McMASTER UNIVERSITY

Template-Directed Condensations between Acyl Units

by

Sengen Sun, M.Sc.

A THESIS

SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Department of Chemistry

HAMILTON, ONTARIO

June, 1994

DOCTOR OF PHILOSOPHY (1994) McMASTER UNIVERSITY (Chemistry) Hamilton, Ontario

1

TITLE: Template-Directed Condensations between Acyl Units

AUTHOR: Sengen Sun, M.Sc. (Peijing Polytechnic University)

SUPERVISOR: Dr. Paul Harrison

NUMBER OF PAGES: xvii, 165

Template-Directed Condensations between Acyl Units

ACKNOWLEDGEMENTS

I would like to give special thanks to my supervisor, Dr. Paul Harrison, for his encouragement, help and support during my studies for the last five years. I thank members of my supervisory committee, Dr. John Warkentin and Dr. Michael Brook for contributing their time to discuss my research and for making good suggestions. My group-mate Endang Saepudin provided special help during my studies. I would also like to thank other group members, Gerri McEachem during 1990-1992, Tram Huynh during 1990-1992, Karen Bell during 1991-1993, Dr. Louise Edwards during 1992-1993 and Chris Cow since 1993, for sharing many things such as ideas, equipment and chemicals, *etc.*. Dr. Donald Hughes, Dr. Brian Sayer and George Timmins are thanked for their help in use of the NMR machines. Dr. Jim Britten is thanked for determination of the X-ray crystal structures. My wife Huiming and my daughter Cana are thanked for their support during my graduate studies at McMaster University.

NSERC and McMaster University are acknowledged for financial support of this research.

ü

ABSTRACT

To my wife Huiming and my daughter Cana

Glycoluril 1 acts as a bifunctional template, allowing efficient and repetitive Claisen-type condensations between attached acyl units. Thus acetoacetyl derivative 3 was prepared from 1 via 2. After conversion to the crotonate derivative 4 (2 steps, β-carbonyl reduction and dehydration), a second cycle of acylation and condensation gave crotonyl-transferred product 5. Repetition of the sequence gave the 8-carbon derivative 6. Reduction of 4 with L-Selectride afforded the butyryl derivative 7, allowing further acetylation and condensation reactions leading towards long fatty acid chains. The product ratio from condensation of the acetyl butyryl derivative of 1 is 4:1 in favour of deprotonation of the acetyl group and transfer of the butyryl group. Reaction of 7 with lithium benzyloxide gave recovered 1 and benzyl butyrate. Treatment of crotonyl acetyl

 $\begin{array}{l} 1. \ R_1 = R_2 = H \\ 2. \ R_1 = R_2 = Ac \\ 3. \ R_1 = CH_3COCH_2CO, R_2 = H \\ 4. \ R_1 = CH_3CH=CHCO, R_2 = H \\ 5. \ R_1 = CH_3CH=CHCOCH_2CO, R_2 = H \\ 6. \ R_1 = CH_3(CH=CH)_2COCH_2CO, R_2 = H \\ 7. \ R_1 = CH_3(CH_{22}CO, R_2 = H \\ 8. \ R_1 = CH_3CH=CHCO, R_2 = Ac \\ 9. \ R_1 = CH_3CH=2(Ac)CHCO, R_2 = H \end{array}$

iv

derivative 8 with L-Selectride produced only the acetyl transferred condensation product 9. A similar regioselectivity was observed with L-Selectride reduction of other α , β -unsaturated compounds (*e.g.*, the acetyl acryloyl derivative). Results of isotopic-labelling experiments support an intramolecular acyl transfer mechanism for these condensations. This system mimics some of the features of polyketide and fatty acid synthases, allowing intramolecular acyl transfer and repetitive additions of acetate units to make linear carbon chains while the growing chain remains attached to the template. This is a potentially useful method for the synthesis of some natural products and some useful organic intermediates, such as putative oligoketide biosynthetic precursors.

iii

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii
ABSTRACT iv
LIST OF ABBREVIATIONS viii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF SCHEMES xiii
CHAPTER 1. INTRODUCTION 1
1.1 Enzymes as Catalysts 1
1.2 Biosynthesis of Fatty Acids 4
1.3. Biosynthesis of Polyketides 10
1.4 Chemical Similarities Between Fatty Acid and Polyketide
Biosynthesis 25
1.5 Biomimetic Chemistry 27
1.6 Chemical and Biomimetic Pathway to Make Polyketides 28
1.7 Objectives of This Research 34

CHAPTER 3. RESULTS AND DISCUSSION
3.1 Synthesis of the Enzyme Model 1 42
3.2 Acylation of 3,4,7,8-Tetramethylglycoluril 1 50
3.3 Preparation of Di-Acylated Compounds 54
3.4 The Condensation Reaction of the 1,6-Diacetyl Glycoluri:
Derivative
3.5 The Condensations of Other Diacyl Compounds 66
3.6 Mechanistic Studies on the Template-Directed Condensations . 69
3.7 Selective p-Carbonyl Reduction of Compound 17 81
3.8 Dehydration of 1-(β-Hydroxybutyryl)-3,4,7,8-tetramethylglycoluril
85
3.9 Conversions of 1-Crotonyl-3,4,7,8-tetramethylglycoluril
and a Second Cycle of Condensation 87
3.10. Repetitive Condensations to Make Unsaturated Carbon
Chains 89
3.11. Condensations Induced by Conjugate 1,4-Hydride Additions . 100
3.12. Removal of Synthesized Carbon Chains from the Template 111
3.13. Other Experiments 114
CHAPTER 4. SUMMARY 121
CHAPTER 5. EXPERIMENTAL SECTION
CHAPTER 6. REFERENCES 159
· · ·

Melting Point

Mass Spectrometry Nanometre

Polyketide Synthase

Parts Per Million p-Toluenesulphonic Acid

Quartet

Singlet

Nuclear Magnetic Resonance

Nuclear Overhauser Enhancement

m.p. MS

nm

NMR NOE

PKS ppm

pTsOH

q

s

vii

LIST OF ABBREVIATIONS

Ac	Acetyl
ACPSH (or HSACP)	Acyl Carrier Protein (with Thiol Group SH)
Anal.	Analysis
Bn	Benzyl
Bu	Butyl
Calco	Calculated
CIMS	Chemical Ionization Mass Spectrometry
cm	Centimetre
COSY	Correlated Spectroscopy
d	Doublet
dd	Doublet of Doublets
cit	Doublet of Triplets
EIMS	Electron Impact Ionization Mass Spectrometry
Enz	Enzyme
equiv.	Equivalent
Et	Ethyl
FAS	Fatty Acid Synthase
Fig.	Figure
FTIR	Fourier Transformed Infrared Spectroscopy
h	Hour(s)

HMDSA	Hexamethyldisilazane	S.M.	Starting Material
HREIMS	High Resolution Electron Impact Ionization	t	Triplet
	Mass Spectrometry	TBDMS	tert-Butyldimethylsilyl
HSCoA	Coenzyme A (with Thiol Group SH)	TFA	Trifluoroacetic Acid
IR	Infrared spectroscopy	THF	Tetrahydrofuran
LAH	Lithium Aluminium Hydride	TLC	Thin Layer Chromatography
LDA	Lithium Diisopropylamide	TMS	Tetramethylsilane
M+	Molecular Ion	TMS-	Trimethylsilyl
Me	Methyl	UV	Ultraviolet
m/e	Mass/Charge Ratio		
mL	Millilitre		
mmole	Millimole		

x

viii

LIST OF TABLES

Tables		Page
Table 1.	Atomic Coordinates in Crystal Structure of Template 1	48
Table 2.	Bond Lengths in the Crystal Structure of Template 1	48
Table 3.	Bond Angles in the Crystal Structure of Template 1	48
Table 4.	Atomic Coordinates in Crystal Structure of	
	Diacylated Template	57
Table 5.	Bond Lengths in the Crystal Structure of	
	Diacylated Template	58
Table 6.	Bond Angles in the Crystal Structure of	
	Diacylated Template	59
Table 7.	Results from Condensation of Acetyl Butyryl Template	
	Induced by Different Bases	79

LIST OF FIGURES

Fig. 1.1.1	Fig. 1.1.1 Qualitative Illustration of Enthalpy Changes in		
	Enzymatic Binding and Catalysis 2		
Fig. 1.1.2	Proline Racemase Inhibited by Pyrrole-2-carboxy ate 3		
Fig. 1.3.1	Triacetic Acid Lactone 15		
Fig. 3.1.1	X-Ray Crystal Structure of Template 1 46		
Fig. 3.1.2	Intermolecular Structure in Crystals of 1 47		
Fig. 3.1.3	Suspected Intermolecular Hydrogen Bonding		
	in Crystals of 1 47		
Fig. 3.3.1	X-Ray Crystal Structure of Diacylated Template 56		
Fig. 3.6.1	EIMS for ¹³ C-Labelled Diacylated Template		
Fig. 3.6.2	EIMS for the Product from Condensation		
	of ¹³ C-Labelled Diacylated Template		
Fig. 3.10.1	500 MHz ¹ H COSY-90 NMR Spectrum of Crotonoacetyl		
	Derivative and Its Enol Form		
Fig. 3.10.2	500 MHz ¹ H NMR Spectrum of 1-(3'-Hydroxy-4'-hexenoyl)-		
	3,4,7,8-tetramethylglycoluril		
Fig. 3.10.3	500 MHz ¹ H NMR Spectrum of 1-Acetyl-6-hexadienoyl		
	-3,4,7,8-tetramethylglycoluril		
Fig. 3.10.4	200 MHz ¹ H NMR Spectrum of Derivative with 8 Carbon		
	Chain Assembled from Acetyl Units		

xii

LIST OF SCHEMES

Steps in Fatty Acid Biosynthesis 7	
Early Experiments in Polyketide Cyclizations 11	
Incorporation Pattern of [1-14C] Acetate into	
6-Methylsalicylic Acid 12	
Incorporation Pattern of [1-14C] Acetate into Griseofulvin 13	
Steps in Biosynthesis of 6-Methylsalicylic Acid 14	
Biosynthesis of Thermorubin 18	
Lactonization in the Formation of Fungichromin 20	
Nargenicin Biosynthesis Involving Diels-Alder Cyclization 21	
The Organization of the Genes and Enzymes of	
Erythromycin-Producing Polyketide Synthase	
Altered Polyketides Produced from Genetic	
Intervention of Erythromycin-Producing PKS 24	
The Enolate Generated by Malonyl-Decarboxylation	
for Intramolecular Acyl Transfer on PKS or FAS 26	
Cyclization of a Tetraketide Acid under Different	
Conditions 29	
Catechol as a Template for Condensation between	
Acyl Units 30	
An Intermolecular Model of Decarboxylative Condensation. 31	
	Steps in Fatty Acid Biosynthesis

Scheme 1.6.4	Oxazolidone Templates	32
Scheme 1.6.5	Oxazolidone Templates in Synthesis of a Triketide Chain	33
Scheme 2.1	Template-Directed Intramolecular Acyl Transfer	36
Scheme 2.2	A Glycoluril Template and Possible Metal Chelated	
	Transition State for Its Directed Acyl Transfer	37
Scheme 2.3	Synthesis of Parent Glycoluril	38
Scheme 2.4	Tetraacetylglycoluril as a Selective Acetylating Agent	39
Scheme 2.5	Cucurbituril, Six Glycoluril Units Connected	
	with CH ₂ Groups	39
Scheme 2.6	Bifunctional Oxazolidone Templates	40
Scheme 3.1.1	Synthesis of 3,4,7,8-Tetramethylglycoluril 1	43
Scheme 3.1.2	Major Products from Molecular Ion Fragmentations	
	of Template 1	44
Scheme 3.2.1	The Mono-Acylations of Template 1	50
Scheme 3.2.2	Deprotonation and Then Acetylation of 1	53
Scheme 3.3.1	Second Acylations by Acetyl Chloride	55
Scheme 3.3.2	Second Acylations by Other Acyl Chloride	62
Scheme 3.4.1	Condensation of Diacetyl Glycoluril Induced by Base	64
Scheme 3.5.1	Condensation of Other Diacyl Derivatives Induced	
	by Base	66
Scheme 3.5.2	The Bulky Trimethylacetyl Group Easily Transferred	
	during Condensation	67
•		

xi

Scheme 3.5.3	Treatment of the Dipropionyl Derivative with Base
Scheme 3.6.1	The Products from Intermolecular Condensation of
	Acetyl Propionyl Glycoluril Were Not Observed 69
Scheme 3.6.2	Condensation of ¹³ C-Labelled Diacetyl Compound
Scheme 3.6.3	Molecular Ion Fragmentations of ¹³ C-Labelled
	Diacetyl Compound72
Scheme 3.6.4	A Deuterium-Labelling Experiment75
Scheme 3.6.5	Possible Products from the ² H Labelling Experiment
	if Deprotonation Were a Fast Step 76
Scheme 3.6.6	Mechanism of the Glycoluril Template-Directed
	Condensation78
Scheme 3.6.7	Possible Mechanism for Cleavage of an Acetyl from
	the Diacetyl Glycoluril during Condensation
Scheme 3.7.1	Treatment of β -Ketobutyrylglycoluril with NaBH ₄
Scheme 3.7.2	Addition of AcOH to Protect the $\beta\mbox{-Keto}$ Reduction Product.84
Scheme 3.8.1	Dehydration of β-Hydroxybutyrylglycoluril85
Scheme 3.9.1	Hydride Conjugate Addition onto Crotonylglycoluril
	and then a Second Round of Acetylation88
Scheme 3.10.1	Acetylatica and a Second Round of Condensation to Make
	an Unsaturated 6 Carbon Chain Derivative90
Scheme 3.10.2	A Possible but Undetected Product from Conjugate
	Addition of Enolate onto Enoate

xv

Scheme 3.13.5	Unsuccessful Attempt to Make a Triketide Chain
	with Hydroxy Groups120
Scheme 4.1	A Summary of Steps in Assembly of Short Fatty Acid
	Chains Using the Glycoluril Template122
Scheme 4.2	A Summary of Steps in Assembly of Unsaturated Carbon
	Chains Using the Glycoluril Template123
Scheme 4.3	Comparison between L-Selectride Reduction-
	Condensation and Base-Induced Condensation124

•

Scheme 3.10.3 Conversions of 6 Carbon Chain Derivatives and a	
Third Round of Condensation	95
Scheme 3.11.1 Treatment of Acetyl Crotonyl Glycoluril with L-Selectride.	101
Scheme 3.11.2 Treatment of Acetyl Acryioyl Glycoluril with L-Selectride	103
Scheme 3.11.3 Treatment of Acetyl Acryloyl Glycoluril with	
L-Selectride and then in situ with NaBH4	105
Scheme 3.11.4 Unsuccessful Elimination of Water from α -Methyl-	
β-hydroxybutyrylglycoluril	108
Scheme 3.11.5 A Hindered Carbanion from Hydride Reduction of	
Methacryloyiglycoluril as a Good Nucleophile	109
Scheme 3.11.6 L-Selectride Reduction-Condensation of	
Acryloyl Butyryl Glycoluril	110
Scheme 3.12.1 Removal of a Synthesized Crotonyl Chain from	
Glycoluril Template	. 112
Scheme 3.12.2 Removal of a Synthesized Butyryl Chain from	
Glycoluril Template	. 113
Scheme 3.13.1 Unsuccessful Attempts to Make a Triketide Chain	
with 3 Carbonyi Groups	. 115
Scheme 3.13.2 Unsuccessful Attempt to Protect β-Carbonyl Group	
by Making a β-Enol Methyl Ether	116
Scheme 3.13.3 A β -Enamine Product Was Observed but not Isolated	. 117
Scheme 3.13.4 Unsuccessful Generation of A Dianion Species	. 118

xvi

CHAPTER 1. INTRODUCTION

1.1 Enzymes as Catalysts^{1,2}

Enzymes catalyze biochemical transformations to provide materials and energy for living systems. Most enzymes are special proteins built from amino acids through amide bond connections. A few RNAs have also been found to have catalytic activities. The major features of enzyme-catalyzed reactions include a high degree of specificity as well as high efficiency; these attributes have attracted the interest of organic chemists. Most enzyme-catalyzed reactions take place on a special area of the protein catalyst surface, which is referred to as the active site. Chemical transformations carried out at the active site follow the general principles of organic and physical chemistry. However, specific amino acid side chains with a well defined geometrical alignment can provide multiple catalytic functionalities which operate simultaneously. This simultaneous action can provide a new and efficient reaction pathway in which the rate-determining step has a lower free energy of activation than that of the uncatalyzed reaction. Usually, all transition state energies in an enzyme-catalyzed reaction are lower than those of the corresponding uncatalyzed process; however, there are at least two more transition states corresponding to the binding of substrates and release of products in the catalytic reaction.

The initial binding step is one of the most important processes and the large binding energy ($\Delta H_{binding}$ is large and negative) provides the first driving force for enzyme catalysis. Enzyme-substrate complex formation in a binding process involves a large loss of entropy (\$\DeltaS_{binding}\$ is also large and negative), which can be offset by the binding energy according to the free energy equation:

$\Delta G_{binding} = \Delta H_{binding} - T\Delta S_{binding}$

The net value of the free energy change ${\ensuremath{\Delta}} G_{binding}$ must still be negative to give efficient binding. This binding process leads all catalytic groups to act cooperatively and substrates to be optimally oriented (spatially and stereoelectronically) on the same molecule. Therefore the subsequent step of an enzyme-catalyzed transformation actually proceeds in an "intramolecular" fashion and the free energy of activation ($\Delta G^{\frac{1}{1}}$) is substantially lowered due to little further loss of entropy in the transition state ($\Delta S^{+} \sim 0$).

alitative Illustration of Enth Inv Change in Enzym atic Binding and Catalys E is for Enzyme: S for Substrate: h.t. for Binding on State; b.g. for Binding Ground State.

2

4

configuration at some point in the reaction. Tight binding would therefore be expected for analogues with sp² hybridization at this position.⁴ In the second experiment, triosephosphate isomerase was inhibited by a transition state analog 2-phosphoglycollate, as discussed by Wolfenden 5

The free energy of activation of an enzyme-catalyzed reaction is lowered due to this discriminating binding as well as the entropy advantage and a large rate acceleration is therefore observed.

1.2 Biosynthesis of Fatty Acids^{1,8,9,10.}

Fatty acids are carboxylic acids which usually contain long linear hydrocarbon chains. An even number of carbon atoms ranging from 2 (acetic acid) to 20 (arachidic acid) is very common for fatty acids found in biological systems. Short chain fatty acids (10 carbon atoms or fewer) are intermediates in many pathways of metabolism and are found, for example, in milk. Longer fatty acids with 12 to 18 carbon atoms exist predominantly as lipid and fat constituents and can be easily obtained in large quantity from fat hydrolysis. Arachidic acid (C20) is an intermediate during the biosynthesis of prostaglandins.

Phospholipids and olycolipids, which contain fatty acids as constituents.

Although the initial binding step of substrate to an enzyme is very efficient, the enzyme has evolved to bind the transition state of the rate-limiting step in the catalyzed reaction even more favourably than the around state of the substrate.³ This can result in $\Delta H^{+}_{cat} < \Delta H^{+}_{uncat}$, due to $\Delta H_{b.g.} > \Delta H_{b.t}$, as shown in Fig. 1.1.1 $(\Delta H_{b,q}$ is the enthalpy change of binding the ground state of the substrate to the enzyme and $\Delta H_{h,t}$ is that of binding the uncatalyzed transition state; S is substrate).

The evidence to support the stronger binding between an enzyme and the transition state comes from two early experiments.^{4,5} A stable compound that has a structure similar to the transition state of an enzyme catalyzed reaction can be a competitive inhibitor of that enzyme (Transition State Analog Inhibitor).^{6,7} For example, proline racemase from Clostridium sticklandii can bind pyrrole-2carboxylic acid 160-fold stronger than the substrate L-proline as shown in Fig. 1.1.2. Pyrrole-2-carboxylic acid can hence act as a competitive inhibitor of the proline racemase. The α -carbon atom of the substrate assumes a near-planar

I-Proline

D-Proline Pyrrole-2-carboxylic acid Fig. 1.1.2 Proline Racemase Inhibited by Pyrrole-2-carboxylic Acid.

3

are the important structural components of cell membranes. However, there is a much larger quantity of the fatty acid, which functions as a reservoir of stored energy in the form of triacylglycerols esters. The oxidation of hydrocarbon chains of fatty acids to CO2 and H2O provides one of the major pathways to supply energy for biological activities.

Due to the importance of fatty acids for the survival and well-being of organisms and their ubiquitous nature, they are classified as primary metabolites. The biosynthesis of fatty acids has been widely studied for more than a half century and the intricate biochemical mechanisms have been well understood. Fatty acid biosynthesis occurs in the cytoplasm with an acetyl group from acetyl-SCoA as a starter unit; malonyl-SCoA provides the subsequent building blocks.

Fatty acid synthase (FAS) contains seven enzymes of different functions and an acyl carrier protein (ACPSH or HSACP). One of the enzymes is the 3ketoacyi-SACP synthase (referred to simply as condensing enzyme). FAS directs the repeated Claisen-type condensations between acyl and malonyl groups and uses 2 thiol groups as binding sites for each cycle of condensation. One of the active site thiol groups is contributed from one of the ACPSHs and the other from those of the condensing enzymes.

In all organisms, fatty acids are constructed by following an essentially

universal head-to-tail sequence (Scheme 1.2.1): the acetate unit at the methyl terminal is the starter unit and subsequent ones are sequentially added to the carbonyl terminal. However, two basic types of FAS with structural differences have been identified. At one extreme, Type I FASs are single enzymes which possess all the catalytic functions required to assemble the fatty acid. These functions are present in several different domains of the multifunctional proteins.¹¹ Type I FAS is usually found in eukaryotic organisms. At the other extreme, FASs in prokaryotic micro organisms and plants are classified as the Type II FASs, which consist of a group of seven dissociable enzymes and an ACPSH, all of which can be isolated separately.¹² In this case, each separate enzyme is monofunctional and catalyses a single step such as condensation, β-keto reduction, dehydration or encyl reduction, *etc.*

Until recently, it was generally accepted that the Type II FASs contain two dissociable condensing enzymes (I and II) which catalyze condensations between a malonyI-SACP and an acyl thiol ester. Fatty acids with chain length less than 16 carbon atoms are assembled on condensing enzyme I, while condensing enzyme II plays the role of lengthening the fatty acids from C_{16} to C_{18} and beyond. However, a third condensing enzyme, condensing enzyme III has been reported, first from spinach¹³ and then from *E. coli*.¹⁴ The condensing enzyme III is often found in higher plants and is probably general for Type II FASs.¹⁵ The function of condensing enzyme III is to mediate the first decarboxylative

condensation in fatty acid biosynthesis between malonyl-SACP and acetyl-SCoA to generate acetoacetyl-SACP. In the first binding step, one acetyl group from acetyl-SCoA was generally believed to be transferred to an ACPSH and then to the active site thiol of a condensing enzyme.^{8,9} Recent studies, however, have shown that condensing enzyme III has preference for directly binding acetyl-SCoA; that is, acetyl-SCoA is a better substrate than acetyl-SACP and is directly used by condensing enzyme III without transacylation on to an HSACP or another thiol residue.^{13,14,15} The condensing enzyme III is sometimes called 'short chain 3-ketoacyl-SACP synthase' because when the condensing enzymes I and II are selectively inhibited, the condensing enzyme III can generate C₆-acyl-SACP product.

In the next binding step, a malonyl group from malonyl-SCoA is transferred to the ACP. The chain elongation is then initiated by enzyme-catalyzed decarboxylation of the malonyl unit to generate a transient enolate. The following acetyl transfer takes place immediately from the active site thiol of the condensing enzyme to the ACP-bound enolate *via* Claisen-type condensation. This acetyl or acyl transfer is truely intramolecular for Type I FAS, as the FAS is a single multifunctional protein including the segments of HSACP and condensing enzyme. On Type II FAS, which is formed as a complex of individual enzymes, the acyl transfer is also "intramolecular-like". It is proposed that the formation of the new C-C bond between acetyl and malonyl groups could occur concertedly

with loss of carbon dioxide in order to explain why malonyl-SCoA is the source of the C₂ units that are added to the starting acetyl unit. No experimental evidence has been established to distinguish these two mechanisms (concerted and transient enolate). However, mechanistic studies using deuterium-labelled malonyl-SCoA demonstrated that the decarboxylative condensation in the fatty acid biosynthesis proceeds with inversion of configuration at the methylene position of the malonyl unit.^{16,17} It is evident that an important aspect of enzyme catalysis involves orientation of acetyl (or acyl) and malonyl moleties on the enzyme surface. This optimal orientation greatly contributes to the facilitated formation of a "unimolecular" transition state.

Acetoacetyl-SACP is then reduced stereospecifically in the presence of NADPH to produce exclusively the enzyme-bound (3R)-hydroxy intermediate. Next, dehydration produces a 2-(E)-enoyl-SACP species. A further reduction mediated by NADPH produces a saturated acyl-SACP intermediate, completing the first cycle of transformations. The second cycle starts with the transfer of the butyryl group (as a new starting unit) from butyryl-SACP to the condensing enzyme and addition of a malonyl group from malonyl-SCoA to the HSACP. Further transformations involve repetition of the steps that occur when the acetyl group is the starter unit, namely decarboxylative condensation, carbonyl reduction, dehydration and olefinic reduction. The carbon chain is thus lengthened by a two carbon unit every cycle.

