


PSEUDO-DIFFERENTIAL OPERATORS WITH
ROUGH COEFFICIENTS

By
LUQI WANG

B.Sc., M.Sec.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree
Doctor of Philosophy

McMaster University
July 25, 1997




PSEUDO-DIFFERENTIAL OPERATORS WITH
ROUGH COEFFICIENTS



DOCTOR OF PHILOSOPHY (1997) McMASTER UNIVERSITY

(Mathematics) Hamilton, Ontario
TITLE: Pseudo-Differential operators
AUTHOR: Luqi Wang

B.Sc. (Chinese University of Sci. and Tech., P.R. China)
M.Sc. (Anhui University, P.R. China)

SUPERVISOR: Professor Eric Sawyer

NUMBER OF PAGES: ix, 66

il




Abstract

The theory of pseudo-differential operators is one of the most important tools
in modern mathematics. It has found important applications in many mathe-
matical developments. It was used in a crucial way in the proof of the Atiyah-
Singer Index theorem in [AtSi] and in the regularity of elliptic differential equa-
tions. In the theory of several complex variables, pseudo-differential operators
are indispensable in studying the 3—Neumann problem. The theory of subel-
liptic and hypoelliptic diferential operators achieved its current satisfactory
state largely because of pseudo-differential operators. In the solution to the
local solvability problem for differential equations by Beals-Fefferman [BeFe],
pseudo-differential operators played the key role. Many boundary value prob-
lems for differential equations can be reduced to pseudo-differential equations,
see for example, Hérmander [Hor2]. Roughly speaking, almost everything in-
volving pseudodifferential operators can be reduced to two parts: the mapping
properties and the compositions of the associated special pseudo-differential
operators.

In this thesis, we consider the mapping properties and symbolic calculus
of an important class of pseudo-differential operators, the symbolic class of
Hormander type with rough coefficients. We will prove some new results for

these operators. These operators arise naturally from problems in nonlinear
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partial differential equations. After the introduction of the classical symboi
class ST% in [KohNi], Hérmander considered symbolic class S§7% in [Horl].
Everitually, such classes of pseudodifferential operators played a key role in
the local solvability problem for differential operators (see Beals-Fefferman
[BeFe]). It is observed by Guan-Sawyer in [GuSal] that the oblique derivative
problem can be reduced to the problem of pseudodifferential equations on the
boundary with a parametrix in the class S;’j% . That discovery led them to
establish complete optimal regularity for the oblique derivative problem with
smooth data. Later, they used the class C¥ST% to study some nonlinear oblique
derivative problems in [GuSa2]. While observing that the symbols arising here
lie in the symbol class C’\Sf’ L5 P. Guan and E. Sawyer [{GuSal] discovered that

such symbols actually behave much better than C "Si’ L-
12
Indeed,

8:7(z,€) = — { fi(z0)(x,0)Q(<,0,£)db + [} a(<,0)(8.Q)(<,6,£)dd } e~ Joolz 0@z 00028

=n+T72

where , € C*S 1% L and € C ’\‘15? e Thus 7 decomposes into two pieces, one
term having order worse by % but no loss in smoothness, another term having
1 degree less smoothness but no loss of order. Moreover this property persists
for each of the symbols 7, and 7, etc., resulting in such symbols enjoying the
mapping properties of the better behaved class C*S?.

There have been many developments regarding the mapping properties
and compositions of symbols in the class S7%;. Specifically, the works of C.
Fefferman, C. Fefferman and E. Stein, A. Calderon and R. Vaillancourt, R.
Coifman-Y. Meyer, A. Miyachi, we refer to [St2] for the complete references.
Our results in this paper can be viewed as a further step in this direction.

In this thesis mapping properties of pseudo-differential operator are studied
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in various symbol classes.

In the first result (Theorem 2.3.1) we consider the symbol class C*1+*2 §7'g-™?
and obtain L? results extending those of [CoMe].

For the symbols in the class CVS57';, mapping properties are obtained for
H? sobolev spaces (Theorem 2.3.2) and finally we consider pseudo-differential
operators of symbol class CZ S}, and prove that they have better mapping

properties (Theorem 2.3.3).
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Notations and Definitions

We introduce here some necessary standard notations.

e R" is an n-dimensional Euclidean space of points with coordinates z =

(xls eney zn) »

B

o |z]=[(z1)* + ... + (za)]?,

% = (z1)* .. (za)™ , if @ = (Q1,...,n),aj € Zy; Z4 is the set of

non-negative integers.

Let dx = dz;...dz, is the Lebesgue measure on R".

Let £ is the dual of z; it consists of points £ with coordinates (&, ..., ) -

Similar, we let

[

o 6l =[(&) + ...+ (&7,

o £2 = (§)...(&)* ,if a =(ai,..,an),q; € Z4;2, is the set of non-

negative integers.
o df = dE,...d€, is the Lebesgue measure on R".

o fa=(a,...,an) ,a; € Zy. Wedenote |a| = a1 +...+ay; o = enl..anly

Te SN [« (=3
82 = 0g}...02".
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€ = (1+1e2)*

" For k € R, [k] denote the integer part of k.

Fourier transform f(£) = g [ e™¥4f (y) dy

Inverse Fourier transform f(y) = [ eV f (€) dy

o(z,D)f(z) = fun €70 (2,€) F(€)de

We let L2(R") = {1+ [fll, = Uns [f(2) de)¥ < o0}, 1 < p < oo, be

the standard L? space.

We let HY(R") = {f: 11° = (fm (1+15!2)%f”(f)rde)’ <oo} be

the standard Sobolev space H*.

Sobolev space H;(R"), where s is a positive integer. f € Hj(R"), if
f € LP(R") and the partial derivatives 92 f, taken in the sense of distri-
butions, belong to LP(R"), whenever 0 < |a| < s. The norm in H;(R")
is given by

£l = 3_ 182l s,

laf<s
Sobolev space HJ(R"), where s € R . A distribution f € H;(R"), if
(1- A)% f € LP(R™) and here (1 — A)§ is the one-parameter family of
pseudo-differential operators with symbols a (z,£) = (1 + lﬂz)% . The
norm in H;(R") is given by

1Al = -2y r

Lr,

We let H?(R"™), 0 < p < 0o, denote the Hardy space. HP(R") ={f: fis
an distribution, thereis a ® € S with [ ®dz # 0 so that Ms f € LP(R™)}

where My is the ®—Maximal function.
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BMQO(R"™) denote the space of functions of bounded mean oscillation.

A locally integralble function f will be said to belong to BMO if the
inequality

57 o \f(e) — faldz < A

hold for all balls B; here fg = |B|™" [g fdz denotes the mean value of f
over the ball B. || f|| gp;0 =smallest A.

Local Hardy space h?(R") (see [St2] P.134-136).

Maximal function

Mf(z)=sup= [ |f(z~y)ldy. (0.0.1)

r>0 T" Jjy<r

L? Maximal function M,

1

M f(z) = sup (% /mg |f(z - y)lzdy) " (0.0.2)
Sharp function
1
f* (2) = sup o /Q 1 (4) — foldy (0.0.3)
where
1
fo =i /Qf(y)dy (0.0.4)

If @ is cube in R", then |Q| =volume.

If @ is cube in R", then {(Q) = edge length.
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Chapter 1

Introduction

The study of pseudo-differential operators is a major part of mathematical
analysis with important applications in applied mathematics and physics. Al-
though the study of pseudo-differential operators goes back to the last century
its modern foundation is perhaps due to the fundamental work in 1965 of Kohn-
Nirenberg [KohNi| (see also Seeley [Se] and Unterberger-Bokobza [UnBo]). It
was used in a crucial way in the proof of the Atiyah-Singer Index theorem
in [AtSi] and in the regularity of elliptic differential equations. In the theory
of several complex variables, pseudo-differential operators are indispensable in
studying the 3—Neumann problem. The theory of subelliptic and hypoelliptic
differential operators achieved its current satisfactory state largely because of
pseudo-differential operators. In the solution to the local solvability problem
for differential equations by Beals-Fefferman[BeFe], pseudo-differential oper-
ators played the key role. Many boundary value problems for differential
equations can be reduced to pseudo-differential equations, see for example,
Hoérmander [Hor2]. Roughly speaking, almost everything involving pseudo-

differential operators can be reduced to two parts: the mapping properties



and the compositions of the associated special pseudo-differential operators. .

In this paper, we consider the mapping properties and symbolic calculus
of an important class of pseudo-differential operators, the symbolic class of
Hormander type with rough coefficients. We will prove some new results for
these operators. These operators arise naturally from problems in nonlinear
partial differential equations. After the introduction of the classical symbol
class ST in [KohNi], Hérmander considered the symbol class S in [Horl].
Eventually, such classes of pseudo-differential operators played a key role in
the local solvability problem for differential operators (see Beals-Fefferman
[BeFe]). In an important result on the oblique derivative problem by [GuSal],
it is shown that the solution of the problem can be reduced to a problem of
pseudo-differential operators on the boundary.

There have been many developments regarding the mapping properties and
compositions of symbols in the class S7%. Specifically, C. Fefferman, C. Fef-
ferman and E. Stein, A. Calderon and R. Vaillancourt, R. Coifman-Y. Meyer
and A. Miyachi have made fundamental contributions to the subject, we refer
to [St2] for the complete references. The results in this paper can be viewed
as a further step in this direction.

