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ABSTRACT

The cooling of a hot surface by fluid motion has many applications in engineering. For

these mixed i bl the forced of fluid motion may be in the direction
of the buoyancy vector or it may oppose the buoyancy force. In the present study, the opposing
mode is used to study the interaction of inertia and buoyancy forces in 2 fluid. Both numerical
and experimental techniques are used to study “he flow in a restangular cavity of aspect ratio 2.

The inlet Reynolds number is varied between 800 and 1300 and the Grashof number
based on the height of the enclosure is varied between 0 and 2.4 X 10'°. The cases considered
correspond to Archimedes numbers of approximately 0, 1, 10 and 20.

The flow field is observed qualitatively using laser induced fluorescence and a detailed
flow field is generated using a laser doppler anemometer. Temperature profiles are fourd using
fine wire thermocouple probes. These detailed measurements may provide a data base for the
verification of computer programs used to predict mixed convection as there are no such detailed
data bases in the present literature.

Numerical modelling is based on the SIMPLER algorithm with QUICK differencing. The
observed flow field indicated that some regions in the cavity were turbulent while other regions
were laminar. This observation suggests the necessity of a low Reynolds number turbulence
model. In this study, two forms of the low Reynolds number k-z model are used. In addition,

the ial computational fluid ics program, FLUENT, is used to predict the flow.
C ison of the experil and computational results suggest that for isothermal and
buoyancy dominated flow cases the ional modelling is adeq Difficulties arise in the
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of the i diate Archi number cases as the predicted flow is dominated by

buoyancy while the experiments show more of a balance. Sources for this discrepancy are

discussed.
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CHAPTER 1
INTRODUCTION

11  Nature of the Flows and Heat Transfer

The mechanism of convective heat transfer is referred to as heat transfer to a fluid in
motion. The two modes of convection are free and forced convection and the heat transfer rates
are usually estimated by considering one of these modes dominant.

As heat is transferred to or from a fluid, the temperature gradients present give rise to
density gradients. In the presence of a body force, such as gravity, these density gradients bring
about fluid motion. This mode of heat transfer is called free or natural convection. Since the
velocity field is determined by the buoyancy effect of the fluid, the velocity and temperature
fields are strongly coupled. The heat transfer is usually dependent on fluid propesties through
the Prandt! and Grashof numbers (see section 2.1 for a definition of these parameters).

In the case of forced convection, the fluid motion is due primarily to some external force.
This external force may be the result of a fan, pump, the wind, etc. With this type of

convection, usually the velocity field is d ined first and the field is i

from it. The heat transfer rate is a function of the Reynolds and Prandtl numbers.

In many engineering applications the effect of b and forced ion are of the

same order. In this case, the heat transfer is referred to as mixed or combined convection. The

present study considers this type of ion in 1
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12  Practical Applications

The study of mixed convection in enclosures has many practical applications in
engineering. In many of these applications, the geometry is complex and the flow structures
typically exhibit turbulence and recirculation which are difficult to model. Although the present
work uses a simple rectangular geometry, it provides a fundamental understanding of the
buoyancy/inertial interaction of the flow that is necessary for the prediction of more complex
geometries.

Some direct applications include the heating, cooling and ventilation of rooms and

ildings, the cooling of i p the study of thermal pollution in water resources,
the study of fluid motion in storage tanks used in solar heating, the analysis of heat exchangers,

and many applications in the nuclear industry.

13 Objectives of the Present Work

The present work is a combination of both an experimental and 2 numerical study of
mixed convection in enclosures. While each of these studies complement the other, each has its
own objectives.

In the experimental study, the velocity, temperature, and turbulent fields are obtained in
the enclosure. In addition, overall heat transfer ions are ‘The main motivati

for the experimental study is to provide experimental data which may be used to compare and
verify numerical simuiations. This is necessary as there are a limited number of experimental
studies.

The numerical study will aid in the future development of numerical codes. Some of the
mathematical modelling and some aspects of numerical formulations are strongly problem

dependent. As there are no extensive numerical studies of mixed convection in enclosures in the



current literature, the present numerical study will 2id in the testing of the performance of some

of the models and formulations.
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Figure 2.1: Problem Specification

CHAPTER 2
LITERATURE SURVEY
21 Introduction
Before a summary of previous li is 2 brief ion of
and parameters used in mixed i is d. In the present study, the

velocity, temperature, and turbulence fields will be obtained both experimentally and numerically
in a rectangular cavity. The specific cavity is shown schematically in Figure 2.1. The enclosure
shown is a rectangular cavity with a horizontal jet entering in the upper left corner. This inlet

Jjet has specified velocity and temperature profiles (u; and Ty respectively). The fluid di:

by way of a horizontal duct located in the lower left corner of the cavity. All solid boundaries
are insulated with the exception of the right wall, which is maintained isothermally at Tyy.
‘This problem may be specified in terms of dimensionless parameters. These are the fluid
Prandt] number, the cavity inlet ratio, the cavity aspect ratio, the inlet Reynolds number, and the
Grashof number. The Pranddl number, Pr, is 2 dimensionless parameter defined as the ratio of

momentum to thermal diffusion and is expressed as

. C, v
p,-.__'kl’.._’- @.1)
a

where g is the dynamic viscosity of the fluid,
C;, is the specific heat at constant pressure,
K is the thermal conductivity of the fluid,
¥ is the kinematic viscosity, and
«y is the thermal diffusivity of the fluid.

4

The inlet ratio, a, is defined as the ratio of the inlet height to the cavity height and is expressed

as

D
=2 .2)
a=z @2)
It must be noted that, in the current study, the outlet height equals the inlet height. The cavity
aspect ratio, A, is the ratio of the height to width of the cavity

H
A= @.3)

The inlet Reynolds number, Re, is the ratio of inertial to viscous forces and is defined as

u; D
Rep = —",— @4
L

The system Grashof number, Gr, is the ratio of buoyant to viscous forces and is expressed as
LT -DE

%

Gr)g @.5)

In this notation, the subscript i refers to the compoaent of gravity and the subscript H refers to
the length scale. In the present work, the non-zero component of gravity is g,. The length scale
is the height of the cavity as an important boundary layer forms on the heated wall. Another
convenient parameter that is often used with mixed convection is the Archimedes (Ar) or
Richardson (Ri) number. In general, this variable is,

. _ Gr
Ar=Ri= ST @.6
Re?