6

The whole iterative process terminates when the hydrocarbon chain reaches a length specified by a particular enzyme, usually C_{16} or C_{18} , yielding palmitic or stearic acids or their thiol esters. It is believed that as the chain length approaches C_{16} - C_{18} , the active site thiol of some condensing enzymes has a greater affinity for an acetyl-SACP species. Access of acyl substrates bigger than C_{16} - C_{18} to the active site may be hindered due to steric or electronic effects. A recent study showed that some thiolases can control the chain extension by cleaving the fatty acid of a specific carbon chain length from FAS.¹⁸

Some FASs can utilize a building unit other than acetate, *e.g.*, propionate, isobutyrate, *etc.*, producing naturally occurring fatty acids which possess branched alkyl groups or carbon chains with odd atoms. Methylation of a fatty acid chain by S-adenosyl methionine provides an alternative pathway for generation of methyl branch(es).^{8,9}

1.3. Biosynthesis of Polyketides^{8,9,10,19}

Polyketides are secondary metabolites; that is, they are found in one or a small number of closely related species. Despite the large structural diversity of polyketides, they are derived from small carboxylate units with poly-β-keto acyl chains or their modified forms as intermediates. Plant flavonoids and fungal

10

Some polyketides produced by fungi and bacteria are associated with sporulation or other developmental pathways, while many others have not been found to have any biological activities. The polyketides may be aromatic compounds, polyols, polyenes, polyethers, or macrolides. Some complex polyketides contain structures derived from a mixture of these entities.

An early experiment involving the *in vitro* cyclization of polyketides was reported by Collie in 1907.²⁰ He proposed that a similar process may operate *in vivo*. He treated diacetyl acetone with base, and obtained a naphthalene derivative, while cyclization of dehydracetic acid yielded orsellinic acid (a natural polyketide, Scheme 1.3.1). Collie's *acetate hypothesis* received little attention until 1953 when Birch^{21,22} established that a wide range of structural types were derived biologically from repeating acetyl-units. He showed in his first example that [1-¹⁴C]-acetate was incorporated into 6-methylsalicylic acid during its

aflatoxins are examples of polyketides. There are hundreds of other polyketides with different structures, which can exhibit antibacterial, antifungal, antitumor or antihelmintic properties.

Scheme 1.3.1 Early Experiments in Polyketide Cyclizations.

11

OH

biosynthesis in *Penicillium griseofulvum* organisms as shown in Scheme 1.3.2. Birch also studied a more complicated metabolite, griseofulvin, an antifungal and antibiotic substance isolated from *Penicillium griseofulvum* and obtained the labelling pattern (Scheme 1.3.3). Birch's success in these studies initiated many other studies on polyketide biosynthesis using acetate labelled with ¹⁴C, ¹³C, ¹⁸O and ²H.

Scheme 1.3.3 Incorporation Pattern of [1-14C] Acetate into Griseofulvin.

Knowledge in the structure elucidation, biosynthesis and bioactivities of polyketides has been growing rapidly for the last three decades. Analogy between FAS and polyketide synthase (PKS) has been well established. Both of FAS and PKS contain ACPSHs and condensing enzymes and uses two distinct thiol groups as active sites for each cycle of the carbon chain elongation. However, the polyketide biosynthesis is still known in much less detail than fatty acid

Scheme 1.3.4 Steps in the Biosynthesis of 6-Methylsalicylic Acid (S_A = Thiol on ACPSH; S_C = Active Site Thiol on Condensing Enzyme)

lactone (Fig. 1.3.1) is formed as the sole product. Fatty acid synthase derived from a variety of sources can produce the same lactone in the absence of coenzyme NADPH. So FAS and PKS have similarities in the way they function.

он Fig. 1.3.1 Triacetic Acid Lactone

Although some keto functionalities may be reduced to different extents, most or at least some oxygen atoms of β -keto groups from acetate or malonate are retained in the final polyketide metabolites. This provides a clear distinction from fatty acid biosynthesis due to the absence of one or both reductases and dehydrase to completely reduce each β -keto group to methylene. During the growth of a polyketide chain, a new cycle may be initiated with an acyl chain containing a β -keto, β -hydroxy, α , β -ene- or fully reduced β -carbon. A polyketide chain with little or partial reduction can be expected to be a reactive and flexible intermediate. It has been suggested that the growing thioester chain is stabilized by hydrogen bonding to the synthase enzyme, or by chelation of its semi-enolate with a metal ion held by the enzyme.⁸ However, the exact nature of the enzyme-bound intermediates still remains unknown. The secondary transformations of the β -keto chain intermediates can proceed in a number of differnt ways and

biosynthesis, due to very few PKSs that are active outside cells and due to the low level of genetic expression of PKS.^{8,9}

The growth of a polyketide chain can be exemplified by the biosynthesis of 6-methylsalicylic acid, a small polyketide, as shown in Scheme 1.3.4. The early steps involving binding of and condensation between acetyl and malonyl groups occur in a manner similar to those of fatty acid biosynthesis to generate an acetoacetyl-SACP intermediate. This resulting protein-bound diketide intermediate directly acts as a new starter unit and undergoes a second round malonylation and condensation to afford a triketide chain, whose β -carbonyl group is partially reduced with eventual formation of a *cis*-double bond. One more cycle of the malonylation and condensation leads to formation of an enzyme-bound tetraketide chain. After the chain folds (cyclizes and enolizes) on the enzyme, the final product is released in a stable form.

So far the best known polyketide synthase is the 6-methylsalicylate synthase from *Penicillium patulum*, which has been isolated and investigated.¹⁸ The isolated 6-methylsalicylate synthase can generate one molecule of 6methylsalicylic acid from one molecule of acetyl-CoA and three of malonyl-CoA in the presence of one molecule of NADPH as coenzyme; no intermediates during the biosynthesis could be detected or characterized. The presence of NADPH is necessary to furnish 6-methylsalicylic acid. Otherwise, triacetic acid

15

therefore provide more diversity of structures in the final metabolites.

Polyketide chains are often built biochemically with linear or branched carboxylate units, or carboxylate units with aromatic and aliphatic rings, whereas fatty acids are usually built from acetate units, and only occasionally from propionate, or branched-chain carboxylates. Methylation of polyketide intermediates by S-adenosylmethionine is also much more frequent than that of fatty acid chains. Therefore, more chiral centres are often introduced in polyketide biosynthesis. In addition, carbonyl reduction of β -keto groups to give β -hydroxy groups, which are retained in the final product, may give rise to new chiral centres. The absolute configurations of the resulting chiral centres along a polyketide chain may vary even for identical substituents and depend on the synthase.

The final stage of polyketide biosynthesis involves several other processes, such as folding, cyclization and lactonization. These modifications are believed to occur while the acyl product still remains attached to the enzyme. After being released from it, the polyketide intermediate may undergo further transformations such as oxidation and formation of an amide bond with an amino acid. This stage on an aromatic PKS always involves intramolecular aldol condensations between carbonyl and active methylene groups. An example of polyketide chain cyclization is found in the biosynthesis of thermorubin, a metabolite of *Thermoactinomyces*

Scheme 1.3.5 Thermorubin

vulgaris. Incorporation studies with ¹³C-labelled acetate and salicylic acid indicate a pathway in which salicylic acid acts as the starter unit and acetate units are repetitively and sequentially added to the carbonyl terminal by Claisen-type condensations to form a dodecaketide, which cyclizes *via* addol condensations to furnish four fused aromatic rings. The subsequent oxidative cleavage of the terminal ring as shown in Scheme 1.3.5 gives thermorubin.²⁴

An example of a simple lactonization can be seen in the formation of fungichromin, a typical member of the polyene family of antibiotics with a polyol segment, isolated from *Streptomyces cellulosae*. Incorporations of ¹³C-labelled acetate, propionate and octanoate demonstrated the origin of the carbon skeleton as that shown in Scheme 1.3.6.^{25,26} A medium-chain fatty acid unit such as octanoate can be directly utilised by a PKS and incorporated into a polyketide natural product. It was demonstrated that the octanoate is not assembled from acetate units during the fungichromin biosynthesis. The possible source for the octanoate is the degradation of oleate. The lactonization process is accompanied by release of the product from the PKS. Oxidation by molecular oxygen takes place afterwards to produce three more hydroxy groups.

19

Scheme 1.3.7 Nargenicin Biosynthesis Involving Diels-Alder Cyclization (Cane, D. E. et al. J. Am. Chem. Soc. 1993, 115, 527)

An example of a complex polyketide is nargenicin, a member of a group of naturally occurring reduced alicyclic polyketides containing a characteristic cisfused octalin ring system.²⁷ A recent isotope incorporation study supports that the characteristic octalin ring system is generated by an intramolecular Diels-Alder

reaction of a nona-ketide chain, as shown in Scheme 1.3.7.28

Remarkable contribution to a better understanding of polyketide biosynthesis has been made by genetic studies of polyketide synthase for the last few years.²⁹⁻³⁵ Cloning and sequencing the structural genes of many polyketideproducing strains in the Actinomycetes bacteria have been accomplished. The results reveal that there are also two types of PKSs (Type I and Type II), analogous to those of FASs. PKSs assembling aromatic antibiotics (e.g., those of actinorhodin, granaticin and tetracenomycin) are usually emerging as Type II systems;^{10,29,36} that is, the gene products are homologous to individual components of a Type II fatty acid synthase. As an exception, 6-methyl-salicylic acid synthase from the fungus Penicillium patulum resembles a Type I fatty acid synthase; that is, a single enzyme with two identical multifunctional subunits.^{32,37} Another example of Type I polyketide synthase has recently been obtained by genetic studies of the biosynthesis of erythromycin A and its first identifiable intermediate 6-deoxyerythronolide B.31,39,40 The studies from thorough DNA sequencing of 6-deoxyerythronolide B synthase showed a model of three gene products, DEBS 1, DEBS 2 and DEBS 3, that is, three multifunctional proteins. Each of them apparently catalyzes two of the six cycles of chain extension required to produce 6-deoxyerythronolide B as shown in Scheme 1.3.8. The chain growth follows a basic rule, that is, condensation - oxidation state adjustment conciensation - oxidation state adjustment - and so on.

22

Erythronolide B

Scheme 1.3.9

Altered Polyketides Produced from Genetic Intervention of Erythromycin-Producing PKS. The Inactivated Domain Is Crossed out. The Differences in the Lactones Produced Are Circled. (L Katz and S. Donadio Ann. Rev. Microbiol. 1993, 47, 875)

A corresponding active research area in the genetic studies of polyketide biosynthesis is the application of genetic intervention technology to construct hybrid polyketide synthases and the analysis of their metabolic products. 33,41,42,43 For example, a gene strain of 6-deoxyerythronolide B synthase was manipulated

Scheme 1.3.8 The Organization of the Genes and Enzymes of Erythromycin-Producing Polyketide Synthase in S. erythrae

AT = acyltransferase; ACP = acyl carrier protein; KS = β -keto-ACP synthase (condensing enzyme) $KR = \beta$ -keto-ACP reductase; DH = dehydratase; ER = enoyl reductase;

so that the ketoreductase domain in cycle 5 for β -keto reduction was deactivated. As predicted, the major product of the altered synthase was 5-oxo-5,6dideoxyerythronolide B (Scheme 1.3.9). Similarly, deactivating the enoyl reductase domain for α,β - double bond reduction in cycle 4 led to accumulation of 6,7-anhydroerythromycin C.29 Some novel aromatic polyketides have also been produced by the functional expression of recombinant PKSs in a specially constructed expression system. 43,44

1.4 Chemical Similarities Between Fatty Acid and Polyketide Biosynthesis

Malonyl-decarboxylative condensations with a saturated acyl group on a fatty acid synthase and with a poly- β -ketoacyl acyl group on a polyketide synthase are both "intramolecular" type reactions. The synthase complexes hold the acyl or poly- β -ketoacyl and malonyl groups properly close to each other so that after decarboxylation of the malonate to form an enolate, the enolate carbon can easily approach the carbonyl carbon of the other acyl or poly-β-ketoacyl group to form a ring transition state with a new partial carbon-carbon bond, as shown in Scheme 1.4.1.

The decarboxylation catalyzed by both synthases can make a negative charge selectively on the new C_2 unit to be added to the linear chain. This

Scheme 1.4.1 The Enolate Generated by Malonyl-Decarboxylation Acts as an Acyl Acceptor for Intramolecular Acyl Transfer on PKS or FAS. R = poly- β -ketoacyl, partially reduced poly- β -ketoacyl, or saturated alkyl group.

negative charge is unable to be transferred to other positions in the existing linear chain as the next formation of a new C-C bond is a fast step (Scheme 1.4.1). The two enzyme systems share such an advantage in order to produce regiospecificity and to assure a linear chain growth.

26

It should be noted, however, that the large and increasing volume of publications in this area are mainly concentrated on hydrolytic enzyme models, although there are quite a few examples involving co-enzyme models for redox transformations. Molecular models of enzymes⁴⁶⁻⁴⁹ that have been studied to facilitate formation or cleavage of carbon-carbon bonds are rare, despite the fact that such reactions constitute an important metabolic aspect in biological systems.

1.6 Chemical and Biomimetic Pathway to Make Polyketides

Collie's synthesis of orsellinic acid from ethyl acetoacetate was the first example to exploit the polyketide biosynthetic pathway in chemical synthesis (Scheme 1.3.1). This example mimicked some of biosynthetic features: acetate units as the building material (first to make ethyl acetoacetate). These experiments can also be viewed as crude chemical models of the aromatization processes. But there was little impact of this pioneering work on other chemists until suitable methods such as isotope incorporation and advanced NMR techniques for the study of biochemical pathways became available. Aromatization of linear polycarboryl chains regained chemists' interests after Birch formulated the polyketide hypothesis in the 1950s. A large volume of 1.5 Biomimetic Chemistry

The word "biomimetic", introduced by R. Brestow in 1972⁴⁵, generally refers to any aspect in which a chemical process imitates a biochemical reaction. "Biomimetic chemistry represents the field that attempts to imitate the acceleration and selectivity characteristics of enzyme-catalyzed reactions with enzyme models synthesized in the laboratory."² These enzyme models have the advantages of possessing smaller and simpler structures than the corresponding enzymes. Such models can be specially designed and constructed in order to contain one or more features present in the enzymatic system and to mimic some key parameters of enzyme function. That is, biomimetic chemistry with the tools of synthetic chemistry can considerably facilitate the studies of biochemical processes or can provide valuable information to assist in the understanding of biochemical systems.

Based on established or proposed biochemical mechanisms, a large number of enzyme models have been developed to demonstrate various enzyme parameters over the last 20 years. Models have been used to show the contribution of intramolecularity to the reaction efficiency of the enzyme, and to demonstrate multifunctional catalysis, the stabilization of tetrahedral intermediates, the participation of stereo-electronic effects, as well as the importance of recognition and binding of the substrate, *etc.*²

27

publications in this area appeared in the 1960's and 1970's as reviewed by Harris⁴⁸. For example, the linear tetraketide acid shown in Scheme 1.6.1 was found to undergo an extremely facile aldol cyclization to give orsellinic acid.⁵⁰ Tetraacetic lactone was formed from the acid by treatment with acetic anhydride (66%) and a 4-pyrone derivative was obtained in 50% yield by treatment with methanolic H_2SO_4 (Scheme 1.6.1).⁵¹ All these products are naturally occurring

4-Pyrone derivative

Scheme 1.6.1 Cyclizations of a Tetraketide Acid under Different Conditions. and produced by several fungal systems that normally produce phenolic metabolites.

Another challenging area is the study of chemical models of polyketide and fatty acid synthases, on which linear chains are assembled. Scott *et al.* in 1975 reported catechol as such a model: decarboxylation of catechol acetate malonate by base in the presence of Mg²⁺ afforded catechol monoacetoacetate in 30% yield (Scheme 1.6.2).⁴⁶ There have been no further studies reported on this catechol model since then.

Scheme 1.6.2 Catechol as a Template for Condensation between Acyl Units

In 1978, Kobuke demonstrated an intermolecular model for decarboxylative acylation of thiolmalonate: n-butyl thiolmalonate was treated with an equivalent of phenyl thiolacetate in the presence of Mg(OAc)₂ and imidazole in THF at room temperature for 87 h (Scheme 1.6.3).⁴⁷ Under such mild conditions, n-butyl

30

bond is favoured over the *trans*. There is strong steric interaction in the latter between the methyl group on the side chain and the R substituent on the template ring. A electrophile can access the *cis* double bond selectively from the face opposite to the R substituent, producing a β -ketoacyl product with high stereoselectivity (Scheme 1.6.4).

n-Butyl thiolmalonate Phenyl thiolacetate n-Butyl acetothiolacetate Scheme 1.6.3 Intermolecular Model of Decarboxylative Condensation

acetothiolacetate was isolated in 60% yield and no self-condensation product (phenyl acetothiolacetate) was observed. Another similar study of intermolecular decarboxylative condensation was also reported.⁴⁹

A recent success in template-directed intermolecular condensation reactions between two acyl units was demonstrated by Evans *et al.*.⁵²⁻⁵⁵ They used chiral oxazolidones as templates, which were derived from enantiomerically pure amino acids, *e.g.*, valine and phenylalanine (Scheme 1.6.4). An acyl group with an α -CH₂ group, *e.g.* propionyl, is first attached to the template via an imide bond. Introduction of a second acyl unit to the α -position of the existing propionyl group on the template can be easily realized by treatment with LDA followed by the corresponding acyl chloride at -78°C. The lithium chelation effect in the intermediate enolate can control the direction of the C=C bond and keep it in the same plane of the template ring. The *cis* conformation around the enolate C=C

Scheme 1.6.5 Oxazolidone Template Is Used to Assemble the First 3 Acyl Units and Then Allows a Tetraketide Chain to Be Built. (D.A. Evans, H.P. Howard & D.L. Rieger J. Am. Chem. Soc. 1993, 115, 11446).

Evans' oxazolidone templates have been used to construct triketide units by introducing a third acyl group at the less substituted position 4 of the 2-methyl-3-oxo-valeryl chain.⁵⁴ Further transformations can allow construction of linear chains equivalent to tetraketide units (Scheme 1.6.5). The oxazolidone templates have proved to be very useful compounds in organic synthesis^{55,57} of complicated natural products and in the preparation of oligoketides for biosynthetic studies.^{27,59} It should be noted, however, that this sequence of assembly of the first three acyl units proceeds in the opposite direction to the natural one occurring on fatty acid or polyketide synthases. This synthetic pathway can thus be viewed as non-biomimetic.

1.7 Objectives of This Research

It still remains an interesting problem to perform repetitive intramolecular acyl transfers on a molecular model to mimic the growth sequence of polyketide or fatty acid chains. The research in this thesis sets out to mimic intramolecular chain growth of fatty acid and polyketide-type compounds on a molecular model of FAS and PKS. The key parameters in the model that were initially targeted are the ability to perform repetitive acyl transfers in an efficient intramolecular manner on the model of the fatty acid and polyketide synthases. A nucleophilic enolate can be envisaged to be generated chemically in different ways, such as deprotonation of an acyl moiety, addition of an anionic species to an α , β -unsaturated system and decarboxylation of a malonyl group. As discussed at the beginning of this chapter, intramolecular reactions are expected to be more

34

CHAPTER 2. DESIGN OF THE ENZYME MODEL

To mimic the chain growth of fatty acids and polyketides, an enzyme model or a template with two binding sites analogous to the two thiol groups of the synthase is necessary to bind two acyl groups. These two binding sites must be in a proper relative position so that the transition state in Scheme 2.1 can be easily reached. A six-membered cyclic transition state is favoured for such an intramolecular condensation to proceed, although enzyme does not necessarily use such a six-membered ring transition state due to its ability to change conformation during a reaction. A medium sized ring of between seven and ten members is also possible, but the intramolecular condensation could be considerably slowed, and would probably be accompanied by intermolecular condensations. Therefore, very serious consideration of a six member ring transition state was taken in the design of enzyme models.

Scheme 2.1 Template-Directed Intramolecular Acyl Transfer (T = Template).

efficient due to the entropy loss in the binding stage. Therefore, to realize repetitive intramolecular condensations between acyl units may provide a synthetically useful method for the construction of carbon chains. Some valuable knowledge may also be obtained from this research in order to build more sophisticated models in the future, which have not only the two binding sites, but some catalytic groups to facilitate the generation of an enolate.

35

Another consideration is the metal chelation effect present in Evans' oxazolidone system,^{52,53} which can control the direction of the C=C bond of an enolate which is bound to the template and thus can control the direction of electrophile access. We wanted to introduce this chelation effect into our bifunctional template in order to facilitate the formation of the new carbon-carbon bond in the condensation between the two acyl units.

Scheme 2.2 A Glycoluril Template and a Possible Metal (M) Chelated Transition State for its Directed Acyl Transfer (Compared with the Oxazolidone System).

The first model we have designed as an analogue of the synthases of fatty acids and polyketides is compound 1, a glycoluril derivative. The two equivalent NH groups in compound 1 can be acylated and deacylated to simulate the two active sites of the enzyme. Further, a six-membered ring transition state should be formed after deprotonation at one α -carbon of the two acyl groups situated on the NHs. The compound 1 contains a partial structure analogous to that of oxazolidone and thus the metal chelation effect may force an enolate C=C bond on one of the binding sites towards the other acyl group (Scheme 2.2). A molecular model as well as literature X-ray diffraction studies⁷³ suggests that such a bicyclo compound can be stable only in the *cis*-fused form of the two rings.

Scheme 2.3 Synthesis of Parent Glycoluril

The glycoluril parent compound has been prepared by condensation of glyoxal with 2 equivalents of urea (Scheme 2.3).⁶⁰ The name used for glycoluril in *Chemical Abstracts* is tetrahydro-imidazo[4,5-*d*]imidazole-2,5-(1*H*, 3*H*)-dione using the same numbering system as that in glycoluril, while based on IUPAC

38

The glycoluril skeleton has been widely used to build molecules which possess cavities for host-guest binding studies.⁶⁵⁻⁷⁵ Some host molecules (e.g. cucurbituruil in Scheme 2.5⁷⁴) containing glycoluril units exhibit enzyme-like catalytic activities in their guests' transformations.⁶⁷ Rebek and his co-workers have built novel glycoluril derivatives as self-complementary modules and are studying their assembly into host species in the presence of nucleating guests.⁷⁵ A large number of other glycoluril derivatives are of commercial value in dyeing⁷⁶ and bleaching⁷⁷ industries or act as polymer crosslinking agents^{78,79} and have been widely documented in hundreds of patents, as exemplified by references 76-79.

We have also designed compounds 2a (R=H) and 2b (R=CH₃). bifunctional oxazolidones as molecular models of the PKS and FAS. The SH and NH groups can play the role of the two binding sites; a seven-membered cyclic transition state is expected if the intramolecular condensation takes place (Scheme 2.6). These compounds are very similar to conventional oxazolidones;

Transition state

Scheme 2.6 Bifunctional Oxazolidone Templates and the Transition State for Their Directed Intramolecular Acyl Transfer (R=H or CH₃). nomenclature, it also can be named 2,4,6,8-tetraazabicyclc[3,3,0]octane-3,7dione (Fig. 3.1.1). Some glycoluril compounds have been demonstrated to possess a variety of interesting properties. As a useful acylating agent,^{61,62} 1,3,4,6-tetraacylglycoluril was developed by Kuhling *et al.* and used by Ganem *et al.* to selectively acylate primary amines over secondary (Scheme 2.4).⁶³

Scheme 2.4 Tetraacetylglycoluril Acts as a Selective Acetylating Agent. (Tice, C. M.; Ganem, B. J. Org. Chem. 1983, 48, 2106)

Scheme 2.5 Cucurbituril, Six Glycoluril Units Connected with Methylene Groups. (Cram, D. *et al. J. Am. Chem. Soc.* 1982, *104*, 5826)

39

however, the extra SH group may be used as a potential carrier of the acyl group to be transferred onto the enolate formed on the other NH binding site (or *viceversa*). These compounds can be prepared in a chirally pure form from amino acids, cysteine or penicillamine. When a propionyl group is to be added to the linear chain, the ensuing intramolecular condensation could potentially result in a stereoselective chain growth with a methyl branch.

Compound 2b was synthesized from penicillamine, while Endang Saepudin in our group prepared 2a from cysteine. Two propionyl groups were introduced onto both 2a and 2b. Initial attempts to effect the condensation between the two propionyl groups by a strong base (LDA and *t*·BuOLi) at -78°C were unsuccessful. It was found that one or both propionyl units were removed from the template 2a or 2b by base. Because the initial test of the condensation on template 1 was very successful, further investigation of systems 2a and 2b in order to find suitable conditions for the condensation was terminated. There is still potential to realize the condensation reactions on templates 2a and 2b by varying bases and reaction conditions.

CHAPTER 3. RESULTS AND DISCUSSION

3.1 Synthesis of the Enzyme Model 1

N-Monomethylurea and 2,3-butanedione (diacetyl) were used as starting materials, as reported by Biltz in 1907.60 These two compounds are cheap and readily available in large quantities. The yellowish 2,3-butanedione liquid is sometimes decomposed or polymerized to form solid material or is shipped in bad quality from suppliers. Commercially available 2,3-butanedione of good quality may be used directly. However, use of freshly distilled 2,3-butanedione can lead to a better yield of the product.

The reaction of diacetyl with two equivalents of monomethylurea is expected to give compound 1 and its isomer 1a (Scheme 3.1.1). These two isomers should be easily separated due to their different polarity. This reaction was carried out in absolute ethanol at room temperature with several drops of concentrated hydrochloric acid as a catalyst. N-Methylurea was initially suspended in ethanol and the mixture became clear and hot shortly after 2,3butanedione and hydrochloric acid were added at room temperature. The clear solution remained for about 10 minutes and then extensive precipitation occurred to form the solid mixture of products 1 and 1a. The mixture was obtained in 51%

42

m/e 126 (61%) m/e 125 (60%) m/e 56 (base)

M+ m/e 198 (48%)

Scheme 3.1.2 Major Products from: Molecular Ion Fragmentations of Template 1.

The mixture of 1 and 1a is insoluble in water or in most organic solvents. Slight solubility was found in methanol and in ethanol, making possible the isolation of 1 by recrystallization. Compound 1a has much higher solubility than 1 in cold ethanol, from which 1 was recrystallized 3 times and obtained in pure form. No attempt was made at this stage to purify 1a in the mother liquor containing un-recrystallized 1.

The proton NMR spectrum of compound 1 shows a single peak of 6 protons at 2.78 ppm for both N-methyl groups, and two singlets at 1.48 and 1.39 ppm for the two bridgehead methyl groups. Compound 1a exhibits only two singlets at 2.62 and 1.47 ppm (6 protons each) in its ¹H NMR spectrum. The IR absorptions of 1 were found at 3282 cm⁻¹ for NH and 1683 cm⁻¹ for C=O groups. A high abundance of the molecular ion at m/e 198 (48%) in the MS of 1 was observed. Another two strong peaks at m/e 126 (61%) and 125 (60%) are formed

yield. The ¹H NMR spectrum shows a ratio 1 to 1a of 16:15.