We now briefly demonstrate through some examples here how we arrive at
pseudo-differential operators. Let’s start with a constant coefficient differential
equation P (D) u(z) = f(z). If one takes the Fourier transform on both sides,
one obtains

PE)a(e) =7,
and if P (€) # 0 , we can divide both sides by P(¢) and then take the inverse

Fourier transform to get

u(@)= [P (€)7 Fie) de. (10.1)




Since the Fourier transform is given by

F&) = o [ f ) ay, (1.0:2)

(2r)"

it follows that

ww) = [etos [ ) ayp (@) de

I

[ G [ e=ep @ des ) ay

= [(PE ) @ -v)f ) dy, (1.03)

where we have denoted

—

(PE) e = 9) = g [ P () e,

Thus (1.0.1) and (1.0.3) are two expressions for the formal solution of the
differential equation P (D) u(z) = f(z). In order for these formal calculations
to be justified, one requires restrictions on both f(z) and P (z). To illustrate
one of the motivations for the study of pseudo-differential operators we present
the underlying heuristics in terms of what may be called the "freezing princi-

”

ple

Consider the solutions of the classical elliptic second-order equation

0%u (z)
(L) () = i (2) g = £ (2), (104)

where {a; ;(z)} is a matrix which is assumed to be real, symmetric and positive
definite. Let P be the inverse of L(or more precisely), LP = I + E, where [ is
the identity operator and FE is an error term which is "small” in an appropriate

sense.




To do this, fix an arbitrary point z¢, and ”"freeze” the operator L at :1:0;

that is
: Py
L, =) ai;(zo) R (1.0.5)
which may be considered a differential operator with constant coefficients.
Hence ,
Leyu(z) = Y aij (o) g“;;) = f(z), (1.0.6)

and applying the Fourier transform on both sides of (1.0.6) one obtains

(Lzott) (6) = Y aij (z0) &5 = F(£).

By inversion of the Fourier transform we obtain

u@= [, (Zx 5,51) Fleye=az,

where (Ei'j a;,j(:co)f,-fj) ' is the multiplier. To avoid the awkward ( and
largely irrelevant) singularity of this multiplier at € = 0, we introduce a
new cut-off function 7 that vanishes near the origin and equals 1 for large €.

We then define the operator P, by

(Pof) (@)= [ (Za.-.j(zo)efcj) nOf)etde  (1.07)

and observe that here the error term is actually an infinitely smoothing oper-
ator.
It is reasonable to suppose that the P we are looking for should be well

approximated by P, when z is near zo . To make this precise, we unfreeze

and define P by (Pf)(z) = (P.f)(z) , i.e. ,

(PNE)= [, (Ea,,zm) nOfQe=tde  (1.08)



The operator P so given is a prototype of a pseudo-differential operator. More-

over ,one has LP = [+ FE, , where the error operator E is "smoothing of order

17. That this is indeed the case is the main point of the symbolic calculus.
Here we briefly indicate several of the reasons why the classes S,, (in

particular S 1,1 ) are of interest.

1.1 The Heat Equation

Our underlying space will be R**! with points z = (zo, z, ey Zn). We also
write (t,z’), where t = zo and ¢’ = (zi,...,2,). Similarly we split the dual
variable § as £ = (1,¢') , with 7 =& dual to ¢ = z¢ and ¢’ = (&14..-€n) dual to

z', We consider the operator L given by

Ou X 0%

L{u) = E—EE , (1.1.9)
and try to solve the problem Lu = f by constructing an approximate inverse
P so that LP = [ + E, with an appropriately small error term E. We do
this by setting P = T,, where the symbol a is essentially the reciprocal of the

characteristic polynomial of (1.1.9) and is given by

a(z,€) = a(€) = (ir +1¢) " n(e) ; (1.1.10)

here 7 is a smooth cut-off function that vanishes near the origin and equals 1
for large £ = (7,¢’). Closely connected to the symbol a are the symbols a;;,
given by

a; ;(§) = &i;a(€), for 1<4,j<n. (1.1.11)

Then
la(€) < A(L+ €))7, (1.1.12)



upon considering £ of the form (7, '), with [¢/)* < |7|, 7 = co. When differen-
tiating (1.1.10) with the respect to any of the ¢ variables, the gain is only the
fa.cto'r (1+ IEI)'% (and not (1 + [€])™"), as is evident from taking £ = (7, €'),
with [€'|® ~ |7| = oo . Thus the best that can be said for the symbol a (z, £)
is that it belong to the class S;},, and similarly the symbols a;; belong to
S’;o. Finally, if we transform the underlying space by a smooth change of
variables (which transforms the heat equation into another "parabolic” equa-
tion), the best that we could expect from the change of variables argument
is that the corresponding symbols would be in the classes S'%'l% and SE_" L In-
deed, for o (z,£) € S7%, with the change variable z = ¢(y), the new symbol
is congruent to
& (ym) = (67" (v),' @ (y)n)

modulo a lower order term, where ® denotes the Jacobian matrix of the dif-
feomorphism ¢! : ' — Q (see [Trv]) and ‘®~! the transpose of ®~1.

Since o (z,€) € ST, the chain rule yields
L

8,5 (y,n) = 8o (47" (y),! 97 (y)n) 8,67 (y) (1.1.13)

+00 (67 (v)' 7" (v)m) 8 (‘™ (v)) n.

So
18,5 (3, )| < C |1 + |nl|™**

and we obtain 7 (y,n) € ST

1-
'2
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1.2 Cauchy-Szego kernel

The “Cauchy-Szegé kernel is a distribution represented, away from the origin.,

by the function
K@) =c(it+[))",  (t,2) e R™, (1.2.14)

the underlying complex space is C™*! and n = 2m. The Fourier transform of

K is the function

— eI’ /2 ] T>0;
K(€) = { o f (1.2.15)

if T <0.
where ¢’ is the dual variable to z’, 7 is the dual variable to z and £ = (7, &').
The symbol corresponding to the Cauchy-Szego projection is derived from
the function K(£ )-n(§), where n is a smooth cut-off function that vanishes near
the origin and equals 1 for large £ = (7, ¢’) . This function belongs to S;O. To
pass from K (€) - n(€) to the actual symbol of Cauchy-Szegé projection forces
us to consider an implicit change of variables in our formula. Thus again we

get symbols in the class $9
L

N
.

1.3 Oblique derivative problem

For example, let’s consider the model problem

Au = f in R}*?
9 a \ n+2 n+l
E—-a(x,t)g/u =g on ORI =R"™! teR,
u = h when t=0,r=0 (1.3.16)



where R}t? = {(z,t,r):z € R", ¢t ¢ R, r > 0} and ta(z,t) > 0 for all
t € R When this problem is pushed to the boundary R™*!| via the Poisson
integral, then microlocally, a parametrix for the resulting pseudo-differential

equation in given by (when f =0, h = 0)

. t t
u(z,8,0) = / eit / etelfoe@Ddog e vy arge  (1.3.17)
n 0

= [ [r@aoEr aa,

here

T (z,€) = e~ Juo@O0lel, (1.3.18)

Now

Be7 (2,€) = e~ Jorol=Odolel g (~ fi a(z,0)d8) [¢]
(1.3.19)

= e4=IG, (A (z,t,1)) I€]
where A(z,t,t') = —ftt,a(:z:,G)dG. For fixed t,t’, we have A(z,t,t') > 0 and so

0:A(z,,6)] < CA(z,1,0)* (sup |V2A(z,,1)])*

-

< CA(z,t,t)?, (1.3.20)
and we get

0.7 (2,8)] < A=W |g, (A(z, 8, 1) €]
S CeAOl(A(z,1,1)E) I¢]

< CerEtIl (A(z, 1, 1) |E|);- l§|%




< Cle=. (1.3.21)

Here we used the fact that y®e~Y is bounded, when « > 0 and y > 0. Thus,
we obtain 7 (z,£) € C*ST,.
'2

For a general domain, this operator has symbol

T(z,€) =e” o 8(26)Q(z.6.6)d0 (1.3.22)

where t and ¢’ are parameters , a € C**? is nonnegative and Q € C* is positive
and homogeneous of degree 1 in { . Using the inequality {V.a| < C |a|% , it is
easy to see that v(z,£) € C’\SI"‘%.

Finally, we point out that when P. Guan and E. Sawyer[GuSal] checked
that r(z,€6) € C ‘\S?' L they discovered that such symbols actually behave much
better than C ’\Sf' - Indeed

or@8) = —{[ (0:0(2.0)Qz.0,6)d0+ ['a(2,0) (0.0(x.6.6) do}

e~ Jora(z0)Q(z.0.£)d0

R (1.3.23)

where 1, € C"S’E% and 7, € C’\"ISR%. This means that d,7(z, &) decomposes
into one term having order worse by 1 but no loss in smoothness, and the
other term having 1 degree less smoothness but no loss of order. This property
persists for each of the symbols 7, and ,, etc., and such symbols r are said
to belong to the restricted symbol class CZ, ;"‘%. These symbols enjoy the

mapping properties of the better behaved class C*S?,.

10




We conclude this introduction with the organization of the rest of the
thesis. In the next section, we will introduce some necessary notations and
state. our main results. In Chapter 2 we will prove L? results. In Chapter 3
we will consider the symbol in class Cv 2.5, prove some L? results. In Chapter
4 we will deal with the restricted symbol classes C2, o » and prove that they

have better mapping properties than CvSTs.
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Chapter 2

Review of Known Results and

Statements of New Theorems

We begin this chapter by establishing our notations and definitions in the first
section. We then recall the relevant known theorems in the second section,

and conclude with statements of our new theorems in the third.