This parameter is defined as the ratio of buoyant forces to inertial forces and is derived from the

buoyant term in the di ‘This term appears as a source term in

the dis i & ing i If the Grashof and Reynolds numbers do not have the

same length scale additi imensionl may be present in this term.




In Figure 2.1, the fluid inertia drives the fluid across the top boundary. As it meets the
solid right wall, the fluid turns dcwn the right boundary, and as it meets the lower boundary, the
fluid turns horizontally toward the exit. As the fluid flows adjacent to the right boundary, heat
is transferred to or from the wall. If the boundary temperature is less than the fluid temperature,
the fluid transfers heat to the wall resulting in 2 downward buoyancy force. Since the buoyancy
force is acting in the same direction as the inertial force, the flow is said to be “aiding flow".
If the temperature of the wall is greater than the fluid temperature, heat is transferred to the fluid
resulting in an upward buoyancy force. Since the buoyancy and inertial forces oppose each other,
the flow is said to be "opposing flow”. The aiding or opposing nature of the flow may be
characterized in terms of the Grashof number.

Gry > 0 for opposing flow
Gry = 0 for isothermal flow [v))

Grp < 0 for 2iding flow

22 Mixed Convection in Enclosures

The study of mixed convection in internal vertical and horizontal flows has been studied
Mvdy in the past. Typically, the geometry used in most of the research includes flow

between parallel plates and flow in tubes and ducts (both circular and non-circular). While the

results of this research is insi it is not p in this I survey for the sake of
brevity. However, Gebhart et al. [1] provides a complete literature survey on this topic and

others. The research of mixed convection in confined eaclosures is limited. A detailed survey

of the current literature follows.

inertial forces and the buoyancy forces and that these interactions had a significant effect on the
temperature field. For the case considered, it was found that for an Archimedes number greater

than approximately 0.2, the flow was buoyancy domi: and for Archi numbers less than

this value, the flow was dominated by inertia. The results also indicated that turbulence
modelling was needed for such flow interactions. The k-z model appeared to give adequate
results.

Cha and Jaluria [7,8] studied mixed convection flow for energy extraction. Hot fluid
was withdrawn from the top of the cavity and cold water was placed in the cavity at the bottom
to preserve thermal stratification. The effect of buoyancy was found to be significant for
Richardson numbers greater thar: 0.1 and was very strong for Ri greater than about 1. The
horizontal spread and the vertical mixing was found to be dependent on the inlet parameters.

Oosthuizen and Paul [9] modelled laminar mixed convection using a finite element
stream function-vorticity formulation. The problem specification is identical to that of Figure
2.1, with the exception of the left wall being maintained isothermally at the same temperature as
the jet temperature. This study found that the buoyancy forces increase the average heat transfer

for aiding flow and decrease the heat transfer rate in the case of opposing flow. However, for

opposing flow, the heat transfer is byb if the number is very small.
The effect of buoyancy may be neglected if

Nu,
forced
N > 25 @8

For buoyancy dominated flow, the inertial force tends to make a more uniform heat transfer
distribution. For the opposing flow case, the local heat transfer rate is significantly influenced
by the Reynolds number.

22.1  Previous Numerical Research

Oberkampf and Crow [2] considered an open reservoir with a horizontal inlet jet at the
surface on one end of the reservoir and a horizontal outlet port at various heights on the opposite
end. The study considered the effects of inflow and outflow, heat transfer and wind shear at the
surface. In a well mixed reservoir, the fluid circulates top to bottom by way of large vortices,
while in a stratified reservoir, the vertical motion of the fluid is inhibited by buoyancy. Wind
speed also had a significant effect on the temperature and flow field. An aiding wind increased
the speed of the flow while dissipating a considerable amount of heat (by convection and
evaporation). An opposing wind forced the heated jet below the surface and significantly reduced

the heat dissipation to the The also reported a high amount of computer

time necessary for the simulations.
To study the flow inside solar energy storage tanks, Cabelli [3] used a stream function
wvorticity approach to calculate 2 laminar flow field. The results indicate that for 2 Richardson

number greater than about unity, buoyant effects were dominant.

Hijertager and [4,5] predicted three-dimens flow in a room.
ln_ this work both the isothermal and buoyant flows were considered. Comparisons with
indicated that for isoth 1 flows the prediction is ad

results were obtained with buoyant flows. Reference [5] states that reliable measurements are
needed for the validation of the computer codes.

Shoukri and Ahluwalia [6] studied mixed ion in In this

study, an explicit numerical scheme and a two equation, k-¢, turbulence model were employed.

The boundary conditit isted of 2 square with two inlets (one at each ead) and

an outlet port (in the centre) of the bottom wall. The fluid was heated volumetrically in a region

in the centre of the cavity. The study indicated that there are strong interactions between the

10

Kumar and Yuan [i0] used a SIMPLE family algorithm to predict laminar mixed
convection. In this study, a vertical isothermal jet entered the cavity in the upper left corner.
The outlet port (vertical as well) was in the upper right corner. The entire cavity was maintained

at a constant This study that buoyancy effects have been found to be

significant on the flow and temperature fields and on the friction factor and heat transfer rate.
Recently, papers have been written which deal with reviews of current numerical

analysis. These include the papers of Patankar [11] and Leschziner [12]). While these papers are

not written specifically for modelling mixed convection, many of the principles presented may

be employed when modelling such flows.

222  Previous Experimental Research

Neiswanger, Johnson and Carey [13] condt flow visualization and local

heat transfer for cross flow mixed jon in a with restricted inlet and
outlets. Until the publication of this paper, the authors claimed that no detailed experimental
studies had been conducted on high Rayleigh number mixed convection near vertical walls in
enclosures. For Reynolds numbers less than 2000, the flow was laminar. The flow structure
changed considerably at a Reynolds number of 5000. Neiswanger et al. suggest that there is a
need for more experimental data for different geometries and Prandtl numbers.

Jaluria and Cooper [14] studied negatively buoyant wall flows. In this study, a detailed

i igation of i i and heat transfer characteristics of buoyant wall jets is
presented.



223  Natural Convection in Enclosures

A brief review of natural ion in is

as this has been studied
extensively in the past. In addition, natural convection may be considered a limiting case of

mixed i letely buoyancy domi: ‘Thus some aspecis of natural convection

may be applicable to mixed convection.