The mechanism for this reaction probably involves the formation of monocyclic ring intermediates 3 or 4 (Scheme 3.1.1). Similar intermediates have been previously established to occur in the formation of other glycoluril derivatives.81,82,83 The C=N bond of 3 or cationic C=N* double bond of 4 undergoes nucleophilic addition by either of the NH2 or NHMe groups of the second methylurea molecule. The steric effect of primary and secondary nitrogen atoms is not reflected in the ratio (nearly 1:1) of the two regioisomers 1 and 1a. The electronic effect or other effects may also be involved in this reaction.

from loss of a five membered ring and can be accounted for by the fragmentation patterns shown in Scheme 3.1.2.

Single crystals of 1 were obtained as colourless needles and analyzed by X-ray diffractometry. Views of the refined X-ray crystal structure are shown in Fig. 3.1.1 and Fig. 3.1.2. Compound 1 is named 1,4,5,6-tetramethyl-2,4,6,8tetraazabicyclo[3,3,0]octane-3,7-dione for the purpose of the following discussion of the X-ray diffraction results, based on IUPAC nomenclature. The structural data from the crystallographic study of 1 are listed in Tables 1, 2 and 3. It is clearly seen that the two rings of the bicyclo compound are symmetrical across a mirror plane and cis fused to each other, as predicted by molecular modelling. The dihedral angle between the two ring planes is 112°, smaller than that of the parent glycoluril (115°)84a due to the presence of two more bridgehead methyl groups. A strong gauche interaction between the bridgehead methyl groups C(9) and C(12) is implied by the bond angles C(5)-C(1)-C(9) of 117.3° and C(1)-C(5)-C(12) of 116.9°. The hydrogen atoms of the two bridgehead methyl groups are directed away from each other to minimize the interaction.

The crystals of 1 are very stable to most organic solvents and to temperatures as high as 300°C. The solubilities of 1 are also very low even in polar solvents such as water, methanol and ethanol. In order to account for these features, it was initially suspected that there might be strong intermolecular

Fig. 3.1.1. X-Ray Crystal Structure of Template 1. IUPAC Name Used Here: 1,4,5,6-Tetramethyl-2,4,6,8-tetraazabicyclo[3,3,0]-3,7-dione.

hydrogen bonding in the crystals of 1, as shown Fig. 3.1.3. Each imide unit might provide one proton donor and one proton acceptor to form eight membered intermolecular rings, as recently reported for the X-ray crystal structure of the parent glycoluril.^{84b} Each molecule has two imide units, leading to formation of extensive molecular chains through hydrogen bonding in the single crystals. However, the crystal structure (Fig. 3.1.2) does not show such hydrogen bonds for the intermolecular ring systems and proves that the early speculation is

46

	x	У	z	U(eq)
(1)	3805(3)	2500	-560(4)	29(1)
N(2)	3026(2)	3573(2)	-408(3)	43(1)
C(2)	3266(2)	. 4204(2)	1003(3)	30(1)
N(4)	6129(2)	3582(2)	1919(3)	35(1)
R(4)	4509(3)	2500	1106(4)	28(1)
	4559(5)	2500	-2158(5)	51(2)
0(9)	2776(2)	5162(2)	1401(2)	41(1)
0(10)	2770(2)	6030(3)	3495(3)	46(1)
C(11)	4376(3)	20000	961(5)	41(1)
C(12)	60/4(4)	2300	JUT())	.=(,

* Equivalent isotropic U defined as one third of the trace of the orthogonalized U ij tensor

Table 2. Bond lengths (Å) for template 1.

C(1)-N(2)	1 448 (3)	C(1)-C(5)	1.573 (5)
	1 511 (5)	C(1)-N(8)	1.448 (3)
N(2)-C(3)	1 361 (3)	C(3)-N(4)	1.350 (3)
C(2) = O(3)	1 226 (3)	N(4)-C(5)	1.458 (3)
N(4)-C(11)	1.448 (3)	C(5)-C(12)	1.525 (5)
C(5)-N(6)	1.458 (3)		

Table 3. Bond angles (°) for template 1.

N(2)-C(1)-C(5)	102.5(2)	N(2)-C(1)-C(9)	111.2(2)
G(5)-C(1)-C(9)	117.3(3)	N(2)-C(1)-N(8)	111.8(3)
G(5)-C(1)-N(8)	102.5(2)	C(9)-C(1)-N(8)	111.2(2)
C(1)-N(2)-C(3)	113.5(2)	N(2)-C(3)-N(4)	108.1(2)
N(2)-C(3)-O(10)	126.6(2)	N(4)-C(3)-O(10)	125.3(2)
G(3)-N(4)-C(5).	113.5(2)	C(3)-N(4)-C(11)	121.5(2)
G(5)-N(4)-C(11)	124.8(2)	C(1)-C(5)-N(4)	102.2(2)
C(1)-C(5)-C(12)	116.9(3)	N(4)-C(5)-N(6)	111.5(2)
C(1)-C(5)-N(6)	102.2(2)	N(4)-C(5)-N(6)	112.0(3)
C(1)-C(5)-N(6) C(12)-C(5)-N(6)	102.2(2) 111.5(2)	N(4)-C(5)-N(6)	112.0(3)

Fig. 3.1.2. Intermolecular Structure in Crystals of 1.

Fig. 3.1.3 The Suspected Intermolecular Hydrogen Bonding of Template 1 Was not Observed in the X-Ray Crystal Structure.

47

wrong. The true intermolecular structure in the crystals of tetramethylglycoluril is characterized by that each molecule is interacted with four different molecules *via* hydrogen bonding.

When 1 was heated at reflux with acetic anhydride for 20 hours under a nitrogen atmosphere, all of the solid starting material dissolved to give a clear solution. After removing excess acetic anhydride, a solid was obtained, which was highly soluble in chloroform. This material was recrystallized from chloroformethyl acetate and characterized as the monoacetylated compound 5, and obtained in 78% yield (Scheme 3.2.1). A trace amount of diacetylated product 6

Scheme 3.2.1 The First Acylations of Template 1 and Its Isomer 1a.

50

In the ¹H NMR spectrum of 5 in CDCl₃, a singlet from one NCH₃ group appears at 2.91 ppm, shifting 0.16 ppm down field relative to that of 1. This singlet is assigned to the methyl group on position 3, closer to the acetyl. Another singlet from one bridgehead methyl group shifts 0.10 ppm from 1.49 to 1.59 ppm due to the acetylation, and is assigned to the methyl at position 7. The resonances of the other two methyl groups at positions 4 and 8 are less affected by mono-acetylation of 1. The IR spectrum of 5 shows absorptions at 3250 cm⁻¹ (NH), and at 1723, 1712 and 1688 cm⁻¹ (three C=O groups).

An alternative acylation procedure was developed in order to be used in those cases where the quantity of an acylating agent is limiting. This was a challenging problem due to suitable solvents not being available for dissolving the template 1. Initially, a suspension of 1 in a large volume of THF was treated with 1 equivalent of n-butyl lithium and the mixture was stirred for up to 5 hours at room temperature. Addition of 1.2 equivalents of acetyl chloride gave no desired product 5 and most of the starting material was recovered. A similarly prepared mixture of 1 and n-butyl lithium in THF was then heated at reflux for 1 hour. Addition of an acyl chloride resulted in a clear solution instantly due to the fast formation of the soluble product (e.g., 5). Therefore, a complete deprotonation of insoluble 1 by n-butyl lithium can be carried out in THF only at reflux to produce an insoluble intermediate lithium salt, which is quite reactive to acyl chlorides (Scheme 3.2.2). It is not commonly seen in the literature that deprotonation by

was found in less than 1% yield in this step. This selectivity of acetylation on one NH group of the enzyme model is desired so that two different acyl groups could be bound to this model molecule.

The mixture of 1 and 1a was also directly used without separation for the acetylation reaction described above. Compound 1a is stable to these conditions and remains as a solid. After removing acetic anhydride, chloroform was added to the residue. 1a was then filtered off as a solid, and obtained in pure form after washing with chloroform. The mother liquor was then concentrated and recrystallized to give 5. The steric effect of the N-methyl group of 1a may contribute to the difficulty of its acetylation.

The acetylation of 1 largely reduces the intermolecular interactions to afford the asymmetrical product 5, which is very soluble in chloroform and moderately soluble in THF (~80 mL THF / 1 g 5). This drastic change in solubility solely as a result of introducing an acetyl group is an interesting phenomenon. It is possible that 5 forms intramolecular hydrogen bonds via a six-membered ring between the acetyl carbonyl oxygen and NH proton, which can extensively reduce its polarity for the strong intermolecular interactions. Therefore, the favourable entropy change can override the unfavourable enthalpy change and largely contribute to the easy dissolution of 5 in chloroform.

51

of Template 1 and its isomer 1a.

n-butyl lithium proceeds only at reflux. Compound 1a in THF undergoes deprotonation and acetylation reactions under the same conditions to afford product 5a (Scheme 3.2.2), which is much less polar than 5 and easily isolated by flash column chromatography.

The acetylation procedures described above were used for general acylation with other longer acyl units (Scheme 3.2.1). When propionic anhydride was heated with compound 1 at 150°C for 20 hours under nitrogen, dipropionylated compound 8 was isolated in 8% yield in addition to the monopropionylated compound 7, which was obtained in 82% yield. The methylene protons of 7 form a diastereotopic ab system in the ¹H NMR spectrum and appear as a multiplet partially overlapped with N-methyl protons. Butyryl derivative 9 was prepared in a similar way in 70% yield with some formation of dibutyryl compound 10 (5%).

3.3 Preparation of Di-Acylated Compounds

The second acyl group was introduced by treatment of a mono-acyl (acetyl, propionyl or butyryl) glycoluril derivative in THF with lithium diisopropylamide or with n-butyl lithium at 0°C followed by addition of a corresponding acyl chloride. This second acylation did not proceed at a temperature lower than -20°C, probably because deprotonation can not take place at such a low temperature. It was found that the acylation takes place exactly at the desired second NH group, instead of at the α -carbon of the existing acyl group (Scheme 3.3.1).

The simplest case is the introduction of a second acetyl group onto the acetyl derivative 5, affording 1,6-diacetyl-3,4,7,8-tetramethylglycoluril 6 in 78% yield. The starting material 5 was recovered in 10~16% yield; it is more polar than product 6 and is easily separated from the product by flash column chromatography. The ¹H NMR spectrum of the product shows 4 singlets in a ratio of 2:2:1:1. There are no absorptions above 3000 cm⁻¹ in the IR spectrum of 6.

54

Fig. 3.3.1. X-Ray Crystal Structure of Compound 6. IUPAC Name Used Here: 2,8-Diacetyl-1,4,5,6-tetramethyl-2,4,6,8-tetraazabicyclo[3,3,0]-3,7-dione.

Scheme 3.3.1 Second Acylations by Acetyl Chloride.

Single crystals of 6 were obtained as colourless plates by slowly cooling down a saturated hot solution in a mixed solvent of chloroform and ethyl acetate (1:1). The crystal structure from an X-ray diffraction study was obtained (Fig. 3.3.1) and the structural data are listed in Tables 4, 5 and 6. The most interesting feature of the crystal structure is its asymmetry, despite the fact that it contains two identical substructures of N-acetyl-N'-methylurea fused by a C-C bond. The introduction of two identical groups onto the two symmetrical positions of 1 results in loss of its symmetry plane, reflecting strong intramolecular steric interactions. The two bridge head methyl groups are distorted 20° away from the eclipsed conformation which was found in 1. Another interesting feature is the orientation of the 2 acetyl groups, whose two carbonyl oxygen atoms are forced close to each other and whose two methyl groups are directed away. Such a conformation is probably a combined result of an unfavourable intramolecular interaction

55

Table 4.	Atomic coord	linates (x10 ⁴) and equiv	ralent isotrop	ic
	displacement	coefficient	s (Å ² x10 ³)	for compound	6
	x	У	z	Ū(eq)	
C(1A)	2287(6)	7459(4)	4664(3)	37(2)	
N(2A)	2676(5)	8757(3)	4559(2)	38(1)	
C(3A)	2053(6)	9346(5)	5275(3)	42(2)	
N(4A)	1608(5)	8477(3)	5870(2)	41(1)	
Ċ(5A)	1910(6)	7227(4)	5624(3)	39(2)	
N(6A)	311(5)	6588(4)	5693(2)	44(2)	
C(7A)	-517(7)	6691(4)	4981(3)	43(2)	
N(8A)	550(5)	7281(3)	4359(2)	38(1)	
C(9A)	3617(7)	6529(5)	4307(3)	S1(2)	
0(10A)	1970(5)	10448(3)	5341(2)	61(2)	
C(11A)	1132(8)	8793(5)	6716(3)	61(2)	
G(12A)	3317(7)	6518(5)	6101(3)	53(2)	
C(13A)	-442(8)	5984(5)	6443(3)	62(2)	
0(14A)	-1908(5)	6288(3)	4900(2)	60(1)	
C(15A)	3723(7)	9317(5)	3903(3)	51(2)	
C(16A)	3763(8)	10704(6)	3856(4)	73(3)	
0(17A)	4542(5)	8711(4)	3416(2)	65(2)	
C(18A)	110(6)	7657(S)	3559(3)	43(2)	
C(19A)	-1642(7)	7477(6)	3299(3)	59(2)	
0(20A)	1175(5)	8156(4)	3076(2)	61(1)	
C(1B)	2885(6)	7628(4)	9601(3)	36(2)	
N(2B)	2516(5)	6355(3)	9514(2)	39(1)	
C(3B)	2714(7)	5637(5)	10272(3)	48(2)	
N(4B)	2949(6)	6390(4)	10862(2)	49(2)	
C(5B)	2811(6)	7695(4)	10566(3)	40(2)	
N(6B)	4348(5)	8297(4)	10695(2)	45(2)	
C(7B)	5517(7)	8304(4)	10043(3)	41(2)	
N(8B)	4735(5)	7837(3)	9381(2)	37(1)	
C(9B)	1764(6)	8637(5)	9154(3)	46(2)	
O(10B)	2647(6)	4526(3)	10376(2)	81(2)	
C(11B)	2964(9)	5919(6)	11739(3)	73(2)	
C(12B)	1176(7)	8355(5)	10939(3)	56(2)	
C(13B)	4770(7)	8676(6)	11495(3)	63(2)	
0(14B)	6958(5)	8659(3)	10025(2)	60(1)	
C(15B)	1869(6)	5904(S)	8811(3)	46(2)	
C(16B)	2108(9)	4542(6)	8741(4)	84(3)	
O(17B)	1194(5)	6585(3)	8289(2)	57(1)	
C(18B)	5507(6)	7644(5)	8598(3)	43(2)	
C(19B)	7339(7)	7930(6)	8404(3)	62(2)	
O(20B)	4682(5)	7241(4)	8087(2)	62(2)	

* Equivalent isotropic U defined as one third of the trace of the orthogonalized ${\rm U}_{ij}$ tensor

Table 5. Bond lengths (Å) for compound 6.

-(7A)_N(2A)	1 462 ((6)	C(1A)-C(5A)	1.561	(6)
(1A)_N(8A)	1.501 (6)	C(1A)-C(9A)	1.522	(7)
(1A)-A((aL)	1 415-0	6)	N(2A)-C(15A)	1.414	(6)
(2A)-0(JA)	1 336	(6)	G(3A)-0(10A)	1.214	(6)
	1 455	(6)	N(4A)-C(11A)	1.458	(6)
	1 461	(6)	C(SA)-C(12A)	1.513	(7)
	1 2/8	(7)	N(6A)-C(13A)	1,437	(6)
N(6A)-G(7A)	1.540	(6)	C(7A)-0(14A)	1.215	(7)
C(/A)-N(8A)	1 200	(6)	C(15A)-C(16A)	1.511	(8)
N(8A)-C(18A)	1.300		C(18A)-C(19A)	1.485	(7)
C(15A)-O(1/A)	1.197		C(1B)-N(2B)	1.459	(6)
C(18A)-0(20A)	1.221	(6)	C(1B)-N(8B)	1.488	(6)
C(1B)-C(5B)	1.565	(6)	N(2B)-C(3B)	1.408	(6)
C(1B)-C(9B)	1.520	(6)	C(3B)-N(4B)	1 342	(T)
N(2B)-C(15B)	1.413	(7)	N(AB)-C(SB)	1 462	6
C(3B)-O(10B)	1.214	(7)	R(45)-0(55)	1 439	$\tilde{\alpha}$
N(4B)-C(11B)	1.467	(6)		1 3/5	6
C(SB)-C(12B)	1.534	(7)	N(0D)-0(7D)	1 415	(6)
N(6B)-C(13B)	1.456	(7)	C(/D)-N(0D)	1 201	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
C(7B)-O(14B)	1.209	(7)	N(8B)-C(18B)	1.391	(6)
C(15B)-C(16B)) 1.499	(8)	C(15B)-O(1/B	1 7 230	
C(18B)-C(19B)) 1.487	(7)	C(TSP)-0(20P	, 1.210	(0)

Table 6.	Bond	angles	്	for	compound	1
----------	------	--------	---	-----	----------	---

		N(2A)-C(1A)-N(8A)	111.1(3)
(2A)-C(1A)-C(5A)	103.0(4)	N(2A)-G(1A)-G(9A)	117.6(4)
C(5A)-C(1A)-N(8A)	100.8(3)	N(8A)-C(1A)-C(9A)	109.6(4)
C(5A)-C(1A)-C(9A)	113.4(4)	C(1A)-N(2A)-C(15A)	125.9(4)
C(1A)-N(2A)-C(3A)	109.8(5)	N(2A)-G(3A)-N(4A)	108.0(4)
C(3A)-N(2A)-C(15A)	123.0(4)	N(4A)-C(3A)-O(10A)	126.1(4)
N(2A)-C(3A)-O(10A)	125.9(4)	C(3A)-N(4A)-C(11A)	120.6(4)
C(3A)-N(4A)-C(5A)	114-0(4)	C(1A)-C(SA)-N(4A)	101.7(3)
C(SA)-N(4A)-C(11A)	124.7(4)	N(4A)-C(5A)-N(6A)	111.1(4)
C(1A)-C(5A)-N(6A)	103.2(4)	N(4A)-C(5A)-C(12A)	111.6(4)
C(1A)-C(5A)-C(12A)	110.3(4)	C(5A)-N(6A)-C(7A)	113.3(4)
N(6A)-C(5A)-C(12A)	112.2(4)	C(7A)-N(6A)-G(13A)	120.9(4)
C(5A)-N(6A)-C(13A)	125.6(4)	N(6A)-G(7A)-0(14A)	125.2(4)
N(6A)-C(7A)-N(8A)	107-8(4)	C(1A)-N(8A)-C(7A)	111.4(4)
N(8A)-C(7A)-O(14A)	127.0(5)	C(7A)-N(8A)-C(18A)	125.8(4)
C(1A)-N(8A)-C(18A)	122.8(4)	N(2A)-C(15A)-O(17A)	120.9(5)
N(2A)-C(15A)-C(16A)	110.9(4)	N(8A)-C(18A)-C(19A)	120.2(4)
C(16A)-C(15A)-O(17A)	122.2(5)	C(19A)-C(18A)-O(20A)	120.8(4)
N(8A)-C(18A)-O(20A)	119.0(4)	N(2B)-C(1B)-N(8B)	111.2(3)
N(2B)-C(1B)-C(5B)	103.2(3)	N(2B)-C(1B)-C(9B)	117.4(4)
C(5B)-C(1B)-N(8B)	100.7(5)	N(8B)-C(1B)-C(9B)	109.4(3)
C(5B)-C(1B)-C(9B)	113.3(4)	C(1B)-N(2B)-C(15B)	126.2(4)
C(1B)-N(2B)-C(3B)	102 2(4)	N(2B)-G(3B)-N(4B)	108.5(4)
C(3B)-N(2B)-C(15B)	125.6(5)	N(4B)-C(3B)-O(10B)	125.9(5)
N(2B)-C(3B)-O(10B)	113 6(6)	C(3B)-N(4B)-C(11B)	120.7(4)
C(3B)-N(4B)-C(55)	126 7(4)	C(1B)-C(5B)-N(4B)	101.6(4)
C(5B)-N(4B)-C(11B)	107 5(3)	N(4B)-C(5B)-N(6B)	111.7(4)
C(1B)-C(5B)-N(6B)	115 2(4)	N(4B)-C(5B)-C(12B)	111.7(4)
C(1B)-C(5B)-C(12B)	112 4(4)	C(SB)-N(6B)-C(7B)	113.8(4)
N(6B)-C(5B)-C(12B)	126 1(6)	C(7B)-N(6B)-C(13B)	121.2(4
C(5B)-N(6B)-C(15B)	107 2(4)	N(6B)-C(7B)-O(14B)	126.3(5
N(6B)-C(7B)-N(8B)	126 6(4)	C(1B)-N(8B)-C(7B)	111.4(4
N(8B)-C(7B)-O(14B)	122 1(4)	C(7B)-N(8B)-C(18B)	126.4(4
C(1B)-N(8B)-C(18B)	116 8(5)	N(2B)-C(15B)-O(17B)	121.2(5
N(2B)-C(15B)-C(16B)	122 0(5)	N(8B)-C(18B)-C(19B)	119.5(4
C(16B)-C(15B)-O(17E	110 6(4)	C(19B)-C(18B)-O(20B) 120.9(4
N(8B)-C(18B)-O(20B)	1122-0(4)		

58

between the two α -methyl groups and the conjugation effect of the two pairs of carbonyl units, each pair connected by a tertiary nitrogen. A structural optimization with the PC-MODEL program gave a similar asymmetrical structure, supporting the idea that intramolecular interactions play a predominant role in the asymmetry and conformation. The orientation of the two acetyl groups revealed in the X-ray crystal structure and PC-MODEL calculation also may represent the predominant one in a solution. The two acetyl methyl groups are nonequivalent, as seen in the crystal structure; however, they were not distinguished by 200 MHz ¹H NMR and 50 MHz ¹³C NMR. Therefore, there may be a fast equilibration between the two conformations in solution. Nevertheless, it is necessary for an intramolecular Claisen-type condensation to take place that one of the acetyl groups rotates upon deprotonation in order for the ionized α -carbon to access and then form a bond to the electrophilic acetyl group. The electrophilic acetyl group also may have to change its orientation in order to provide an optimal angle for the attack of the enolate carbon of the other acetyl group.

The other diacyl compounds were prepared in a similar way and in varying yields. The starting material **5**, **7** or **9** was always partially recovered in each case, usually in between 10-20% yield, even though excess nBuLi or LDA and acyl chloride were sometimes employed. The intramolecular steric strain in the products is probably a major factor causing difficulties for the access of a second acyl group. 1-Acetyl-6-propionyl-3,4,7,8-tetramethylglycoluril **11** was obtained from acetylation of **7** in 54% yield (Scheme 3.3.1).The proton NMR spectrum (200 MHz) shows a singlet of six protons from two N-methyl groups. The carbon-13 NMR spectrum (50 MHz) shows a singlet for the two N-methyl groups. The carbons and another singlet for the two urea carbonyl carbons in the two rings. This observation implies that an extra methylene group in the acyl side chain has little impact on the NMR chemical shifts of the proton and carbon atoms other than those of the acyl chain themselves. Similarly, 1-acetyl-6-butyryl-3,4,7,8-tetramethylglycoluril **12** was made in 61% yield from monobutyryl starting material **9**. The two N-methyl groups are 0.004 ppm away in the ¹H NMR and 0.04 ppm away from each other in the ¹³C NMR spectra of **12** (Scheme 3.3.1).

1-Acetyl-6-trimethylacetyl-3,4,7,8-tetramethylglycoluril **13** was prepared in 52% yield by treatment of 5 with nBuLi and trimethylacetyl chloride (Scheme 3.3.2). The ¹H NMR chemical shifts of the two N-methyl groups of **13** are different by 0.12 ppm and the corresponding ¹³C chemical shifts are different by 1.7 ppm, indicating remarkable effects of the bulky *tert*-butyl group of the side chain. Both CI and EI mass spectra of **13** show very weak peaks for the molecular ion at 324 (<1%), but relatively very strong peaks at M+1 (5% and 8%, respectively for CI and EI).

Scheme 3.3.2 Second Acylations of the Glycoluril Template.

1-Acetyl-6-acryloyl-3,4,7,8-tetramethylglycoluril **14** and 1-acetyl-6methacryloyl-3,4,7,8-tetramethylglycoluril **15** were synthesized from 5 in low yields (41% and 36%, respectively), with formation of some unresolved sticky material probably due to polymerization side reactions (Scheme 3.3.2).

3.4 The Condensation Reaction of the 1,6-Diacetyl Glycoluril Derivative

A variety of conditions were tried in order to effect the intramolecular Claisentype condensation between the two acetyl groups of 6, making a new C-C bond and breaking an acetyl-N bond. When *tert*-butyl lithium was used as a base and THF as a solvent, the desired condensation product **17** was obtained in around 10% yield. Lithium diisopropylamide as a base in THF gave this product in less than 50% yield. Compounds **1** and **5** were recovered from the above reactions

62

Scheme 3.4.1 Condensation of Diacetyl Glycoluril Derivative 6 Induced by a Base.

However, the use of water, instead of solid NH_4HCO_3 as a quenching agent after the condensation led to formation of 5 in up to 46% yield and formation of the product 17 in only 39% yield. A subsequent experiment demonstrated that addition of t-BuOLi at 0°C in THF followed by heating the mixture at reflux for up to 5 hours and then quenching with solid ammonium bicarbonate did not lower the product yield. So the product 17 and its deprotonated form are relatively stable to heating. Compound 5 may result from a retro-Claisen type condensation of 17 with an undetermined nucleophile in the case of NH_4HCO_3 . Use of water may generate OH", which could promote this retro-Claisen condensation reaction.

