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ABSTRACf

a-Hydroxyalkyl diazenes and a-hydroperoxyallcyl diaz.enes are known for a long time

as initiators for fn:e radical polymerization. Their application as suitable radical precursors

for kinetic studies such as the radical-molecule and radical-radical reactions are not

well-exploited. This thesis deals mainly with the rate constants for a number of

radical-molecule reactions studied by generating radicals in solution from suitable radical

precursors mentioned above. The initiation mechanism for the decomposition of

a-hydroxyalkyl diazenes was also investigated.

Alkyl(l-hydroperoxy-l-methylethyl)diazenes (154) [(CH3hC(OOH)N=NR]:· a. R =

c-~Hs-CH2; b, R = c-GJHs-CD:z; c, R = CH2=CH-(0I2~-CH2; d, R =CH3(CH2h-CH2 and

phenyl(l-hydroperoxy-l-methylethyl)diaz.ene (l54e) were prepared in solution by

autoxidation of the corresponding hydrazones of acetone. They (l54a-e) were convened to

the corresponding alkyl(l-hydroxy-l-methylethyl}diazene (155a-d) and

phenyl(1-hydroxy-l-methylethyl}diazene (155e) by reduction with biphenyl phosphine.

The radical chain decomposition of 5-hexenyl(1-hydroxy-I-methylethyl)diaz.ene

(155c) in carbon tetrachloride and product analysis gave the rate constant <ka> for chlorine

abstraction by the S-hexenyl radical. The rate constant was calculated from the product

composition and the known rate constant for the cycli7ation of the S-hexenyl radical. For the

tcmperature rangc 274-353 K, the rate constant is given by 10g(kdM·l s·l) = (8.4 ± 0.3) - (6.2

± 0.4)/0, where 9 = 2.3 kcaVmol, which leads to ka¢C) =7.2 x 103 M·l s·l.

Rearrangement of cyclopropylmethyl radical to the but-3-enyl radical was used to

clock brominc and iodine abstraction reactions from a number of substrates.

Cyclopropylmethyl(l-hydroxy-l-methylethyl}diazene (155a) was used as the source for

~yclopropylmcthylradical.

Decomposition of lSSa in hexafluorobenzene or in dichloromethane containing

bromotrichloromcthan~ and product analysis enabled the calcv1.ation of the rate constant

(leDr) for bromine abstraction by cyclopropylmcthyl radicals from bromottichloromcthanc.
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The rate constam was calculated from the product composition and from the known rate

constant for the isomerization of the cydopropylmethyl radical. For the temperature range

253-341 K, the rate constant is given by log (kB/Mol sol) =9.75 - 2.1l/0, where 0 = 2.3 RT

kcaVmol, which gives kar =2 x lOS Mol S·I at 25°C.

Rate constants (kar) for bromine abstractions and the rate const3J1t.s (1<1) for iodine

abstractions from various substrates were also detennincd by the use of the

cyc1opropylrnethyl clock. The rate constants (in M·I S·l units) at 80ac are: karCCHBrJ) = 2.86 :.<

107; kBr(CHCl2Br) = 1.07 x 10
'
; kI<CH212j = 2.63 x 10

'
; kI<CH3I) =3.9 x lOS; kI<C6HsCH20 = 1.2 X

108; kl«C!f3l2CH1) =1.4 x 10
'
; kl(cf;JCH21) =6.6 x 106; kI«CHJ>JO) =6.5 x 10' .

Non-chain decomposition of 155d and 155e in solutions c6ntaining

bromonichloromethane and 1,I,3,3-tetramethylisoindolin-2-yloxyl (86) afforded butyl

bromide and bromobenzene, in yields determined by the concenlrations of 86 and BreaJ.

From product yields and from the known rate constants for coupling of radicals with 86, the

rate constants for the attaclc (at 800C) of butyl (kBr(Bu) = 0.26 x 109 M'l S·l) and phenyl

(kD~Ph) = 1.55 x 109 M·t s'l) radicals were detennined.