The present survey is limited to rectangular vertical cavities. In this configuration, the
two vertical walls are differentially heated and the horizontal walls are isothermal (see Figure
2.2). Natural convection problems are usually specified in terms of the fluid Prandtl number,
the system Rayleigh number and the cavity aspect ratio. The Prandtl number and aspect ratio
have been previously defined and the Rayleigh number is defined as the product of the Grashof
and Prandtl numbers. The review papers of Catton [15] and Ostrach [16,17] present complete
literature reviews of rectangular vertical cavities as well as others of special interest. Ostrach
[16] states that vertical cavities contain all of the essential physics relevant to all confined natural
convection problems.

In 1978, the conference on Numerical Methods in Laminar and Turbulent Flow was held
at University College, Swansea. During this 2 session ing the

of numerical techniques applied 1o standard problems was held. This session concluded that
buoyancy driven flow in a cavity with differentially heated sides was an adequate problem for a
comparison. For this standard problem, the Rayleigh numbers based on the temperature
difference of the vertical walls were set at 10%, 10%, 10° and 10°. The fluid in the cavity had a
Prandtl number of 0.71 which corresponds to air.

A year later, after a great deal of di ion with various icians and engis

it was decided that the two-dimensional problem of Mallison and de Vahl Davis [18] was an

adequate test case. Following the discussions, Jones and de Vahl Davis invited contributors to
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submit a solution for the flow and thermal fields. The contributors were requested to submit the

following information

@ the average Nusselt number,

® the maximum and minimum local Nusselt numbers on the hot wall and their locations,

© the maximum vertical velocity on the horizontal midplane and its location,

@ the maximum horizontal velocity on the vertical midplane and its location,

@ contour plots of the velocity components, and, if available, the stream function, the
pressure and the temperature.

In 1983, de Vahl Davis and Jones published two papers on this subject [19,20]. The
first was a summary and assessment of 37 solutions and the second was the description of a bench
mark solution. The authors claim that the bench mark solution is accurate to within one percent.
‘The motivation for obtaining a highly accurate solution was to have something to compare with

for validating comp In 1990,

etal. [21] used a finite volume multigrid
procedure to predict the bench mark solution. They predicted their solution to be accurate to
within 0.01%.

Hyun and Lee [22] predicted transient natural convection in a square cavity. This study
concluded that if the Prandtl number is greater than unity, oscillations in the solution were
evident if

Ra > Pria™ @9)

The present literature survey for laminar natural convection is restricted to these cases
as the beach mark problem may be considered the definitive test case. Several researchers have

studied turb natural ion using both

peci and 3 s A
detailed di: ion of this i is after

‘modelling has been introduced
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Figure 2.2: Natural C ion in a Vertical R Cavity
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(see section 2.5). In this section, specific emphasis is placed on the effect of turbulence

modelling.

23 Turbulence Modelling

“Turbuleat motion is described as being ional, i i highly di and

issipative {23]. In principle, the i conservation ions apply equally @0 2

turbulent motion as to a laminar one. However, at present, this is not a practical route as the
important details of turbulence are small scale in character. For example, in gaseous flow, the
eddies responsible for the decay of turbulence are of the order of 0.1 mm [24]. In most
engineering applications, the flow domain is many orders of magnitude larger and hence direct
simulations require large computing times and computer memory.

A complete description of different turbulence models is beyond the scope of the present

project. Thus the objective of this chapter is to provide an understanding of the need of

turbulence models and to provide il i y for the di ion of the wall
bounded models presented in section 2.4. A comp ive di ion of modelling
may be found in references [23,24,25].

231 Time-Averaged Governing i
Fortunately, in most applications, the engineer is only concerned with the time-averaged
effects of turbulence. Thus, the first step towards the modelling of turbulent flow is the

decomposition of the flow variables into a til ed and i Thus, 2

given flow variable, ¥, is decomposed by

=3+ (2.10)

12
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The overbar denotes the time-averaged value while the prime denotes the random variation about
the mean. With the substitution of equation (2.10) into the governing equations, the time-
averaged governing equations may be derived. For nearly incompressible flow, the resulting two-

dimensional cartesian equations of motion written in tensor notation are:

Continuity
% _o 11
= @.11)
Momentum
ou; um; 105 , @ |mL¥% =
= 2% 90 LT g - gBT - T, 3
a P |woy T -Tp @12
Energy
of T 3 T
A 1 T @.13)

In this form, the buoyancy source term in the momentum equation has been modelled with the

approximation. This states that the density of the fluid is considered
constant except in the buoyancy source term. This term is the last term in equation 2.12 and is

responsible for the motion of the fluid due to density gradi ‘Without this imation, the

buoyancy source term is modelled by + pg. The use of the Boussinesq equation is discussed in
Chapter 7. For simplicity, it is usual to drop the overbar in the governing equations on all the
terms except the Reynolds stress term, E;'F;and the turbulent heat flux term, %7". This
notation has been adopted in the present work. These equations are not closed as there are more
unknowns than equations. The averaged equations of motion differ from their instantaneous
counterparts, as the former contains the Reynolds stress term and the turbulent heat flux term.

‘The obvious approach to close the set of equations is to derive exact equations for the Reynolds

17

right hand side of equation 2.15 accounts for the normal stresses due to turbulent motion just as
the static pressure, P/p, accounts for the normal stresses due to molecular motion. The variabie,
&,j, is the Kronecker delta and is defined as,
8 = Lif isj
@.16)
=0 if imj
The symbol, k, denotes the turbulent kinetic energy and is defined as

k= %_'_'u,-u; . @17

In 2 similar manner the turbulent heat flux can be expressed as,

vt aT
o T ”_7' 73}; 2.18)
where o is turbulent Prandtl number [26].
‘The concept of turbulent viscosity provides a basis for turbulence modelling but it itself

cannot be considered 2 model since it can’t be ined from ities.  Thus

additional modelling must be used in conjunction with the turbulent viscosity concept.

233 Zero Equation Models

The first proposed zero equation model for the turbulent viscosity, pr , is the mixing
length hypothesis [24]. Prandtl suggested that the turbulent viscosity be described as,
Qu;
%
where the mixing length, £, must be prescribed algebraically. The mixing length hypothesis

br = ol @.19)

has been tested extensively in the past and has many limitations. This model is based on the
assumption that the turbulence is in local equilibrium. Thus, the turbulence is dissipated and

produced at the same rate. This hypothesis does not account for the convection, diffusion or
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stress and turbulent heat flux terms. This is a possible solution to the closure problem but the
resulting equations for these terms contain higher order terms [25]. For example, the partial
differential equation for the Reynolds stress term, W, contains 2 third order term, namely,
EF,’F[. Equations for the third order terms contain fourth order terms. In general, closure
schemes are usually stopped at second order terms and the third order terms are approximated

by known varizbles.