The normal intermolecular Claisen condensation reactions such as those of ethyl acylates, catalyzed with sodium ethoxide, require 8 hours to 3 days to proceed to completion under reflux conditions.⁸⁵ Typical yields of the keto ester even at -78°C; that is, one or both of the acetyl groups was removed from 6 when treated with t-BuLi or LDA. The choice of a quenching agent after the deprotonation and condensation had a great effect on the yield of the product 17. Solid ammonium bicarbonate was found to be a suitable agent for the quenching. Water appeared to hydrolyse the product and gave a worse yield.

A solution of lithium *tert*-butoxide in THF, freshly prepared from n-butyl lithium and 1.5 equivalent *tert*-butyl alcohol was used to deprotonate one acetyl methyl of the compound 6 at 0°C in THF. After addition of *tert*-BuOLi in 5-10% excess, the reaction was monitored by TLC every five minutes and was found to be complete within 20 minutes. Addition of child ammonium bicarbonate was followed by stirring the mixture for about 5 hours. Only a single spot of product showed up on a TLC plate at this stage. A yellowish solid product was obtained in 100% yield after removing the solid salt and then the solvent. This crude product was shown to be virtually pure compound **17** by ¹H and ¹³C NMR spectra. A flash column chromatography purification resulted in compound **17** as a white solid in 93% yield (Scheme 3.4.1).

Another less polar fraction from the column purification was identified as 5 (5%), which was probably formed during the work-up as it could not be seen on a TLC plate until after the THF was removed from the reaction mixture. The mechanism for formation of 5 during the condensation process remains unknown.

63

products are around 50% and the highest yield of 75% was reported for the ethyl acetoacetate product. In contrast, the condensation reaction of **17** is complete within 20 minutes at 0°C with a little stronger base, lithium *tert*-butoxide, as catalyst. A tremendous efficiency is indicated in this case by a short reaction time and a high yield of condensation product.

The compound 17 was characterized by NMR spectroscopy. Of particular note were the diastereotopic methylene protons between the two carbonyl groups on the side chain. These two protons form an ab pattern, and are coupled to each other by 16.4 Hz in the ¹H NMR spectrum, a typical value for a geminal coupling constant. Another feature of 17 is the equilibrium between its enol and keto forms. The enol form is seen in the ¹H and ¹³C NMR spectra of 17 as a minor component (10%). The enol hydroxy proton appears at 13.20 ppm and the corresponding olefinic proton at 6.51 ppm in the ¹H NMR spectrum. The terminal methyl protons of the enol side chain shift 0.24 ppm upfield to 2.02 ppm from those of the keto form. The FTIR of 17 shows a sharp absorption at 3224 cm⁻¹ for the NH group and a very strong and broad absorption composed of several unresolved peaks between 1690 and 1760 cm⁻¹ for the carbonyl groups. A weak UV absorption in methanol was observed at a wavelength of 272 nm (ϵ = 970) and a moderate one at 211 nm (ϵ = 7600), probably due to the presence of the enol form. Compound 17 is very stable to air and was found to be still pure after standing in air for 4 years at room temperature.

Treatment of compound 11 with t-BuOLi in THF at 0°C for 20 minutes, followed by quenching with NH₄HCO₃, gave a product as a single spot by TLC. This product was purified on a flash column, resulting in a mixture of **18** and **19** in 81% yield (Scheme 3.5.1). Proton and ¹³C NMR spectra showed that the compound **18**, 1-(3'-oxovaleryl)-3,4,7,8-tetramethylglycoluril and its enol form dominated in this product mixture. Compound **19**, 1-(2'-methyl-3'-oxobutyryl)-3,4,7,8-tetramethylglycoluril appeared to be present as a minor component. A separation of the two isomers **18** and **19** with a flash column was attempted but unsuccessful. A calculation from the integral of the proton NMR spectrum gave

Scheme 3.5.1 Condensation of Diacyl Glycoluril Derivatives Induced by a Base to Produce 2 Regioisomers in Each Case (18:19=83:17, 20:21=81:19).

66

It was found, however, that the transfer of the trimethylacetyl group occurred smoothly, affording the product 22 plus its minor enol form in 79% yield, although a longer reaction time of 5 hours was allowed after addition of t-BuOLi and before quenching with ammonium bicarbonate (Scheme 3.5.2).

When lithium *tert*-butoxide was used to induce a condensation between propionyl units in 1,6-dipropionyl-3,4,7,8-tetramethylglycoluril 8, an inseparable mixture of the condensation product 25 and the monopropionyl compound 7 was obtained (1:1 from ¹H NMR integration). Compound 25 exists as two diastereomers in a ratio of 1:2. A less bulky but more nucleophilic base, lithium *iso*-propoxide, was also tested for the condensation of 8, producing a mixtur of 25 and 7 in a 1:3 ratio (Scheme 3.5.3). These results show that cleavage of an alkyl group from the template is partially caused by the nucleophilic attack of the base. Further experiments using a more hindered base (*e.g., tert*-AmOLi) to induce the condensation of 8 are currently being carried out.

Scheme 3.5.3 Treatment of the Diproplonyl Derivative with tBuOLi or Lithium Propoxide Resulted in a Mixture of Condensation Product and Monopropionylglycoluril. a ratio of **18:19** of approximately 83:17. An experiment using LDA as a base gave a mixture of **18** and **19** in 12% yield, which contained more than 30% of the compound **19** as estimated by the proton NMR integrations.

A similar treatment of compound 12 with t-BuOLi for 15 minutes resulted in a mixture of products 20 and 21 in a ratio of 81:19 (by ¹H-NMR integration) and a total yield of 88% (Scheme 3.5.1). This mixture also showed a single spot on a TLC plate and could not be separated by a regular chromatography column.

For the asymmetrical 1-acetyl-6-trimethylacetyl compound 13, only the acetyl group can be converted to an enolate upon treatment with t-BuOLi. It was suspected that the bulky trimethylacetyl group might have a strong steric effect which would prevent the access of an enolate even by an intramolecular process.

Scheme 3.5.2 The Bulky Trimethylacetyl Group Easily Transferred during Condensation.

67

3.6 Mechanistic Studies on the Template-Directed Condensations

For an intermolecular condensation reaction, the 1-acetyl-6-propionyl glycoluril derivative 11 could have given four possible condensation products 17, 18, 19 and 25, as shown in Scheme 3.6.1. An intramolecular pathway only allows the cross condensation between acetyl and propionyl groups to give compounds 18 and 19 as the rearranged products. No products 17 and 25 were actually

Intermolecular Condensation of 11 Would Have Given These 4 Products. However, 17 and 25 Were Actually Not Detected in This Reaction. detected in the condensation of compound **11**, suggesting that this reaction occurs through an intramolecular mechanism. The condensation reactions of other asymmetrical **1**,6-diacyl glycoluril derivatives (e.g., **12** and **13**) led to the same conclusion.

Compared with some regular Claisen condensation reactions, such as that of ethyl acetate with sodium ethoxide,⁸⁵ the condensation reactions we studied here have characteristic features of considerably lower reaction temperature, shorter reaction times and higher yields. These observations strongly support the hypothesis that the condensation reactions studied above occur through an intramolecular pathway. The model compound holds the two acyl groups together and a new C-C bond can be easily formed in an intramolecular process as soon as deprotonation occurs on one α -carbon of the two acyl groups. The formation of such a C-C bond probably is much faster for an intramolecular process than for an intermolecular reaction.

Compound 26, in which one acetyl group is labelled with two ¹³C atoms, was designed to test further the intramolecularity of acetyl transfers during formation of condensation products. The four possible condensation products 17 (M-2), 28 (M), 29 (M) and 30 (M+2) with different labelling patterns could be detected if intermolecular condensation occurred for 26 (Scheme 3.6.2). Instead, only two, 28 (M) and 29 (M), are possible for an intramolecular mechanism.

70

These two pathways can be distinguished by detection of the presence of the isotopomers 17 and 30 by mass spectrometry. Unfortunately, it was found that during the preparation of 26 by treatment of 5 with LDA and then ¹³C₂ acetyl chloride, the expected product was accompanied by a small amount (16%) of isotopomer 27, which was labelled with four carbon-13 atoms in both the acety.⁴ groups. Both ¹H NMR integration and the mass spectrum confirmed the presence of 27 in the product 26. In the EI mass spectrum (Fig. 3.6.1), two peaks at *m/e* 240 and 242 are observed due to the loss of a ¹³C₂ ketene molecule and a ¹²C₂ ketene molecule, respectively, from the molecular ion of 26 (Scheme 3.6.3). The

26

Scheme 3.6.3 Molecular Ion Fragmentation of 26 Should Have Given Nearly Equal Abundance for *mie* 240 and 242. However, *mie* 242 Is More Intense due to the Presence of a Small Amount of Compound 27.

Scheme 3.6.2

2,000

Intermolecular Condensation of 26 Would Give These Four ¹³C-Labelled Products. However, 17 Was Actually Not Formed. The Minor Formation of 30 Was due to the Presence of Some Compound 27 in the Starting Material.

peak at *m/e* 242 is about 30% higher than *m/e* 240, due to the partial contribution of 27.

A mixture of 26 and 27 (-9:1) was treated with t-BuOLi according to the standard condensation procedure. A part of the EIMS of the condensation product is shown in Fig. 3.6.2. There is no peak with a meaningful intensity at *m*/e 282 for compound 17, which could have been formed if an intermolecular acetyl transfer had occurred. Compound 30 was formed, but can be accounted for by an intramolecular condensation of the minor starting material 27.

In order to determine whether the initial deprotonation is the rate-limiting step for the glycoluril template-directed condensation reactions, a deuterium-labelling experiment was carried out, in which the 1-acetyl- d_3 -6-acetyl glycoluril derivative 33 in THF was treated with t-BuOLi (Scheme 3.6.4). Such an experiment is expected to produce unlabelled 17 and labelled 35 according to the standard condensation procedure. Dedeuteration at the labelled acetyl group of 33 by t-BuOLi and then transfer of the unlabelled acetyl group generates an intermediate 34. The two methylene deuterium atoms between the two carbonyl groups of 34 are easily exchanged with the protons of ammonium bicarbonate due to their acidity to give 17. The ratio of 17:35 was obtained from ¹H NMR integrations of the product mixture, and found to be 1:4.8. A strong singlet in the ²H NMR spectrum at 2.20 ppm indicates the presence of a CD₃ group for the

A Deuterium-Labelling Experiment Gave a Primary Isotope Effect of 4.8 due to the Slow Cleavage of the C-H Bond by Base

keto form of 35 and another small singlet at 1.96 ppm is assigned to the enol form. These results can be explained by a slow deprotonation of one acetyl group and then a fast transfer of the other electrophilic acetyl group, whose CH_3 or CD_3 group remains unaffected in the final product. If the deprotonation were a fast step, the negative charge would have migrated between acetyl methyl groups to give a more complex labelling pattern, including labelled products 36a and 36b (Scheme 3.6.5), which were not detected by ¹H or ²H NMR. The ratio of 17:35

75

Scheme 3.6.5 For a Fast Deprotonation-Protonation Equilibration of 33, Compounds 36a and 36b Would Dominate the Condensation Products. However, 36a and 36b Were Actually Not Detected.

of 1:4.8 shows a primary isotopic effect of 4.8 due to the rate-limiting cleavage of C-H versus C-D bonds.

Furthermore, the stronger base LDA was used to perform the same deuterium-labelling experiment. In this case, cleavage of a C-H or C-D bond was experted to be faster and hence less selective than when t-BuOLi was used. The product ratio 17:35 was found to be 1:1.6 and the yield of product mixture was only 46%.

As discussed earlier, the X-ray crystal structure shows that the two acetyl methyl groups of 6 are directed away from each other. Such an orientation is probably true in solution in order to minimize the intramolecular interaction. Rotation of the enolate generated by deprotonation of 6 is necessary for its negatively charged carbon to access the electrophilic acetyl carbonyl carbon. The rotation and the nucleophilic attack proceed very fast relative to the initial cleavage of a C-H bond. The rotation process is probably facilitated by the chelation effect of lithium cation (Scheme 3.6.6). The next acetyl transfer to accomplish the key step of the efficient condensation can result in a tremendous release of the intramolecular strain between the two acetyl units. As a consequence of the steric effects, the reverse intramolecular acyl transfer from carbon to nitrigen is unlikely to occur (Scheme 3.6.6).

Compound 6 upon deprotonation was expected to have a strong tendency for the negatively charged oxygen of the enolate directly to attack the electrophilic acyl group to provide the *O*-acylated product. The conformation of 6 shows that each oxygen atom of the side chains is much closer to the other acyl carbonyl carbon than each α -carbon and the resulting enolate would need little rotation for the *O*-acylation process. However, the *O*-acylation product was not detected at

Scheme 3.6.6 The Mechanism of Template-Directed Condensation Involves a Slow Deprotonation and a Fast Acyl Transfer. The Acyl Transfer Step May Not Be Reversible due to the Large Intramolecular Strain in 6a and 6b.

all in the condensation reactions. The absence of the O-acylation could be explained by chelation of the lithium counterion in the putative enolate intermediate.

In order to gain further insight into the metal chelation effect, Louise Edwards, a postdoctoral fellow in our group during 1992-1993, undertook an investigation using different bases in the condensation reaction of compound

78

When a stronger base is used to cleave the α -C-H bond of 6, the following rotation process of the enolate becomes relatively slower. A stronger base may also pass more energy to an enolate during the C-H bond cleavage. These factors may considerably increase the risk for the deprotonated acetyl group to be cleaved from the template, resulting in low yields of the condensed product as observed in the cases of LDA and t-BuLi. But perhaps the most important aspect is that the entropy effect provides a basis for the possible loss of the enolate from the template. That one of the acetyl groups falls off upon formation

Scheme 3.6.7 A Possible Mechanism for the Extensive Formation of 5 when 6 Was Treated with LDA. Loss of a Ketene Molecule May Be Favored due to the Steric Effect in 6a and due to Faster Deprotonation by LDA. 12 (Table 7). When sodium *tert*-butoxide was used as base, the condensation product was obtained in only 56% yield with a ratio of 20:21 of 60:40. The results from potassium *tcrt*-butoxide and lithium *tert*-butoxide in the presence of crown ethers were anticipated to be similar to that when sodium *tert*-butoxide was used as base. The yields and the product ratios of 20:21 in these two cases were actually found to be much higher. Use of t-AmOLi as base resulted in the best regioselectivity (20:21=86:14). These results are difficult to interpret in terms of metal chelation effects and the chelation patterns may be more complicated than that expected earlier, probably due to the multiple heteroatoms in the template system.

Table 7. The Condensations of 12 Induced by Different Bases					
BASE	ADDITIVE	YIELD	Ratio 20:21		
LiOtBu		88%	81:19		
NaOtBu		56%	60:40		
KOtBu	18-Crown-6	80%	67:33		
LiOtBu	12-Crown-4	80%	75:25		
LiOtAm		80%	86:14		

79

of an enolate provides an alternative pathway to release the intramolecular strain and results in a favourable entropy increase. The contribution from this alternative pathway may get more important if the generated enolate has very high energy or is not in the right orientation for the condensation and cannot adjust its orientation in a very short time.

Ketene may be generated as a result of enolate loss from the template. Ketene is a very reactive electrophile and its generation may be a reversible process (Scheme 3.6.7). However, its reactivity may be largely offset by the entropy effect due to the large intramolecular strain and by its low concentration in solution. Further work is needed to prove the ketene formation and to account for the low yields of the condensations when a stronger base such as LDA is used.

3.7 Selective β-Carbonyl Reduction of Compound 17

Conversions of 17 are necessary prior to the next cycle of acylation and intramolecular condensation to make a lengthened carbon chain. A selective reduction of the β -carbonyl group of 17 was anticipated to be easily realized to afford β -hydroxybutyryl compound 38. However, achieving such a reduction in practice required an investigation of a series of different solvents such as acetic

Scheme 3.7.1 Treatment of 17 with NaBH₄ under Different Conditions.

acid, *iso*-propanol, ethanol, THF or mixtures of THF with alcohols, as well as different reducing agents such as NaBH₄, NaBH₃CN, L-Selectride and NaBH(OCH₃)₃. Usually, the yield of β-hydroxybutyryl product **38** was around 40%

82

Compound 38 is much more polar than 17 and is easily separated from it by flash column chromatography. Both ¹H and ¹³C NMR spectra of 38 showed a mixture of two diastereomers. The diastereoselectivity of the reduction was difficult to determine from integration of the 500 MHz ¹H NMR spectrum but appeared not to be remarkable. There were strong IR absorptions for OH and NH groups. EIMS indicated a strong tendency to lose a molecule of water from the molecular ion of 38 and similar abundances of *m/e* 266 and molecular ion at *m/e* 284 were observed. or lower and the starting material was always partially recovered. If an excess of reducing agent was used, both the starting material and the product were observed to disappear. In the presence of *tert*-butyldimethylsilyl chloride, the reduction of 17 with NaBH₄ in THF led to formation of β -silyl enol ether 39 in 50% yield, suggesting that the enolization of 17 is the major cause of the difficulty in its reduction (Scheme 3.7.1).

When monitored by a TLC plate, it was found that the compound 17 was completely converted to the desired product 38 within 10 minutes when 1.5 equivalent NaBH₄ was slowly added to a methanol solution of 17 in an ice-water bath. Unfortunately, upon removal of the methanol solvent even at -10°C, none of the desired product 38 was found, but rather methyl β-hydroxybutyrate and template 1 were isolated (Scheme 3.7.1). It was also found that 38 is relatively stable to pure methanol. Therefore, the methoxide group from the generated boron methoxide can act as a nucleophile and undergo nucleophilic attack on the desired product 38 and destroy it.

Acetic acid was found to be an efficient reagent to convert the boron methoxide rapidly to the much weaker nucleophile, boron acetate. Therefore, as soon as the reduction of **17** with NaBH₄ in methanol was complete when monitored by TLC, glacial acetic acid was added and the product **38** was isolated in 83-93% yield (Scheme 3.7.2).

83

3.8 Dehydration of 1-(β-Hydroxybutyryl)-3,4,7,8-tetramethylglycoluril 38

Elimination of a molecule of water from 38 is expected to produce the α , β unsaturated crotonyl glycoluril derivative 40. Initial attempts to use acids such as *p*-TsOH to induce such an elimination gave low yields (~10%) of 40 with recovery of most of the starting material. The *trans* to *cis* ratio around the C=C bond of 40 was shown to be higher than 99:1 from ¹H NMR integrations. Remarkably, 38 was found to react with neat trifluoroacetic acid to form ester 41, which was later

Scheme 3.8.1 Dehydration of 38 by Treatment with Acid Anhydride and Base. prepared from trifluoroacetic anhydride in 88% yield. Compound **41** is not stable to air at room temperature and easily loses its trifluoroacetyl group with recovery of **38**. Addition of triethylamine directly to a mixture of trifluoroacetic anhydride and **38** in dichloromethane at room temperature and then heating at reflux for 20 minutes afforded the desired product **40** in 83% yield with an E-Z ratio of 97.8:2.2 (Scheme **3.8.1**).⁸⁶

Compound **40** has a strong UV absorption at $\lambda_{max} = 229 \text{ nm} (\varepsilon = 12,000)$ for the conjugated crotonyl imide group. IR absorptions at 1667, 1627, 919 and 962 cm⁻¹ are an indication of the presence of the C=C bond and two olefinic C-H bonds. In addition, the NH group absorbs at 3310 cm⁻¹ and the C=O groups absorb at 1722 cm⁻¹. The base peak on the EI mass spectrum of **40** is from its molecular ion (266), indicating strong stability of the molecular ion due to the conjugation effect. The two olefinic protons are *trans* to each other and coupled by 15.3 Hz. A NOE experiment showed that the α -proton has a strong interaction with the side chain methyl group and not with the β -proton.

Compound **40** was also made by heating the template **1** in THF with nbutyl lithium at reflux and then treating the mixture with crotonyl chloride, but the E:Z ratio was only 93:7 (¹H NMR integrations).

86

Several synthetic methods have been developed to induce hydride addition in a 1,4 fashion to α , β -unsaturated carbonyl compounds. For example, it has been demonstrated that rhodium(I) complexes catalyze the 1,4-addition of silicon hydrides^{87,88} and catecholborane⁸⁹ to enones and enoates.

We have investigated several reagents in order to reduce the C=C double bond of the crotonyl glycoluril derivative **40** and the best results were obtained by using L-selectride as a reducing agent. Ł-selectride was reported in the reduction of C=C bonds in uracil ring and in orotic acid derivatives⁹⁰. This reagent allowed a simple procedure without use of a catalyst and gave the saturated butyryl derivative 9 in 74% yield (Fig. 3.9.1). The ¹H and ¹³C NMR spectra of 9 obtained here are identical to those obtained previously by a direct butyrylation of template 1. Compound 9 obtained here was further acetylated to give **12** (60%), whose NMR spectra are also exactly the same as those previously obtained.

A better overall yield of **12** (63%) can be obtained directly from **40** by reduction with 1 equivalent of L-selectride followed by quenching with AcCl (Scheme 3.9.1). Therefore, the NH proton in **40a**, an intermediate from the

87

Since the condensation of 12 was also previously demonstrated to give hexanoyl derivative 20 as the major product, this process constitutes to our knowledge the first example of the formation of a fatty-acid-like carbon chain by using a template-directed approach to add acyl units repetitively. Further conversions of 20 should not be a challenging problem, and could be effected by use of the developed procedures, namely reduction with NaBH₄, dehydration with $(F_3CCO)_2O / Et_3N$, reduction with L-Selectride, acetylation and condensation.

3.10. Repetitive Condensations to Make Unsaturated Carbon Chains

In order to test the generality of repetitive acyl transfers on the glycoluril template 1, we next investigated the chain extension of the crotonate derivative 40. Acetylation of 40 gave 42 (62%) with 12% starting material recovered, using the general procedure to make diacylated compounds (Scheme 3.10.1). Compound 42 has a UV absorption at $\lambda_{max} = 206$ nm ($\epsilon = 11,000$), remarkably different from that of 40 ($\lambda_{max} = 229$ nm, $\epsilon = 12,000$). This wavelength difference of 23 nm is probably a result of intramolecular interaction between crotonyl and

1. L-Selectride, THF, -78-0°C 2 h

Scheme 3.9.1 Hydride Conjugate Addition and then Acetylation to Give 12, Which Can Undergo a Second Round of Intramolecular Condensation.

may still be a factor in stabilizing the molecular ion and contributing to their high abundance.

Treatment of 42 in THF with t-BuOLi produced compound 43 (60%) which contains a six carbon chain (Scheme 3.10.1). Another two minor fractions from the column chromatographic purification of 43 were obtained, but could not be characterized due to their very complicated ¹H and ¹³C NMR spectra.

Scheme 3.10.2 Product from Intramolecular Conjugate Addition of an Intermediate Enolate to α , β -Unsaturated Side Chain Was Not Observed.

Fig. 3.10.1 A 500 MHz NMR COSY-90 Spectrum of 43 & 43a

acetyl groups in 42, which forces members of the crotonyl imide unit out of the plane of the N-C=O unit of the glycoluril ring. Therefore a fully effective conjugation can not be obtained. However, the abundance of molecular ion of 42 in the El mass spectrum is 44%, the second highest peak. The partial conjugation

90

Interestingly, several other possible condensation products derived from transfer of the acetyl group were not detected and this reaction proceeded exclusively with the transfer of the crotonyl group to give the desired linear chain. Conjugate 1,4-additions of enolates to α , β -unsaturated carbonyl compounds are very common reactions in most organic chemistry textbooks,⁹¹ but this was not the case when a crotonyl group and an enolate are bound to 1. No conjugate addition product 44 was observed, probably as a result of the special molecular orientation and steric effect preventing formation of an 8 membered ring intermediate (Scheme 3.10.2).

Compound 43 exists with its enol isomer 43a in a 2:1 ratio, as determined by ¹H NMR integrations. This ratio shows that the enol form 43a is considerably more stable than that of β -oxobutyryl glycoluril derivative 17, probably due to the conjugation effect of the two C=C bonds in 43a. An absorption in the UV spectrum of 43 was observed at $\lambda_{max} = 304$ nm ($\epsilon = 3,500$), which is probably due to the presence of 43a. A 500 MHz NMR COSY-90 experiment (Fig. 3.10.1) shows the presence of two uncorrelated components (43 and 43a).

Reduction of **43** is challenging due to its more stable enol form and due to two possible 1,2- and 1,4- hydride additions to the conjugate ketone. The procedure for the β -carbonyl reduction of **17** was simply used here for reduction of **43** to give product **45** in 44% yield with 35% recovery of the starting material

43 (Scheme 3.10.3). The 500 MHz ¹H NMR spectrum of 45 (Fig. 3.10.2) shows two diastereomers and a trace amount of impurity, which seems to be derived from loss of unsaturation from 45. This reduction was not further optimized and there is still potential to improve the reduction as some catalysts (*e.g.* lanthanoid chlorides)⁹² can catalyze selective 1,2-reduction of conjugate carbonyl compounds.

Elimination of water from 45 was similar to that from compound 38, yielding 46 (86%). Although a satisfactory elemental analysis and a high resolution mass spectrum of 46 were obtained, minor impurities were found in the ¹H and ¹³C NMR spectra. A very strong peak (36%, second to base peak *m/e* 125) for molecular ion was observed in the El mass spectrum as a result of conjugate stabilization of the molecular radical cation. A strong UV absorption of 46 at $\lambda_{max} = 319$ nm ($\varepsilon = 26,000$) also indicates an extensive conjugated system in 46.

The next round of acetylation gave 47 in only 38% yield with 45% recovery of 46. The α -proton resonance of compound 47 appears as a doublet at 6.97 ppm, the β -proton as a doublet of doublets at 7.37 ppm, the γ -proton as a triplet at 6.26 ppm with fine structure due to the long range coupling with the side chain methyl group and the δ -proton as a doublet of quartets at 6.15 ppm (Fig 3.10.3). The stereo structure around the two C=C bonds in 47 was confirmed by NOE

Scheme 3.10.3 Conversions of 6 Carbon Chain Derivatives and a Third Round Condensation to Make an 8 Carbon Chain Product.

