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All day I follow 
Watching the swift dark furrow 
That curls away before me, 
And care not for skies or upturned flowers, 
And at the end of the field 
Look backward 
Ever with discontent. 
A stone, a root, a strayed thought 
Has warped the line of that furrow -
And urge my horses 'round again. 

Sometimes even before the row is finished 
I must look backward; 
To find, when I come to the end 
That there I swerved. 

Unappeased I leave the field, 
Expectant, return. 

The horses are very patient. 
When I tell myself 
This time 
The ultimate unflawed turning 
Is before my share, 
They must give up their rest. 

Someday, someday, be sure 
I shall turn the furrow of all my hopes 
But I shall not, doing it, look backward. 
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Abstract 

We investigate the global stability of a differentially rotating fluid shell threaded by 

magnetic fields to linear perturbations. This system models an accretion disk far from its 

vertical boundaries. To focus on the direct interaction between the magnetic field and dif

ferential rotation, the stability analysis employs an equilibrium model of homogeneous and 

incompressible fluid which allows these phenomena to be studied in isolation. Depending 

on the degree of internal pressure support, disks may be either "thick" or "thin" and both 

possibilities are considered here. The magnetic field exterior to the fluid has an effect on 

the radial boundary motion, and we derive the appropriate boundary conditions. 

The first interaction of interest is the axisymmetric instability of Velikhov and Chan

drasekhar. It has both local and global manifestations, the latter of which can be stabilized 

for all perturbations if and only if the equilibrium magnetic field strength is above a certain 

threshold value, which we calculate in our model for a wide range of equilibrium parameters. 

The growth rates of the unstable modes are always less than, but comparable to, the cor

responding local growth rates. The former are also considerably higher for free boundaries 

than for the rigid configurations considered by other authors. The connection between the 

global and local characters of the instability is fully elucidated. 

These results are generalized from a purely vertical field to the case when an azimuthal 

magnetic field is present. In most cases, the azimuthal field tends to stabilize the VC in

stability, although strong fields (Alfven speed of order the characteristic rotational speed) 

are required for complete stabilization. We find an additional strong field instability that 

arises when the azimuthal Alfven speed exceeds the characteristic rotational speed. For 

freely-bounded configurations, this instability resembles the sausage instability for inter

penetrating fields in plasma physics. 

Other interesting interactions appear in the presence of nonaxisymmetric perturbations. 

The global, dynamical instability of Papaloizou and Pringle, previously known to exist 

only in non-magnetized models of thick disks, is shown to have a magnetic counterpart. 

Indeed, this instability grows much more rapidly than in the corresponding hydrodynamic 

case. There also exist two additional types of unstable modes not present in hydrodynamic 
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disks. The basic instability mechanism for these modes appears to be waye oyer-reflection 

between the boundaries and one or more of the singular Alfven radii that can lie within the 

si ell. These Alfven resonances have a similar role to the corotation resonance in the pnrely 

hydrodynamic disk. We find, as in the a..,isymmetric case, that highly localized modes are 

fastest growing; however, they do not exceed the a..,isymmetric growth rates for any of the 

system parameters examined. 

Although all of the instabilities we found grow on the dynamical timescale, they may 

not be catastrophic to accretion disks. Indeed, the highly localized nature of the fastest 

growing modes suggests that these modes do not lead to large-scale breakup, but rather 

serve to "stir np" the fluid locally. Thus our results support the oft-mentioned conjecture 

that these magnetic instabilities could lead to turbulence. The globally unstable modes we 

found have quite different implications, among them the possibility that large-scale magnet it

field generation (which we demonstrate in the linear growth regime) could obviate the need 

for the a-effect in standard dynamo theory. 
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