trajectory such that the
x" and 3" coordinates are perpendicular and parallel to the trajectory, respectively.
The momentwn vector ¥, ), which is tangent to the trajectory, is directed along the
positive y”-axis.

The 2"y"-coordinates are related to the zy-coordinates by simple coordinate
transformations. First. the origin of the xy-coordinate system is translated to the
point .F) = (21, y;) and consequently, is described by the new coordinates

!

= -0 and Yy =y~ . (D.1)

169
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Figure D.1: Orientations of the coordinate systems with respect to an arbitrary tra-
jectory.

Then, the 2'y-axes are rotated counterclockwise. by the angle o, until they coincide

with the "y"-axes. This rotation is described by

"

! .
¥ = reoso+ 4 sinoe

¥ = —i'sino+ 4 cose {D.2)

Solving for 2" and y'. Eq. (D.2) hecomes:

= 2"coso~y'sine

y = x"sino+y" cose (D.3)
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Substituting for o' and g’ in Eq. (D.3) using Eq. (D.1), one obtains the desired
relations

z=1"coséd—y"sino+2, and y=i"sind+ y"'coso + y (D.4)

The partial derivative with respect to the #”-coordinate {perpendicular to the
trajectory) is related to the partial derivatives with respect to the original coordinates

a and y using the stendard product rule for partial differentiation. The result is

o _ 0 00
dz" T " dr  Oa" dy
d . d -
= cos@a +.sm<aa—y (D.5)

It is often more convenient to express Eq. (D.5) in terms of the direction angle « of
the momentum vector j{.F;) with respect to the x-axis. Since the momentum ME))

has been aligned with the positive y”-axis (Fig. D.1), o = o + /2. Hence, Eq. {D.5)

becomes
_3_ = sin ri — CO3 u'ma—
oz “or dy
1 d ad
= Py =— = P =— ). D.G
| E)| (P”' o 7 ‘Oy) (B0)

Eqs. (D.5) and (D.6) are two forms for the partial derivative with respect to the

coordinate perpendicular to the classical trajectory at the point .ty = (&1, ).