95

96

98

It is recommended that each unsaturated compound be converted within two weeks after being prepared, or stored under nitrogen in the refrigerator. The C=C double bonds were considerably affected when the compounds were reserved for longer than a month in air, especially for those with multiple C=C double bonds. The ¹H NMR integrations of the unsaturated side chains of such samples were largely reduced, relative to those of the other signals on the rings, while signals representing the undesired component (*e.g.*, at 0.94 ppm in the ¹H NMR spectrum of **48**) were increased.

3.11. Condensations Induced by Conjugate 1,4-Hydride Additions

As discussed earlier, the enolate formation from diacylglycolurils is a slow step, followed by a fast acyl transfer to achieve an intramolecular condensation. Deprotonation occurs preferably on the more acidic and less hindered position, as reflected by the condensed product ratio.

The regioselectivity of condensation may be controlled if an enolate can be selectively generated on a desired position other than the more acidic and less hindered one. A good hint for an alternative method of generation of enolates was given by the L-Selectride reduction of 1-crotonyl-3,4,7,8tetramethylglycoluril 40. Structure 40a in Scheme 3.9.1 would be an interesting experiments: saturation of the resonances at the α -, and β -protons of the side chain gave, respectively, resonance enhancements of the γ - and δ -protons. This reaction was performed only once and could be further optimized. However, as discussed previously, there is a strong intramolecular interaction when two acyl groups are introduced onto template 1. The larger the first acyl group on 1, the more difficult the introduction of the second acetyl group, as seen from the acetylations of 5 (78%), 9 (61%) and 46 (38%). The UV absorption of 47 moves to $\lambda_{max} = 275$ nm ($\epsilon = 9,300$), 44 nm shorter than that of 46. The conjugation of the hexadiencyl group in 47 is probably more affected than that of the crotonyl group in 42 by the interaction with the acetyl group.

The third round of condensation proceeded in 60% yield, giving compound 48 with an 8-carbon chain (Scheme 3.10.3). The ¹H NMR spectrum of 48 (Fig. 3.10.4) looks very complicated due to the presence of a mixture of keto and enol forms (4:3) and some impurity. For example, signals at 0.94 ppm may represent a minor undesired compound derived from loss or partial loss of the unsaturation from 48. The major signals for 48 and its enol form can be clearly seen in the ¹H NMR spectrum. Three UV absorptions of 48 were observed at $\lambda = 319$, 280 and 215 nm ($\varepsilon = 10,800$, 11,600 and 11,500, respectively).

Most of the unsaturated compounds studied above were found to be stable, but not sufficiently so for prolonged standing in air at room temperature.

99

Scheme 3.11.1 Treatment of Acetyl Crotonyl Glycoluril Derivative with L-Selectride. intermediate if there were one more intact acyl group to replace the NH hydrogen. Such an ideal intermediate could be generated by L-Selectride treatment of 42 (Scheme 3.11.1). In fact, the condensation product from the L-Selectride reduction of 42 was found to be solely that derived from acetyl transfer to the α -position of the butyryl side chain and was obtained as a mixture of two diastereomers 50a and 50b (50a:50b = 1.5:1) with a total yield higher than 52%. The side products were found to be reduced but uncondensed compound 12 (19%) and acetyl glycoluril derivative 5 (9%). Compounds 12, 50a, and 50b proved difficult to separate. However, repeated flash column chromatographic putification allowed an estimation of the condensation product yield by ¹H NMR integrations. The more polar isomer 50b was partially separated in a fairly pure form. This reaction was performed only once and could have been optimized. However, we became more interested in investigating a similar reaction of the acryloyi acetyl derivative 14.

An acryloyl unit upon reduction of the C=C bond may act as an equivalent of a propionyl unit, which is a building block in many natural polyketides. We wished to see whether acryloyl units can be used to build carbon chains by repetitive hydride-reductive condensations. The L-Selectride reduction of 14 was carried out at -78°C for 3 hours and then the mixture was quenched with NH_4HCO_3 (Scheme 3.11.2). The subsequent filtration was very slow even with the aid of celite due to some sticky material, which was probably formed from L-

102

some of **51a** was still not isolated from **5** and was not counted in the yield, the true yield for the formation of **51** could be higher. **51a** and **51b** were partially separated from each other to give two fairty pure single diastereomers. The diastereomer ratio of **51a**:51b was initially shown to be 2.1:1 by ¹H NMR analysis of the crude reduction mixture. When either of the single diastereomers **51a** or **51b** was treated with potassium *tert*-butoxide and then quenched with glacial acetic acid, a similar ratio (2.1:1 - 2.2:1) of **51a**:51b was obtained.

The NMR spectra of 51a and 51b showed none of their corresponding enol forms. Treatment of 51a in CDCl₃ with one equivalent of trifluoroacetic acid for 5 days led to complete recovery of only 51a without epimerization. D_2O was used to treat 51b in CDCl₃ for 10 days and no D-H exchange at the α -position of 51b was observed, while the α -protons of acetoacetylglycoluril 17 were completely exchanged with D_2O within 24 hours. These observations demonstrated the rather low kinetic acidity of the β -keto imide 51, as observed and discussed earlier by Evans *et al.* in oxazolidone systems and other *N*,*N*dialkylamides derived from α -substituted β -keto acids.⁵³ The low kinetic acidity allows a partial separation of the two diastereomers 51a and 51b and their ratio is determined by kinetic protonation of the enolate.

Because of the difficulty in isolation of 51 from the side product 5, the product mixture from L-Selectride reduction was filtered briefly through a flash

Scheme 3.11.2 Treatment of Acetyl Acryloyl Glycoluril Derivative with L-Selectride.

Selectride or side polymerization of acryloyl derivative.

The condensation product **51**, consisting of two diastereomers **51a** (less polar) and **51b** (more polar), was mostly separated from the side product **5** by flash column chromatography and was obtained in 70% yield (purity > 97%). As

103

column without separation and then directly further reduced with NaBH₄ (Scheme 3.11.3). The product is much more polar and easily purified by flash column chromatography. The 500 MHz ¹H NMR spectrum of the product reveals the presence of 4 diastereomers of β -hydroxy compound 52. For example, there are sixteen peaks in the region 1.0-1.3 ppm for the two methyl groups on the side chain, each methyl of the four isomers being a distinct doublet. No attempt was made to separate these stereo isomers. EIMS shows that molecular ion of 52 at *m*/e 298 are not stable and a relatively very strong peak appears at *m*/e 280 due to elimination of a molecule of water from 52.

Scheme 3.11.3 An Unseparated Mixture from Treatment of Acetyl Acryloyl Glycoluril Derivative with L-Selectride Was Directly Further Reduced with NaBH₄.

However, a further transformation of 52 in order to eliminate water by

treatment of 52 with trifluoroacetic (TFA) anhydride and triethylamine was not

Scheme 3.11.4 Unsuccessful Elimination of Water from Compound 52

successful. The TFA ester derivative 53 was isolated instead. Compound 53 was then treated with different bases (e.g., pyridine, K_2CO_3 and t-BuOK) even under heating conditions and none of the desired elimination product 54 or its isomer 54a was formed (Scheme 3.11.4). The starting material 53 was recovered under mild conditions and destroyed or converted to 52 under severe conditions. Compared with the dehydration reaction of compound 38, the steric effect due to the α -methyl substituent on the side chain of 53 may prevent the access of a

106

Conjugate hydride reduction of 15 provided another interesting reaction. The intermediate enolate 15a in Scheme 3.11.5 is more hindered, more basic and much less nucleophilic than enclates such as 42a in Scheme 3.11.1. Despite these disadvantages, a fast acetyl transfer is still favoured to provide the condensation product 55 in 68% yield, which was easily separated by flash column chromatography. A direct acetylation on the NH group of 55 should be feasible due to the absence of more acidic protons between the 1,3-dicarbonyl groups of the side chain. But the acetylation product 56 was obtained in a very low yield (18%). Further attempts to induce condensation of 56 with &BuOLi, LDA and n-BuLi were not successful. Compound 56 is very stable to one equivalent of base and was mostly recovered even after 24 hours. If a larger quantity of base was used, 56 was partially converted back to 55 with the acetyl group missing. The steric effect may be the reason for prevention of the intramolecular acyl transfer. However, condensation of compound 13, which is also expected to have strong steric effects, gave a good yield (79%) of trimethylacetyltransferred product 22. Another possible reason is that the γ -protons on the dicarbonyl side chain of 56 are more acidic than the α -protons of the acetyl imide and thus the enolate may be formed on the terminal of the dicarbonyl side chain. However, a second equivalent of base destroyed 56 and converted it to 55 and the mechanism for the acetyl group missing is still unknown.

base, especially a bulky one, to the α -proton. The stenc effect may also cause a drastic decrease in the kinetic acidity of the α -proton. In one stable conformation of 53 (Scheme 3.11.4), the side chain α -hydrogen (H $_{\alpha}$) is predisposed to lie nearly orthogonal to the conjugate system of the imide carbonyl unit due to the minimization of nonbonding interactions between template, α -methyl, and TFA substituents. Accordingly, allylic (1,3) interactions between either the TFA or the α -methyl group and the template ring carbonyl oxygen can hinder in development of those transition states wherein the carbonyl function is stereoelectronically disposed to contribute to H $_{\alpha}$ acidification. These arguments were used by Evans *et al.* to account for the low kinetic acidity of α substituted β -keto imides of oxazolidones.⁵³

The allylic (1,3) strain mentioned above can reach a maximum in the elimination product 54 (Scheme 3.11.4). It was suspected that the difficulties encountered in pyrolysis of 53 to produce a C=C double bond could be a result of instability in product 54 due to the α -methyl substituent. In order to examine the effect of this α -methyl group, the preparation of the similar compound 15 was attempted by a direct methacryloylation of 5. Such an attempt was surprisingly successful and 15 was made in 36% yield (Scheme 3.3.2). The steric effect may be a factor contributing to the low yield, but is not large enough to prevent formation of the product. Therefore, how to convert 52 or 53 to product 54 is still an open question but was not further investigated.

Scheme 3.11.5 A Hindered Carbanion from Hydride Reduction of a Methacryloyl Derivative Can Be a Very Good Nucleophile.

The intramolecular condensations studied above involve those of diacyl glycoluril derivatives in which at least one acyl group is acetyl. The acetyl group is very small and has a steric advantage to act both as an electrophile or as a nucleophile upon deprotonation. The base-induced condensation of dipropionyl derivative **8**, which does not possess an acetyl group, gave considerably lower yield of condensation product. Compound **58**, an acryloyl butyryl derivative was designed in order to test the generality of the L-Selectride reduction-condensations when a larger saturated acyl unit than the acetyl group is the one to be transferred. By following the standard procedure described above, **58** was treated with one equivalent of L-Selectride and the condensation product **59** was obtained in more than 66% yield (Scheme 3.11.6). This yield is much higher than that of the condensation of **8** induced by t-BuOLi, meaning that 1,4-hydride addition of acryloyl group is a better way to generate an enolate on the template. The product also comprised two diastereomers (2.2:1 ratio) due to the exclusive butyryl group transfer to the *α*-position of the latent propionyl

Scheme 3.11.6 An Acyl Group Bigger than Acetyl Can Be Condensed with an Enolate Formed by Hydride Reduction of Acryloyl Side Chain.

110

As the benzyl group is a good protecting group and can be easily removed by deprotection, lithium benzyloxide was tested to displace the template 1 from a synthesized acyl glycoluril derivative. Lithium benzyloxide has been previously used by Evans *et al.* to remove synthesized carbon chains from the oxazolidone template.^{52,33} 1-Crotonyl-3,4,7,8-tetramethylglycoluril **40**, prepared by modifications (reduction, dehydration) of the first round intramolecular condensation product **17**, was treated with one equivalent of BnOLi (1.5 equivalent of BnOH was used to prepare BnOLi) in THF for 12 hours at room temperature (Scheme 3.12.1). The template 1 was recovered from this mixture in 80% yield. Two other products were benzyl crotonate **60** (55% yield) and benzyl β-benzyloxybutyrate **61** (15% yield). There may be an equilibration between **60** and **61** due to the 1,4-addition and α ,β-elimination catalyzed by a base.

Scheme 3.12.1 Removal of a Synthesized Crotonyl Chain from the Template.

group. This example demonstrates the feasibility of performing a wide range of L-Selectride reduction-condensations between acyl units and an α , β -unsaturated group.

3.12. Removal of Synthesized Carbon Chains from the Template

The products from efficient condensations of two acyl units bound to the bifunctional template 1 can be transformed to allow further acylation, regioselective condensation and further transformations, while the template remains intact, mimicking the head-to-tail assembly sequence of acyl units in the biosynthesis of fatty acids and polyketide-type natural products. These encouraging results demonstrate that this strategy may be a useful synthetic method when selective Claisen condensations could lead to useful intermediates.

A synthesized carbon chain from intramolecular condensations of acyl units on 1 may have to be removed from the template before being used or further transformed, while the recovered template can be recycled. In the previous study of the β -carbonyl reduction of 17 with NaBH₄ in MeOH, it was found that the side chain was easily cleaved from the template to give methyl β hydroxybutyrate if AcOH was not added in time (Scheme 3.7.1). This previously undesired process may provide a useful reaction for the template removal, although this was not further investigated.

111

A further experiment to displace template 1 with benzyloxide was demonstrated with 1-butyryl-3,4,7,8-tetramethylglycoluril 9 derived from L-Selectride reduction of 40. Template 1 was recovered in this case in 92% yield and benzyl butyrate 62 isolated in 83% yield (Scheme 3.12.2). These experiments indicate the ability to remove synthesized intermediates from the template and provide further support for the usefulness of the glycoluril template-directed condensation reactions.

Scheme 3.12.2 Removal of a Synthesized Butyryl Chain from the Template.

It is interesting and challenging to realize repetitive intramolecular condensations on a molecular template at different oxidation states to generate carbon chains with variable functionalities such as polyketones, polyols or polyenes. As several major steps had been developed to assemble fatty acid and polyene chains on 1, efforts were made to explore the assembly of carbon chains with polycarbonyl and polyol functionalities. Protection of the β-carbonyl group in 17 is a necessary step for a further acetylation on its NH group. The reaction of 17 with NaH (or *n*-BuLi) and *t*-BuMe₂SiCl provided the protected product 39 in 81% yield, which was acetylated on the free NH group to give the diacyl derivative 63 in only 24% yield (Scheme 3.13.1). Compound 39 was partially converted back to 17 during acetylation and lost both of the protecting silyl and acetyl groups. Treatment of 63 in THF with *t*-BuOLi led to recovery of 17, 39 and 63 without detection of any of the desired condensation product 64a. Other possible products during the induction of condensation such as 64b and 64c were also not found.

Usually, the β-keto carbonyl group of 1,3-dicarbonyl compounds can be protected by acid-catalyzed formation of an enol ether with an alcohol (Scheme 3.13.2).⁹⁴ Such a reaction was attempted with 17 by treatment with a catalytic

114

amount of *p*-toluene sulphonic acid in methanol, but the only detected product was 65; formation of the six membered ring occurs due to internal nucleophilic attack of the NH on the β-carbonyl group (Scheme 3.13.2). The desired product 65a was not formed. Methylation of 17, by treatment with *t*-BuOLi and methyl iodide, gave no reaction for several hours and produced an un-resolvable mixture after stirring over night, although a similar textbook reaction can lead to methylation at the β-carbon.

Scheme 3.13.2 An Unsuccessful Attempt to Protect the β-Carbonyl Group by Making a β-Enol Methyl Ether. Only Cyclized Product 65 Was Formed.

Scheme 3.13.1 Unsuccessful Attempts to Make a Triketide Chain with 3 Carbonyl Groups. None of Compounds 64a, 64b or 64c Was Detected.

115

When 17 was stirred with neat pyrrolidine, the formation of an enamine product 66 seemed to proceed very efficiently (Scheme 3.12.3). Unfortunately, the product was too unstable to be isolated from the mixture. A column chromatographic purification of crude 66 led to complete recovery of 17. A direct acetylation of the crude, dry compound 66 also gave only 17 without formation of the desired product.

Scheme 3.13.3 A β -Enamine Product Was Observed but not isolated.

Compound 67 was easily made by treatment of 17 with *n*-BuLi and AcCl at 0°C. But 17 was found to be destroyed by 2 equivalents of butyl lithium at 0°C to afford decomposed products 5 and 1. When 17 was treated with 2 equivalents of *n*-BuLi and then AcCl at -20°C, the product was also 67 and expected product 67a from acetylation of a dianion intermediate 67b was not obtained (Scheme 3.12.4). The dianion intermediate 67b might not have been formed.

Scheme 3.13.4 A Preparation of 67a Was Unsuccessfully Attempted by Generating Dianion 67b with 2 Equivalents of Base.

118

Scheme 3.13.5 An Unsuccessful Attempt to Make a Triketide Chain with Hydroxy Groups. In an effort to protect the hydroxy group, the β -hydroxybutyryl glycoluril derivative **38** was stirred with hexamethyldisilazane^{95,96} and the protected product **68** was isolated in 80% yield (Scheme 3.12.5). When **68** was treated with LDA and AcCl, the acylated product **69**, with loss of the protecting TMS group, was obtained in 25% yield. Treatment of **69** or its protected form **70** with *t*-BuOLi gave a complicated mixture of **38**, 5 and **40**. The desired condensation products **71** and **72** were not detected.

CHAPTER 4. SUMMARY

The major work accomplished in this project is summarized in Schemes 4.1, 4.2 and 4.3.

 A molecular template, 3,4,7,8-tetramethylglycoluril 1 with two NH groups as two acyl binding sites, has been synthesized and isolated (Scheme 4.1).

 Selective monoacylation allows preparation of symmetrical or asymmetrical diacyl products in good yields.

3. Condensations between two acyl units bound to template 1 have been shown to be very efficient and successful, proceeding under mild conditions in high yields. When the two acyl units are different, a fair degree of regioselectivity has been demonstrated, favouring deprotonation on the acyl group with the less substituted α-position and then transfer of the other acyl group.

4. Intramolecularity in the condensations between acyl units on template 1 has been established. The mechanism involves slow cleavage of an α -C-H bond by the base, followed by a fast intramolecular acyl transfer to the resulting enolate.

Scheme 4.1 A Summary of Steps in the Assembly of Short Fatty Acid Chains Using Template 1.

5. Efficient transformations of the first round condensation products such as β-ketobutyryl derivative 17 have been developed to give compounds with a lengthened, saturated chain. After a second acetylation, the system undergoes a second round of condensation (Scheme 4.1). During the study of these two cycles of condensation, some basic problems have been solved in order to

122

assemble various fatty acids from acetate units.

 An unsaturated chain of eight carbons from four acetyl units has been assembled on the template 1 by three repetitive condensations (Scheme 4.2).

7. An alternative method for generation of an enolate for the intramolecular condensation has been realized by a hydride 1,4-addition of L-Selectride to a conjugated acyl unit. This method provides reversal of the regioselectivity, when compared with the condensations induced by deprotonation where acetyl is one of the two acyl groups on the template 1, as shown in Scheme 4.3.

Scheme 4.3 An Example of L-Selectride Reduction-Condensations Directed by the Glycoluril Template 1 to Give a Reverse Regioselectivity, Compared with a Base Deprotonation-Induced Condensation.

8. Despite the tremendous success of using glycoluril derivative 1 as a template to allow efficient condensations between two acyl units, template 1 has been found to be a good but not a perfect molecular model of the fatty acid or polyketide synthase. The major disadvantage is the steric effect in the binding

Scheme 4.2 A Summary of Steps in the Assembly of Unsaturated Carbon Chains Using the Glycoluril Template 1.

123

region, which limits the preparation of its diacyl derivatives especially if one of the acyl groups is large. On the other hand, enzyme-catalytic generation of enolates and stereoselective condensations are not considered in our glycoluril system. The key parameters we tested are the efficiency of intramolecular condensation due to the initial binding, repetitivity and sequence of adding acyl units to make carbon chains. This research provides some great experience for the design of more sophisticated models of fatty acid and polyketide synthases.

9. Successful removal of a synthesized carbon chain from the template with lithium benzyloxide makes this methodology ready to be used in the preparation of some useful intermediates, especially in the preparation of isotopically labelled precursors for biosynthetic studies as well as in synthesis of useful natural products.

As a final conclusion, the molecular template 3,4,7,8-tetramethyl-glycoluril allows efficient intramolecular condensations between two acyl units bound to it. The condensation products, after modifications such as reduction and dehydration, allowed further acylation and condensations, mimicking the assembly sequence of carbon chains taking place on fatty acid or polyketide synthase.

CHAPTER 5. EXPERIMENTAL SECTION

General

Melting points are uncorrected. Proton and carbon-13 NMR spectra were obtained on Bruker AC 200, Bruker AC 300 or Bruker AC 500 spectrometers. Proton chemical shifts refer to TMS and those of ¹³C to CDCl₃. The infrared (IR) spectra were recorded on a Perkin-Elmer 283 instrument and FTIR spectra on a Bio-Rad SPC 3200. Ultra violet (UV) spectra were run on a Perkin-Elmer Lambda 9 UV/VIS/NIR spectrophotometer. Mass spectra were recorded on a VG analytical ZAB-E machine. Microanalyses were performed by Guelph Chemical Laboratory Ltd., Guelph, Ontario. Flash column chromatography was performed with Kieselgel 60 (230-400 mesh ASTM). THF was freshly distilled under nitrogen protection from potassium/benzophenone, diisopropylamine from calcium hydride and *tert*-butanol from sodium.

Synthesis of 3,4,7,8-Tetramethylglycoluril (1)

To a stirred suspension of N-methylurea (38.0 g, 0.514 mole) in absolute ethanol (65 mL) was added concentrated hydrochloric acid (15 drops) and 2,3butanedione (22.5 mL, 22.5 g, 0.260 mole). After stirring for 5 minutes, the solution clarified and after 15 minutes it became hot (exothermic). A precipitate

126

General Procedure for Monoacylation of Glycoluril Template 1 Method a:

A mixture of recrystallized template 1 and carboxylic anhydride (10 mL/1g 1) was heated at 150-160°C overnight under nitrogen. After ~20 h, all the starting material dissolved (the isomer 1a is not reactive and remains as a solid if any is present in the starting material). The majority of the carboxylic anhydride was removed on the rotary evaporator under vacuum. The residue was cooled and chloroform (10 mL/1g S.M.) was added. Solid material was filtered off to give a clear filtrate, which was concentrated to remove most of the solvent. To this liquid residue (if there is any solid, add minimum amount of CHCI₃ to dissolve it) was added ethyl acetate (10 mL/1g S.M.) and the mixture was cooled in the refrigerator ovemight to induce crystallization. The crystals were collected, washed with diethyl ether and recrystallised from chloroform and ethyl acetate (dissolved in a minimum amount of CHCI₃ and precipitated with EtOAc).

Method b:

To a stirred suspension of fine powdered template 1 in dry THF (200 mL/1 g 1) under nitrogen was added 1.1 equiv of n-BuLi at room temperature. The mixture was then heated at reflux for 2 h. After cooling down to near room temperature, 1.5 equiv. of acyl chloride was added. The solution clarifies in seconds if the acyl chloride is acetyl or propionyl chloride. The mixture was heated at reflux for another half hour. Unreacted solid material was removed by

appeared in about 20 min. The mixture was cooled in a refrigerator after stirring for another hour. The crystals were collected, washed with cooled ethanol and ether, and dried in air and then under vacuum. Total crude product was 26 g (51%) as a 1 : 1 mixture of two regioisomers 1 and 1a. The crude product was recrystallized twice in ethanol (~60 mL ethanol/1 g solid). The desired isomer 1 was obtained as colourless crystals (21%). m.p. (EtOH) >300°C; ¹H NMR (CD₃OD, 200 MHz) δ 2.77 (s, 6H), 1.48 (s, 3H), 1.39 (s, 3H); ¹³C NMR (CD₃OD, 50 MHz) δ 161.0 (C=O), 83.1, 74.7, 26.8, 22.1, 15.9; FTIR (KBr pellet, cm⁻¹) 3282 (NH), 2920 (C-H), 1683 (C=O), 1506, 1441, 1414, 1389, 1263, 1230, 1120, 1087, 1003, 963, 768, 721; EIMS m/e 198(M⁺), 183, 140, 126, 125, 111, 85, 65 (base); HREIMS. Calcd for C₈H₁₄N₄O₂: 198.1117. Found: 198.1121.

Isolation of 1,4,7,8-Tetramethylglyccluril (1a):

A mixture of 1 and 1a (2.0 g, 1:1) was heated at reflux with acetic anhydride (20 mL) for 20 h. Compound 1 was completely converted and dissolved. After cooling down to room temperature, the solid material was collected and washed with CHCl₃, THF and cooled ethanol. Compound 1a was obtained in a yield of 810 mg (81% based on the true quantity of 1a in the starting material. ¹H NMR (CD₃OD, 200 MHz) δ 2.61 (s, 6H), 1.40 (s, 6H); HREIMS. Calcd for C₉H₄N₄O₂: 198.1117. Found: 198.1111.

127

filtration, and the filtrate was concentrated to give crude solid product. A recrystallization as described in Method a was carried out to purify the product.

1-Acetyl-3,4,7,8-tetramethylglycoluril (5):

Compound 1 (2 g, 0.01 mole) was heated with acetic anhydride (20 mL) to give 5 (1.89 g, 78%) from Method *a*. The same in THF (200 mL) was treated with nBuLi (7.0 mL, 0.011 mole, 1.6 M) according to Method *b* to give 5 (2.15 g, 89%) as a white solid. m.p. (CHCl₃+AcOEt) 178~180°C; ¹H NMR (CDCl₃-TMS, 200 MHz) δ 6.00 (s, 1H, NH), 3.02 (s, 3H, NCH₃), 2.87 (s, 3H, NCH₃), 2.48 (s, 3H, -COCH₃), 1.69 (s, 3H, -CH₃ bridgehead), 1.56 (s, 3H, -CH₃ bridgehead); ¹³C NMR (CDCl₃, 50 MHz) δ 171.0, 157.2, 153.0, 78.5, 76.4, 27.0, 26.3, 24.8, 19.5, 15.6; FTIR (KBr pellet, cm⁻¹) 3250 (NH), 2980 (CH), 2940 (CH), 1723(C=O), 1689 (C=O), 1487, 1416, 1326, 1117, 943; EIMS *m/e* 240 (M⁺), 225, 210, 198, 183, 168, 156, 140, 125 (base); HREIMS. Calcd for C₁₀H₁₆N₄O₃: 240.1222. Found: 240.1231. Anal. Calcd for C₁₀H₁₆N₄O₃: C, 49.99; H, 6.71; N, 23.32. Found: C, 50.27; H, 6.85; N, 23.16.