Generation of the deuterium-labelled cyclopropylmethyl radical (c-CJHS-CO:v f~m

lSSb in a solution containing me spin trap, 1.-methyl-4-nitroso-3,5-diphenylpyrazole (123),

resulted in the fonnation of the spin adduets, [l-methyl-3,5-diphenyl]-4-pyrazolyl­

-[1 '-cyclopropyl-l ',1 '-dideuterio]methyl nitroxyl (190) and [1-methyl-3,S-diphenyl)-

-4-pyrazolyl-[4',4'-dideuterio-but-3-enyl] nitroxyl (191) radicals. From the relative

concentrations of the two spin adducts determined from esr spectral measurements, the rate

constant (leT) for spin trapping was determined. For the temperature range 283-333 K, the rate

constant was calculated as log (kT) =(10.4 ± 0.4) - (3.6 ± 0.5)/8, where 8 =2.3 RT IecaVmol,

which gives kT = 7.7 X 107 M'I s-1 at 4QOC.

The initiation mechanism for the decomposition of «-hydroxyalkyl diazcne was

investigated using phenyl(l-hydroxy-l-methylethyl)diazene (lSSe). The results of various

kinetic studies strongly suggested that azocarbinols decompose by the reversible formation of

acetone and the I-substituted-l-H diazcnc (197).
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CHAPTER 1

INTRODUCfION

This Section of the thesis is intended to introduce a few selecteu free-radical

processes that are relevant for a proper evaluation of the snlall, but significant, contribution

that the author has made in the mechanistic and kinetic areas of free radical chemistry. Frrst

of all, a brief survey of the evolution of free radical chemistry over the century will be

presented (Section 1.0) with emphasis on the recent, rapid development in the application of

free radicals in synthesis, and with the suggestion that the availability of the rate constants for

a number of radical processess has contributed to the design and execution of several

synthetic projects. However, it should be emphasized that for a larger number of key

reactions in free radical synthesis, the rate constants have yet to be detennined.

The objective of this thesis project was to fill in some gaps in the available kinetic

data for a number of radical-molecule reactions in solution such as halogen atom abstractions

and addition to the nitroso group (See Section 2) and also to explore the potential of some

a-hydroxydiazenes (Section 1.5.2) ,as convenient sources of radicals for the kinetic studies.

The sections that follow are arranged in such a way as to familiarize a new researcher with

the significance of some intramolecular radical reactions (Section 1.2) which can be used as

'clocks' (Section 1.3) for measuring the absolute rate constants for a variety of

radical-molecule reactions (Section 1.4). The importance of some diazenes, especially the

a-hydroxy and a-hyroperoxy diazenes which are used as the source of free radicals for the

kinetic and mechanic studies reported in this thesis, is discussed;', Section 1.5.

1.0.0. FREE RADICALS: A BRIEF HISTORY

Free radicals have a long standing history, dating back to 1900, when Gomberg!

discovered the fust free radical, the triphenylmethyl radical, 1. Now the tenn free radical or

simply radical refers to species with one or more unpaired electrons associated with non
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metals like carbon, halogen, oxygen. nitrogen. phosphorous, sulphur or a few metal atoms

such as silicon, tin, or germanium bearing organic groups. The most extensively studied free

radicals are the carbon-<:entered radicals and this thesis deals mainly with them. There are a

number of reviews2 that deal with the fundamentals of various free radical processes, and

they can serve as resource materials for an overall understanding of this subjecL

The initial growth in the field of free radical chemistry was very slow, probably

because of the lack of understanding of the subject and also because of the fact that radical

reactions arc extremely fast and therefore their study was not easy. There had been

consider:lble effort, in the beginning, in obtaining stable free radicals such as triarylmethyl

(eg. triphenylmethyl, 1>3.4 radicals and diphenylpiaylhydrazyl (DPPH. 2)5·6 radicals. Apart

from that, the knowledge about radicals was scattered and studies of free radicals were

isolated incidences in the early stages of free radical chemistry. The formation of methyl
/

radicals as transient intennediates in the decomposition of tetramelhyllead was demonstrated

by Panelh7 as early as 1929. Rice and Herzfeld8 appear to be the first to report the

involvement of free radicals in many gas-phase pyrolysis reactions. A few years later, the

fll'St comprehensive report about free radical chemistry was published by Hey and Waters.9

Many unanswered mechanistic problems. which existed at that time were interpreted in tenns

of free radical processes. The anti-Marlcownikoff addition of hydrogen bromide to olefins in

the presence of peroxides (Scheme 1) was explained by Kharasch10 as being the result of a

free radical chain process.

