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All day | follow

Watching the swift dark furrow

That curls away before me,

And care not for skies or upturned flowers,
And at the end of the field

Look backward

Ever with discontent.

A stone, a root, a strayed thought

Has warped the line of that furrow -

And urge my horses 'round again.

Sometimes even before the row is finished
| must look backward;

To find, when | come to the end

That there | swerved.

Unappeased | leave the field,
Expectant, return.

The horses are very patient.
When | tell myself

This time

The ultimate unflawed turning
Is before my share,

They must give up their rest.

Someday, someday, be sure
I shall turn the furrow of all my hopes
But | shall not, doing it, look backward.

vi

RAYMOND IKNISTER
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Abstract

We investigate the global stability of a differentially rotating fluid shell threaded by
magnetic fields to linear perturbations. This system models an accretion disk far from its
vertical boundaries. To focus on the direct interaction between the magnetic field and dif-
ferential rotation, the stability analysis employs an equilibrium model of homogeneous and
incompressible fluid which allows these phenomena to be studied in isolation. Depending
on the degree of internal pressure support, disks may be either “thick” or “thin” and both
possibilities are considered here. The magnetic field exterior to the fluid has an effect on
the radial boundary motion, and we derive the appropriate boundary conditions.

The first interaction of interest is the axisymmetric instability of Velikhov and Chan-
drasekhar. It has both local and global manifestations, the latter of which can be stabilized
for all perturbations if and only if the equilibrium magnetic field strength is above a certain
threshold value, which we calculate in our model for a wide range of equilibrium parameters.
The growth rates of the unstable modes are always less than, but comparable to, the cor-
responding local growth rates. The former are also considerably higher for free boundaries
than for the rigid configurations considered by other authors. The connection between the
global and local characters of the instability is fully elucidated.

These results are generalized from a purely vertical field to the case when an azimuthal
magnetic field is present. In most cases, the azimuthal field tends to stabilize the VC in-
stability, although strong fields (Alfvén speed of order the characteristic rotational speed)
are required for complete stabilization. We find an additional strong field instability that
arises when the azimuthal Alfvén speed exceeds the characteristic rotational speed. For
freely-bounded configurations, this instability resembles the sausage instability for inter-
penetrating fields in plasma physics.

Other interesting interactions appear in the presence of nonaxisymmetric perturbations.
The global, dynamical instability of Papaloizou and Pringle, previously known to exist
only in non-magnetized models of thick disks, is shown to have a magnetic counterpart.
Indeed, this instability grows much more rapidly than in the corresponding hydrodynamic

case. There also exist two additional types of unstable modes not present in hydrodynamic

xii



disks. The basic instability mechanism for these modes appears to be wave over-reflection
between the boundaries and one or more of the singular Alfvén radii that can lie within the
st-ell. These Alfvén resonances have a similar role to the corotation resonance in the purely
hydrodynamic disk. We find, as in the axisymmetric case, that highly localized modes are
fastest growing; however, they do not exceed the axisymmetric growth rates for any of the
system parameters examined.

Although all of the instabilities we found grow on the dynamical timescale, they may
not be catastrophic to accretion disks. Indeed, the highly localized nature of the fastest
growing modes suggests that these modes do not lead to large-scale breakup, but rather
serve to “stir up” the fluid locally. Thus our results support the oft-mentioned conjecture
that these magnetic instabilities could lead to turbulence. The globally unstable modes we
found have quite different implications, among them the possibility that large-scale magnetic

field generation (which we demonstrate in the linear growth regime) could obviate the need

for the a-effect in standard dynamo theory.
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Chapter 1

INTRODUCTION

The significance of accretion as an astrophysical process can hardly be overemphasized.
That planets and stars owe it their very existence is indisputable, although many details of
the formation process still elude theorists. Furthermore, for the r10st massive bound astro-
nomical objects such as supermassive black holes, accretion is the most efficient mechanisin
of energy release. It is therefore surprising that while most energy production processes of
importance in the cosmos were known by the middle of this century, e.g. nuclear fusion,
radioactivity, etc., accretion was not promoted to such status until quite late (Hoyle &
Lyttleton 1939; Bondi 1952}, The ubiquity and significance of disks in astronomy, on the
other hand, has long been recognized (Laplace 1802). But the best known disk systems,
galaxies and our own solar system among them, often show no evidence for aceretion. The
concept of an accretion disk arose only when consideration was given to material flows in
the vicinity of rotating, massive objects. It is now believed that such situations are common
in the universe on almost all scales from planetary rings to the nuclei of galaxies.

Direct signatures of accretion are exceedingly hard to observe. This is because the pro-
cess only occurs in regions with a significant reservoir of surrounding material which, unfor-
tunately, often obscures the central object of interest from view, It is therefore appropriate
to begin by reviewing the observational evidence for accretion disks, before undertaking a

description of the processes believed to occur in these objects.
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1.1 Observational Evidence for Accretion Disks

1.1.1 Close binary systems

The best observational evidence for accretion disks to date comes from accreting binary
systems. In these, one of the components (the “primary”) is an evolved compact objec:
(white dwarf, neutron star, or black hole) while the other (the “secondary”) is a post-main-
sequence giant star. In the course of its evolution, the secondary can overfill its Roche lobe
and, as a consequence, have its outer layers gravitationally stripped by the primary. As
both components are rotating about their common centre of mass, the stripped gas has
considerable angular momentum, and so cannot fall onto the primary purely radially. This
leads to the formation of an accretion disk, a structure in which gas spirals slowly inwards
toward the primary through a series of roughly circular orbits. In the absence of external
torques, the gas falling in transfers angular momentum outward through the disc by internal
torques, the exact nature of which are still very uncertain (see §1.2 below).

Systems in which the primary is a white dwarf are called cataclysmic variables (CVs).
Of particular interest are the so-called short-period cataclysmic variables, or “dwarf novae”
(DNs). These number around 300 and are characterized by frequent, small (2 - 5 mag
brighter in outburst than in quiescence), short-period (days - weeks) outbursts of radiation.
Their orbital periods are often correlated with the time they take to return to quiescence
after an eruption. This is thought to imply the presence of an accretion disk since a longer
orbital period allows a larger disk, which in turn has a longer intrinsic decay timescale (Bath
& Pringle 1985). Since DNs are the best-studied system thought to contain an accretion
disk, I confine my attention mainly to them in this subsection.

In order to interpret observatious of accreting binaries, it is useful to have some idea of
the energies liberated in the accretion process. A simple order-of-magnitude estimate of the
gravitational potential energy released by the accretion of a mass Am onto a star of mass
M and radius =, is

AE{ICC = G.M'Am/f‘..

Assuming AEg.. is subsequently released in the form of electromagnetic radiation, this can
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be expressed as a luminosity

Loce = GMM|r.. (1.1)

where M is the accretion rate. This is the total energy available via accretion. For a white

dwarf (Frank, King, & Raine 1985, hereafter FKR),
Loce = 1.3 x 108 My6(M/Mz)(10° em/r.) ergs™,

where the formula has been expressed in factors of order unity for a typical white dwarf,
M s is the accretion rate in units of 106 g s=! (1.6 x 107190 yr=1), and is expected to be
of order unity. The predicted luminosity, 103 erg s}, is within an order of magnitude of the
values observed in such systems (Wade & Ward 1985). Actually, the expected contribution
to the accretion luminosity from the disk alone is Lycc/2; the other half is believed to emerge
from the thin boundary layer between the disk and star (FKR).

One can similarly estimate the expected spectral ranges of emission for CVs. Fairly

simple arguments lead to (FKR)
GeV g hv £ 100 keV,

where h¥ is the energy of a typical emitted photon. This suggests that most white dwarf
systems are likely to be optical, ultraviolet, and possibly X-ray sources. The prediction
agrees with observations of CVs, the most luminous of which were found by the Copernicus
and IUE satellites to have strong ultraviolet continua.

The expected spectral energy distribution (SED) of a typical DN system is shown in
Figure 1.1. The main contribution to the luminosity comes from the accretion disk. The
expected contributions from the boundary layer and red giant companion are also shown.
The smooth disk curve is obtained by summing the spectra of unit surface area contributions
all over the disk, assuming that the latter is geometrically thin, optically thick, and radiates
locally like a blackbody. For r > 7., the effective temperature of such a disk varies with
radius as T ~ r=3/4, while the spectrum (flux F, vs. frequency v) obeys F, ~ v/3 (Lynden-

Bell & Pringle 1974). This simple picture is for steady disks only, and therefore would be
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+——— A i VIS { uv i EUV

log flux [Millijamky)

140 145 15.0 165 160

jog traquancy (H2)

Figur2 1.1: Various components that might contribute to the spectrum of a DN. The smooth
disc curve is obtained if each disk element radiaies like a blackbody and the other if each
eloment radiates like a stellar atmosphere. The visible data for the red star are taken
from observations of single stars, and the infrared is a blackbody extrapolation of the last
observed point (Bath & Pringle 1985).

expected to hold only in the DN’s quiescent state.}

It is generally agreed that DN outbursts are caused by variations in the accretion rate
onto the white dwarf, but the cause of these changes is still unknown. Two commonly
suggested possibilities are: (1) Variations in the mass transfer rate onto the outer disk edge
by the secondary. This would not require any gross changes in the disk internal structure,
e.g. in the viscosity. (2) The viscosity, which governs the mass transfer rate through the
disk, varies as a result of some instability germane to the disk, while the transfer rate from
the secondary remains unchanged. The latter interpretation suggests a way of measuring
the viscous timescale: it should be correlated with the outburst decay time. At present, th:is
is the only known method of estimating the magnitude of the viscosity. Further discussion
of these issues can be found in Bath & Pringle (1985). In sum, DN are amongst the very
few astronomical systems in which accretion disks can be studied in temporal and spatial

detail. The only other area offering such promise for detailed modelling is star formation,

In fact, it may not hold even then. This depends on the value of the viscosity in quiescence. Longer-
period CVs, however, such as UX UMa and Z Cam stars which show little variation on timescales of months
to years, should represent steady disks (Bath & Pringle 1985).



1.1. OBSERVATIONAL EVIDENCE

<t

and then only quite recently.

1.1.2 Protostellar systems

Due largely to advances in instrumentation, it is only in the past decade or so that direct,
optical evidence for disks around nearby stars has become available. /3 Pictoris, a main
sequence star possessing a dusty disk a few hundred astronomical units (AU) in radius, is a
rare and stunning example of a completely unambiguous detection (Smith & Terrile 1984).
Presumably, 8 Pic’s disk was formed early in its evolution, as a natural outcome of the
initial pre-stellar collapse (Tscharnuter & Boss 1993). The frequency of stars with disks
should therefore increase as younger and younger sources are observed.

The arena of star formation, however, is well veiled. Copious amounts of dust and gas
lead to large visual extinctions (Av 2 10 mag), calling for a cadre of observing techniques
in multiple wavebands. Different methods probe different spatial scales, and it is therefore
useful to discuss the current observational evidence for disks in terms of these scales sepa-
rately as has been done, e.g., by Beckwith {(1994). Several of the most compelling pieces of
evidence supporting the presence of disks in young stellar objects (YSOs) are summarized
below.

(1) On large scales (100 - 5000 AU), several YSOs (e.g., HL Tau) are surrounded by cold
(T =~ 30 K) molecular gas with the flattened appearance of an edge-on disk (Sargent &
Beckwith 1991). The line-of-sight velocities decrease with distance from the star, although
a distinctly Keplerian falloff has yet to be detected.

(2) On somewhat smaller scales (1 - 100 AU}, the far-infrared continuum optical depths in
many visually identified stars imply visual optical depths of 100 or more for the circum-
stellar material {Strom et al. 1989). Since the source would be entirely obscured were this
material to lie along the line of sight, it is more plausible that it lies in a thin disk orbiting
the star.

(3) The extended winds observed in many YSOs generate visual lines possessing only blue-
shifted components. It has been suggested that the “missing” red-shifted components are

hidden behind the opaque plane of a circumstellar disk (Edwards et al. 1987).
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(4) On small scales (0.1 - 100 AU), excess infrared contributions to the SEDs of several
YSOs have been observed. These are well-modelled by disks, although other distributions,
e.g. spherical shells of circumstellar dust, have not been ruled out (Adams, Lada, & Shu
1988; also, see below).

(5) On the smallest observable scales (~ 0.01 AU), comparison of velocity widths of opti-
cal and infrared spectral lines in FU Orionis objects indicates that the infrared rotational
velocity is smaller than that of the optical. This is consistent with a decreasing rotation
curve with radius, since the optical lines are believed to originate in the hot region closer
in to the star (Hartmann & Kenyon 1987).

I will focus now on the SED ((4) above) as a diagnostic of protostellar disks. Of all
the above data it presently offers the greatest potential for deriving physical quantities of
interest to disk theorists. The best modelled YSOs in this respect are the T-Tauri stars, the
optical and ultraviolet spectra of which feature prominent emission lines and high variability.
These low mass (0.2— ~ 3M,)) stars also display strong mass loss and magnetically active
atmospheres, both believed to be signs of their extreme youth.

Given the SED, one can define a spectral index n by

__dlog(vF,) _ dlog(AFy)
dlogy ~  dlogh

This index is useful in characterizing the excess flux observed in the near- and mid-infrared,
where the slopes tend to be almost linear (i.e. the Rayleigh-Jeans limit). A stellar black-
body, e.g., has n = 3. It is widely accepted that the infrared excess is due to starlight
absorbed by circumstellar dust grains and reradiated at longer wavelengths. There are
those, however, who question the disk interpretation for the dominant distribution of the
dust. It has been suggested, e.g., that the dust could be distributed roughly spherically
or be largely contained within the gaseous outflows frequently observed in YSOs (see, e.g.,
Rowan-Robinson et al. 1986).

In a survey of 86 YSOs, Beckwith et al. (1990) found that 42% have detectable far-
infrared {1.3 mm) emission from small particles. The measured visual extinctions are gener-

ally quite small (£ 7 mag), arguing for a disk interpretation. The authors used far-infrared
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and millimeter-wave spectra of these sources to estimate both the mass and temperature
distribution of the presumed disks.2 These estimates are only weakly dependent on the
assumed outer radius of the disk, Ry, a fortunate occurrence since the latter is only loosely
constrained by spectral fits to the data. Typically, one finds Rg = 50~ 100 AU. Disk masses
ranged from 0.001 to 0.5 M, with a mean of ~ 0.02M. A more recent study (Osterloh &
Beckwith 1995) found more low-mass disks, bringing the mean value down to ~ 0.01M{5. In
any case, these results show that most disks are much less massive than their central stars,
implying that the common theoretical bias toward Keplerian disks is probably justified for
most sources (see ff. §1.2). A very recent study (McCaughrean et al. 1995) shows that the
frequency of circumstellar disks in dense clusters such as the Trapezium may be even higher
(~ 50 — 80 %) than in previous samples.

With a typical extent of ~ 102 AU , the disk is likely to be optically thick provided its
mass M » 10~2 M (Adams, Lada, & Shu 1987; Kenyon & Hartmann 1987). Such disks
can be expected to fall into two general categories: those that have appreciable radiation
arising from intrinsic processes within the disk (“active” disks), and those that do not (“pas-
sive” disks). Clearly, these two types may have different spectral indices. If the equilibrium
temperature distribution of the disk is well-represented by T ~ =/, then the emergent spec-
trum will have a spectral index n = 2/l — 4 (Lynden-Bell & Pringle 1974). The standard
viscous accretion disk (§1.2), which has ! = 3/4, then gives n = —4/3. Friedjung (1985) and
Adams & Shu (1986) showed that a passive, non-accreting, spatially thin, optically thick
disk would intercept 25% of the starlight and reradiate it in the near- and far-infrared.
Remarkably, they showed that such a disk also has ! = 3/4. This means that if the acere-
tion rate is so low that the luminosity from accretion is less than a quarter of the stellar
luminosity, then simple reprocessing will dominate over viscous accretion. For example, in
models of the minimum-mass solar nebula (Ruden & Lin 1986), M ~ 5 x 10-8Mg, yr!,
producing a total disk luminosity of Ly ~ GM.M/2R, =~ 0.39(M./Ms,)/(R./Rc) La,

which for typical T Tauri parameters can easily be smaller than the corresponding repro-

*Note that while the authors’ temperature estimates rest on relatively few assumptions (they fit the
observed SEDs to a blackbody distribution in a low-frequency (far-infrared), optically thin limit), their mass
estimates are quite sensitive to their choice of an opacity law, which depends strongly on the largely unknown
emissive properties of grains (cf. Hildebrand 1983).



8 CHAPTER 1. INTRODUCTION

N FETTL I

log[4nr*vF,)

axsadavealoaanlygy

Figure 1.2: A flat-spectrum source, T Tau. The curves are modeis of a star plus a spatially
flat disk. The solid curve is for a disk of infinite mass which is optically thick at all v; the
dotted curves have disk masses of (from left to right) 1, 0.1 and 0.01M;,. The triangles are
infrared data, while the data points with error bars are measurements at mm and sub-mm
frequencies (Adams, Emerson, & Fuller 1990).

cessing luminosity of L./4. Accretion will therefore only be observable if the star radiates
additional luminosity from a viscous boundary layer.

While the spectra of a few T Tauri stars (e.g. SR 9) appear to follow [ = 3/4, most
display a somewhat flatter law, somewhere in the range —4/3 < n < 0 (3/4 > | > 1/2)
(Beckwith et al. 1990). A source with an n = 0 SED is referred to, appropriately enough,
as a flat-spectrum source. A good example of this is the star T Tauri itself (Figure 1.2).
One possible explanation for the flattened SEDs of these sources is disk “flaring” (Kenyon
& Hartmann 1987). In this picture the disk, while geometrically thin in its inner parts,
possesses a substantial circumstellar layer of gas and dust at larger radii. The additional
extinction due to this material flattens the SED. While this scenario can reconcile the
passive disk idea with observed SEDs, it has been criticized (e.g. Shu 1991) on the grounds
that: (i) If flared disks are common (which they need to be) then, statistically speaking,
obscured T Tauri stars should be just as common. In fact, the latter are about ten times
as scarce as visible T Tauris. (ii) Reprocessing of starlight in a passive, flared disk is not
likely to produce a single power law SED from near- to far-infrared. Natta (1993) showed
that the addition of a tenuous, dusty envelope to the disk-star system could reproduce the

entire observed range of spectral indices in the interval 5 - 100 um. Her three-component
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model of T Tauri systems then overcomes the difficulty (ii), but is equally prone to (i).

A distinct possibility is that the disk is not passive but active, in the sense that significant
energy and momentum transport due to hydrodynamic or hydromagnetic instabilities (see
ff., §1.3 - 1.5) takes place in the disk. An example of such a mechanism is a one-armed spiral-
density wave, which may be generated whenever the disk mass is > 25% of the total mass
(star plus disk) (Adams, Ruden, & Shu 1989; Shu at al., 1990). Interestingly, the resulting
dissipation leads to a nonuniform accretion rate in the disk with M o r for a flat-spectrum
source. Standard viscous disk models, on the other hand, feature M = constant (see ff.,
§1.2). The resulting “pile-up” of matter due to this nonuniform accretion could lead to
ancillary phenomena such as FU Orionis outbursts (Hartmann & Kenyon 1987; Hartmann
1994). More importantly, however, Shu (1991) pointed out that other global instabilities
are in general inconsistent with M = constant, suggesting that the standard model may be

too limited to account for many phenomena of interest in the protostellar regime.

1.1.3 Active galactic nuclei (AGN)

In this class, I include Seyfert galaxies, quasars, and related systems such as BL Lac objects,
liners and radiogalaxies. Taken as a group, there is perhaps no other class of system which
argues so strongly for the presence of accretion power from purely energetic considerations.
AGN have a range in luminosity extending from 104 erg s=! (Seyferts) to 108 erg 5!
(quasars). The quoted luminosities have been known to vary on timescales of weeks or
less, suggesting a very compact accreting mass. In addition, if these luminosities occur at
or below the Eddington limit3 1.3 x 10% (M/Mg)) erg s~ then this suggests masses of
order 10° to 1010 M. Hence the widespread belief that only massive black holes could be
powering these systems.

Despite these convincing arguments on energetic grounds, AGN are still poorly under-
stood objects as far as the details of the accretion process are concerned. Ongoing herculean

attemnpts to unify observations that span more than a dozen orders of magnitude in both

3The Eddington limit, Lg = 4rGMmycfor (where o7 is the Thomson cross-section), is the critical
luminosity at which the outward radiation pressure on an electron-proton pair just balances the inward
gravitational force. For steady, spherically-symmetric flows, accretion stops when L > LE.



10 CHAPTER 1. INTRODUCTION

log Ly, "

- -

I 1 | 1 1 J
1 " 15 10 1 1
Log v

Figure 1.3: A characteristic AGN continuum. (Netzer 1990).

spatial scale and frequency often betray the difficulty of such a task (Woltjer 1990; An-
tonucei 1993; Blandford 1990). Consequently, the evidence for disk accretion in AGN is
on much shakier ground than for either CVs or YSOs, and the comparative brevity of the
present section will reflect this fact.

The emission (Netzer 1990) and absorption (Woltjer 1990) line spectra of AGN have
been studied in great detail, but I will restrict discussion here to a “typical” continuum
spectrum such as that shown in Figure 1.3. Between 10 and 0.1 pm, the spectrum can be
decomposed into a power-law component F, ~ v~ (with 4 = 1) plus a superposed “bump”
at blue and near-ultraviolet frequencies. At higher frequencies, one typically finds an X-ray
tail, with a cutoff in the vicinity of 20 keV. After subtraction of the nonthermal power-law
component, the blue-UV bump can be fit by a single blackbody spectrum with T =~ 3 x 10*
K (Shields 1978; Malkan & Sargent 1982). A standard thin accretion disk (§1.2) radiating
at sub-Eddington luminosity (L/Lg =~ 0.1) and orbiting around a ~ 108Mg black hole
can achieve this temperature, and furthermore, its spectrum peaks in the near-UV (Shields
1978). Unfortunately, this interpretation is not unique. In the well-studied quasar 3C 273,
e.g., the bump may also be attributed to synchrotron radiation (FKR).

It is in fact the X-ray excesses of AGN continua that pose the biggest difficulty for
thin accretion disk models. If thermal in origin, these excesses require much higher tem-
peratures (~ 107 K), and therefore luminosities (L 3> Lg) than are consistent with thin
disk theory (§1.4). Thick disks, supported primarily by radiation pressure and accreting

at super-Eddington rates, are more successful in describing these properties (Jaroszynski,
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Figure 1.4: (a) Ground-based, composite image of the radio jets and optical galaxy NGC
4261. (b) High-resolution, HST optical image of the galaxy core, showing a dusty torus
oriented perpendicular to the radio jets (Jaffe et al. 1993).

Abramowicz, & Paczyiniski 1980; Madau 1988). In addition, they may be able to better ex-
plain certain inclination effects known to be important in these distant and poorly-resolved
systems (Netzer 1990).

Finally, I draw attention to the recent high-resolution optical images of the liner galaxy
NGC 4261, which appear to have resolved a dusty torus perpendicular to the (previously
known) bipolar jet (Figure 1.4; Jaffe et al. 1993). Previous dust continuum and broad-line
emission observations had suggested the existence of such objects on much larger scales
(~ 100 pc) than the radiation pressure supported disk mentioned above {Antonucci 1993).
Models of the Seyfert 2 galaxy NGC 1068 have also incorporated such dusty tori (Krolik &
Begelman 1988; Pier & Krolik 1992).

1.2 Thin Disk Theory: Basics

Much of the literature on steady accretion disks utilizes a particular model: that of the
“standard” thin disk.* In this, the disk is geometrically thin in the sense that, at some

radius » = R, the scale height (or half-thickness) H <« R. Physical quantities inside the

“Much of the material in this section is gleaned from the excellent reviews of Pringle (1981) and FKR.
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disk are then well-approximated by their values averaged over the thickness. Choosing
cylindrical polar coordinates (r, ¢, z), the components of the fluid velocity u are assumed
tc obey the following ordering:

Uy > ur D u; =0 (1.2)

That is, the disk is rotationally-dominated, with a small accretion rate, and vertical motions
are essentially negligible. The latter implies that the vertical pressure gradient is balanced
by the z-component of gravity:

p 3[ GM
(

| e — 02, -
R2 +22)1/2] ~ pQK‘! (1'3)

-~
r

where Qi = /GM/R? is the local Keplerian rotation frequency. To order of magnitude,
Op/08z ~ p/H, z ~ H, and taking p ~ pc? where ¢, is the isothermal sound speed, this

H R\Y?2 ¢
E =Gy (CTW) = Es (1-4)

equation then becomes

where ¢y = RQp is the Keplerian circular speed. The thin disk assumption H < R then

amounts to

C‘g << u}{.

That is, the local Kepler velocity should be highly supersonic.

Where does accretion fit in? In a differentially rotating fluid, viscous friction between
shearing layers will extract energy from the gas, some of which goes into heat, resulting in
a steady infall of material toward the central object. It has long been known that ordinary
molecular viscosity is too weak to have a significant effect on the mean flow: under typical
conditions expected to hold in disks, the Reynolds number Re (the dimensionless ratio of

inertial to viscous forces) has been estimated as (FKR)
Re > 10, (1.5)

The sheer magnitude of this number, as compared with typical laboratory values at which

viscous liquids undergo the transition from laminar to turbulent flow (Re ~ 102 — 10%), has
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led to the frequent conjecture that accretion disk flow is likely to be turbulent. That this
argument rests upon a misapplication of the laboratory results is perhaps not as widely
known as it should be (cf. Shu 1992), but in any event it has led to a plethora of interesting
proposals for the elusive viscosity mechanism. Nominally, the “viscosity™ due to turbulence,
v¢, can be estimated on dimensional grounds given the length scale L and velocity @ of the
largest turbulent eddies, since [v] = cm? s™!. One can be reasonably certain that T < c,
since supersonic motions would be subject to additional dissipation via shocks (however,
this need not be true in magnetized disks, which are considered in §1.5). In addition, L < H

in a thin disk. One can therefore write
v = ac.H, (1.6)

where a g 1 is, as FKR put it, “a useful parameterization of our ignorance,” and contains
the unknown physics behind the turbulence.®

On dimensional grounds, one also has u, ~ v;/R; this implies
U ~acs HIR € c,. (1.7)

That is, the inflow velocity is highly subsonic. This is entirely consistent with the original
assumption (1.2).

The above “a-prescription” was first introduced by Shakura & Sunyaev (1973), and
allowed significant progress toward a phenomenological theory of accretion disks. In addition
to modelling the disk fluid flow, viscosity, and accretion, these authors introduced relations
for radiative balance and opacity, assuming that the disk was optically thick. In all, they
obtained 20 equations in 24 unknown physical quantities, leaving 4 independent quantities.
One usually chooses these as: M, M, R, and o. Note that due to the local nature of the
thin disk model, the system of equations to be solved is algebraic, not differential; i.e. R is

a fiducial radius in the thin disk. The radial structure only enters the calculation insofar as

*Even if the real mechanism which facilitates angular momentum transport in accretion disks is not
turbulent in nature, o is still an acceptable parameterization for modelling purposes. In that case it represents
a constant of proportionality between the viscous shear stress and the pressure (see fl. §1.3).
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it fixes the local energy generation rate (FKR).

In the two extremes where either the gas pressure pgq, or radiation pressure prqq dom-
inate, one can obtain analytic solutions of the thin disk structure equations. These, along
with the numerical solution of the pgs; ~ Praa case, led to the identification of three quali-
tatively distinguishable regions. In the context of compact binaries and AGN, these can be
characterized as follows (Shakura & Sunyaev 1973):

e the inner region, where radiation pressure dominates gas pressure and Thompson scatter-
ing is the dominant opacity mechanism;

o the middle region, where gas pressure dominates but Thompson scattering is still the
most important contribution to the opacity; and

¢ the outer region, which is gas pressure dominated, but where the dominant opacity mech-
anism is free-free absorption.

The bulk of the observed X-ray luminosity is expected to originate from the radiation-
dominated inner disk. Note that this is also likely to be the most highly ionized and
magnetically active region. In protostellar disks, where dust is likely to be the dominant
source of opacity, the inner radiation-dominated region is probably not present. Such disks

are expected to be optically thick out to many AU (Strom et al. 1993).

1.3 Hydrodynamic Instabilities in Disks

The theory outlined above is for steady disks, and does not allow for the possibility that
either external (e.g. a sudden change in the external mass supply) or internal (e.g. spon-
taneous fluid instabilities) factors could lead to alterations in the overall disk structure in

time. Of particular concern are changes which might occur over a dynamical timescale, i.e.
tayn ~ O
dyn K

since this is crucial to the postulation of equilibrium. Two other timescales of interest are

the thermal (the time required for heat to be viscously generated) and the viscous (the time
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required for a fluid element to be viscously transported through the disk):

H -2
- -1
tn ~ Itdym tvise ~ @ (T) tdyn.

Note that yisc >t 3> tgys. For the standard a-disk,

tim ~  ati ~ 100(M/M)~/*(R/10"%cm)*? sec,
tuse ~ 3% 10%™ VS MEY O (MM ) 4(R/10%em)¥  see.

Thus the dynamical and thermal timescales are on the order of minutes, the viscous
timescale on the order of days to weeks for typical parameters.

The Shakura & Sunyaev solution, while a self-consistent equilibrium configuration, does
not necessarily represent a stable equilibrium. That is, one should still check that the sup-
posed steady state remains so when subjected to arbitrary infinitesimal perturbations. If
such perturbations begin to grow then the putative equilibrium is in fact unstable, The
disparity of the above timescales allows us to distinguish between different types of in-
stability. For example, assuming axisymmetric perturbations of wavelength A such that
H <« A <€ r, only the equations of radial viscous diffusion and thermal energy balance
need to be considered (i.e. choosing this lengthscale singles out the thermal and viscous
timescales; see Shakura & Sunyaev 1976). It can then be shown that such perturbations

will be spontaneously unstable if

d In@* dIn@Q~ . N
dinT, |~ dInT. || (thermal instability),
or
a 3 . aye
5 (%) < 0 (viscous instability),
a.—l Q+=Q_

where Q1 and Q™ are the local heating and cooling rates, T, is the temperature at a given
radius, and T is the local surface density. The former condition states that a small increase
(decrease) in T, causes Q% to increase faster (slower) than Q~, causing an even larger

increase (decrease) in T, (Pringle, Rees, & Pacholczyk 1973; Shakura & Sunyaev 1976). The
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latter condition states that unless the mass diffusion coefficient 141X is positive, material will
be fed into regions of high density and removed from areas of low density, causing the disk
to break up into rings (Lightman & Eardley 1974; Lightman 1974). Piran (1978) showed
that both of these instabilities have their origin in the variation of the accretion rate M with
%.. In particular, d InM/d InE < 0 is a necessary and sufficient criterion for instability. For
the standard model, it can be shown that an equivalent condition is prgg > 3pgas/2 (Treves,
Maraschi, & Abramowicz 1988). Thus these instabilities are most likely to occur in the
inner region of the disk, where prgq 3> pgas-

Due to the rough agreement of t,;,, with the outburst timescale in DNs, the above
instabilities have been studied extensively in the hope that they might aid in the explanation
of the outbursts (see FKR. for further details). The discussion of §1.1.2 might also lead one
to speculate that FU Orionis outbursts may be caused by the piling up of matter due to
viscous instability, rather than the eccentric gravitational instabilities found by Adams,
Ruden & Shu (1989) (ARS). This hypothesis could be tested in two ways: (1) The ARS
instability, since it is dynamical, should have a much shorter timescale than t,isc, which
one would expect to be correlated with the outburst timescale; (2) If FU Ori systems have
low mass disks (g 25% of the total mass), the ARS instability will not occur, but the
viscous instability could. The possible role of thermal instabilities in FU Ori events has
recently been investigated by Bell & Lin (1994), and a review of the subject may be found
in Hartmann (1994).

The thermal instability discussed above was initially considered a serious blow to the
standard disk model, since it implied changes in the global structure of the disk; the thermal
runaway would inflate the inner region, invalidatiug the thin disk assumption. The breakup
of the disk into rings via the viscous instability is a similarly disasterous occurence (although
it occurs on the timescale t,;,c > ts;). Note, however, that the mere presence of an
instability need not have such drastic consequences. Most instabilities are discovered via
the technique of linear stability analysis, in which perturbations of fluid quantities (6X)
are always assumed small as compared with their corresponding equilibrium values (X).
For perturbations which are found to be unstable in the linear regime, the only way to

determine their ultimate effect on the disk is to follow their development into the nonlinear
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realm, where X ~ X. Numerical calculations are usually required for this task.

It is sometimes the case that the ultimate effect of a given instability is not to disrupt
the global equilibrium, but rather to stay quite lecalized in its effects. An example of this
is gravitational (Jeans) instability in the gaseous component of galaxies which, due to the
competing effect of differential rotation, can only form gravitationally-bound structures of
limited extent.® Another example is hydrodyramic turbulence, which dissipates energy
from large scales down to the smallest scales, where molecular viscosity takes over. It is
now known that several instabilities to which accretion disks may be vulnerable find their
ultimate resolution in turbulence, rather than in global disruption. Thus, one can clearly
distinguish between the two types of instability in terms of their nonlinear resolution.

A sufficiently generic instability that can lead to turbulence would remove the phe-
nomenological character of a-disk theory by providing a means of calculating o. There is
no agreement that such a mechanism has been found, but two promising candidates are the
following. First, it has long been hoped that the strong differential rotation of disks would
lead to shear turbulence (§1.2). Since the Rayleigh criterion, d(r?Q)2/dr > 0, which governs
stability to linear, axisymmetric perturbations should always be satisfied in thin disks, this
has led to the study of finite-amplitude, nonlinear perturbations in differentially rotating
flows (Zahn 1990; Dubrulle & Knobloch 1992). These perturbations are unstable, but one
is left with the question of their origin. Second, to balance the local heating and cooling
rates @ and Q~, a steep vertical temperature gradient is required in the disk (FKR). If
the gradient is superadiabatic (e.g. as a result of heating due to strong differential rota-
tion), then the fluid is unstable to convection (Schwarzschild 1958). Convective turbulence
in disks has been studied by Livio & Shaviv (1977) and Tayler (1980). It is likely to be a
major source of viscosity only in cooler, high opacity environments, such as protostellar or
solar nebula disks (Cameron 1978; Lin & Papaloizou 1980).

Frequently one characterizes the viscosity by a stress tensor, I1;;, defined in terms of an

®Since gravity is a long-range force, however, other instabilities of a nonlocal nature, e.g. spiral density
waves, may also occur.
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individual velocity fluctuation éu; by
II;; = —p < buibu; >, (1.8)

where < « > denotes the ensemble average of a fluctuating quantity. Il;;, as defined in
equation (1.8), is often referred to as the Reynolds stress. In an accretion disk the turbulent

viscosity is determined by the component
3
[ep = —p < urug >= ‘"'2'a(pgas + Prad) (1.9)

in the a-prescription (Shakura & Sunyaev 1973). Note that a scales with the total (gas

plus radiation) pressure.

1.4 Thick Disk Theory and the Papaloizou-Pringle Insta-
bility
1.4.1 Thick disks

Aside from the ad hoc nature of the a-viscosity prescription, most would agree that the
phenomenological theory of thin accretion disks is reasonably complete. This is reflected in
the high proportion of the literature on accreting binaries which addresses specific issues of
modelling (e.g. Horne 1994). However, it has also been clear for some time that conditions
should exist where the thin disk assumption, H < r, no longer holds. In the standard thin
disk solution, the inner radiation-dom’inated region can exist only in neutron star or black
hole systems (e.g. X-ray binaries; FIXR). The disk scale height in this region is given by

(Jaroszyniski, Abramowicz, & Paczyniski 1980; FKR)

y 1/2
pale il ()]
in Mg T
where Mg = Lg r./20GM ~ 10% g 5™1 ~ 10~8 M, yr~! is the critical accretion rate based

on the Eddington luminosity,  is an efficiency factor ~ 0.1 for neutron stars and black holes,
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Rotating Stellar

Paramerer Atmosphere  Thin Disk Thick Disk
Shape ...l Spheroidal Disklike Toroidal
Rotation............. Slow: r,< .. Fasti r,=r. Fast: r,x1,,
€, [ A [P
Pressure ............. importani: Unimportant: Imporiant:
l', =r, ‘., « . v, = l'..
<€, LR
Viscosity ............. Unimportant:  Large: Small:
1, € r, x=1 ad]
Non-azimuthal Unimportant:  Unimportant Unimportant
flow ......cooiiiiinn, r€r,. in central and in central and
€, outer parts: outer parts:
r<€r, r<€r, r<€r,
Important in Important in
IRnermost parls: innermost parts:
rxoe, v
Horizontal and Similar: Very different: SimiI;r:
vertical structure .... H, = H, H »H, H = H,

Table 1.1: Comparison of equilibrium parameters for rotating fluids. In this tabie only,
Vg, VK, and v, are the azimuthal, Keplerian, and sound speeds, respectively, and » is the

velocity of non-Keplerian flow. H; and H, are the pressure scale heights in the r and =
directions (Abramowicz et al. 1984b).

and r, marks the location of the stellar surface (or r. = 2GM/c? for a black hole). For
M = Mg and r = 2r,, this equation gives H/r =~ 1, showing that if the accretion rate
is too high, the thin disk approzimation breaks down near the central object. This result is
independent of viscosity. Radiation pressure inflates the inner region, causing it to become
quasi-spherical.

Due to the large inferred accretion rates of AGN (Macn ~ 20M yr=! > Mg),
the above argument implies that even larger regions of the surrounding disk are likely
to be “thick”, i.e. to have H/r ~ 1. By the general hydrostatic equilibrium equation
(1.4), H/r ~ 1 implies ¢; ~ ug; i.e., pressure gradients are now dynamically important
in the eguilibrium. From equation (1.7}, it follows that o « 1 is required for hydrostatic
equilibrium in a thick disk. In these respects, a thick disk is intermediate in properties
between a rotating stellar atmosphere and a thin disk; the three are compared in detail in
Table 1.1. A schematic of a still favoured AGN disk model is shown in Figure 1.5. In the
hollow “funnel” near the rotation axis and in the surrounding torus, centrifugal forces always

exceed gravity, and equilibrium is maintained by a balance of radiative pressure gradients
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Figure 1.5: Schematic of the accretion disk component of AGN. Rg is the gravitational
radius GM/¢? (Collin-Souffrin 1992).

and rotation (§1.1.3). The radiative output from this region {much of which is observed
in the form of highly collimated jets) therefore consists not only of the usual Eddington
luminosity, but also contains contributions related to shear (always positive) and vorticity
(always negative) (FKR). Such a picture nicely accounts for the observed super-Eddington
luminosities and inferred supercritical accretion rates in AGN. The highest luminosities
occur for vorticity-free configurations; in these, the angular momentum per unit mass is
independent of radius. Many of the most elegant results of thick disk theory apply to such
constant angular momentum tori.

The equilibrium theory of thick, perfect fluid tori is summarized in FKR and Blaes
(1986), and I outline only salient aspects here. Ignoring relativistic processes, viscosity

(shown to be small above), and accretion, the equation of hydrostatic equilibrium requires

1 X
VP =gess ==Y+ 2, (1.20)

where g.rs is the effective acceleration due to both gravity and centrifugal forces. The
adoption of a barotropic equation of state, p = p{p) (see ff., Chapter 2), implies that the
angular momentum, £, is a function of r alone; i.e. { = r2Q(r). Despite the thickness
of the disk, its mass is assumed small compared to that of the central body, so that the

fluid’s self-gravity can be neglected (however, see Abramowicz et al. 1984a). Specification
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Figure 1.6: Equipotential surfaces for a Newtonian potential and specific angular momentum
(a) £ = (GMr)M? and (b) € = (GMrg)!/?(r/ro)**®. Distances are scaled with respect to
the radius rp of the central, pressure maximum ring {Blaes 1986).

of the rotation law Q(r) and gravitational field then allow one to solve for the shape of
the isobaric, or “equipotential® surfaces. Sample equilibria, for a Newtonian potential
U = —GM/{r? + z2)1/? and two different rotation laws, are shown in Figure 1.6.

At T = rg, z = 0, the central pressure mazimum of the torus, the pressure gradient van-
ishes as Auid elements rotate with the Keplerian angular velocity. Inside 7o, { > (GM7)!/2,
so the radial pressure gradient must be directed inward to balance the excess centrifugal
force. The opposite is true for r > rp. Note from Fig. 1.6 that increasing the power-law
exponent of ¢ flattens the equipotential surfaces in the r-direction. At £ = (GMr)'/? =
2 ~ r~3/2 the Keplerian distribution, one has the standard thin disk, as expected. Thus,
the thin disk rodel is contained within the more general thick disk formalism. It is for
this reason that I employ the latter (actually a simplified form thereof) for most of the

calculations in this thesis.”

"It is worth noting that X-ray binaries and AGN are not the only systems for which pressure gradients
should be important. To a lesser extent, protostellar disks are also expected to depart from strictly Keplerian
rotation for this reason, and also because they are likely to be self-gravitating. However, these systems are
clearly gas, not radiation, pressure dominated.
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Figure 1.7: Structure of the fastest growing m = 2 modes in the (a) 4 = 0.333 and (b)
p = 0.707 tori. The axes are in units of rp, and the contours are the absolute value of the
perturbed velocity potential normalized to its maximum value (Papaloizou & Pringle 1984).

1.4.2 The Papaloizou-Pringle instability

Due to the more complicated structure of thick tori, they are potentially susceptible to a
much larger variety of fluid instabilities than are Keplerian disks. In particular, one might
expect new effects to arise from two qualitatively different features of thick tori: (i) the
presence of radial pressure gradients, which could lead to local buoyancy instabilities, e.g.,
and (ii) the presence of a finite boundary, leading to intrinsically global instabilities. In
fact, both of these instabilities can occur, and many others as well. I refer the interested
reader to Abramowicz et al. (1984b), who have provided an excellent review of the subject
in two appendices.

Papaloizou & Pringle (1984) subjected axisymmetrically stable, non-self-gravitating,
homentropic, constant ¢ tori to nonazisymmetric perturbations. They demonstrated the
existence of a global instability which operates on the dynamical timescale. A sample of
their numerical results is shown in Figure 1.7. The contour plots show the spatial structure of
the eigenfunctions for the most unstable growing mode. The parameter u is a dimensionless

measure of the radial dimension of the torus at z = 0; for constant £, i, = 1/(144), rout =
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1/(1 —p), 0 £ p <1 (see ff., Chapter 3). Three points are worth noting in Fig. 1.7: (i)
for thinner tori, the eigenfunction lacks significant vertical structure; (ii) the magnitude of
the perturbations is concentrated toward the inner and outer boundaries of the torus: (iii)
thicker tori excite smaller amplitude perturbations (this results in a reduced growth rate).
Subsequent work revealed several other interesting features of what has come to be known
as the Papaloizou-Pringle (PP) instability.® Many of these will be reviewed in Chapter 5,
and so will not be touched on here.

For now it is sufficient to state that for the problem under discussion, the unstable modes
fall into two classes: (a) the principal branch, which occurs for all g < 0.59 (= r2/r, < 3.9),
and in which all unstable modes have corotation near rg, the pressure maximum of the torus;
and (b) higher-order branches, which occur at higher x, have lower growth rates than the
principal branch, and do not corotate near r = ry (Goldreich, Goodman, & Narayan 1986
(GGN)).

The key to understanding the principal mode mechanism is the fact that it occurs even
in incompressible fluids (the higher-order modes do not). In such fluids wave motion can
only be supported on the boundaries, which are assumed free in these models. For a given
azimuthal wavenumber m, there exist four modes which represent surface gravity waves
propagating upstream and downstream along the inner and outer edges (see also Chapter

5). According to Blaes (1986),

As the boundaries are brought closer together, the faster outer mode catches up
with the slower inner mode, their corotation points coincide, and they merge to
form a single mode which has high amplitude at both edges and a corotation

point in between - this mode is unstable.

The radial structure of the mode is therefore nodeless, since the amplitudes of the surface
waves decay with depth away from the surfaces (¢f. Drazin & Reid 1982). If either of the
boundaries are fixed, or if the outer boundary is removed to infinity, then the principal

mode is stabilized (Blaes & Glatzel 1986; GGN).