2.1 Definitions and Preliminaries

So far, we have used the notations S7s and CvSys freely without specify-
ing their definitions. To state our results, we introduce here some necessary

standard notations.

e Difference operator §*

&f(z)=f(z+h) - f(z). (2.1.1)

o Fractional Integral



Ihf (z) = /R ,;%dy. (2.1.2)

vl
e Identity
1 N
1- AN L = it 2.1.3
o Identity
- 6h. T (€~-n) iz-(§~1)
) tz-(§~n) __ _iz-(E—-n
ehe—m _1° =¢ ’ (2.1.4)
#(z) = su {xnf— —-c} (2.1.5
£* () = sup {inf 1 [ 1F = 2.1.5)

Definition 2.1.1 A function o belongs to the symbol class Sys , ifo =o(z,§)
is smooth for (z,€) € R™ x R™ and

02080(z,6)] < Cag (O™ zgeR5<,  (216)
for all multi-indezes a , B and some fized p and &, here (&) = (1 + |€] )5

There are some special important cases .
(1) 87, is the largest class whose corresponding operators 7' have kernel

representations (in an appropriate sense)

(TNH@) = [ K (@) fw)d, (2.1.7)

where A’ satisfies inequalities of Calderon-Zygmund type required for the sin-

gular integrals. For these operators , one has in fact that
0280K (z,y)] < Caple —y| o110 (2.1.8)

for all multi-indexes a and 3. But unfortunately, such operators are not (in

general ) bounded on L2. This is given in the following example in [St2].

13




Example 2.1.1 We shall construct our ezample in R!.

L_et ¥ € S with @(E) supported in 2-%

2 < |€] < 2% and $(€) = 1 for
2-1 < |€] < 2%. Choose aj(z) = e~ 27 gnd set

o(z,€) = i e—21ri2lx(1}(2—j§).
j=1

(2.1.9)
Noting U(2-3€) is supported in the set where 2977 < €] < 27%2, we see that.

for each £, at most one term in above formula is nonzero. Since

Iafe-Zm'Z-’rl < Aﬁgjlﬂl’

(2.1.10)
it’s easy to see o (zr,£) € S,

Nezt we choose fo to be a nonzero element of the Schwarz class S and

whose Fourier transform is supported in the set €] < 3, and let

N
fn(z) = Z(%)e”””fo(z). (2.1.11)
=4
By Plancherel’s theorem, we see that
M1
I fnllpe = (Z(]—z)) lfollz < e, asN = oo, (2.1.12)
=4
and
M1
o(z,D) fn = (Z(;)) o, (2.1.13)
=4

giving |lo (z, D) |2 = clog N; hence o (z, D) is not bounded on L2.

(2) ST, as we mentioned above in Chapter 1. Various operators arising in
2'2

the study of the local solvability problem and the subelliptic problem (e.g.

heat equation and certain operators on the Heisenberg group) are of this kind.
(3) ST, arisin
'2

g from the oblique derivative problem (see [GuSal)).

14



2.2 [P mapping properties

We now summarize some known results. While operators with symbols in
S8 are easily seen to be bounded on L2, in general operators in S, are not
bounded on L?. However for 0 < p < 1, Calderén-Vaillancourt in 1972 [CaVa]

proved that operators with symbols in 59 , are bounded on L.

Theorem 2.2.1 Let o(z,£) € S°

P ?

0<p<l,ando(z,f):R*"xR* — C
s a continuous function whose derivatives 333?0’(1:,{) in distribution sense

satisfy
08¢0 (2,6)| < Cap () zeeRr, (22.14)

for all multi-indezes o and (B ,where (€) = (1 +|§|2)5, then o (z,D) is

continuous from L*(R™) — L*(R™).

For results related to Sn
Feflerman [Fef], A. Miyachi [Miya2]):

When o(z,§) € S5 and 0 < p<1,0<6 < p, 6 <1, m = 3 (1=p).
We have that o (z, D) is weak-type (1,1); also o (z,D) : H' — L' and
o(z,D): L* - BMO.Also, if ]l <p < o0, and |p~! -2 < [n(;"—_l)], then

o(z,D):L? - L*.

we have the following (See E. Stein [St2], C.

R. Coifman and Y. Meyer [CoMe] obtained the following boundness result
for 57 If o(z,€) € S;c,%, then o(z,D) : H' — L';and o(z,D) : L[> —
BMO. Also, if 0(z,£) € 5§, 1 < p < 00, and |p~! - 27| < —2 then
o(z,D): LP — L*.

In applications, one is required to work with operators with limited smooth-
ness in the variables z. It is very important to know the minimal smoothness

assumptions required on z, in particular, for the applications to nonlinear

15



problems (in most cases, they are very crucial). So we have the following.

definition.

Definition 2.2.1 A symbol o € C*S™; k>0, if o (z,£): R* x R* — C is
a continuous function whose derivatives 6,‘_36?0’(&6) in the distribution sense
satisfy the following conditions:

There is a constant C > 0, such that, for a , § € N™ | laf < [k}, and
z,€,h € R™, we have

(1) If la| < [k], then

02080 (2, 6)| < € (g)m+ilel-alel (2.2.15)
(2) If |a| = [k], and |h| <1 then

07050 (z + h,€) = 920[0 (2,6)| < C (™ M-l ps=tl (99 16)

where (€) = (1+ I¢F")",

As for CVST, there exists a vast literature. We record here some major
developments. If o (z,£) € C*S%5,k > 7 » then o(z,D) : L? - [? | See R.
Coifman and Y. Meyer [CoMe]. The introduction of the symbol smoothing
method is very useful in obtaining mapping properties of pseudo-differential
operators. One tries to write a symbol o (z,£) € CYST", as a sum of a smooth
symbol and a remainder of lower order. The smooth part will not belong
to ST, but rather to one of the Hérmander classes STs. Using this method
and the result of G. Bourdaud (see [Bou?2)), following the pioneering work of
E. Stein, various continuity results were obtained (see [Trv]). Here we only

mention G. Bourdaud’s result in [Bou2]and a very useful extension.
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Theorem 2.2.2 [Bou?2] Ifv >0 and 1 < p < oo, and if o (z.£) € CcvSy,,
then
o(z,D): H*™ — H;

provided 0 < s < v. Furthermore , under these hypotheses ,
o(z,D):C**™ — C°.

Theorem 2.2.3 [Bou2] If o(z,£) € C¥SYs with v > 0,6 € (0,1), then, for

Il <p<oo,
o(z,D): H; - H,  for s € (—(1 = é)v,v).
Furthermore, under these hypotheses,
o(z,D):C° = C°.

Also an examination of G. Bourdaud’s proof shows that the smoothness
condition on the variable £ can be reduced . We need a new definition to

illustrate this.

Definition 2.2.2 Let kj,k; > 0,0 < p,6§ < 1 andm € R. 4 symbol
o€ C""’QS;"‘S, if 0(z,€) : R* x R® — C is a continuous function whose
derivatives 836? o(x,§) in distribution sense satisfy the following conditions:
There is a constant C > 0 such that for @, B € N™ , |a| < [ky], |8] < (k2]
and z,€,h,v € R™ | we have
(1) If le| < [k1], 1B < [k2] then

02087 (z,6)| < € (gym+¥lei=elo (22.17)
(2) If |a| = [k1], |8) < [k2] and |h| < 1 then

0207 (2 + h.6) ~ 0280 (2,6)] < C (g™ =Rt (2918

17



(3) If la| < [ki], 18] = [ka] and |v| < 1 then

102880 (2,6 +v) ~ 32805 (,6)| < C (g)m+ilel=ska |pfa=tal (991

(4) If la] = [ki], 18] = [ka], |h] < 1 and |v| < 1 then

lagafa(x+h,§+v) —8;’850'(1'+h,§) —agafa(z,§+v) +3;'650'(1°,§)|

<C (§)m+5kx —pk2 Ivlkz—[kz] Ihlkn-[’n] )

First, A. Calderén and R. Vaillancourt [CaVa) proved:

Theorem 2.2.4 Let o (z,£) € C*1%289,. If ky, k, are sufficiently large real
numbers and o (z,£) : R* x R® — C is a continuous function whose deriva-

tives 6;”3?0'(:::,{) in the distribution sense satisfy
|020f0 (2,6)| < Cap (O™ z,6€ R, (2.2.21)

L
for all multi-indices a and B ,where (£) = (1 + |£|2)2 , then o(x, D) is con-
tinuous from L*(R™) — L?(R").

For 1 < p < oo case, R. Coifman and Y. Meyer [CoMe] proved:

Theorem 2.2.5 Let o(z,€) € Ckrk2Gm. and m = —nlﬁ - %I if kv, k2 are
sufficiently large real numbers and o(z,€) : R® x R® — C is a continuous

function whose derivatives 3;”3? o (z,€) in distribution sense satisfy
02880 (2,6)| < Cap (6™  =z,6€R, (2.2.22)

1
for all multi-indezes o and B3, where (£) = (1 + |§|2)2 , then a(z, D) is con-
tinuous from LP(R") — LP(R") ,1 < p < oo.

18



A. Calderén and R. Vaillancourt [CaVa] reduced the condition on &, k’g;
so that a,8 € {1,2,3}", and proved the following:

Theorem 2.2.6 Let o(z,€) € C"""’S{{"O, and m = —n| - 1, and o(z,§) :

2
R" x R* — C is a continuous function whose derivatives 9 6? o(z,€) in the

distribution sense satisfy
(02080 (2,6)| < Cas (O™ 2,6 €R™; 0,8 € {1,2,3)" (2.2.23)

where (§) = (1 + [€] ) then o(z, D) is continuous from LP(R") — LP(R™) ,

p < oo.