The importance of free radicals in vinyl polymerization had been recognized by

Flory.11 and that led him to the publication of one of the most significant papers on the



(Markownikoff product)
+HBr -

3

No Peroxide
~

+ Peroxide

Br

A
Br

~
(anti-Markownikoff product)

Scheme 1

kinetics of the flISt free radical polymerization reaction.12

Even though the new ideas proposed and propagated in the early publications did not

get enough recognition or immediate acceptance. they fonned the basis for much significant

research in many laboratories. The last two decades especially witnessed a tremendous

accelerating growth in the chemistry of free radicals. A deeper understanding of the

mechanistic and kinetic aspects of free radical chemistry has been made possible through a

number of text books written by Walling2d Pryof2' and Huysefli and a collection of

monographs edited by Kochi.2k "Advances in Free Radical Chemistry" is a series published

on selected topics in this field.

Over the years, several processes have been developed for generating radicals in

solution.13 Thermal or photochemical decomposition of peroxides14 and azo compounds (see

Section 1.5) are still the most convenient and widely used procedures for generating radicals.

Of all the different types of radical reactions. radical rearrangements (Section 1.2) as

well as various inter-molecular radical reactions (Section 1.4) are of special interest not only

to physical-organic chemists but also to synthetic chemists for various reasons. The

availability of rate constants for many of the above-mentioned radical processes15 has opened

a wider horizon for the application of radicals, especially in synthesis.16

Until recently, the practical application of free radical chemistry was mainly confined

to one of the world's largest chemical industries, namely the plastic and polymer industry.

The wide application, in the last few years, of free radicals in the synthesis of target
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molecules.l 6-JO including many natural products.20-26 has triggered the growth of many

research projects in different laboratories. There has also been a tremendous growth in the

mechanistic and kinetic areas of radical chemistry as well. IS,31-33 The potential for

application of free radicals in synthesis has been greatly increased as a result of kinetic data

available for various free radical processes.1S•19 A balanced interplay of rate constants and

concentrations of reactants are necessary for the development of a useful free radical process

in synthesis.16

Due to the development of various experimental procedures in conjunction with

modern technology. it has been possible for detailed studies on many radicals and radical

processes. Electron spin resonance (esr) spectroscopy (see Section 1.1) is a very powerful

and sensitive technique for detecting radicals.34 Concentrations of radicals as low as 10-7 M

can be detected by the esr spectroscopy. Kinetic esr spectroscopy is a powerful technique

used to measure rate constants for many free radical reactions.3S,36

1.1.0. DETECfION OF FREE RADICALS BY ESR SPECfROSCOPY

Of all the available techniques.37-40 electron spin resonance (esr) spectroscopy'u is the

most powerful and extensively used method for the. detection of free radicals in solution. For

a detailed tteatment of the subject of CST spectroscopy and its applications. reference can be

made to a number of recent teviews.41 This section deals only with the most basic principles

with a view to highlight a few teons which are usually encountered in cst spectral analysis.

Basic Principles

Spinning of a charged species such as an eleclron produces a magnetic momenL The

total magnetic moment produced by the spin of an elecuon in a radical is the result of two

contributions; (a) the spin of the electron about its own orbital axis (spin magnetic moment)

and (b) the motion of the orbit about the nucleus of the atom (orbital magnetic moment). The

orbital contribution to the total magnetic moment in most cases is very small when compared

to the spin magnetic momenL
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When placed in a magnetic field of strength II. the radical may orient itself in the two

possible energy states (ms= ± 1(2) due to the interaction of the electronic magnetic moment

with the applied field Electrons with magnetic moments in the direction of the applied field

have lower energy than those with opposing magnetic moments. The separation of the energy

states, ~, increases with the increasing magnetic field, H, according to the eq 1.

[1] ~ = g~H

In eq.l, g is the gyromagnetic ratio (called the g-factor), a spectroscopic constant, and

Pis the Bohr magneton, a constant given by p= eJJ'}.7tmC = 9.27 x 10 -11 erg Gauss-I, where e

E

t
o

......--­_..................,..................
...---.,:,e:' ... - AE =g~H

---- .------ ...... ......---... ...._-

m,=+l{2

rn,=-lfl

o H

Fig. 1 : Splitting of electron energy levels as a function of field strength, H

is the charge on the electron, It, is Planck's constant, rn is the electronic mass, and c is the

speed of light Resonance absorption of radiation (of frequency u) promoting an electron

from the lower to the upper spin state occurs when the energy of the radiation (A.u) equals the

energy difference between the two states, that is when A.u = gJJH. The splitting of the single

energy level for an electron as a funellan of the applied field H is given in Fig. 1.

The two most important fundamental quantities that are necessary for the

interpretation of an esr spectrum arc (1) the g-faetor and, (2) the hyperfinc splitting constants.












































































































































































































































































































































































































