8The original paper, PP (1984), should be read with caution, as it was subsequently shown that many of
the analytic results were in error, as were certain points addressing the underlying cause of the instability.
See Blaes (1986) and Narayan & Goodman (1989) for the necessary clarification.
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The higher-order modes have been attributed to the amplification of sound waves be-
tween a reflecting boundary (inner or outer) and the corotation resenance (Goldreich &
Narayan 1985; GGN; Narayan & Goodman 1989); a mechanism akin to what is believed to
maintain spiral density waves in galaxies. The interesting physics of this process has been
examined further by Drury (1985) and Glatzel (1987a, b, 1988).

Two other features of the PP instability are worthy of note. First, in a numerical study,
Blaes (1987) found that the inclusion of an accretion flow in the 2D, constant {, compressible
annulus led to complete stabilization, provided that M is large enough (see also Gat & Livio
1992). It has been conjectured that a 3D torus may not be so easily stabilized, since only
a fraction of the boundary (near the midplane) is involved in accretion; the remainder is
available for wave propagation and reflection (Narayan & Goodman 1989; Hawley 1991).
Second, sufficiently strong self-gravity in a non-accreting torus can have the same effect,
although it is likely that the torus then becomes Jeans-unstable (Goodman & Narayan 1988;
Christodoulou & Narayan 1992; Christodoulou 1993). Massive, self-gravitating thick disks
may occur during star formation.?

What are the consequences of the PP instability for accretion disks? Due to the rapid
growth of the principal mode, the equilibrium conditions under which it occurs are precisely
those least likely to be found in nature. Studies of nonaccreting tori have shown that disks
with an initially constant angular momentum evolve toward less steep angular velocity
profiles (Q ~ r~18; Zurek & Benz 1986; Hawley 1991), where the principal mode is damped
and only the more slowly growing higher-order modes are left. This means that although
thick tori may exist, they may not be able to provide the super-Eddington luminosities
observed in AGN. The less virulent higher-order modes may then perform a different role,

acting as an effective viscosity and aiding in angular momentum transport (Hawley 1991).

?Recent observational (Aitken et al. 1993) and theoretical (Galli & Shu 1993) results suggest that massive
protostellar disks may form in which self-gravity is balanced by strong magnetic fields. This would then
constitute a third category of thick disk.
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1.5 Magnetic Processes in Disks

Observations of the three characteristic systems discussed in §1.1 lead one naturally to
a consideration of magnetic fields in the accretion disk environment. Dynamo theory is
dedicated to the study of the generation and maintenance of such fields in astronomical
objects. In the present context, due to the predominantly azimuthal flow, only fields which
are purely azimuthal could possibly constitute truly static configurations. However, due to
diffusive effects, such a field decays in time, unless it is somehow constantly regenerated.
More generally, magnetic fields will neither be aligned with the circular flow, nor confined
to the disk plane. Thus, the theory of magnetized disks is, at some level, intrinsically
time-dependent, a complication which is not encountered for purely hydrodynamic disks.

Due to the increased complexity of magnetized disks, there exists no widely accepted
analogue of the hydrodynamic “standard model.” Historically, the interest in magnetic
fields sprouted not from an ambition to provide such an elaborate construct, but rather
from the hope that certain magnetic effects might aid in the resolution of issues unsolved
by the standard model.

By way of motivation, consider the following brief example. The magnetic equivalent
of the Reynolds stress introduced in §1.3, the Maxwell stress, is given by

< ByBy >
My = =2 = apga. (1.11)

There is considerable uncertainty as to whether HS’:) scales with the gas pressure only,
or (like the Reynolds stress) with the total pressure. Those who argue in favour of the
former point out that while the gas may be assumed “frozen” to the magnetic field (the
magnetohydrodynamic (MHD) approximation; see ff. §2.1), the radiation may not (Light-
man & Eardley 1974; Stella & Rosner 1984). An important consequence of this scaling is
that the inner region of the standard disk model is rendered steble to both thermal and

viscous instabilities (Shakura & Sunyaev 1976; Piran 1978). As we shall see, however, fluids

threaded by magnetic fields are subject to a host of instabilities, not all of which threaten

the integrity of the disk.
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1.5.1 Hydromagnetic instabilities: a brief survey

In this subsection, I describe a few examples of the qualitatively new behavior which can
occur in the presence of magnetic felds. The interested reader is referred to the monographs
of Schmidt (1966), Bateman (1977), and Cap (1976) for further details.

In the MHD approximation, a magnetic field B threading a fluid of electrical condue-

tivity o, moving at a velocity u can be charr.cterized by a dimensionless quantity

|V x (u x B)}
LB

qn0,

Re,, = 4no.ul = (1.12)

called the magnetic Reynolds number. If Re,, is large the field and fluid are frozen together,
while if Re,, is small the field-fluid coupling is weak and B can diffuse out of the fluid on
timescales O(L/u).

Magnetic reconnection is likely to be the most important diffusive process in magnetized
accretion disks (Lightman & Eardley 1974; Coroniti 1981). While not an “instability” in
the usual sense, reconnection is nevertheless a process whereby a given configuration can
lower its own magnetic energy, often with drastic consequences for the surrounding medium.
A good example is provided by the solar photosphere, wherein lines of flux in a high Rep,
region interact with the overlying coronal plasma and field (Figure 1.8). Since regions near
the boundaries of accretion disks may be qualitatively similar to this region of our Sun, well-
known solar phenomena such as flaring and ionic winds may also occur in disks. Heating
via recounection of coronal loops has in fact been suggested as a primary source of the
hard X-ray component (T > 5 x 108 ) observed in the spectra of X-ray binaries (Galeev,
Rosner, & Vaiana 1979).

Although of great importance, I have chosen to ignore diffusive processes in this thesis
in order to isolate effects of more immediate interest which are not yet understood: namely,
those involving differential rotation and frozen-in magnetic fields. Insofar as it will reduce
the total magnetic energy available to high Re,, instabilities then, magnetic diffusion is of
interest. Thus I briefly reconsider its effects when reviewing the Balbus-Hawley instability

in the following section.
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Figure 1.8: Flux emerges from the solar photosphere {hatched region) and interacts with
overlying coronal plasma and field. (a) In the frozen-field limit the two plasmas remain
distinct and a thin current sheet (dashed line} forms between them. (b) Reconnection
results in field interconnection and plasma mixing across the boundary current sheet. (c)
The end state is a potential reld obeying the new photospheric boundary condition: the

magnetic energy is reduced compared with {a)}, having been fed into the surrounding plasma
(Cowley 1985).

To discuss non-diffusive magnetic instabilities one may distinguish between two main
classes: those that result from bending the field lines, and those that do not. Beginning with
the latter, 2 moment's thought shows that the only way to change a given magnetic field
structure without bending field lines is to interchange them. The criterion for interchange

instability has the rare distinction of being statable as a general theorem (Schmidt 1966):

Geometries in which the magnetic field lines curve toward the fluid along the
entire fluid boundary are interchange-unstable, provided adjacent fieldlines in

the direction of the pressure-gradient exist.!?

Interchange clearly requires rather special orientations of the magnetic field. Two well-
known and astrophysically relevant examples are the cases of purely toroidal and vertical
magnetic fields. The latter case has been shown in Figure 1.9, in the case where a magnetic
field (directed into the page) lies outside an unmagnetized fluid and a perturbation is ap-
plied to the boundary in a direction perpendicular to the field. The protruding ripples (or
“Hutes”) push against a weaker field, while the regions newly occupied by the field possess
an increased magnetic pressure. The result is an exponential growth of the perturbation.

Versions of this instability which could act in a strongly maghetized thin accretion disk have

WUnfortunately, the quoted source does not identify the original discoverer of this result.
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Figure 1.9: Top view of flute instability at a fluid (bottom) - vacuum (top) interface
(Schmidt 1966).

been studied by Kaisig, Tajima, & Lovelace (1992) and more recently by Lubow & Spruit
{1995) and Spruit, Stehle, & Papaloizou (1995).

There exists a large class of instabilities that result from bending the field lines. As
the instabilities discussed in Chapters 3, 4, and 5 are all of this type, I will discuss only
one further example here. The Parker (1966), or magnetic Rayleigh-Taylor instability, is
thought to be important in a wide array of astrophysical contexts. By analogy with the
classical Rayleigh-Taylor instability {Drazin & Reid 1982). the magnetic field plays the
role of the light “fluid” in this picture, and an unstable configuration is one in which the
horizontal magnetic field By,,.;. decreases with height more rapidly than the corresponding
density gradient. That is (Moffat 1978),

d Bhori:.
= ( 2 ) <0.

The Parker instability is slightly modified in the presence of differential rotation (Shu 1974;
Foglizzo & Tagger 1994), and somewhat moreso in a self-gravitating fluid (Parker-Jeans
instability; Elmegreen 1982). The combined effect has been examined by Elmegreen (1987),
who considered the case of a (two-dimensional) galactic gas disk. Elmegreen found that
when the magnetic field is in pressure equilibrium with turbulent motions in *he surrounding
gas, the linear instability growth time is similar to that for the nonmagnetic, nonrotating
Jeans instability (= 107-° —108 yr). The Parker-Jeans instability has important implications
for the formation of structure in galaxies and, moreover, for the disk dynamo mechanism

(see ff. §1.5.4}). The buckling of magnetic field lines produced in the nonlinear stages of the
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By

Figure 1.10: The Parker instability. Initially horizontal field lines rise in some places and
fall in others, in such a way that matter loaded onto them slides off the peaks and sinks
into the valleys, causing further distortion (Shu 1992).

instability (Figure 1.10) generates vertical field from horizontal, thus forming one link in

the dynamo cycle.

1.5.2 The Balbus-Hawley and Velikhov-Chandrasekhar instabilities

Recently, Balbus & Hawley (1991) (BH) drew attention to an instability which should be
quite generic to weakly-magnetized accretion disks. Velikhov (1959) and Chandrasekhar
(1960, 1961) originally discovered the instability in models of Couette flow, where an in-
compressible fluid threaded by a uniform vertical magnetic field is placed between two rigid
rotating cylinders.

The basic mechanism of the instability is as follows. Consider a conducting cylinder
of fluid, rotating about the z-axis with a rotation law = Q(r) which decreases with
radius, and threaded by a uniform vertical magnetic field B,. This is indeed an allowed
equilibrium configuration (see ff., Chapter 2). Infinitesimal, axisymmetric perturbations to
this equilibrium have two distinct and competing effects, both of which result from bending
the field lines (Figure 1.11). First, the magnetic tension in the field tends to pull radially
perturbed fluid elements back to their original radii. Second, the same tension forces an
element to rotate at its original angular speed regardless of its perturbed radial location. The
first effect is clearly stabilizing, but the second is the essence of the instability. Outwardly
(inwardly) displaced fluid elements have local angular speeds which are larger (smaller)
than that of the surrounding fluid, representing an excess (deficit) in centrifugal force that

drives the element still further outward (inward).
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Figure 1.11: The Balbus-Hawley/Velikhov-Chandrasekhar instability. Rings of rotating gas
expand and contract while conserving their angular velocity (Shu 1992).

Using a local stability analysis (see ff. Ch. 2}, BH found that the instability grows on
the dynamical timescale if and only if the Alfvén frequency, Q4 = kug < |[dQ%/d lnr|Y/? ~ Q
for power-law distributions of £, where k is the vertical wavenumber of the perturbation
and v4 = B./(47p)!/? is the Alfvén speed. This result can be understood by defining
the corresponding Alfvén timescale, tmqy ~ Q;l, and noting that unless tme 2 tayn,
perturbations to the magnetic field will not have time to sample the shear, and will simply
propagate away as torsional Alfvén waves (Shu 1992). Alternatively, since long wavelength
(small k) perturbations do not bend the field lines as much as shorter wavelength (larger &)
ones do, the radial return force loses out to the destabilizing centrifugal excess. This shows
that there exists a critical wavelength longward of which the perturbation is stable; i.e. for

instability,

For a thin disk of scale height H, one might surmise that Ay £ 2H = 2/2¢,/Q (for an
isothermal gas), from which BH derived v4 crit/cs = \/3/ 7 = 0.8 as a critical field strength
above which the instability is no longer expected to occur. That is, the local linear stability
analysis suggests that the field may reach equipartition strength (with the thermal pressure)

before the instability is quenched. Physically, for v4 > v4 i the restoring force on field
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lines dominates the resulting centrifugal excess, and the fluid element returns to its original
location.

Since the instability relies only on the presence of a sufficiently weak B, and a locally
decreasing gradient of (, it is intrinsically local in nature. Thus although Velikhov and
Chandrasekhar originally utilized a global mode! (i.e. Couette flow) the local analysis of
BH, which assumes the wavelength of perturbations < any characteristic disk length scale
(e.g. H), is sufficient to establish the correct stability criterion. Other important properties
of the instability, however, may be quite sensitive to global disk structure. As has been
emphasized already, disks need not be thin, particularly magnetized disks which can develop
significant coronae. Thus it is important to find the more general dependence of VA.crit OIL
kcrit for disks of arbitrary vertical extent. This is a problem in global, as opposed to local,
stability analysis, and will be undertaken in Chapter 3. There has also been some debate
in the literature as to the influence of an azimuthal magnetic field By on the BH instability
(Knobloch 1992; Dubrulle & Knobloch 1993; Hawley & Balbus 1992; Kumar, Coleman, &
Kley 1994). I address this question in Chapter 4. Throughout this thesis, I refer to the
local version of the instability as the BH instability, and to its global counterpart as the VC
instability. The necessity for this distinction is emphasized further in §2.7.

The original analysis of BH assumed a fluid of zero resistivity, v,,,. It is to this property
that the following curious result can be traced. In the limit of vanishing B,, one does not

recover the linear stability criterion for nonmagnetic fluids, i.c. the Rayleigh criterion,

d(r2Q)?
> K
o2 0, {1.13)
but rather,
2
il >0 (1.14)
dr

This result is obtained in both the local and global analyses, and is originally due to Chan-

drasekhar (1961), who offered the following explanation:

...in a fluid of zero resistivity the lines of magnetic force are permanently at-

tached to the fluid ...and the permanency of this attachment is in no way
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dependent on the strength of the magnetic field.

It may be, therefore, that (1.13) can be obtained from the magnetic model only in the limit
B; =+ 0, vy finite.!! Because it is a dissipative effect, finite resistivity is of greatest concern
at short wavelengths/large wavenumbers. On dimensional grounds, one requires v k2/Q <
1 for the resistivity to be negligible. Using the Spitzer (1962) resistivity for a hot (~ 10* K)
ionized gas, BH found that the latter requirement is equivalent to 8 = pmag/pgas > 10710,
which should be easily satisfied even in weakly magnetized disks. Dubrulle & Knobloch
(1993) argued that even though a reasonable lower limit is obtained for the B. field alone,
including a strong equilibrium azimuthal field can lead to an unreasonably high lower limit
on By. These authors and Stepinski, Reyes-Ruiz & Vanhala (1993) also peinted out that
the Spitzer resistivity is not likely to be applicable in cool protostellar disks. except perhaps
on the upper and lower surfaces and near the inner radius, where the ionization fraction is
fairly high.

With this in mind, Jin (1993) extended the analysis of BH to the v, # 0 case, finding
that when kfum > 1.4Q, the instability is damped. He went on to estimate the value
of n for black hole, AGN, and CV disks, eventually concluding that resistivity would not
damp the instability. However, adopting a model by Hayashi (1981) of the solar nebula,
which accounts for recombination of Hs on grains, the author was able to show that for
the best-known grain abundances in protostellar regions, the instability can be damped
outside of a small region r g 0.1 AU. Specifically, if f is the fractional grain abundance
as compared with the interstellar value, then values of f ~ 1 and 8 = 4mpe,/|B[? » 104
can lead to stabilization throughout the remainder of the disk. Smaller values of f and 3
allow the instability to persist, but only in the outer regions where cosmic ray ionization is
effective.l?

At a more fundamental level, finite resistivity effects are manifested by the degree of

A formal proof of such seems to be lacking in the literature. Note also, in this connection, that the
unique equilibrium rotation law for a viscous purely azimuthal flow is 2(r) = A + B/r?, wher> 4 and B are
constants (Chandrasekhar 1961). This form incorporates both of the limiting cases discussed here, seemingly
indicating that the notion of “magnetic viscosity” is justified.

'2Jin notes that it is likely that the instability is damped in the midplane even for smaii f and 3, since
grains tend to settle there, allowing effective recombination.
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ionization in the disk gas. Magnetic fields couple only to the ions, which commnunicate with
the neutrals via elastic collisions, collisional ionization, and recombinations. If the ionization
ratio is low, as in protostellar disks, e.g., the coupling is weak and the BH instability will
affect only a small portion of the fluid. Clearly, some minimuin level of coupling is required
for the BH instability to persist. To ascertain this level, Blaes & Balbus (1994) performed a
linear stability analysis in a two-fluid disk of ions and neutrals. Their model also improved
on BH by including compressibility and an equilibrium azimuthal field, They found: (1) If
ionization and recombination can be neglected on an orbital timescale, adeguate coupling
is achieved when the collision frequency of a given neutral with the ions exceeds the local
epicyclic frequency, x = (rdQ?/dr + 4Q2)1/2, (2) I ionization equilibrium is maintained on
tayn, sufficiently strong (but still subthermal) azimuthal fields can have a stabilizing effect.
To avoid this, one requires potentially much higher collision frequencies between ions and
neutrals. Although the analysis of Blaes & Balbus represents a significant improvement over
both BH and Jin (1993), the authors caution that their results are not directly applicable to

very dense, cool disks since dust grains are then expected to be the primary charge carriers

and must be taken into account.

1.5.3 The issue of saturation

Dissipation due to finite resistivity and imperfect ion-neutral coupling is especially a concern
in the context of turbulent viscosity, the application that BH originally had in mind. The
issue of whether the BH instability can in fact lead to turbulence is fundamental, and can
only be addressed by following the nonlineer evolution of the perturbations. While linear
analysis suggests that the field may grow to equipartition strength with the thermal pressure
(§1.5.2), dissipative processes could bring about saturation of the instability at more modest
field strengths. The 2D numerical simulations conducted by Hawley & Balbus (1991, 1992)
(HB), while displaying random motions and sustained field growth, are not decisive on this
point because at late times the field strength and topology appear to be sensitive to the size
of the computational domain. This makes the true impact of reconnection unclear (HB 1992;

Goodman & Xu 1994). In addition, the simulations did not include vertical stratification
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and so were not sensitive to another important channel for removal of magnetic field. namely
buoyancy.

The first noticable effect in the nonlinear simulations is the leveling off of the exponen-
tial growth of perturbations near equipartition. The system eniers a more organized state
consisting of radially inward and outward streaming velocities (“channel flow”) in the ini-
tially purely circular flow (HB 1991, 1992; Goodman & Xu 1994; Stone & Norman 1994).13
A second period of exponential growth then begins but at a reduced rate from the linear
value. Stone & Norman (1994), using a global disk model with a magnetically-dominated
corona, interpreted the inward component of the channel flow as indicative of radial disk
collapse. For strong fields, the collapse is due to the action of magnetic braking, as the
external coronal torque spins down the disk. For weak fields, the authors claim that only
internal (magnetic) torques are responsible for collapse. However, as a significant amount
of material in the disk midplane is still streaming outward in their simulations, the collapse
interpretation seems somewhat premature. Moreover, Stone & Norman ignore resistive ef-
fects which can allow magnetic field to drift outward, dragging matter along with it (Lubow,
Papaloizou, & Pringle 1994).

Fully three-dimensional (i.e. nonaxisymmetric) simulations of the BH instability were
carried out by Hawley, Gammie, & Balbus (1995). These authors discovered that unless the
magnetic field strength is made artificially large, the channel solution is not the ultimate
saturated state of the BH instability. Rather, this solution breaks up into more random
velocity structures at late times (Figure 1.12a). Calculation of the time-averaged Reynolds
and Maxwell stress shows that the latter dominates and is correlated with the magnetic,
not gas, pressure. Nevertheless, a naive estimate from equation (1.11) yields a time average
of a = 0.4 (Figure 1.12b), an encouraging figure from the point of view of a turbulent
viscosity mechanism. The fact that the Maxwell stress dominates the Reynolds stress
also has potential observational significance, if disk turbulent velocities can be successfully

measured. For a fixed surface brightness disk, turbulent velocities in magnetized disks

31t is worth emphasizing that Goodman & Xu (1994), who utilize an ezact nonlinear solution of the
local incompressible MHD equations, find this channel flow. Thus, it cannot be an artifact of the ZEUS-2D
numerical code used by both HB and Stone & Norman (1992).
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Figure 1.12: (a) Contour plots of perturbed azimuthal velocity éu, in an (z,z) plane at
a fixed value of y. The time in Keplerian orbits is indicated above each plot. The plots
illustrate the development of a channel solution from sinall initial perturbations, and its
eventual demise. (b) Time evolution of volume-averaged magnetic, kinetic, and thermal
energies, Maxwell and Reynolds stress, and velocity field helicity for the model in (a). Time
is given in orbits; Py is the initial pressure and L; is the box size used in the simulation
(Hawley, Gammie, & Balbus 1995).
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should be smaller than those in purely hydrodynamic disks (Balbus, Gammie, & Hawley
1994). New techniques in Doppler tomography may make such observations possible in the

near future (Horne 1995).

1.5.4 Instabilities, magnetic viscosity, and dynamos: a synthesis

As hinted in §1.5, dynamo theories of magnetic field generation are a study unto them-
selves. One has statistical dynamo theories which involve continuous magnetic fields, flux
tube models which apply to intermittent magnetic structures, and MHD turbulence and
magnetoconvection, which attempt to treat motions at a microscopic level. To review any
one of these would take us far afield, nor is it needed for any of the work which follows. I
refer the reader to the recent thesis of Schramkowski (1994) for an up to date discussion of
these topié's and extensive references.

What would be of value, however, is a concrete application of the instabilities described
above; one which places their mere existence in context with the fundamental problems of
accretion disk theory (e.g., the calculation of a from first principles). A recent paper by Tout
& Pringle (1992) (TP) offers an ideal opportunity in this regard. These authors propose
a simple disk dynamo model which relies on three fundamental, entirely hydromagnetic,
processes: Parker instability, magnetic reconnection, and the BH instability.

Before going on it may be useful to briefly review the basic “aw—dynamo” (Moffat 1978;
see also Schramkowski 1994 for further references). The “w-effect” signifies the generation
of toroidal field from poloidal field via differential rotation, and is a process most agree will
take place naturally in a disk environment. The poloidal field is generated from the toroidal
by the “a-effect,” which is really the crux of modern dynamo theory. Consider now the
situation depicted in Figure 1.13. As mentioned in §1.5.1, a toroidal field which decreases
sufficiently rapidly with height in a stratified medium is unstable to magnetic buoyancy.
Assuming conditions are favourable for this to take place, a straight (frozen-in) field line can
be distorted (Fig. 1.13a, b). Hence a vertical field component is generated. The problem
now is to somehow produce the other poloidal component: the all-important radial field.

An important distinction between laminar and turbulent fluid flow can be made on the
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(a) (b) (©

Figure 1.13: The a-effect. (Schramkowski 1994, after Takahara 1979).

basis of the quantity I = fu:(V x u)dV, the kinematic helicity. I gives an indication of
how effective local Coriolis forces are in the fluid. A mean magnetic field immersed in a
laminar fluid flow has I = 0. A turbulent magnetized flow can have I > 0; if the conditions
appropriate for this are achieved, then the magnetic loop created in Fig. 1.13b can be
twisted by the action of local Coriolis forces (Fig. 1.13c), and voila: radial field has been

created. This completes the dynamo cycle:
Br, B: = B¢ = Br, Bz.

A major problem in the above scheme is that there is widespread debate as regards
the “appropriate conditions” for 7 > 0 (Moffat 1978; Parker 1979). I do not address the
issue further, but simply explain the alternative suggested by TP which operates as follows.
Consider an arbitrary magnetic field configuration in cylindrical geometry: (B;, By, B;).
Azimuthal field is generated by the shearing of radial field lines. Vertical field is generated
via Parker instability of horizontal (radial and azimuthal) fields. The dynamo cycle is
closed not by the a-effect, but by the BH instability, which generates radial from vertical
field. Reconnection enters via the combined action of the Parker and BH instabilities; the
excursions of field lines induced by the latter will sometimes cause adjacent lines of opposite
polarity to overlap and reconnect. This leads to dissipation within the disk, as well as to flux
loss in the exterior regions. TP retain only the essential details of each process, but model
the time dependence explicitly, and follow the development of two characteristic equilibria

(both of which are unstable) into the nonlinear regime.



38 CHAPTER 1. INTRODUCTION

The magnitude of all three magnetic field components is essentially controlled by that
of B,, which cannot exceed the maximum value B; mar/{\V/E7pc,) = v6/7 = 0.8 (§1.5.2).
TP found that the ultimate solution shows oscillation in all three field components with a

period P = 2Q~1. The relative magnitude of the time averaged field components is:
B,:By:B.=~1:6:6.

The viscosity parameter « also oscillates in the TP solution, varying between 0.1 and 0.7,
with a time average of @ = 0.4. About half of the energy released by the disk in their
scheme (i.e. = GMM/4r) is the result of buoyant reconnection either near or beyond the
upper and lower disk surfaces. This suggests the rather natural generation of an active disk
corona or magnetic wind.

The TP model, while crude, is noteworthy insofar as it describes a self-sustaining dy-
namo using only (known) magnetic instabilities, and without recourse to processes such as
hydrodynamic turbulence whose origin is considerably more obscure. The two traditional
dynamo mechanisms that have been retained - buoyancy and reconnection - are not with-
out their own problems, but these have always been much less serious than those associated
with the o-effect. More detailed dynamo models which do not impose the latter are already

under investigation (Brandenburg et al. 1994).

1.6 Scope and Outline of This Thesis

The above sections should have provided adequate motivation for a deeper study of mag-
netohydrodynamic instabilities in accretion disks. To proceed, I adopt as an equilibrium
mode! not the standard thin disk of §1.2, but rather a global model which treats the radial
structure of the disk explicitly. Such a model was originally motivated by two main stimuli:
(1) the apparent controversy between local and global methods of stability analysis, as re-
gards the Balbus-Hawley instability (KKnobloch 1992; §2.7); and (2) the large body of work
on global hydrodynamic instabilities in disks, which at the time I began this work, had not

been extended to the magnetic context.
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~ Chapter 2 provides a detailed overview of the equilibrium configurations and the tech-
niques and known results of global stability analysis which apply to them. Some of the
results in this chapter constitute original work on my part. The three chapters which fol-
low examine different aspects of the linear stability of a particular global disk mode] from
Chapter 2.
Chapter 3 is a reprint of the paper “On the Global Stability of Magnetized Accretion |
Disks. I. Axisymmetric Modes,” published in the Astrophysical Journal:

Curry, C., Pudritz, R. E., & Sutherland, P. G. 1994, ApJ, 434, 206-220.

To remedy typographical errors which appeared in the final published version, this paper
has been included here in manuscript form. Chapter 4 is a preprint of the paper “On
the Global Stability of Magnetized Accretion Disks. IL Vertical and Azimuthal Magnetic

Fields,” accepted for publication in the same journal:
Curry, C., & Pudritz, R. E. 1995, ApJ, Nov 10 issue.

I carried out all of the analytical and numerical analysis, as well as the writing, in these two
papers under the guidance of my supervisors Dr. Ralph Pudritz and Dr. Peter Sutherland.

Chapter 5 completes the programme initiated by the former two papers by examining
nonaxisymmetric modes, and is presently being prepared for publication by myself and Dr.
Pudritz. The analysis in this chapter, too, is my own. Finally, Chapter 6 discusses some
applications of the current work, and mentions some possible future directions of fruitful
research.

The material in Chapter 3 is reprinted with permission from the Astrophysical Journal;
as principal author of material which originally appeared in the Astrophysical Journal, I
hereby grant an irrevocable, non-exclusive license to McMaster University and the National

Library of Canada to reproduce this material as part of the thesis.



Chapter 2

THEORY AND STABILITY OF
THICK MHD DISKS: GENERAL
RESULTS

2.1 The MHD Approximation: Fundamental Equations

The composition of an accretion disk is likely to be extremely varied. Although most of
the material is expected to exist in the gas phase, ions, electrons, neutral atoms, molecules,
dust grains, and electromagnetic fields are all believed present, each governed by its own
unique physics. An exact, microscopic description of the situation is therefore prohibitive.
In the low-energy limit, however, a macroscopic description will suffice. The theory of
hydrodynamics, which allows one to define meaningful macroscopic quantities such as pres-
sure, density, velocity, etc. and then to follow their evolution in space and time, has been
quite successful in this regime. The basic equations of hydrodynamics are those expressing

mass, momentum, and energy conservation. These are (Shu 1992; Landau & Lifshitz 1959)

% +pV-u =0, (2.1)
Du
‘E't- = —pV(\Ilint + ’I'ext) - V'P + Vini'k + frad’ (2‘2)
DS - + - aui
pTD—t = -V:Feona+0Q Q"+ nlk Ok ' (2‘3)

40
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where D/Dt = 3/8t+u - V is the Lagrangian derivative, ¥;;,; and ¥, are the gravitational
potentials due to the fluid itself and due to exterior sources (if any), and the remaining
symbols are standard and may be found in the List of Symbols. These equations must
be supplemented by the appropriate constitutive relations for the matter and radiation
fields. Note that the latter are included in the hydrodynamic description, while other
electromagnetic processes (e.g. electric and magnetic fields) are not. Before discussing how
these can be brought into the fold, note that for self-gravitating fluids these relations are

usually supplemented by Poisson’s equation,
VeWins = drGp. (2.4)

Certain terms in these equations are not relevant to the goals of this thesis, as outlined
in Ch. 1, and can be omitted at the outset. First, I ignore the terms which treat diffusive
processes; namely, those proportional to Il (viscous dissipation) and Fong {(heat conduc-
tion). Second, radiative interactions are neglected by setting .4 (radiation force per unit
volume) and Q@ — Q= (volumetric heating and cooling functions) equal to zero. Finally,
although self-gravity will not be included in the global stability analyses of the following
chapters (due to the drastic increase in the complexity of global equilibria; ¢f. Fridman &
Polyachenko 1984}, I retain ¥;,; throughout most of this chapter, ignoring it only when

absolutely necessary.

The presence of electric (E) and magnetic (B) fields necessitates the introduction of

Maxwell's equations

V.E = dmpe, (2.5)
1B

VxE = _—C-W, (2.6)

V.B = 0 (2.7)
47 10E

VxB = TJ-I-'E'-aT, (2.8)

where pe and J are the electric charge and current densities, respectively. Note that I
employ Gaussian units throughout. In the magnetohydrodynamic (MHD) aepprozimation,
one supposes & high density of ions in the fluid, so that collisions of all species with the jons

occur on a much shorter timescale than varjations in E and B (cf. Jackson 1975). Such a
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highly conducting fluid contains little or no charge separation between ions and electrons,
and so can be described by a single set of macroscopic fluid variables p, p, s,..., etc.
These considerations lead to two important simplifications of Maxwell’s equations. First,
the displacement current, c"19E/8t, in equation (2.8) can be neglected in comparison with
the conduction current J. Second, accumulation of space charges inside the fluid can be
neglected (i.e. the fluid is electrically neutral), meaning that Coulomb’s law, equation (2.5),
may be ignored. Then E is entirely determined by the two remaining Maxwell equations
and Ohm'’s law,

=0 (E+ % x B) = 0.E/, (2.9)

where o, is the electrical conductivity, and E' is the electric field measured by an observer
in the rest frame of the fluid. These two approximations only introduce an error O(Juj?/c?)
into the problem, and so are of little concern in most non-relativistic situations (Jackson
1975, Shu 1992).

In addition to equation (2.9), the fluid and magnetic field are coupled via the Lorentz
force, f1, = ¢~!(J x B), which enters the RHS of the Euler equation (2.2). Substituting
equation (2.9) into (2.6) using (2.8) and (2.7) gives the induction equation:

%—?:Vx(uxB)—Vx(anB), (2.10)

where 7 = c?/(4na.) is the electrical resistivity. I shall in fact assume that the latter is

zero, whence o, — oo, and (2.9) implies, for finite J,

E==—E-><B,
C

showing quite clearly that E is indeed of secondary importance as compared with B in a
non-relativistic, perfectly-conducting fluid. The resulting form of (2.10) is often referred to
as the “flux-freezing” equation, since the field lines do not diffuse out of the fluid on any
timescale.

The complete set of simplified equations now reads (in units such that ¢ = 1):

D
I7 = ~PV(inet Yert) - Vo +3 x B, (2.11)
D

> =, (2.12)

Dt
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B
= = 9
T V % (u x B), (2.13)

with equations (2.1) and (2.4) unchanged. The energy equation (2.12) now describes isen-
tropic flow, in which the entropy of each fluid particle remains constant along its path
(Tassoul 1978), and allows one to write the equation of state as p = p(p,s). For an ideal
gas, p = kppT/m and

s = ¢, In (pp~") + constant, (2.14)

D P
— =)= 215
Dt ( _r) D, (-.ld)

where v = ¢p/c, and ¢p and cy are the specific heats at constant pressure and volume,

whence (2.12) reduces to

respectively. In passing, note that the terms adiabatic and isentropic are entirely equivalent
when viscous dissipation is ignored, and that if one makes the further restriction Vs = 0,

the flow is termed homentropic. In that case, equation (2.14) implies the polytropic relation,

p=Ap. (2.16)

An isothermal fluid, e.g., has ¥ = 0, an adiabatic one v = 5/3, and an incompressible one,

¥ — o0,

2.2 The Equilibria

Let us now seek stationary solutions of the above equations which describe a magnetized,
thick disk in a state of pure rotation (i.e. non-accreting). Adopting cylindrical coordinates

(ry ¢, 2), reasonable forms of the velocity and magnetic fields are

u=[0,7Q(r,z),0] and B =[0,By(rz2),B;(r z)]. (2.17)

=

In contrast to the stellar case (Tayler 1973), it is acceptable to ignore the radial component
of B, in the first approximation, when the accretion velocity, u, = 0. This assumption is
also necessary to maintain true stationarity; when B, # 0, the ¢-component of the induction

equation reads

085 _ _ ( o @.)
5 =B VRe=r{B=+B.o-]. (2.18)
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For the bulk of this thesis I shall be concerned with the effect of an axial field, sometimes
in concert with an azimuthal component, on a strong, differentially-rotating flow. From the
above one therefore sees that By grows linearly with time unless

B.=0 and a—Q=0.
0z

Equation (2.18) is key to understanding several effects of magnetic fields on shearing fluids,
including the BH instability discussed in Ch. 1. The statement B - VQ = 0, Ferraro's
corotation theorem, states that to maintain stationarity, a magnetic field tends to enforce
rigid rotation in the surrounding flow. Given that B, vanishes, equation (2.7) and the
¢-component of equation (2.11) imply

8. 9B
Ep =0, and B”E_ =0.

Together, these results show that @ = Q(r} and B = B(r), while ¥;y;, Tezt, p, p, and s

are functions of both r and z in general.
Consider the equilibria permitted by these results. With 2 and B functions of r only,

the Euler equation (2.11) becomes

2. VpT Bczi 2
Q% — BT (T + Vegy) = — 25 = 0, (2.19)
p 4mpr
where pr = p + |B|?/87 is the total (gas plus magnetic) pressure. It is convenient to

introduce the “potentials”

X 1 2B}
Wpor = — f PO, ey = o f —ta, (2.20)
and the enthalpy,
h=-— / dpr (2.21)
g
Then the r-component of equation (2.19) can be integrated, giving
h= hD + (‘I’int + ‘Ilea:t - ‘IJO) + (‘I’rot - ‘I’rotﬂ) + (‘I’mag - ‘I’mag O)y (2-22)

where the subscript ‘0’ refers to a quantity’s value at the pressure maximum of the config-

uration, (r = 7,z = 0).1

'One is free to choose the various arbitrary constants appearing in the equilibrium equations such that
this is the case.
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If Q(r) is known, ¥, can be easily calculated, but explicit forms of Uinag and it await

the specification of a definite relation between p and B. Note, however, that

_l?ﬂ_ Bg —_{l@.*. 1 [Ii( 2Bz)+dB? }

p Or dwpr pdr " 8mp {vldr e dr
1 B? d
h_q’mag=_/;d(p+—;)=“/‘—p‘ (2.23)

where the latter equality follows if B, = constant. This configuration, i.e. By~v7!, B. =

which shows that when By ~ r~!

constant, happens to be the unigue zero current-density solution for this class of equilibria.

This property will be found useful in the section which follows.

2.2.1 Toroidal equilibria

The geometry of a torus is the most general axisymmetric one which includes both thick
and (as a special case - see Ch. 1) thin disks. I employ the same formalism as in the
hydrodynamic case, which can be found, e.g., in Papaloizou & Pringle (PP) (1984).

Due to the above-mentioned interdependence of p and By, it is difficult to make fur-
ther progress in general. However, when the zero-current situation examined above holds,

equations (2.22) and (2.23) along with (2.16) yield

-1
% = %3' -1== Y [(‘I’int + Wert — Wo) + (Yrot — Urot 0)]a (2.24)

which is identical to the hydrodynamic expression (PP 1984). The appropriate external

gravitational potential is that of a Newtonian point mass, i.e.

GM .
Very = "'""'_"'_—(r2 n 22)1/2 . (2.20)
Also, one often assumes that the rotation follows a power-law, i.e.
Q2p2 r —2(a-1)
= ~e =00 ("~ 26
Q= Qufr/ro)™ = W= (Z) (2.26)

where €2y and a are positive constants. Here equation (2.20) has been used, setting the
additive constant of integration to zero to ensure that ¥,, vanishes as r — oc. If Wy is

specified, and all magnetic fields taken to be continuous across the boundaries, then solving
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equation (2.24) with p = 0 gives the equation of the fluid surface. For example, when

W,ne = 0 one finds

2 21712 _ -2(a—1) 2
[(1) N (_) ] _141=(r/ro) +E o, (2.27)

To 20 2(e-1)

where p2 = 2yporo/[GMpo{y — 1)) is a constant equal to the ratio of thermal to kinetic
energy at rg = (GM/92)!/3, the pressure maximum of the torus. g gives a measure of
the torus’ overall extent in the r-direction (Blaes 1986}. Hence, for every a, there exists
a continuum of toroidal equilibria, depending on the value of u. These models can be
distinguished by solving for the radial boundaries of the torus at its midplane, i.e. by
setting = = 0 in equation (2.27) and solving for r. Consider a in the range 3/2 < e £ 2

(Ch. 3). When a = 2, one finds
T+ 1
o 1Fu
where r_ and r4. are the inner and outer radii of the torus at z = 0, respectively. For this

a surfaces of constant density near the pressure maximum are concentric circles (see Fig.
1.6). For & < 2 these become ellipses, and for a — 3/2 the eccentricity of these ellipses

tends to 0o, u? = 0, and pressure support becomes negligible. This is the Keplerian case.

2.2.2 Homogeneous, non-self-gravitating, cylindrical equilibria

By consiiering the fluid to be homogeneous, one obviates the need to specify a precise
relation between p and B. For definiteness, 1 also adopt & power-law behavior for the

magnetic fields; i.e.
By = Byy(r/r0)~*1, B, = Buo(r/rp) "+, (2.28)

where By, B.p, b and c are positive constants. Then equation (2.20) gives

_ B2, (r/re)~26-1)
T 4mp 2(1 - b)

(2.29)

The equilibrium relation (2.22) now becomes

2,.2 —2{a-1)
_Pr_ _PTo GM(LE%M (.”_) -1
p P To r 2(0—1) T

Bgo (L)-Z(b—l) _
87p(1 ~b) [\ro ’



2.3. EXTERIOR FIELDS AND BOUNDARY CONDITIONS 17

where I have assumed that

‘.
T, =0 and ¥y = —%. (2.30)

The purely radial dependence of the external potential is justified if, at every radius r,
only heights such that = « r are considered, so that there is little variation of ¥, with =
(cf. Blaes & Glatzel 1986; Jaroszyriski 1988; Kumar, Coleman, & Kley 1994). The model
therefore adequately describes the region near the midplane of a thick accretion disk.? Due

to the removal of the z-dependence from the problem, the equilibrium is no longer toroidal,

but rather infinite-cylindrical.

2.3 Exterior Fields and Boundary Conditions

At the fluid-vacuum interface, the boundary conditions (Tassoul 1978)

2
<— (p+|l:~1!:-)ﬁ+%(ﬁ-B)>

(h-B) = 0, (2.32)

It

0, (2.31)

must be satisfied, where fi is the unit normal directed outward from the fluid at a boundary
surface and the angle brackets denote a jump in the enclosed quantity across the surface,
taken in the direction of fi. The first condition (which follows from equation (2.11)) ex-
presses the requirement that the normal component of the material and maguetic stresses
be continuous across the surface, while the second (which follows from equation (2.7)) ex-
presses conservation of magnetic flux. One sees from equations (2.31) and (2.32) that the
magnetic field outside the shell must be specified and that, in particular, the location of the
boundaries depends not only on the magnetic field interior to the fluid, but also on that to
its ezterior.

For definiteness, let us examine the form of the above boundary conditions in two specific
fluid geometries. In the toroidal equilibria examined in §2.2.1, fi and B, are everywhere

orthogonal. Thus equation (2.32) becomes simply (ii - B} = {B,cos #} = 0, where 8 is the -

2 As regards the stability of such a model, any instability occuring in the midplane should influence regions
z 2 ron a dynamical timescale ¢ = z/c, = r/ux = tay (equation (1.4)).
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angle between fi and 2. Taking the dot product of £ with equation (2.31) from the left, and

denoting surface quantities with the subscript S, I obtain

< B>
pPs = 8': cos 6,

since the gas pressure vanishes in the exterior. Therefore, if By is continuous across §, then
ps = 0, and useful hydrodynamic results like the hydrostatic balance condition, equation
(2.24), can be employed. For the cylindrical equilibria examined in §2.2.2, i = —fat r =

and +F at r = rp, s0 fi - B = ( everywhere on S. Equation (2.31) becomes

1 2
P(n12) = —g= (B3(ri) + B(r12))-

In the work that follows, I will confine attention to a current-free external field, some-

times called a “potential field,” for which
IJV) =y xBWV) =, (2.33)

where the superscript V' denotes a vacuum quantity. A more satisfactory approach would
be to treat the exterior field as force-free, but this could be achieved only at the expense
of a considerably more complex mathematical treatment.® A potential field might result
if the Alfvén speed outside the disk is high enough that efficient reconnection takes place
from a more complicated initial field structure; e.g., as in the solar corona (§1.5.1; Sprait
ot al. 1995). '

In the cylindrical case equation (2.33) implies
B (r) = BY(r/ro)™" and BY)(r)= B, (2.34)

Taking the fields to be continuous across r; and 7, and adopting the power-law forms (2.28)

then gives

BY) = = Byo(r1/re)~**2, BY) = Byo(ra/r0) "%, and B£K)=B:o,

@o.,in ¢g.out

where the subscripts “in” and “out” refer to the interior (r < r;) and exterior (r > 79)
vacuum regions, respectively. Note that when b # 2 these conditions lead to a current

discontinuity on 8; for this reason, I shall usually take b = 2, whence B‘%_Z = Bégzut = Byp.