1-Acetyl-3,6,7,8-tetramethylglycoluril (5a):

Isolated initially as a minor and more polar product in preparation of 5 due to presence of 1a in starting material. Purified by flash column chromatography (eluting solvent CHCl₃:CH₃OH=99:1). 5a was also prepared by acetylation of 1a (510 mg, 2.57 mmole) according to Method *b* (310 mg, 50%). ¹H NMR (CDCl₃, 200 MHz) δ 6.19 (s, 1H), 2.98, 2.85, 2.51, 1.84 and 1.51 (5 singlets for 5 methyl groups).

1-Propionyl-3,4,7,8-tetramethylglycoluril (7):

Compound 1 (2 g, 0.01 mole) was heated with propionic anhydride (20 mL) according to Method a. The product was purified by flash column chromatography (2% MeOH in CHCl₃) to give 7 (2.14 g, 83%) as a white solid. The 1,6-dipropionyl compound 8 was obtained in 9% yield; For 7, m. p. (from CHCl₃) 160~162°C; ¹H NMR (CDCl₃, 200 MHz) δ 6.29 (s, 1H, NH), 3.01 (s, 3H, NCH₃), 2.87 (s, 3H, NCH₃), 3.0 ~2.74 (m, 2H, CH₂), 1.70 (s, 3H, CH₃ bridgehead), 1.58 (s, 3H, CH₃ bridgehead), 1.11 (t, 3H, CH₃-propionyl, *J* = 7.3 Hz); ¹³C NMR (CDCl₃ 50 MHz) 174.5, 157.0, 152.7, 78.4, 77.2, 29.6, 26.7, 26.1, 19.3, 15.4, 7.9; IR (KBr pellet, cm⁻¹) 3265 (NH), 3108, 3000, 2942, 1730 (C=O), 1718 (C=O), 1685 (C=O), 1461, 1411; EIMS *m/e* 254 (M⁺), 197, 180, 168, 156, 140, 125 (base); HREIMS. Calcd for C₁₁H₁₈N₄O₃: 254.1379. Found: 254.1370.

1,6-Dipropionyl-3,4,7,8-tetramethylglycoluril (8):

Isolated in the preparation of 7. ¹H NMR (CDCl₃, 300 MHz) δ 3.00 (dq, 2H, J = 7.2 Hz, 17.7 Hz), 2.96 (s, 6H), 2.76 (dq, 2H, J = 7.2 Hz, 17.7 Hz), 1.95 (s, 3H), 1.49 (s, 3H), 1.13 (t, J = 7.4 Hz); EIMS *m/e* 310 (M⁺), 254, 225, 199, 180, 168, 156, 141, 125 (base), 83, 56; HREIMS. Calcd for C₁₄H₂₂N₄O₄: 310.1641. Found: 310.1653.

130

resulting solid was removed by filtration and the solvent was removed from the filtrate to give a crude product, which was separated to give the pure diacyl product and the minor starting material by firsh column chromatography (1% methanol in chloroform).

1,6-Diacetyl-3,4,7,8-tetramethylglycoluril (6):

1-Acetyl-3,4,7,8-tetramethylglycoluril 5 (910 mg, 3.79 mmole) was treated with n-BuLi (2.5 mL, 4 mmole, 1.6 M) and then AcCl (0.4 mL, 5.6 mmole) to produce 6 (834 mg, 78%, white solid) with partial recovery of 5 (17%); m.p. 194~196°C; ¹H NMR (CDCl₃, 200 MHz) δ 2.97 (s, 6H, 2 CH₃), 2.48 (s, 6H, 2 CH₃), 1.95 (s, 3H, CH₃ bridgehead), 1.51 (s, 3H, CH₃ bridgehead); ¹³C NMR (CDCl₃, 50 MHz) δ 170.5, 153.1, 80.4, 77.3; 26.7, 26.0, 19.0, 14.5; IR (KBr pellet, cm⁻¹) 2975, 2920, 1705 (C=O), 1688 (C=O), 1399, 1358, 1314, 1248, 1082, 1035, 994, 930, 869, 744, 696; EIMS *m/e* 282 (M⁺), 240, 225, 210, 198, 183, 168, 156, 141, 125 (base); HREIMS. Calod for C₁₂H₁₈N₄O₄: 282.1328. Found: 282.1336. See the X-ray crystal structure in Fig. 3.3.1.

1-(Acetyl-d_)-6-acetyl-3,4,7,8-tetramethylglycoluril (33)

Compound 5 (1.18 g, 4.92 mmole) was treated with n-BuLi (3.0 mL, 4.8 mmole, 1.6 M) and then AcCl-*d*₃ (0.35 mL, 4.72 mmole) to produce **33** (0.948 g, 68%, white solid). ¹H NMR (CDCl₃, 200 MHz) δ 2.98 (s, 6H), 2.47 (s, 3H), 1.95 (s, 3H), 1.53 (s, 3H); ²H NMR (CHCl₃, 77 MHz, reference CDCl₃ 7.248): 2.43 (s);

1-Butyryl-3,4,7,8-tetramethylglycoluril (9):

Compound 1 (2.6 g, 0.013 mole) was heated with butyric anhydride (20 mL) according to Method a. The product was purified by flash column chromatography (2% MeOH in CHCl₃) to give 9 (2.48 g, 70%) as a white solid. The 1,6-dibutyryl compound 10 was obtained in 5% yield; For 9, m.p. (CHCl₃) 125~126°C; ¹H NMR (CDCl₃, 200 MHz) δ 6.01 (s, 1H, NH), 3.01 and 2.87 (s, 3H, 2 NCH₃), 2.96~2.75 (m, 2H, CH₂), 1.68 and 1.56 (s, 3H, 2 CH₃), 1.70~1.50 (m, 2H, CH₂), 0.96 (t, 3H, CH₃, *J* = 7.4 Hz); ¹³C NMR (CDCl₃, 50 MHz) δ 174.1, 157.2, 153.0, 78.6, 76.5, 38.2, 27.1, 26.4, 19.6, 17.7, 15.7, 13.6; IR (KBr pellet, cm⁻¹) 3252 (NH), 2998, 2956, 2875, 1710 (C=O), 1689 (C=O), 1458, 1408; EIMS m/e 268 (M⁺), 253, 240, 211, 199, 183, 168, 156, 141, 125 (base); HREIMS. Calcd for C₁₂H₂₀N₄O₃: 268.1535. Found: 268.1526. Anal. Calcd for C₁₂H₂₀N₄O₃: C, 53.71; H, 7.51; N, 20.88. Found: C, 53.63; H, 7.22; N, 20.64.

General Preparation of Diacylated Compounds

One equiv of n-BuLi in hexane or freshly prepared LDA in THF was added to a stirred solution of monoacylated template in THF (~80 mL/g starting material) at 0°C. After stirring for 30 min., an acyl chloride in 20-50% excess was added. After being stirred for another 1 h at room temperature, this solution was concentrated to remove most of the THF. To the liquid residue, chloroform (~30 mL/g S.M.) was added, and the mixture was stirred and then cooled. The

131

 ^{13}C NMR (CDCl₃, 200 MHz) δ 170.1, 152.8, 80.1, 77.6, 26.6, 25.9, 18.7, 14.2 (^{13}C NMR signal from CD₃ was too weak to be observed); EIMS *m/e*: 285 (M*). HREIMS. Calcd for C₁₂D₃H₁₅N₄O₄: 285.1513. Found: 285.1515.

1-(Acetyl-13C2)-6-acetyl-3,4,7,8-tetramethylglycoluril (26)

Compound 5 (1.53 g, 6.38 mmole) was treated with n-BuLi (4.3 mL, 6.40 mmole, 1.49 M) and then AcCl-¹³C₂ (0.6 g, 7.45 mmole) to produce 26 (1.44 g, 80%, white solid). ¹H NMR (CDCl₃, 200 MHz) δ 2.99 (s, 6H), 2.47 (s & dd, 6H, ¹J_{CH} = 130 Hz, ²J_{CH} = 6.8 Hz; integration ratio of s : dd = 1 : 1.25); 1.95 (s, 3H); 1.55 (s, 3H). ¹³C NMR (CDCl₃, 200 MHz) δ 170.0 (d, enhanced, ¹J_{CC} = 52.4 Hz). 170.0, 152.7, 80.0, 77.5, 25.7 (d, enhanced, ¹J_{CC} = 52.2 Hz), 25.7, 18.6, 14.1; EIMS *m/e* (abundance %): 286 (3.2, containing 4 carbon-13 atoms), 285 (4), 284 (10.4), 242 (20.2), 240 (14.5), 198 (12.8), 168 (20), 156 (31.2), 141 (48), 125 (100); HREIMS. Calcd for C₁₀¹³C₂ H₁₈N₄O₄; 284.1396. Found: 284.1385.

1-Acetyi-6-propionyl-3,4,7,8-tetramethylglycoluril (11):

1-Propionyl-3,4,7,8-tetramethylglycoluril 7 (2.52 g, 9.92) was treated with nBuLi (8.0 mL, 10.4 mmole, 1.3 M) and then AcCi (0.75 mL, 15.5 mmole) to produce 11 (1.59 g, 54%) with partial recovery of 7 (19%); m.p. 180~182°C; ¹H NMR (CDCl₃, 200 MHz) δ 3.08~2.70 (m, 2H, CH₂), 2.99 and 2.98 (s, 3H, NCH₃), 2.47 (s, 3H, CH₃), 1.95 and 1.54 (s, 3H, 2 CH₃ bridgehead), 1.13 (t, 3H, CH₃, *J*=7.3 Hz); ¹³C NMR (CDCl₅, 50 MHz) δ 174.1, 170.1, 152.8 (2C=O), 80.2, 77.6, 30.8, 26.4 (2CH₃-N), 25.8, 18.8, 14.2, 8.2; IR (KBr pellet, cm⁻¹) 2975, 2942, 1758 (C=O), 1722 (C=O), 1445, 1411; EIMS *m/e* 296 (M⁺), 254, 241, 225, 199, 183, 168, 156, 141, 125 (base), 86; HREIMS. Calcd for $C_{13}H_{20}N_4O_4$: 296.1484. Found: 296.1497. Anal. calc. for $C_{13}H_{20}N_4O_4$, C, 52.96; H, 6.80; N, 18.91. Found: C, 52.83; H, 6.60; N, 19.26.

1-Acetyl-6-butyryl-3,4,7,8-tetramethylglycoluril (12):

1-Butyryl-3,4,7,8-tetramethylglycoluril 9 (1.20 g, 4.48 mmole) was treated with nBuLi (2.8 mL, 4.48 mmole) and then AcCl (0.5 mL, 7.6 mmole) to produce 12 (0.85 g, 61%) with partial recovery of 9 (20%); m.p. (chloroform) 130~132°C; ¹H NMR (CDCl₃, 200 MHz) δ 2.99 (s, 6H, 2 NCH₃), 2.97~2.66 (m, 2H, -CH₂), 2.47 (s, 3H, CH₃), 1.95 and 1.55 (s, 3H, 2 CH₃ bridgehead), 1.75~1.59 (m, 2H, CH₂), 0.95 (t, 3H, CH₃, J = 7.4 Hz); ¹³C NMR (CDCl₃, 50 MHz) δ 173.1, 170.1, 152.71, 152.66, 80.1, 77.5, 39.1, 26.4, 26.3, 25.8, 18.7, 17.4, 14.1, 13.3; IR (KBr pellet, cm⁻¹) 2980, 2945, 1756, 1735, 1722, 1410; EIMS *m/e* 310 (M⁺), 282, 268, 241, 199, 183, 168, 156, 141, 125(base); HREIMS. Calcd for C₁₄H₂₂N₄O₄; 310.1641. Found: 310.1633. Anal. Calcd: C, 54.18; H, 7.15; N, 18.06. Found: C, 54.05; H, 7.07; N, 17.81.

1-Acetyl-6-trimethylacetyl-3,4,7,8-tetramethylglycoluril (13):

1-Acetyl-3,4,7,8-tetramethylglycoluril 5 (550 mg, 2.3 mmole) was treated with nBuLi (1.5 mL, 2.4 mmole, 1.6 M) and then trimethylacetyl chloride (0.350

134

1-Acetyl-6-methacryloyl-3,4,7,8-tetramethylglycoluril (15):

1-Acetyl-3,4,7,8-tetramethylglycoluril 5 (1.35 g, 5.6 mmole) was treated with nBuLi (3.5 mL, 5.6 mmole, 1.6 M) and then methacryloyl chloride (0.65 mL, 6.65 mmole) according to the standard procedure, to give the desired product **15** (0.63 g, 36%); ¹H NMR (CDCl₃, 200 MHz) δ 5.40 (s, 2H), 3.00 (s, 3H), 2.87 (s, 3H), 2.44 (s, 3H), 1.95 (s, 3H), 1.89 (s, 3H), 1.53 (s, 3H); ¹³C NMR (CDCl₃, 50 MHz) δ 170.7, 169.8, 152.7, 152.4, 141.4, 121.7, 79.7, 77.9, 26.7, 26.5, 24.9, 18.8, 18.2, 14.9; EIMS *m/e* 308 (M⁺), 266, 168, 142, 126 (base); HREIMS. Calcd for C₁₄H₂₀N₄O₄: 308.1485. Found: 308.1485.

1-Acryloyl-6-butyryl-3,4,7,8-tetramethylglycoluril (58):

1-Butyryl-3,4,7,8-tetramethylglycoluril 9 (0.728 g, 2.72 mmole) was treated with nBuLi (1.7 mL, 2.72 mmole, 1.6 M) and then acryloyl chloride (0.27 mL) according to the standard procedure to give the desired product **58** (0.312 g, 36%); m.p. (chloroform + ether), 143-145°C; ¹H NMR (CDCl₃, 300 MHz) δ 7.19 (dd, 1H, *J* = 10.4 Hz, 17.0 Hz), 6.44 (dd, 1H, *J* = 1.8 Hz, 17.0 Hz), 5.76 (dd, 1H, *J* = 1.8 Hz, 10.3 Hz), 2.98 (s, 3H), 2.96 (s, 3H), 3.01~2.71 (m, 2H), 1.99 (s, 3H), 1.70~1.60 (m, 2H), 1.51(s, 3H), 0.95 (t, 3H, *J* = 7.4 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 173.6, 165.6, 153.1, 130.6, 129.6, 80.7, 78.0, 39.4, 26.8 (2CH₃N), 19.2, 17.9, 14.7, 13.6; FTIR (KBr pellet, cm⁻¹): 2965, 2935, 1754, 1731, 1706, 1401; UV (MeCH): λ_{max} = 223.6 nm, ε = 11,700; EIMS *m/e* 322 (M⁺), 294, 253, 179, 125 (base); Anal. Calcd for C₁₅H₂₂N₄O₄: C, 55.88; H, 6.88; N, 17.38. Found: C,

mL, 2.8 mmole) according to the standard procedure, yielding 273 mg (52%) of the desired product 13. m.p. (EtOAc): 180-182°C; ¹H NMR (CDCl₃, 200 MHz) δ 3.02 (s, 3H), 2.90 (s, 3H), 2.50 (s, 3H), 1.91 (s, 3H), 1.56 (s, 3H), 1.32 (s, 9H); ¹³C NMR (CDCl₃, 50 MHz) δ 183.3, 170.5, 153.6, 152.8, 80.5, 78.4, 43.7, 27.2, 27.0, 26.9, 25.2, 19.5, 15.4; FTIR (KBr pellet, cm⁻¹) 2985, 2924, 1748, 1733, 1710, 1690, 1449, 1411, 1386, 1327, 1274, 1229, 1113, 1093, 945, 886, 811, 760, 740, 683, 603, 587; EIMS *m/e* 325 (M⁺+1), 269, 211, 225, 198, 168, 141, 126 (base), 125.

1-Acetyl-6-acryloyl-3,4,7,8-tetramethylglycoluril (14):

1-Acetyl-3,4,7,8-tetramethylglycoluril 5 (9.6 g, 0.04 mole) was treated with nBuLi (25 mL, 0.04 mole, 1.6 M) and then acryloyl chloride (4.5 mL, 0.055 mole) according to the standard procedure to give the desired product 14 (4.9 g, 41%, polymerization is probably the side reaction); ¹H NMR (CDCl₃, 200 MHz) δ 7.23 (dd, 1H, *J* = 16.9 Hz, 10.3 Hz), 6.45 (dd, 1H, *J* = 17.0 Hz, 1.9 Hz), 5.78 (dd, 1H, *J* = 10.3 Hz, 1.8 Hz), 2.98 (s, 6H), 2.49 (s, 3H), 1.99 (s, 3H), 1.53 (s, 3H); ¹³C NMR (CDCl₃, 50 MHz) δ 170.4, 165.5, 153.0, 130.4, 129.7, 80.5, 77.9, 26.8, 26.7, 19.0, 14.6; FTIR (KBr pellet, cm⁻¹), 3033, 2943, 1754, 1729, 1706, 1619, 1452, 1399, 1338; UV (MeOH): λ_{max} = 226 nm, ε = 9,930; EIMS *m/e* 294 (M⁺), 252, 168, 125 (base); Anal. Calcd for C₁₃H₁₈N₄O₄: C, 53.05; H, 6.16; N, 19.04. Found: C, 53.14; H, 6.00; N, 19.10.

135

56.00; H, 6.95; N, 17.43.

The General Procedure for Condensations to Make Diketide Compounds

A solution of 1.1 equiv of t-BuOLi was prepared by adding 1.5 equiv of dry t-BuOH and then 1.1 equiv of n-BuLi in hexane to THF(-3 mL/mmole n-BuLi) with stirring at 0°C. This solution was stirred at room temperature for 5-10 min and then added to a vigorously stirred solution of 1.0 equiv of starting diacylated template in THF (80 mL/g S.M.) at 0°C. After 20 min, the reaction was complete by TLC and a large excess of ammonium bicarbonate powder was added and the mixture was stirred for 5 h. The solid was filtered off through Celite and the filtrate was concentrated on the rotary evaporator to give a crude product, which was purified by flash column chromatography (methanol : chloroform = 1 : 98). White solid products were obtained.

1-(3'-Oxobutyryl)-3,4,7,8-tetramethylglycoluril (17):

Compound 6 (0.364 g, 1.29 mmole) was treated with lithium t-butoxide to give 17 (0.339 g, 93%); m.p. (chloroform) 154~156°C; ¹H NMR (CDCl₃, 200 MHz) δ 13.45 (s, 0.09H, enol OH), 6.51 (s, 0.09H, olefinic proton for enol), 5.95 (s, 1H, NH), 4.31 (d, 0.91H, CH₂, ²J = 16.4 Hz), 3.59 (d, 0.91H, CH₂, ²J = 16.4 Hz), 3.01 (s, 0.27H, enol NCH₃), 2.98 (s, 2.73H, NCH₃) 2.86 (s, 3H, NCH₃), 2.25 (s, 2.73H, CH₃CO), 2.02 (s, 0.27H, CH₃ for enol side chain), 1.74 and 1.56 (s, 3H, 2 CH₃-bridgehead); ¹³C NMR (CDCl₃, 50 MHz, for keto form only) δ 201.3,

167.1, 157.1, 152.8, 78.7, 76.6, 52.2, 30.0, 27.1, 26.4, 19.2, 15.7; FTIR (KBr pellet, cm⁻¹) 3224 (NH), 3095, 2931, 1690-1760 (C=O, very strong and broad), 1500, 1415, 1394, 1385, 1341, 1312, 1264, 1215, 1167, 1108, 1088, 998, 970, 901, 789, 761, 652, 591, 544; UV (MeOH): $\lambda_{max} = 272.4$ nm (ε = 970), $\lambda = 211.0$ nm (ε = 7600); EIMS *m/e* 282 (M⁺), 267, 240, 210, 183, 156, 140, 125; HREIMS. Calcd for C₁₂H₁₈N₄H₄: 282.1328. Found: 282.1319. Anal. Calcd for C₁₂H₁₈N₄H₄: C, 51.05; H, 6.43; N, 19.85. Found: C, 50.90; H, 6.35; N, 19.67.

1-(4'-d3-3'-Oxobutyryl)-3,4,7,8-tetramethylglycoluril (35):

Compound 33 (310 mg, 1.09 mmole) was treated with tBuOLi to give 35 (247 mg, 80%), which contained 17% nondeuterated product **17**; ¹H NMR (CDCl₃, 500 MHz) δ 5.97 (s, 1H, NH), 4.30 (d, 1H, ²J = 16.4 Hz), 3.60 (d, 1H, ²J = 16.5 Hz), 2.98 (s, 3H), 2.86 (s, 3H), 2.25 (s, 0.52H), 1.74 (s, 3H), 1.56 (s, 3H); ²H NMR (CHCl₃, 77 MHz) δ 2.20 (s); EIMS *m/e* 285 (M⁺), 282, 267, 241, 213, 210, 125 (base); HREIMS. Calcd for C₁₂D₃H₁₅N₄O₄: 285.1513. Found: 285.1512.

1-(1',2'-¹³ C_2 -3'-Oxobutyryl)-3,4,7,8-tetramethylglycoluril (28), 1-(3',4'-¹³ C_2 -3'oxobutyryl)-3,4,7,8-tetramethylglycoluril (29) and 1-(1',2',3',4'-¹³ C_4 -3'oxobutyryl)-3,4,7,8-tetramethylglycoluril (30):

This mixture was obtained in a yield of 0.304 g (87%) from condensation of 26 (0.35 g); ¹H NMR (CDCl₃, 200 MHz) δ 5.96 (s, 1H, NH), 4.69~3.21 (m, 2H), 2.98 (s, 3H), 2.86 (s, 3H), 2.25 (s & dd, 3H, ¹J_{CH} = 128.0 Hz, 6.1 Hz, integration

138

1.57 (s, 3H, 2 CH₃), 1.71~1.60 (m, 2H, CH₂), 0.93 (t, 3H, CH₃, J = 7.4 Hz); ¹³C NMR (CDCl₃, 50 MHz) δ 203.7, 167.3, 157.1, 152.7, 78.6, 76.5, 51.4, 44.6, 27.0, 26.3, 19.2, 16.7, 15.6, 13.5; IR (KBr pellet, cm⁻¹) 3255 (NH), 2962, 2941, 1745 (C=O), 1725 (C=O), 1692 (C=O), 1466, 1413; EIMS *m/e* 310 (M⁺), 282, 267, 240, 199, 183, 125; HREIMS. Calcd for C₁₄H₂₂N₄O₄: 310.1641. Found: 310.1637.

1-(3'-Oxo-4',4'-dimethylvaleryl)-3,4,7,8-tetramethylglycolurii (22):

Compound 13 (100 mg, 0.308 mmole) in THF was treated with t-BuOLi at 0°C by following the standard procedure, but the reaction was allowed to proceed for 5 hours (maybe not necessary), producing the condensation product 22 (79 mg, 79%). ¹H NMR (CDCl₃, 200 MHz) 13.26 (s, enol OH), 6.64 (s, olefinic H of enol), 6.04 (s, 1H, NH), 4.57 (d, 1H, ²J = -16.6 Hz), 3.68 (d, 1H, ²J = -16.6 Hz), 3.02 (s, enol NCH₃), 2.97 (s, 3H), 2.86 (s, 3H), 1.76 (s, 3H), 1.57 (s, 3H), 1.20 (s, -tBu for β-ketone form), 1.19 (s, -tBu for enol form); ¹³C NMR (CDCl₃, 50 MHz) 209.9 (β-C=O), 189.8 (weak, for enol β-carbon), 171.6 (weak, enol), 168.4, 157.2, 152.6, 86.6 (enol α-carbon), 78.6, 76.6, 46.6, 44.3, 27.4, 27.1, 26.5, 26.4, 19.9 (enol), 19.2, 15.6; FTIR (KBr pellet, cm⁻¹) 3268 (NH), 3104, 2961, 2924, 1737, 1711, 1692, 1610 (weak), 1491, 1451, 1410, 1333, 1176, 1112, 1064, 760, 696, 664; EIMS *m/e* 325 (M⁺+1), 267, 143, 125 (base); HREIMS. Calcd for C₁₅H₂₈N₄O₄ (M+1⁺): 325.1876. Found: 325.1851.

ratio of s : dd = 1 : 1.27), 1.74 (s, 3H), 1.56 (s, 3H); EIMS *m/e* (abundance %): 286 (3.2), 285 (3.2), 284 (9.6), 242 (4), 240 (3.2), 212 (17.6), 140 (24), 125 (100); HREIMS. Calcd for $C_{10}^{-13}C_2H_{18}N_4O_4$ of **28** or **29**: 284.1396. Found: 284.1385.

1-(3'-Oxovaleryl)-3,4,7,8-tetramethylglycoluril (18):

Compound 11 (350 mg, 1.18 mmole) was used to give a inseparable mixture of 18 and 19 (284 mg, 81%), which contained 19% of 3'-oxo-2'-methylbutyryl compound 19. For 18, m.p. (CHCl₃) 148~152°C; ¹H NMR (CDCl₃, 200 MHz) δ 5.99 (s, 1H, NH), 4.33 (d, 1H, CH₂, ²J = 16.4 Hz), 3.56 (d, 1H, CH₂, ²J = 16.4 Hz), 2.99 and 2.86 (s, 3H, 2 NCH₃), 2.54 (q, 2H, CH₂, J = 7.2 Hz), 1.75 and 1.56 (s, 3H, 2 CH₃ bridgehead), 1.08 (t, 3H, CH₃, J = 7.2 Hz); ¹³C NMR (CDCl₃, 50 MHz) δ 204.4, 167.4, 157.3, 152.8, 78.8, 76.7, 51.2, 35.9, 27.1, 26.4, 19.3, 15.7, 7.4; IR (KBr, cm⁻¹) 3230 (NH), 2991, 2940, 1743 (C=O), 1717 (C=O), 1689 (C=O), 1457, 1410; EIMS *m/e* 296 (M⁺), 267, 254, 240, 224, 168, 140, 125, 97, 86, 70; HREIMS. Calcd for C₁₃H₂₀N₄O₄: 296.1484. Found: 296.1482.