232  The Turbulent Viscosity Concept

Another approach to the closure of the equations is to use a simple turbulence transport
model. These models use an eddy or turbulent viscosity concept. Some examples of the models
include the zero, one and two equation models where the number of equations refers to the
number of partial differential equations in the model.

Boussinesq introduced the first concept of a turbulence model [24]. Analogous to

Newton's law of viscosity,

ou;  du;
— .14)
inesq suggested using 2 hear stress, 7, equal to the product of the mean velocity
gradient and a turbulent viscosity. Thus
—_ du;  du;
Tr=-p Uy =pr [#*Ef -%Pﬁ.yk .15
J

‘The turbulent viscosity, pir, is not a property of the fluid but is dependent on the local turbulence.
Tts value may vary from flow to flow and even point to point within a given flow. The first term
on the right hand side of equation 2.15 accounts for the shear stress due to turbulent motion just

as equation 2.14 accounts for the shear stress due to molecular motion. The second term on the
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history of turbulence. As a result, the model incorrectiy predicts the turbulent viscosity to be
zero whenever the velocity gradient is zero [25].

In 1930, von Karman proposed that the mixing length may be modelled using
dulax;
Puox

=K

@220

where « is von Karman's constant (x = 0.42). Von Karman’s proposal is limited at inflection
points of the velocity profile (i.e. alu‘./ax]? = 0). At this location the mixing length is infinite
and cannot be used to compute the finite shear stress.

It must be noted that equation (2.19) and equation (2.20) are based on erroneous
physical arguments but can be regarded as definitions for the quantities » and £,, which in
simple flows are easier to determine than lT,-'Fj'its:lf [27]. In many problems it is difficult to
specify the mixing length and in flow situations more complex than shear layers it may be
impossible.

Launder and Spalding [24] presented a review of other zero equation models.

23.4  One Equation Models
In an attempt to overcome limitations of the zero equation models, turbulence models

have been developed to account for the and history of turbul This is

with the use of a transport equation for an acceptable velocity scale of turbulence. Several
models use the square root of the turbulent kinetic energy, \/’? , for the dependent variable in
the differential transport equation. An exact equation may be derived from the Navier-Stokes
equation. The following equation for the turbulent kinetic energy is exact with the exception of

the first term on the right hand side. This term, called the diffusion term, assumes that the
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diffusion is proportional to the gradient of k. The constant, gy, is 2n empirical diffusion number
commonly referred to as the turbulent Schmidt number.

ok ,, Ok 3 |, | ok _ g O

Rl L ) u""iﬁj_t 21

The second term on the right hand side accounts for the production of turbulence. The

term, &, is modelled on the ion that in an equilibrium flow, the rate of energy
dissipated by the smallest eddies is equal to the rate of energy fed down the chain of eddies from

the largest to the smallest [23]. The dissipation is determined from

&= Cnﬁ .22

L
where Cp is an empirical constant and L is a length scale. For the case of buoyant flow, as is
the case of mixed convection, an additional term is included in the differential equation to account
for the production of turbuleat kinetic energy due to buoyancy. This production term is added

to the right side of equation (2.21) and is [28]

Ghogglr T

588 o 5 )
This term is naturally obtained as a result of time-averaging the momentum equation when the
buoyancy term is included. The turbulent Reynolds stresses are related to the turbulent kinetic

energy through the Prandtl-Kolmogorov relationship,

vr=C kL 2.24)
where C,, is an empirical constant and L is 2 length scale which must be prescribed from simple
empirical functions similar to those used with the mixing length [23]. Although the equation for
the turbulent kinetic energy accounts for the transport and history of kinetic energy, its range of

applications is limited by the prescription of the length scale, L. This model works well in

21

Other authors argue that there is no physical reasoning for including such a term and neglect it
in the conservation equation {28,29]. Some work has indicated that the inclusion of this term is
completely insignificant [29,30].

The normally used constants in the k-¢ equation are presented in Table 2.1 [26,31].

Table 2.1: Constants used in the k- Model

Cy G C G % % or
0.09 144 192 0.7 13 1.00 0.9
The complete k-z mode! with the inclusion of terms in i ional flow
is,
¥ o
vr= @27
&
3k ok 3k _ 3 ’r| ok ¥r| ok
R [[ % a] ] “L*? 5]
@.28)
S T 3T Yr aT
G-¢ B"‘TE 5,77-37
de de d _ 3 vr| de 3 Y| a
PPRPY (WS Y (W
2.29)
to_ o & & ¥r aT _ [
G0 -G -Ghlago 5 "G io 5

where the i ion of G, is
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simple shear flows or boundary layers where it is easy to specify the length scale, L. However
in complex flows it is no easier to prescribe than £, was in the mixing length hypothesis [25].
‘Therefore the trend has been to use two equation models where the length scale is also

determeined from a differential equation.

235 Two Equation Models

For any improvement over the transport models presented thus far, an additional
transport equation for the length scale must be used. This allows the length scale to be influenced
by transport and history processes in 2 similar manner to the turbulent kinetic energy [25].
Several models have been adopted such as the k-w, k-¢, and the k-kL models where w represents
the square of the vorticity and & the rate of dissipation. These models have achieved moderate
success. The k-z model will be discussed in detail as it has beea used to predict recirculating
flow successfully [23].

‘The equation for the dissipation of turbulent kinetic energy may be derived from the
Navier-Stokes equations. However many modelling assumptions must be made and the result is
very empirical [25]. The usual equation for the rate of dissipation of turbulent energy, using the
assumption of infinite Reynolds number, is

ac & 2 ¥r| de 3
ﬁou,?i .E[[v,_#?‘ E]‘C'chr[

where g, is an empirical diffusion constant commonly referred to as the Prandtl-Schmidt number

u; | Ay 2
§ozd 3 -
: ._l] = G L 25

for the dissipation rate. Just as a buoyancy term appears in the turbulent kinetic energy equation,

some authors use such 2 term in the rate of dissipation equation. This source term is

- ¢ ¥Yr T
Gs Gabio g @26
2
au)? av)2, fou , av]?
G-vy[z[ﬁ] 2[5]‘[3 L ] @:30)

24 ‘Wall Bounded Turbulent Flows

As the wall is approached in 2 turbulent flow field, a further computational difficulty
arises, Within a very thin region near the boundary, the effective.transport coefficients change
by more than an order of magnitude as viscous effects dominate the turbulence effects [30]. In
this situation the models presented in section 2.3 are not capable of predicting the flow in their
present form as they are based on the assumption of infinitely high Reynolds number. As
discussed in the previous section, the zero and one equation models are inadequate to model the
complex flow in a cavity. Therefore this section deals solely with wall bounded models used in
conjunction with a two equation model of turbulence.