3This would best be carried out by transforming to coordinates centred on the pressure maximum of the
torus; cf. Blaes (1986).
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2.4 The Perturbations

2.4.1 The most general linearized perturbation equations: interior

Suppose that at ¢ = 0 the equilibrium flow of §2.2 is everywhere perturbed by infinitesimal
amounts; i.e. for any physical variable X, we write X+6X, 6.X « X. Here 6 X, the Eulerian
change in a fluid variable X, is defined as the difference between X' and its perturbed value

evaluated at the same time and place. To first order in these small perturbations, equations

(2.1), (2.4), and (2.11) - (2.13) become

%0 + 0% 1 v (ou) = o, (2.35)
d¢
VUi = 47Gép, (2.36)
Oy,  _ Obu, 1aapT 06 Wy dpr B}
ot +8 d¢ Abug +p ar ar (6r+
1 [B, 5B, 053, 23@1;,,} 5
“4mp [ r 0o + B a: r = 0 (287)
6§U¢ Béud, 1d¢ 1 aép]" 135‘1’,‘,“
a %% Trat Tt e T
1 [/B, %) n L Bs06By 353¢,] B 5 2
“Inp [( + . 65, + % + B, EP = 0, (2.38)

dbu. + Qaéu; 4 laé'pr + 00%ime  6pOpr

at do p Oz 9z -pﬁ 0z
1 [8B. B, 5B, . 98B, _ .
_471',0 [ 5 ~6B, + P + B. EP ] = 0, (2.39)
débs Bbs
_— —_— . = 40
o 05t Vs = 0 (2.40)
- (2) s+ () ,
bp = (3{)),6 + (53 s, (2.41)
96B, _ 06B, B,06u, _  Obu,
o T8 "7 oee B 0. (2.42)
863,;; + QaéB¢ - B. aéu,, 6‘(B¢6u,-) 4 3611:

+

to
©
Qo

ot a¢ T 0z or
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+[Q—d("9)]53, = 0, (2.43)
dr
ot +0 o + ar bur + T or + d¢

9 - 0, (2.44)

where pr = p+|B|?/87 is the total pressure and { = r?Q is the specific angular momentum.

Both the toroidal and cylindrical equilibria described in this chapter possess symmetries
which can be used to simplify the most general perturbation equations given above. The
three most obvious of these symmetries are: (i) axisvmmetry (i.e. independence of the equi-
librium quantities on ¢), (ii) time invariance, and (iii) equatorial symmetry (i.e. reflection

about 2 = 0). The first allows us to Fourier analyze the perturbations as
80X ~ exp(im¢), ) (2.45)

where m is an integer. The time-independence of the coefficients in the perturbation equa-
tions supgests the adoption of

06X ~ exp(iwt), (2.46)

lLe. “normal mode” perturbations. If Im w < 0 for any solution of the above equations,
then one can say with certainty that the configuration is linearly unstable. However, even
if Im w > 0 for all solutions of the form (2.46), one cannot be assured of linear stability to
arbitrary initial perturbations unless the solutions form a complete set; the conditions for
this completeness were discussed by Dyson & Shutz (1979).* Finally, equatorial symmetry
permits expansion of the perturbations in terms of even and odd functions of =. While this
simplification incurs no loss of generality, I shall not make use of it.

Adopting (2.16), (2.45) and (2.46), equations (2.35) - (2.44) become

iobp + %(rp&u,.)’ + ?6% + (pbu;)* =0, (2.47)
1 roy m? .
;(r&\llm,) - T—26\IJ.-"¢ + (6Uine)* = 4nGép, (2.48)

4In certain circumstances, the perturbations may grow as polynomials in time, instead of as exponentials
{Case 1960).
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(épr) o, B3
_9 . oP Zo
tobu, — 2Qéuy + ~——r > + (6%ine) — = | pT + e
1 [im -B¢6Bo] \
4‘rp[ BoSB, + Bi(6B,) - = 0, (2.49)
ioduy + <5uIF + m (6‘DT 6\1!,,1;)
p
1 B
o (B¢+ *") 6B, + ”i3¢53¢+ B.(6By)" } = 0, (2.50)
§ é
iofu, + ——— (épr)” + (6Wine)® - pPT
1 / im
—_— — . . 5 = 2,
— [B:éBr + T Bs6B, + B.(8B.)" ] 0, (2.51)
Yp 1
tor = Lop+ i —_(B46Bs + B.5B.), (2.52)
iob B, — TB¢5u,- — B:(6u;)* = 0, (2.53)
i06By — By(6us)® + (Babus) + Bo(6u.)® — r¥6B, = 0, (2.54)
i06B; + Blbu, + %[(réu,-)' + imbugy) — E}B&u; = 0, (2.53)

where ¢ = w + m{2, and primes and dots denote 8/8r and 8/9z, respectively.

The above is a system of nine equations in the nine unknowns éu, éB, épr, 8p and
6¥int, and thus is solvable in principle. One might proceed by: (i) solving equations (2.53)
- {2.55) for the components of §B and substituting into the remaining equations, leaving six
equations in six unknowns; (ii) elimirnating ép via equation (2.47) or (2.48); and (iii) substi-
tuting for épr from equation (2.52). This leaves four equations in the perturbed velocities
and 6¥;,;. However, these perturbations are inextricably coupled via their z derivatives,
and further reduction, e.g. to a single scalar equation in one of the perturbations, seems
unlikely. When é¥;,; = 0, one is left with a trio of equations in the ¢>mponents of éu.
Although in this case it would be possible to write down a single vector equation for the
perturbations, a single scelar equation is not forthcoming. This has important consequences

when one attempts to extend the proofs of certain general theorems from hydrodynamics
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into the MHD regime (see ff. §2.5.5).
Note that one often sees an alternate description of the perturbed flow in the form of

the Lagrangian change A, defined in terms of the Eulerian change by
A=6+¢-V, (2.56)

where £ = éu/(ic) + rQ'6u,¢ is the Lagrangian displacement. The time derivative of £
describes, at a given point, the velocity of a single fluid element as it varies in time. This
is in contrast to §u, which signifies the velocity history at the same point, as various fluid

elements pass through it.

2.4.2 Perturbation equations: exterior

As mentioned in §2.3, the exterior region is supposed to be current-free. Assuming that

this property carries over to the perturbations, one then has

V x 6BV =, v-6BV) =g,
= BV = vy, Vix =0,

where x = x(r, 2)e!(“!*™?) is a scalar potential function. The exterior perturbations are
therefore determined as solutions of Laplace’s equation, which should be solved in the
coordinates appropriate to the fluid geometry at hand. In the case of fluid tori, one could
employ a coordinate system centred on the pressure maximum of the torus (Blaes 1986)
or perhaps the flux coordinates often used in plasma confinement calculations (Bateman
1978).

In the considerably simpler case of an infinite cylinder (§2.2.2), there exist two topolog-
ically distinct exterior regions, one at 7 < r and the other at r > r9. Then one can take
X = Xio(r)ef@i+mé+he2) where k. is the vertical wavenumber of the perturbation, and the

interior and exterior potentials are found as
Xi(w) = leo(WJ, Xa(w) = CQI\-O(W), (2'57)

where w = |k;|r, Iy and Ky are modified Bessel functions of order zero, ¢; and ¢; are
arbitrary constants, and regularity conditions have been imposed on the solutions at r = 0

and r — co.
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2.4.3 Boundary conditions for the perturbations

Many of the results heretofore established in the theory of the flows considered here were
done so in the context (mainly motivated by geophysical applications) of Couette Aow, in
which a perfectly conducting incompressible fluid rotates between two rigid cylinders (cf.
Chandrasekhar 1961). In this situation, an appropriate boundary condition is that the

radial component of the perturbed velocity should vanish at the boundary, i.c.

Sur(r1) = dup(rs) = 0. (2.58)

In a compressible gaseous disk, however, this is a highly unnatural requirentent, since the
boundaries are generally (a) free to move, and (b) not sharp. Moreover, the disk exterior is

not expected to be field-free, so that the magnetic structure in the regions exterior to the

fluid must be considered.

A more natural requirement is the continuity of Legrangian perturbations of the total
pressure and magnetic flux across the boundaries { Tassoul 1978, Goossens, Smeyers, & Denis
1976). This is equivalent to the requirement that Maxwell's equations and the equation
of motion be satisfied in a reference frame moving with the perturbed surface, given by
S = So + S(r,z)efl@t+me) Tt then follows from equations (2.31) aund (2.32) that the

appropriate conditions to be satisfied on the fluid/vacuum interface are
A<—— (p+%)ﬁ+£(ﬁ-B)> - 0, (2.59)
A{n-B) = 0. (2.60)
Using (2.60) in (2.59) then gives
A<p+%f>=0 and A(n-B<B>)=90 (2.61)
on the surface. Noting that
Ap=—ypV €, AB=6B+(¢£-V)B,
and  Ad = i x [ x(VE)- i),
(Kovetz 1966) conditions (2.61) become
—pV £+ %B-[éB +(6-V)B| = %BW) BY) 1 (6. V)BY)]  and
(n B)A<B>=(n-B)[§BY) +(¢-V)BY) - B - (- V)B] =0

T
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respectively. If the fields are assumed continuous across S then only the former condition
need be considered. This accords with the comments of Goossens et al. {1976), who state
that the introduction of an electromagnetic field does not change the number of conditions

to be satisfied on 5.

2.5 Global Stability Analysis: General Results

The results of this section are culled from a small number of seminal papers and texts, most
of which employ the energy principle formalism. Excellent reviews of this technique may be
found in Tassoul (1978) for non-magnetic fluids, and Bateman (1978) and Schmidt (1966)
for MHD fluids.

2.5.1 Sufficient criteria for stability

Bernstein et al. (1958) rierived necessary and sufficient conditions for the stability of an
MHD fluid in static equilibrium using the energy principle. Frieman & Rotenberg (1960)
(FR) extended the Ber.stein et al. work to find sufficient criteria for stability in the
case of stationary equilibria, i.e. those with fluid velocities and, in particular, rotation.
Chandrasekhar (1964‘), Clement (1964), and Lynden-Bell & Ostriker {(1967) applied these
criteria to hydrodynamic fluid situations in astrophysics (i.e. stars and galaxies). Tayler
(1973) exainined the stability of non-rotating magnetized stars. All of these applications,
however. are contained in the very general situation examined by Chanmugam (1979) (C79),
who applied the FR results in the context of differentially rotating, magnetized stars. For
this reason, I choose the latter study as a starting point.

An alternate derivation of the perturbation equations of §2.4.1 is the following. Begin-
ning with the Euler equation (2.11), take the Lagrangian variation A of both sides, applying
the definition (2.56). This gives

D? §
p-—,Tg- =-Vép+ f(Vp - J x B) - p|V¥y, + (§-V)r92f'] +6I xB+J x 6B, (2.62)

where Wiot = it + Werr. Assuming a normal mode spectrum of tis. form & (r,t) = £(r)eivt,
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and substituting into (2.62), the latter becomes (FR; C79)

~ w?p€ + 2iwp(u- V)¢ - F{¢} =0, (2.63)

where  F{{} =V(1pV - £+£-Vp-B-Q)+(B-V)Q+(Q-V)B
+V - (pE) V¥t + V- [pE(u - V)u - pufu - V)¢] (2.64)

and Q = 6B = V x (§ x B). The only difference between the equations of CT9 and FR
is the presence of the potential term in the former. Neither author examined the effect
of self-gravity, so here §¥;n; = Uy = 0.° Equations (2.62) and (2.63) are “equations of
motion” for the displacement £, where F(£) plays the role of the linearized “force density.”

Multiplying equation (2.63) on the left by £* and integrating over the entire volume T

(for ncw assumed arbitrary) gives

- Aw? + 2Bw +C =0, (2.65)

where .
A= / olePdr, B=i f PE"(u-V)edr, and C=- f £ . F{e}dr

are real (FR). From equation (2.65) then,
w=[B£ (B +.4C)?)/ A (2.66)
Since A > 0, a sufficient criterion for stability (since w must be real) is
C >0, (2.67)
while a stronger sufficient condition is®

B2+ AC> 0. (2.68)

®Moss & Tayler (1969) showed that the effect of §¥in; # 0 is destabilizing, This is not a concern if one
simply wants to demonstrate instability, and not absolute stability.

SThis condition is only sufficient and necessary if £ are the exact eigenfunctions corresponding to w
(Lynden-Bell & Ostriker 1967). Since varizcional methods based on the energy principle often use (arbitrary)
trial functions for £, (2.68) is only of practical utility as a sufficient condition.
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In the specific case of an axisymmetric equilibrium with a purely azimuthal flow u =
rQ(r)¢ = § x r, one can show that (C79; Kumar, Coleman & Kley 1994; Bernstein et al.
1958):

B = [ x€) - mlgP)oar, (2.69)
= f+2066F) 4 5605) 4 56V
—m [ [mQle[? - 2i0-(¢ x £")%dr, (2.70)
_ £-Vp 2 -
f = f[ ( 5 +V- §)+£ v(Q )]rp&,d'r, (2.71)
2
665) = %f(g-ﬁ)2<v (M%»-ds, (2.72)
vy = [EBYP
seW) = f —l (2.73)

and

s = [ ['Q'z S Q@xEH(V € + (6 VDIV -6+ (€ V) V-(06)| dr

(2.74)
where the surface integral extends over the fluid-vacuum boundary. C79 ignored the latter
two contributions, assuming a complete vacuum outside the star. This was an admissible
assumption for his purpose, which was to derive sufficient conditions for axisymmetric
{(m = 0) stability in the presence of a purely azimuthal field, B = By(r)¢, since the latter
can in some sense be considered isolated from the region outside the star. For more general
field configurations, however, the surface and vacuum contributions must be retained. éW =
6EF) 1 6£(5) 4560V is the total change in potential energy due to the perturbations. In the
absence of rotation, W < 0 is sufficient for instability. Determining the precise conditions
under which inequalities (2.67) and (2.68) hold is extremely difficult for the general situation
considered here. Several important results can be obtained in particular cases, however, and

I presently consider these.

2.5.2 General axisymmetric results: hydrodynamics

When m = B = 0, equations (2.65) - (2.71) remain unchanged, but §£(F} simplifies tremen-
dously and 6£°) and 6" vanish. It can be shown that substitution of 6£() into (2.68)
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gives the following conditions for stability (Tassoul 1978):
Lli.vey- By 273
3 (F- VL) 5 Vs > 0, (2.75)
(Vpx#)- (V& xVs) > 0, (2.76)

where g = Vp/p is the effective gravity. These are the Hoiland (1941) stability criteria,
and are necessary and sufficient conditions for axisymmetric stability. In the absence of

rotation, (2.75) and (2.76) reduce to
N2=-g.Vs>0, (2.77)

where N the Brunt-Vaisild frequency. Inequality (2.77) is the Schwarzschild (1906) criterion
for convective stability. In the homentropic case, Vs = 0, the Hoiland criteria reduce to the
Solberg (1936) criterion,
2 _ (&) .
K™= —.TT > 0, (2.78)
where & is the epicyclic frequency. The Solberg criterion generalizes to homentropic bodies

the well-known Rayleigh (1916) criterion for an inviscid, incompressible ftuid.

2.5.3 General axisymmetric results: MHD

Even a cursory inspection of the plasma physics, nuclear fusion, and geophysics literature
shows that a large variety of instabilities are possible in MHD fluids. Many of these act
in highly specialized situations which are of little interest in the present context; e.g. the
Kruskal-Schwarzschild (1954) instability occurs when a plasma layer placed in a uniform
gravitational field is supported by a horizontal vacuum magnetic field. Here I restrict
consideration to the system whose stability is dictated by the equations of §2.5.1. Unless
otherwise noted, all of the work in this section was carried out under the assumption that
the magnetic field outside the fluid vanishes, and that surface currents are negligible; i.e.
6B = 6£V) = 0. Probable effects of ignoring these contributions will be discussed
presently.

Papaloizou & Szuszkiewicz (1992) recently applied the sufficient criteria of §2.5.1 to an

accretion disk with a purely vertical magnetic field, i.e. B = B;2.” Ignoring the surface

"Actually, these authors considered a poloidal magnetic field, i.e. B = B,& + B.%, introducing a poloidal
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and external vacuum terms, the authors showed that the sufficient condition for stability
(2.67) becomes

22

B
ri-vo2- 8 -Vs+go%rf >0, (2.79)

p
where (p is a positive constant geometrical factor, approximately equal to r/{Hr$) for a
thin disk, H is a characteristic scale height at radius r, and r; is the outer radius of the
disk.

Condition (2.79) contains two qualitatively new and important features when compared
with the Hoiland criteria. First, the gradient of the angular momentum is replaced by the
gradient of the angular velocity. Hence for homentropic configurations, an Q which decreases
outward is unstable, provided that B, is small enough. This is the fundamental cause of
the Velikhov-Chandrasekhar and Balbus-Hawley instabilities reviewed in the Introduction.
Second, if the components of (2.79) are expanded in the flux coordinates used by Papaloizou
& Szuszkiewicz, one can show that if Schwarzschild’s criterion is satisfied along every field
line, then there always erists a value of B, above which the system is stable. This behavior
has been confirmed in subsequent numerical analysis (Ch. 3). In the limit of vanishing B.,
{2.79) does not reduce to the Hoiland criterion (2.75); this curious consequence was already
commented upon in the Introduction. The resulting criterion, however, can be shown to be
both sufficient and necessary.

Stability criteria for purely toroidal magnetic field were derived by C79, again ignoring

surface and vacuum terms. One of these sufficient criteria is (C79; Tayler 1973)

p2g?
U R} 2.
9:p B3/87 +p >0 (2.80)

which generalizes the Schwarzschild criterion to include the effect of By and Q (£ is absent
because rotation doesn't effect motion along z). Condition (2.80) implies that the toroidal
field has a stabilizing effect on hydrostatic equilibrium in the z-direction. The other two
sufficient criteria given by C79 are lengthy and are not reproduced here.

A final limit of interest in the axisymmetric case is that of a homogeneous (p’ = p* = 0)

and incompressible (§p = 0) fluid, in which ¥ — co but perturbations in pressure are still

potential and coordinates adapted to constant magnetic flux surfaces to “simplify” the analysis. As shown
in §2.2, however, this configuration is inconsistent: a B, component implies a nonzero B,.
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allowed. Such a fluid is homentropic (Vs = 0). The only consistent, bounded equilibrium
with a vanishing B. in this case is an infinite cylinder (§2.2.2). Thus, all equilibrium
quantities depend only on r, and one is free to Fourier decompose the perturbations in
z according to 6X(r,z) = 6X(r) exp (ik;z). In the context of Couette flow (i.e. rigid
boundary conditions), Michael (1954) and Chandrasekhar (1961) derived lnecessary and
sufficient criteria for the cases of purely toroidal and purely vertical fields, respectively.
Kumar, Coleman & Kley (1994) extended this work to the case in which both radially-

varying toroidal and axial fields were present. The sufficient criterion for stability is

272 VZ !
Q5+ (Y - [T—f L) :) ] >0, (2.81)
where % = k2V2, and where
2 B2
2= —'1, Vi=—2 (2.82)
Y dmp dmp

are the vertical and azimuthal Alfvén speeds, respectively. Often one sees quoted the mode-
independent version of this criterion, in which k; = 0, signifying that this is in fact the most
unstable wavenumber (Ch. 3). Using the incompressible version of the equation of motion
(2.62), Kumar et al. were able to place the following upper bound on the growth rate of an

unstable mode:

lwr| < (407 + k2, - k2 — Q412 (2.83)

Almax

where &2, = 2V4(2V,/r + r(Vy/r)Y]/r is a “toroidal angular frequency,” and where the
subscript on the RHS indicates the maximum value of the enclosed quantity over the fow.

The replacement of the rigid boundary condition with the free houndary condition
is necessary for most astrophysical applications. It can be shown that the conclusions
of Chandrasekhar (1961) carry through with little change. In particular, w? is real and
condition (2.81) still holds. A similar result to (2.83) can be derived from Chandrasekhar’s

equations and their free-boundary counterparts, namely

492 1/2
|u)1[ < Sy (-:;2— - 1) . {2.84)

maxy

In the Keplerian case, e.g.,, x* = Q? and the By, = 0 upper bound according to (2.84) is

lwr| < v3Q4. However, this is less restrictive than the mode-independent upper bound
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given by (2.83), i.e. |wr| < v3Qmax = v3Q(r1), where the latter relation holds for all of

the angular velocity profiles I consider (i.e. I do not treat the case of a boundary .layer).

2.5.4 General nonaxisymmetric results: hydrodynamics

As pointed out by PP (1984), there exists no general sufficient criterion for hydrodynamic
stability to nonaxisymmetric modes. The Solberg and Rayleigh criteria are necessary, but
not sufficient, for stability. Thus it is more fitting to review here (and in the MHD companion
section that follows) some results pertaining to particular instabilities that occur in the
flow described above. For this reason, I confine attention here to non-self-gravitating,

hydrodynamic tori. In that case, equations (2.49) - (2.51) can be written (PP 1984, 1985):

[
Dby, = ia[(ﬁ—p) +w~-§£l, (2.85)
p or p
!
Déuy = 1 [ﬁ' (6_1)) +m06—p] , (2.86)
r \p p
icbu, = _(J?p) , (2.87)

where D = ¢? — k? and #% = 20 /7 is the epicyclic frequency.
By introducing the variable

W (2.88)

i
3

(whose significance will become clear presently), substituting the components of §u into the
continuity equation (2.47), and using equations (2.52) and (2.88) to eliminate ép in favour
of W, PP were able to reduce the entire system to the following perturbation equation for
W

1 pra?w!
r D

) +(pW*)* +

om _ef_')'_ﬂmgaz Ll
- (TD 75+ oy W =0. (2.89)

On the boundary, the density is expected to vanish. Thus equation (2.89) is automatically
satisfied on the boundary, provided that W and its derivatives are regular there.
Consider now the case of constant angular momentum, { = x = 0. Then the above

simplifies to

2.2
V(pVW) + %w = 0. (2.90)
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Multiplying through this equation by W™ (where an asterisk denotes the complex conju-
gate), integrating over the torus cross-section applying the above boundary condition. and

taking the imaginary part of the resulting expression, one finds

3712 2
w;fl}fl—p-a-ﬂrdrd: = (, (2.91)
TR

where op = wg + mQ and oy = w; are the real and imaginary parts of ¢, respectively.
This equation shows that if w; # 0, og = 0 = wg = —mfl somewhere interior to the
torus. Defining the “pattern speed” by @, = —wg/m, this condition becomes £, =
i.e. unstable modes must corotate with the equilibrium flow at some point. The derivation
givén here is due to Blaes (1985), but a more general proof for non-constant, power-law
angular momentum flows was given by PP (1985). The corotation theorem also holds for
incompressible fluids.®

The constant angular momentum fiow has the property that its vorticity, V x u, van-
ishes. By Kelvin’s circulation theorem, this property is likely to carry over to the perturbed
flow (Moncrief 1980). Thus, in the £ = constant case, one expects ¥V x §u = 0. This implies

that a perturbed velocity potential, W, exists such that
bu = VW, (2.92)

Hence the flow is termed a potential flow. Using equations (2.83) - (2.87), it is easy to
show that the function W chosen by PP indeed satisfies equation (2.92) (modulo constant
factors). Its choice therefore has an underlying physical basis that utilizes the special
properties of constant { flows. In the incompressible, constant { case, equation (2.90)
becomes simply Laplace’s equation, V2W = 0. Then analytic solutions exist for W and all
other perturbed quantities. The eigenvalue spectrum for this case (which corresponds to
an infinite cylinder) was first calculated by Blaes & Glatzel (1986), and later extended to
¢ # constant by Goldreich, Goodman & Narayan (1986) (GGN), Jaroszysiski (1988), and
Sekiya & Miyama (1988). Due to the near-independence of the PP instability on vertical

structure (Ch. 1), the essentially two-dimensional analysis of constant ¢, incompressible

8Since p disappears from equation {2.89) in the incompressible case, one must retain surface terms in the
integration and utilize the “true” boundary condition, o®W + g, W’ = 0, to establish the theorem.
g 1f
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cylinders compares quite well with full three-dimensional numerical calculations (Hawley

1987, 1991).°

2.5.5 General nonaxisymmetric results: incompressible MHD cylinders

In §2.4.1, I noted the increased complexity of the MHD perturbation equations due to
additional couplings from z derivatives in the induction equation. To cast the problem in a
form more suitable to further analytic work, I now make the additional assumption that all
equilibrium quantities are independent of z. This is a serious restriction in that it precludes a
proper treatment of the vertical boundaries of the disk. Nevertheless, it allows us to Fourier
transform all perturbed quantities in z, thereby alleviating the above-mentioned difficulties
in obtaining a single perturbation equation. Replacing 8/0z with ik, in equations (2.47) -

(2.53) gives

ighp + %(rpéur)' + @0-6% + ik pbu, =0, (2.93)
1 [AERY) m2 2
;(T‘S‘pint) “\ 7 + &5 | 6V i = 4w Gop, (2.94)
: (6pr)’ bp B
laéur - 2Q5u¢ + ) + (é\pint)’ - ;2' p’T + E
L [iPéB, _ %] = 0, (295)
d7p T
¢ ] !
iobuy + —buy + (‘sﬂ + 6\1'1-,1:) - [@ﬁw, + iP&B¢] = 0, (2.96)
T r Ji dmp T

_ s 1 ,
iobu; + ik (% +5x1ri,,t) - 55, (BB, +i08B.] = 0, (207)

1
Spr = %@ + 4= (BsSBy + B:8By), (2.98)
i06B, —iT6u, = 0, (2.99)
i08By — ik:Bibug + (Bgbuy) + ik Bobus — r¥6B, = 0, (2.100)

ivéB; + B6u, + %[(réur)' + imbuy) — ?Bbéu; = 0, (2.101)

®GGN showed that the height-integrated surface density has an effective polytropic index N = n+1/2, so
that a three-dimensionally incompressible torus (n = 0) behaves as a compressible fluid in two dimensions.
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where I' = mBy/r + k. B;. This is the set of equations on which I base all further analysis.

To proceed further, note that the second-order equation (2.94) forces the choice of §¥;,,,
as the final variable en route to a single perturbation equation. However, as the global effects
of self-gravity will be ignored in the remainder of this thesis, I drop equation {2.94) from the
above system and set §¥;,; = 0 (this does not mean that §p = 0). The choice of the final
variable is now quite open. The magnetic field perturbations can be entirely eliminated via
equations (2.99) - (2.101).

To draw an analogy with the results of the previous section, it would be useful to know
whether a potential function still exists in the MHD case. However, the MHD equivalents
of equations (2.85) - (2.87) are still quite complicated, due mainly to the coupling between
the magnetic field and compressible modes. To address this issue, I examine the simplest
possible extension of §2.5.4; the case of a homogeneous and incompressible fluid with B, =

constant.

In this case, p' = p* = 6p = 0 and equations (2.85) - (2.87) are unchanged. Their MHD

equivalents are

spr\' 2moQ16
Géur = ic [(ﬂ) + =T (2.102)
p )
G —-0o% (épr\' modpr
Géug, = (——-) _maorr 2.103)
¢ 2Q p r o p (
i%éu; = —ikz‘s’%, (2.104)
where 62 = 0% - k2B?/4wp and
202
Gg= 52— k% = %.

Despite certain formal similarities between equations (2.85) - (2.87) and (2.102) - (2.104),
it is now shown that there can exist no perturbed velocity potential in the magnetic case.
Proceeding by contradiction, let such a potential be defined by éu = VW. Then equation
(2.104) dictates the choice

This implies
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which contradicts equation (2.103) unless
2
——t =0 (2.105)

One fully expects x? = 0 in order for W to exist, but there is no reason for the second LHS
term in equation {2.105) to vanish. If one supposes that such a potential exists even for
k2 # 0, equation (2.105) puts an a priori restriction on ¢, which is equally unreasonable.
Thus it has been proved that a perturbed velocity potential cannot exist in a homogeneous,
incompressible, B; = constant fluid.

There is good reason to believe, from a physical standpoint, that this result holds for
any differentially rotating configuration with vertical field, even compressible and inhomo-
geneous. This is because vorticity need not be conserved in a magnetized fluid. On the
contrary, the displacement of fiuid elements in the ideal MHD fluid occurs at constant an-
gular velocity, due to Ferraro's theorem, and therefore at nonzero vorticity. Thus, just as
when viscosity is introduced into the fluid equations, Kelvin’s circulation theorem no longer
holds (Tassoul 1978).10 The existence of W is still useful in the MHD problem, however,
since one method of solution is to consider the magnetic field as a small perturbation on
the hydrodynamic flow. In the incompressible case, one is then perturbing about an ezact
solution of the fluid equations.

The incompressible versions of the perturbation equations (2.93) - (2.101), possess cer-

tain notable symmetries. One can show, e.g., given the solution

(w$ m, k:! 6ps 6“1‘1 6'U¢, 6“:9 6-81‘1 6B¢1 63.‘:11 érv EI:H ’E:)v
that (—wi —-m, "'k:s 6p1 _6ur1 6U¢,, 6“:1 "'631"1 6B¢n 6B:!€r1 _'Er;‘n "E:)q
(W m, ks, 6", —6uy, ul, 603, — 6B, 6B, 6B, €8, —E5, —£2),

&

and (—w®,—m, —k., 6p*, buy, bug, bu, 6B;,6B, 6B; €7, €3, €7)

are also solutions. Hence, to every growing (wy < 0) solution with given wavenumbers

{(m,k;) there exists a damped (w; > 0) solution with the same (m,k.). Also, to every

*®The analog of Kelvin’s theorem in MHD is simply the flux-freezing condition {Alfvén’s theorem), which
implies that the topological structure of B, expressed by the magnetic helicity, I, = f v A - BdV is constant
in time (Moffatt 1978). Here A is the magnetic vector potential and Vp, is any volume within the fluid on
whose surface n- B =0, This suggests a choice of W somehow invelving the helicity, but this has not been
pursued further.
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growing (damped) solution with given (m, k.}, there exists another solution for (—m, —k.)
with exactly the same growth (damping) rate. Note that all four of the above solutions
have the same pattern speed (2, = —wgr/m. There should be no loss of generality then, in
considering modes with positive (m, k.) only.!!

I now return to the system of equations (2.93) - (2.101). Acheson (1973) has examined
these equations in the Boussinesq approximation, wherein the gradient of the equilibriumn
density is supposed so weak that it may be treated as a constant everywhere save in the
buoyancy term of the Euler equation (cf. Chandrasekhar 1961). Eliminating all variables

in favour of the radial Lagrangian displacement & = §u,/ig, Acheson derived the single

equation
.2 oy . 02 3m? +r2k? P _ o 1o
&% + (8% + T IR & + kiH(r)é =0, (2.106)
where
V2 ! N2 (V?)f 2mQ
— ov_ Yo 2 o2y WWa P s
H(ir) = r [(Q ) (rz) + rzk;-’(m + k) - o~ BT
Q? gt 272 m? —
+?‘——2—2k§ lv +1+2m +2—k2( ) (2107)
ar) = 2 [‘: (mv“’ + ks v) - asz] , (2.108)
’ 1/2
§ = - (m1¢, ) . and N(r)= [f._ (gr+rQ2)]
P
is the Brunt-Viisil. iuency (§2.5.2).

Equation (2.106) can be rewritten as

32200\ 31.2
where
=2+ mt (2.110)

Multiplying through (2.109) by £ and applying rigid boundary conditions, i.e. £.(r)) =

"'When a singularity occurs in the perturbation equations, such as the corotation singularity in the
hydrodynamical problem, unstable and damped modes no longer occur in complex conjugate pairs. ‘To
calculate the damping rate requires a special treatment (Drury 1985; GGN 1986; Glatzel 1987a); fortunately,
the growing mode is unaffected and the (m, ;) to (—m, —k.} correspondence remains valid (Blaes 1986).
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£-(r2) = 0, one finds
T2 ad
[ Geme - eyar =o,
T

the imaginary part of which is

o [" 2_2 {-mg;]? + [2”6’;‘2 + 4’“103275” - Si(r ] A2|§rl’~‘} F=0,  (2a11)
where
Si(r) = 62 [g2+m +1+ 2:2( 2_1)], (2.112)
So(r) = —ogl’ (Qz + ‘:—f) + %T(fz + 0% + o?), (2.113)
and T =I'//T7p.

Upstable modes (0 = wy < 0) can exist only if the integrand in equation (2.111)
changes sign somewhere in {ry,ry). Assuming Q to be a positive-definite and monotonic
function of r, several conclusions may be drawn from this relation:

(2) If V: = 0 (purely azimuthal field) or V}; = 0 (purely vertical field), then an examination
of the signs of the terms in equations (2.111) - (2.113) shows that all growing disturbances

must have og/m > 0 somewhere in the fluid, from which it follows that
wg > -mQ, (2.114)

or £, < Qpgzr = Q(r1). The above constitutes an “almost corotation theorem”: unstablc
disturbances must propagate against the direction of rotation somewhere within the cylinder.
(b) Even if neither field vanishes, the above conclusion still holds if k. V.| < [mVy /7.

(c) In the case of a purely vertical field (V,, = 0), no purely exponentially-growing instability
is possible. That is, wr must be nonzero.

(d) If the magnetic fields are weak, i.e. Vi,V < 7€, then (c) still holds.

Conclusions (a) and (b) are due to Acheson (1973), while (¢) and (d) are apparently new.
All of these results hold for nonaxisymmetric perturbations. When m = 0, one can note
further vhat:

(e) Purely exponentially-growing instabilities can exist only if V5 V. changes sign somewhere
in (r1,72). This generalizes the result of Knobloch (1992), who proved the same for V, =

constant.
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By way of justification, some brief comments on the restriction to incompressible flows
rriay be in order. Generally speaking, compressible flows offer more routes to instability
than incompressible ones. This can be seen formally by a look back at the energy in-
tegrals of §2.5.1. Since v appears only in a positive-definite term in the energy integral
6E(F), it follows that the larger ~ is, the more stable the system (Schmidt 1966). In other
words, an incompressible fluid (v — c0) is at least as stable as a compressible one of the
same configuration. in astrophysical contexts then, one can be quite confident that hav-
ing demonstrated the existence of an incompressible instability a compressible counterpart
will also exist, possibly complemented by other instabilities of an intrinsl. iy compressible
nature (e.g. Rayleigh-Taylor instability). A similar “comparison theorem” holds in the
fluid exterior. If one replaces the exterior vacuum field with a complete vacuum, the latter

system is at least as stable as the former (Schmidt 1966).

2.6 Local Stability Analysis

To study certain physical phenomena of interest in accretion disks, it is not necessary to solve
for the global modes. Rather, one can ask whether a localized parcel of gas at (ro, ¢o, 20),
immersed in the fluid and subject to differential rotation, magnetic fields, gravity, etc.
is stable with respect to infinitesimal disturbances. Mathematically, this is achieved by
asrsuming that the wavelength of the perturbations is much less than any radial or vertical
scale height, which allows Fourier transforms in the spatial variables; i.e. 8/0r — ik, and
d/dz — iks, ks, ky large.’? This reduces the coupled, partial differential system (2.47) -
(2.55) to an algebraic system, solvable for the frequency w.

A very general approach to the determination of local, axisymmetric stahility in thick,
hydrodynamic accretion disks was initiated by Abramowicz et al. (1984b). Under the
above assumptions, these authors derived a fifth-order dispersion relation in the frequency
w. All terms were retained in the original equations and the authors conceived a clever

prescription for discerning the magnitude of each term relative to the others. Only then were

12Note that while formally this would force one to neglect derivative terms in the equilibrium quantities,
these can be retained provided that one follows the prescription k.r 3> 9X/8r, and similarly for k., for
keeping dominant terms.



68 CHAPTER 2. THICK MHD DISKS: GENERAL RESULTS

subdominant terms ignored, so that the resulting simplification allowed stability criteria to
be derived, Abramowicz et al. were able to recover the well;known Hoiland, Schwarzschild,
and Rayleigh criteria by this method. In the light of recent debate regarding how a local
stability analysis “should” be done (Knobloch 1992; Hawley & Balbus 1992; Gammie &
Balbus 1994), this careful paper should act as a model for all such future calculations.
The local method has a distinct advantage in that its comparative mathematical sim-
plicity allows one to include more physics. A case in point is the study of Fricke (1969),
who considered the effect of By and Bp = B.f + B.Z separately on m = ( perturbations
of a differentially rotating, radiating, compressible star. Self-gravity was not included, and
the Boussinesq approximation was used in the poloidal field case (having been found valid
only near the rotation axis in the toroidal field case). Fricke's conclusions on purely toroidal
fields have important consequences for stars; he found, e.g., that in the absence of rotation
a star with such a field cannot be stable. Conversely, in the absence of any magnetic field
it was already known that for stars in radiative equilibrium, a svationary state of rotation
of the form 2 = Q(r) is not possible (von Zeipel’s paradox; cf. Tassoul 1972). Fricke then
discussed whether the simultaneous presence of both By and Q(r) could be stabilizing. As
the issue remains unresolved today, I refer the reader to Tassoul {1972) for further details.
Fricke's important result in the purely poloidal field case was the following hecessary

condition for stability:

T

L2 (L 2 2 .R}?
k2 (5-,_39 _ a9 ) <&B? (2.115)

k2 \k; 0z or drp
where k2 = k2+k2. Fricke rederived this result heuristically, clearly showing the competition
of magnetic restoring and centrifugal forces. Equaiion (2.115) reduces to that of Balbus &
Hawley (1991) when k, = 89/8z = 0. The effect of the 82/9z term has so far been ignored
in the magnetized accretion disk context (see Kumar & Coleman (1993) for an application
to nonmagnetized disks). Evidently, an Q(r, z) which decreases with z (which seems most
reasonable) has a stabilizing efifect on the BH instability.

The role of self-gravity was not investigated by Fricke; yet, it is not significantly more
difficult to handle within the local approximation. I outline here the first steps in such

an analysis, treating the axisymmetric case only. The latter restriction is made not for
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simplicity but out of prudence, heeding the cautionary note of Knobloch (1992) that local
analysis can give specious results in certain m # 0 stability problems.
Replacing the r and z derivatives in equations (2.47) - {2.55) with ik, and ik., and

writing the resulting system in matrix form, one has

(iwp 4 0 B C 0D E p\/[ 6u )
F iwp 0 G B 0 0 0 0 bug
0 0 wp H 0 B J K pJ bu.
0 0 0 0 L M 1 N 0 6B,
-ir 0 0 4w 0 0 0 0 0 63, | =0,
P @ R S iw 0 O 0 0 5B.
T 0 0 0 0 dw 0 0 0 dpr
v o v 0 0 0 0 dw 0 bp
\ ] 0 0 0 0 0 0 —d4aG W } \6'1’,-,1;)

where A, B, ... W are r— and z— dependent coefficients containing equilibrium quantities
only. Setting the determinant of the matrix equal to zero for a nentrivial solution, one

obtains a dispersion relation of the form

iagw® + aqwt — iaaw® + ot + aqw + ag = 0, (2.116)

where ag, @), ...ag are functions of A — W and a neutral mode has been factored out
(ie. w =0). By way of comparison, the axisymmetric, hydrodynamic dispersion relation
of Abramowicz et al. (1984b) is of fifth order in w, while the MHD relations of Fricke
(1969) are of fifth and seventh order for purely toroidal and purely poloidal magnetic fields,
respectively.

Equation (2.6) has not been analyzed further, but .i is likely that in the absence of
self-gravity, 6¥;,; = 0, many of the results of §2.5.2 and §2.5.3 could he rederived. For
§Wint # 0, entirely new physical effects may be present (cf. Matsumoto, Nakamura, &
Hanawa 1994).
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2.7 A Note on Methods of Stability Analysis

The recent history of the instabilities discussed in this thesis would not be complete without
some mention of what one might call the “methods controversy.” Stability analysis is a topic
of such importance to physics that numerous techniques have been devised to facilitate it.
That two or more of these methods might lead to identical results for a given physical
system is generally acknowledged, and is indeed heartening. However, what seems to be
often overlooked is that different techniques applied to what is ostensibly the same system
can have such varied mathematical assumptions that they end up probing vastly different
physical regimes.

A case in point concerns the argument of Knobloch (1992) against the relevance of
the BH instability fc- zccretion disks. The principal issue was BH's claim that a non-
zero By had no effect on their conclusions, provided that it was subthermal in strength.
This assumption allowed BH to ignore terms O{1/r) in comparisor with those O(k;) in
the perturbation equations (2.47) - (2.55). Applying a global stability analysis with rigid
boundary conditions, Knobloch showed that without any prior restriction on By, the purely
exponential instability of BH could not occur. Rather, unstable modes in the presence of
By possess a real part, i.e. are overstable.

The apparent controversy, which is not merely semantical, rests upon a loose physical
application of these mathematical results. Although both parties claim to be investigating
the stability of accretion disks, BH can only comment upon local properties by virtue of
their analysis. Their results apply to any locally shearing, magnetized medium, which
would certainly include the interior of an accretion disk (questions of ionization fraction
aside; §1.5.2), but do not depend on any “disklike” geometry whatsoever. Knobloch, on the
other hand, examined an entirely different problem: how unstable global modes (which he
showed exist) are affected by the presence of radial boundaries. This model is marginally
more realistic, as it crudely describes a disk in the radial dimension, but it is as equally
crude as BH's equilibrium in the z-direction.

As will become clear in the next chapter, both unstable global modes and local insta-

bilities (not properly termed “modes”) are present in magnetized accretion disks. The two
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methods of stability analysis apply to the same system on widely different spatial scales.
and thus examine different physics. The stability results of Knobloch, whose model we have
attempted to improve upon in this thesis, can be expected to apply to issues of global disk
physics and perhaps the very viability of disks as equilibrium structures. Conversely, the
approach of BH can only be expected to have relevance to local properties of fluid motions;
e.g. to calculate the Shakura-Sunyaev a, a locally defined quantity (§1.2). On the other
ha.d, the nonlinear evolution of an instability can be followed quite effectively in a local
approximation, which has made it the method of choice for such calculations (Hawley &
Balbus 1992; Goodman & Xu 1994; Hawley et al. 1995).

Finally, it is important to mention one other model frequently used in stability anal-
yses of disks, the shearing-sheet model of Goldreich & Lynden-Bell (1965), which falls in
between the purely local and global techniques in terms of both its complexity and range
of applicability. There are two principal simplifications of the full global equations used
in this method. First, the model is local in the sense that it describes a region around
some fiducial radius in the disk r = ry using Cartesian coordinates (z,y, 3}, and assumes
a linear dependence of all z-dependent equilibrium quantities about 25 «— 7. This has
the obvious disadvantage that it eliminates the possibility of applying boundary conditions
at finite (cylindrical) radius. However, boundary properties can sometimes be imposed by
considering the asymptotic form of solutions at spatial infinity (cf. Goldreich & Narayan
1985). The existence of intrinsically global modes which would be missed in a local analysis
can therefore be established by this technique, but their detailed spatial structure cannot.

The second simplification in the shearing-sheet analysis is the introduction of a change of
coordinates which essentially trades the linear z-dependence for an explicit time-dependence
of the perturbations (i.e. “shearing coordinates”). This allows one to study perturbations
whose growth is not exponential, e.g. spiral waves, and which display transient growth but
cannot be termed global modes. The growth is transient because the radial wavenumber in
the comoving frame of the fluid is time-dependent. The end product of such a calculation
is usually the amplification factor of an infinitesimal disturbance over a finite time interval
(cf. Tagger et al. 1992).

In lieu of imposing a spectrum of global normal modes, the examination of stability via
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the evolution of an initial value problem has been carried out by Coleman, Kley, & Kumar
(1995) for certain special cases of the situations examined in detail in this thesis, and was
shown to be largely equivalent to the normal mode analysis.

The technique of global analysis is used in this study for several reasons. First, the few
(mainly geometrical) approximations it utilizes have consequences that are easily discerned
later; e.g., one’s conclusions need not be limited to a particular region of wavenumber space.
Second, although it often misses transient phenomena by virtue of the imposition of normal
modes (§2.4.1), the global analysis includes local phenomena as limiting cases of high spatial
wavenumber. Finally, while local and transient instabilities indicate potential processes of
interest in accretion disks, globally unstable modes, should they exist, often have much

wider-ranging consequences for disk evolution.
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ABSTRACT

We investigate the global stability of a differentially rotating fluid shell
threaded by a constant vertical magnetic field to linear, axisymmetric
perturbations. Such a system is known to be unstable due to the interaction
between the magnetic field and fluid shear, and should mimic the behavior of
an accretion disk far from its vertical boundaries. The magnetic field ezterior
to the fluid has an effect on the radial boundary motion, and we derive the
appropriate boundary conditions. The growth rates of the instability, associated
radial eigenfunctions, and critical field strengths for stability are presented for
a wide variety of radii, rotation profiles, and magnetic field strengths. The
growth rates of unstable global modes are always less than, but comparable to,
the corresponding local growth rates. For near-critical field strengths, non-rigid
boundary conditions lead to much higher growth rates than do (physically
unrealistic) rigid boundary conditions. Also, we find that the critical Alfvén
speed for stability is large (of order the sound speed) for reelistic disk sizes, thus
implying that the instability is always present. Finally, the connection between
the global and local characters of the instability is elucidated.