Coifman-Meyer further reduced the condition on ki, k;,and proved the
above result for k), k; > 2n. Cordes weakened the condition (for the case
p=2)to|al,|B] < [2]+1. Forthe0 < § < p < 1 case , Calderén-Vaillancourt

established the following:

Theorem 2.2.7 Let o(z,£) € CkkG0. 0 <6< p< . Ifky, ky are suf-
ficiently large real numbers and o : R"xR™ — C is a continuous function

whose derivatives 3;'3? o in the distribution sense satisfy
0200 (2,6)| < Cag (6" secR™ 6<p,  (2229)

1
for all multi-indezes a and B, where (€) = (1 + Ifl"’)2 , with |a] < k; and
|8] < k2, then o(z, D) is continuous from L*(R") — L*(R™).

Then C. Fefferman extended this result to p # 2 as follows:

Theorem 2.2.8 Leto(z,£) € ChkSm 0<§<p<landm=—n(l-)p) ll

P
If ky, k2 are sufficiently large real numbers and o : R*xR"” — C is a contin-

uous function whose derivatives 8,‘_1’3? o in the distribution sense satisfy

020F0 (2,6)] < Cop (™11 s eeR™ 55y (2235)
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L .
for all multi-indezes o and f ,where (€) = (1 + IEI:'))2 , with |a| < k, and
|8| < ka, then o(z, D) is continuous from LP(R™) — LP(R™),1 < p < oo.

Calderdn-Vaillancourt specified the condition on k&, k,, they proved it for
la| < 2m’ with m’ € N and m'(1-p) > 2 and || < 2[2] +n. Coifman-Meyer
showed that the result is true (for the case p = 2) for |a|, |8] < m’ with
m'€ N and m’ > [3] + 1.

After some further improvements by Kato, Cordes, Beals, Nagase and
Hwang, Miyachi [Miya2] proved the following theorem, which gives the sharpest

results. See also references given in [Miya2] and [St2].

Theorem 2.2.9 Let0<d<p<1andm=-n(l _p)ll_ LI

p 2
(1) If0 < p < 1,0 = 0,k > Svka > 2 and o (z,€) € C"""’S","‘s,then
o(z, D) is continuous from HP(R") — LP(R") ,where HP are the Hardy spaces.
(2) IfO<p<lki>% k> > and o (z,§) € Ckukz osithen o(x, D) is
continuous from h?(R") — LP(R") ,where h? are the local Hardy spaces.
(3) If 1< p < 2,k > Sk > % and o (z,€) € Ckk o5 then o(z, D) is
continuous from LP(R") — LP(R™) .
(4) If2 < p < 00,ky > B ky > 2 and o (z,€) € C**2 8™ then o(z, D) is
continuous from LP(R") — LP(R").

2.2.1 Mapping Properties for Restricted Symbols

When P. Guan and E. Sawyer extended their results on the oblique deriva-
tive problem {GuSal] to nonsmooth domains and operators [GuSa2], they in-
troduced a new class of symbols which have some special properties. These
operators have better mapping properties than the corresponding operators

in the usual symbol classes. The further study of these operators was carried
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out by E. Sawyer in [Sa]. The following is the definition of the operators they

considered.

Definition 2.2.3 (Guan and Sawyer)[Sa]Define symbol classes C} s by in-
duction on k. Let C§Sys = C*S™s. For A > 0, set | =[] and § = X — [A].
Assuming C{_, ST has been defined, we say o is in the symbol class CiSys if

Vio(z,6) € Y Crmismtis (2.2.26)
i+5=l
and
b7 {Vio (z + h,€) = Vio (2,6)} € 3 CymismHos, (2.2.27)
i+j=\
Then set

v Qm _ ~oo vom
CooSTs = NRZoCr STs.

We quote one of the results in [Sa] here, which shows that symbols in C¥, s
enjoy the same mapping properties as those in C*S 1o (which are strictly better

than those in C¥STy).

Theorem 2.2.10 If o(z,£) € CYLS™%,0 <6 < 3 v > 0 then o(z,D) :
H)*™ — H?, for 1 <p < o0, s € (~v,v).

2.3 Statements of main Results

Finally, we state our main results. In this thesis, we observe an interesting
symmetric phenomenon between the number of derivatives in the z variables
and the decay in the £ variables, and vice versa, for a symbol o(z,€). We now

give the following definition:



Definition 2.3.1 Let m;, my; e R, 0 < 6§ < p<1l,k, k>0 We deﬁne'
Ckk2S7™2 to be the collection of continuous functions o : R* x R* — C
whos‘e derivatives 3;’8? o in the distribution sense satisfy the following condi-
tions:

There is a constant C > 0 such that for o , 8 € N™ | la| < [ki], 18] < [k2]
and z,£,h,v € R™, we have

(1) If la| < [ki], 18] < [k2] then

62685 (2, &)| < € (z)m (gymiilei-dlol (2.3.28)
(2) If |a| = [ki], |8] < [k2] and || < 1 then
0200 (2 + h,£) = 8260 (2,€)| < C (z)™ (g™ *Hkl=slal jpfu—tul (2.3 99)

(3) If |a| < [k1], |8] = [k2] and |v| < 1 then

|020F0 (2.6 +v) = 82000 (2,6)| < C (z)™ (g)™r+ilel=lial |y [l=l&a] (3 3 30

(4) If la| = [k1], |B] = [k2], |kl < 1 and |[v| < 1 then

(02880 (z + h,€ + v) — 02000 (a + h, €) — 32000 (z,€ + v) + 928¢0 (z,¢)|

<C (:L‘)'m (E>m|+5|k||-p|k2| Iv'kg—[kz] Ihlkl ~[k1] .
(2.3.31)

Note: The above definition is symmetric in  and € in the sense that as a
function of £, o behaves like a symbol in C* 4, and as a function of z, it
behaves like a symbol in Ck1S7}.

First, for the L2~boundness of the operators in the symbol class Ck1:%2 S';';;"mz,

we have:




Theorem 2.3.1 Let 0 € CR*257"™  and suppose k; — m, > 2k —my >
3 and that agafa(z,g) in the distribution sense satisfies the conditions in
(2.3.28), (2.3.29), (2.3.30), (2.3.31). Then o(z, D): L} (R") — L*R") is

continuous.

The following two results have been established for the operators in the
symbol classes S}’ and C2, S5 with p < 1 respectively. (For the case when
p = 1 see [Sa]). The restriction to p > 2 in these theorems is required by our
proof, see the proof of Theorem 2.3.2 in Chapter 4. (This remains an open

question for 1 < p < 2).

Theorem 2.3.2 If o(z,€) € C¥S™ ,p > § ,m < —-3(1 = p),v > %, and
P22, then
o(z, D) : H;+’"‘ - H, (2.3.32)

for s € (—(1 = &)vy,v,), where vy =v — 7y mi=m+3(1-p).

Theorem 2.3.3 Ifo(z,6) € CvS™, p> 6, m < —3(1—p),v > %, andp > 2,

o p,b

then
o(x,D): H;"’”“ - H, (2.3.33)

for s € (—vy,v,),where v, = v - 3, mi=m+ 2(1-p).

Note that in Theorem 2.3.3 the hypothesis o(z, £) € CoSys leads to the

conclusion obtained in Theorem 2.3.2 for the symbol class Cv o-
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Chapter 3

L2 Results

In order to obtain L? results, the Fourier transform is a most convenjent tool
due to Plancherel’s theorem, as evidenced by its success for multiplier opera-
tors. Pseudo-differential operators, as we mentioned in the introduction, are
defined in terms of the Fourier transform of the function, and it looks like a
multiplier operator, so it is natural to think we can get L? results if we use
the method as in the multiplier operators case. However, the method fails on
pseudo-differential operators, because the Fourier transform no longer suffices

to guarantee L? results, and must be supplanted by a more general approach.

3.1 Almost Orthogonality Methods

One of the most effective methods to obtain regularity results is via the Cotlar-
Stein Lemma. It says that an operator T is bounded on L2 if it can be
decomposed as a sum T = Y. Tj, in which the components are uniformly
bounded, and the different T} are mutually "almost orthogonal ". Using this
method Calderén and Vaillancourt[CaVa] proved:



Theorem 3.1.1 Let o(z,£) € S° 0 < p <1, and suppose o(z,§) .

p.p 7
R™ x R* —» C is a continuous function whose derivatives 6‘;35‘66(1',5) in

the Jistribution sense satisfy
|020¢(2.6)| < Cagp ()™= 2 ¢ e R, (3.1.1)

for all multi-indices a and B, where (€) = (1 + [6]*)7. Then o(z, D) is con-
tinuous from L*(R™) — L*(R").

Later R. Coifman and Y. Meyer [CoMe] used further types of almost-

orthogonality methods to prove

Theorem 3.1.2 Suppose o(z,£) € CkS05,0<6<p<1, k> 3, then
o(z,D): [? = L2

3.2 A Dual Symmetry

Theorem 2.3.1 generalizes Theorem 3.1.2 in the case when p =4 =0by
exploiting symmetry in z and £. It is known that there is a relation between
the derivative of z and decay of € in the symbol o(z, £). In the proof of Theorem

2.3.1 one must show that the L2 norms of

M
H(:L‘,f) = /[‘]_n e—iz'"h(n) (#—Tﬁ) d7] (322)
and N

are controlled by the L? norms of 4 and f respectively. Now using the relation
between derivative of z and decay of €, derivative of £ and decay of z in symbol

o(z,€) , we have following result.
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Theorem 3.2.1 Let o(z,€) € Ckik2 ST ™ | and suppose ky — m; > %,.
ko—mgy > 31 k1, ky > 0 are even integers and that 8?3?6(1:,6) ezists in the dis-
tribution sense and satisfies the above conditions (2.3.28), (2.8.29), (2.3.30),

(2.3.31). Then o(z, D) is centinuous on L*(R™).