In the wall bounded region, the models must be modified or additional modelling must

be i d into the fully models to account for the effect of viscosity near the
walls. In an attempt to model this transitional layer, several methods have beea adopted. These
include wall functions, low Reynolds number modelling, parabolic sublayer, and two layer
approaches.

In each subsection of this chapter an overview of these wall bounded models is presented
subjectively. At the end of each subsection a discussion of the merits and limitations of each

method is presented.



2.4.1  Wall Functions

Wall functions are formulae based on experimental data which attempt to account in an
overall fashion for the effects of the wall [25]. The usual approach to applying wall functions
is to place the first computational grid node in the turbulent region where the logarithmic velocity
law may be applied (see Figure 2.3-2).

Unless otherwise stated, most of the information in section 2.4.1 is cited from Cizfalo
and Collins [32].

‘Wall functions commonly assume a viscosity dominated sublayer where the profiles are

linear followed by a logarithmic region. If the friction velocity, u, = '/-rwlp ,isused as a

velocity scale and ¥y /u, as a length scale, the distance and velocity are nondimensionalized by

v 2 @.31)
L
ure X @32

‘The profiles of velocity are assumed to follow [32}

ut =yt for y* <y, 2.33)

ut = % g%} for y >y @39

where « is von Karman’s constant (x = 0.42) and
.

¥y, = 11,

To ensure continuity at the boundary between the two velocity profiles, E is related to y, by

%=t @39

from which 2 value of E = 9 has been used by many investigators.
Another common velocity scale is the square root of the turbulent kinetic energy at the
near wall grid point, k;,r". This scaling is derived by solving the kinetic energy equation for 2
simple shear flow. The shear velocity, ¥,, and the dimensionless distance, y*, can be related
10 the turbulent kinetic energy by neglecting the diffusion and convection terms and equating the

generation and dissipation tecms. The distance and velocity are nondimensionalized by

14 12
- C“ kP b4

* 2.36)
Yr
1/4 172

w B R @37
TP

This scaling is based on the assumption that for an equilibrium boundary layer, the turbutent
Kinetic energy is almost a constant (C, /2 7,, /p) in the region 20 < y* < 60. The velocity
profiles are calculated using equations (2.33) and (2.34). k, is calculated from a modified
turbulent kinetic energy equation and the dissipation in the near wall cell is calculated from

C”‘ an .
TR Y @38)
P

A different approach {32] used the square root of the turbulent kinetic u@ attheedge

of the viscous sublayer, k,‘,’z, as the velocity scale. The distance and velocity are
nondimensionalized by
K2
A @3)
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The velocity profile within the viscous sublayer is calculated from equation 2.33).

* =

@2.40)

OQutside the viscous sublayer the velocities are calculated by

ut = L. In(E*y*) fory* >y, 241
X
where  x* = xCi" and
E* = EC*
The sublayer thickness is defined by
2
Re, = y"f' = 20 = constant 2.42)

The value of turbulent kinetic energy at the edge of the viscous sublayer is calculated
by extrapolating the value of k at the two grid points nearest the wall. This requires the solution
of a cubic equation since y is defined in terms of k .

Outside of the sublayer the profile of turbulent kinetic energy is‘ assumed to be linear,

but within the sublayer it is assumed to be parabolic
2
k=k, [yl] for y* S vy @.43)
v

The rate of dissipation of turbulent kinetic energy follows

2vk,
er—=

Yy

for y* <y} 2.44)

e= L for y* > y; 2.45)
Cy 4

where C; = 2.25.
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In the wall function methods described thus far, the near wall region is separated into
two regions, namely the viscous sublayer and the logarithmic region. The current literature also
describes wall function methods which use a three layer model. In this approach the flow field
is divided into three regions. These regions are:

Viscous sublayer for y* < 5,

Buffer layer for 5 < y* = 30, and

Fully turbulent region for y* > 30

Other variations of the wall function method are available in the current literature. Patel
and Chen [33] use a two point wall function method and claim that much of the sensitivity of the
solutions to the location of the first grid point is removed.

Ciafalo and Collins {32] claim to have

ped 2 new for the prediction of
wall bounded turbulent flow. This treatment keeps classic wall functions and scaling based on
the near wall turbulent kinetic energy but allows the thickness of the viscous sublayer, &t to

vary with the local turbulence intensity, ¥. The turbulence intensity is defined as

2

=
- |’u

¥p = @.46)
For an equilibrium boundary layer, the distance and velocity, may be scaled using the

friction velocity (see equations (2.31, 2.32). The nondimensiona! turbulent kinetic energy is

+312
k= iz = c;m y_. for y* < ¥y, Q.47
Uy vo
B e G wconstamt fory* > 3}, @.48)

Equation (2.48) is valid for y* up to about 50 or 100. Outside of this region the values of '

depend on the free stream turbulence levels.
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At the 12th IAHR meeting, ictions of several codes were with

experimental data from an abrupt pipe expansion. Most of the predictions used a k-¢ turbulence

model with wall functions. In general, the peak Nusselt numbers were underpredicted for

Reynolds numbers less than 10° and were overpredicted for higher Reynolds numbers [32).
The improved wall treatment of Ciafalo and Collins shows better agreement with

experimental heat transfer data. However, there is a need for improvement in heat transfer

predicti of In this region any wall function fails [32].

242  Low Reynolds Number Modelling

In an attempt to create a model valid in the laminar, semi-laminar and fully turbulent
regions, the low Reynolds number approach was devised. In this approach, computations extend
into the viscous sublayer. As the wall is approached, the local turbulent Reynolds number, Re,,
decreases. Viscous effects become important for rurbulent Reynolds numbers less than about 150
[36] where the turbulent Reynolds number is defined by

2
Re= oo @.49)

‘The number of nodes needed across the viscosity affected sublayer may be as high as twenty or

thirty to resolve the highly inear variation in ients [34] (see Figure
2.3-b).