Subject headings: accretion, accretion disks - instabilities -
magnetohydrodynamics - ISM: magnetic fields

73



74 CHAPTER 3. AXISYMMETRIC MODES

3.1 Introduction

The formation, stability, and evolution of gaseous accretion disks are issues of central im-
portance in star formation and high-energy astrophysics. There are indications. both from
theory and observation, that magnetic fields may have significant dynamical effects in the
disk environment. Several current models of bipolar outflows in young stellar objects, for
instance, involve magnetized disks which can serve to drive or collimate winds, removing
angular momentum from the disk and protostar (see Blandford 1989 for a review). Regard-
less of whether a wind is present, an important theoretical problem is the radial transport of
angular momentum, molecular viscosity alone being insufficient for this task (Pringle 1981).
In this connection, the promise of magnetic fields was recognized early on (for references, see
Tout and Pringle 1992), but most of the candidate mechanisms depended on a pre-existing
discrdered magnetic field, always of unknown origin.

Fresh incentive was provided by Balbus & Hawley (1991), who recognized the astrophys-
ical importance of an earlier fluid mechanies result of Velikhov (1959} and Chandrasekhar
(1960, 1961). The latter authors examined the stability of a magnetized incompressible
fluid, placed between two rigid rotating cylinders. Whereas in the unmagnetized fluid a
necessary and sufficient condition for stability is the Rayleigh criterion, d(r?Q)?/dr > 0,
in the event that the fluid is threaded by a vertical magnetic field B the corresponding
condition is dQ%/dr > 0; a condition which would be violated in accretion disks.! If the
lack of correspondence between the two criteria seems puzzling, we need only return to the
approximation in which the latter is derived, that of ideal magnetohydrodynamics (MHD).
In this, the field lines have a permanent attachment to the fluid, regardless of the strength
of the field. The primary effect of this attachment is to enforce isorotation of the fluid, i.e.
B - VQ = 0 (Ferraro 1937). Infinitesimal, axisymmetric perturbations to this equilibrium
{we denote these by a & in front of the approvriate physical quantity) then have two distinct
effects (Balbus & Hawley 1991; see also Shu 1992). Azimuthal stresses, B §B/4m, destabi-

lize by spinning up (down) vertically adjacent fluid elements, causing them to move radially

"This includes Keplerian disks and ulso thick, pressure-supported disks, which are not so massive that
self-gravity can affect their rotation profiles.
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outward (inward) by conservation of angular momentum. Radial stresses, B §B,/4x. at-
tempt to compensate by exerting a restoring force opposite in direction to these radial dis-
placements. Radial stresses “win" (i.e. stabilize} only if the equilibrium field is too strong,
or if the vertical wavelength of the perturbation is sufficien:ly short. Either of these limits
the magnitude of azimuthal field perturbations and their associated torques {Blaes & Balbus
1994). In the absence of a consensus, we will follow the convention of historical precedence
for naming, and refer to the mechanism just described as the Velikhov-Chandrasekhar (VC)
instability.

Any application of these results to real accretion disks is premature until a number
of issues are resolved. Among these is the inadequacy of the linear stability analysis to
determine the ultimate outcome of the initially quickly-growing instability. In particular,
angular momentum transport arises from nonlinear terms in the perturbation equations.
Several papers have addressed this aspect (Hawley & Balbus 1991, Hawley & Balbus 1992,
Zhang, Diamond, & Vishniac 1994) while (of necessity) ignoring others.

Another major objective is to bring the original calculation into the realm of astro-
physics. The role of compressibility, for instance, was examined by Hawley & Balbus
(1991), who found it did not alter the qualitative nature of the VC instability. This is
not surprising, since the instability proceeds via the propagation of torsional Alfvén waves
(these create the azimuihal stresses referred to above), which are noncompressive. The
self-gravity of the fluid has also been ignored, and is important for more massive disks.
The state of ionization of the disk can have a large effect (Blaes & Balbus 1994); there
are indications that the instability may be damped in protostellar disks, at least in regions
of low ionization fraction (Dubrulle & Knobloch 1993, Stepinski, Reyes-Ruiz, & Vanhala
1993, Jin 1923). Radial, and especially azimuthal, equilibrium magnetic fields also alter the
stability and evolution of disks, but early indications are that they are not damning to the
basic VC mechanism, unless By » /dwp rQ2 (Hawley & Balbus 1992, Dubrulle & Knobloch
1993, Blaes & Balbus 1994).

In this paper, we focus on yet anothsr obvious concern, that global, as well as local,
instabilities may be present. For global modes the effect of boundary conditions is clearly

important. We make a first attempt to examine this aspect of the problem, by considering



76 CHAPTER 3. AXISYMMETRIC MODES

the effect of radial boundaries on the linear development of global modes. Gammie and
Balbus (1394) have recently similarly studied the role of vertical boundaries. We also point
out that an understanding of the radial global'mode structure is an essential element in the
angular momentum transport issue.

The advantages of such an approach are the following. First, Balbus & Hawley (1991)
showed that in the local limit, & (vertical wavenumber) — oo,v4 (Alfvén speed) — 0,
and for a Keplerian disk, the growth rate |w| ~ 0.758, implying that the instability was
dynamically important. One can now ask whether a similar conclusion holds for all values of
the model parameters va4,dQd/dr, and r3/r; (outer/inner radius), and for various boundary
conditions. Dubrulle & Knobloch (1993) were able to find growth rates for a few specific
values of these parameters, but did not determine the detailed dependence of |w]| on them.
In addition, we consider non-Keplerian rotation laws, by which one can gauge the effects of
the VC instability on thick, pressure-supported disks.

Second, although the local analysis shows that vq e = |k~ /7d$22/dr|, one cannot
obtain from this a meaningful stabilizing value of the magnetic field, since k is (by assurup-
tion) arbitrarily large. Velikhov and Chandrasekhar carried out calculations to find VA crit
for certain global modes. Both obtained values which applied in the limit of very thin cylin-
ders, and Velikhov also derived a result for high radial mode numbers. They recognized,
however, that even these were lower bounds on the critical field for the fastest growing mode
of a radially extended configuration. In this paper, we find an upper bound to this quantity
and examine its dependence on the parameters of the problem.

Finally, given that the global and local stability criteria refer to the same basic destabiliz-
ing mechanism, it is of some value to explicitly demonstrate that a correspondence between
global and local results holds in the appropriate limit. There has been some debate in the
literature as to which formalism is more suitable to this and related problems (Knobloch
1992, Hawley & Balbus 1992, Gammie & Balbus 1994). We comment on this issue in light
of our own results in the Discussion.

The format of the paper is as follows. The equilibrium state is described in Section 2,
and the perturbations to this state in the following section. After developing an approximate

solution of the problem in Section 4, we turn to numerical solutions in Section 5. The main
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body of the results is presented there. These are discussed and summarized in Section 6.

Technical details of the calculations may be found in the two appendices.

3.2 The Equilibrium

We consider the following simplified model of an accretion disk in a state of pure rotation
(Knobloch 1992, Dubruile & Knobloch 1993). A cylindrical shell of homogencous and
incompressible fluid, of infinite extent in the z-direction, rotates about the z-axis {(we adopt
cylindrical polar coordinates (r, ¢, z) throughout). A magnetic field B threads the fuid.

which is assumed to be sufficiently jonized so that the equations of ideal MHD apply:

du B-B 1 .
p [E + (u-V)u] = VUV (p + _s{“) +1-(BV)B, (3.1)
aa—? = VX(UXB), (3-2)
Vu = V.B=0. (3.3}

Here p is the gas pressure, p the constant density, u the fluid velocity, and ¥ the gravitational

potential. Self-gravity is ignored, but a large mass M at r = z = 0 generates the potential

_GM
—

The purely radial dependence of the potential is justified if, locally, the vertical scale height
H « 7, so that there is little variation of T with z. In the absence of dissipative processes,
equations (3.1) - (3.4) allow the following stationary solution, which depends only on the

radial coordinate, 7:

u=[0,rr),0], B =][0,By(r),B:(r)]: (3.5)

In particular, we shall consider a power-law distribution of angular velocity and a uniform

axial magnetic field;

T

Qr) = % (%) , Bo(r) =0, Bi(r) =B, (3.6)

where §2o,a, B, and rp are constants. B is also supposed to permeate the regions both to

the interior and exterior of the shell. Inserting equations (3.4) - (3.6) into (3.1), the radial
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component becomes
f

% = r{}} (%) 2a - %j;—f = Geff (3.7
where ' = d/dr and g.y; is the effective gravity. A Keplerian disk (a = 2/2) has gegs = 0
everywhere, so Qf = GM/r§.

In a thick disk, the equilibrium is maintained by internal pressure gradients (a # 3/2),
and p’ = 0 only at the pressure maximum of the configuration (we ignore the possibility
of “cusps” in the equipotential surfaces). Identifying rp with this maximum, we again find

GM = 7302, Substituting the latter into equation (3.7) and integrating, one obtains the

stationary pressure distribution;

1= (r/ro) oYy
e Tz (3.8)

E = (o |2 -1+
P r

where p? is a constant equal to the ratio of thermal to kinetic energy at ry. The uniform

field has no effect on the equilibrium, since the corresponding current, J =V x B = 0.
The inner and outer boundaries ry and rg of the fluid are determined by the zeros of

equation (3.8), just as in the hydrodynamic case (see, e.g., Jaroszynski 1988). Setting p(ry)

and p(rp) to zero in this equation, we obtain

ol
To_ 1 _nfn | _ (’2)_2(0_1)] oy (3.9)
o | 2@~-1)ry/r =1 T ) -7 )
and
2 2(a-1) _
N | 1
g =l-f+ 2(a - 1)

Equation (3.9) gives the position of the pressure maximum relative to the inner radius. The
constant z is a direct measure of the thickness of the shell. At the pressure maximum,
the pressure gradient vanishes as fluid elements rotate with the Keplerian angular velocity.
Thin shells have both radii approaching rg, so that according to equation (3.8), ¢ — 0 in
this limit. For the thickest configurations, equation (3.8) with p/p =0 and r — oc gives

_{2a-3 3
p=pmee= (1) (3.10)

We have assumed that a > 1, which is required if the pressure is to remain finite as ry — 0.

For r = ¢ to be a pressure maximum, we must also check that p” < 0 there. This restricts
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the allowed values of a to @ > 3/2, the Keplerian limit. From above, a is bounded by a < 2,
due to the Rayleigh criterion. Thus, the absolute maximum value of ji,0; = 1. which
occurs for @ = 2. It is customary and convenient to scale units of length and time with
respect to the pressure maximum values rg and Qg 1. thus in practice we will choose rafry,
and find 71 /rg and ra/rg from equation (3.9). In the Keplerian case, the latter becomes an

indeterminate form; by taking the limit as ¢« — 3/2, one finds

™ e [lﬂ('rz/fl) _ 1] .

T0 L‘rg/’!’l -1

Of course, 7 is no longer the pressure maximum here; it is simply an arbitrary point in the
shell which happens to be approached by the pressure maxima for other values of ¢ in a
continuous manner (see Table 3.1). We will consider a variety of radial thickness ratios in

our calculations.

Finally, note that in general a magnetized fluid is subject to the following boundary

conditions (Tassoul 1978):

B2 B

(n-Bj,, =0, (3.12)

where n is the normal directed outward from the fluid at a boundary surface and the
square parentheses denote a jump in the enclosed quantity across the inner (1) and outer
(2} surfaces, taken in the direction of n. The first condition expresses the requirement
that the normal component of the material and magnetic stresses be continuous across the
surface, while the second expresses conservation of magnetic flux. One sees from equations
(3.11) and (3.12) that the magnetic field outside the shell must be specified, and that, in
particular, the location of the boundaries depends not only on the magnetic field interior to

the fluid, but also on that to its exterior.
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3.3 The Perturbations

3.3.1 The perturbation equation: interior

We now consider the response of the above equilibrium state to small, axisymmetric, Eule-

rian perturbations of the form
6X(r, =, t) = 6X (r)eilhs+wt),

where X is any physical variable, and & and w are the vertical wavenumber and frequency
of the perturbation, respectively. Substituting the forms X + §X along with equation (3.6)
into equations (3.1) - (3.3), and only retaining terms of linear order in the perturbation

quantities, we have

iwbu + Véh ~ %%.53 - 2Q6uyt + (2 — a)Qbu,é = 0, (3.13)
iwbB — ikBéu + aN¥B,é =, (3.14)
%(mu,.)’ +ikbu; = 0, (3.15)
where
h=? + B—2
p 8mp

is the specific enthalpy. Note that equations (3.14) and (3.15) imply V- 6B = 0.
Resolving equations (3.13) - (3.15) into components, and eliminating all variables in

favour of the radial velocity perturbation, one obtains a second-order differential equation

in duy:
(Bur)" + T(6u) + [K2(Er2 = 1) = 3| 6w = 0, (3.16)

2 ~2 2.2 -

E = LI?[(2—a)w + 2k*vy), (3.17)

& o= wz—-k%i,

va = B

A = L]
ViTp

where v4 is the Alfvén speed, and where we have scaled units of length and time to ry and

Qg respectively.
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3.3.2 The perturbation equation: exterior

The regions r < r; and r > ra, while devoid of matter, are permeated by the uniform, axial

magnetic field. The perturbations to this vacuum field are described by
VxéBjo=0 V-6B;,=0, (3.18)
where ¢ and o refer to the regions r < ri and r > ra, respectively. These imply

Bio = BVxie (3.19)

Viie = 0, (3.20)

where xi,o = Xi.o(r)ed**+t) are two scalar functions representing the perturbed field poten-
tiel in the fluid-free regions (see, e.g., Simon 1958). Defining a new variable @ = |k|r, the

solutions of (3.20) are given by

xilw) = alo(mw), xo(w) = colig(m), (3.21)

where Iy and K are modified Bessel functions of order zero, and we have imposed regularity

conditions on the solutions at » = 0 and » — 0.

3.3.3 The boundary conditions

Previous analyses of this problem (Velikhov 1959, Chandrasekhar 1961, Knobloch 1992,
Dubrulle & Knobloch 1993) assumed rigid cylindrical boundaries at r; and 7, and thus
avoided the problem of specifying the nature of the external field. However, unless one is
willing to invent ad hoc values for the exterior fields on the boundaries, it is necessary to
consider their behavior. Most importantly, the rigid boundary conditions are unsatisfactory
from a physical point of view.? First, it is unlikely that the environment surrounding
accretion disks is field-free. For example, the inner edge of a disk around a young stellar
object is likely to be at the magnetopause radius in the star’s magnetic field {Camenzind

1990, Konigl 1991, Hartmann 1994). Second, accretion disks do not have rigid boundaries.

?Mathematically, these conditions are §u.{ry) = éur(rz) = 0. Dubrulle and Knobloch also considered
Sur(r1) = 6ur(re) = 0, but this is not really a “free” boundary condition, at least as far as the Lagrangian
surface is concerned {see below).
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When considering the response of the disk to small perturbations of equilibrium quaantities,
it is especially important to allow the boundaries the freedom to oscillate. One is reminded
here of the marked effect of boundary conditions on the stability of thick hydrodynamic
disks (see, e.g., Blaes & Glatzel 1986). Although in the axisymmetric case, the stability
criterion is unlikely to be sensitive to the chosen boundary conditions, the growth rates may
very well be.

At the fluid surfaces we will apply “free” boundary conditions; i.e., those which allow
the boundaries to oscillate in response to the perturbation. Since the perturbations we
consider are of small amplitude, it is sufficient to require the continuity of Lagrengien
perturbations of the total normal stresses and magnetic flux across the boundaries (Tassoul
1978, Goossens, Smeyers, & Denis 1976). Denoting the Lagrangian perturbation operator
by A, it follows from equations (3.11) and (3.12) that the appropriate conditions are

A [— (p+ BS—WB) n+ %(n . B)] L2 =0, (3.22)

Aln-B|;2 =0. (3.23)
Recall that the Lagrangian and Eulerian operators are related via A = 6 + £- V, where
1 e =
= —bu+rlou.¢
iw

is the Lagrangian displacement.
Noting that B n = 0, and taking B to be continuous across the boundaries, the second

condition becomes

[6By]12 = 0. (3.24)

By use of the induction equation (3.2) and equation (3.19), this may be written

k
Zéu’" =Xj T=T1, (3.25)
k
Jéu,. =Xl T=r2 (3.26)

Writing out the first condition (3.22) using (3.24), we find

{ (Sh]12 + %[h]’m} i 0. (3.27)

w
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Since the perturbation equation (3.16) is in terms of du,, it is desirable to express 6k in

equation (3.27) in terms of §u,, using equation (3.13). The boundary condition (3.27) then

becomes
1 K k30 .
(Guel+ (F i ﬁgeff) bur = =i 1= (3.28)

, 1 &2 wk3v? _ )
(6”'7') + (; + Egeff ouy = — o2 Xov T'=T2. (3.29)
where
- 1 0

T (3.30)

in our dimensionless units.

Dividing equation (3.28) by (3.25) and (3.29) by (3.26), one obtains two conditions

which contain all the boundary information:

1, k2
(bur) + |- + =3 (ge” + k%il})] bu, = 0, r=ry, (3.31)
r w X;
1 kz 2 92 Xo D05
(6“,_)’ + [; + E}E (geff + k& 'UAE) 6ur = 0, =19 (JJ.?)
From equation (3.21) one finds
Xi 1 Ig(w1) Xo 1 Ko(w) "
ab = — and -~ = —— , 3.3
X, T W) ™ N, T T R (859

where ;2 = |k|ry 0.

3.3.4 The eigenvalue problem

Equation (3.16) is of the standard Sturm-Liouville form. As such, the ecigenvalues E =
Ey, By, Ea, ... Ey, are infinite in number, and are all real and positive. Solving for w? from
Eq. (3.17), we find two solutions. One is always positive, corresponding to stable modes.

The other can become negative, indicating instability; we then find

; L
2-a)?  40%]% 2-al|’ .
|w|={[( E._,") + EA} -4 - E“} (3.34)

for the growth rate of the single unstable growing mode. Stability criteria have been known

for some time, and are reviewed by Knobloch (1992} and Dubrulle & Knobloch {(1993).
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These were derived for rigid boundary conditions. It is not difficult to show that for the
boundary conditions derived above, the stability criterion is still dQ%/dr > 0 (see also
Papaloizou & Szuszkiewicz 1992).

Via (3.34), the solution of equation (3.16), subject to the boundary conditions (3.31) and
(3.42) constitutes a weli-defined eigenvalue problem for the frequency w. At present, exact
analytic expressions for the eigenvalues do not exist. However, we show in the following
section that equation (3.16) is ideally suited to an asymptotic treatment. This allows us to
explore the important qualitative features of the problem, before embarking on a numerical

solution in §5.

3.4 The WKB Approximation

Dubrulle & Knobloch (1993) noted that under the transformation v = \/76u,, the pertur-

bation equation assumes the form

ey’ = Q(r)v, (3.35)

where ¢ is a small parameter, which they take to be v4. Equation (3.35) is a Schrédinger
equation, singular as € — 0. The WKB approximation is the asymptotic method of choice
for such problems (Bender & Orszag 1978). To write down the leading-order WKB ap-
proximation to ¥(r), we need only have knowledge of the zeros of Q(r). In general, one
sees that in regions where @ < 0, the solution of (3.35) is sinusoidal in character; where
@ > 0, exponential. When ¢ = v4 and k is finite, @ < 0 and has no zeros for unstable
modes (w? < 0), provided that ' < 0. Thus Dubrulle & Knobloch found only sinusoidal
solutions, leading to growth rates |w| ~ kv4. It is known from the physics of the instability,
however, that for either & or v 1 large enough, the instability shuts off (this is both a local
and a global result; see equation (2.17) of Velikhov (1959)). Thus it is apparent that taking
v4 — 0 misses some of the essential physics.

Under the same transformation, our equation (3.16) becomes

W+ k‘z(ET—‘Za -1)- = |v=0. (3.36)
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Comparison with (3.35) suggests that we choose ¢ = 1/k, making
Q) =1-Er~% 4 -}f~ (3.37)

‘The WKB limit is now & — cc. In order that E not vanish in this limit (see equation (3.17))
we will simultaneously require that v4 is small. Thus the Alfvén frequency. Q4 = kv,
remains finite and nonzero in the WKB limit. It is this feature that will allow us to examine
the physics of both short and long wavelength perturbations.

The details of the WKB calculation may be found in Appendix A, where it is shown
that the eigenvalue relations for rigid and free boundary conditions are

cos [12(7‘1) ] Sexp [91'16(1"2)] sin [Iz(:'l) + ﬂ 0, (3.38)

and

{a _Qrm) VIO [211(1-2)] }COS [1'2("'1) . gﬂ

4Q(ry) € € €
—Qn) [ Q'(Tl)] [911(1”2)] o [Za(n) | ]
+{ p 27 | 10(m) exp e | sin . +-£1~] = 0,
{3.39)
respectively, where
T . ™r
ni) = [ Jawae ney= [T /-ew,
rr r
_ k? 3 Xi{T1)
a = ?_1+_—2 geff(T‘])'f'QAm y
= 1 k? 2X0(7‘2)]
ﬁ _— -é_ + [gE_ff(Tz) + QA X’O(T"_!) ki
Q'(rz) AASLE))
y = Gk 7 B (3.40)
- g Qla) _ Qlr2)’ '
4Q(r2) 4
and
T = El/'Za _ ;_aE—l/QaE? (341)

is the “turning point”, i.e. the singie positive real zero of Q(r). At this radius, the char-

acter of solutions to equation (3.35) changes from sinusoidal to exponential, or vice-versa.
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Physically speaking, waves travelling freely in the regions where ¢ < 0 begin to damp after
passing through rr.

These cquations, despite their appearance, are much easier to solve than the full eigen-
value problem. In practice, one solves numerically for E (which is contained in @), and
then computes the growth rate |w| from equation (3.34). Equations (3.38) and (3.39) each
have an infinite number of solutions. We may characterize each of these by a mode number
n=0,1,2,...,such that Ey < E} < E» <... < Eq_; < E,. To draw an analogy with local

analysis terminology, n is akin to the radial wavenumber, &;, of a given unstable mode.

3.4.1 The local limit

Further WKB analysis, specifically in the limits & large, E finite and F large, k finite, leads
to the conclusion that for both sets of boundary conditions,

E0)(q)
k2

+ oo+ Enin(a), (3.42)

where Epin{a) = 3% and E(®(a) are constants for a given a (see Appendix A for details).
The (unknown) intermediate terms must behave as constant/A®, 0 < a < 2. Consequently,
at absolute upper limit on |w]| is, taking the & — co limit,

1
9 _ )2 22 _
wl < o = { l.(:_a) + 4QA] ~02 - 2-a

4a 2a
L LA

(3.43)

.
1o
&
S et
[F] 1)

This result reproduces the local dispersion relation of Balbus & Hawley (1991) (hereafter
BH), neglecting buoyancy forces and taking a more general power-law rotation curve. This
is indeed expected, since the local analysis assumes k,.{r2 — rq) > 1 and consequently is
not affected by whatever boundary conditions are iinposed. Note that the growth rate is
solely a function of the Alfvén frequency; this is peculiar to the local limit, and is not the
case generally. Figure 3.1 is a plot of equation (3.43} for various values of a allowed by our
equilibrium. The a = 1.5 curve corresponds to that of BH’s Figure 1c, except scaled in
units of the angular frequency at the pressure maximum (their results are implicitly scaled

in units of r; and 271(r;); see below). The maxima of these curves occur at

Q=00 = -1;11-[1 — (2 - a)? /412, (3.44)

Amar = "
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giving an absolute upper bound to the growth rate of
a

lw| < |l = 5= (3.45)
2rg

A few representative values may be found in Table 3.1. Note that for an inner radius scaling
(r1 =1) and a = 3/2, equation (3.45) gives Wil = 0.75, the value obtained by BH.
Another quantity of interest is the critical wavenumber above which perturbations are

stable. Marginal stability occurs at w? = 0. From equation (3.34) one then finds

QA‘,-_-”'t = \IQG/E (3.46)
in general, and

Qs‘f.)crit =y 2a/Emin = ‘/-2_0/7"1!

in the local limit. Thus kerie = 1/2a/(v4E) diverges in the local limit, and so is not a
meaningful quantity (it is for finite v4, however). Values of Qlf . for various « may be

Acrit
found in Table 3.1.

3.4.2 Eigenfunctions du,

We now point out some important qualitative features of the solutions of equation (3.36),
which may be found in Appendix A. As Q(r) has but a single turning point, rp, the
eigenfunctions are exponentially decreasing in the region rp < » < ry (hereafter region I),
Airy function-like for » = rp (region II), and sinusoidal for r; < r < r7 (region III). In
the short-wavelength, ¢ — 0 limit considered above, the turning point approaches the inner
radius: rp — EY?% oy (Appendix A). Consequently, region III shrinks to zero size, and
region I constitutes almost the entire shell (excepting the region €2 & r — rp < €2/3, which
is Airy-like). This corresponds to the &, = 0 case considered by BH; the eigenfunctions are
essentially flat over all of the shell. In the long-wavelength limit, & — 0, £ may become large
enough that rr > ro; i.e. the turning point lies outside the shell. Then the perturbations
are sinusoidal everywhere within the fluid. This is the situation examined by Dubrulle &
Knobloch (1993), who considered the equivalent limit (in the sense that the fu, have the

same sinusoidal character) v4 — 0, & finite.
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Before exhibiting the full range of WKB results, it is desirable to check their accuracy.
This is done via comparison with a direct numerical integration which we develop in the

next section.

3.5 Numerical Solution and Results

We have carried out the solution of equation (3.16) by a standard shooting method as
adapted for eigenvalue problems (Press et al. 1992). The eigenvalue (E in the rigid case, &?
in the free case) is treated as an independent variable, with governing equation dE/dr or
d&?/dr = 0. Initial values at the left-hand boundary are required for E and 6/ in the rigid
case, and &? and bu. in the free case. We chose the arbitrary but graphically convenient
normalizations 6uy(r;) = 25 in the rigid case and du,(r;) = 1 in the free case. The WKB
eigenvalues were used as starting values for E and &2.

The behavior of the WKB eigenfunction in region I is a combination of growing and
decaying exponentials (Appendix A). When k becomes large (¢ small), such a solution
becomes very difficult to follow numerically (Acton 1970). This practical upper limit on
k translates into a lower limit on vy, since the fastest growing modes are characterized
by Q4 mazr = kmazva = O(1) (Figure 3.1). We were therefore only able to obtain reliable
numerical results for v4 » 0.3. Fortunately, the WKB approximation is able to cover

smaller values of v4, with an acceptable level of error, for almost all of the parameter space.

3.5.1 Mode structure

Taking »4 = 0.3 and ra/r; = 100 as fiducial values, we have used both WKB and numerical
methods to obtain dispersion curves, i.e. jw| vs. kvq, for the principal (n = 0) mode. In
addition, we have numerically solved for the next two fastest growing modes, n = 1 and
n = 2, and also for the n = 0,1, and 2 eigenfunctions. These are the only unstable modes
for this value of v4. The results are shown in Figure 3.2 for three different values of a, and
for rigid boundary conditions. Results in the free boundary case are shown in Figure 3.3.
Let us first examine the accuracy of the WKB approximation of §3.4 For both rigid

and free boundary conditions, the approximate and exact curves are in agreement to an
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accuracy of better than 4 % at the peak |w|, for all values of a. As a consequence, we can be
quite confident in using the WKB method for values of v4 < 0.3. since the agreement can
only get better for larger k. Note that our approximations always overestimate the growth
rate.

A decided advantage of the global solution method is that the radial eigenfunctions are
now available (Figures 3.2 & 3.3). Aside from the inner boundary constraint, the rigid and
free boundary eigenfunctions show few differences. The general behavior is as predicted
in §3.4.2; sinusoidal in the inner regions, exporentially decaying for larger ». The most
striking feature is how strongly peaked fu, is near the inner radius. All three modes, in
fact, reach their maximum amplitudes between 71 and the pressure maximum ro (equal to
1 in our units). The principal mode, n = 0, has its turning point, r7, between these two
radii. For smaller v4, and therefore larger & at peak growth rate, r approaches r, so du,
is even more localized near the inner radius. In fact, the eigenfunction is so strongly peaked
for v4 g 0.3 that our numerical routine breaks down.

For smaller fields, the eigenvalue spectrum shows an interesting evolution toward the
limiting curves of Figure 3.1. This is shown in Figure 3.4, a plot of growth rate vs. Alfvén
frequency for the same three modes, but for v4 = 0.05. WKB curves have been plotted for
both sets of boundary conditions. Two points are immediately evident: (i) the differences
between the principal and higher-order modes are lessening, and (ii) the effect is the same
regardless of the boundary conditions. We have verified that the curves become even closer
for smaller field values. Moreover, the number of unstable modes increases as v4 decreases;
e.g., there are more than twenty for v4 = 0.01. One is thereby led to the conclusion that
in the local (i.e. k — oo,uq — 0) limit, the higher-order modes merge with the principal
mode, uniil they eventually become indistinguishable from if. As mentioned in §3.4.2, the
corresponding eigenfunctions are constant (in fact, zero, due to the boundary conditions)
over most of the shell, so that for all finite n, the mode structure is identical to that of the
kr = 0 local analysis. In addition, differences between free and rigid boundaries vanish in

the local limit. That this should be the case was already argued by previous authors.
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3.5.2 Effect of boundary conditions

Comparison of Figures 3.2 and 3.3 shows that the growth rates are systematically larger
for free over rigid boundaries. This is most evident in the Keplerian case, where the peak
ju| is ~ 50% higher for free boundaries. The difference becomes even more marked as the
field strength is increased. This is demonstrated in the dispersion curves of Figure 3.5a,
which are numerical solutions for v4 = 0.7 and n = 0. At their respective peaks, the free
boundary growth rate more than doubles that of the rigid. For boundaries which are closer
together, this disparity becomes more pronounced (see §3.5.4). In Figure 3.5b, we plot the
corresponding eigenfunctions at maximum growth rate. Note that the peaks have shifted
closer to the pressure maximum for the higher field value.

As explained in §1, the VC instability will not grow if the equilibrium field strength is
too large. This is due to the enforced rigidity of the fluid by the magnetic field. It may
therefore seem strange that free boundaries allow faster growing modes than do rigid ones
in the presence of barely sub-critical v4. We postpone an explanation of this behavior until

§3.5.5, where related results are presented.

3.5.3 Effect of magnetic field strength

The results of the previous sections point to different responses of the system to linear
perturbations, depending on the magnitude of v4. To summarize these effects, we plot in
Figure 3.6 the peak growth rate of the VC instability as a function of the Alfvén speed,
using the WKB and numerical methods in the appropriate regimes. Each of the curves
corresponds to a different shear, the constant angular momentum case (a = 2) giving the
largest peak Jw| for nearly all v4. The only departure from this behavior occurs at larger
field strengths (v4 2 0.2) where, especially in the free boundary case, the ¢ = 1.5 and
a = 1.7 growth rates can exceed those of a = 2. Note that the critical field for stability,
given by |w|mer = 0, is larger for free boundary conditions than for rigid. This is not
surprising, in light of the results of the previous section. We will discuss v cri further in

§3.5.5
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3.5.4 Effect of radial thickness

Thus far, we have only considered models of considerable radial extent, ra/ry = 100. The
fact that the growth rates of Figure 3.6 approach their limiting values at small v4 (Figure
3.1) tells us that even more extended models offer no surprises. More slender shells, however,
should begin to display boundary effects, even for smaller fields. The growth rate as a
function of shell radial thickness is plotted in Figure 3.7. Although the growth rates for
free boundaries generally exceed those for rigid, the differences do indeed become larger
for more slender configurations (rp/r1 £ 3) (although differences due to shear become less
evident). At ro/r) >~ 1.5 -2, rigidly bounded models stabilize, while freely bounded models
remain unstable down to ro/r; ~ 1.05. The free boundary growth rates are less sensitive
to different rotation laws, but show two interesting crossovers. The ¢ = 1.5 growth rate
exceeds that of a = 1.7 for ro/r) 2 6, and that of both a = 1.7 and e = 2 for ry/r) 2 30.

‘These crossovers occur only for free boundaries, and agree with Figure 3.6b for v4 = 0.3.

3.5.5 Ciritical field strength for stability

In §3.4.1 we derived the critical Alfvén frequency for stability, equation (3.46). The critical

2a a A
VAcrit = \f 2B (3.47)

We are interested in an upper bound on vg4 i or, equivalently, a lower bound on k2E.S

Alfvén speed is therefore

Since E is bounded from below by Epnin = 2%, a lower bound must be given by limg_g k*E.
As E is necessarily large in this limit (equation (3.42)), we can evaluate k2E in a different
WKB regime (Appendix B). By the resualts of §3.5.4, one expects that the absolute maximum
value of v4,cri¢ is achieved as ry/r; — 0o. The values of k2E and v4 cri¢ in this limit may
be found in Table 3.1. The values of v4 crit for free boundaries are in fact extreme upper
limits, and appear to be ~ 30% too high (see below and Appendix B).

The larger value of v4 ¢ for free versus rigid boundaries is no doubt related to the

growth rate discrepancy found in §3.5.2 To explain this behavior, we reexamine the free

3Chandrasekhar (1961), in considering the case of r2/r1 small, isolated the quantity a2, which is equiv-
alent to our £°E. He noticed that this quantity achieves its maximum value as a — 0 (in his notation).
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boundary conditions themselves. As rp is removed to infinity in the Table 3.1 results,
the differences cannot be due to any property of the outer boundary; thus, it is sufficient
to consider equation (3.31) alone. Write this equation as &u,/(6u,)" = 1/g(k), where all
quantities are to be evaluated at r;. Then, taking £ — o0, one immediately sees that
the rigid boundary condition, éu,{r;) = 0, is recovered, as would be expected in the local
(small field) limit. For higher field values, k is reduced, since one always has kvs = O(1)
for unstable modes. For example, &k decreases by a factor ~ 4 at peak growth between
Figures 3.3e and 3.5a. Thus éu, /(6u,) increases for decreasing k, and we can imagine that
the resulting boundary motion enhances the growth of the mode. Of course, this cannot
continue indefinitely; eventually v4 becomes so large that the restoring force of the field
prevents a large centrifugal excess anywhere in the fluid, and the system is stabilized. The
resulting value of v 4 cri¢ is larger for free boundaries than for rigid ones, since the boundary
motion ensures nonzero oscillation amplitudes even for relatively large v4.

Returning now to the calculation of the critical field, the behavior of v it for finite
values of r2/7; is shown in Figure 3.8. Note that v4 it — 0 as ra/7; — 1. This is expected,
since in this limit the shell disappears, leaving a uniform vacuum magnetic field, which is
of course stable. The region above the curves in the (VA ¢rit,72/71) plane is stable; below,
unstable. In addition, fields in excess of v4/(roS2) ~ 1 are almost certain to be unstable
to magnetic bouyancy in a vertically stratified disk. But note that this value of v4 /(o)
corresponds to ra/ry ~ 2 — 3 in Figure 3.8b; thus, these results would seem to imply that
most disks with realistic field strengths lie in the unstable region.

Although these curves represent exact solutions of the original VC problem (and the free
boundary version), they are admittedly somewhat unastrophysical. A real disk, with finite
vertical scale height, H, can never allow & = 0 perturbations. A more interesting number
is the critical field for the longest vertical wavelength that can fit inside the disk: Ai =
2r [kerit = 2H. We have tabulated v4 oy for several values of A. in Table 3.2. The above
conclusions continue to hold down to a (simulated) scale height of H/r; = 3, after which
v A crit begins to drop below unity. At A/ = 0.1, a reasonable value for a thin Keplerian
disk, we find va.erit/(r0S%) = 0.04. From the (non-self-gravitating) thin disk equation,

H=c \/L-’/Q, where ¢, is the sound speed in the gas, along with the local Keplerian critical
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field estimate v4crit/cs = V6/m (BH), we obtain vacrit/(roQ0) = V3H(r1/ro)/(wr1) =
0.07. This gives us some c;onﬁdence in extending our results to the thin disk regime. It is
interesting that va ¢t ~ ¢,; this may be the strongest possible field which can be contained
in certain equilibrium disk models (Stella & Rosner 1984). A more detailed examination of

this issue is beyond the scope of this paper, however.

3.6 Discussion and Summary

Let us now examine how the results of the previous section enhance our basic understanding
of the VC instability, as outlined in §1.

First there is the property, observed in the eigenfunctions éu,., that the largest ampli-
tudes always occur in the inner regions. In fact, the eigenfunctions of the fastest-growing
modes appear always to achieve their maxima between the pressure maximum and the inner
boundary. To understand this, recall from §1 that instability occurs when the azimuthal
component of magnetic stress, B § B, /4w, dominates tne radial component, B 6B, /4w. The
¢ component of equation (3.14) relates the two perturbations as follows:

i
6B, = —(kBbuy — w6By),

where duy is the azimuthal velocity perturbation. For fized w, k, and B then,

waB¢
6B < l;‘n—l-

Restoring stresses are less effective in the inner regions (2 large) than in the outer regions,
thus leading to a larger centrifugal excess, and a larger amplitude in the radial velocity
perturbation, for smaller r.

It is interesting that the instability growth rates are relatively insensitive to the rotation
profile, even in a global calculation such as we have presented. In general, the results indicate
that the growth rate is larger for larger shear. This is entirely as we would have expected
from our basic physical understanding of the instability. Hence it appears that the VC
instability is no more (or less) important for thick, pressure-supported disks than for thin

Keplerian ones.
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Papaloizou & Szuszkiewicz (1992) derived global stability criteria for a thin MHD disk
with constant vertical field, using an effective variational principle. Although growth rates

were not obtained, they were able to estimate v4 erit, finding (in proper units)

1/2
) . (3.48)

As this is in fact a locel criterion in r, it is difficult to compare directly with our results.

dQ?

1
Vaerie ~ TE[H(r) /7] (; dr

We can, however, compare the dependence on scale height. Imagine two disks with iden-
tical radial, but different vertical structure. At some point r = rx in the two disks, the
corresponding scale heights are Hy(rx) and Ha(rx). The ratio of the critical Alfvén speeds
according to equation (3.48) should then be ~ /H;/H,. Consulting Table 3.2, we see that
there is approximate agreement with this estimate for Keplerian disks with rigid boundaries
and the smallest few values of H. Exact agreement would not be expected, since Papaloizou
& Szuszkiewicz considered different geometry and boundary conditions (see also Gammie
& Balbus (1994)). As we consider this a fairly tenuous connection between the two models,
we do not comment upon it further.

A recent paper by Kumar, Coleman, and Kley (1994) bears on our work in the following
way. They recovered the BH results analytically in a slender Keplerian annulus approxima-
tion, with & > 1. We have shown that only & 3> 1 is necessary. In the same approximation,
with £ ~ 1, Kumar et al. then used a numerical method to find a similar mode structure
to our Figure 3.2 (they employed rigid boundary conditions only), but with much smaller
field strengths and growth rates, due to their slender approximation. Finally, they claim
that |w/Q0|mer increases with k, and then, for very large k, begins to decrease. We find no
evidence for this behavior, and indeed it would seem to be at odds with the very notion
that |w/Qp|iner achieves its maximum in the local (k — oo) limit.

Although we cannot claim to have treated the vertical structure in an at all consistent
manner, our calculations of v4 cri¢ given in Table 3.2 allow us to make some comment upon
the need (or lack thereof) for global analysis in this and related problems. In particular,
there has been some dispute regarding the role of azimuthal magnetic field. Hawley & Balbus
(1992) and Gammie and Balbus (1994) have claimed that the global effects of such a field
{(which appear to be stabilizing; see Knobloch 1992, Blaes & Balbus 1994) are unimportant
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in a thin disk, since the terms containing these effects are of order v4/(r%). The results

of §5 and Table 3.2, which show that this quantity must indeed be quite small for the

instability to operate in thin disks, support this view. However, if the azimuthal field is

strong (i.e. thermal), or if field gradients (azimuthal or vertical) exist, it is likely that a
* global analysis will be necessary.

While in the protostellar context the VC instability has been suggested as a possible
mechanism of angular momentum transport, in the black hole/AGN accretion disk context,
it may have quite a different role. A generic feature of general relativistic gravitational fields
is the existence of a cusp near the inner radius through which accretion occurs, even in the
absence of viscosity. The fact that the most unstable mode of the VC instability is extremely
localized near the inner radius may have an interesting consequence. Some of the angu-
lar momentum (possibly) advected outwards via the instability will instead be redirected
inwards onto the central object. One is reminded here of the fate of nonaxisymmetric in-
stabilities in accreting tori; they are stabilized for very modest accretion rates (Blacs 1987).
This issue is seemingly a very difficult one to resolve, given the three-dimensional nature of
the instability and the presence of magnetic field.

On the issue of boundary conditions, we feel that the Lagrangian free-boundary ap-
proach used here is the most physically sensible one, and may in fact be essential in order
to arrive at the correct stability properties in the case of nonaxisymmetric modes. Two
further improvements that could be made to our model are: (i) a realistic density structure,
especially at the boundaries, and (ii) a richer field structure (say, force-free) in the vacuum
regions. Also, although some work has been done on the effect of azimuthal magnetic field,
we feel that its role in a global model such as we have formulated is not well understood.
We will consider these issues in future work.

Our finding that global modes grow at comparable rates to local ones suggests that
accretion disks have interestingly complex magnetic field structures. In addition to the
small scale, strong magnetic fluctuations analyzed by BH, global or mean magnetic field
components will also be present. Thus one may not need to rely upon a dynamo mechanism
to amplify BH “turbulence” into large-scale fields as suggested by Tout & Pringle (1992).

A deeper understanding of accretion disk magnetic fields awaits nonlinear analysis for hoth
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global and local instabilities.