To illustrate the ideas involved in the proof , we begin by considering two
special cases in subsection 3.2.1 and 3.2.1 below. In order to prove that T is

bounded on L2, we only need to prove

L@ Tf@e] <C Al N, foerr 324

First we need some formulas. Recall

Tf(z) = o(z, D)f(a) = [ o (z,£) fE)de. (3.2.5)

Using the definition of Fourier transform, we have

Je M T @tz = [ [ RGe) fle) (50 (2, 00}dsde. (3:26)

or equivalently

Jon B TH@ b = (o [ [ him s ] Jo €515 (2, €) dadg ) dyd.

(3.2.7)
Let’s examine some special extreme cases.
3.2.1 The Case of Pure Decay
Consider first o(z,€) € Co0S7+™2  where my,m; > 2, le.
lo(, )] < (1 + [€)7F74(1 + |z|)F . (3.2.8)

For some ¢ > 0. We just use formula (3.2.6), together with the fact that
o € L}R" x R") as follows:




| fan h(2) T (@) da| = [(£)" fun fn B(2) FlE)=%0 (2,6) dad]

= ()" Jar A=) o T (§)e™%0 (2, €) dede]

< (32)" Jan Jan |P(2) T (€)o (2,€)| drde

h(z)| fpn

F(&)o (2,6)| dedz

= (3=)" Jpn

< c¢/pn

h@)|- | 7|, Une lo (z,6)2 dE) s do

<e| 7], [El, far Jan lo (2,€) dédz = c| £1, 1A,

(3.2.9)
where the last equality follows (3.2.8).
3.2.2 The Case of Pure Smoothness
Consider secondly that o(z,£) € C* "‘258"8, ki k2 > % ie.
a afb n n ‘
02800 (z,6)| < C, ol < gte Blss+e (3.2.10)

We also assume here that k, and k; are even integers. We use formula (3.2.7),
together with integration by parts in order to trade off the smoothness in z for
the decay in £, and then use the symmetric property. By (3.2.7) and identity
(2.1.3) on page 12,

| o o) Ta@)de] = [0 [ [ R S [ [ ete=mvtl (2, ) dede)dyen



= ()" s e BC) £10) ()™

Une Jivn == (1L MM (1= 80N (257) " 0 (2,6) dudgdydr

+l1-'l—y|
= (3)" Jan Jrn €€ (1 = A)M (1 = A¢)" 0 (2,6) x

(fa,. e=i=h(n) (WI-TF)M dn) ( fam V€ £(y) (Wl-yf)N dy) dzd€ + ...,
(3.2.11)

where the dots indicate the remaining terms in commuting (1 — A;)"Y with
N

(m’) . The arguments for these remaining terms is essentially the same

as that for the principal term, and hence we omit the argument. Now we

continue to treat the principal term, which is

Jon Jo €5 (1= A (1= 20" 0 (2,6)) H (2,6) F (2, ) dzde,  (32.12)

where
. 1 M
H(:E, E) = /l;," e"""h(n) (m) dT] (3213)
and
. 1 N
F(z,£) = /R" e f(y) (m) dy. (3.2.14)
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We now claim that H (z,£), F(z,€) are in L?(R™ x R*). Set p(z) = 1
when |z| <1, and 5(z) =0, when [z| > 2. If R is sufficiently large then

/n_/an | F(xvf)lzn(%)dxdf

~ o o F @0 Flz 8n( 5 )dod

= L L et ) )

1 N 1 N '
X{ —mm —— —_— drdfdyd:z
(1+|z—y|’) (1+|z—z|2) sy

= / - /R F)f(z) ( /R n(%)e“”"”‘df) (3.2.15)

N N
1 1
X dz | dyd-=.
(/R" (1+|x—y|’) (1+|x—z|2) 1) ’

Where we substituted the expression for F and F. Now, if N > 2, then as a

function of z

1 of 1 N
(-__2) , (——2) € L?, (3.2.16)
1+ |z -yl 1+ |z - 2|
and so after a change of variable
N N
1 1
d 3.2.17
he (=) (=) 3210
is a bounded function of y — z. Also, since r](-fi) € S, we have

L. n(%)efz-fdg = CR"A(Rz) € L (3.2.18)
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and so altogether we obtain that

/n/..l F(f»f)lzn(%)dxdg

= [ [ fef@ ( L. n(%)e“y-”'fde)

1 N 1 N
/ ( 2) ( 2) dz | dyd:z
R™ \1+ |z -y 1+ |z -2

= [ | f@FEK(y - 2)dyd (3.2.19)

IA

3 o [ K= 2 (F )P + 1)) dyd

= Clfllz,

where we have used the facts that

- _ €\ ity-2)- 1 N 1 \ N
[\(y—z)_(/anq(ﬁ)e( )edg)x(/!‘"<1+|x_y|2) (le_z,z} da:)

(3.2.20)

is an integrable function of y — z, and

FFGE) < 5 (IF@)IP +1£(2)1) - (3.2.21)
Thus |Fllz2 < 11 £ll2 and ||Gll 2¢ llgll» and since (1 — A)M (1 — Ag)Y o (2, €)

is bounded by hypothesis, if we take M = '—‘21-, N = 521 , then we have proved

N -

(3.2.4) with £ in place of g.

Hence we have shown the pure smoothness case.
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3.3 Proof of the L? theorem

Nowwe give the full proof of Theorem 2.3.1.

Let
Tf(z) = olz, D)f(a) = ()" [ %o (2.6 OV, (33.22)
We use formula (3.2.7), and the following identity for N an integer:
N 1 N
(1 —A) (m) et = 7t (3.3.23)

If N is not integer, let [N] denote the integer part, use identity (3.3.23) for
[V], and for the fractional part N — [N], use the identity as in [Sa]:

6‘h

W)—le"f'(f-") = =), (3.3.24)
erris—n —

Therefore we have

| R T as] = [ [ [ R o £) dad|

370" oo Jon RO SO, [ 8672770 (2,€) dade) dyn|

M

= ()" Jan Jre k(1) F(y) (527) "
{Jgn Jpn €Ttz n=v8(1 — A M (1 — ALY (m)’v o (z,€) drdédydn
= (3)" Jan Jrn €751 =AM (1 - Ag)" o(z, £) x

(fon e=mhtn) (i)™ ) (I 45 0) () ) e .
(3.3.25)
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Again, we treat only the principal term, the other terms in the commutator

N
of (1~ A;)M and (m) being similar and hence omitted. The principal

term is

C(;_,l;)” [ [ €0 (O  (2.6) F (=,6) dede, (3.3.26)

where

o (z,6) = (1 =AM (1= A" o (2,6) +..)"" 6" 2™ € L>(z,¢);

(3.3.27)
Let
' 1 Moo\ M
H(z,¢) = e " h —_— — dn , 3.3.28
0= o hon (g p) (i) o N
where M + M, > %; and
N N
. 1 1 1
F(z,6)= [ ewe (———) (—) dy | 3.3.29
@8 = [0 (mp) () @ (3.3.29)
where N + N; > 3
If we can prove H (z,£), F(z,€) € L*(R™ x R") and that both
NH (2,2 < IRl (3.3.30)
NF (2.2 < 1SNl g2 s (3.3.31)

we are done. Since H (z,£) , F(z,£) are symmetric, we only need to prove
one of them. In fact, if we set n(z) = 1 when |z] < 1, n(z) =0, when|z| > 2,

and suppose R is large enough. Then

Joo Jon VP 0P n(g)dade = [ [ F(2,6) FlmBn()dode
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1 N 1 N
X| —m — drdfdyd=
(1+|x—z|2) (lwl) mesey

= /n - fy)f(z) (/R" n(%)ei(y_z)'fdf) (3.3.32)
(3.3.33)

N Ny N N
1 1 1 1
x — ) (= = |————) dz]| dyd-.
(/;,.(H,,,_y,z) (|z|> (lzl) (1+|x—z12) x) ’

Since N + N; > 2, we have both

1 N 1 Ny 1 N 1 M \
(1+|x—y|2) (lr_l> (iﬂz—_,) (m) €L (3339

as functions of z, and so as a function of (y, z)

1 N 1 M 1 N, 1 N -
e (m) (m) (m) (m) de el (3335

and as before

/R ) n(%)ei"5d§ = R*ij(Rzr) € L . (3.3.36)

Therefore

foo ol P 0P n(Gdede = [ [ P(z,6) Tl )dode

= [ L. fwF@ ( Jor n(%)e“w"fds)

1 w(Ll " (L)M 1 N .
x(/“"(lﬂx—yl") () (3) rpmmres) we
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= [ fo SO TEIK (3, 2)dyd: (3.3.37)

IA

3 o o B2 (P + 1£()7) dyes

= Clliflia»

where we have used the facts that

K(y,z) = ( /R ) q(%)e‘(y‘=)'6d§> (3.3.38)

(he (=) (3)" ()" () ") oo

is an integrable function of y for fixed z, and an integrable function of = for

fixed y,

FTE < 5 (K + 1P (3.3.40)

This completes the proof of the case p = 6 = 0 with k; and k; are even
integers.

When &, and k, are not even integers, we conjecture the result still is true.
But you need to use the identity (2.1.4). Even for the case p,8 > 0, the result
may still be true, but the method here is not applicable.