1-(3'-Oxohexanoyi)-3,4,7,8-tetramethylglycoluril (20):

Compound 12 (270 mg, 0.87 mmole) was used to give a inseparable mixture of 20 and 21 (237 mg, 88%), which contained 17% of 3*-oxo-2-ethylbutyryl compound 21. For 20, m.p. $(CHCl_3)$ 119-121°C; ¹H NMR (CDCl_3, 200 MHz) δ 6.12 (s, 1H, NH), 4.32 (d, 1H, CH_2 , ²J = 16.4 Hz), 3.57 (d, 1H, CH_2 , ²J = 16.4 Hz), 2.97 and 2.86 (s, 3H, 2 NCH₃), 2.61~2.46 (m, 2H, CH₂), 1.75 and

139

1-(3'-Oxo-2'-methylvaleryl)-3,4,7,8-tetramethylglycoluril (25):

Method a: Compound 8 (102 mg, 0.33 mmole) in THF (10 mL) was treated with t-BuOLi at 0°C by following the standard procedure, but the reaction was allowed to proceed for 2 hours (maybe not necessary). A fraction from flash column chromatography was obtained to be a 1:1 mixture of the condensation product 25 and the monopropionyl compound 7 (total 62 mg). Compound 8 (21 mg) was recovered here.

Method b: Compound 8 (128 mg, 0.41 mmole) in THF (10 mL) was treated with lithium *iso*-propoxide at 0°C by following *Method a*. A 1:3 mixture of the condensation product 25 and the monopropionyl compound 7 (total 58 mg) was obtained with recovery of 8 (14 mg).

Compound 25 containing 7 was obtained as 2 diastereomers (25a, 25b) in a 2:1 ratio (NMR integration). The more polar diastereomer 25b was partially isolated in a pure form in a second round column purification. For 25a: ¹H NMR (CDCl₃, 200 MHz) δ 6.01 (s, 1H, NH), 4.47 (q, 1H, *J* = 7.2 Hz), 2.95 (s, 3H), 2.85 (s, 3H), 2.75-2.53 (m, 2H), 1.75 (s, 3H), 1.55 (s, 3H), 1.33 (d, 3H, *J* = 7.3 Hz), 1.07 (t, 3H, *J* = 7.2 Hz). For 25b: ¹H NMR (CDCl₃, 200 MHz) δ 6.01 (s, 1H, NH), 4.59 (q, 1H, *J* = 7.2 Hz), 2.98 (s, 3H), 2.88 (s, 3H), 2.59-2.46 (m, 2H), 1.68 (s, 3H), 1.57 (s, 3H), 1.34 (d, 3H, *J* = 7.2 Hz), 1.05 (t, 3H, *J* = 7.2 Hz).

Reduction of β-Keto Acyl Compounds with NaBH₄

To a solution of the β -ketoacyl compound in MeOH (35 mL/g) was added

sodium borohydride (1.5-1.8 equiv) at 0°C. This mixture was stirred for 10 min at room temperature and 10 mL glacial acetic acid was then added immediately. The rotary evaporator was used to remove the solvents (both of MeOH and AcOH) to give a solid mixture, to which was added 40 mL dichloromethane. The mixture was stirred for 5 min and solid material was filtered off. The filtrate was concentrated and purified through a flash column (MeOH : $CHCl_3 = 2:98$).

1-(β-Hydroxybutyryl)-3,4,7,8-tetramethylglycoluril (38):

Compound 17 (1.06 g, 3.76 mmole) was treated with NaBH₄ (0.21 g, 5.55 mmole). The desired product was obtained in a yield of 0.985 mg (93%) as a mixture of 2 diastereomers. ¹H NMR (CDCl₃, 200 MHz) δ 6.19 (s, 1H, NH), 4.24 (m, 10 peaks, 1H, CH), 3.27-2.80 (m, 2H, CH₂), 3.01 (s, 3H, NCH₃), 2.87 (s, 3H, NCH₃) 1.71 and 1.56 (s, 3H, 2 CH₃), 1.26 (d, 3H, CH₃, ³*J* = 6.3 Hz); ¹³C (CDCl₃, 50 MHz, features for 2 diastereomers) δ 173.6, 157.1, 152.9, 78.7, 76.7, 64.1, 44.7, 27.1, 26.4, 22.4, 19.7, 15.5; EIMS *m/e* 284 (M⁺), 284, 266, 240, 156, 140, 126 (base), 111, 86; HREIMS. Calcd for C₁₂H₂₀N₄O₄: 284.1485. Found: 284.1492. Anal. Calcd for C₁₂H₂₀N₄O₄: C, 50.69; H, 7.09; N, 19.71. Found: C, 50.42; H, 7.10; N, 19.65.

Dehydration to Make 1-Crotonyl-3,4,7,8-tetramethylglycoluril (40):

1-(β-hydroxybutyryl)-3,4,7,8-tetramethylglycoluril 38 (640 mg, 2.25 mmole) was dissolved in 15 mL CH₂Cl₂, followed by addition of 3 equiv of trifluoroacetic

142

 $\begin{array}{l} {\rm CH_{3}}, \ 1.91 \ (d, \ crotonyl-CH_{3}, \ ^{3}J=6.6 \ Hz); \ ^{13}{\rm C} \ {\rm NMR} \ ({\rm CDCl}_{3}, \ 50 \ {\rm MHz}) \ \delta \ 170.5, \\ {\rm 165.6}, \ 153.2, \ 153.1, \ 144.6, \ 124.9, \ 80.5, \ 77.8, \ 26.7 \ (2CH_{3}{\rm N}), \ 26.0, \ 19.1, \ 18.3, \\ {\rm 14.6}; \ {\rm FTIR} \ ({\rm KBr} \ {\rm pellet}, \ {\rm cm^{-1}}) \ 2939, \ 1749 \ ({\rm C=O}), \ 1722 \ ({\rm C=O}), \ 1703 \ ({\rm C=O}), \ 1637 \\ ({\rm C=O}), \ 1408, \ 1341; \ {\rm UV} \ ({\rm CH}_{3}{\rm OH}); \ \lambda_{max} = 206 \ {\rm nm}, \ e = 11 \ {\rm K}; \ {\rm EIMS} \ \ m/e \ 308 \ ({\rm M}^{+}), \\ {\rm 280}, \ 241, \ 192, \ 167, \ 124, \ 125 \ ({\rm base}); \ {\rm Anal.} \ {\rm Calcd} \ {\rm for} \ C_{14}H_{20}{\rm N}_{4}{\rm O}_{4}; \ {\rm C}, \ 54.53; \ {\rm H}, \\ {\rm 6.54; \ N}, \ {\rm 18.17.} \ {\rm Found:} \ {\rm C}, \ 54.48; \ {\rm H}, \ 6.88; \ {\rm N}, \ 18.06. \end{array}$

1-(3'-Oxo-4'-hexenoyi)-3,4,7,8-tetramethylglycoluril (43):

The starting material 42 (220 mg, 0.71 mmole) was treated with t-BuOLi at 0°C in the same way as described for preparation of 17 to give 43 (132 mg, 60%); m.p. 147~150°C (from CHCl₃); ¹H NMR (CDCl₃, 500 MHz, shows 37% enol form) δ 13.2(s, 1H, enol-OH), 6.96(dq, 1H, CH, *J* = 6.7 Hz, 15.7 Hz), 6.74 (dq, 1H, CH, *J* = 6.6 Hz, 15.8 Hz), 6.51(s, 1H, CH), 6.16~6.12 (m, 2H, Nh & CH), 5.90 (d, 1H, CH, *J* = 15.3 Hz), 4.47 (d, 1H, CH₂, *J* = 16.2 Hz), 3.75 (d, 1H, CH₂, *J* = 16.2 Hz), 3.0 (s, 3H, enol-NCH₃), 2.97 (s, 3H, NCH₃), 2.86 (s, NCH₃ for both ketone and enol), 1.93 (dd, 3H, ketone CH₃CH=, *J* = 6.9 Hz, 1.7 Hz), 1.88 (dd, 3H, enol CH₃-bridgehead), 1.76 (s, 3H, CH₃-bridgehead), 1.74 (s, 3H, enol CH₃-bridgehead), 1.56 (s, 3H, Bridgehead CH₃ of ketone & enol); ¹³C NMR (CDCl₃, 50 MHz, shows a mixture of keto and enol isomers) δ 192.9, 172.6, 171.5, 167.8, 157.2, 152.8, 144.2, 137.3, 131.2, 126.6, 90.8, 78.7, 78.6, 76.8, 76.7, 49.0, 27.1, 26.4, 20.0, 19.3, 18.3, 15.7; FTIR (KBr pellet, cm⁻¹) 3223, 3094, 2948, 1741, 1717, 1690, 1668; UV (CH₃OH): $\lambda_{max}=304$ nm, $\epsilon=3.5$ K; EIMS *m*/e

anhydride at 23°C and stirring for 1 h. A solution of Et₃N (2 equiv.) in 5 mL CH_2Cl_2 was added dropwise and 10 min later, 2 mL Et_3N was added. The mixture was heated at reflux for 20 min. All liquid was removed on the rotatory evaporator and the residue was purified by flash column chromatography (MeOH : $CHCl_3 = 1 : 99$). The desired product was obtained in a yield of 500 mg (83%) with E : Z ratio = 97.4 : 2.6. ¹H NMR (CDCl₃, 200 MHz) δ 7.27 (d, 1H, shows fine structure due to the long range coupling with Me, CH, ³*J* = 15.2 Hz, ⁴*J* = 1.4 Hz), 7.08 (dq, 1H, CH, ³*J* = 15.2 Hz, 6.4 Hz), 6.13 (s, 1H, NH), 3.02 and 2.87 (s, 3H, N-CH₃), 1.93 (dd, 3H, CH_3 , ³*J* = 6.5 Hz, ⁴*J* = 1.3 Hz), 1.71 and 1.57 (s, 3H, 2 CH₃s); ¹³C NMR (CDCl₃, 50 MHz) δ 165.2, 157.1, 152.6, 144.8, 123.0, 78.2, 76.2, 26.7, 26.0, 19.3, 18.0, 15.3; FTIR (KBr pellet, cm⁻¹) 3310 (NH), 2990, 1722 (C=O), 1667 (C=O), 1627; UV (CH₃OH): λ_{max} =229 nm, ϵ =12 K; EIMS *m/e* 266 (M⁺, base), 251, 192, 168, 142, 125; Anal. Calod for C₁₂H₁₈N₄O₃: C, 54.12; H, 6.81; N, 21.04. Found: C, 53.92; H, 6.78; N, 20.79.

1-Acetyi-6-crotonyi-3,4,7,8-tetramethylglycoluril (42):

Compound **40** (700 mg, 2.63 mmole) was treated with nBuLi (1.5 mL, 2.4 mmole, 1.6 M) and then acetyl chloride (0.3 mL) according to the procedure used for making **6**; The title product was purified with a flash column (CHCl₃ as eluting solvent) and obtained in a yield of 502 mg (62%, with 12% recovery of starting material); ¹H NMR (CDCl₃, 500 MHz) δ 7.09–7.02 (m, 1H, CH), 6.96 (d, 1H, CH, ³J = 15.3 Hz), 2.95 (s, 6H, NCH₃), 2.48 (s, 3H, CH₃), 1.98 and 1.47 (s, 3H, 2

143

308 (M⁺), 236, 125 (base); HREIMS Calcd for $C_{14}H_{20}N_4O_4$: 308.1453. Anal. Calcd for $C_{14}H_{20}N_4O_4$: C, 54.53; H, 6.54; N, 18.17. Found: C, 53.97; H, 6.63; N, 17.78.

1-(3'-Hydroxy-4'-hexenoyi)-3,4,7,8-tetramethylglycoluril (45):

Compound **43** (540 mg, 1.75 mmole) was reduced with NaBH₄ (110 mg) in MeOH by using the previously described general reduction procedure to give **45** (240 mg, 44%) with 51% recovery of starting material. ¹H NMR (CDCl₃, 200 MHz, shows 2 diastereomers) δ 6.12 & 6.10 (s, 1H, NH), 5.76~5.71 and 5.58~5.53 (m, 2H, HC=CH), 4.4~4.6 (m, 1H, CH), 3.30~3.00 (m, 2H, CH₂), 3.02 (s, 3H, NCH₃), 2.87 (s, 3H, NCH₃), 1.71 and 1.57 (s, 3H, 2 CH₃), 1.69(d, 3H, CH₃, *J* = 7.2 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 173.0, 157.1, 152.1, 132.1, 127.1, 78.7, 76.7, 68.8, 43.5, 27.1, 26.4, 19.7, 19.6, 17.6, 15.7; FTIR (KBr pellet, cm⁻¹) 3390 (OH), 3322 (NH), 1721 (C=O); EIMS *m/e* 310 (M⁺), 292, 240, 199, 125 (base); HREIMS Calcd for C1₁₄H₂₂N₄O₄ 310.1641. Found: 310.1654.

1-(2',4'-Hexadienoyl)-3,4,7,8-tetramethylglycoluril (46):

Compound 45 (194 mg, 0.626 mmole) was treated with trifluoroacetic anhydride (0.25 mL) and triethyl amine (0.1 mL and then 2 mL), using the procedure for making 40 to give 46 (157 mg, 86%). ¹H NMR (CD_2Cl_2 , 200 MHz) 8 7.37 (dd, 1H, J = 9.4 Hz, 15.5 Hz), 7.23 (d, 1H, J = 15.1 Hz), 6.39~6.12 (m, 2H), 2.99 (s, 3H), 2.82 (s, 3H), 1.86 (d, 3H, J = 5.6 Hz), 1.68 (s, 3H), 1.54 (s,

3H); ¹³C NMR (CD₂Cl₂, 50 MHz) δ 166.4, 157.6, 153.3, 145.5, 140.4, 130.8, 120.4, 78.9, 77.1, 27.3, 26.5, 20.0, 18.9, 15.9; FTIR (KBr Pellet, cm⁻¹) 3289, 3089, 2915, 1731, 1712, 1668, 1597; UV (MeOH): λ_{max} =319 nm, ϵ =26 K; EIMS *m/e*: 292(M⁺), 218, 168, 125 (base); Anal. Calcd for C₁₄H₂₀N₄O₃: C, 57.52; H, 6.90; N, 19.16. Found: C, 57.41; H, 6.98; N, 18.81.

1-Acetyl-6-(2',4'-hexadienoyl)-3,4,7,8-tetramethylglycoluril (47):

Compound 46 (160 mg, 0.54 mmole) in THF (30 mL) was treated with 1.1 equiv of LDA and AcCl (0.05 mL, 0.7 mmole) using the procedure for making 6 to give 47 (68 mg, 38%) with 45% recovery of starting material. ¹H NMR (CDCl₃, 500 MHz) δ 7.37 (dd, 1H, *J* = 10.9 Hz, 15.0 Hz), 6.97 (d, 1H, *J* = 15.1 Hz), 6.26 (t, 1H, *J* = 11.4 Hz, 14.9 Hz), 6.15 (dq, 1H, *J* = 6.6 Hz, 14.8 Hz), 2.97 (s, 3H), 2.96 (s, 3H), 2.49 (s, 3H), 1.99 (s, 3H), 1.84 (d, 3H, *J* = 6.8 Hz), 1.51 (s, 3H); ¹³C NMR (CDCl₃, 50 MHz) δ 170.6, 166.1, 153.2, 145.3, 139.8, 130.5, 121.1 80.7, 77.8, 26.9, 26.7, 26.2, 19.2, 18.7, 14.7; FTIR (KBr Pellet, cm⁻¹) 3447 (NH), 2939, 1735 (C=O), 1702 (C=O); UV (MeOH): λ_{max} =275.4 nm, *e*=9.3 K; EIMS *m*/e: 334 (M⁺), 293, 241, 149, 125 (base); HREIMS Calcd for C₁₆H₂₂N₄O₄: 334.1641. Found: 334.1646.

1-(3'-Oxo-4',6'-octadienoyi)-3,4,7,8-tetramethylglycoluril (48):

Compound 47 (40 mg, 0.12 mmole) was treated with *tert*-BuOLi using the procedure for making 17 to give 48 (24 mg, 60%); ¹H NMR (CDCi₃, 500 MHz,

146

Olefinic reduction of 40 and *in situ* acetylation to make 1-butyryl-6-acetyl-3,4,7,8-tetramethylglycoluril (12):

By using the same procedure as described above for L-Selectride reduction of crotonyl compound 40 (100 mg, 0.385 mmole), acetyl chloride (0.05 mL) was used to quench the reaction instead of NH_4HCO_3 . And the Celite filtration was not necessary. The desired product was obtained in a yield of 73 mg (63%), and showed exactly the same analytical features as those of the compound made from the direct acetylation of 9.

General Procedure for L-Selectride Reduction-Condensation Reactions

To a solution of the diacylated compound (in which at least one of the acyl groups is α , β -unsaturated) in dry THF (150 mL/1g starting material) with stirring and under protection of N₂, was added 1 equiv of L-selectride at -78°C. The mixture was allowed to reach room temperature in 2 h. NH₄HCO₃ was added as a quencher and stirred for another ~8 h. The solid was found to be difficult to remove by filtration and the filtration was done slowly with the aid of Celite. The filtrate was concentrated and purified by flash column chromatography (CHCl₃ as eluting solvent). The column purification must be performed with great care in order to give satisfactory resolution.

L-Selectride reduction of 14 to make 51:

The starting material 14 (1.21 g, 4.1 mmole) in THF was treated with L-

shows 46% enol) δ 13.18 (s, 1H, enol-OH), 7.15–5.83 (m, 4H, Olefinic Hs), 6.56 (s, 1H, enol -α-H), 4.51 (d, 1H, J = 16.1 Hz), 3.74 (d, 1H, J = 16.1 Hz), 3.02 (s, 3H, enol-NCH₃), 2.97 (s, 3H, NCH₃), 2.86 (s, 3H, NCH₃ for both enol & ketone), 1.87 (d, 3H, J = 5.0 Hz), 1.85 (d, 3H, J = 6.7 Hz), 1.76 (s, 3H), 1.74 (s, 3H), 1.56 (s, 3H), ¹³C NMR (CDCl₃, 200 MHz) δ 193.3, 172.9, 167.9, 157.2, 152.6, 144.3, 141.4, 138.5, 137.4, 130.6, 130.1, 126.6, 123.7, 91.9, 78.7, 77.7, 49.3, 27.1, 26.4, 20.0, 19.3, 18.8, 15.7; FTIR (KBr, cm⁻¹) 3426 (NH), 2927, 1719 (C=C); UV (MeOH): $\lambda = 319$, 280 and 215 nm, $\varepsilon = 10,800$, 11.600 and 11.500, respectively; EIMS *m/e*: 334 (M⁺), 319, 260, 198, 125, 83 (base); HREIMS Calcd for C₁₆H₂₉N₄O₄: 334.1641. Found: 334.1633.

Olefinic reduction of 40 to make 1-butyryl-3,4,7,8-tetramethylglycoluril (9):

The crotonyl compound 40 (220 mg, 0.82 mmole) was dissolved in 100 mL dry THF under N_2 and cooled in an acetone-dry ice bath. L-Selectride (0.82 mL, 0.82 mmole, 1 M in THF) was added through a syringe with stirring. The mixture was allowed to reach room temperature over 2 h. NH_4HCO_3 was added as a quenching agent and the mixture was stirred for another 4 h. The solid was filtered off through Celite and the filtrate concentrated and purified by flash column chromatography (CHCl₃ as eluting solvent). The desired product was obtained in a yield of 164 mg (74%), and showed exactly the same analytical features as those of the compound made from the direct butyrylation of template 1.

147

Selectride. The ratio of 2 diastereomeric products was determined to be 2.1 : 1 by ¹H NMR analysis of the crude reaction mixture. Five fractions were collected from flash column chromatography. The first fraction with the largest R_f was identified as reduced but uncondensed compound 11 (3%). The second fraction of products was obtained in a yield of 132 mg, and was estimated by ¹H NMR to contain 53% of monoacetyl compound 5 and 47% of the less polar single diastereomer of 1-(2'-methyl-3'-oxobutyryl)-3,4,7,8-tetramethyl-glycoluril 51a. The third fraction (340 mg) contained 5 (6%) and 51a (94%). The forth fraction (460 mg) contained the 2 diastereomers of 51 in a 1:1 ratio. The fifth fraction of 56 mg contains the more polar diastereomer 51b (97%) and the less polar isomer 51a (3%). The total yield of condensation product is more than 70%. The two pure single diastereomers can be obtained by recrystallization of fraction 3 and fraction 5. respectively.

The less polar diastereomer 51a: ¹H NMR (CDCl₃, 200 MHz) δ 5.94 (s. 1H, NH), 4.48 (q, 1H, *J* = 7.3 Hz), 2.96 (s, 3H), 2.86 (s, 3H), 2.29 (s, 3H), 1.74 (s, 3H), 1.55 (s, 3H), 1.34 (d, 3H, *J* = 7.2 Hz); ¹³C NMR (CDCl₃, 50 MHz) δ 205.9, 170.5, 157.2, 153.0, 78.9, 76.9, 53.8, 28.2, 27.0, 26.4, 19.0, 15.7, 12.0; FTIR (KBr, cm⁻¹) 3346 (NH) 3000, 2940, 1721 (C=O), 1689 (C=O), 1489, 1457, 1411, 1353, 1309, 1245, 1160, 1110; EIMS *m/e* 296 (M⁺), 254, 222, 199, 180, 156, 140, 125 (base); HREIMS. Calod for C₁₃H₂₀N₄O₄: 296.1485. Found: 296.1495.

The more polar diastereomer 51b: ¹H NMR (CDCl₃, 200 MHz) & 6.05(s,

1H, NH), 4.60 (q, 1H, J = 7.2 Hz), 2.99 (s, 3H), 2.89 (s, 3H), 2.22 (s, 3H), 1.70 (s, 3H), 1.57 (s, 3H), 1.35 (d, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 50 MHz) δ 204.2, 171.1, 157.0, 153.0, 78.7, 76.6, 53.6, 28.3, 27.1, 26.6, 19.9, 15.8, 12.5; FTIR (KBr pellet, cm⁻¹) 3319 (NH), 2989, 1720 (C=O), 1698 (C=O), 1490, 1412, 1302, 1112, 1089, 938, 762; EIMS *m/e* 297 (M*+1), 254, 125 (base); HREIMS. Calod for C₁₃H₂₃N₄O₄: 296.1485. Found: 296.1488.

1-(2'-Methyl-3'-hydroxybutyryl)-3,4,7,8-tetramethylglycoluril (52):

A mixture (total 351 mg) of the 2 diastereomeric (2.1 : 1) 1-(2'-methyl-3'oxobutyryl)-3, 4, 7, 8-tetramethyl-glycolurils **51a** and **51b** containing monoacetyl compound 5 (~23%) was treated with NaBH₄ (67 mg) using the procedure for NaBH₄ reduction of 1-(3'-oxobutyryl)-3,4,7,8-tetramethylglycoluril **17**. The desired title product was obtained in a yield of 210 mg (60% based on the total mass of the starting mixture) and easily separated from monoacetyl compound 5. ¹H NMR (CDCl₃, 500 MHz) δ 6.28, 6.16, 6.12 and 6.11 (singlets, total 1H, NH for 4 diastereomers), 4.10~3.65 (m, 2H), 2.99 (s, 3H), 2.84 (s, 3H), 1.68, 1.67, 1.66 and 1.65 (singlets, total 3H), 1.53 (s, 3H), 1.23~1.08 (16 peaks, 6H, for 2 methyl groups of side chain); ¹³C NMR (CDCl₃, 50 MHz) δ 177.8, 177.4, 177.2, 157.4, 157.3, 157.2, 153.3, 153.2, 78.5, 77.2, 76.8, 71.0, 70.0, 68.6, 67.4, 45.6, 43.6, 43.5, 27.2, 26.4, 21.5, 20.9, 20.6, 19.7, 19.6, 19.5, 19.1, 15.8, 15.7, 14.8, 14.4, 10.9, 10.3; EIMS *m/e* 299 (M⁺+1), 280 (M⁺-H₂O), 254, 125 (base). HREIMS. Calcd for Cr₁₃H₂₃N₄O₄ (M⁺+1): 299.1719. Found: 299.1704.

150

L-Selectride reduction of 42 to make 1-(2'-ethyl-3'-oxobutyryl)-3,4,7,8tetramethylolycoiuril (50):

Compound 42 (377 mg, 1.22 mmole) was treated with L-Selectride (1.22 mL, 1.22 mmole, 1 M). The ratio of 2 diastereomeric products was determined to be 1.6:1 by ¹H NMR of the crude reaction mixture. The first fraction with the largest R_f was identified as reduced but uncondensed compound 12 (71 mg, 19%). The second fraction was the monoacetyl compound 5 (26 mg, 9%). The third contains the major less polar diastereomer of the product (50a) containing a trace of monoacetyl compound and of the more polar diastereomer, which underwent a repeated column chromatographic separation to remove most monoacetyl compound. The fourth fraction is the more polar diastereomer 50b in pure form. The total condensation product yield was 197 mg (52%). The 2 diastereomers were partially separated. For the less polar diastereomer 50a: ¹H NMR (CDCl₃, 200 MHz) δ 5.97(s, 1H), 4.42 (dd, 1H, J = 9.0 Hz, 3.9 Hz), 2.97 (s, 3H), 2.86 (s, 3H), 2.28 (s, 3H), 1.97~1.90 (m, 2H), 1.73 (s, 3H), 1.55 (s, 3H), 1.00 (t, 3H, J = 7.4 Hz); ¹³C NMR (CDCl₂, 50 MHz) δ 205.1, 169.8, 157.2, 153.0, 78.7, 76.9, 60.8, 29.0, 27.1, 26.4, 20.6, 19.1, 15.7, 12.7. For the more polar diastereomer 50b: ¹H NMR (CDCl₃, 200 MHz) & 6.04 (s, 1H, NH), 4.58 (dd, 1H, J = 8.0 Hz, 5.3 Hz), 2.99 (s, 3H), 2.88 (s, 3H), 2.21 (s, 3H), 1.99~1.81 (m, 2H), 1.71 (s, 3H), 1.57 (s, 3H), 0.97 (t, 3H, J = 7.4 Hz); ¹³C NMR (CDCl₃, 50 MHz) δ 203.4, 170.5, 156.9, 153.0, 78.6, 76.6, 60.6, 28.9, 27.1, 26.6, 21.4, 19.9, 15.9, 12.4; EIMS m/e 311 (M*+1), 310 (M*), 268, 125 (base); HREIMS. Calcd for

151

C₁₄H₂₂N₄O₄: 310.1641. Found: 310.1627.