In summary, we have calculated, by both analytical and numerical techniques, the radial
axisymmetric global modes of an idealized accretion disk, threaded by a constant vertical
magnetic field. Boundary conditions are derived which account for the interaction between
the radial boundaries and the external magnetic field, and we find that non-rigid boundaries
allow faster-growing modes to occur for all but the weakest fields. In all cases, the limiting
global growth rate is the corresponding local one, and we have explicitly shown how the
local limit is obtained in the global picture. The critical field strengths for stability found
in this analysis are near equipartition values, suggesting that a very broad class of disks is

susceptible to the VC instability.
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Appendix A:
WKB Approximations

Large k

The character of solutions to equation (3.35) depends on the function @Q(r), given by
equation (3.37); in particular, on the number and multiplicity of its zeros {“turning points”).
On the interval [r},r2], @ possesses but a single turning point, at

rr o= El/?a _ _SI%E—I,/'?an + O(E_3/2a,£4). (A.l)

Since @ contains a term O(e?), we will ignore terms of higher order in (A.1).
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The boundary conditions are:

w(r1)=v(r2) = 0, (RIGID) (A.2)
and

Yy +ad(n) = 0

Y (re) + B(rs) = 0, (FREE) (A.3)

where o and 3 are defined in the text. Following Bender & Orszag (1978), we introduce
T =7 —717T, so that the space is naturally divided into three regions: x > 0 (region I), & < 0
(region III), and |z| < 1 (region II). The leading-order, ¢ — 0, WKB solution takes on a
distinct form in each region; we find:

¥r(a) = CQE) {exp [M] — exp [2“’1—" 22) = TI(“")] } L A

€ €

x> 0,1 3
I T )
Vr1(z) = Cy/mine)~1/8 {Bi(f'mn”“r) ~ 2exp {M} Ai(e‘2/“7;1/3:r)} . (AS)

fx| < 13

Yrrr(x) = C[-Q(x)) "1/ {cos F———~2£m) + g] — 2exp [_21516(:1:2)} sin F—-—mzim) + %] } , (A.6)

x < 0,(=x) > /3,

where

fl(:c)sf: Jawa, J_Eg(:r)E[:\/—_Q'(t)dt,
2

Je

Qz)=1-E@+rr) 2+ pTEgnEsTE

C is an arbitrary constant, 212 =2 -1, and n=Q (z = 0) = 20Er320= — 362 /(2r).
For rigid boundaries, v should be set equal to unity, while for free boundaries it is given
by equation (3.40). Note that although there are both growing and decaying exponential
contributions in equation (A.4), the overall behavior is guaranteed to be decaying (due to

the difference of the two terms) as one approaches zs.
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In deriving these approximations to the eigenfunctions, we have applied the boundary
conditions at z; only, and maiched the solutions in the overlap regions. Applying the
boundary condition at z; to equation (A.6) leads to the eigenvalue conditions (3.38) and
(3.39). In the extremely small € limit, both (3.38) and (3.39) reduce to sin[Za(r1)/e+x /4] = 0

which, in order to be satisfied for all finite n, necessarily requires

r .
/ T VBB —1dt— 0,
1

= rr—r11, Of E 7%= Empin,

where we have used equation (A.1). That is, for all modes in this limit, the turning point

approaches the inner radius. This is an important and useful lower bound on FE.
Large E
Choosing ¢ = 1/v/E, equation (3.36) takes the form (3.35), with
Q) = ¢ (k2 + i) 2 (A.T)
4r? ' '

If we ignore the term O(e?), then Q has no turning points and the leading-order WKB

solution is
W) = a(-Q)Visin [ [ /-QU)at] + ea-@y s [ [ /-0t

ral? . '
= ﬁ {clsm |:::‘_/_E1(r11-a - Ti—a)jl + ¢oc0s [z\fﬁl(ri-a - rl““)] } -

Note that the solution is sinuscidal everywhere, since there is no turning poeint. For rigid

(A.8)

boundary conditions, we have ¥(ry) = ¥(r2) = 0. The former implies ¢z = 0; the latter

then gives

nr(e —1) z
E=|———1!, — 00, A9
[k(ré"' - rl"“)] o (4.9)

The requirement » — co must be made for consistency of our approximation. Thus E ~ k=2
for E large. One can proceed to derive the eigenvalue condition for free boundaries from

equations (A.3), but it is sufficient for our purposes to note that the resulting expression
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reduces to (A.9) when E is sufficiently large.

Appendix B:
Critical Field Strengths for Stability

Equation (A.9) implies that k*E ~ constant for E large. To find the critical field
strength for stability, it is essential to know limy_.q k*E for any given a (§3.5.5). Equation
(A.9), however, gives an incorrect value for this quantity, because the assumptions leading

to (A.8) no longer hold.

We need to return to equation {A.7), with the assumption now that & ~ ¢. With an

error O(e*) then,

Qr) = o2k (B.1)
@ has a turning point at
1
4k? \ 3D 4 D
e (352) - ()" ®2)

The eigenfunctions in this case look identical to equations (A.4} - (A.6), except that hLere
e = 1/VE and Q and rr are as above. Also, 7 = 2ak?r3t - 3¢2/(203). Since 77
approaches a constant in this asymptotic limit, the region of sinusoidal behavior is always of
finite size, in contrast to the situation of Appendix A, where it vanishes as e — 0. Applying
the boundary conditions to equation (A.6) again yields equations (3.38) and (3.39), with

the above-noted changes in certain variables. Observe that

Iy(r) T 2 /r /3 2 T3 2utte
— —_ ., $—2a - j . ,
— = /rr Q(t)/f dt = e p¥Y; k*FE dt = - 7 'Ufg dt

where we have used equation (3.47), and let v4 = v4 ¢ for simplicity. With a similar result
for Z/e, one sees that direct numerical solution of (3.38) for v, is possible. The same is

true in the free boundary case. To see this, set w? = 0, whence o and 3 become

_1_ gEff(rl) k

=5 0 P
and
6 = L—g_eff(r2), k—»O,

2?‘2 'Uf‘
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so that Eq. (3.39) is a function of v4.

Taking 7, — oo, Eqs. (3.38) and (3.39) become (to leading order in ¢):

sin [12(:1) + E] =0 and oS [@ 4+ i] =0,

4 4

respectively, whence one obtains

rr [2qt-20 3 1\
/n J = (n—zj,. (RIGID)

with n — oco. The integral can be evaluated numerically, yielding the critical Alfvén speeds

for different a. These are shown for the lowest-order modes (n = 1) in Table 3.1. The free
boundary results are in fact extreme upper limits; they are typically ~ 30% larger than
those found numerically (see Figure 3.8b). This is likely due to the fact that, compared to
equation (3.38), more terms are neglected in equation (3.39) en route to the leading order

approximation.
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a ™ / To Enin Qg?ﬂit lwsr[tir kE VA erit
{ro — o) (k — 0) Rigid Free
1.5 03679  0.04979 7.75 3.36 2.082 1.20 191
1.6  0.4019 0.05409 7.69 3.44 2317 1.18 195
17 04312 005727 .71 3.55 2.552 115  1.98
1.8 0.4569  0.05961 7.77 3.69 2.788 1.14 2.00
1.9 04796  0.06130 7.87 3.84 3.025 112 2.03
2.0 0.5000 0.06250 8.00 4.00 3.263 111 2.65

Table 3.1: Model characteristics in two limiting cases: & — oo (columns 3, 4, and 5), and

k — 0 (columns 6, 7, and 8). All frequencies (velocities) are in units of Qg (70Qy). See text
for details.

Acrit a
(units of 1y} 1.5 1.7 2.0

100 1.433 1.436 1.446
1.056 1.043 1.022
50 1384 1.402 1.418
1.014 1.013 1.001
20 1.270 1.284 1.312
0.903 0.922 0.933
10 1.088 1.105 1.142
0.769 0.803 0.832
3 0.833 0.847 0.889
0.606 0.647 0.689
1 0.287 0.303 0.339
0.250 0.280 0.317
0.5 0.165 0.178 0.205
0.151 0.172 0.199
0.1 0.040 0.045 0.054

0.039 0.045 0.053

Table 3.2: Critical Alfvén speeds, v4,crit/(ro{20), for selected perturbation wavelengths Acr
and shear parameters a. The top line for each Ay is for free boundaries; bottom for rigid.
We have taken ro/r; = 100. See text for details.
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I 1 | I L 1 l I 1 1 l 1 i [ ]

L.WKB Growth Rates a=2 Local limit: -
4 - kK -, v, -0

= -

3 .
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Figure 3.1: Limiting growth rates (k — oo,v4 — 0) as a function of Alfvén frequency for
rotation law indices (from top to bottom) a = 2, 1.9, 1.8, 1.7, 1.6, and 1.5. Note that
Qa,critla = 1.8) > Qacrir(a = 1.7) > Q4 crit{e = 1.6); this ordering is due to the changing
location of the pressure maximum with respect to a (see Table 3.1 and text for details).
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Figure 3.2: For rigid boundary conditions, (a) growth rates and (b) eigenfunctions at max-
imum growth rate for the three unstable modes at v4/(ro€2) = 0.3, with ro/r; = 100 and
a = 1.5. The dotted curve is the WKB approximation for the n = 0 mode. Panels (¢}, (d)
are for a = 1.7; (e), {f) for a = 2. In (f), the dotted lines show the location of the turning
points, rr, for each of the modes.
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Figure 3.3: Same as Figure 3.2, but for free boundary conditions.
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Figure 3.4: WKB growth rates, for both rigid and free boundaries, Keplerian rotation, and
va/(ro€%) = 0.05. Only the three fastest growing modes are shown. The heavy line is the
limiting growth rate curve for ¢ = 1.5 from Figure 3.1.



106 CHAPTER 3. AXISYMMETRIC MODES

1 T T L] L} E L3 T L] L3 I 1 L) L) L]
B a=2 i
B P - v, = arl T
(a-) i //" \'\.\ rz/rl = 1007
08 |- e = _
b ", \. - -l
5 \.
L .,-’ N d
’ )
L K \_\ -
0.8 - s , Free _
—_ L s i A
4 ’ \
c -
\é” L !.r \_‘ 4
E L ! i 4
0.4 j’ “ -
- i’ i -
L I Rigid "l -
L f" ‘ 7
; i
02+~ [
f !
F P
LJ i
/ !
-
0 L L L L I L ] L il l 1 L 1 i
0 1 2 3
k v,/Q,
1.2 —t——— 7T —T—T—
[ Free a =2 ]
(b) . v, = 0.7
1~ T/, = 100
I n=20
0.8 |- .
3086 -— _-
04 —
02 -
0 A L

[=]
—
n

[ 5]

r/r,
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ABSTRACT

We investigate the global stability of a differentially rotating fluid shell
threaded by vertical and azimuthal magnetic fields to linear, axisymmetric
perturbations. This system, which models a thick accretion disk in the vicinity
of its midplane, is susceptible to the Velikhov-Chandrasekhar (VC) instability
in the absence of the azimuthal field. In most cases, the azimuthal field tends
to stabilize the VC instability, although strong fields (Alfvén speed of order
the characteristic rotational speed in our incompressible model) are required
for complete stabilization. Stability diagrams are constructed, indicating
critical values of the two fields for instability. We find an additional strong field
instability that arises when the azimuthal Alfvén speed exceeds the characteristic
rotational speed. This instability, in the case of a freely bounded configuration,
hes certain similarities to the sausage instability for interpenetrating fields in
plasme physics, and may be important for very massive disks or filamentary
molecular clouds. An application to the L1641 region in Orion A is briefly
discussed. Finally, we find that the effect of a radially varying vertical field
(without an azimuthal field) is mainly stabilizing,

Subject headings: accretion, accretion disks - instabilities - ISM:
magnetic fields - MHD
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4.1 Introduction

One of the more interesting recent developments in the theory of accretion disks was the
discovery of virulent instabilities that develop only in the presence of magnetic fields. Balbus
& Hawley (1991) (hereafter BH) showed that a Keplerian disk in a state of pure rotation
threaded by a weak axial field was subject to a local instability whose growth rate was
on the order of the local rate of rotation. In a previous paper, we examined the global
counterpart of this instability, the Velikhov-Chandrasekhar (VC) instability, showing that
growth persisted at comparable rates (Curry, Pudritz, & Sutherland 1994, hereafter CPS).
There remain serious questions, however, concerning how the instability is affected as models
are augmented by additional physics. In particular, the influence of the more complicated
magnetic field structures expected to exist in protostellar, CV, and AGN disks has yet to
be carefully addressed. In this paper, we extend the mode} of CPS to include disks with
radially varying vertical (B,) and azimuthal (B,) fields.

There are many reasons to expect an azimuthal field to be an important, sometimes
dominant, magnetic field component in accretion disks. Strong differential rotation can
generate By from a radial field component By, which can itself be created either by dynamo
processes or accretion. The BH instability has been shown to generate strong B; and B,
from an initially weak B, (Hawley, Gammie, & Balbus 1995). If B, is inherited from the
central object or the interstellar medium, disk torques can convert it directly to By. Thus
it is most likely that all three components of B are dynamically important for most types
of disks. Of course, as has been made clear by all work following BH, one needs very little
initial B; in order for that component to be “dynamically important.”

The observational evidence for By in protostellar disks is at the present time quite sparse,
mainly due to uncertainties about the nature of the detected disks themselves. Recent
mid-infrared spectropolarimetry of high-mass star-forming regions by Aitken et al. {1993)
revealed a high correlation between objects with elongated molecular disk-like structures
(numbering 10 in their sample) and magnetic fields oriented along the long axis of the disk
(7 of these 10). The authors claim this as evidence for a predominantly azimuthal field

structure in these regions. One should note, however, that the objects in question are 103
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to 10 AU in extent, with masses ~ 103M;, and so are not likely to represent Keplerian
accretion disks. As evidence for large-scale rotation is lacking, they may in fact be self-
gravitating toroids or “pseudodisks,” supported to some extent by the field itself (Galli &
Shu 1993).

Keplerian disks with magnetic field components in both the azimuthal and vertical
directions have been actively studied as possible sources of centrifugally driven winds and
outflows {(e.g. Blandford & Payne 1982, Uchida & Shibata 1985, Pelletier & Pudritz 1992).
This suggests an additional motivation for the present study: to determine whether the
various equilibria assumed in models of magnetically driven outflows are stable. A first step
in this direction was taken recently by Lubow, Papaloizou & Pringle (1994).

In a different context, Galactic center molecular disk observations (Genzel 1989, Hilder-
brand et al. 1990) indicate that B, ~ By ~ 1 mG, with a somewhat weaker B;. This is
in contrast to the larger-scale field structure (i.e. the inner 70 pc of the Galaxy), which is
almost purely vertical, i.e. perpendicular to the Galactic plane. Wardle & Konigl (1990)
have modeled this region using a self-similar magnetized disk model, under the assumption
that the inner field structure results from advection of the large-scale field by inflowing
matter, with differential rotation subsequently leading to a strong azimuthal component.
As observations of other galactic nuclei and AGN are still not able to resolve the inner
disks, much less any associated magnetic field structure, it would be unwise to speculate
further along these lines. However, since the inner regions of AGN are expected to possess
“thick” rather than thin Keplerian disks, we use the same equilibrium sequence as intro-
duced in CPS; namely, one in which radial pressure gradients oppose the central gravity
for non-Keplerian rotation laws, The situation examined in the present paper is even more
interesting, however, since radial magnetic gradients are also present.

As a final possible application of the work presented here, we cite evidence that elongated
filaments of gas in molecular clouds are associated with helical velocity and magnetic fields
(Bally 1989). The latter are indicative of the simultaneous presence of By and B.. The
model employed in this paper, although formulated primarily for accretion disks, yields
interesting results in the parameter range expected to hold in such regions. In particular,

we find a new instability which sets in when the azimuthal Alfvén speed is greater than the
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rotational speed.

We defer to a later section a detailed description of previous work on the effect of B,
on the VC and BH instabilities, but it is of use to review here what is known generally
about the stability of rotating configurations with azimuthal field. Since we do not attempt
to account for the vertical structure of the disk in this study, the following discussion is
restricted to purely radial distributions of angular velocity and magnetic field. The central
question is this: given a rotation profile Q(r) and field distribution By(r), B.(r), can one
predict, even locally, whether a configuration is stable to infinitesimal perturbations in the
fluid quantities ? What is needed is a necessary and sufficient criterion for stability, such

as exists for purely vertical and purely azimuthal fields. These are, respectively;

dQ?
_
dr 20
and
1d, 0y 7 d B¢)2
2 -—=(22) so. .
re dr(r Y 47rpdr( T 20 (4:.1)

The first criterion is due to Chandrasekhar (1960), and the second to Michacl (1954). For
the combined fields, no similar criteria are known. Sufficient criteria are available, liowever:
these are (Chandrasekhar 1961; Howard & Gupta 1962; Dubrulle & Knobloch 1993; Isumar,
Coleman, & Kley 1994):

%(cha)z <0 (2=0),

d* 2B, d

and & T drpr? dr

(rBy) 2 0 (Q#0). (4.2)

Sufficient criteria can only be regarded as incomplete guides to the global stability of sys-
tems; the inherent limitations of criterion (4.2) will be made manifest later on in the paper.
As to the actual distribution of B, and B. across the disk, there seem to be very
few restrictions at this time!. By considering power-law distributions in these two field
components, we hope to cover a range of plausibility.
It is important to emphasize that the goal of this series of papers is not to replace the

many local analyses that exist in the literature. Rather, a model such as we utilize below,

!Because an equilibrium B, immediately implies a time-dependent, growing B, (BH) which destrays the
time-invariance of the resulting equations, we ignore this field component in the present wark.
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while idealized and unrealistic in many respects, highlights intrinsically global behavior
which will not be discovered in any local analysis. Examples of this fourd in tka present
work and in CPS are effects which involve coherent motions over large portions of the disk,
and phenomena modified or even enhanced by the presence of a disk boundary, imperfectly
modelled though it mnay be. Thus the present work complements, not replaces, existing
local analyses.

The format of the paper is as follows. The equilibrium state is described in §2, and the
perturbations to this state in the following section. Quantitative results for the combined
effect of azimuthal and constant vertical fields are presented in §4, and those for a radially
varying vertical field in §5. In the final section, our results are compared with those of
other investigators, and we make some additional comments on a new instability found in
§4, before giving a final summary. Technical details of the calculations may be found in the

four appendices.

4.2 The Equilibrium

4.2.1 Basic equations

The equilibrium was described in detail in CPS, and has also been employed in stability
analyses of thick, pressure-supported disks; see, e.g., Blaes & Glatzel (1986), Sekiya &
Miyama (1988), and Jaroszynski (1988). The model is a simplified form of the “thick
torus” model for AGN (see, e.g., Paczynsky & Wiita 1980), supplemented by gradients
of magnetic field pressure, but lacking vertical structure. It should therefore adequately
describe a small region straddling the midplane of a real disk, with radial gas and magnetic
pressuic support taken fully into account. Thus the equilibrium is net that of a Keplerian
disk, although this case is naturally included in the equilibrium sequence (CPS).
Consider a cylindrical shell of homogeneous, incompressible, ideal MHD fluid, of infinite
extent in the z-direction, rotating about the z-axis in the Newtonian point-mass potential
= —GM/r. The purely radial dependence of the potential is justified if, at every radius
r, the vertical scale height of the “disk" H <« r, so that there is little variation of ¥ with

z. The stationary solution of the MHD equations depends only on the radial coordinate,
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r. To calculate explicit quantities of interest, we take the following power-law dependences

for the angular velocity, azimuthal, and vertical magnetic fields, respectively:

o= (L), B = B¢u(r)—b+l~ B.(r) = Beo (—0)+1 (43)

o
where g, Bgo, B:o,a, b, ¢, and ry are constants. As in CPS, we consider the effect of both
rigid and free boundaries. In the latter case, B is supposed to permeate the regions both
to the interior and exterior of the shell, as well as within the fluid. Using equations (4.3),

the radial component of the equation of motion becomes (Appendix A}

' 1-2a ) 1-26 1-2¢
P o2 (i) _GM 1 [(2 —B)V3 (-’l) +(1 -V ( . ) ] CRY
p o 70

2 g o

where the prime symbol = d/dr, Vozo,:o = ng‘:o /47 p are the azimuthal (¢) and vertical {z)
Alfven speeds at rg, and M is the mass of the central object (self-gravity is ignored).

Inspection of equation (4.4) shows that the magnetic terms aid rotation and oppose the
central gravity if 4 > 2 and/or ¢ > 1, and vice-versa if b < 2 and/or ¢ < 1. As in CPS, we
consider configurations in which the gas pressure vanishes at the boundaries, and identify
To with the gas pressure maximum, where p’ = 0. Equation (4.4) then gives

GM

— =100 — [(2 - HVE + (1 - VEI/ro. (4.5)
0

This is merely a statement of radial magnetostatic equilibrium at the pressure maximum.
In order for ry to be a maximum, we must have p"(rg) < 0. From equation (4.4}, this
requires
(2b — 3)(b — 2)V g + (20— 3)(c — 1)V g +2a = 3 > 0, (4.6)

where an overline indicates that the Alfvén speeds are now scaled with respect to 1o,
the circular speed at ro. Note that the above gives ¢ > 3/2 when Vyg = 0 and ¢ = 1, as
expected. Condition (4.6) should be satisfied for each equilibrium we examine.

Integrating equation (4.4) and eliminating GM via equation (4.5), one obtains the
stationary pressure distribution

2 — =2(a-1)
1
p_# 1_  1-r%Y
r 2(a—1)

1 1- r-2("-”]
p 2

- (2-bV5, [;—1+ T

=2 |1 1 - p2c=1)
_(]_—C)V:D [;-14——2(;—_'7)— .
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where we have chosen our units such that rg = Qo = 1, and where u? is a constant equal
to the ratio of thermal to kinetic energy at rp. We assume, as in CPS, that the gas and

magnetic pressures remain finite as ro — oo; this implies that a, b,¢ > 1.

4.2.2 Special cases

(i) B, = constant

Much of this paper is based on the particular case of a constant vertical field; i.e. ¢ = 1.

Then equation (4.5) and inequality (4.6) lead to the inequalities {in dimensionless units)

1-(2-80VhH >0,
(2b-3)(6—2)ViH +2a -3 >0,

where we have dropped the overlines on the Alfvén speeds for convenience. Considering
all possible values of @ and b leads to the conclusion that only certain values of Vjg are
permitted for a given (a, b).

In the case of rigid boundaries, the inner and outer boundaries of the fluid are determined
by the zeros of equation (4.7). For free boundaries, this is still true provided that B
is continuous across the boundaries, and we shall assume that this is the case. Thus a
given model is fixed by choosing r2/71, @, b, and V5. CPS found a monotonic increasing
dependence of the VC instability growth rate on r2/r), with a maximum at ro/r; > 100
; thus, we choose r9/r; = 100 as a fiducial value for all calculations in this paper. The
zeros of equation (4.7) can be positive, negative, or complex. The latter two (unacceptable)
possibilities can occur even for (a,b, Vo) obeying the above inequalities. We therefore
conducted a three-parameter search for acceptable equilibria; the results are summarized in
Figures 4.1a and b.

In Fig. 4.la, various critical values of the azimuthal Alfvén speed are denoted by
W1, Va, V3, ...: each is a function of @ and b. Although we calculated equilibria for all
a,b in the range 1 < (a,b) £ 3, Fig. 4.1b shows only 3/2 < (a,b) < 2. We will restrict
consideration for most of the paper to this range, since it reduces exactly to the equilibrium

of CPS when By = 0. The upper surface in Fig. 4.1b represents V5(a > b) and Vi(a < b).
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Note that for a given a, 3/2 <a <2, V5 > V%.

There is another interesting property of the equilibrium relation (4-‘}%:’: when =2 and
¢ =1, we get the equilibrium of CPS. It may be checked that, for thé power law fields we
assume, this is the unique solution for which the current density, J = V x B/pq, vanishes.
Hence, the value of a is restricted to 3/2 < a £ 2, just as iu that study, and the location of
the inner radius given by equation (3.9) of CPS. Since this special case allows us to examine

the effect of the azimuthal field without the added complication of a current, we will assume

b=2, ¢ =1 (corresponding to B, ~ r~}, B, = constant) when considering free boundaries

in the sections to follow.
(it) B; = B:(r), B, =0
In this case equations (4.5) and (4.6) give
1-(1-¢c)VE >0,
(2c=3)(c—- 1)V +2a-3>0.

As above, these inequalities and equation (4.7) impose restrictions on allowed equilibria;
these are summarized in Figs. 4.2a and b. We now examine perturbations to the above-

described equilibria.

4.3 The Perturbations

4.3.1 The perturbation equations

We now consider the response of the above equilibrium state to small, axisymmetric, Eule-

rian perturbations of the form
85X (r,2,1) = X (r)elth+wt), (4.8)

where X is any physical variable, and & and w are the vertical wavenumber and frequency
of the perturbation, respectively. Substituting the forms X 46X along with equation (4.3)
into the ideal MHD equations, linearizing, and eliminating all variables in favor of the radial

velocity perturbation (see Appendix A for details), one obtains a second-order differential
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equation in fu,:

Lra? (6w ) + gr)6ur =0, (49)

where

v2\' 2\t 2 2LV 2
q(r)Ek"’r[(Qz— ¢) —(Vz)] + i (h t:""—wﬂ)

2 r? w? T

- &2(k2+~15),
"

@ =t - V),

and V. (r) = By .(r)//47p are the azimuthal and vertical Alfvén speeds. The power-law

form of the above (in dimensionless units) is

a(r) = 2 [WWhr - ar® 4 (- DV ]

4k 1-b— —ay2  ~2f2, 1
+ 'L'D_z(kvqm‘f:gr ¢ wr a) - W (k +ﬁ). (4.10)

An alternative form of the perturbation equation useful for analytic purposes is obtained

via the transformation

Y= (ru’;z)l/zéu,,

whence equation (4.9) becomes

¥ = BQ(r)¢, (4.11)
with
2 —2a 2 p=2b £2 =2 _ 2 v 1o de-bec —ay?
Q(r) = E ar - b ¢0T - (C _ 1)‘:07‘ —_ ﬁ(kl ¢01"ZUT —-wr )
1 1 |1 (,.@2)!2 (T:L'2)"
* (” W) Cu? [E et ot | (4.12)

When discussing free-boundary configurations, one must consider the form of the vac-
uutn field perturbations in addition to those within the fluid. We will restrict ourselves to
the current-free case, i.e. b = 2,¢ = 1, since then the perturbed magnetic field in the interior
(r < ry, denoted by subscript ¢{) and exterior {(r > rj, subscript o) regions is completely

specified by a scalar potential x, such that

6Bi.o = B, VXi,m
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xilw) = alo(®), xo(w) = calp(m), (4.13)

where Xi o = Xi,o(r)e!¥*+9) = = |k|r, and Iy and Kp are modified Bessel functions of order

Zero.

4.3.2 The boundary conditions

We solve equation (4.9) subject to both rigid and free boundary conditions (BCs). The

former are

bur(r1) = dur(re) = 0.

Free BCs require the continuity of Lagrangian perturbations of the total normal stresses
and magnetic flux across the boundaries. In the cylindrical geometry we are considering,
both By and B. are everywhere perpendicular to the surface normal n; thus B-n = 0,
and provided that both fields are continuous across the boundaries, the appropriate BC is

unchanged from the constant B, case; that is (CPS),

(bur) +

1 & o )
- + = (geff + kzl":%#)] du, = Q.

Af0
The subscript ¢ applies at r;, subscript o at ro.

For general power laws in B,(r), B;(r), and in dimensionless units, the effective gravity
is given by

w1 _ )
Gegy =777 - 2 (2= DYV — (1 — o) V3%,

For vanishing current, this becomes identical to the ger; of CPS; ie. gef p=rim /2,

From equation (4.13) one finds

Xif  _ 1@} ooxel _ _ 1 Ko(ws)

X r=ry k] I (1) Xo lr=r, Tk Ky (=)’

where @y 3 = |k|r} 0.

4.4 Results: Constant Vertical Field

The majority of our results have been obtained for the special case V. = constant.
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4.4.1 Thecaseofa=15

When a = b, the rotation frequency Q and its magnetic analog, V;;/r, have an identical

scaling with radius. Equation (4.9} with (4.10) becomes

%Ir(éur)’]' +Q(r)6u, =0, (4.14)

where
Q) = BE™-1-5, (4.15)
E = ;2-4- ad?(VE — 1) +2(QaV, — w)2] , (4.16)

Q4 = kV; is the Alfvén frequency, and where we have dropped the zero subscripts on V
and V. for convenience. The reader should note that these are constants throughout this
section.

Equation (4.14) with equation (4.15) is identical in form to the perturbation equation
examined in CPS; for rigid BCs, the two problems are formally identical. The eigenvalue E
is & known function of @ and k (see CPS and ff. equation (4.21)), but here its definition in

terms of w differs. The latter are solutions of the quartic polynomial obtained from equation

(4.16):
Eu' =~ 2]EQ) + a(VF — 1) + 2w’ + 8Q4Vyw + Q4IEQY + 20(VE ~ 1) — 4VF] = 0. (4.17)

The eigenvalue spectrum for E is infinite and every member is real and positive. For free
BCs, the situation is complicated by the fact that w appears in the BC itself. The problem is
then no longer a standard Sturm-Liouville one and the introduction of E is not a particularly
useful calculational device. In fact, when V # 0, the resulting E is always complez. This
leads to some interesting consequences which will be discussed presently.? For both sets of
BCs, the resulting w occur in complex conjugate pairs (Frieman & Rotenberg 1960).

For simplicity, we begin by considering rigid BCs only. There are two special cases in

which the roots of equation (4.17) have simple analytic forms. One is when Vj = 1, which

*When V, = 0 and for free BCs, as in CPS, it can be shown that the problem is still of Sturm-Liouville
type, since w? is real and certain required conditions on the BC coefficients are satisfied; cf.,, Birkhoff & Rota
(1989).
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will be examined in the next section. The other is when a = 2. In that case, two of the

roots are always stable, and the other two are

Vo, £{V2+ EQ% — 2EY20 )1/2
oo e Vs Ei"-’ 1) ' (118)

The critical Alfvén frequency for stability, where the imaginary part of equation (4.18)

vanishes, is then
14 (1 - V212
EL2

Two points are worth noting. First, V, has a stabilizing influence here. This could not

QA,crit = (4'19)
be predicted from the sufficient criterion (4.2) given in the introduction, since b = 2 =
(rBg) = 0. Second, f4.¢ri¢ is an explicit function of V,, and has two distinct non-zero
solutions. That is, the stability criterion is altered in the presence of an azimuthal field.
contrary to the claims of some recent investigators (see ff. §6.1). In the local limit, i.e.

k — 00, V. — 0, we have E — 722 = r} (CPS); then equation (4.18) gives
1
w=5[Ve = (Vg - 20 + Q5r})')
1

for the growing unstable mode.

We solved equation (4.14) numerically, subject to both rigid and free boundary condi-
tions, for a variety of (a,b, V) allowed by the equilibrium. As in CPS, we use the WKB
approximation when V; < 0.3, since then the eigenfunctions 6u, are so sharply peaked that
numerical solutions are difficult to obtain.

The principal results are as follows:

(i) The VC instability persists for all V3 < 1, 3/2 < @ < 2, but with reduced growth rate.
This conflicts with the naive prediction based on the sufficient criterion (4.2), since here
(rBg)' > 0. The growth rate approaches zero as V,, — 1.

(ii) The presence of the azimuthal field also changes the stability criterion itself, Growth is
damped at both short and long wavelengths.

(iii) When V,, > 1,4 # 2, a new instability sets in, increasing in growth rate as V,. This
large-field instability can be stabilized if V; is made sufficiently large.

(iv) All of the unstable modes propagate; i.e. the real part of w is wp ~ kV,V;.

(v) The mode structure is unchanged from CPS; i.e. there exists a finite, ordered spectrum
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of unstable modes, whose growth rates are inversely proportional to a positive power of E.
For the remainder of this paper, we will restrict consideration to the fastest-growing, or
n = 0, mode.

In Figures 4.3a and b, we plot the dimensionless growth rate as a function of the
Alfvén frequency 24 = kV.. These curves show directly the effect of azimuthal field on
the VC instability. We have chosen a = b = 2, but the curves are similar for other a = b.
To display the effect for both strong and weak axial fields, Fig. 4.3a has V., = 0.3 and
Fig. 4.3b, V: = 0.05. Feature (i} is apparent in both figures; growth is clearly halted as
Vs — 1. In the presence of By, growth rates are reduced due to vertical motions induced
by magnetic pressure gradients (Blaes & Balbus 1994) (in the absence of By, fu; ~ ép;
compare equation (3.13) of CPS and equation (A.4), Appendix A). The instability couples
to (stable) inertial modes, reducing its efficacy. The additional stabilization provided by V,
at shorter wavelengths (large Q4) is also apparent in both figures. The physical explanation
for this is the same as in CPS; namely, that the restoring stress on a fluid element is more
effective for distortions of larger curvature, i.e. at short wavelengths (also, see below).

A new effect, the long-wavelength stabilization, is much more prominent in the weak
axial field case (Fig. 4.3b). Even at V, = 0.7, one sees stabilization at long wavelengths
(small Q4) for V; = 0.05. This behavior is entirely due to the presence of toroidal field
lines, which provide an additional return force on a fluid element at long wavelengths. This

can be seen by an explicit calculation of the perturbed magnetic tension, i.e.

§B-V)B 1 (z,széB_2BdréB¢i),

4 T (4.20)

where we have assumed without loss of generality that B, ~ 1/r. As k£ — 0in the By =0
case, the tension vanishes, indicating that instability persists up to the longest wavelengths.
However, the second RHS term is independent of &, so that for nonzero By there exists an
additional radial tension, which is always stabilizing. In addition, the effect is enhanced at
small B;. It is this behavior that we observe at small Q4 in Fig. 4.3.

The real parts of all four roots for w are shown in Figures 4.4a and b, for the same two
values of V; and V; = 0.9. The corresponding imaginary parts are shown as dotted lines.

The unstable modes (one growing, one damping) are created out of two real modes which
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merge for intermediate values of Q4.

Increasing V; to values in excess of 1 with a = b = 2 leads to no further instability.
However, a new instability does occur for other values of a. The Keplerian case, for example,
is shown in Figure 4.5. Each curve is labeled by its corresponding field values Voo Vo As
V. is held fixed at 0.3 and V}, increased, the peak growth rate increases (solid curves). Were
it not for the equilibrium constraint V,, g 1.42 (see Fig. 4.1a), this growth would continue
without bound as Vj is increased. Now keeping ¥, fixed and increasing V. from 0.3 {dashed
curves) leads to stabilization, until complete stability is achieved at V. ~ 0.81, implying

(V2/Vg)erit = 0.57. We consider this large-field instability further in §4.4.3

4.4.2 Critical stability curves

In CPS, it was shown that E behaves as

E3(a)
B=22

+ ...+ Egla), (4.21)

where Ep(a) = r2* and Ej(a) = limg_ok2E. Since the longest wavelength perturbations are
always unstable in that case, one could then calculate the critical field strength for stability,
V:,erits by taking the limit of the dispersion relation as w — 0, & — 0. When Ve # 0, the
values of (V3,V;) for which marginal stability holds constitute curves in the (V,, V.) plane,
This section will be concerned with the construction of such curves.

When V,, # 0, there is an added complication. Fig. 4.3 shows that the most persistent
unstable mode is not always that with & — 0. Rather, the last unstable mode which persists
as V4 — 1 has intermediate k; the precise value is a function of V;. We note here that in
the local limit, ¥ — oo, V. — 0, the growth rate curves are perfectly symmetrical about
24 = 4, which is the value for peak growth when ¢ = 2 and Vo=0.

When V; = 1, equation (4.17) has the four roots
Qg4 (twice), +2E-Y2_Q,, (4.22)

all of which are real, provided that E is real. This result is independent of both V, and k.
Thus the line V;; = 1 must lie in an absolutely stable region in the (V;,V;) plane. Further,

taking V4 = 1 £ € with ¢ small and positive, and expanding w in orders of ¢, one finds from
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the first-order correction that as long as ¢ < 2, instability occurs. Thus the line V, = 1
constitutes an absolutely stable region in the (Vy, V;) plane. We need not take any special
care when considering V; — 0.

For larger values of V., say V; » 0.3, the limit £ — 0 does give a reliable estimate of

the critical curve (Fig. 4.3a). Now taking
w = kwy + k2w + kPws + ...
along with equation (4.21), equation {4.17) becomes, to first order,
Eyw] — 2[E2V2 + (V] — 1) + 2w} + 8VeVpwy + VE[EV? 4+ 2a(VE — 1) — 4V2] = 0. (4.23)

Solving equation (4.23) for the loci of wy = 0 in the (Vj, V2) plane gives the critical stability
curves we seek. These have been plotted in Figure 4.6. The V,, = 0 results, which were
derived in CPS, are obtained where curves intersect the V. axis. One sees that as Vj
is increased from zero, smaller values of V. are needed for stabilization, until at V, = 1
complete stabilization occurs for all a. For a = 2, all V,, > 1 are completely stable; this
is represented by the heavy line along the a = 2 curve and continuing along the V, axis
from V4 = 1 to infinity. For a < 2, the plane above V,; = 1 is divided into an unstable
part (adjoining the V;, axis) and a stable part (to the right of a given critical curve), The
unstable region at V, > 1 extends to infinity and shrinks to zero size as a — 2. Actually,
the size of the unstable region for a # 2 depends on the particular value of ¢ {and when
a # b, on b as well). This is due to the equilibrium constraints placed on Vj by Fig. 4.2b.
The largest allowed V for each a has been indicated in Fig. 4.6 by a large dot on the
appropriate critical curve. We extend the curves to higher values of V, merely to display

their asymptotic behavior (see below); such large field values will not be attainable in reality.

4.4.3 The large-field instability

The almost linear behavior of the curves iz Fig. 4.6 at large Vj, V. is intriguing. In this
limit, and again taking & — 0, equation (4.17) gives

e Q4 [E2Q + 2(a - 2)Q2]
! 2k2(ERQ% +aQ3)
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(1]

where §23 = kV,. This implies

Vz/Vo > (Va/Ve)erit = /2(2 — )/ Ex (4.24)

for stability. Values of Ep and (V./Vy)erit for 3/2 € a < 2 may be found in Table 1. The
equality in (4.24) gives the asymptotic (i.e. large V3, V.) behavior of the critical stability
curves, as shown by the dotted lines in Fig. 4.6.

The nature of this large-field instability (LFI) is easily understood upon comparison
with the equivalent nonrotating system. The equilibrium pressure distributions are com-
pared in Appendix B, where it is shown that when Vy > 7o, the system reduces to its

nonrofating equivelent. For the latter, Chandrasekhar (1961) derived the necessary and

sufficient stability criterion
2 &2 d

2 —p— ——
hB: > r T2dr

(rBy)?dr, (4.95)

where I is a positive-definite integral function of ».* Differentiating both sides of this
inequality, and assuming that k > 8/8r (this is equivalent to considering the longest-

wavelength radial perturbations, which should be the most unstable), we obtain its local
version;

252 2 _ . 2%

where J; is the axial current. The LHS of (4.26) represents the restoring force exerted
on a radially displaced fluid element by the perturbed vertical field, while the RHS is the
excess Lorentz force on that element due to perturbations of By. The latter is the exact
analogue of the destabilizing centrifugal force in the BH instability. Since J, = (2 —b)By/r,
configurations with Vg > rgflp and b > 2 are stable to the LF1. In’, essence, the LFI is the

result of an imbalance between radial gravity and a radially stratified, buoyant magnetic

field (see also Appendix B).

3Compare criterion (4.25) with that for the VC instability; i.e.

T2 2z
LVE>— f (re.? 5 4y,
ry

dr
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4.4.4 Free boundaries

The only case to be considered here is & = b = 2, since we restrict consideration to the
current-free situation. The critical stability curve is shown in Figure 4.7. The most signif-
icant difference is the disappearance of the absolutely stable line at V; = 1. A glance back
at the roots (4.22) of the polynomial (4.17) shows how this happens. When V,, # 0, E is
no longer real, and one of these roots becomes growing unstable. The actual behavior is as
follows. Consider a line of constant V;, such that 0 < V. < 1. The peak growth rate for a
given Vy decreases from a maximum at V = 0, to some minimum in the vicinity of V, = 1,
and then increases again without bound as V; is made larger. Note also how much more
extended is the unstable region in the free case versus the rigid one.

Global effects must clearly be at work here, since V, > 1 is unstable only in the free-
boundary case. As rotation is not likely to be imporiant in this region, it is instructive to
consider the equivalent nonrotating problem. A situation similar, although not identical,
to the latter is that of the plasma “pinch” (e.g., Chandrasekhar 1961, Ch. XII, §115). This
consists of a filled cylindrical column of plasma, threaded by a uniform B., and surrounded
by a vacuum region containing the same B. together with an azimuthal field B, « r~L.
The entire arrangement is usually encircled by a concentric conducting wall, but we are
free to place this at infinity and so ignore it for our present purpose. For the extended
configurations we consider (ro/r; = 100), the (nonrotating) situation is nearly identical
except for the fact that in our problem B, and B, interpenetrate everywhere, not just in
the vacuum region. However, such interpenetrating fields have been considered by Tayler
(1957), with the finding that such arrangements are more unstable.

When all fields are continuous across the plasma/vacuum boundary, the fluid is suscep-
tible to the well-known (m = 0) sausage instability, which can be stabilized if and only if
V2> V22 = (VofVe)erit 2 0.707. It is of interest to compare this figure with the inverse
of the sivpe of the critical curve for a = b = 2 in Fig. 4.7, which is (V./Vg)erie = 1.5. The
latter situation is more unstable, we posit, due to the interpenetration of B, and B, in the
fluid region. Since the exterior By is the cause of the sausage instability in the first place,

it is not hard to imagine that its presence inside the fluid will inhibit the stabilizing effect
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of B..

4.4.5 The general case: a # b

Rigid Boundaries

When a # b, the reduction of the full eigenvalue problem, equations (4.9) and (4.10), to
a single characteristic polynomial is no longer possible. Before proceeding to a numerical so-
lution, however, it is of use to present such analytic formulae as are available. There are two
approaches which have had some success in this regard, and which lead to identical results.
One is the local analysis of Dubrulle & Knobloch (1993), which ignores radial variations in
equilibrium quantities compared with those of perturbed ones (i.e. r(6X)/6.X > 1). The
other is the slender annulus approximation adopted by Kumar, Coleman, & Kley (1994)
which we follow here to preserve the global character of the analysis (Appendix C).4 In the

limit V: ~ 0, both give the following condition for stability,
2~a-(2-bV}(a-bV2) <. (4.27)

For example, if 0 < & < 2 and b < a, stability holds if

<Vi<=+ (4.28)

whereas for b in the same range and a < b, stability holds if

2—-a
2-b

a

b

<Vi< (4.29)

It is easy to see that both of these inequalities bracket V =

As regards the (Vy, V.) critical stability plane, equations (4.28) and (4.29) imply the
existence of a stable region along the V), axis bracketing Vj, = 1. How this limiting behavior
is related to the critical curves for general Vy, V:, and ro/r) will now be investigated.

For configurations with rigid boundaries, all (a, b, V) consistent with Fig. 4.1b may be

considered. Qualitatively, there are some significant differences from the a = b case. These

“This approach is actually superficially global, in that although radial BCs are applied, the authors
assume that the boundary separation is proportional to vk, k> 1.
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differences may be classified according as e > b or @ < b. Several representative critical
stability curves are shown in Figure 4.8. Beginning at the far right-hand side of the diagram,
we have a stable region at large V.. When a > b, the curves achieve a minimum value of
V. for some V,, » 1, and then display the linear asymptotic behavior found in the previous
section. For a > b, there ezists no stable region (not even Vy = 1) at small V.. This result
contradicts the local prediction (4.28) of a stable region as V, — 0. As a is reduced to
values nearer to b, e.g. a = 1.7, b = 1.6, the “knee” of the curve bends inward to smaller
values of V; it is easy to imagine what happens in the limit as a — b from above; the knee
of the ¢ > b curve deforms into the line V3 = 1, which extends all the way to V. =0 as in
Fig. 4.6.

If a is decreased further such that e < b, the situation is less clear. We have been
able to confirm numerically the persistence of two distinct unstable regions, one at V3 » 1
(LF unstable) and one at Vy ¢ 1 (VC unstable), down to values of V; =~ 0.2. Between
the two stability curves lies an absolutely stable region, bracketing V, = 1. At smaller
V., mode crossing becomes a significant hindrance to the numerical algorithm, and precise
determination of the critical curves is difficult. For a = 1.7, b = 1.75, we were able to
follow the n = 0 mode down to V; = 0.2 (solid curves in Fig. 4.8); beyond this, we join
the numerical curves onto the values given by the local relation (4.29) at V, = 0 {dashed
curves). |

It should be mentioned that this region of parameter space, i.e.,
Vi—0, Vo=l a<hb,

is highly restricted by the equilibrium constraints. A glance at Fig. 4.1a reveals that we
must have a > 3/2. Since the LFI requires b < 2, we therefore have 3/2 < a <2, a < bas
our region of interest. Widely separated values of @ and b in this range have limiting Alfvén
speeds well below unity; e.g. when a = 1.55, b = 1.95, V5 = 0.46. Hence, the LFI is not a
concern. Less separated values of the two parameters allow larger equilibrium fields; e.g.,
a = 1.85, b= 195 = V5 = 2.93. But it is likely that for such a, b the critical stability curves
are qualitatively similar to the a = 1.7, b = 1.75 case shown in Fig. 4.8. To confirm this,

we developed an approximation whose validity depends on the smallness of the parameter
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a/b, but imposes no restrictions whatsoever on the global geometry.® The critical stability
curves found by this method always contain a stable region bracketing V, = 1.

To explain the existence of a stable region at small V7, it is instructive to look at the
dependence of the perturbations on @ and b. The VC instability arises from an imbalance of
the destabilizing stress B.6By /47 and the stabilizing stress B.6B, /4x. When an azimutha!
field is present, the ratio of these as found from equations (A.7) and (A.8) is

§B¢ _ w
6B,  kB.a?