The result is sharp, let

e—iz:-{
€)= = € Chikagrsm2 3.3.41
) = RPN T (3.341)
and
bitmi= 2kt my =2, (3.3.42)
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Let f,g € L?, then

" (o(z.D)f.9) = [o(e,D)f(2)g(zdz (3.3.43)

= //eir'fa(l‘,f) f’(z)g(x)dzdf

—iz-€

= f(6)g(z)dzde

-/ eix'e(ulzl?)%(ulsf)’

1 — 1 —_
/ T / P L

With proper choice of f,g € L? the last two integrals will diverge. So o(z, D)

is not bounded on L2.
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Chapter 4
Mapping Properties

Historically, in the development of classical analysis, singular integral operators
appeared first, followed by pseudo-differential operators. Singular integral
operators are well understood with respect to L? results. It is natural to try
to realize pseudo-differential operators in singular integral form, and then to
use known singular integral results. This is what we will do here. First we

state our result.

4.1 L? Sobolev Spaces

Theorem 4.1.1 If0 < 5§ < p <1 and o(z,£) € C? psr M < —2(1 =p),v >

2o then o(z,D): H = HS, p>2,s€(—(1—6)v,v,), where v, = v — .

The result is known when s = 0. When s > 0,p =1 and p > 2,
there exist many different proofs. Here we prove the result for p > 2; for
p < 2 our method doesn’t work, since we couldn’t control the diagonal terms
(see term I below). The proof of the Theorem 2.3.2 explicitly involves the

Fourier transform, makes use of the division of the dual (frequency) space into
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"dyadic” spherical shells. This decomposition-whose ideas originated in the
work of Bernstein, Littlewood and Paley, and others will now be described in
the f:orrn most suitable for us.

We begin by fixing 7, a C°° function of compact support, defined in the
{—space R™, with the properties that n(¢) = 1 for €] < 1 and n(€) = 0 for
I€l > 2. Together with  , we define another function § , by 8(&) = n(€)—n(2€).

Then we have the following two "partitions of unity” of £-space:

1=n(f) + i §(277%€), all ¢, (4.1.1)
i=1
and
1=3"6(277¢), all €#0. (4.1.2)
In fact ,
l .
n(€) +3 68 (277¢) =n(27¢) - 1, (4.1.3)

as [ — oo, for all € ; while
j=t . ,
> 5(27%) =n(27%) - n(27*¢) = 1, (4.1.4)
==t

if | = 00, I’ = 00, and € # 0. Note also that d(€) is supported in the shell

3 <|€l £ 2, so that the 6(277€) are supported in the shells 2-7-! <[] < 277+,

It follows that for each £ there are at most two nonzero terms in the sums.

Let
I=Y o 1= |, (4.1.5)
k=0 k=0
where
Bk (€) = 1(27%¢), (4.1.6)

¢ is supported in {¢:2<el <38} o is supported in {€:1€] < 2}. Then

for s real, we have
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hota, D)@l = | (Sra|eoro ostaf')

P

1

= (T [Eme 200 0022 au2pun)[)’

p

N~

INA

(2720 ,Z““”Ss 2 pooo Q—k’¢k(2’°’¢kf),2)

+ ’ (27.3_0 IZlk-—IIZS 2000 2—k3¢"(2k’¢kf),2> :

=I+1I
(4.1.7)

Let

Tirf(y) = #oo0defly)= [ e Gin)(o S duf)(ndn
= cf &E) [ (0 0 6uf) (2)dedn
= cf ) [ e [ o (z,6) G (€)dedrdn
= < fo ) [ e [ oo (2, E(6) [ (') de'dedad
= o[ 1 [ [ [ e G o (2, ) Fu(6)dedadnds’

= c/;{n f(@') (proe o) (y,z)dz’, (4.1.8)
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where

drocos(y,c)= [ [ [ e Gino (2, €) Gi(e)dedadn.
(4.1.9)

4.2 Diagonal Terms and the Maximal Opera-
tor M2

To control the diagonal terms of I , we will use the square integrable maximal
operator M,. We will prove (T} f)¥* (z) < cM,f (z) for all z and [. Without
loss of generality, assume z = 0. Let Q be the cube centered at r with edge
length equal to /(Q) and Q'~° be the cube centered at z with edge length
equal to {(Q)'™%. Also let 2Q) be the cube centered at z with edge length
equal to 2/ (Q). Let

f=hH+f, (4.2.10)

where
fi = xaqi-ef, o= f—-fi,0=1-p. (4.2.11)

We have

Ié—l /Q ITiaf = Tuafz (0)]
< |$—|/Q | Traf1] + ﬁ/q | Tiafa — Thafz (0)]

= I+1I.
To estimate term I we note

Tufi = |DI"%°|D|*° T, f, (4.2.12)
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where Ij is as in (2.1.2) on page 11 and

g = IDIF*Tyf, (4.2.13)
= |D|%8 Grocodifi.
If we define g so that qi =3- inﬂ =1- g, then the Sobolev embedding Theorem
yields
Izo(9)], < Cligll, (42.14)
As for the term
9=IDI* Tiufy = IDI|¥ 6273998 0 5 0 ¢, (4.2.15)
we have
€157 §27130 € =80, 2'#00, € CFSY,, (4.2.16)

by the hypothesis on ¢ and therefore

lgll, = 1D Tuf|, < ClAlL, (4.2.17)

by the Theorem of Coifman and Meyer ([CoMe]).

Thus term I can be estimated as follows:

ﬁ |, s (4.2.18)
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IN
Q

For T;,f,, let
#r1oood(y,z') = Ki(y,z). (4.2.21)

We get

1T f2(y) — Tif2(0)]
< Ve (Ki(y,2') = Ki(0,2")) fo(a")dz'|
< [feaqi-oye (Kiw, ") = Ki(0,2")) f(=')do'

= [T82, Sore1gi-oyzequs (Ki(y, 2') — Ki(0,2)) f(z")dz'|

1
n+e W\ 2
dzr ) X

< Xk (fzkHQl—e\szl-G |Ri(y,2') — Ki(0,2")[? l-’fl
1

’ 2 F)
I!(r)! AN
f2k+xQ1—e\2kQ1—e l In gdz

’
P o4
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-, . s |n+te 2
< T2 (frvigrooargros 1Ky, 2') - Fif0,2") |2 &)’ x

(4.2.22)
(‘2"“)_% L+ ~: M, f (0), (where L is the lenth of Q).
Next we will estimate
1
2
- ’ - 2 | ¢ nte !
( /2 oo ggres 18 2) = Bi(0,2) 2 da:) . (4.2.23)

Using Plancherel’s formula, we have

N

(/2k+lQl—6\2kQ]—o II"l(y’ 1',) - I\’I(va,)l2 Imllnﬂ d‘rl)

s(/R

oi*t / ] / ] (eftv==r — 0= e=¢G (1) (<, €) E(E)dxdnrdﬁ) "
(4.2.24)

nie - npe —~— |2 ?
8z Ki(y,€) - 3¢’+21\":(0,€)' de)

= (/.

Here

Ki(y,z') = #rooogy,z) (4.2.25)

= /R e ( / ) / L€V G () (2, €) a(f)dxdn) d¢.
In order to estimate
OF [ (O = I G ) (2,6 Bi€)drdn,  (4.2.26)
we note that:
o If &; hits ¢, this brings down iz; we can then use ize'™" = g, and

integration by parts to transfer 9¢e'™¢ to ,¢(n) with a gain of (2‘) - ;
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o If ; hits o (z,£), we gain (2’) —p;
- -1
o If O¢ hits ¢;(€), we gain (2')

From the identity,

=2
22 _ A,

‘(y :) n — el(y 1) 1 (4.2--—-; )
2 € - ?

we get the following

a£§+§ Jan fn (€6=217 ei(O—x)-n)e"x'fa(n)a(z, .5)?&(6)dzdnl

¢ -2

< C(2H)-31-—(3+3) ? min {|y| 2,1} fpn (m)l"(gz)" l?ﬁ?(f)ldx

"

< C(2)E80A=(3+0 (g (¢) | min { |y 2,1}, (forN > 2
and

(4.2.28)
(fan  fan Jpn (€207 — l0=2Y )iz (1)) (z, ) Bi(£)

< C(2))(-30-=(3+5)o1+3 min {|y|2/,1} < C(2")~%* min {|y| 2/,1} .
(4.2.29)
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Thus we have

AT fa(y) — Tiu f2(0)]

2k+1Ll—0 -3 sz (0)

< CTR, min{ly| 2,1} (2)%

(here L = 1(Q) is the lenth of Q)
(4.2.30)

< Cmin{ly| 2,1} (2)"%F |LP|"% My £ (0) (since 1—6 = p)
< CMf (0) min {(L2')!- ¥, (L2')-¥}

S CM,f(0).

Altogether, we have
=1 [ Taf = Tufa (0)] < CMa (0)
101 Jo 1 11f2 s 2
and taking the supremum over Q we obtain
(Tiaf)* (0) < CMzf (0).

Here we use (2.1.5).

Similarly it can be shown that

(T f)* (z) S CMaf (z)  forall [k —1| < 5.

44



So

2)%

I-= “(z?-'_io ,Zik_llgs 2¢100 0 27% ¢ (25 f)

p

< C (2220 [Sie-ngs Ma(2onf)[")t

(4.2.31)

< C (S |ms (2'"¢kf)|2)%” < c” (T 2k’¢kf)|2)%

p

=Cllfllyy for p>2.