L-Selectride reduction-condensation to make 1-(2',2'-dimethyl-3'oxobutyryl)-3,4,7,8-tetramethylglycoluril (55):

Compound 15 (148 mg, 0.48 mmole) was treated with L-Selectride (0.48 mL, 0.48 mmole, 1 M) using the general procedure to give 55 (101 mg, 68%); ¹H NMR (CDCl₃, 200 MHz) δ 6.02 (s, 1H, NH), 2.95, 2.86, 2.21, 1.72, 1.55, 1.47 and 1.37 (7 singlets for methyl groups); ¹³C NMR (CDCl₃, 50 MHz) δ 207.5, 173.8, 157.1, 152.3, 78.7, 77.2, 57.7, 27.0, 26.4, 25.0, 23.5, 22.5, 19.1, 15.7; EIMS *m/e* 311 (M*+1), 268, 199, 194, 125 (base); Anal. Calcd for C₁₄H₂₂N₄O₄: C, 54.18; H, 7.14; N, 18.05. Found, C, 54.05; H, 7.09; N, 17.98.

1-Acetyl-6-(2',2'-dimethyl-3'-oxobutyryl)-3,4,7,8-tetramethylglycoluril (56):

The starting material 55 (62 mg, 0.20 mmole) was treated with nBuLi (0.13 mL, 0.208 mmole) and AcCl (0.024 mL, 0.34 mmole) according to the general preparation of diacytated Compounds. Compound 56 was isolated in a yield of 13 mg (18%) and 55 was recovered in 50% yield. ¹H NMR (CDCl₃, 200 MHz) δ 2.97, 2.90, 2.50, 2.18, 1.98, 1.51, 1.47, 1.39 (singlets for 8 methyl groups); ¹³C NMR (CDCl₃, 50 Hz) δ 207.3, 173.2, 170.5, 153.1, 152.8, 81.2, 78.9, 59.1, 26.8, 26.7, 26.0, 25.2, 24.3, 22.5, 19.0, 14.8; EIMS *m/e* 353 (M⁺), 310, 268, 241, 199, 125 (base); HREIMS. Calcd for C₁₆H₂₅N₄O₅: 353.1825. Found: 353.1823.

L-Selectride reduction-condensation to make 1-(2'-methyl-3'-oxohexanoyl)-3,4,7,8-tetramethylglycoluril (59):

The starting material 58 (168 mg, 0.52 mmole) led to a column-purified condensation mixture 126 mg (containing 15 mg of monobutyryl compound 5 by ¹H NMR). The yield for the condensation product was estimated to be 66% (diastereomeric ratio 1 : 2.1). The 2 diastereomers were partially separated in a second round of column separation. For the less polar diaste.comer 59a: ¹H NMR (CDCl₃, 200 MHz) δ 5.96 (s, 1H, NH), 4.46 (q, 1H, J = 7.4 Hz), 2.95 (s, 3H), 2.85 (s, 3H), 2.68 & 2.54 (2 dt, AB pattern, 2H, J = 7.1 Hz, -17.8 Hz), 1.74 (s, 3H), 1.65~1.57 (m, 2H), 1.33 (d, 3H, J = 7.3 Hz), 0.92 (t, 3H, J = 7.4 Hz); ¹³C NMR (CDCl₃, 50 MHz) δ 208.2, 170.8, 157.3, 152.9, 78.8, 77.2, 53.4, 42.5, 27.0, 26.4, 19.0, 16.7, 15.7, 13.7, 12.3. For the more polar diastereomer 59b: m. p. (chloroform + ether) 134~136°C; ¹H NMR (CDCl₃, 300 MHz) δ 6.00 (s, 1H), 4.60 (q, 1H, J = 7.2 Hz), 2.98 (s, 3H), 2.87 (s, 3H), 2.54 & 2.45 (2 dt, AB pattern, 2H, J = 7.4 Hz, -17.5 Hz, 7.2 Hz), 1.69 (s, 3H), 1.65~1.53 (m, 2H), 1.57 (s, 3H), 1.34 (d, 3H, J = 7.2 Hz), 0.90 (t, 3H, J = 7.4 Hz); ^{13}C NMR (CDCl_3, 75 MHz) δ 206.1, 171.5, 157.0, 152.9, 78.6, 76.6, 53.1, 42.7, 27.1, 26.5, 19.8, 16.9, 15.9, 13.6, 12.6; EIMS m/e 324 (M⁺), 281, 254, 199, 180, 152, 125 (base). Anal. Calcd for C15H24N4O4: C, 55.54; H, 7.46; N, 17.28. Found: C, 55.79; H, 7.42; N, 17.44.

Removal of a Synthesized Carbon Chain from Template 1

Lithium benzyloxide was prepared by addition of 1 equiv n-butyl lithium to

1.5 equiv benzyl alcohol in THF (~8 ml/mmole). To a solution of compound 9 (100 mg, 0.37 mmole) or **40** (165 mg, 0.62 mmole) in THF (20 ml) was added the prepared lithium benzyloxide (1 equiv) at room temperature. The mixture was stirred for 12 hours and 2 equivalents of glacial acetic acid was added. THF was removed on the rotary evaporator and CHCl₃ was added. The mixture was stirred for a further 0.5 hours. Solid product was collected by filtration, washed with CHCl₃ and THF and dried in air for 2 days. The solid product was found to be pure template 1 and obtained in yields 68 mg (92%) and 69 mg (80%), respectively for 9 and 40. The filtrate was concentrated and purified with a flash column (hexane as eluting solvent).

Benzyl crotonate (60): Obtained in a yield of 43 mg (55%) from 40; ¹H NMR (CDCl₉, 200 MHz) $\&bar{3}$ 7.30 (m, 5H), 7.03 (dq, 1H, J = 15.5 Hz, 6.9 Hz), 5.89 (dq, 1H, J = 15.6 Hz, 1.5 Hz), 5.17 (s, 2H), 1.88 (dd, 3H); ¹³C NMR (CDCl₉, 50 MHz) $\&bar{3}$ 166.3, 145.1, 136.1, 128.5, 128.1 (remarkably high), 122.4, 65.9, 18.0; FTIR (neat, cm⁻¹) 3034, 2947, 1721, 1658, 1263, 1174, 1103, 1015, 969, 838, 738, 698; EIMS *m/e* 176 (M⁺), 158, 149, 131, 107, 91 (base), 77, 69, 65; HREIMS. Calcd for C₁₁H₁₂O₂: 176.0837. Found: 176.0818.

Benzyl β-benzyloxybutyrate (61): obtained in a yield 19 mg (15%) from 40; ¹H NMR (CDCi₃, 200 MHz) δ 7.33 (m, 10H), 5.13 (s, 4H), 4.06 (m, 1H), 2.70 (dd, 1H, *J* = 15.1 Hz, 7.4 Hz), 2.49 (dd, 1H, *J* = 15.0 Hz, 5.6 Hz), 1.26 (d, 3H, *J* = 6.2 Hz); ¹³C NMR (CDCi₃, 50 MHz) δ 171.3, 135.9, 128.5, 128.3, 128.2, 127.6, 127.5, 127.0, 72.0, 70.9, 66.3, 42.1, 19.8.

154

(s, 3H), 2.28 (s, 3H), 1.71 (s, 3H), 1.54 (s, 3H), 0.94 (s, 9H), 0.28 (s, 6H).

1-Acetyl-6-(3'-tert-butyldimethylsilyloxycrotonyl)-3,4,7,8-tetramethylqlycoluril (63):

Compound **39** (102 mg, 0.26 mmole) was acetylated by following the general preparation of diacyl glycoluril compounds to afford product **63** in a yield of 28 mg (24%) after purification with a flash column (eluting solvent: CHCI₃:EtOAc = 90:10). ¹H NMR (CHCI₃, 200 MHz) δ 6.32 (s, 1H), 2.96 (s, 6H), 2.49 (s, 3H), 2.28 (s, 3H), 1.98 (s, 3H), 1.49 (s, 3H), 0.95 (s, 9H), 0.28 (s, 3H), 0.26 (s, 3H).

Compound 65:

A solution of 17 (100 mg, 0.355 mmole) in methanol (10 mL) in the presence of a catalytic amount of *p*-toluenesulfonic acid was stirred at room temperature for 5 hours. The solvent was then removed on the rotary evaporator and the residue was purified by flash column chromatography (eluting solvent CHCl₃:CH₃OH = 99:1). ¹H NMR (CDCl₃, 200 MHz) δ 5.51 (s, 1H), 3.00, 2.97, 2.40, 1.71, 1.64 (5 singlets for 5 methyl groups).

1-(3'-Acetoxycrotonyi)-3,4,7,8-tetramethyiglycoluril (67):

To a stirred solution of compound **17** (400 mg, 1.42 mmole) in THF (50 mL) was added 1 equiv n-butyl lithium at 0°C. After stirring for 20 minutes, acetyl

Benzyl butyrate (62): obtained in a yield of 55 mg (83%) from 9; ¹H NMR (CDCl₃, 200 MHz) δ 7.36 (m, 5H), 5.11 (s, 2H), 2.33 (t, 2H, J = 7.4 Hz), 1.67 (sextet, 2H, J = 7.4 Hz), 0.94 (t, 3H, J = 7.4 Hz); ¹³C NMR (CDCl₃, 50 MHz) δ 173.4, 136.1, 128.5 (2C ?), 128.1 (2C ?), 66.0, 36.1, 18.4, 13.6; EIMS *m*/e 178 (M⁺), 108, 91 (base), 71, 43; HREIMS. Calcd for C₁₁H₁₄O₂: 178.0994. Found: 178.1003.

1-(3'-tert-Butyldimethylsilyloxycrotonyl)-3,4,7,8-tetramethylglycoluril (39):

Method a: To a stirred solution of compound 17 (60 mg, 0.21 mmole) in THF (25 mL) was added NaBH₄ (8 mg, 0.21 mmole) and tBu(Me)₂SiCl (35 mg, 0.23mmole) at 0°C. The mixture was stirred for 10 hours at room temperature. THF was removed with a rotary evaporator and the mixture residue was separated by flash column chromatography (eluting solvent: CHCl₃:EtOAc = 90:10). Product **39** was obtained in a yield of 42 mg (50%).

Method b: To a stirred solution of compound 17 (360 mg, 1.28 mmole) in THF (40 mL) was added n-butyl lithium (0.8 mL, 1.28 mmole, 1.6 M) at 0°C. After stirring for 20 minutes, $tBu(Me)_2SiCI$ (335 mg, 2.56 mmole, 2 equiv) was added. The mixture was stirred for 12 hours at room temperature. THF was removed with a rotary evaporator and the mixture residue was separated by flash column chromatography (eluting solvent: CHCl₃:EtOAc = 90:10). Product **39** was obtained in a yield of 413 mg (81%).

¹H NMR (CDCl₃, 200 MHz) δ 6.70 (s, 1H), 6.12 (s, 1H), 3.00(s, 3H), 2.86

155

chloride (2 equiv) was added. The mixture was stirred for 2 hours at room temperature. THF was removed on the rotary evaporator and the residue was separated by flash column chromatography (eluting solvent: $CHCl_3:MeOH =$ 99:1). The yield for product 67 was 59%. ¹H NMR ($CDCl_3$, 200 MHz) δ 7.03 (s, 1H), 6.05 (s, 1H), 3.00, 2.86, 2.22, 2.05, 1.68 and 1.59 (6 singlets for 6 methyl groups).

1-(3'-Trimethylsilyloxybutyryl)-3,4,7,8-tetramethylglycoluril (68):

To a stirred solution of **38** (130 mg, 0.458 mmole) in dichloromethane (50 mL) was added 5 equivalents of hexamethyldisilazane at room temperature. The mixture was then heated at reflux for 18 hours. The solvent was removed on the rotary evaporator and the residue was separated by flash column chromatography (eluting solvent: CHCl₃:MeOH = 99:1). Product **68** was obtained in a yield of 131 mg (80%) yield. ¹H NMR (CDCl₃, 200 MHz) δ 6.06 and 6.03 (1H, NH for 2 diastereomers), 4.40-4.20 (m, 1H), 3.30-2.70 (m, 2H), 3.01 (s, 3H), 2.86 (s, 3H), 1.69 (s, 3H), 1.56 (s, 3H), 1.21 (2 doublets for 2 diastereomers, 3H, J = 6.1 Hz, 6.1 Hz); ¹³C NMR (CDCl₃, 50 MHz) δ 171.7, 157.0, 152.8, 78.4, 77.2, 65.0, 45.9, 27.0, 26.3, 23.9, 19.6, 15.7; EIMS *m/e* 356 (M⁺), 341, 284, 268, 240, 198, 160, 126 (base); HREIMS. Calcd for C₁₅H₂₈N₄O₄Si: 356.1880. Found: 356.1877.

1-Acetyl-6-(3'-hydroxybutyryl)-3,4,7,8-tetramethylglycoluril (69):

The starting material **68** (70 mg, 0.20 mmole) in THF was treated with LDA and AcCl according to the general procedure for the preparation of diacylglycoluril compounds and **69** was obtained from a flash column separation of the product mixture in a yield of 16 mg (25%). ¹H NMR (CDCl₃, 200 MHz) δ 6.06 (s, 1H), 4.24 (m, 1H), 3.24 (dd, 1H, J = 17.2 Hz, 2.8 Hz), 3.01 (s, 3H), 2.87 (s, 3H), 2.85 (dd, 1H, J = 17.2 Hz, 9.0 Hz), 1.71 (s, 3H), 1.57 (s, 3H), 1.25 (d, 3H, J = 6.4 Hz); ¹³C NMR (CDCl₃, 50 MHz) δ 170.7, 153.0, 80.5, 77.5, 64.0, 46.6, 26.9, 26.8, 22.1, 19.2, 14.6; CIMS *m/e* 344 (M⁺+18), 327 (M⁺+1, base), 309, 241, 213, 169.

CHAPTER 6. REFERENCES

- Abeles, R. H.; Frey, P. A.; Jencks, W. P. *Biochemistry*, Jones and Bartlett Publishers, Boston, 1992.
- Dugas, H. Bioorganic Chemistry, 2nd Edition, Springer-Verlag, New York Inc., 1989.
- 3. Jencks, W. P. Proc. Natl. Acad. Sci. U. S. A. 1981, 4046.
- 4. Cardinale, G. J.; Abeles, R. H. Biochem. 1968, 7, 3970.
- 5. Wolfenden, R. Biochem. 1970, 9, 3404.
- 6. Wolfenden, R. Acc. Chem. Res. 1972, 5, 10.
- 7. Lienhard, G. Science (Washington, D. C.) 1973, 180, 149.
- Mann, J. Secondary Metabolism, 2nd Edition, Clarendon Press, Oxford, 1987
- Herbert, R. B. The Biosynthesis of Secondary Metabolites, 2nd Edition, Chapman and Hall, New York, 1989.
- 10. O'Hagan, D. Nat. Prod. Rep. 1992, 9, 447.
- 11. Chang, S. I.; Hammes, G. Acc. Chem. Res. 1990, 23, 363.
- 12. Van de Bloom, T.; Cronan Jr., J. E. Ann. Rev. Microbiol. 1989, 43, 317.
- 13. Jackowski, S.; Rock, C. O. J. Biol. Chem. 1987, 262, 7927.
- 14. Jaworski, J. G.; Clough, R. C.; Barnum, S. R. Plant Physiol. 1989, 1, 28.

158

15. Walsh, M. C.; Klopfenstein, W. E.; Harwood, J. L.

Phytochemistry, 1990, 29, 3797.

- 16. Hanson, K. R.; Rose, I. A. Acc. Chem. Res. 1975, 8, 1.
- 17. Jordan, P. M.; Spencer, J. B. Tetrahedron, 1991, 47(31), 6015.
- 18. Derewenda, Z. S. 77th CSC Conference, Winnipeg, 1994, Abstract No. 14.
- 19. Hill, R. A. Annu. Rep. Prog. Chem., B 1991, 88, 283.
- 20. Collie, J. N. J. Chem. Soc. 1907, 91, 1806.
- 21. Birch, A. J.; Donovan, F. W. Aust. J. Chem. 1953, 6, 360.
- 22. Birch, A. J. Proc. Chem. Soc. 1962, 3.
- Birch, A. J.; Massy-Westropp, R. A.; Moye, C. J.
 Aust. J. Chem. 1955, 8, 539.
- Aragozzini, F.; Craveri, R.; Maconi, E.; Ricca, G. R.; Scolastico, C. J. Chem. Soc. Perkin Trans. J 1988, 1865.
- 25. Simpson, T. J. Nat. Prod. Rep. 1991, 8, 573.
- 26. Harrison, P. Ph.D. Thesis, University of Alberta, 1987.
- Celmer, W. D.; Chmurny, G. N.; Moppett, C. E.; Ware, R. S.; Watts, P. C.;
 Whipple, E. B. J. Am. Chem. Soc. 1980, 102, 4203.
- 28. Cane, D. E; Tan, W.; Ott, W. R. J. Am. Chem. Soc. 1993, 527.
- 29. Katz, L; Donadio, S. Ann. Rev. Microbiol. 1993, 47, 875.
- 30. Robinson, J. A. Phil. Trans. R. Soc. Lond. B 1991, 332, 107.
- Leadlay, P. F.; Staunton, J.; Aparicio, J. F.; Bevitt, D. J.; Caffrey, P.; Cortes, J.; Marsden, A.; Roberts, A. *Biochem. Soc. Trans.* 1993, *21*, 218.

- 32. Jordan, P. M.; Spencer, J. B. Biochem. Soc. Trans. 1993, 21, 222.
- Khosla, C.; McDaniel, R.; Ebert-Khosla, S.; Torres, R.; Sherman, D. H.;
 Bibb, M. J.; Hopwood, D. A. J. Bacteriol. 1993, 175, 2197.
- Blanco, G.; Brian, P.; Pereda, A.; Mendez, C.; Salas, J. A.; Charter, K. F. Gene 1993. 130, 107.
- Scotti, C.; Piatti, M; Cuzzoni, A.; Perani, P.; Tognoni, A.; Grandi, G.;
 Galizzi, A.; Albertini, A. M. Gene 1993, 130, 65.
- Fernandez-Moreno, M. A.; Martinez, E.; Boto, L.; Hopwood, D. A.; Malpartida, F. J. Biol. Chem. 1992, 267, 19278.
- Beck, J.; Ripka, S.; Siegner, A.; Schiltz, E.; Schweizer, E. Eur. J. Biochem. 1990, 192, 487.
- Cortes, J.; Haydock, S. F.; Roberts, G. A.; Bevitt, D. J.; Leadlay, P. F. Nature (London) 1990, 348, 176.
- Bevitt, D. J.; Cortes, J.; Haydock, S. F.; Leadlay, P. F. Eur. J. Biochem. 1992, 204, 39.
- Khosla, C.; Ebert-Khosla, S.; Hopwood, D. A. Mol. Microbiol. 1992, 6, 3237.
- Sherman, D. H.; Kim, E. S.; Bibb, M. J.; Hopwood, D. A. J. Bacteriol. 1992, 174, 6184.
- McDaniel, R.; Ebert-Khosla, S.; Hopwood, D. A.; Khosla, C. J. Am. Chem. Soc. 1993, 115, 11671.
- 44. McDaniel, R.; Ebert-Khosla, S.; Hopwood, D. A.; Khosla, C. Science 1993,

- 45. Breslow, R. Chem. Soc. Rev. 1972, 1, 553.
- Scott, A. I.; Wiesner, C. J.; Yoo, S.; Chung, S. K. J. Am. Chem. Soc. 1975, 6277.
- 47. Kobuke, Y.; Yoshida, J. Tetrahedron Lett. 1978, 367.
- 48. Harris, T. M.; Harris, C. M. Tetrahedron 1977, 33, 2159.
- Brooks, D. W.; Lu, L.; Masamune, S.
 Angew. Chem., Int. Ed. Engl. 1979, 18, 72.
- Howarth, T. T.; Murphy, G. P.; Harris, T. M.
 J. Am. Chem. Soc. 1969, *31*, 517.
- Harris, T. M.; Murphy, G. P.; Poje, A. J. J. Am. Chem. Soc. 1976, 98, 7733.
- Evans, D. A.; Ennis, M. D.; Mathre, D. J.
 J. Am. Chem. Soc. 1982, 104, 1737.
- Evans, D. A.; Ennis, M. D.; Le, T.; Mandel, N.; Mandel, G. J. Am. Chem. Soc. 1984, 106, 1154.
- 54. Evans, D. A.; DiMare, M. J. Am. Chem. Soc. 1986, 108, 2476.
- Evans, D. A.; Ng, H. P.; Rieger, D. L.
 J. Am. Chem. Soc. 1993, 115, 11446.
- Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001.
- Cane, D. E.; R. H. Lambalot; P. C. Prabhakaran and W. R. Ott J. Am. Chem. Soc. 1993, 115, 522.

162

- 77. Eur. Pat. Appl. EP 456,032 (Cl. D21C9/16), 13 Nov. 1991.
- 78. Eur. Pat. Appl. EP 520,180 (Cl. C07D487/04), 30 Dec. 1992.
- 79. PCT Int. Appl. WO 92 13,528 (Cl. A61K9/22), 20 Aug. 1992.
- Grillon, E; Gallo, R.; Pierrot, M.; Boileau, J.; Wimmer, E. Tetrahedron Lett. 1988, 29, 1015.
- 81. Butler, A. R.; Leitch, E. J. Chem. Soc., Perkin Trans. II, 1979, 103.
- 82. Broan C. J.; Butler, A. R. J. Chem. Soc., Perkin Trans. II, 1989. 731.
- (a) Boileau, P. J.; Wimmer, E.; Pierrot, M.; Baldy, A.; Gallo, R.
 Acta Cryst. 1985, *41*, 1680.
 (b) Li, N.; Maluendes, S.; Blessing, R. H.; Dupuis, M.; Moss, G. R.;

DeTitta, G. T. J. Am. Chem. Soc. 1994, 116, 6494.

- 85. Roberts, D. C.; McElvain, S. M. J. Am. Chem. Soc. 1937, 59, 2007.
- 86. Narasaka, K. Org. Synth. 1987, 65, 12.
- 87. Ojima, I.; Kogure, T. Organometallics 1982, 1, 1390.
- Horiguchi, Y.; Nakamura, E.; Kuwajima, I.
 J. Am. Chem. Soc. 1989, 111, 6257.
- 89. Evans, D. A.; Fu, G. C. J. Org. Chem. 1990, 55, 5678.
- Hannon, S. J.; Kundu, N. G.; Hertzberg, R. P.; Bhatt, R. S.;
 Heidelberger, C. *Tetrahedron Lett.* 1980, *21*, 1105.
- For example, McMurry, J. Organic Chemistry, Page 899-905, 3rd Ed., Brooks/Cole Publishing Company, 1992.
- 92. Gemal, A. L.; Luche, J. L. J. Am. Chem. Soc. 1981, 103, 5454.

- 60. Biltz, H. Ber. Deut. Chem. Ges. 1907, 40, 4806.
- 61. Kuhling, D. Liebigs Ann. Chem. 1973, 263.
- 62. Hase, Ch.; Kuhling, D. Liebigs Ann. Chem. 1975, 95.
- 63. Tice, C. M.; Ganem, B. J. Org. Chem. 1993, 48, 2106.
- Freeman, W. A.; Mock, W. L; Shih, N.-Y.
 J. Am. Chem. Soc. 1981, 103, 7367.
- 66. Mock, W. L.; Shih, N.-Y. J. Org. Chem. 1983, 48, 3618.
- 67. Mock, W. L.; Shih, N.-Y. J. Org. Chem. 1983, 48, 3619.
- Niele, F. G. M.; Zwikker, J. W.; Nolte, R. J. M.
 Tetrahedron Lett. 1986, 27, 243.
- Smeets, J. W. H.; Sijbesma, R. P.; Niele, F. G. M.; Spek, A. L; Smeets,
 W. J. J.; Nolte, R. J. M. J. Am. Chem. Soc. 1987, 109, 928.
- 70 Niele, F. G. M.; Nolte, R. J. M. J. Am. Chem. Soc. 1988, 110, 172.
- 71 Sijbesma, R. P.; Nolte, R. J. M. J. Phys. Org. Chem. 1992, 5, 649.
- 72 Sijbesma, R. P.; Wijmenga, S. S.; Nolte, R. J. M. J. Am. Chem. Soc. 1992, 114, 9807.
- 73 Sijbesma, R. P.; Kentgens, A. P. M.; Lutz, E. T. G.; van der Maas, J. H.; Nolte, R. J. M. J. Am. Chem. Soc. 1993, 115, 8999.
- Moran, J. R.; Karbach, S.; Cram, D. J. J. Am. Chem. Soc. 1982, 104, 5826.
- 75. Rebek Jr, J. Chem. Br. 1994, 286.
- 76. Ger. Offen. DE 4024759 (Cl. C11D17/00), 3 Aug. 1990.
- 163

- 93. Evans, D. A. Aldrichemica Acta, 1982, 15, 23.
- 94. House, H. O.; Rasmasson, G. H. J. Org. Chem. 1963, 28, 27.
- 95. Bruynes, C. A.; Jurriens, T. K. J. Org. Chem. 1982, 47, 3966.
- 96. Chu, D. T. W.; Huckin, S. N. Can. J. Chem. 1980, 58, 138.