The first term in the square brackets behaves as r~¢, the second term as r~% Consider

2kB.Q — %(b&z +20%)]. (4.30)

unstable modes only, so that w ~ Q4 (this is still true when V; < 1). The relative magnitude
of the two terms then depends on: (a) the relative magnitude of a and b, (b) the relative
magnitude of {2 and B, /r, and (c) whether r < 1 or 7 > 1 (i.e. inside or outside the pressure
maximum, respectively). Assume that £ » By/r; i.e. that we are in the VC regime. Recall
from CPS how strongly peaked were the radial eigenfunctions of the unstable modes interior
to the pressure maximum; this suggests that the region # < 1 is far more important than
T > 1 for the linear stage of instability. We therefore restrict consideration to that region.
Now, when a > b, the first term in the above dominates the second, and 6B, /6B, retains
the same sign as it had in the absence of By, where its effects were always destabilizing.
Thus while one would expect a reduction in the growth rate near V, = 1, it should not
completely vanish.

On the other hand, when a < b, the second term in equation (4.30) can be comparable
to the first even when By/r < , and so a change of sign in §B4/6B, occurs at some
Vs £ 1, signifying stabilization. Such stabilization cannot be maintained at higher values
of Vi3, however, once the LFI begins to set in. This gives the upper boundary of the stable
region. Physically, By overwhelms  in the inner disk when & > a, leading to momentary
stabilization until the field becomes so strong that rotation is no longer a viable means of
support. At this point, the LFI takes over. Because the local analysis gives no information

about the radial dependence of the eigenfunctions, Dubrulle & Knobloch were not able to

*Specifically, we define a new variable, z = 1 — r*/*"! 4 < b, and expand the perturbation equation
(4.11) in powers of z. Finding a series solution and subjecting it to rigid BCs, one obtains a fourth-order
dispersion relation similar to equation {4.23}, which can be solved numerically for w.
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detect this interesting dependence of the stability properties on the relative magnitudes of

e and b.
Inapplicability of the Local Approzimation

There are two particular cases in which the local criterion predicts qualitatively different
behavior than that examined above. When either a = 2 or b = 2, criterion {4.27) yields the

following results:

(ia=2,b>2 Vs> /2/b,
(i) a=2, b< 2; Vy < /275,
(i) b=2, a < 2 V, > /a3,
(iv)b=2, a>2; V4 < /af2

In all these cases, there exists oﬁly a single critical curve. Since (ii) and (iv) have a > b,
we expect the local prediction to be unreliable by extension of the results of the previous
section; thus we do not expect a critical stability curve to extend all the way to V., = 0. In
cases (i) and (iii), however, there is no a priori reason to doubt the local results.

As test cases, consider the physically interesting power law indices

(iYa=2 b=3;= V,>0.82,
(iii) b= 2, a = 1.5;= V,, > 0.87.

The first case is that of constant angular momentum, with a rapidly decreasing azimuthal
field. The second is a zero-current, Keplerian configuration. By the results of §4.4.3, both
systems should be stable to the LFL In addition, both the Michael (equation {4.1)) and the
Howard & Gupta (equation (4.2)) criteria are satisfied. The equilibrium constraints place
no restrictions on the value of V,, for these (a,b). The critical stability curves, calculated
numerically, are shown in Figure 4.9. Again, it is difficult to extend the curves much past

V: £ 0.2, but in case (i) we have been able (quite remarkably) to follow the curve down
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to V. = 0.05. As in the rest of the paper, the results are for n = 0, which we have always
found to be the fastest growing radial mode.

The results are surprising in that they bear no resemblance to the local predictions (the
dashed and dotted lines in Fig. 4.9) as V. — 0. The ¢ = 2, b = 3 curve, e.g.. shows
that the VC unstable region is five times as large at V, = 0.1 than the local prediction,
and the curve even appears to be diverging as V. — 0, instead of approaching a constant
value. One reason why the local approximation fails here can be found via inspection of
the relevant eigenfunctions, a few of which are plotted in Figure 4.10. When Vo &£ 0, du,
has both real (solid line) and complex (dashed line) components. As V,, is increased from
zero, one sees a gradual spreading of the eigenfunction from the inside regions outward. Ia
the region near the critical curves as V., — 0, §u, is muck more extended than in any other
case examined thus far. The peak of the eigenfunction at maximum growth is no longer
confined to the small region between r; and rg; e.g. when V; = 0.3, V,, = 1.5 (Fig. 4.10d),
it lies at r/rp = 3, and Ju, has a nonnegligible amplitude over the entire shell. This feature
alone is enough to show that the local and thin shell analyses are inadequate to capture
the true behavior of the system in this parameter regime. It also confirms one of the main
findings of CPS; namely, that the local and ‘critical’ limits are antipodal: the latter can

only be reached via a global analysis.
Free Boundaries

For b = 2, we plot a variety of a values in Fig. 4.7. Again, in contrast to the rigid BC
case, there ezists no stable region around V, = 1; this is easily understood in light of the
discussion given in §4.4.4 The unstable regions are larger for a # 2 than for a = 2; this is
due to the fact that {wo instabilities, the current-driven LFI, and the sausage instability, act
simultaneously. The asymptotic critical values for these curves range from (V; [Valerie = 1.5

for a = 2 to (V2/Vy)erie = 2.3 for @ = 1.5. The V,-axis intercepts of the curves match the

values found in CPS.
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4.4.6 The effect of simulated vertical boundaries

In CPS, we calculated the critical V. for several fized, nonzero values of &, corresponding to
vertical wavelengths, Ao, between 100 and 0.1 in units of the inner radius r;. The intent
was to gauge the probable effect of vertical disk boundaries on V; ¢, under the hypothesis
that the longest unstable wavelength could not exceed the disk thickness. The interesting
result was that for Ay = 0.1, a reasonable value for a thin Keplerian disk, V. cir ~ 0.04 =
V. x, where V. ¥ = v/6 ¢;/x is the local Keplerian critical field estimate (BH). Thus, the
super-rotational Alfvén speed required for stability in the infinite incompressible cylindrical
shell model translates to a super-thermal V. in a thin, isothermal disk.

In the presence of an azimuthal field, we have found that for small V., values of V, ~
roflg are required for critical stability. This therefore begs the same question as asked in
CPS: does the same result hold for thin disks, or does critical stability again require Vi~ cs
?

Following the same calculational procedure as in CPS, we calculated critical stability
curves for ¢ = b = 2, rigid boundaries, and a range of A (Figure 4.11). Mode confusion
prevents us from going to Ay < 0.2, but the trend is clear. The curves do not all approach
Vo =1as V; — 0, since they are for fized k; the small Q4 stabilization discussed in §4.4.1
takes over when V; becomes small. This can be seen explicitly by deriving the following
“local” critical stability relation. In the local limit, £ — r{, so E¥/2 = (0.5)2 = 0.25 for

a = 2, and equation (4.19) gives (in proper units)

S P A .
T Xt Vi 70820 )

Assuming the azimuthal field is subthermal so that it does not significantly alter the overall
structure of the disk, the critical stability requirement A = 2H = 2v/2¢,/Q(r,) then
yields

7o\ 2 2 (v 7\ 2 g 2
(‘«o) zl_ﬂ_(‘;_ﬁ) =1_( LE 2’”1-1) . (4.31)

roS 2 \es 7 70820 Acrit
For Acrit = 0.1 11, equation (4.31) gives the long-dashed curve shown in Figure 4.11. Al-
though equation (4.31) concurs with the sequence of curves shown and highlights their

key qualitative features, it cannot be rigorously correct for two reasons: first, one can-
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not actually bave a “thin” disk with a = 2; and second, the derivation is inconsistent for
Va/rofp ~ 12> Vy/fe,.

Regardless of the applicability of equation (4.31), the numerical curves in Figure 4.11
unambiguously show that although V: ot decreases with decreasing Aqri¢ (or decreasing
scale height H'), the same is not true of Vy crir- Even in the thin disk limit, one still requires
Vocrit ~ 108 for complete stabilization; i.e. for all wavelengths and at any V.. This result
can be understood by recalling the physical cause of the LFI: it can only occur when rotation
is relatively unimportant in comparison with the azimuthal field, a2 requirement that does
not change when the effective scale height is reduced.

In a real, compressible, vertically stratified accretion disk, Parker (vertical magnetic
buoyancy) instability is known to act when ¥V}, 2 c; < 7. Thus, the above result could
have at least two important consequences for such a disk. First, it argues persuasively
against the possibility of the L¥I ever occurring, since for ¥, 2 c¢,, Parker instability
would already have caused a rearrangement of the magnetic equilibrium. Second, and more
importantly, the above result suggests that the VC instability is unlikely to be stabilized
by an azimuthal field of any power-law index or strength V, < ¢,. We will discuss other

possible environments for the LFI in §6.2.

4.5 Nonconstant Vertical Field

Should an accretion disk be threadad by a vertical magnetic field. the latter is more likely to
vary with radius than be uniform. Although we do not explicitly model the accretion flow in
this study, its overall effect is to drag field lines radially inward (by flux-freezing), leading to a
higher B; flux in the inner regions. In this section we consider the effect of & radially varying
vertical magnetic field on the VC instability, and neglect the azimuthal field. Although for
completeness it would be desirable to consider the most general situation of nonconstant
vertical and azimuthal fields, we defer that to a future work. An additional complication
arises in that case, since resonances can occur where the real part of w? — K*V2i(r) = 0.
This is not a concern for the unstable modes considered in this section, since they always

have w? < 0; a proof of this is given in Appendix D. We consider only rigid BCs, since the
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zero-current restriction on our freely-bounded equilibria requires ¢ = 1.

Even with the restriction to rigid BCs and the knowledge that w? is real, analytic
progress is difficult, since the r-dependence of &* means that the perturbation equation
(4.9) is not of standard Sturm-Lioville type. Regrettably, the global WKB approach used
in CPS does not give satisfactory results in this case, for the following reason. Choosing 1/k
as a small parameter, the last RHS term of equation (4.12) cannot be neglected, due to the
presence of w-dependent terms. However, use of the thin shell approximation of Appendix
C gives the result

S Q%[2(k% + ¢) + /2] + 2(2 - a)k?
2(k? +3/4)
{Q4olk (9 + 1) + n(n/4 + 2¢ - 3/4) + 3(1 - 2¢) + 4%

H-

-+

2k2Q%0[8k% + 30 + (2 ~ a)(dc + )] + 4k*(2 — a)2}Y/2/2(k? + 3/4),

where 7 = 3 — 8¢+ 4¢? and Q49 = kV.(rg). This solution can be regarded as quantitatively
valid only in a small neighbourhood of the pressure maximum. However, it exhibits roughly
the same qualitative behavior as the exact numerical solutions discussed below. In addition,
taking & > 1 leads to the local dispersion relation of CPS and BH,

Exact numerical growth rates as a function of §2 40 for various values of ¢ > 1 and the
fiducial values @ = 2, V9 = 0.3, r2/r; = 100 are plotted in Figure 4.12. The different curves
are labelled by their corresponding ¢ values. For ¢ > 1, the growth rate is always reduced
from its constant V. wvalue. The critical Alfvén frequency for stability, 40 crit, decreases
with increasing c, until at some critical value, ¢ = 2.5 — 3, it begins to increase again. The
peak growth rate, however, continues to decrease. We have difficulty finding |w| for ¢ 3 3.5
and large 49, possibly due to the simultaneous presence of several unstable modes with
the same growth rate.

The particular laws ¢ = 9/4 and ¢ = 5/2 correspond to the flux distributions for
two popular centrifugally-driven wind models; Blandford & Payne (1982) and Pelletier &
Pudritz (1992), respectively. As far as the stability of these distributions is concerned, there
is no great distinction between either; both are VC unstable. One should note, however,
that both models require By # 0; in the former By ~ B, while in the latter, By ~ 771,

Thus while the results of the present paper suggest that V;, < rof will further stabilize, a
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calculation explicitly incorporating B, is still necessary.

The run of peak growth rate with c is shown in Figure 4.13, for 1% = 0.3, rs /m1 = 100,
and different values of a. The a = 1.5 curve is incomplete because 1 < ¢ < 3/2 is forbidden
by the equilibrium (Fig. 4.2b). The large dot on the vertical axis shows the constant V,
value (see Fig. 4.7a of CPS).

The physical reason for the stabilization observed here is the same as for an azimuthal
field in the presence of a constant V., except that now the aﬂditional vertical motions are
induced by the gradient of the vertical field (see equation (A.4)). As for the effect on the
stability criterion, we advance the following argument. In the inner region of the disk,
Vi(r < rg) > Vi(rg). Thus, the local instability at » < rg will be attenuated compared to
the constant V; = V_(rg) situation. By the same argument, the local growth rate should be
enhanced outside the pressure maximum. However, the unstable eigenmodes are strongly
peaked inside r = rg, when ¢ = 1; this region is more important for the action of the VC
instability. Thus for ¢ » 1, the attenuation effect dominates, and the critical wavenumber
for stability, k.ri; = Q40,crit, Veo, is reduced from its value in CPS. For ¢ significantly sreater
than 1, an interesting phenomenon occurs (Figure 4.14). The peak of the eigenfunction éu,
gradually moves from inside the pressure maximum (for ¢ = 1) to T/ro = 1 (for ¢ = 7/2),
and presumably beyond for more extreme field gradients. Thus it is likely that for larger e,
the above argument no longer holds. That is, the enhancement effect of the VC instability
at v > 1y does contribute, leading to a reversal in the trend of Q AD,crit-

We have searched for other unstable modes, e.g. at V. > 1, with no success. Interchange
modes, which might be expected to act at large field strengths, do not occur here because
we consider only axisymmetric perturbations (see, e.g., Kaisig, Tajima, & Lovelace 1992,

Lubow & Spruit 1995).

4.6 Discussion

4.6.1 Comparison with previous results

Here we compare our results for the effect of the azimuthal field on the VC instability with

those of four recent papers, finding some significant discrepancies.
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Dubrulle & Knobloch (1993) (DK), via 2 WKB method, found that the imaginary part
of the eigenfrequency, wy ~ Q4 /(1 +const. x Vj) in the limit V. — 0. The same result holds
for both rigid and “free” BCs, éul.(r;) = éul.(r2) = 0 (these conditions differ from ours in
the respect that the configuration is bounded by a complete vacuum; i.e. one devoid of
external fields.) Thus it would appear that one needs an infinite V,, to stabilize the system.
Qur results are clearly at odds with DK in this respect. Although the finite-sized stable
region found by DK was also found here, we have shown that such a region exists only in
the presence of rigid boundaries, and then only for a < b.

Kumar, Coleman, & Kley (1994) (iXCK) concluded, on the basis of the sufficient stability
criterion (4.2), that “torecidal fields only destabilize the flow”. As regards the VC instability,
we have found that the opposite is in fact the case, at least when we consider the “principal
range” 3/2 < a <2, b > 1. It is only in the large-field (V; » 70Qp) regime that By
destabilizes. Had the authors continued their thin-shell calculation to O(Vg), they would

have discovered that the correction to w at peak growth is
i
W2 maz = E(b - ‘12/2 + a3/8),

which is always damping provided that 3/2 <a<2and b > 1.
As regards the enhancement of the instability for free boundaries, we note that the
global energy change due to the perturbations, 6&, consists of three diffc -~.* contributions,

in general. The first is the energy change in the fluid interior, derived by KCK as

2
66r = / (Iani
4

where £ = §u/iw+rQ6u,d is the Lagrangian displacement vector. The second contribution

~J6B x £ + 2prQQ’|§r|2) rdr, (4.32)

is due to perturbations of the external vacuum field,

66y = f |6B2rdr, (4.33)
4 vacuum

while the third is a surface contribution, 6, which vanishes unless the equilibrium has
surface currents (cf., Schmidt 1966). We avoid the latter here, and so the effect of free
boundaries is given entirely by the integral (4.33), which is always positive. This led KCK

to conclude that “stability criteria are not affected” by the BCs. However, one should be
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careful upon drawing such a conclusion from sufficient, but not necessery, criteria. In fact,
as noted by Bateman (1978}, there are numerous instances when free boundary instabilities
grow faster than fixed boundary ones, even though 6&y- > 0. The reason for this is simply
that by allowing £ 3 0 at the edge of the fluid, free-boundary instabilities can make more
effective use of the internal fluid potential energy, represented by the first two terms on
the RHS of equation (4.32). We found ample evidence of such behavior in the preceding
sections, and in CPS.

Blaes & Balbus (1994) (BB) considered two-fluid models of ions and neutrals coupled
by collisions, ionization, and recombinations. Their analysis is local, but includes an equi-
librium azimuthal field. They found that By can alter the stability criterion only in the
limit of iorization equilibrium (as opposed to ion conservation), and can in fact produce
total stabilization for By 2 10B: if the ion-neutral collision frequency is below a certain
threshold. In all other cases, By can cause a small reduction in growth rate, but does not
affect the stability criterion (i.e. the critical Alfvén frequency for stability is unchanged
from the By = 0 case)®. They take c, = 10V., so that the critical Vs for stability is V, ~ c,.
This differs from our result, Vj cris ~ 790, since BB’s compressible model is sensitive to
the coupling between magnetosonic and rotation-modified Alfvén modes, which is stabiliz-
ing. BB's model does not include vertical gravity, however, so buoyancy instabilities which
would be expected to become important near Vy ~ ¢, were not detected.

Gammie & Balbus (1994) (GB) considered an accretion disk model which was local in
the radial coordinate, but global in 2; i.e. they solved for the vertical eigenmodes. One
should be cautious in comparing our results directly to theirs, but their vertical node number
n should compare roughly with our %, and their radial wavenumber & with our radial node
number n. The near-coincidence of notation here is unfortunate; let us unambiguously
re-label these parameters as n., k;, &, and n,, respectively. For a Keplerian disk, they
plotted curves of constant growth rate in the (V,, V) plane for & = 0 and n, = 1 (their Fig.

2), finding that stabilization is achieved for V. =~ 1.5 irrespective of Vj; this value agrees

SA point of formalism is worth stressing here. The finding that By does not affect the stability criterion,
regardless of its strength, is not surprising in a purely local model such as that of BB. This is because terms
behaving as By fr, which are crucial in the global model, are ignored in local calculations. The disappearance
of By from the stability criterion in the latter case can be seen immediately from equations (4.20) and {4.30),



138 CHAPTER 4. VERTICAL AND AZIMUTHAL MAGNETIC FIELDS

quite well with the free-boundary results of CPS (we found V, ;; =~ 1.43 for @ = 1.3). Their
BCs are similar to ours in the sense that far from the disk, the field lines move about freely,
exerting no stress on the disk.

On the other hand, aithough GB find that the growth rate decreases for increasing V,
(they consider values up to V;/c; = 5), it apparently never vanishes, nor does V affect the
stability criterion. The discrepancy between these results and those of the present paper
could be telling us something about the relative importance of vertical motions (which they
treat in detail, and we do not) and radial ones (vice-versa). To date, nonlinear calculations
of the BH instability have indicated that inward and outward radial motions at different
z (the so-called “channel solutions”) are the immediate outcome of the linear stage of the
instability. It may be that the unstable modes are more sensitive to variations in radial
structure than in vertical. GB’s local approximation in r could therefore have missed the
most important effect associated with strong By; namely, the prevention of the channel
solution from ever forming,.

Due to the apparent similarity between GB’s Fig. 2 and our Fig. 4.6, one might be
tempted to make a direct comparison between the two. We caution the reader against it, for
the following reason. The results in the former figure are for the longest vertical wavelength
(n: = 1 or k; = 0) mode only. For this mode, the V; — 0 limit is automatically stable,
since w; ~ {24 — 0. By contrast, our critical stability curves are mode-independent; i.e.
they reflect the requirements for stability to perturbations of arbitrary k. This explains
the rather puzzling feature of GB's Fig. 2 in the V; — 0 limit, namely, that the absolute
maxiinum growth rate is attained not at V. = 0 as in CPS, but at V; == 0.85. As an example,
consider the a = b = 2 case, whose growth rate is given by the imaginary part of equation

(4.18). In the k — 0 limit, E — E»(2)/k?, giving
wr = —k(V} + ByV2 - 2E,/*V.)V/? B,

Considered as a function of V%, the maximum of w; occurs at V. = 0.52, independent of
V%. The point this argument overlooks is that as V. becomes small, k necessarily becomes
large for the most unstable mode; e.g., when V, = 0.05 and Vs 2 0.7, there are no unstable

modes whatsoever at £ = 0 (Fig. 4.3b). GB’s Fig. 4 in fact shows that n. = 1 is not the
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fastest growing mode for nonzero V. One should therefore not treat GB's Fig. 2 as our
Fig. 4.6; i.e. as a critical stability diagram.

Finally, we note that in the context of uniformly rotating magnetic stars, which are
expected to have distributions of B, increasing with radius, Pitts & Taylor (1985) identified
an instability having the same characteristics as the LFI (i.e. stability was ensured for low
m (azimuthal wavenumber) modes provided that rpf2 > V), but did not obtain detailed

growth rates or critical stability curves.

4.6.2 The large-field instability: possible environments

The results of §4.4.6 suggest that the LFI is not likely to be a threat in standard thin
accretion disks. In some environments, however, the characteristic value for the LFI,
Vo/rof2 2 1, might in fact be achieved. Recent observations of flattened structures in
massive star-forming regions (e.g., Aitken et al. 1993) suggest that such ‘pseudo-discs’ are
very massive (~ 103M@) and also that the dominant magnetic field component is toroidal.
Such massive objects are likely to be self-gravitating and sub-Keplerian, so that rotation
may not be as important a mechanism of support as in thin disks. It remains to be seen
how the LFI is affected by self-gravity.

On larger scales, roughly 50 % of giant molecular clouds and somewhat fewer individual
dark clouds and cores (Goldsmith & Arquilla 1985) possess measured velocity gradients
which have been interpreted as being due, at least in part, to large-scale rotation (Blitz
1993). As the magnetic fields in such objects are substantial (magnetic energy ~ gravita-
tional energy ~ kinetic {nonthermal) energy; cf., Myers & Goodman 1988), the condition
V/mof2 2 1 is likely to be satisfied in at least some regions. Of course, the effects of
compressibility and self-gravity are also likely to be important, so a new model is needed.

A concrete example displaying appropriate conditions for the LFI may already exist.
The L1641 region of Orion A consists of several low-density filaments, whose major axes
run in a roughly north-south direction. In addition to a north-south velocity gradient which
extends across all of Orion A (~ 8 km s™1}, L1641 also contains an east-west gradient, ~ 2

km s~1, indicating that the overall velocity field of Orion A is helical in nature (Bally 1989).
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Further, the surrounding magnetic field displays the same symmetry (Heiles 1987). It is
well-known that such a helical field is characteristic of superposed vertical and azimuthal
fields. While figures for L1641 alone are hard to come by, the average east-west gradient
in the Orion A cloud as a whole (40 pc x 2 pc) has been estimated at 0.135 km s~1
pc~! (Kutner et al. 1977, Genzel & Stutzki 1989). If this is entirely due to rotation of a
cylindrical region = 20 pc in radius, then a crude estimate of the rotation velocity gives
Ve >~ 2.7 km s~!. Comparing this with V4 =~ 1.8 km s~!, the density-averaged Alfvén
speed for the region (Heiles et al. 1993), one obtains V4/V, ~ 0.67. Given the likelihood
that V4 = Vy (due to the predominantly toroidal appearance of the field), and that V; is
probably an overestimate, one sees that values of V;,/(r08) 2, 1 should not be out of reach

in this environment, and perhaps several others.

4.6.3 Summary

In this paper we have examined a variety of magnetic field distributions and orientations,
with the principal intent of gauging their effect on the VC instability of magnetized aceretion
disks. The main results are: (1) An azimuthal field, varying as some inverse power of
radius, has a stabilizing effect on the VC instability if its characteristic Alfvén speed, Vi,
is less than the characteristic rotational speed, roQ. (2) If Vg 2 798, the system is
susceptible to the LFI, whose peak growth rate increases with V. This instability is
more likely to affect thick, massive disks and molecular clouds than thin accretion disks.
(3) Our calculations for finite vertical wavenumbers suggest that complete stabilization of
thin disks by an equilibrium B, is unlikely, since the required field (Vy ~ rof > ¢;) is
prone to Parker instability. (4) In contrast to CPS, taking free boundaries into account gives
qualitatively different behavior. In particular, whereas absolute stability can be achieved for
certain rigidly-bounded configurations, none of the freely-bounded equilibria we examined
are similarly stable. (5) In the absence of an equilibrium azimuthal field, a configuration
with a radially-varying vertical field has a smaller peak growth rate than in the constant
field case. However, the most unstable wavenumber for fields which decrease extraordinarily

quickly with radius may be unaffected or even increased.
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The advantages of adopting a global analysis to address questions of stability in the
presence of strong magnetic fields are even more apparent in the present work than in CPS.
In particular, our results show that differentially rotating gaseous bodies threaded by strong
azimuthal, but weak vertical fields should be highly unstable for certain specific rotational
and azimuthal field profiles (§4.4.5), a result not definitively shown by any local or thin
shell analysis. It is hoped that future work will focus on these particular profiles, in order

to more fully examine the consequences of the ensuing instabilities.
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Appendix A:
The Perturbation Equations

We begin with the equations of ideal MHD in cylindrical polar coordinates (7, ¢, = }:

du B-B 1
oGt @] = -vr-v(+22) 4 L, (A1)
0B 3
¥y ¥V x (u x B), (A.2)
Vu = V-B=0. (A.3)

Here p is the gas pressure, p the constant density, u the fluid velocity, and ¥ = -GM /r the
gravitational potential. Substituting perturbations of the form (4.8) into these equations

and only retaining terms of linear order in perturbed quantities, we ohtain

. lsz BdJ -
zw&u -+ Véh — 4_Tl'p'-6B +2 (41Tp7’63¢ - Qéu¢,) r
B . B
+2 (maB, - Bau,) é- Has,.z =0, (A.4)
iwbB — ikB.6u + 2(A6B, — Abu,)d + B'bu,2 = 0, (A.5)

%(rrﬁu,-)' + ikdu, =0, (A.6)
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where h = p/p + B%/(87p) is the specific enthalpy, A = —79'/2, B = —[(+Q) + Q]/2] are
the usual Oort shear parameters, and A = ~r(By/r) /2, B = —(B}, + B,/r)/2 are their
magnetic counterparts. For future reference, we note that with the power-law forms (4.3),

the first two of these equations become

iwbu + Véh ~ %—B-éB +2 (ﬁ—a& - Qéué)
(2—10)B, ] (1-¢c)B: ., . .
+ {(2 - 0}, — s, 6 - S0t =0, (A7)
iw6B — ikB,6u + (aQ&B,. - %M,) d(1— c)faurz =0. (4.8)

Note that equations (A.5) and (A.6) imply V. 6B = 0. Resolving equations (A.7) and
(A.8) into components, and using equation (A.6), one can eliminate all variables except

bu,, leading to the perturbation equation (4.9).

Appendix B:
Rotating vs. Nonrotating Equilibria

The stationary pressure distribution in the nonrotating case can be found from equation

(4.4) with Q¢ = 0. When V, = constant, the pressure maximum relation is simply

GM

B.1
= -2V (B.1)
Note that this requires b > 2 for a sensible equilibrium. Using this to eliminate GM in
equation (4.4) and integrating gives

2
Pla=q

(B.2)

1— —2(b—1)
=%+V¢0( -o)l;——1+ (/7o) ]

2(b— 1)
For a constant vertical field, equation {4.7) reads (in proper units)

P o= By x
p p
To 1 — (r/rg)~a-1) T 1 — (r/rg)~2b-1)
{?_H Ne-1) G bage 292 i 2(b-1) '

When b = q, this becomes

1-(r/ )—Z(b—l)
% = pFO + [(7‘090 - (2-b)V, 0] l_ -1+ ?T(;-U— 1) :l
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1

— (rra}-2b=1)
”°+I (e”—z)[%“—ul (;"(/;“_)1) ] (B.3)

2
oS
beff_(;. 0) +b.

Clearly, equation (B.3) is identical to equation (B.2), but for the replacement of b by

where

bers- The two equations become identical in the limit Vo 3> 7, which is precisely the
regime of the LFI found in this paper. In fact, as soon as Vg 2 7080, one would expect
that the rotating system should start to display much of the qualitative behavior of its
nonrotating counterpart, since then the contribution of the magnetic terms to the pressure
is of the same sign in equations (B.2) and (B.3) for b » 1. Finally, one might be tempted
to blame the LFI for b < 2 entirely on the violated equilibrium condition (B.1). However,
this condition applies only when Vo > r0Q. As an example, take b = 1.7. Then Fig. 4.1
shows that all equilibria with 0 £ V; < 1.83 are allowed.

Appendix C:
Thin-Shell Approximation

Following Kumar, Coleman, & Kley (1994), we adopt a thin shell approximation, in
which the radial dependence of equilibrium quantities is ignored to first order, but their

derivatives are not. The perturbation equation (4.14) then becomes

dzw L]
Frel + Qo = 0, (C.1)
where
A2V2 2 L2,V .
Qo = ¢ (ba® - 20%) + %(2& —ad?) - 8‘“—4“’ — (k* +3/4), (C.2)

Y = \/Téu,, and ¢ = r — 1. Since (g is a constant, the solution of equation (C.1) is 9 = ¢,
sin v/@Qp ¢ + c2 cos VQp ¢; applying the rigid BCs then gives Qo = (nw/s)?*, where s is
the shell half-thickness and n the radial mode number. Assuming ks > n, equation (C.2)

yields the following characteristic polynomial:

wh + [2(a = 2 - BV2) — 20%]w? + 8R4 Vyw + Q4[QF + 2(b - 2)V] - 2¢] = 0, (C.3)
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where the reader is reminded that all equilibrium quantities are to be evalnated at r = rg =
1.

The roots of equation (C.3), although calculable analytically, are algebraically compli-
cated and do not give much physical insight. Kumar et al. (1994) adopted a procedure
equivalent to expanding w in powers of V}, taking the latter as a small quantity. As our
object is to obtain the critical stability curves, it is more useful for our needs to place no

restriction on Vy; rather, we take {24 as a small parameter. Expandiug w as
w=wo+ﬂ,4w1+9?4w2+--~,

substituting into equation (C.3), and solving the resulting equation in orders of {24, we find
there are two branches of the dispersion relation. One gives all real contributions to w; the

other has w} = 0 and

_ Wk bb- 2V +2(a+b—ab)V? — a(2 - a)]*/?

2
1 2
a2 bV

W

Positivity of the square-root argument leads to the stability criterion (4.27).

Appendix D:
Proof That w? Is Real When B, = B,(r) and B; =0

The perturbation equation in this case is [equation (4.9)]:

2y .2 ,20)2
1‘]:[?'&2(6’11,-)’]’ + {kz?‘ [(QZ)J _ (V; ) ] + 4w Q _&2 (Az + 1 )}5111- =0.

o2 2
Multiplying through by réu; (an asterisk denotes the complex conjugate) and integrating,

one finds

ry F2y: 2,202
/ {k2T [(Q‘Z)! _ (1;) ] + 4k w Q --(:Jz (k2+ :—2)}r|6ur|2dr+1 —_ 0, (D.l)
r

' @?

where

—_— r2 wy -2 nt -9 te, ]2 2 -2 n2
I= / buz{r® (Su Y dr = (6w bus” - / r&?|(§up Y Pdr. (D.2)
ri Ty

The latter result is obtained via integration by parts.
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We consider rigid BCs only, since we restrict consideration to B. = constant in the
free boundary case to avoid currents (§4.2.2). Applyiug éu,(r;) = du.(r2) = 0 to equation
(D.2), the first RHS term vanishes. Substituting the result back into equation (D.1) and

taking the imaginary part of the entire expression gives

(wz) ./7'2 |(6u );Ig+ 4k4 ‘/292 +k2+'—1- |6u l'.’ rdr=0
I - u 022 s ) r :

where a subscript I indicates the imaginary part. The integrand is positive definite for all

r, showing that (w?); = 0.

a  E(a) (V:/V@)crit__
1.3 255 0.63
1.6 278 0.54
1.7 3.0 0.45
1.8  3.26 0.35
1.9  3.50 0.24
20 375 0.

Table 4.1: Ratio of critical Alfvén speeds, (V./Vy)crit, as a function of shear parameter a '
for the LFI. See text for the definition of Es(a).
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Figure 4.1: (a) Allowed regions and limiting azimuthal Alfvén speeds in the (a,b) plane,
obtained from solution of the equilibrium e juation (4.7) where p = 0, with ro/r; = 100.
Equilibria for values of @ and b lying in the <haded region and along dashed lines are not
allowed for any V. (b) 3D plot of allowed equilibria. Only the range 3/2 < {(a, b) < 2
is shown. Permissible Vg for a given a,b lie between the upper and lower surfaces. The
upper surface represents Vs(a > b) and Vi(a < b).
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Figure 4.2: (a) Allowed regions and limiting vertical Alfvén speeds in the (a,c) plane. (b)
3D plot of allowed equilibria. For the range of e shown, restrictions on V.o apply only for
1 < ¢ < 3/2. The upper surface represents Vjo. See text and Fig. 4.1 caption for details.
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Figure 4.3: WIKKB growth rates as a function of Alfvén frequency Q4 = kV. for the fastest-
growing (n = 0) mode, a range of V;,, and two different vertical field values: {a) V. = 0.3;
(b) V. = 0.05. Other model parameters are shown at upper right.
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Figure 4.4: Real (solid lines) and imaginary (dotted) parts of the eigenfrequency w as a
function of Alfvén frequency for V; = 0.9 and (a) V; = 0.3; (b) V; = 0.05. Other parameters
are the same as in Fig. 4.3.
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|6/ 0yl

Figure 4.5: Growth rates of the large-field instability as a function of Alfvén frequency for
Keplerian rotation and rigid BCs. Each curve is labelled by its corresponding Vj, V:. Solid
curves have V,; = 0.3, while dashed curves have ¥, = 1.4. The chosen Alfvén speeds arc
consistent with the equilibrium constraint V, < 1.42.
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Figure 4.¢. Critical stability curves, Im w =0, in the (V,, V;) plane for rigid BCs and (from
right to left} a = b= 1.5, 1.7, 1.85, and 2. Growth rates increase from zero on both sides
of each critical curve. The region at lower left is VC unstable for all ; the similar region
at top left is large-field unstable for all a except ¢ = 2. The dotted lines are the slopes
of the LFI found analytically from equation (4.24). The large dots indicate upper limits
on V, from equilibrium constraints; the curves are continued to larger V,, for purposes of
illustration. See text for details.
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Figure 4.7: Same as Fig. 4.6, but for free BCs. From lower right to top left, curves are for
a = 1.5, 1.7, 1.85, and 2. The region to the left of each curve is unstable; that to the right,
stable.
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Figure 4.8: Same as Fig. 4.6, but for a s b. Each curve is labelled by its corresponding

a, b. For a > b, unstable regions lie to the left of each curve, stable regions to the right. For

each a < b, there are two branches of the critical stability curve. One, at V; < 1, bounds"
the VC unstable region from above; the other, at Vy > 1, bounds the large-field unstable

region from below. The large dots indicate upper limits on V from equilibrium constraints.

See text for details.
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Figure 4.9: Critical stability curves for two special cases examined in §4.4.5 The dashed

and dotted lines indicate the local predictions; they intersect the Vj; axis at V,, = 0.87 and
Vs = 0.82, respectively.



154 CHAPTER 4. VERTICAL AND AZIMUTHAL MAGNETIC FIELDS

l _l LI I ) i LI B e J l LIRS B ] ] LB [ LELEL l_ 1 _l L) ' LI R R ) I L S ) I L L ) I L . l—
] (a) a=200 ] i (b) I
1 b =300 i )
o | V, = 030 - 05| -
L rg/r, = 100. 4 T .
- - b =~ - .
s or 16 °r ]
) Rigid BCs | [ ]
-05 - V, =000 _ -05 V, = 050
[ k= 80 ] [ k= 34 ]
i lof = 148 7 i |l = 0.43
—l _1 L, I Ll 11 I . I Ll L I I ] l- -1 _1 S . l ] ] L ] 1 [ I S 2 ) 1 Ll L l—
0 1 2 3 4 £ 0 1 2 3 4 5
r/r, r/r,
L} L) L L) ' 1 L) T 1 I L} L) ¥ ¥ I L L ) ¥ L} L] ] T I ) ¥ L) ¥ I 1 L) + L] I L) L] T L3
1| . 1F .
- () ] I (d) ]
0.5 | = 0.5 - -
'g 0 L e | 'g 0 N =TT T ]
X / i . 1
an ; . _
=06 -1 ’I Ve = 100 _ -05 V, = 150 ]
[ | | k= 06 [ k= 0.1 ]
- 111 ol = 0.06 A - o] =0.003
1LY i -1 y
1 L 'l L L 1 1 L 1 L l 1 1 1 L I 1 L 1 L 1 1 1 1 L I 1 1 1 1 I 1 L L L I 1 L 1 L
0 5 10 15 20 0 5 10 15 20
r/r, r/r,

Figure 4.10: Selected eigenfunctions at peak growth for @ = 2, b = 3, and increasing Vj
from top left to lower right. The solid line indicates the real part of éu,; the dashed line,
the imaginary part. Each eigenfunction is normalized to its peak value.



CHAPTER 4. VERTICAL AND AZIMUTHAL MAGNETIC FIELDS 155

1.2 LI R LI T T T L R L L
I Rigid BCs
1 a=b=2 —~
r,/r, = 100 -
0.8 Curves labelleé
- by Ac:x'll./]'”l
(=]
c -
=06 _
\ -
b=
> =
0.4 -
0.2 5 20 i
0 I T N AU I I A RN NN A R
0.6 0.8 1 1.2
Vz/(ro QO)

Figure 4.11: Critical stability curves for selected perturbation wavelengths A, for ¢ =
b =2 and rigid BCs. The long-dashed curve is the “local” critical curve given by equation
(431) with )‘crit = (.1 1.
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Figure 4.12: Numerical growth rates as a function of Alfvén frequency for ¥z = 0 and
V. = Vor'~%(n = 0 mode). Curves are labelled by their corresponding ¢ values. Other
model parameters are shown at vpper left.
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Figure 4.13: Maximum growth rates as a function of vertical field index ¢ for different
rotation indices a. The lower curve is incomplete since equilibria with ¢ = 1.5 and 1 <
¢ < 1.5 are not allowed (Fig. 4.2a). The maximum growth rate at ¢ = 1, found in CPS, is
shown as a large dot slightly offset (for clarity) from the vertical axis.
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Chapter 5

ON THE GLOBAL STABILITY
OF MAGNETIZED
ACCRETION DISKS. III.
NONAXISYMMETRIC MODES

5.1 Introduction

In the two preceeding chapters, we examined the global stability of a differentially rotating
fluid shell threaded by vertical and azimuthal fields to linear, axisymmetric perturbations
(Curry, Pudritz, & Sutherland 1994; Curry and Pudritz 1995). The growth rates of the
instability found there (the Velikhov-Chandrasekhar, hereafter VC, instability) were on the
order of the rotation period of the shell, as evaluated at its pressure maximum. Here we
extend that work to nonaxisymmetric perturbations.

Papaloizou & Pringle (1984) (hereafter PP) showed that non-self-gravitating hydrody-
namic disks are susceptible to global, nonaxisymmetric instabilities with significant linear
growth occurring over a few rotation times. Several important properties of the PP insta-
bility, notably the basic physical mechanism, were elucidated and clarified by subsequent

investigators (see Narayan & Goodman 1989, hereafter NG, for the most complete review
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to that time and references to other work). Although the instability is expected to oc-
cur in Keplerian disks, it is probably more important in thick pressure-supported “tori,”
which have a nonzero component of surface gravity at their inner edge. Radiation pressure-
supported tori are still touted as the central engines of AGN, mainly due to their ability to
drive energetic jets by an extremely efficient radiation mechanism (Ch. 1). However, this
mechanism may not be able to account for the superluminal motions commonly observed
in the jets (Sikora & Wilson 1981). Hydromagnetic models in which the jet consists of gas
flung centrifugally outward from a magnetized Keplerian disk are somewhat more successful
in this respect (Blandford & Payne 1982; Camenzind 1990).

The underluminous nuclear regions of extended radio galaxies (which nevertheless pos-
sess highly energetic jets) have prompted a third model: the ion torus (Rees et al. 1982).
In this picture the disk is geometrically thick, but optically thin. The support is provided
by a hot gas of ions that are poorly coupled to the electrons, and which radiate primarily
by nonthermal processes. Most importantly for our present purpose, the ion torus is ex-
pected to be strongly iwuagnetized and because it is thick, may be susceptible to the same
instabilities as radiation tori.

The likely presence of magnetic fields in the ion torus immediately begs the question of
whether such a configuration is dynamically stable. Indeed, the global dynamical stability
of magnetized tori has been recognized as an important problem (cf. Goldreich, Goodmat,
& Narayan 1986; Blandford 1990), but has not yet been investigated. With the recent
renewed interest in magnetic processes spurred by the Balbus-Hawley (1991) instability, it
seems only natural to consider whether a global, nonaxisymmetric counterpart exists in tori.
Indeed, as Hawley (1991) has commented, “The final word on the viability of thick disks
may very well rest with this magnetic instability.” Interestingly, our results indicate that
thick and thin disks are equally susceptible to the magnetic version of the PP instability,
so applications need not be limited to the AGN context. Any disk which has significant
pressure support and a magnetic field (Ch. 1) should be susceptible to the instabilities
found in this chapter.

Even in the MHD fiuid approximation, the stability of magnetized tori is a difficult

problem. There are several good reasons for this, which were outlined in Ch, 2. These
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complications motivate the adoption of a much simpler equilibrium model for the stability
analysis, the incompressible MHD cylinder. Its hydrodynamic counterpart has been used
successfully to understand the basic physics of the PP instability, which we review in §5.2.
A linear stability analysis of this configuration is set up in §5.3. The main body of results
were obtained numerically and are presented in §5.4, 5.5 and 5.6. In §53.4 three distinct
instabilities are identified, and their behavior classified in §5.5 on the basis of three different
types of wave propagation. The sensitivity of the modes to various system parameters is
examined in §5.6, as are the implications of the instability for the dimensions of stable
disks. Section 5.7 draws attention to hydrodynamic work which might be useful for further

progress, and sums up. The appendix contains some analytic results of interest.

5.2 The Incompressible Hydrodynamic Cylinder

Before examining the stability of the incompressible MHD cylinder, we will benefit from
a brief summary of the key results pertaining to its hydrodynamic cousin. We concern
ourselves here with the principal branch of the PP instability only, since these modes have
the highest growth rates in the linear regime: ~ 1/3 gf the rotation frequency 2 at the
pressure maximum. Instability occurs via the resonant coupling of shear-modified surface
waves prepagating along the fluid surfaces, which interfere constructively if the boundaries
are sufficiently close together (Blaes & Glatzel 1986, hereafter BG; Blaes 1986; Goldreich,
Goodman, & Narayan 1986, hereafter GGN). Fluid motions induced by the principal branch
instability were shown to be nearly independent of height (z) (Ch. 1; Blaes 1986; GGN);
this accounts for the success of the cylindrical approximation in predicting the growth rates
and other important features of the PP instability.

Despite early indications that only the steepest angular velocity gradients were unstable,
e, D~r? V3<a<g2 (Glatzel 1987a; Zurek & Benz 1986), subsequent work showed
that in fact this was only true to first order in the shell thickness; thicker shells with angular
velocities approaching Keplerian (e = 3/2) are still unstable, albeit with a greatly reduced
growth rate (Sekiya & Miyama 1988; Jaroszynski 1988). Such configurations were also

shown to be more susceptible to intrinsically compressible (i.e. acoustic wave) instabilities,
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causing vertical fluid motions and necessitating a fully 3D treatment (Glatzel 19587a). In the
incompressible case, the mode structure is particularly simple: to each integral azimuthal
wavenumber m, there corresponds a single unstable mode on the principal branch {Blaes
1986; Glatzel 1987a).