In this version of the model, k and ¢ are determined from

eGh K @50
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The wall function method has been most widely used and is preferred for many practical
purposes. This method has two merits. Firstly it economizes computer time and memory and
secondly it allows the addition of empirical information in special cases such as incorporating wall
roughness [31). However, as larger and larger computer memories become available, some of

the arguments for wall functions begin to weaken [34]. In addition, there are 2 number of

instances in which the standard wall i h has to be d, eg.
boundary layers at low and transitional Reynolds numbers, unsteady and separated flows and flow
over spinning surfaces [35].

For separated flows and reattaching flows, wall functions with velocity scaling based
on (r,,/p) is unsuitable. In this situation the predicted profiles of Nusselt number gives a

minimum value at the point while

peri show a maximum [32,36].
‘Wall functions with the velocity scaling based on (k;n') are advantageous for unsteady
flows and are more general. When used to predict separated flows however, the model yields

results. It

pp heat transfer in the low to medium Reynolds number range

and overpredicts heat transfer in the high Reynolds number range [32].

‘Wall functions with the velocity scale based on (k;"') also underpredict the heat transfer

coefficient for low Ids numbers and o dict the heat transfer coefficient in the high
Reynolds number range. In some cases computational difficulties arise when using this scaling
32].

Henkes and Hoogendoomn [37] state that no good wall function exists for the natural
convection boundary layer. In addition, the logarithmic wall functions only hold for forced

convection boundary layers with small pressure gradients.
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This model differs from the basic version of the k-& model by the inclusion of damping
functions ("f* functions) to modify the constants, C; and extra terms are added to better represext

the near wall behaviour. The modifications are [35]:

‘The dissipation variable, % The proposal of using € a5 the dissipation variable is due to Jones

and Launder [38], who cited decisive computational advantages because D is chosen

such that, € = 0, at the wall. This is a numeri ent boundary conditi

The function £,: The function f,, multiplies the eddy viscosity relation and is introduced to imitate

the effect of molecular viscosity on the shear stress.

The function f; and the extra term E: Several models use a damping function f; and/or an

additional empirical term. This term is used to increase the magnitude of E in the
vicinity of the wall.
The function f,: The function f, is used to incorporate low Reynolds number effects on the

destruction term in the & equation.
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An evaluation of several low Reynolds number turbulence models is available in [35].
Henkes and Hoogendoorn [37] state that the low Reynolds number models of Lam and Bremhorst
[39], Chien [40], and Jones and Launder [38] gave the best results when describing the velocity

profiles for natural convection (flow field). The modified forms of the Jones and Launder model

{41] and L2m and model {42] are in Table 2.2. The variable, n, refers to
the distance to the closest boundary.

In one study [36] a low Reynolds number model was applied to an abrupt pipe

‘This study luded that the predicted heat transfer coefficient in the vicinity of the
reattachment point was seven times greater than that measured. In 1987, Yap [43] found the
cause of the problem to be the excessive level of near wall length scales that are generated in
separated flows. In an attempt to overcome this problem, Yap suggested adding an additional

source term to the rate of dissipation of turbulent kinetic energy equation.

2
2| [ B2
s£=0.33[.l?] [m-ll [C_lyc @59

With the addition of this term, Yap found the maximum heat transfer coefficient to be

with his il and the Rey number dep was also imp
Patel et al. [35] suggest that most modifications to the basic high Reynolds number
turbulence model lack a sound physical basis. A major disadvantage of this approach is that a
fine grid analysis is necessary in the vicinity of the wall thereby drastically increasing both
computational time and memory. However, Launder [36] states that with increasing computing

power available, it is feasible to adopt low Reynolds number models in complex flows.

Ince and Launder [44] applied 2 low Reynolds number model to natural convection in
2 vertical rectengular cavity with an infinite aspect ratio. From their study they concluded that
the usual forms of the low Reynolds number model do not adequately predict the correct flow
rate or heat transfer in the cavity. Agreement was, however, reasonable with the addition of the

Yap correction.

243 Two Layer Models

The two layer models approach assumes the flow field can be divided into two fluid
layers in the vicinity of the wall. The region adjacent to the wall is modelled with one
turbulence model and the other layer is modelled with a different turbulence model. At the
interface of the two layers, both models must predict identical flow variables.

One of the most basic two layer models is the parabolic sublayer. The parabolic
sublayer (PSL) also adopts a fine grid analysis except that over a thin layer adjacent to the wall
the flow is assumed to be parabolic and the variation of static pressure is neglected (see Figure
2.3-) [45].

In the thin parabolic sublayer adjacent to the wall, major simplifications may be made
to the conservation equations. Iacovides and Launder [45) suggest the following simplifications:
@ ‘The pressure does not need storing as it is given by the pressure just outside the region.
®) No pressure iteration equation has to be solved.
© The velocity normal to the wall may be obtained very rapidly by cell continuity rather

than by solving the normal momentum equation.

The benefit of the PSL approach is that it uses a fine grid analysis in the vicinity of the
wall without a significant increase in computing costs compared with the wall function method
[“45).
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Table 2.2: Typical Low Reynolds Number Models

Jones and Lam and
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Ciafalo and Collins [32} state that low Reynolds number models are inadequate when
applied to separated flows. In some cases they significantly overpredict heat transfer rates while

in other cases they significantly underpredict heat transfer.
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Chen and Patel [33,46] suggest a slightly more complex two layer model. In this
approach the flow field is divided into two regions (see Figure 2.3<d). Region 1 includes the
sublayer, buffer layer and part of the logarithmic region while region 2 conteins the remainder
of the flow field. Region 2 is modelled using a standard two equation, k-¢, model of turbulence
while region 1 uses either a zero or one equation model. The main difference between this
approach and the PSL approach is that in the latter approach the governing equations are
simplified while in the former the fully elliptic equations are solved [46]. Chen and Patel {46)

show that the two layer h is | in ically solving imp features of wall

bounded flows.

‘Two layer models are not easily implemented in general purpose codes, and require
special care for sach flow. In one instance PSL was not found useful (32].

When compared with the low Reynolds number model, the PSL approach reduced
computational times by a factor of two or three when there were no flow reversals present.

However, in the case of flow reversal the benefits were significantly reduced [45].

2.4.4  Discussion of Near Wall Ty Models for Sep: Flows

The selection of a near wall turbulence model appears to be very problem dependent.

‘The characteristics of the models were di for d flows and/or hing flows.