Here we use the vector-valued version for Mj, p > 2 (see [FefSt2]).

4.3 The Off-Diagonal Terms

For the term of I ,we need an estimate of the kernel of @10 0 0 ¢ using the
smoothness of o in the r variable as well. We follow closely the argument in

[Sa]. Our goal is to get the estimate
|10 00 ¢ 0 g| < C2vlkVQbuk pr g (4.3.32)

here (k V [) stands for max{k, }.

If v is an integer, since

9,
(E—n)

eiT(€=n) _ giz(6-n) for €+#n, (4.3.33)

we obtain
@10 00 ¢ (y, z') = fan fan Jrn e y=z)ngi(z-z')-€

x{6in) (%5)" o(2.)8a(£) } dedadn.
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N
- i(y-z)mgi(z—z')-€ (_1-2%4
= Inn Jr» [pn €007 M2 (W}l’)

X (1‘*22:‘2’::’! ) {¢’ ((e r])) o(z,§) <Pk }d{d:z:a'r]

= Ju (tymer)” (reammlemap) ™ fo fe e etem1¢ (1 i, )Y

x (1-2%4¢)" {Gin) (&5)" o(z, E)Bu(6)} dédndz.

(4.3.34)
Now if we note that:
° When e= hits o(z,£), we gain 2-(kv)ask,
e When (1 - 92"”A5) hits ((6 n)) o (z, E)Pr(£), we gain nothing;
e When (1 - 22'A,,) hits (1) (ﬁ)u, we gain nothing.
Consider |n| =~ 2!, |€] ~ 2, we have
lproocodrog|l < Cf-"”‘“‘"”?“”"’ﬂ/[g , U1 =U— g, (4.3.35)

when £, 7 are not too close.
If v is not a positive integer, for [v] we use this method, for fractional part

v — [v] , we may use similar methods as in [Sa] with the identity

sh . .
z iz-(§=n) — iz-(6~n)
me " = e n, (4336)

For this we introduce a further decomposition. Let {¥a}aea be a smooth finite
partition of unity on the sphere S*~! and let $k,a(§) ¢k(§)¢a( IEI) We choose
the partition so fine that there exists constants ¢, C with 0 < ¢ < C < 27 such
that for all k,/ with [k —I| > 5and all a,3 € A, there are points A" kﬁ € R
such that

0<cS(E—m)-hs<C<or,  for Gua(€)dio(n) #0. (4.3.37)
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Since

procodr= Y $5000¢ka (4.3.38)

a,BeA

and so it suffices to estimate the kernel of ¢, 500 0 Pr,o- We have

@150 0 0 Pi oy, z')
(4.3.39)

= Jpn Jn [pn €59 MeilEm0E {5;;3(’7)0(-73» 5)51;(5)} ddzdn.

We now use the fractional smoothness of ¢ in z via the eigenfunction

identity
§h . :
— T ptx(f-n) _ _ir(E~n)
T =e , (4.3.40)

where §* is the first difference operator given in (2.1.1) on page 11, and h =
hﬁ;fg . Note that |h| = ,hi”ﬁl ~ 2=Vl Applying this identity to digooo

bk.o(y, =) and noting that the transpose of 8" is d-* , we obtain

&1,80 00 Pio(y, )

. iz [ —h [v] —
= fpn fan Jan eiy=z)ni(z—z')-€ {qbz'g(ﬂ)e.b.(i‘_,,y_l (f%n)) U(l‘,f)(ﬁk‘a(f)}dfdxdn.

(4.3.41)
. . 2! 2kp
H t(y—z)n i(z—x')-€ : . 1-2%°A, 1-2%%°A
Since e and e are eigenfunctions of - T —op and oo T

respectively , we further obtain that

(y=z) 1 i(z—z')€ (_1=2%4, \N
dip000 Pka(y,T') = fR" fR" fRﬂ e'lv=s)ngilz==')¢ (1+22‘Iy-xl ) X

(s (Aot () ote. 6m(6) ) dedean.
(4.3.42)
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Note the following;

s—h

c-‘h.(f’ivﬂ_l ((63_:”)) Bﬁa'(x 6)’ < Cﬁvlhlk

< G2 V(1 4 |¢]?)eolobre,

since |e*h (€= — ll > c¢. On the other hand , we also have

laéga:m%_-_ll SCI kl(|ﬂ|+|‘vl)

< C2-(RVO(IBI+1)

s (1) < ¢
Y <
¢ ((E ~ n)) =

and

1 [L+UBI+ 1))
(IE - n!) '

v—[v] [v] v
(Iiinl) (1+|§I2)(5 181)/2

(4.3.43)

(4.3.44)

(4.3.45)

If we consider support conditions on ak'a(f) and $1'B(E), and integrating in £

and 7, we obtain as in [Saj, that

|¢1000drog| < C2VIRukpry ) — 0 —

wl:

So,

Ir = ”(Zfio lzlk-llzs 28¢1 0 0 0 27k ¢ (200 g f) 2)%

P

< O[S0 [Eipoips 2 t28kri-b p 20 )

<C( k—olM k2 o f) )%

P

< C (e

26/ =C il
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provided vy (kV{)+6vik+s(l—k) < 0, i.e. for §v; < s < v; and —v;(1—6) <

s <0, as in [Sa]. Now we use interpolation to get the full range

—(1=468)v; <s <. (4.3.48)
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Chapter 5

Restricted Rough Symbol

Classes

Here we consider the symbol classes C%, 57, which are modelled on the case

p =1in [Sa]. In [GuSa2] the mapping properties of the better behaved class

o(z,£) €CST are considered.

Definition 5.0.1 We define symbol classes CESys by induction on k. Let

CoSys = C¥STy, for v > 0,

set | =[v] and 6 = v — [v]. Assuming Ci_1S7s has been defined,we say o is
in the symbol

class C{STs if o € Cp_, S™s,

Veo(z,€) e 3 cpisme (5.0.1)
i+j=l
and
b7 {Vio(z + h,€) = Vie(z,6)} € T Cmisms (5.0.2)
i4+j=A
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5.1 L” Sobolev Spaces

Theorem 5.1.1 [f0<§<p <1 and o(z,£) € CouSps m< —2(1-p),v>

2, then o(z, D) : HY - H), p>2,p>6, s€(-v,v), where v; = v — .

We follow the argument used in the previous chapter, incorporating the

changes necessary to obtain improved estimates for restricted symbols as in

=@ =Y 5@

k=0 k=0

where $x(£) = 6,(27%¢), ¢, is supported in {f :3< € < %}, o is supported
in {§ D él < %} Then for s real, we have

lo(z, D) (z)l,

= (i [2#61 0 o f(2))3

P

2,
= (520 [T220 2410 0 0 2% 02500 f)| )}

p

2)%

INA

(120 |Xk=t1<s 241 0 0 0 272 (2F3 ¢t f)

+ | (20 [Siemrzs 2400 7 0 24044 (20 )b

=I+1I
(5.1.3)

Let
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Tief(y) = d1o0 0 df(y) = fan €¥7(n)(0 0 ¢.f)(7)dn
= ¢ fan €¥71(n) fpn €77 (0 0 $1f) (2)dzdn
= ¢ fan €7761(1) fpn €777 fpo €5%0(z, ) F (€)dEdzdn
= ¢ Jrn €¥71(n) fpn €7 fpn €5%0 (2, E)B1(€) fpn €= 4 f(2')dx'dE dzdn
= ¢ fpn f(2') fn Jon Jn €076~V (1) o (7, £) i () dEdzdndz’

= ¢ fpn f(2') (¢1 0 0 0 ) (y,2')dz’,
(5.1.4)

where,

trocoduly)= [ [ [ eineite1Gin)o(a, 6)5(E)dedzdn,
(5.1.5)

5.2 Diagonal Terms and the Maximal Opera-

tor Mf_)

To control the diagonal terms I, we will use the square integrable maximal
operator M,. We will prove (T,f)¥ (z) < cM; f (z) for all z and {. Without
loss of generality, assume z = 0. Let_Q be the cube centered at z with edge
length equal to ! (Q) and Q'~¢ be the cube centered at z with edge length
equal to [(Q)'™%. Also let 2@ be the cube centered at z with edge length
equal to 2/ (Q).
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Let
f=h+fa,
where
fi=xwi-of, fo=f-fi,0=1—p
We have

,é—l [, 1Toaf = Tt )
< ﬁ/; | Teifil + l_é—I/Q |Ti1f2 — Tiaf2 (0)]

= [+1I
To estimate term I we note

Tufi = |D|I"2°|D|?° T, f,
= I24(|D|?° Ty1f1)

= Iz4(9)
where Iy is as in (2.1.2) on page 11 and

g = |D|¥0 T, fi

= [DI¥ ¢ 000f,.

If we define ¢ so that T=3— %n—e- = 3—2, then the Sobolev embedding Theorem

yields

I3o(9)| < Clgll,.
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As for the term
g =|D|?* Ty fi = |D|?° 27139229 6 5 o o fr,

we have

€15 62713 € 080, 2¥00¢ € CE+SY;,

by the hypothesis on ¢ and therefore

lgllz = [\DIZ* Tufi, < C AL,

by the Theorem of Coifman and Meyer ([CoMe]).

Thus term [ can be estimated as follows:

ﬁ J, miusi
1 At
< (@/Qm,lfll)
« oo,
¢ (ﬁ) 1Al
1 q
C(ﬁ)

$o000 ¢l(y’ zI) = Kl(y’ .’Z:’),

IN

[

IN

</;QM |f|2)% < CM,f(0).