The effect of imposed vertical perturbations on the principal mode instability was ex-
amined in an important and largely neglected paper by Jaroszyriski (1988). He showed that
vertical Fourier perturbations of wavenumber k. » m/rg (where 7p is the central pressure
maximum) lead to complete stabilization of the principal branch instability in the incom-
pressible cylinder. Presumably, the introduction of vertical motions breaks the resonant
coupling of the azimuthally-propagating surface modes. Since an understanding of this
coupling is important for many of the results to follow, and since the physics of the &, # 0
situation has not been discussed elsewhere, it is worth going into in some detail.

In an incompressible cylinder, the PP instability results from the merger of two surface
gravity waves that are isolated at large thicknesses u. This is shown in Figure 5.1, a plot
of the real (dots) and imaginary (solid lines) parts of w (perturbations evolve as e™!) as a
function of shell thickness (u) for the case of a constant angular momentum distribution,
Q ~ r~2. As discussed by BG and GGN, at large p there exist four neutrally stable modes.

Two of these propagate on the inner surface (r = rq), with approximate frequencies (see

Appendix)
mgi Km—l(wl)] 12
= —-mfl x |—— + kg ——i-" , 5.1
o= -miy £ [T+ Kon(w1) &V
and two on the outer surface {r = ry), with frequencies
_ mgs ,  Ipyi(me, ] 172 .
wp = —mdp & [ v 292 To(2) . (5.2)

where g 7 is the effective gravity on the inner/outer surface, @, 5 = k.7 2, and J,,, and I,
are modified Bessel functions of order m. It is convenient to label the inner “upstream”
mode (given by the + sign in equation (5.1)) by P, the inner “downstreamn” mode by P,
and similarly for the outer modes (P; and P;t). We follow Christodoulou & Narayan (1992)
in using the notation ‘P’ to denote the PP mode; in the current context, it further refers

to the principal PP mode.! As seen in Fig. 5.1, equations (5.1) and (5.2), shown by the

'To make a connection to the nomenclature of stellar oscillation theory, one might also note that the P
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dotted lines, are good approximations to the exact P modes at large thickness (Appendix).

Due to differential rotation, the four modes at large u have rather different frequencies.
However, as the shell is narrowed, the rotational contributions to equations (5.1) and (5.2)
become more similar, and the faster outer mode (P;) catches up to the slower inner mode
(Py"), merging with it at g =~ 0.6. In the k., = 0 case, the surface gravity waves always
propagate in the same plane as the shear; one can think of these waves as effectively “tapping

”

the shear energy.” When k; # 0 and m = 0, one has pure surface gravity waves in the
z-direction (wgr ~ /kz91,2; Drazin & Reid 1981). These waves do not achieve a resonant
condition for any g, and are hence stable. In the general case, m # 0, k; # 0, however, the
resultant wave is helical, with components both parallel and perpendicular to the shear. If
the perpendicular component dominates (and this happens for all r if k; » m/r;) resonance
cannot occur, and there is no growth. As ry is usually only a factor two or so greater than
r1, this explains Jaroszynski’s result.

In attempting to predict the stability of the MHD cylinder to the same perturbations,
it is important to realize that in the presence of a purely vertical magnetic field, perturbed
fluid motions are affected by the field only for k, # 0. That is, setting k. = 0 in the
perturbation equation given below reduces the problem to the hydrodynamic one. Thus we
are faced with a most difficult prediction, since magnetic effects can only become important
in the regime where the fastest-growing hydrodynamic instability begins to wane.

As a final comment, note that the regime where k. 3> m/rq is not of primary interest
in this chapter, since it corresponds to localized perturbations whose wavelengths are much
smaller than any equilibrium sizescale. Balbus & Hawley (1992) explored this limit in their
study of m # 0 perturbations in a shearing sheet (Goldreich & Lynden-Bell 1965). In the
shearing sheet model, however, the radial wavenumber &, is time-dependent, and so the
solutions do not represent global eigenmodes (§2.7; Matsumoto & Tajima 1995). Thus,
Balbus & Hawley's finding that the growth rates of the m s 0 instability are an order of

magnitude below the m = 0 instability has little bearing on the issue of global mode growth.

mode is more similar physically to the stellar p-mode than to the f- or g-modes (Cox 1980).
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5.3 The Incompressible MHD Cylinder

The equilibrium is identical to that of Ch. 3: a cylindrical shell of homogeneous, incompress-
ible, ideal MHD fluid, of infinite extent in the z-direction, rotates about the z-axis in the
Newtonian point-mass potential ¥ = —GAM/r. The unperturbed magnetic field is purely
vertical and uniform (B = B.Z), and the rotation frequency is taken to be a power law in
r: 2~ r~% Asin Ch. 3 and 4, we consider the effect of both rigid and free boundaries.
While both boundary conditions yield qualitatively similar behavior in the axisymmetric
case, the difference is crucial to the physics of nonaxisymmetric perturbations. Indeed, this
is expected since the principal mode instability of PP does not occur in rigidly-bounded
configurations. In the free case, B, is supposed to permeate the regions both to the interior
and exterior of the shell, as well as within the fluid. Equations giving the exact location of
the inner and outer boundaries r; and ry may be found in Ch. 3. As usual, we rescale units

of length and time such that rop = Qp = 1.

3.1 The perturbation equations

The equations governing the motion of the perturbed fluid are given by (2.93) - (2.101)
with dp = §1iny = 0. We derived a single perturbation equation for the radial Lagrangian
displacement in §2.5.5; it reads

(62) + 13m? 4 »2k?
o2 T ¢2

For our present purpose, X has a simpler form than that given in equation (2.107), namely

&+

K .
&+ Z5HE = 0. (5.3)

dme) &2

g

where 62 =02 - Q4, 0 = w +mQ(r), (* =m? +r%2, and s = 202/5% — u. We ignore the

1712

— 902
H=20%+ T

[C2+m2+1+ (m? - 1), (5.4)

effect of radial density grodients, azimuthal fields, and vertical field gradients.

Note that equation (5.3) is singular at 6% = 0, corresponding to
wp=—-mQ+ 04, wr=0 (5.3)

A similar singularity exists in the hydrodynamic case, the corotation singularity at wp =

-m§, wy = 0. However, while a corresponding corotation theorem ensures that for an
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unstable mode wg = —mQ is actually attained within the fluid, no similarly strong require-
ment rules the MHD casc. The only known result in this respect is the “almost” corotation
theorem, wp > —mQ within the fluid (for instability), which is known to hold for rigidly-
bounded configurations (§2.5.5). In other contexts, the mathematical singularities at 52 = 0
have been termed “shear Alfvén singularities” (Ross, Chen, & Mahajan 1982; Matsumoto
& Tajima 1993). By analogy with the role of the corotation singularity in hydrodynamic
flow, a shear Alfvén singularity may be expected to possess resonant properties as regards
the propagation and amplification of internal waves. Radially propagating waves should

alter their properties near the characteristic radii given by equation (5.5}; i.e.

-0 -1/a Q -1/a
TAL = (—M) and TA2 E (_M) . (5.6)
m m
The corresponding corotation radius is given by
= "1/0 - -
reRr = (—wr/m)”%. (5.7}

Note that 74 and r4» are only singularities of equation (5.3) when w; = 0 (the same
holds for 7¢p in the corresponding hydrodynamic equation). Due to its more physically
descriptive quality, we shall use the term “Alfvén resonance” rather than “shear Alfvén
singularity” in this chapter.

In the absence of B, wave motion in a homogeneous and incompressible fluid can be
supported only on the boundaries; any instabilities present must therefore be due to surface
wave interactions. In the corresponding magnetic configuration, however, torsional Alfvén
waves can propagate.” Indeed, should there exist waves of the form (5.5), which we term
“Alfvén-modified corotation waves,” they can propagate anywhere within the fluid. These

issues will be discussed in greater detail in §5.5.

*Compressional Alfvén waves and Alfvén surface waves are also possible in a compressible medium (Cross
1988), but will not occur in the present context.
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5.3.2 Exterior perturbations and boundary conditions

As in Ch. 3, the perturbed magnetic field io the interior (r < r;, denoted by subscript i)

and exterior (r > ro, subscript o) regions is assumed to be current-free, whence

6B o = B:Vio (5.8)

xi(@) = alo(@), Xxo(w) = cahg(w). (5.9)
Following the procedure of Ch. 3 leads to the free boundary condition

20m (2
- — 3
T

&+ [1 (geff + Qiif—")] %’ = 0. (5.10)

=2
o Ai0

5.4 The MHD instability: general characteristics

We solved equation (5.3) subject to the free boundary condition (5.10) using a standard
shooting method as adapted for eigenvalue problems (Press et al. 1992). In contrast to
the hydrodynamic problem, a constant angular momentum profile (a = 2) does not lead
to significant simplification of the perturbation equations (for reasons outlined in §2.5.5).
Nevertheless, we rlioose this value of a for ready comparison with the literature on the PP
instability. We also take m = 1 and k. = 1.5 as fiducial values, to isolate :he effect of
magnetic field strength. Recall that the latter value of k. is roughly that at which the PP
instability is suppressed (§5.2). Other values of these parameters are explored in subsequent,
sections.

The effect of a constant vertical magnetic field on the principal branch of the PP insta-
bility is shown in Figure 5.2, a plot of the growth rate, —w;, as a function of the thickness
parameter, 4. The hydrodynamical growth rate curve is shown by a dotted line, and is
reduced by over 50 % from its peak k; = 0 value (BG). The MHD growth rates are shown
by solid lines, and clear!; exceed the hydrodynamic growth rates in nearly all cases. For
this value of k;, peak growth occurs near V; = 0.35 (see inset), for shells of thickness

p =021 =refry = (14 u)/(1 - )~ 1.53. Some general features should be noted from

these curves:
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(a) The magnetic field stabilizes for thicknesses gt < ftmin, Where fimin increases
with V;.

(b) For intermediate-strength fields (0.15 £ V. £ 0.7) even the most extended
shells are unstable, in contrast to the hydrodynamic case.

(¢) Each configuration of specified ¢ possesses a critical field strength V. i

above which it is stable. V; ¢ =~ 1.4 for the parameters shown in Fig. 5.2.

Qualitative differences in the curves of Fig. 5.2 suggest the consideration of three
separate regimes in field strength: (i) weak (V; < 0.15), (ii) moderate (0.15 g 1 < 0.7),

and (iii) strong (V; 2 0.7). We examine each of these in turn.
(i) The weak field regime

The real part of the eigenfrequency wg for V. = 0.1 is shown in Figure 5.3a. The main
difference from Fig. 5.1 is the existence of two entircly new neutrally stable modes at large
p. We label these by A* and A~ since they are certainiy magnetic (“Alfvénic”) in origin.
One indication of this is that the frequency of A~ approaches —{24 as ¢ — 1. The merger
of At and A~ (at g =~ 0.1) leads to a weak instability (wr mer = 0.05), not shown in Fig.
5.2. As pu — 0, this unstable mode splits once again into two neutrally stable modes, with

frequencies

wp=-my 04 (5.11)

at g = 0. These are the Alfvén-modified corotation waves (hereafter AMCWs) discussed
in §5.3.1 and are the analog of the single corotating mode found in the zero-thickness
hydrodynamic cylinder (Blaes 1986). In this limit one also identifies the MHD counterparts
of the P and Py neutral modes, which now occur at much larger frequencies. The latter
modes have nothing to do with any of the instabilities found here, and therefore will not be
shown in subsequent graphs.

As well as the purely Alfvénic wave branch, there also exists an analog of the unstable
snrface wave branch discussed in §5.2. However, the frequencies of the isolated surface
waves at large ¢ are no longer described, even approximately, by equations (5.1) and (5.2).

Due to the presence of field lines on the boundaries, there is no doubt a new contribution
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due to the Alfvén frequency Q4. For this reason, we denote the large u neutral modes by
Py and Py. The merger of these waves (denoted by P) at p ~ 0.63 corresponds exactly
to the large 1 cutoff of the curve shown in Fig. 5.2. As u — 0, this unstable branch splits
into two neutral modes, which attain the same frequencies as the .4 branch waves (equation
(5.11)) at p = 0.

In addition to the two instabilities already discussed, both of which grow fastest at
low p, there exists in the weak-field case a third instability, seen in Fig. 5.3a beginning at
# =~ 0.4 and persisting as 4 — 1. We have not been able to attribute this instability to the
merger of two neutrally stable waves. The only hint to its origin is what appears as a slight
mutual “attraction” of the A~ and P modes near ¢ = 0.4. At larger fields this is more
pronounced (see (ii) below), and has the appearance of an “avoided crossing” (Craik 1985;
Aizenman, Smeyers, & Weigert 1977). The instability in question is still much more slowly
growing {—wy mqez 2 0.06) than that of the P branch. To distinguish this mode from the

other two, we label it the R mode.

(it) The moderate field regime

Here we consider Alfvén velocities in the range 0.15 ¢ V, < 0.7. As can be seen in Fig. 5.2,
these configurations are distinguished by the persistence of instability to large (u = 0.95)
shell thicknesses. Unfortunately, our mode-finding code is not sufficiently refined to find all
of the neutral modes, but we will glean what we can from the somewhat incomplete picture
given in Fig. 5.3b, which gives wg for V, = 0.3.3 Once again, a weakly unstable mode in
addition to that shown in Fig. 5.2 exists at low u, but we fail to detect the third unstable
mode mentioned above. Clearly, the mode structure at large u is quite different from the
hydrodynamic and weak field cases. The A4 and P modes have exchanged their relative
locations in frequency space; i.e. A~ now lies below P at large p (compare Fig. 5.3a). The
two modes draw close together near p = 0.4, eventually merging at u ~ 0.9, The frequency
of the merged modes approaches —§24 = 0.45 as u — 1. In the weak field case examined

above, this merger did not occur. Rather, the two modes simply crossed at g =~ 0.1 (Fig.

*The structure of the neutral mode branches often goes a long way toward explaining the physical
mechanisms behind instability; ¢f. Glatzel (1987a, b) and Christodoulou (1993).
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5.3a). We have confirmed that the unstable tail of the V; = 0.3 growth rate curve is in fact
identifiable with the R mode of the V. = 0.1 case. Thus it appears that the P and R modes
have merged, producing growth over the entire shell. We denote this merger by P/R.

(iii) The strong field regime

It is clear from Fig. 5.2 that the instability curves change their qualitative character once
again between V; = 0.5 and 0.7, whence they become nearly symmetric and have both a
lower and an upper stability threshold in g (except for the V. = 1.3 curve). As a represen-
tative example of the strong field regime we take V. = 0.7, and its mode structure is shown
in Fig. 5.3c. It is apparent from this figure that a simple crossing occurs between the P
and 4 modes, and that the former once again splits into two stable modes at g =~ 0.62. As
in the weak-field regime, the A and R modes appear distinct from the P mode. As the
field strength is increased, there are hints of more complicated mode structure at large p
and high frequency (Figs. 5.3b & c). Some of these branches are as yet unidentified.

We restrict our attention in the remainder of this chapter to the moderate field regime,
represented by V; = 0.3. Before investigating the detailed dependence of the P, A, and R
instabilities on the system parameters, we provide in the following section a simple means

of classification based on the propagation properties of the waves.

5.5 Unstable Wave Properties

5.5.1 Destabilization of thin shells

First, consider the merger of the AMCWSs that causes both the P and A instabilities at small
. In the zcro-thickness limit, A* and A~ have very different frequencies and propagate
in opposite senses with respect to a corotating observer at 8 = Qp. Since Q4 is fixed in
each of Figs. 5.3a, b, and ¢, changes in the frequencies of A* and A~ as y is increased
from zero are entirely due to the variation in £ over the shell. The condition for a merger

is w(A*) = w(A~); the smallest g at which this can be achieved is given by

—mfh + Qa=-—mh — 24,
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which in the case a = 2 leads to the result

4

B=He= g (5.1'2)

For example, p, = 0.075, 0.225, and 0.525 for the parameters of Figs. 5.3a. b, and c,
respectively. These values correspond quite closely with the locations of the A1 and A~
mergers at small g. It may not be a coincidence that p. also seems to fall near the maximum
of the P mode instability. The lower p value corresponding to the merger of AMCWs into
the P mode instability can probably be calculated only by considering both the Alfvénic

and characteristic surface gravity frequencies (§5.2).

5.5.2 Characteristic radii

To elucidate the role of the Alfvén resonances given by equations (5.6), various radii of
interest have been plotted in Figure 5.4a, along with the real and imaginary parts of —w.
While rcg lies within the shell at all 4 for an unstable mode, the same is not true of T4, and
Taz2. In fact, 42 always lies outside ro for the parameters shown. 741, on the other haud,
starts out in the vacuum interior {(r < ry) for thin sheiis, but then moves inside the fluid at
g =~ 0.2 = rp/ry = 1.5. This is, perhaps not coincidentally, very near the location of the
maximum growth rate —w; and the merger point of the A% and A~ modes (g, = 0.225).
Note that r¢p lies between r4; and the outer boundary rs.

As will become clear in subsequent sections, all of the m s 0 unstable modes of the
incompressible MHD cylinder can be classified on the basis of diagrams similar to Fig. 5.4a.
These diagrams generally fall into three types, of which Fig. 5.4a is one variety (Type 1).
Note that the R mode instability is always of this type. Type 2 is shown in Fig. 5.4l for
the model parameters shown at upper left, and is distinguished by the fact that the outer
Alfvén radius r4,2 passes inside the shell at some g. The inner Alfvén radius lies outside the
shell at small z and then passes inside at p = 0.53, staying inside thereafter. r4 remains
very close to r; for all . Note that r¢p lies inside the shell between the two Alfvén radii.
Many of the same features are found in Fig. 5.4c, which shows the 4 mode in the Keplerian
case, with one crucial difference: 74 always lies just to the (vacuum) interior of r. This is

Type 3. Note that the .A mode is a'ways of Type 2 or 3. It is the difference between these
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two types that suggests a mechanism for maintaining unstable growth at large p.
Resonances as wave amplifiers

Before discussing the particular mechanism believed to be at work here, it is useful to make
a connection once again with hydrodynamic theory. Owver-reflection of internal waves is
a process known to lead to instability in shearing, hydrodynamic disks. The basic physi-
cal mechanism is shown schematically in Figure 3.5 and works as follows (see Mark 1976;
Cairns 1979; Drury 1985; Goldreich & Narayan 1985; and MG for further details and em-
bellishments). A wave incident on a resonance from the inner disk (r < rg) will produce a
reflected and (by the usual wave-tunneling process) a transmitted wave. Both the incident
and reflected waves have negative action {e.g. energy or angular momentum) relative to
the equilibrium flow because their pattern speeds €2, are lower. Conversely, the transmitted
wave has positive action. Due to the conservation of action, the reflected waves must have
more negative action than the incident waves and must therefore be amplified. The inner
edge of the disk, acting as a reflector, provides a feedback mechanism to generate more
incident waves. A reflecting outer boundary produces a similar result, while two reflecting
boundaries can cause correlated growth on both sides of corotation if a certain phase con-
dition is satisfied (Narayan, Goldreich, & Goodman 1987). To act as a reflector {of sound
waves in this case), the density at the edge of the disk must cut off on a scale shorter than
the radial wavelength of the mode. This is easy to satisfy in our case, since the density is

a step function at the fluid surfaces.
Alfvén resonances as wave attenuators

In the MHD system considered lere, rop loses its significance as a wave amplifier since it is
no longer a singularity of the perturbation equations. It still serves as a point of reference
for defining positive and negative wave action, however. It is well known that interactions
between waves of positive and negative action can lead to instability (Cairns 1979; Craik
1985; Glatzel 1987b). Indeed, the mergers of the AMCWSs which produce both the unstable

P and A modes appear to be of this type. Yet in the absence of the corotation resonance,
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the system lacks an efficient wave amplifier.

Figure 5.6, from Matsumoto & Tajima (1955) {hereafter MT). shows the effect of the
Alfvén resonances when both lie within the flow. Waves are amplified within the resonaut
cavity created by r4,) and r4 2, but are strongly damped cutside this region. This is similar
to the Type 2 situation described above, after r 41 has passed inside the shell (i.e. at large
). Although it appears that virulent local instabilities (such as those found by MT) can
be generated in this manner, globally unstable modes will not develop since neither of the
boundaries are involved. This is in agrgeﬁiéntwith the observed dimunition of the Type 2

growth rate at large ;. (Fig. 5.4b).
Alfven resonances as wave amplifie: s

When only one Alfvén resonance lies inside the shell, as in Types 1 and 3 and Type 2 for
u < 0.53, over-reflection occurs between the resonance and one of the boundaries. Which
boundary depends on the location of rcp. Wave amplification can only take place between
an Alfvén resonance and a boundary if rcr lies in between. Presumably, this is required
because mergers between waves of opposite sign in the action cause the instability (Cairns
1979). 1n the Type 1 instability, wave amplification occurs between 741 and ry (with rep
in between) until at large x the divergence of these two radii becomes so rapid that standing
waves can no longer be maintained. The opposite situation occurs in Type 3. Here r, .
lies inside the shell and approaches r asymptotically as g — 1. This scenario is ideal for
sustained growth since 4, lies inside 71 (i.e. in the vacuum interior) at all u and therefore
cannot act to radially confine the waves (MT). The Tvpe 3 behavior corresponds closely to
a known property of the hydrodynamic system, namely, that the growth rate is higher the

closer corotation is to the inner boundary (Glatzel 1987h).

5.5.3 Eigenfunctions

To test these ideas, we examined the degree of localization of the various modes exhibited
in Fig. 5.4 by looking at their radial eigenfunctions. An example of extreme localization

can be seen in Figure 5.7, which shows the eigenfunctions for the e« = 1.6 A mode of Fig,.
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5.4. Plotted are the real and imaginary parts of the radial velocity perturbation éu, (but
denuted simply by éu), and the total (gas + magnetic) pressure 6h over the entire shell
thickness. The filled and open arrowheads at the top 2nd bottom of the figure indicate the
location of the inner and outer Alfvén radii, respectively, and the crosses mark the position
of the coro.ation radius. The magnitudes of the eigenfunctions have been normalized to
unity. The eigenfunctions become even more localized at larger z, and the resulting radial
confinement of the mode leads to a vanishing growth rate as u — 1 (MT).

The eigenfunctions for the Keplerian case of Fig. 5.4c are essentially identical to those
of Fig. 5.7 due to the close proximity of 74 and r). Thus we do not display them here.
However, we shall find examples in later sections that adequately support the above scenario
for sustained growth.

For thin configurations and a weak field, the P mode is primarily a surface mode. To see
this, the eigenfunctions corresponding to the hydrodynamic case and the MHD case of Fig.
5.4a are plotted in Figures 5.8a an.d b for a thin shell, g = 0.1. Although éug is nearly flat
over the entire shell, the other perturbations show definite enhancements at the boundaries
and little interior structure. Fig. 5.8a agrees in character with Fig. 5(i) of Glatzel (1987a),
who considered a compressible fluid. Another argument for its surface nature is the fact
that it the P mode does not exist in configurations with rigid boundaries (see ff. §5.6.4).
Finally, Alfvén resonances are not a consideration, since both 741 and 74 2 lie outside the
shell for the adopted parameters in Fig. 5.8b.

It is interesting to observe how the eigenfunctions change with increasing shell thickness.
Figures 5.8¢ and d are equivalent to Fig. 5.8b, except for p = 0.4 and 0.8, respectively. Note
that 74,1 has entered the shell at these higher u values. In Fig. 5.8¢, the eigenfunctions
are generally more oscillatory than in Fig. 5.8b, revealing the influence of internal Alfvén
waves on the fluid motions. The local extrema near 74, hint that the R mode is feeling the
influence of a resonance. This conjecture is supported by Fig. 5.8d, which shows a drastic

change in the eigenfunctions as they pass through r =74.
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5.6 Further Results

In this section we round out the above physical discussion by examining the behavior of the

instabilities for a wide range of system parameters. We begin by gauging the effect of the

rotation law,

5.6.1 Nonconstant angular momentum

Here we explore the effect of nonconstant angular momentum distributions (a # 2) on the
P, R, and A instabilities. In the hydrodynamic k. = 0 case, the peak growth rate decreases
steadily from —wjmer =~ 0.26 at ¢ = 2 to zero at a = 1.5 (Jaroszyniski 1988). In the
presence of vertical perturbations, the rate of decrease is more rapid, with —wy mar < 0.02
by a = 1.85. At the same time, the PP instability for a # 2 has a nonzero growth rate for
shells of arbitrary thickness u, i.e. even for u — 1.

Choosing V. = 0.3, we have plotted in Figure 5.9a the merged P and R mode growth
rates for a range of ¢ between 1.5 and 2. Although there is a slight decrease in the peak
growth rate (which always occurs near g = 0.2), and a slight increase in —wy at large g as
a is decreased, the behavior for a < 2 does not appear significantly different than for a = 2.
As one approaches the Keplerian case, however, a sharp cusp develops in the growth rate
curve at a thickness of p ~ 0.24, where the growth rate momentarily reverses its decreasing
trend. We interpret this feature as further evidence of a merger between the pure surface
P mode and the higher-p R mode, shown separately in Fig. 5.3a. We draw particular
attention to the Keplerian curve, since the corresponding growth rate in the hydrodynamic
case is entirely negligible (Jaroszynski 1988).

In contrast to the P/R mode, the A mode growth rates are quite sensitive to the
shear (Fig. 5.9b). The peak growth rate increases with decreasing a, and there are two
particular values of a worth noting. The first is a ~ 1.6, less than which the growth rate at
i 2 0.2 exceeds that of the P/R mode. The second is a = a, = 1.53985, less than which
—wj is nonzero even as g — 1. This is an important result, as it shows that Keplerian
and near-Keplerian disks display e dynamically significant instability, independent of their

radial extent. The peculiar behavior of the ¢ < a. cases turns out to be more a result of
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the particular k. chosen here, than of the rotation law. This will become clear in §5.6.3.
While we have displayed the P/R and .4 curves separately here for clarity, the situation
is actually more complicated for e < a, (as already evinced by Fig. 5.4c). For these a, a
further interaction occurs between all three modes, whereby the A and P modes merge,
leaving the decoupled R mode alone at lower growth rate. This is shown in Figure 5.10,
in which the merged A and P modes have almost identical real parts at g =~ 0.24. This
makes the argument for a mode exchange even more plausible, as does the fact that we
find no modes other than those shown. Note that it is now the R mode that approaches
—Q4 as p — 1. Recall that the P/ A mode was our prototype 3 in §5.5.2 (Fig. 5.4c). For
completeness, we also display the Keplerian counterparts to the Fig. 2 growth rate curves

in Figure 5.11. The critical Alfvén velocity for stability, V. ¢cri¢ = 1.2 in this case.

5.6.2 Higher m modes

To examine the behavior of the unstable P/R mode for higher azimuthal wavenumbers, the
m = 2 equivalents of the Fig. 5.2 and Fig. 5.11 curves are plotted in Figure 5.12. For both
a = 2 and ¢ = 1.5, the instability is virtually suppressed for V. > 1, while in the former
case the growth rate barely exceeds that of the hydrodynamic instability, even at its peak
value (~ 0.27 for V; = 0.1).

The growth rates at higher m are shown in Figure 5.13 fora =2, a = 1.5, k; = 1.5 and
V., = 0.3. In the a = 2 case, it is seen that higher-m modes are stable for all but a small
range of slender shells (0.057 £ u g 0.34 for m = 2). The Keplerian shell is slightly more
unstable (out to u = 0.8 for 2 < m < 5), but the growth rate dies off more quickly with
increasing m than in the a = 2 case. Note also that the cusp in the curve disappears at the
larger m values.

These results agree qualitatively with Fig. 5.13c, which shows the corresponding hy-
drodynamic behavior (see also Jaroszynski 1988). In the latter case, stabilization at larger
J occurs because the penetration depth for surface gravity waves decreases with increasing
m. Thus the inner and outer modes become independent for high m (Blaes 1986). In the

MHD case the same phenomenon occurs, but note that the critical p for merger of P and
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Py is virtually independent of m. Another important qualitative difference is the fact that
here the fastest-growing mode is always m = 1, whereas in the a = 2 hydrodynamic case

maximum growth is found in the limit m — oc (BG).

5.6.3 The effect of k. and the high-k. limit

Choosing m = 1 and V; = 0.3 as fiducial values in this section, we now explore the effect
of varying k. on the unstable modes. Figure 5.14 shows the growth rate as a function of
thickness for 0 < k. <14, a = 2 (a) and e = 1.5 (b). Comparison of these curves with Fig.
5.2 indicates that the effect of increasing k. is similar to that of increasing V7, in that j,;, is
a monotonically increasing function of both. However, with regard to the peak growth rate,
the effect of large &, is clearly very different. A qualitative change occurs between k., = 3
and 5 in the a = 2 case, and k; =1 and 1.5 in the @ = 1.5 case: the growth rate no longer
vanishes at g =1 for &, values in excess of these. In fact, —w; appears to increase without
bound as k, is increased. At the same time, only the most extended (large i) configurations
are unstable at large k..

Fig. 5.14b shows that the anomalously large growth found in Fig. 5.4 for e = 1.5 may
be regarded as a consequence of the value of k. we chose (i.e. k; = 1.5). In fact, all vertical
wavenumbers of this magnitude and larger display growth out to ¢ = 1. While Fig. 5.9b
appears to indicate a critical value of @ at which the large 4 growth rate changes character,
it ts really the fact that there exists a critical value of k; for each value of a that causes the
qualitetive change in —wj. We have confirmed this by increasing k. for each a # 2 shown
in Fig. 5.9b, until a change in the inflection of the growth rate curve was observed. This
critical &, value increases with increasing a, but not drastically. By k. = 3, all curves with
e < 1.85 have the character of the k. > 1.5 curves in Fig. 5.14b. It is also at this critical k.
that the R and A modes exchange roles: the R and P modes decouple, while the P and A
modes terge (§5.6.1). The constant angular momentum case seems to be the only exception
to this rule; as k; is increased, the a = 2 .4 mode in Fig. 5.9b increases its growth rate, but
never exceeds that of the P/R mode, and never changes inflection.

The characteristic radii and eigenfunctions for a typical large &, case are shown in Figure
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15a and b.* The a = 2, k. = 5 case is a good example of the enhanced growth which can
result from a Type 3 interaction. The characteristic radii in Fig. 5.15a clearly identify it as
Type 3, while Fig. 5.15b shows the behavior of the eigenfunctions. As expected, these are
highly concentrated near r; and damped between 142 and r3. It is also important to note
that significant growth occurs near jimn, where neither 4, nor r4 o lies within the shell.
This indicates either that surface modes are still active for thinner shells, or that unstable
coupling of pure Alfvén waves is occurring, or both. As pgn, increases (i.e. at larger k.),
the latter seems more likely.

Overall, the large k. behavior is not unlike what happens in the m = 0 case (Ch. 3).
There, the largest growth rates are found in the limit k; — oc, V; — 0. However, the
steady increase of f1,in with k; was not found in the axisymmetric case, and is due to the
consequent increase in £,4 (§5.5.1, equation (5.12)).

In the limit k.7 3 m, m = O(1), the perturbation equation (5.3) simplifies considerably.
Introducing the new dependent variable ¢ = (r&%)'/2¢, and noting that k.7 3> w/Q (the

latter is O(1); see Fig. 5.14), equation (5.3) becomes simply
QZ
N (2352- - 1) ¥ =0, (5.13)

This is similar to the m = 0 perturbation equation [equation (3.36)], and can be solved by
an identical WKB prescription. We have not done so but point out that, as some of the
same numerical difficulties occur here as in the m = 0 problem (e.g. the extreme localization
of eigenfunctions), a further examination of equation (5.13) would help clarify the large k.
behavior of the m # 0 instabilities.

Recall that the principal action of a nonzero &, in the V. = 0 problem is to stabilize
those perturbations of the P mode having k., » m/rp. In light of the above results, one
might then ask: what is the critical value of V. such that this behavior ceases, and allows
such rapid growth at large k.7 We have examined this issue only for a = 2, finding that the
critical value lies somewhere between V., = 0.02 and 0.03. Thus, even very weak fields can

reverse the stabilizing trend of k.. One might imagine that the effect of a finite but small

“We take “large &." to mean values such that large growth occurs as g — 1, and such that the eigen-
functions are highly localized. The present example clearly shows that k. need not be very large to achieve
both of these goals.
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V> on the hydrodynamic fluid is to create a field line tension that prohibits z-dependent
motions induced by nonzero k.. This behavior is not surprising in light of the fact that the
VC instability is most powerful in the weak-field limit (Ch. 3).

Finally, we performed calculations in which both m and k. are large, finding that al-
though ymin can be decreased, the growth rates are also substantially reduced. Hence, this

extremely localized mode is probably of little interest.

5.6.4 Rigidly-bounded configurations

As a final check of the results and their interpretation, we have attempted to find un-
stable modes for rigid boundary conditions. We failed to find the P mode for any range
of parameters examined in the previous sections. This makes sense since it is primarily
a surface mode. However, an instability with similar properties to the R mode was de-
tected. In Figure 5.16a, b we plot the characteristic radii and eigenfunctions of this mode
for @ = 2, k. = 1.5. Clearly, a rigid outer boundary is nearly as effective at reflecting
internal waves as a step function in density (i.e. a free boundary). This is indeed expected
from work on sonic instabilities in shear flows (Glatzel 1988). The 4 mode does not appear
in the rigidly bounded case until rather large &, (~ 5 for a = 2), where it is of Type 2 (i.c.
damping at z = 1). One needs k; » 7 (¢ = 2) to obtain Type 3 growth, and this ouly
occurs for u » 0.85. Thus, it appears that the m # 0 unstable modes for rigid boundary
conditions are much like their m = 0 counterparts, with considerably smaller growth rates.
For example, —w; =~ 0.38 for ¢ = 0.96,a = 2, and &, = 7, versus —w; =~ 1.62 for the same

parameters when m = 0.

5.6.5 Configurations with no external field

In some sense the opposite of the rigid boundary situation is one in which the external field
is removed (i.e. xi = xo = 0). Indeed, a recent paper by Coleman, Kley, and Kumar (1995)
has assumed just such a boundary condition, namely, that the total pressure vanishes on

the boundaries. The resulting configuration is somewhat worrysome, however, as it implies
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a nonzero surface current Js on the boundaries; i.e.

Js= %é.
This represents a Lorentz force, Fg = Jg x B, in the T direction. In the equilibrium, Fg can
be balanced by the centrai gravity and/or pressure gradients, but in the perturbations it is
an unbalanced force. This is a concern when performing stability analysis, since it presents
an additional avenue for instability.

Numerical solutions for the case of vanishing external field are shown in Figure 5.17 for
the Keplerian case with m = 1, k. = 1.5, and a range of V.. The most striking quality of
this graph is the fact that for V., < 1.15, the growth rate is independent of u as p — 0.
That is, the zero-thickness cylinder is highly unstable! We have found similar behavior in
the axisymmetric case, with almost identical growth rates as u — 0. This is sensible, since
the mechanism described above should be independent of the nature of the perturbation. In
our view, the instability is unphysical and is entirely ¢he result of an unrealistic boundary
condition. It is interesting that the growth rate curves do approach zero at small ¢ when
V. exceeds 1.15; this is very near the critical V. for stability indicated in Fig. 5.11, and in

the axisymmetric case (Ch. 3).

5.6.6 Critical field strengths for stability

The results of §5.4 indicate the existence of a definite limit 4 = g, below which magnetized
disks are stable to m # 0 perturbations. Here we investigate the dependence of this property
on k;, V;, and a. The problem can be converted into a somewhat more familiar one by
thinking of V. as a function of pmin. Then V; represents the critical field above which a
disk of radial scale jin is stable to m # 0 perturbations {§3.5.5).

Figure 5.18 shows the dependence of V; on pmi, for four different k. (0.5, 1.5, 5, and
13) and the extreme values ¢ == 1.5 and a = 2. The critical Alfvén speed for stability can
be read off the graph for a given thickness. Models lying above a given curve are stable
to the m = 1 magnetic instability. Following §3.5.3, one may interpret the inverse of the
wavenumber A = 27 /k, as a critical wavelength above which unstable perturbations no

longer fit inside a disk of scale height H (= A/2). The scale heights defined in this manner
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also appear on the graph.

Comparison with Fig. 3.8b (for k; — 0) and Table 3.2 shows that there is qualitative
agreement between the m = 1 and m = 0 critical stability curves. However. disks large in
both radial (large. Hmin) and vertical (small k.) dimension appear more unstable to m # 0
modes than to m = 0 ones. The higher m curves tend to have larger V. for a given a, k..
and gmin and are therefore more unstable in this sense. However, as their growth rates are

considerably smaller (Fig. 5.13), we do not trouble with them further.

5.7 Discussion and summary

In many respects, the additional freedom allowed the incompressible cylinder by the internal
Alfvén modes makes it similar to the compressible, nonmagnetized cylinder. Glatzel (1987:)
showed that the growth of the PP instability in the latter system is maintained out to y — 1
by mergers of neutral sonic modes, beyond the range of ¢ where the P mode (due to surface
gravity waves) is unstable (this behavior was found in the ¢ = 2 case only). In both systems,
resonant interactions between surface modes and internal modes can occur. Glatzel (1987h)
examined the issue in some detail, and was able to attribute particular unstable bands to
these wave-wave interactions.

In the case of only two waves attaining resonance, linear theory can be used to pre-
dict instability on the basis of energy considerations alone. Applying well-known results
of plasma physics, Cairns (1979) showed that a class of fluid instabilities {amoug them
Kelvin-Helmholtz instability) are produced by the coalescence of positive and negative en-
ergy modes.® Modes of the same sign in energy produce an avoided crossing in frequency
space, while independent modes (such as P[” and P;' in the decoupled hydrodynamic case;
Appendix) merely rross [see Fig. 3 of Cairns (1979)}. Applying these arguments, Glatzel
(1987b) was able to define a canonical energy for the waves and show that the relative
signs of the P and P;" modes concur with this description. Unfortunately, this approach

requires an analytic expression for the dispersion relation of the waves, which has not yet

5A wave has negative energy if the total energy of the system is lowered in the process of exciting the
wave.
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Type 1 | Type 2 Type 3
P9 || No No No
A || No Yes; k. small | Yes; k. large
R || Yes No No

3 The P mode is a surface mode that does not depend on the location, nor indeed the
existence, of Alfvén resonances.

Table 5.1: Classification scheme for the m # 0 unstable modes.

been obtained in the MHD problem. In addition, the results of §5.6.1 are suggestive of
mode interactions between more than two waves at one time, e.g. the exchange that occurs
between the P/R and P/.A modes at larger values of k,. Nevertheless, we feel that this is
an approach worth pursuing, especially as it may yield physical insight not obtainabie from
the numerical solutions alone.

In closing, we have demonstrated the existence of globally unstable, nonaxisymmetric
modes in incompressible MHD cylinders and, by extension, in astrophysical disks. There
are three classes of unstable modes and three basic meshanisms for instability, which are
summarized in Table 5.1. For radially extended configurations, the largest growth rates are
obtained in the k.ry 3> m limit, as claimed by Balbus & Hawley (1992) and as found for the
VC instability (Ch. 3). In more slender systems, however, the surface wave PP instability
can maintain growth at considerably larger growth rates than for m = 0. This is even true
in the Keplerian case, which is stable to the purely hydrodynamic PP mode.

In the context of the simple model adopted here, our results show that the PP instabil-
ity is certainly not stabilized by a weak vertical magnetic field. Rather, the principal mode
instability is enhanced, and entirely new modes of instability crop up. Stronger fields can
stabilize disks of small radial and vertical extent, however, and this may be important in
certain contexts such as protostellar or AGN disks with centrifugally-driven outflows (and
the strong fields necessary to drive them). Since the instability acts for all allowable angular
momentum distributions, both thick (i.e. radiation pressure supported and ion tori) and

thin disks will be equally affected.
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Appendix:
The Hydrodynamic Limit—Surface Gravity Waves

In order to describe the often complicated interactions between two or more neutral
modes (cf. Craik 1985), a common teclhique is to examine the behavior of each mode
in isolation, if possible. This has been successfully applied to the problem of nonradial
stellar oscillations, e.g., by Aizenman, Smeyers, & Weigert (1977). One generally proceeds
by omitting terms in the normal mode equations that correspond to particular physical
effects associated with individual modes. BG and GGN achieved this in the simple problem
considered in §5.2 by removing the inner boundary to r = 0 and the outer boundary to
T = 00 in turn, thereby decoupling the Py and P, modes.

Perturbations of the incompressible, constant angular momentum cylinder are governed

by the equation (BG; Jaroszyiski 1988)

7
W 4 H (m ) (A1)
T
where W = 6p/pa is a perturbed velocity potential (§2.5.5). The general solution of equation
(A1) is
W(w) = Al,(w) + BKp(w), (A.2)

where @ = k.7 and A and B are constants of integration. The free boundary condition in

this case is
oW +geffW' =0 at r=rp,. : {A.J)

Substituting (A.2) into (A.3) gives a 2 x 2 linear system whose vanishing determinant,

requires

[0} Im (1) + kg1 Im(m1))[08 Km{wo2) + kag2 Kon (202)]
~ o Km(@1) + ks g1 Km(@)][03 In(2) + kzgoIm(w2)] = 0, (Ad)
whereg1o =w+m o =w+ mrfg, 91,2 = gefr(r1,2), and an overdot denotes d/dwm.

Equation (A.4) is a 4**-order dispersion relation in the frequency w. While an exact

analytic solution can be derived, the roots are complicated and give little insight. Equation
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(A.4) has been solved numerically by Jaroszynski (1988), and analytically by BG in the
limits k, =0 and m — cc.

Following BG, an alternative approach is to consider simplified forms of the dispersion
relation in the limits 7| — 0 and 7, — co. Taking the latter, e.g., implies [, — oo so we

require A = 0 for a regular solution at infinity. Equations (A.2) and (A.3) then give
ot Km(@1) + kg1 K (@) = 0,

which is easily solved for w to yield

: 1/2
-ﬁm(wl)] /

wp = —mfy + l—k:mm
m [FF)

Use of the identity iry = -2 Ky = Ky then leads to equation (5.1). Taking r; — 0 and
ry finite, an identical procedure leads to equation {5.2). Equations (5.1) and (5.2) describe
stable waves propagating along the inner and outer surfaces, respectively. They are a good
approximation to the actual mode structure of two interacting surface modes except near

a mode crossing (Fig. 5.1; Glatzel 1987h, 1988).
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Figure 5.1: Hydrodynamic m s 0 mode structure. Each u corresponds to a constant angular
momentum shell of a given thickness. Solid line is the growtin rate, —wy, dots are wg, dotted

line is w as given by equations (5.1) and {5.2). Distinct modes are labelled according to
text.
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Figure 5.2: Growth rates of the m # 0 MHD instability as a function of u for a range of V..
Hydro case is shown by the dotted line. Inset: Solid curve is the peak growth rate, —wpar,
as a function of V.. Dotted curve is the thickness, u = u., at which ~wpmer occurs.
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Figure 5.3: Mode structure in different field-strength regimes: (a} V; = 0.1; (b} V. = 0.3;
(¢) V. = 0.7 (next page). Dots are eigenfrequencies, wg, of distinct modes as labelled in
the text. Solid and dot-dashed lines are corresponding growth rates, —wy, as labelled. <
superscripts refer to downstream modes, — to upstream.



186 CHAPTER 5. NONAXISYMMETRIC MODES

1 23 /T 4 g 39
T L A ; ]
9
) P
Fig. 3(c) 0B [ e




CHAPTER 5. NONAXISYMMETRIC MODES

72}
=
5e)
«
~
(a)

. 1 1 L l 1 1 1 l ] 1 1 1 I 1 1 I | 1 | |

-0.5 - DI —— &

3 __1 :__\ ............................... C‘Jr _:

15EF Type 1

- P/® mode -

_2 . ] ] [ ] ) ) | 1 ! ] | ] L. | I ! } —

0 0.2 0.4 0.6 0.8 1
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the interaction of these waves across the corotation radius that drives the instability (Blaes
1986).
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Figure 5.6: Localized eigenfunctions of the m # 0 mode, as fourd by Matsumoto & Tajima
(1995). Their model parameters are: e = 1.5, Q4 = k:V; = 0.1Q2, kg/k? = 0.01 (ky is the
Cartesian version of m in their shearing-sheet model). The corresponding growth rate is
w = 0.0357Q%; MT find wg = 0 in this high k. limit. The abscissa, § = 2Akyx/Q 4, where
A = 30/4 is the local shear rate (Qort constant).
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Figure 5.10: Mode Structure in the Keplerian case. Conventions are the same as in Figure
5.3.
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Figure 5.11: Growth rates for a range of V; in the Keplerian case. This figure is the ¢ = 1.5
counterpart of Figure 5.2.
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Figure 5.12: Growth rates for m =2, arange of V;, and (a) a =

in (a) is the hydro (V. = 0) case.