For these types of flows the following conclusions can be drawn:

The wall functions with velocity scales based on the friction velocity, the tucbulent
kinetic cnergy of the near wall grid point, or the turbulent kinetic energy at the edge of the
viscous sublayer fail to predict heat transfer when separation or reattachment is present. The
improved wall function method presented appears to have some promise in predicting the heat

transfer distribution but additional work is required.
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‘The two layer models are difficult to incorporate into computer codes. In addition, it
is unlikely that the parabolic sublayer approach will save on computing costs.

The usual forms of the low Reynolds number models lack a sound physical basis and
are inadequate when applied to separated flows.

The Yap correction applied with a low Reynolds number model appears to yield

adequate results.

25 Turbulence Modelling in Buoyancy Driven Flows

In 1983, Markatos and Pericleous [28) extended the bench mark case study (see Figure
2.2) of laminar namral convection in a two-dimensional cavity to include turbulence. The
problem was solved numerically for Rayleigh numbers up to 10' using a standard two equation,
k-¢, turbulence model with wall functions. It is concluded that the k-¢ model is an adequate
model for predicting the overall flow structure. However additional research must be conducted
to provide more realistic wall functions.

At the University of Washington, Emery’s group [47,48] have also studied this problem
computationally for Rayleigh numbers up to 10'2, Abrous [47] used a low Reynolds number k-2
turbulence model and Silva and Emery [48] compared the results of a k-2 model and an algebraic
stress model. Silva and Emery stated that the algebraic stress model is sensitive to the complex
flow in the corners. Larger differences in the prediction of the algebraic stress model and the
k-¢ are evident in the higher Rayleigh number cases. In addition, significantly finer meshes and
higher computing times are required for the algebraic stress model. Silva and Emery also stated
that no local experimental data exists to compare with their predictions.

Schmidt’s group [41,49,50] studied namural convection in water filled rectangular

3! both experis lly and computati ‘The aspect ratios of the cavities were 2 and
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Henkes et al. [55] predi i i natural ion in a vertical square

cavity for Rayleigh numbers up to 10* for air and up to 10'S for water. In this study, the results
of a standard k-¢ model were compared with the results of two low Reynolds number k-¢ models,
namely, the Jones and Launder [38] and the Chien [40]. The standard k-c model with wall
functions was found to overpredict the turbulence quantities by 30%. For water, the standard

k-¢ model predicted negligible values of ities (k, £ and »p) for Rayleigh numbers

up to 10!! while the Jones and Launder model predicted negligible turbulence quantities for
Rayleigh numbers up to 1013, The predictions of the low Reynolds number models suggests that
nonunique solutions can be obtained in the laminar turbulent transition regions. However, for
all models tested, unique solutions exist for fully turbulent flows.

Lankhorst et al. [56] used the LDA technique to measure the velocity profiles in an air

filled cavity. The Rayleigh number range for the measurements were 1 X 10°t0 4 X 10°. The

were with the ictions of Lankhorst et al. {57). For a Rayleigh

number of 10°, the predicted velocity profile agreed well with the measured profile. However

at a Rayleigh number of 2 X 10°, the th i ional ion predicted the velocity peak
within the boundary layer and the two-dil ional ion had better at the edge
of the boundary layer.

To date, there have been no systematic studies on the various turbulence modelling
methods in mixed convection with flow reversal. Since the selection of an adequate wurbulence

model is problem dependent, some conclusions have been drawn from the current literature

P to models for ing flow and models for buoyancy driven

flow. These publications suggest that a low Reynolds number k-¢ turbulence model applied with

the Yap correction may yield adequate results. The objective of the preseat numerical

is to complete 2 ic study of different forms of the k-¢ turbulence model and
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10 and the Rayleigh numbers varied between 5.43 X 10° t0 8.79 X 10'%. The velocity profiles

were measured with a laser doppler anemometer (LL'A) and the flow was predicted with 2

id PISO ithm code. Tt has been lled with either a zero

equation or two equation low Reynolds number model. Giel [41] states that the zero equation
model is inadequate as the calculations were unstable. In addition the effect of turbulence was
studied using two low Reynolds number models. The Humphrey and To [51] model tended to
overpredict the turbulence while the Jones and Launder model {38] tended to underpredict the

turbulence quantities. In fact, there was no significant difference between the Jones and Launder

predictions and the predictions obtained ing laminar flow. Giel [41] also stated the
-gence rate is greatly improved with the i ion of a multi igrid i
Ch ight et al. [S2] i in 2 tall di ional cavity of

Rayleigh number 4 X 10'°. Velocity measurements were conducted using 2 laser doppler

and the core temp were obtained. Davidson [42,53] predicted this flow with
a low Reynolds number k-¢ turbulence model and a hybrid model. The hybrid model combined
the non-isotropic properties (due to buoyancy) of the algebraic stress model with the k-¢ model.
Tl‘le mean velocity and temperature predictions of both of these models were in excellent
agreement with the experimental data of Cheesewright et al. [52]. Davidson [53] stated that both
the Reynolds stress model and the algebraic stress model required significantly more
computational time than the k-¢ model. In addition, they are numerically unstable and may lead

to convergence preblems. The hybrid model these sh ings while still

accounting for the non-isotropic effects due to buoyancy. The hybrid model predictions of the
Reynolds stress and turbulent heat flux were significantly larger than that of the k-¢ predictions.
Davidson [42) also stated that the convergence rate may be greatly increased with the use of the
Coupled Equation Line Solver (CELS) of Galpin and Raithby [54].
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10 test the of various ical models and numerical formulations when applied

o mixed convective flows in cavities.



CHAPTER 3

EXPERIMENTAL APPARATUS

3.1  Introduction

This chapter presents a brief description of the experimental apparatus.

Since the computer code developed in the present work is based on two-dimensional
conservation equations (see Chapter 5), the test cell has been designed to produce this type of

flow as closely as possible. A description of the ials, di i and of the

test cell are presented in section 3.2. In addition the components of the flow loop are also

described in this section.

The velocity and fields are i igated using flow visualization and are

measured with a Laser Doppler Anemometer (LDA). This measuring technique has many
advantages. These include [58]

@ Does not disturb the flow,

@i) High spatial resolution,

(i} Fast response,

@) Response is linear and easily calibrated,

) Directional discrimination is possible, and

wi) Operation is not usually seriously affected by temperature.

A brief theory and description of the LDA is p 4 in section 3.4.