For T;,f;, let

We get

ITuifay) = TufuO)] < | [ (Kily,2) ~ Ki(0, ) fle!)ds’
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IA

L ctagueaye Kil:2) = Bi(0, ) (&'

= Z-/2"‘“Q"‘°\2"Ql g l(yyz ) - I‘\[ 0 1‘ x(mf

L
< Z?:l (f2k+1Q1-9\2le—a II\'I(y,z') - "1(0,1:')]2 Il"ln-ﬂ dl") 2

2 2
f(z)
(f2k+lQl-6\2le—6 IITJ?dz )

. - r|n+e '
<T, (fzmql_a\ml_a |Kiy,2) — K0, [« [+ da )

1
2

(5.2.8)
5 (2k+l)-5 le-o -3 M f (0),
where L is the length of Q.
Next we will estimate
1
2
(-/‘L:k-an—O\ngl_g |A’1(yv :L") - "1(07 "1:,)|2 lel’l‘{bC d.?:l) . (529)
Using Plancherel’s formula, we have
_;_
(v/2k+lQl-a\2kQ1-o IA’l(y’ zl) - ’1(01 xl)l2 |:l"lln+c dzl)
2 \z
npe — Bys.  —
S (/R“ agz 2[‘l(y’§) - 652 2I\l(01§)l dg)
—_ 3+5 i(y—z)n _ i(0—z)n) i
(/m o8 [ [ (e it0-2)n),
(5.2.10)
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Here
Ki(y,z') =diocop(y,z')

= Jan € (Jan frn €07 7€=€ G (n) 0 (, €) Bu(€)dzdn) d.
(5.2.11)

In order to estimate
OFE [ [ (e _ O nyo (e, ) R(E)dadn.  (5.2.12)
We note that:

e If ¢ hits e'=<, this brings down iz; we can then use ize*" = 9,€ " and
. . ; - . . -1
integration by parts to transfer dge'** to 8,¢,(n) with a gain of (2’) ;

o If J¢ hits o (z,€), we gain (21)_,,;
— -1
o If O hits ¢i(£), we gain (2') .

From the identity,

=2

e LA (5.2.13)
e P

we get the following

OF % fan fn(ei8=2)7 _ gil0-2)m)giz€d (o2, f)a(s)dxdnl
< 0(21)(—§(1—P)‘(§'+§)9) min {Iyl 2! 1} Jan (2-__1"2"._":.‘__“:)1\( (2l)n la(g)l dr

< C(Ql)(—g(l—p)-(§+§)p) ,a(é)l min{lyl?’, 1} , (forN > 2)
(5.2.14)
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and

2 \2
é¢)

< C(2)-Fu-e=(5+5)e+3 min {Jy|2',1} < C(2')"% min {Jy| 2/, 1}(5.2.15)

| (/n 6F¥E [ [ (e _ 02 imein i)z, €)3(E)ddn

Thus we have

~ £
2

Tufoly) = Toafa0)] < cgmin{lyu‘,l}(z')'? 2L M £ (0) (5.2.16)
(here L =L(Q) is the length of Q.)

< Cmin{lyl2,1}(2)"F |L°]7f Myf (0) (since 1—0=p)

< CM,f(0) min{(sz)l-?,(L‘z')-‘f}sz(O) (5.2.17)

(5.2.18)

Altogether, we have
51 [ Taf = Tufa (0] < CMaf (0)
0] Jo 1 L1f2 < 2
and taking the supremum over Q we obtain
(T f)* (0) < CM, £ (0).

Here we use (2.1.5).

Similarly it can be shown that
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(Tief)* () SCMaf(z)  for all k=1 <5.

[= (SR [Suenes 2010 0220 )] )|

< O[S0 [Tiemies Ma(260f)| ) ¥

p

(5.2.19)

2.,

2k f))2

< C (S0 |Ma(2 65| )

<c =z,

P

=C”f”H; for p>2.

Here we use the vector-valued version for M, : P — L[?, p > 2 (see[FefSt2]).

5.3 Off-Diagonal Terms

For term I] ,we need an estimate of the kernel of ¢1000¢; using the smoothness
of o in the z variable as well. We follow closely the argument in [Sa]. Our

goal is to get the estimate
|10 00 ¢y.g| < C27V VD 1 (5.3.20)
This is easy, if v is integer, since

[
(€—mn)

=€) = o= -m) for £ Ly (5.3.21)

We obtain

¢l 0oc ¢k(y, zl) — fRﬂ fa" fl‘{" ei(y—x)-nei(::—zl).{x

{6 (&) o(z, €)Bu(6). } dedzdn.
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] i ' o2l N
= fRn fRﬂ fR" et (y—z)m pi(z—z')-§ (11—2—5"—7)

+2¥|y—z|

< (s ) {@in) ()" ote. 18u16).} dedad,

= Jp (1+22‘I1y—r|7)N (1+22"Pllx-r'|2)N L (1 - 221A")N

x (1= 2%28¢)" {Gitn) (Z5)” (2. 05a(6).} dednd.
(5.3.22)

Here is where we use the definition of restricted symbol to advantage. We

note:

e When (E_a—:n_) hits o(z,§), consider the definition of o(z,£) € C?, s

9:0(z,£) = 01(z, &) + 02(z, §), (5.3.23)

o (z,€) € C”S;’j;“, o2(z,§) € CV~1STy, for o1(z,€), we use the method

in previous chapter, here we need § <1, we gain 2-(FV1;
e When (1 - 22""A5) hits (E{Tj)va(z,f)q@;(f), we gain nothing;
e When (l - 22‘A,,) hits ¢;(n) ((—E'—lT)') , we gain nothing.
Consider |n| ~ 2!, || = 2¥, and let N > 2 | we have

|@1000dr.g| < C2'”‘“‘V”Mg , Uy =vU— (5.3.24)

o 3

here we need £, 7 not too close.

If v is not a positive integer, for [v] we use this method, for fractional part
v — [v], we may use similar methods as in [Sa] with the identity

6h

ir-(§-n) _ iz-(§-n)
metr =€ . (53.25)
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For this we introduce a further decomposition. Let {zza}ae 4 be a smooth finite
partition of unity on the sphere S™~! and let 5;:,0,({) qSk(.f) of Ifl) We choose
the partition so fine that there exists constants ¢, C with 0 < ¢ < C < 27 such

that for all k,/ with [k — | > 5 and all @, 3 € A, there are points hag € R

such that
O<c<(E—n)-hy3<C<2m,  for Gralf)dis(n) #0. (5.3.26)
Since
dro0 o = Z 1,600 0 G (5.3.27)
a,fEA

and so it suffices to estimate the kernel of ¢; 50 ¢ 0 ¢ ,. We have

B1,8 00 0 Pra(y, ')
(5.3.28)
= Jpn Jpn Jpn €076 G 5(0)0 (2, €) Bra(€) } dEdmdn.
We will use the fractional smoothness of ¢ in z via the eigenfunction
identity
5h

—_z  eix(§-m) _ iz-(£-n) =209
eih-(E—n) — le e ; (5.3.29)

where & is the first difference operator given in (2.1.4) on page 11, and h =
hl‘k . Note that |h| = I I 2-(kvD) - Applying this identity to digooo

®ka(y,z') and noting that the transpose of 5" is 7% | we obtain

b1, 00 0 Bpa(y, ')

= fn Jpn [gn €= ngilz=2") ¢ {@(n)e,h.(‘i{:,_l (“ n)) o(z, &)k, a(f)} dfdzdn.
(5.3.30)
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. . a2 —22kpp .
i i(y—z)n i(z—z')-€ - . 1-2% 47 1-2
Since e and e are eigenfunctions of a7 T and —§Tl+22""|.1:-x’|
respectively , we further obtain that

(y—z)m i(z—z)€ (_1=2%a, \N
61,5000 Ga(y,2') = [pn [pn [pn €@~ Meilm=)¢ (1+22‘ly—:l ) X

(rstrzse) " (ot awtiom: (i) 0(2,€)3ral6) ) dededn
(5.3.31)

Note the following:

| - (v} v—[v] [v] o
soh ( 3z ) 6?0(1‘, f)l < C[J,u 'hf-fﬁ (IElnl) (1 + '612)(6 181)/2

emte=m -1 \{e=n)

< CB.UQ—(kw)U(l + lﬂz)(tfv-lﬁl)ﬁ

(5.3.32)
since [e'h(§-n) _ ll > ¢. On the other hand , we also have
~h (1B1+1~1)
lafa;'m‘%ﬁml < Clhfa
(5.3.33)
< C2-(kvI(IBl+)
and , N L\ 8D
P ) <c (—) 5.3.34)
‘ "((6—77) €= (

If we consider support conditions on $k'a(§ ) and 51,3(5) , and integrating in £

and 7 , we obtain as in [Sa), that

b ]

|procogiog| < Camlbvgbukpry gy =g — . (5.3.35)

F

o

So

Y. 2%¢ 0002754 (2 i f)

1=0 ||k-1]>5

= (z

p
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M3

z 2—vl(kvl)23(l-k) A4(2k8¢kf)

[k—1]25

~
It
o

| Y

(=

k=0

p
1

M(2k’¢kf)’2) :

IN
Q

p

1

<c (f 2’°’¢kf)|2)5
k=0 P
(5.3.36)
= Cllfls (53.31)

provided —vi(kV{)+ s(l — k) <0, i.e. for 0<s < v; and —v; < s < 0, as in

[Sa]. Now we use interpolation to get the full range
-v; < s <. (5.3.38)

This is the end of the proof.
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