2; (b) a = 1.5. Dotted line
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hydro case (next page).
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Figure 5.14: Growth rates for higher k., V; = 0.3, and (a) ¢« = 2; (b) a« = 1.5.
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Chapter 6

EPILOGUE

Although much can be learned from linear perturbation theory, a linear insta-
bility is simply a signal that one has to do more work! Once the instability
grows into the non-linear regime, it may provide to be relatively harmless, or to
produce only small changes in the background flow.

Schutz (1983), quoted in Abramowicz, Blaes, & Lu (1986)

As a summary of results has been included in each of the last three chapters, there is
little need for restatement here. Instead I close with some remarks on possible implications
of the thesis work and likely directions of future progress. These are organized into the

general categories appearing below.,
Radial Angular Momentum Transport

Much of the work to date on magnetic instabilities in accretion disks has focussed on their
possible role as a source of anomalous viscosity (§1.2). A magnetically-induced viscosity
may transport angular momentum more effectively than its hydrodynamic counterpart, due
to the addition of the Maxwell stress term: in the angular momentum transport equation
(§1.5). In the absence of an equilibrium radial magnetic field, the lowest-order radial flux

of angular momentum at a given radius r is given by the sum of the Reynolds and Maxwell
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stresses (Chapter 1; Hawley & Balbus 1992; Coleman, Kley, & Kumar 1995)
1 3
Fe(r)=pr {3?(6%)?]?(61:,-) - :1-%;3?(64‘3(3)?}2(53,)} = wrlbu.|* f(r), (6.1)

where f(r) is a function of w, Q4, and the equilibrium quantities (see Coleman et al. 1995
for its detailed form), and R denotes the real part of the perturbation. Note that Fp = 0
if the growth rate of the instability, wy = 0. Thus, m = 0 hydromagnetic modes can effect
the radial transport of angular momentum; the same is not true of m = 0 hydrodynamic
modes. An intriguing result, especially given the robustness of the VC instability.
Equation (6.1) is readily applied to the results of the three preceeding chapters, so
the radial angular momentum transport could be calculated as a natural next stage of
the work. Such a calculation has been initiated by Coleman, Kley, & Kumar (1995), but
only for a very limited range of models and questionable boundary conditions (Chp. 5).
Two interesting points to address in the calculations would be: (1) Is angular momentum
transported outward? One of the more surprising results of recent years is that of Ryu &
Goodman (1992), who found that transport due to linear, convective instabilities occurred
principally inwards. This is a concern since it shows that the mere existence of an instability
is not enough to ensure “viscosity.” (2) Assuming that the transport due to global magnetic
instabilities 15 outward, which of the m = 0 or m # 0 varieties dominates? The growth
rate of the former is larger, but the latter appears to act over larger portions of the disk.

Limitations of time and space have prohibited the author from exploring these issues here.
Vertical Angular Momentum Transport

A disk threaded by a vertical magnetic field can transport angular momentum vertically, as
well as radially. This additional channel for angular momentum could account for a large
fraction of the total disk transport if the field is sufficiently strong and optimally oriented
(Blandford & Payne 1982). It also leads to compelling models of outflows and winds from
both protostars and AGN (Pudritz & Norman 1986; Uchida & Shibata 1985; Pelletier &
Pudritz 1992). However, the vertical gradient of the Maxwell stress, dI1,./dz, that gives
rise to this transport is identically zero in the model of Chps. 3, 4, and 5, since the vertical

structure of the disk is not treated explicitly.
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It would clearly be desirable to modify the above model so that these effects could
be investigated. The approach of Gammie & Balbus (1994), which treats the vertical
structure at the expense of the radial, might be a good starting point for such a calculation.
The optimal model, in my view, is the MHD torus, which would allow the simultaneous
consideration of transport in both r and z. However, the discussion of Chp. 2 shows that a
reasonable equilibrium model of the MHD torus needs considerably more work (especially
with regard to matching onto an exterior field).

Many models of magnetically-driven winds have not treated the underlying accretion
disk explicitly; i.e., complete disk plus wind solutions are relatively rare. Models of the
latter type are important, since they not only offer an explanation of the observed winds
and outflows, but may also obviate the need for the Shakura-Sunyaev a through the idea
of wind-driven accretion. In the latter, the removal of angular momentum vertically via
the wind can lead directly to radial inflow of matter onto the star. As more disk plus
wind solutions become known, it becomes necessary to consider the global stability of the
combined system. It is even possible that time-dependent models of accretion disks with
extensive coronal structure might generate winds spontaneously as a result of instabilities in
the disks. There is in fact some evidence that observed variations in outflows can be traced
to properties of the underlying disk, rather than being produced in the outflows themselves
(Andre et al. 1990). An heuristic approach to the stability of the Blandford & Payne {1982)
solution has recently been presented by Lubow, Papaloizou, & Pringle (1994), but it is fair
to say that the subject is wide open for the application of the stability techniques used in

this thesis.
Large-Scale Magnetic Field Generation

There has long been a pressing need to explain how large-scale, ordered magnetic fields
might be generated in disks. As expected, dynamo enthusiasts have advanced a host of
mechanisms to generate global fields from the local dynamo-producing mechanism outlined
in §1.5.4, but these rely on poorly-understood details of turbulence theory as input (Moffatt

1978; Parker 1979). The results of Chapters 3, 4 and 5, however, explicitly demonstrate the
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existence of finite-amplitude growing éu,, and so 6B,, showing that a large-scale field is a
natural outcome of infinitesimal perturbations to a well-understood equilibrium. It is simply
not known at this time whether the ultimate nonlinear resolution of these instabilities is
“turbulent” (as in the local regime; §1.5.3) or ordered, but in any case the magnetic energy
seems likely to be quite large. Following the calculations of this thesis into the nonlinear
regime would help clarify the situation.

While the m = 0 global modes are the most rapidly growing ones for most reasonable
disk sizes, the radial eigenmodes presented in Ch. 3 suggest that they are largely confined
to the extreme inner regions of the disk. The m # 0 modes, on the other hand, are
not similarly restricted; they can often extend over almost the entire disk (cf. the P and
R modes of Chp. 5). This difference might have observable consequences if globally-
ordered fields of significant strength develop from such instabilities. For example, MHD
models of protostellar outflows (see above for references) can depend sensitively on the field

distribution across the disk.

Applications to the Interstellar Medium

A topic of mounting interest is the role of MHD waves in the interstellar medium (ISM),
in particular the possibility that such waves are responsible for molecular cloud support.
Several mecharisms have been proposed for the generation of the waves (Falgarone & Puget
1988), and the results of this thesis suggest yet another.

As discussed in Chp. 4, the simultaneous presence of rotation and magnetic fields in
clouds, though perhaps rare, offers a natural mechanism for the generation of MHD waves
through the BH instability.! Moreover, in the incompressible model with a purely axial field
an exact, time-dependent {and so nonlinear), local solution of the perturbation equations
is known (Goodman & Xu 1994). It is this solution that can and should be utilized for the
calculation of MHD wave spectra, since it is sensitive to all-important nonlinear processes
such as wave steepening and wave-wave coupling. While the incompressible assumption

would seem an even poorer one to make in the ISM than in disks, it is nevertheless fre-

'] refer to the local BH, not the global VC instability here, since “boundaries” in the ISM are notoriously
ill-defined. A local model is also preferable for other reasons, discussed below.
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quently used; e.g., in the ISM turbulence model of Sridhar & Goldreich (1994). This is more
a reflection of profound difficulties in turbulence theory than ignorance of ISM conditions,
as the few known exact solutions in the subject are incompressible ones (e.g. Kolmogorov
1941). What is most interesting is the finding of Sridhar & Goldreich that 3- and 4-wave
resonant couplings can occur between shear Alfvén waves in the ISM. The intimation of
similar interactions in Ch. 5 of this thesis seems to hint at a certain convergence of mi-
crophysics taking place here, despite the fact that the two contexts (accretion disks and

clouds) are so different.

Finally, it is clear that the model on which the stability analyses of Chapters 3, 4, and
5 is based can be improved and extended in myriad ways. For example, a fully three-
dimensional model such as the MHD torus could be constructed, relativistic effects might
be explored by introducing a pseudo-Newtonian potential (especially important for AGN;
Blaes 1986), and magnetic diffusivity and separate ion and neutral components might be
introduced. While all these would facilitate a valuable confirmation of the results, and
the generation of a few new ones, I feel that perhaps it is better still to heed the tone
(if not the precise content) of Schutz’s comment which opens this chapter. In fact, it is
hoped that this thesis has succeeded in shifting the focus somewhat from local processes to
effects that might tell us sommething more about disks and their environments as a whole.
While observations cannot yet be confronted head-on, further studies along these lines may

continue to reveal fundamental properties of disks never before suspected.
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APPENDIX: COMPUTER
CODE

This partial FORTRAN program was used for all the numerical stability calculations in this
thesis. It employs a standard shooting method as applied to eigenvalue problems (Press
et al. 1992). Only the user-supplied portions (written by the author) are given below:
the remaining portions may be imported directly from Press et al. As presented here, the

program is set up for the calculations of Chapter 5.

<

Cmmm e —————— - e
c Program naxi.f calculates eigenvalues and eigenfunctions, given
c the governing differential equations, boundary conditions, and

c relevant input parameters.

c

c AUTHOR: Charles Curry

Cmm e ————————————— -— .
c

program naxi

implicit double precision (a-h,o0-z)
parameter (n2=2,nmax=50,kmaxx=200)
dimension v{(n2)

complex*16 yi,y2,yu,yh,yw,y(3)
character*16 bcs

209
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logical check

external fff

common /integ/ m,ifree

common /caller/ x1,x2,nvar

common /vals/ a,alf,beta,vk,vz

common /path/ kmax,kount,dxsav,xp(kmaxx),yp(nmax,kmaxx)
open(3,file="ev")

open(10,file="ef")

nvar=6

binc=0.01d0

Input of data

write(*,*) ‘heta 7’
read(=,*) beta
write(*,») ’eigr,eigi 7’
read(*,*) eigr,eigi
ifree=1
a=2.d0
m=1
vk=1.5d0
vz=0.3d0
alf=vk*vz
ri=1.d0
if (ifree.eq.0) then
bes='Rigid BCs’
else
bcs='Free BCs’
endif
dxsav=.001d0
vilast=0.d0
v2last=0.d0
nefn=0

Calculate inner radius for givenm a, r2/ri

rmin=0.1d40
do 70 i=1,1000
ro=1.40/(1.d40-beta)
x2=1.d0/(1.d0-beta)
call hyp(xi,fff,rmin,1.d0,1.d-10,iflag)
v(1)=eigr
v(2)=eigi
call newt(v,n2,check)
if (check) then
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0o o000

15

20

30

h

pA

write(x,x) ’shoot failed -- bad initial guess’

stop
endif
rc=(abs(v(1))/m)»*(-1.40/a)
racin=((abs(v(1))+alf)/m)**(~1.40/a)
racout=((abs(v(1))-alf)/m)**(-1.40/a)
write(*,100) x1,x2,beta,v(1),v(2),rc,racin,racout
write(3,100) x1,x2,beta,v(l),abs(v(2}),r¢,racin,racout
Normalize eigenfunctions *
yp(3,j) is Re(eigenfn. y); yp(4,j) is Im part *
yp(5,j) is Re(eigenfn. y)’; yp(6,3) is Im part *
yu prefaces del ur, yh del h %
eigenfn. automatically wricien at max. growth x
nefn=1
write(10,150) m,x1,x2,x2/x1,beta,a,vk,vz,v(1),v{2),rc,

racin,racout,bcs

#* % O ® X

yurmax=0.d0

yuimax=0.d0

yhrmax=0.d0

yhimax=0.d0

do 40 j = 1,kmaxx
if (xp(j).eq.0.d0)goto 40
do ii=1,3

jj=2*ii-1
y{ii)=demplx(yp(j]j,3),yp(jj*+1,3))
enddo
omeg=xp{j)**(-a)
vreal=v(1)+m*omeg
yl=demplx(vreal,v(2))
y2=yl*yl-alf*alf
yu=y(2)*(0.d0,1.40) *yl
yh=(y2*y(3)+(y2 - 2.d0*m*yl*omeg)*y(2)/xp(j))/ (m*m/xp(]j)**2
+ vk*vk)

yur=dreal (yu)
yui=dimag(yu)
yhr=dreal(yh)
yhi=dimag(yh)
if (abs(yur).le.yurmax)goto 15
yurmax=abs (yur)
if (abs(yui).le.yuimax)goto 20
yuimax=abs(yui)
if (abs(yhr).le.yhrmax)goto 30
yhrmax=abs (yhr)
if (abs(yhi).le.yhimax)goto 40
yhimax=abs (yhi)
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continue
do 50 j = 1,kmaxx
if (xp(j).eq.0.d0)goto 50
do ii=1,3
jj=2*ii-1
y(ii)=dcmplx{yp(jj.j).yp(ji+1.i})
enddo
omeg=xp(j)**(-a)
vreal=v(1l)}+m*omeg
yl=demplx(vreal,v(2))
y2=ylxyl-alf*alf
yu=y(2)*(0.40,1.d0)*y1
yh=(y2+y(3)+(y2 ~ 2.d0*m*yl*xomeg)*y(2)/xp(j})/ (m*m/xp(j)**2
% + vk#*vk)
yur=dreal (yu)
yui=dimag(yu)
yhr=dreal(yh)
yhi=dimag(yh)
yurnorm=yur/yurmax
yuinorm=yui/yuimax
yhrnorm=yhr/yhrmax
yhinorm=yhi/yhimax
write(10,100) xp(j),yurnorm,yuinorm,yhrnorm,yhinorm
continue
beta=beta+binc
eigr=v(1)+.2d0*binc
eigi=v(2)
vilast=abs(v(1))
v2last=abs(v(2))
continue
format(ix,1gl0.4,1x,1g10.4,1x,1g10.4,1x,1g10.4,1x,1g10.4,
% 1x,1g10.4,1x,1g10.4,1x,1g10.4)
format(1i2/1£5.2/1£5.2/1£5.2/1£f5.2/1£5.2/1f5.2/1£5.2/1£5.2/
% 1£5.2/1£5.2/1f5.2/1£5.2/a9)
end '

subroutine load(x1,v,y)

implicit double precision (a-h,o0-~z)
dimension v(2),y(6)

complex*16 s,yl,y2,yl(3)

common /integ/ m,ifree

common /vals/ a,alf,beta,vk,vz

** Input starting values for COMPLEX fns. yl(i) ==
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)

10

y1(1)=demplx(v(1),v(2))
omeg=x1%*(-a)
y1=yl(1) + m*omeg
y2=yl*xyl - alf=alf
5=2.d0*yl*yl/y2 - a
rkm=vk*vk*xl*xl+m*m
gl=~1.d40/x1/x1 + x1*x(1.40-2.d0*a)
if (vk.eq.0.d0) then
chii=0.d0
goto 10
endif
xi=abs (vk)*x1
chii=BESSIO(xi)/(abs(vk)*BESSI1(xi))
gln=gi+alf=*alf=chii
if (ifree.eq.1) then
* Free BCs for xix
y1(2)=1.40
y1(3)=-(1.d0-2.d0*m*omeg*yl/y2 + rkm*gln
pA /y2/x1)*y1(2) /x1
* Rigid BCs *
else
y1(2)=0.d0
y1(3)=1.4d0
endif

*# Break into real and imag parts **

do i=1,3
j=2%i-1
v{(j)=dreal(yl(i))
y(j+1)=dimag(yl(i))

enddo

return

end

subroutine score(x2,y,f)

implicit double precision {a-h,0-2z)
dimension £(2),y(6)

complex*16 s,yk,yl,y2,yr(3)

common /integ/ m,ifree

common /vals/ a,alf,beta,vk,vz
g2=-1.d0/x2/x2 + x2*x(1.d0-2.d0*a)
omeg=x2+**(-a)
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rim=vixvk*x2*x2+m*m
if (vk.eq.0.d0) then
chio=0.40
goto 10
endif
xo=abs (vk)*x2
chio=-BESSKO (xo0) / (abs (vk)*BESSK1(x0))
10  g2n=g2+alf*alfxchio
do i=1,3
j=2=i-1
yr{i)=demplx(y(j),y{(j+1))
enddo
yi=yr{1) + m*omeg
y2=yl*xyl - alf*alf
=2.d0*ylxy1/y2 - a
if (ifree.eq.1) then
c # Frae BCs for xix
yk=-(1.d0-2.d0*m*omeg*y1/y2 + rkm*g2n
h 7y2/x2)*yr(2)/x2
£(1)=dreal(yr(3)-yk)
£(2)=dimag(yr(3)-yk)
else
c * Rigid BCs =
f(1)=dreal (yr(2))
£(2)=dimag(yr(2))
endif
return
end

subroutine derivs(x,y,dydx)

implicit double precision (a-h,o0-z)
dimension y(6),dydx(6)
complex*16 aa,bb,p,s,yl1,y2,yy(3},dyydx(3)
common /integ/ m,ifree
common /vals/ a,alf,beta,vk,vz
do i=1,3
j=2%i-1
yy(i)=demplx(y(j),y(j+1))
enddo
omeg=x#*(~a)
yl=yy(1) + m*omeg
y2=ylsyl - alf*alf
5=2.d0*yi*yl/y2 - a
rkm=vk*vk*x*x+m*m
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c

* Coeffs. for xi perturbation eqns. *
aa=(vkxvk*x*+x+3.d0*m*m) /rkm/x ~ 2.d0*a*m*yl+*omeg/x/y2
bb=vk*vk#(2.d0*oneg*omeg*s+4.d0*m*y1*omeg/rkm

% = (y2/rkm)*(x*x*vk*vk+1.d0+2.d0*m*nm))
% - (y2/rkm)*m*m*(m*m-1.d0)/x/x
dyydx(1)=0.d0

dyydx(2)=yy(3)
dyydx(3)=-aa*yy(3)-bb*yy(2)/y2
dydx (1)=0.d0

dydx(2)=0.d0

dydx(3)=dreal (dyydx(2))
dydx(4)=dimag(dyydx(2))
dydx(5)=dreal (dyydx(3))
dydx(6)=dimag(dyydx(3))

return

end

C sieakoaiole ol sk o 0 oo ke ok o ofe ok e ok e o o o sk o

C THE EQUIPOTENTIAL FUNCTION
C skl sk ok o ok ook 3 e ok ok ok ok ok oo sk ok o ok ok ok

O O 0 o

FUNCTION FFF(z)

implicit double precision(a-h,o-z)

common /integ/ m,ifree

common /vals/ a,alf,beta,vk,vz

common/caller/ x1,x2,nvar
cpp=(x2**(2.d0*(1.d0-2)))/(2.d0*(a~1.d0))~1.d0/x2
FFF=(1.d0/r+(r**(2.40*{1.d0-2a)))
%/ (2.d40%(1.40~a))+cpp)

RETURN

END

NONLINEAR EQUATION SOLVER
Kindly provided by Omer Blaes

SUBROUTINE HYP(XHYP,FC,X1,X2,EPS,NZERI)
implicit double precision(a-h,o-z)
INTEGER AP,BP,P

double precision N

DIMENSION Z(3),FSMALL(3)

EXTERNAL FC

NZERI=0

Z(1)=X1

FSMALL(1)=FC(X1)

Z(3)=X2

FSMALL(3)=FC(X2)

(]
[+1]
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IF((FSMALL(3)*FSMALL(1)).GT.0.d0) GO TO 777
AP=0

pP=0

BP=1

GO TO 21

T=0.40

N=0.40

DD 100 J=1,3

XHYP=Z(J)

IF(FSMALL(J).EQ.0.40) GO TO 99
G=(J-2)*(2(4-J)-Z(2))/FSMALL(J)
IF(J.EQ.2) G=(Z(3)-Z(1))/FSMALL(2)
T=T+G%(Z2(J)-Z(-AP-BP+2))

N=N+G

CONTINUE
IF((N.NE.0.dO}.AND. (ABS(FSMALL (AP+2)) .GT.ABS(FSMALL(-AP-BP
% +2)))) GO TO 20

GO TO 21

XHYP=Z(-AP-BP+2)}+T/N
IF(ABS(XHYP-Z(-AP-BP+2)) .LE.ABS(Z(BP+2)-Z(-AP-BP+2))/2.40)
% GO TO 22
XHYP=(Z(BP+2)+Z(-AP-BP+2))/2.d0
Z(AP+2)=XHYP

FSMALL(AP+2)=FC(XHYP)
IF(FSMALL(AP+2) *FSMALL (BP+2)}30,30,40
P=P+1

GO TO 50

BP=-AP-BP

IF(P.LT.6) P=0

AP=-AP-BP
IF((ABS(Z(AP+2)~-Z(BP+2)) .GT.EPS) .AND. (ABS(Z (AP+2)~Z(-AP-BP
% +2)).GT.EPS)) GOTO 60

GO TO 99

CONTINUE

1F(P-6)70,80,80

M=1

GOTO 90

M=2

GOTO(10,21) ,M

NZERI=1

PRINT 1000

FORMAT(//’ NO ZERO FOUND’//)
PRINT»,FSMALL(1) ,FSMALL(3)

XHYP=0.4d0

RETURN
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99 CONTINUE

RETURN

END
c
c ———— e ———————————— - e
c Below are the names of a number of required subroutines, which
c may be taken directly from Press et al. (1992).
Cmmm———————————————— _— - - — -
c

SUBROUTINE newt(x,n,check)

subroutine funcv(n2,v,f)

SUBROUTINE fdjac(n,x,fvec,np,df)

FUNCTION fmin(x)

SUBROUTINE lnsrch(n,xold,fold,g.p.x,f,stpmax,check,func)
SUBROUTINE lubksb(a,n,np,indx,b)

SUBROUTINE odeint(ystart,nvar,x1,x2,eps,hl,hmin,nok,nbad,derivs,
*rkqs)

SUBROUTINE rkgs(y,dydx,n,x,htry,eps,yscal, hdid,hnext,derivs)
SUBROUTINE rkck(y,dydx,n,x,h,yout,yerr,derivs)

SUBROUTINE ludcmp(a,n,np,indx,d)

FUNCTION bessiO{x)

FUNCTION bessil(x)

FUNCTION bessk0(x)

FUNCTION besskil(x)

[ 7



Chapter 8

REFERENCES

Abramowicz, M. A., Blaes, O. M., & Lu, J. 1986, in Structure and Evolution of Active
Galactic Nuclei, ed. S. Giuricin (Dordrecht: Reidel), 113

Abramowicz, M. A., Curir, A., Schwarzenberg-Czerny, A., & Wilson, R. E. 1984a, MN-
RAS, 208, 279

Abramowicz, M. A., Livio, M., Piran, T., & Wiita, P. J. 1984b, ApJ, 279, 367
Acheson, D. J. 1973, J. Fluid Mech., 61, 609

Acton, F. S. 1970, Numerical Methods That Work (New York: Harper & Row), 148
Adams, F. C., & Shu, F. H. 1986, ApJ, 308, 836

Adams, F. C,, Lada, C. J., & Shu, F. H. 1987, ApJ, 312, 788

Adams, F. C., Lada, C. 1., & Shu, F. H. 1988, ApJ, 326, 865

Adams, F. C., Ruden, S. P., & Shu, F. H. 1989, ApJ, 347, 959 (ARS)

Adawms, F. C., Emerson, J. P., & Fuller, G. A. 1990, ApJ, 357, 606

Aitken, D.K., Wright, C.M., Smith, C.H., & Roche, P.F. 1993, MNRAS, 262, 456
Aizenman, M., Smeyers, P., & Weigert, A. 1977, A & A, 58, 41

André, Ph., Martin-Pintado, J., Despois, D., & Montmerle, T. 1990, A & A, 236, 180

Antonucci, R. 1993, ARAA, 31, 473

218



CHAPTER 8. REFERENCES 219

Balbus, S. A., & Hawley, J. F. 1991, Apl, 376. 214 (BH)
Balbus, S. A., & Hawley, J. F. 1992, AplJ, 400, 610

Bally, J. 1989, in ESO Workshop on Low Mass Star Formation and Pre-Main Sequence
Objects, ed. B. Reipurth (Garching: European Southern Obs.), 1

Bateman, G. 1978, MHD Instabilities (Cambridge: MIT Press), 113

Bath, G. T\, & Pringle, J. E. 1985, in Interacting Binary Stars. ed. J. E. Pringle & R.
A. Wade (Cambridge: Cambridge Univ. Press), 177

Beckwith, S. V. W. 1994, in Theory of Accretion Disks - 2, ed. W. J. Duschl, J. Frank, F.
Meyer, E. Meyer-Hofmeister, & W. M. Tscharnuter (Dordrecht: Kluwer), 1

Beckwith, S. V. W., Sargent, A. L., Chini, R. S., & Giisten, R. 1990, AJ, 99, 924
Bell, K. R., & Lin, D. N. C. 1994, AplJ, 427, 987

Bender, C. M., & Orszag, S. A. 1978, Advanced Mathematical Methods for Scientists and
Engineers (New York: McGraw-Hill), 504

Bernstein, I., Frieman, E. A., Kruskal, M. D., & Kulsrud, R. M. 1958, Proc. Roy. Soc.
Lond. A, 244, 17

Birkhoff, G., & Rota, G.-C. 1989, Ordinary Differential Equations (New York: Wiley),
317

Blaes, O. 1985, MNRAS, 212, 37P

Blaes, O. 1986, Ph. D. thesis, Intl. School for Adv. Studies, Trieste
Blaes, O. 1987, MNRAS, 227, 975

Blaes, O., & Glatzel, W. 1986, MNRAS, 220, 253 (BG)

Blaes, O., & Balbus, S. A. 1994, ApJ, 421, 163

Blandford, R. D. 1989, in Theory of Accretion Disks, ed. F. Meyer, W. J. Duschl, J.,
Frank, & E. Meyer-Hofmeister {Dordrecht: Kluwer), 35

Blandford, R. D. 1990, in Active Galactic Nuclei, Saas-Fee Advanced Course Lecture Notes
1990, ed. T. J.-L. Courvoisier & M. Mayor (Berlin: Springer-Verlag), 161



220 CHAPTER 8. REFERENCES

Blandford, R. D., & Payne, D. G. 1982, MNRAS, 199, 883

Blitz, L. 1993, in Protostars and Planets III, ed. E.H. Levy & J.I. Lunine (Tucson, Univ.
of Arizona Press), 125

Bondi, H. 1952, MNRAS, 112, 195
Prandenburg, A., Nordlund, A., Stein, R. F., & Torkelsson, U. 1995, ApJ, 446, 741
Cairns, R. A. 1979, J. Fluid Mech., 92, 1

Camenzind, M. 1990, Reviews in Modern Astronomy, Vol. 3, ed. G. Klare (Heidelberg:
Springer), 234

Cameron, A. G. W. 1978, Moon & Planets, 18, 5

Cap, F. F. 1976, Handbook on Plasma Instabilities (New York: Academic Press)
Case, I¥. M. 1960, Phys. Fluids, 3, 143

Chandrasekhar, S. 1960, Proc. Natl. Acad. Sci., 46, 253

Chandrasekhar, S. 1961, Hydrodynamic and Hydromagnetic Stability (Oxford: Claren-
don), 384

Chandrasekhar, S. 1964, ApJ, 139, 664

Chanmugam, G. 1979, MNRAS, 187, 769

Christodoulou, D. M. 1993, AplJ, 412, 696

Christodoulou, D. M., & Narayan, R. 1992, ApJ, 388, 451
Clement, M. J. 1964, ApJ, 140, 1045

Coleman, C. S., Kley, W., & Kumar, S. 1995, MNRAS, 274, 171
Coroniti, F. V. 1981, ApJ, 244, 587

Cox, J. P. 1980, Theory of Stellar Pulsation (Princeton: Princeton Univ. Press), Chp.
17

Craik, A. D. D. 1985, Wave Interactions and Fluid Flows (Cambridge: Cambridge Univ.
Press)



CHAPTER 8. REFERENCES 221

Cross, R. 1988, An Introduction to Alfvén Waves (Bristol: Hilger). Chp. 8
Curry, C., & Pudritz, R.E. 1995, ApJ, 453, in press
Curry, C., Pudritz, R.E., & Sutherland, P.G. 1994, ApJ, 434, 206 (CPS)

Drazin, P. G., & Reid, W. H. 1981, Hydrodynamic Stability (Cambridge: Cambridge Univ.
Press)

Drury, L. O’C. 1985, MNRAS, 217, 821

Dubrulle, B., & Knobloch, E. 1992, A & A, 256, 673

Dubrulle, B., & Knobloch, E. 1993, A & A, 274, 667

Dyson, J., & Schutz, B. F. 1979, Proc. Roy. Soc. Lond. A, 368, 389

Edwards, S., Cabrit, S., Strom, S. E., Heyer, L, Strom, K. M., & Anderson, E. 1987,
AplJ, 321, 473

Elmegreen, B. G. 1982, ApJ, 253, 634
Elmegreen, B. G. 1987, ApJ, 312, 626

Falgarone, E., & Puget, J. L. 1988, in Galactic and Extragalactic Star Formation, ed.
R. E. Pudritz & M. Fich {(Dordrecht: Kluwer), 195

Ferraro, V. C. A. 1937, MNRAS, 97, 458
Foglizzo, T., & Tagger, M. 1994, A & A, 287, 297

Frank, J., King, A. R., & Raine, D. J. 1985, Accretion Power in Astrophysics (Cambridge:
Cambridge Univ. Press) (FKR)

Fricke, K. 1969, A & A, 1, 388

Fridman, A. M., & Polyachenko, V. L. 1984, Physics of Gravitating Systems. 2 vols. (New
York: Springer)

Friedjung, M. 1983, A & A, 146, 336
Frieman, E., & Rotenberg, M. 1960, Rev. Mod. Phys., 32, 898 (FR)

Galeev, A. A., Rosner, R., & Vaiana, G. S. 1979, ApJ, 229, 318



222 CHAPTER 8. REFERENCES

Galli, D., & Shu, F. H. 1993, AplJ, 417, 220
Gammie, C. F., & Balbus, S. A. 1994, MNRAS, 270, 138 (GB)
Gat, O., & Livio, M. 1992, ApJ, 396, 542

Genzel, R. 1989, in IAU Symposium 136, The Center of the Galaxy, ed. M. Morris {Dor-
drecht: Kluwer), 393

Genzel, R., & Stutzki, J. 1989, ARAA, 27, 41

Glatzel, W. 1987a, MNRAS, 225, 227

Glatzel, W. 1987b, MNRAS, 228, 77

Glatzel, W. 1988, MNRAS, 231, 795

Goldreich, P., & Lynden-Bell, D. 1965, MNRAS, 130, 126

Goldreich, P., & Narayan, R. 1985, MNRAS, 213, 7P

Goldreich, P., Goodman, J., & Narayan, R. 1986, MNRAS, 221, 339 (GGN)

Goldsmith, P.F., & Arquilla, R. 1985, in Protostars & Planets II. ed. D.C. Black & M.S.
Matthews (Tucson, Univ. of Arizona Press), 137

Goodman, J., & Narayan, R. 1988, MNRAS, 231, 97
Goodman, J., & Xu, G. 1994, Apl, 432, 213
Goossens, M., Smeyers, P., & Denis, J. 1976, Astrophys. Sp. Sci. 39, 257

Hartmaun, L. 1994, in Theory of Accretion Disks - 2, ed. W. J. Duschl, J. Frank, F.
Meyer, E. Meyer-Hofmeister, & W. M. Tscharnuter (Dordrecht: Kluwer), 19

Hartmann, L., & Kenyon, S. J. 1987, ApJ, 312, 243
Hawley, J. F. 1987, MNRAS, 225, 677

Hawley, J. F. 1991, ApJ, 381, 496

Hawley, J. F., & Balbus, S. A. 1991, ApJ, 376, 223

Hawley, J. F., & Balbus, S. A. 1992, ApJ, 400, 595



CHAPTER 8. REFERENCES 223

Hawley, J.F., Gammie, C.F., & Balbus, S.A. 1995, ApJ, 440, 742
Hayashi, C. 1981, Prog. Theor. Phys. Suppl., 70, 35

Heiles, C. 1987, in Interstellar Processes, ed. D.J. Hollenbach & H.A. Thronson, Jr. (Dor-
drecht, D. Reidel), 171

Heiles, C., Goodman, A.A., McKee, C.F., & Zweibel, E.G. 1993, in Protostars and Planets
III, ed. E.H. Levy & J.I. Lunine (Tucson, Univ. of Arizona Press), 279

Hildebrand, R. H. 1983, QJRAS, 24, 267
Hildebrand, R. H., et al. 1990, ApJ, 362, 114

Hoiland, E. 1941, Avhandliger Norske Videnskaps-Akademi i Oslo, I, Math.-Naturv. Klass..
No 11,1

Horne, K. 1994, in Theory of Accretion Disks - 2, ed. W. J. Duschl, J. Frank. F. Meyer, E.
Meyer-Hofmeister, & W. M. Tscharnuter (Dordrecht: Kluwer), 77

Horne, K. 1995, A & A, in press

Howard, L.N., & Gupta, A.S. 1962, J. Fluid Mech. 14, 463

Hoyle, F., & Lyttleton, R. A. 1939, Proc. Camb. Phil. Soc., 35, 405
Jackson, J. D. 1975, Classical Electrodynamics (New York: Wiley), Ch. 10

Jaffe, W., Ford, H., Ferraresse, L., van den Bosch. F., & O'Connell, R. 1993, Nature,
364, 213

Jaroszynski, M. 1988, Acta Astron., 38, 289

Jaroszynski, M., Abramowicz, M. A., & Paczynski, B. 1980, Acta Astrow., 30, 1
Jin, L. 1993, unpublished preprint

Kaisig, M., Tajima, T., & Lovelace, R.V.E. 1992, ApJ, 386, 83

Kenyon, S. J., & Hartmann, L. 1987, ApJ, 323, 714

Knobioch, E. 1992, MNRAS, 2535, 25P

Kolmogorov, A. N. 1941, Compt. Rend. Acad. Sci. URSS, 30, 301



224 CHAPTER 8. REFERENCES

Konigl, A. 1991, AplJ, 370, L39

Kovetz, A. 1966, ApJ, 146, 462

Krolik, J., & Begelman, M. 1988, ApJ, 329, 702

Kruskal, M., & Schwarzschild, M. 1954, Proc. Roy. Soc. Lond. A, 223, 348
Kumar, S., & Coleman, C. S. 1993, MNRAS, 260, 323

Kumar, S., Coleman, C. S., & Kley, W. 1994, MNRAS, 266, 379

Kutner, M.L., Tucker, K.D., Chin, G., & Thaddeus, P. 1977, ApJ, 215, 521

Lada, C. J. 1991, in The Physics of Star Formation and Early Stellar Evolution, ed. C. J.
Lada & N. D. Kylafis (Dordrecht: Kluwer), 329

Landau, L. D., & Lifshitz, E. M. 1959, Fluid Mechanics (London: Pergamon)
Laplace, P. 5. 1802, Celestial Mechanics, trans. N. Bowditch (New York: Chelsea)
Lightman, A. P. 1974, ApJ, 194, 429

Lightman, A. P., & Eardley, D. M. 1974, ApJ, 187, L1

Lin, D. N. C., & Papaloizou, J. 1980, MNRAS, 191, 37

Livio, M., & Shaviv, G. 1977, A & A, 55, 95

Lubow, S.H., Papaloizou, J.C.B., & Pringle, J.E. 1994, MNRAS, 268, 1010
Lubow, S.H., & Spruit, H C. 1995, AplJ, 445, 337

Lynden-Bell, D., & Ostriker, J. P. 1967, MNRAS, 136, 293

Lynden-Bell, D., & Pringle, J. E. 1974, MNRAS, 168, 603

Madau, P. 1988, ApJ, 327, 116

Mark, J. W.-K. 1976, ApJ, 256, 363

Malkan, M. A., & Sargent, W. L. W. 1982, ApJ, 254, 22

Matsumoto, T., & Tajima, T. 1995, AplJ, 445, 767 (MT)



CHAPTER 8. REFERENCES

3]
(A
[T

Matsumoto, T., Nakamura, F., & Hanawa. T. 1994, PASJ. 4G, 243

McCaugrean, M. J., Rayner, J. T., Zinnecker, H., & Stauffer. J. R. 1995, in Disks and
Outflows Around Young Stars, ed. S. Beckwith & J. Staude (in press)

Michael, D. H. 1954, Mathematika, 1, 45

Moffatt, H. K. 1978, Magnetic Field Generation in Electrically Conducting Fluids (Cam-
bridge: Cambridge Univ. Press)

Moncrief, V. 1980, ApJ, 235, 1038
Moss, D. L., & Tayler, R. J. 1969, MNRAS, 1435, 217
Myers, P. C., & Goodman, A. A. 1988, ApJ, 326, L27

Narayan, R., & Goodman, J. 1989, in Theory of Accretion Disks, ed. F. Meyer, W. .
Duschl, J. Frank, & E. Meyer-Hofmeister (Dordrecht: Kluwer), 231 (NG)

Narayan, R., Goldreich, P., & Goodman, J. 1987, MNRAS, 228, 1
Natta, A. 1993, ApJ, 412, 761

Netzer, H. 1990, in Active Galactic Nuclei, Saas-Fee Advanced Course Lecture Notes 1990,
ed. T. J.-L. Courvoisier & M. Mayor (Berlin: Springer-Verlag), 57

Osterloh, M., & Beckwith, S. V. W. 1995, in Disks and Outfows Around Young Stars,
ed. S. Beckwith & J. Staude (in press)

Paczynsky, B., & Wiita, P. J. 1980, A & A, 88, 23

Papaloizou, J. C'. B., & Pringle, J. E. 1984, MNRAS, 208, 721 (PP 1984)

Papaloizou, J. C. B., & Pringle, J. E. 1985, MNRAS, 213, 799 (PP 1985)

Papaloizou, J., & Szuszkicwicz, E. 1992, Geophys. Astrophys. Fluid Dynamics, 66, 223
Parker, E. N. 1966, ApJ. 145, 811

Parker, E. N. 1979, Cosmical Magnetic Fields {Oxford: Clarendon)

Pelletier, G., & Pudritz, R.E. 1992, AplJ, 394, 117

Pier, E., & Krolik, J. 1992, 399, L23



226 CHAPTER 8. REFERENCES

Piran, T. 1978, ApJ, 221, 652
Pitts, E., & Tayler, R.J. 1985, MNRAS, 216, 139
Pudritz, R. E., & Norman, C. 1986. ApJ, 301, 571

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. 1992, Numerical
Recipes in FORTRAN (2nd Edition) (Cambridge: Cambridge Univ. Press), 749

Pringle, J. E. 1981, ARAA, 19, 137
Pringle, J. E., Rees, M. J., & Pacholczyk, A. G. 1973, A & A, 29, 179
Rayleigh, Lord. 1916, Proc. Roy. Soc. Lond. A, 93, 148

Rees, M. J., Begelman, M. C., Blandford, R. D., & Phirney, E. S. 1982, Nature, 295,
17

Ross, D. W,, Chen, G. L., & Mahajan, S. M. 1982, Phys. Fluids, 25, 652
Rowan-Robinson, M., Lock, T. D., Walker, D. W., & Harris, 8. 1986, MNRAS 222, 611
Ruden, S. P., & Lin, D. N. C, 1986, ApJ, 308, 883

Ryu, D., & Goodman, J. 1992, ApJ, 388, 438

Sargent, A. L., & Beckwith, S. V. W, 1991, AplJ, 382, L3l

Schmidt, G. 1966, Physics of High Temperature Plasmas (New York: Academic Press),
Chp. 5

Schramkowski, G. P. 1994, Ph. D. thesis, Universiteit Utrecht
Schwarzschild, K. 1906, Gottingen Nachr., 41

Schwarzschild, M. 1958, Structure and Evolution of the Stars (Princeton: Princeton Univ.
Press), §IL.7

Sekiya, M., & Miyama, S. M. 1988, MNRAS, 234, 107
Shakura, N. I., & Sunyaev, R. A, 1973, A & A, 24, 337
Shakura, N. L, & Sunyaev, R. A. 1976, MNRAS, 175, 613

Shields, G. A. 1978, Nature, 272, 706



CHAPTER 8. REFERENCES 7

Shu, F. H. 1974, A & A, 33, 55

Shu, F. H. 1991, in The Physics of Star Formation and Early Stellar Evolution, ed. C.
J. Lada & N. D. Kylafis (Dordrecht: Kluwer), 365

Shu, F. H. 1992, The Physics of Astrophysics, Vol. II {Mill Valley: University Science
Books)

Shu, F. H., Tremaine, S., Adams, F. C., & Ruden, S. P. 1990, ApJ, 358, 495
Sikora, M., & Wilson, D. B. 1981, MNRAS, 197, 529

Simon, R. 1958, ApJ, 128, 375

Smith, B. A., & Terrile, R. J. 1984, Science, 226, 1421

Solberg, H. 1936, Procés-Verbaux Ass. Météor., U.G.G.I., 6¢ Assemblée Générale (Ed-
inburgh), Mém. et Disc. 2, 66

Spitzer, L. 1962, Physics of Fully Ionized Gases (New York: Wiley)

Spruit, H. C., Sichle, R., & Papaloizou, J. C. B. 1995, MNRAS, in press
Sridhar, S., & Goldreich, P. 1994, ApJ, 432, 612

Stella, L., & Rosner, R. 1984, AplJ, 277, 312

Stepinski, T. F., Reyes-Ruiz, M., & Vanhala, H. A. T. 1993, Icarus, 106, 77
Stone, J. M., & Norman, M. L. 1994, AplJ, 433, 746

Strom, K. M., Strom, S. E., Edwards, S., Cabrit, S., & Skrutskie, M. F. 1989, AJ, 97,
1451

Tagger, M., Pellat, R., & Coroniti, F. C. 1992, ApJ, 393, 708

Tassoul, J.-L. 1978, Theory of Rotating Stars (Princeton: Princeton Univ. Press)
Tayler, R. J. 1957, Proc. Phys. Soc. (London), B70, 1049

Tayler, R. J. 1973, MNRAS, 161, 365

Tayler, R. J. 1980, MNRAS, 191, 135



228 CHAPTER 8. REFERENCES

Tout, C. A., & Pringle, J. E. 1992, MNRAS, 259, 604 (TP)
Treves, A., Maraschi, L., & Abramowicz, M. 1988, PASP, 100, 427

Tscharnuter, W. M., & Boss, A. P. 1993, in Protostars and Planets III, ed. E.H. Levy
& J.1. Lunine (Tucson, Univ. of Arizona Press), 921

Uchida, Y., & Shibata, K. 1985, PASJ, 37, 515
Velikhov, E. 1959, Sov. Phys. JETP, 36, 1398 (p. 995 in English translation)

Wade, R. A., & Ward, M. J. 1985, in Interacting Binary Stars, ed. J. E. Pringle & R.
A. Wade (Cambridge: Cambridge Univ. Press), 129

Wardle, M., & Konigl, A. 1990, ApJ, 362, 120

Woltjer, L. 1990, in Active Galactic Nuclei, Saas-Fee Advanced Course Lecture Notes 1990,
ed. T. J.-L. Courvoisier & M. Mayor (Berlin: Springer-Verlag), 1

Zahn, J.-P. 1990, in Structure and Emission Properties of Accretion Disks, ed. J.-P. L.
C. Bethout, S. Collin-Souffrin, & J. T. T. Van (Editions Frontieres), 87

Zhang, W., Diamond, P. H., & Vishniac, E. T. 1994, ApJ, 420, 705

Zurek, W. H., & Benz, W. 1986, ApJ, 308, 123