The temperature fields are measured with fine wire thermocouple probes. These

ples give good spatial ion and D to measure the
39
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temperature field within the cavity. The geometry of the thermocouple probes and the choice of

material and size are discussed in section 3.5.

3.2  Description of Test Cell and Loop
32.1 The Test Cavity

An acrylic test cell is used to obtain two-dimensicnal results. The test cell is constructed
from 25.4 mm thick clear acrylic and has height of 297 mm, 2 width of 149 mm, and 2 depth
of 48.5 mm as shown in Figure 3.1. A horizontal jet, of width 8 mm (Dy; = 13.7 mm), enters
the cavity at the top of one of the vertical walls. A 203 mm flow development length is
incorporated into the cavity to assure fully developed flow. The inlet to this development length
is by way of 2 12.7 by 12.7 mm (Dy = 12.7 mm) entrance. Using a similar inlet, Johnson [59]
found the inlet jet to be two-dimensional. The flow exits the cavity horizontally at the bottom
of the same vertical wall. The exit is geometrically identical to the entrance.

The opposite vertical wall is constructed from a 9.5 mm thick copper plate and is
maintained at a uniform temperature by 10 electric film heaters as shown in Figure 3.2. These
hgate:s are placed on the back of the copper wall (not the flow side), have dimensions of 48.5

by 29.7 mm each, and are lled independently. Eighteen i

ples are

used to measure the inner wall temperature and are located approximately 0.5 mm from the inner

surface. Ten thermocouples are located on the centre line of the copper wall and eight are offset

to determine the validity of the i ional heating i

‘The pressure is monitored using a pressure gauge mounted at the top of the test cavity.
The eatire cavity is insulated with 25.4 mm expanded polystyrene to reduce heat losses to the
atmosphere.
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32.2 The Test Loop

The flow cell is placed in the flow loop as shown in Figure 3.3. Water flows from the
head tank to the inlet of a centrifugal pump (Little Giant model 3E-12NRT). The outlet of the
pump is connected to a flow control valve where the water may flow into a flowmeter (Brooks
Rotameter A-8M-25-4) or it may flow in a bypass loop back to the pump inlet. From the flow
meter the water flows into the test cell where it is heated by the electric film heaters. After
leaving the cavity, the water enters a return line and flows to a counterflow heat exchanger where
it is cooled and then returns to the head tank. Coolant water to the heat exchanger is provided

by cold tap water and is controlled by 2 control valve.

33  Flow Visualization
For a qualitative description of the flow field, flow visualization was carried out using
two different methods. These techniques provide insight into the overall flow field and give an

indication of the i ionality of the flow. In addition, the location of the separation point

adjacent to the heated wall may be identified. The motion of the flow field in a plane is observed
hy: illuminating a foreign material that has been introduced into the test cavity. The motion of
the material, and hence the motion of the fluid, is recorded with a camera.

The first procedure is referred to as particle streak flow visualization. With this
technique, the flow loop is seeded with particles which are illuminated by a plane of light.
Selection of the particle size, density and shape are important as the particles may or may not
follow the flow. It is required that the particles be able to follow the turbulent fluctuations. The

time scale of the turbulent ions is estimated by the time scale.
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‘The maximum value of dissipation of turbulent kinetic energy is used to calculate the smallest

time scale. The value of this variable is not easily S0 it is esti by the si

The particle time scale is calculated as recommended by Buchave et al. [60]).
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For the 100 the zm polystyrene particles (0ppicte = 1.03 g/em?) used in this study, the Buchave
time scale is within the Kolmogorov requirement.

A sheet of light is produced by directing the beam of a 15 mW Helium Neon Laser
(Spectra Physics Model 120) into 2 9.5 mm diameter glass rod. As the particles enter this plane
of light, the flow field is observed as streaks of light which are photographed. A sketch of the
apparatus is shown in Figure 3.4).

The second procedure is laser induced fluorescence. In this technique, a soluble
fluorescing dye is injected in the entrance of the cavity. The dye must be soluble in the working
fluid and it must not be visible under normal lighting. However, the dye may be excited as it
comes into contact with certain types of light. A sheet of laser light is produced to fluoresce the
dye in planes of interest. In the present work, a saturated solution of fluorescein and distilled
water is injected at the entrance of the inlet developing length. The sheet of light is created by
directing the beam of a 15 mW Argon Ion laser (Toshiba) into a rotating mirror. A sketch of

the apparatus is shown in Figure 3.5).
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Figure 3.3: The Flow Loop

Figure 3.4: Parficle Streak Flow Visualization
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where X\ is the light wavelength and © is the half angle between the beams.

As the fluid moves through the measurement volume it carries seeding particles at the same

velocity. A ph iplier detects the freqy of scanered light. This doppler frequency is
related to the particle velocity normal to the fringes and the fringe spacing by
v,

fo= particle 3.4
4

Since the fringes are stationary in space, only the magnitude of velocity can be

determined as the doppler fi is independent of direction. Frequency shifting one of the

beams results in the fringes moving with a velocity proportional to the frequency shift, The flow

can be

with this i Thus, for 2 given velocity magnitude, a particle
moving in the same direction of the fringes will create a lower doppler frequency than a particle

moving in the opposite direction.

3.42 Laser Doppler Apparatus

The Laser Doppler Anemometer (LDA) determines the velocity at a small measuring
volume by detecting the Doppler shift of light scattered from a moving particle.

A single component LDA system is used to measure the velocity and turbulence fields
in the cavity. A Dantec 55X LDA system operating in forward scatter mode is used for the
velocity measurements. A block diagram of the LDA apparatus is shown in Figure 3.6. A 35
mW Helium Neon laser (Spectra Physics model 127) of wavelength 632 nm, provides the light

source for the LDA. The beam is polarized and split into two beams 35.05 mm apart. A Bragg

Figurc 3.5: Laser Induced Fluorescence Flow Visuvalization
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3.4  Velocity Measurement

The laser doppler anemometer (LDA) is used to qualitatively study the flow in the cavity.
A brief description of the theory is presented in section 3.4.1. A complete discussion of the
theory and method of the LDA is presented in reference [S8]. A description of the LDA
apparatus is presented in section 3.4.2 and a discussion of the counter processor is found in

section 3.4.3.

3.4.1 Theory of Laser Doppler Anemometry

Laser doppler 'y is an optical ique used for the of velocity.

This ique has many as di d in section 3.1.

The LDA technique requires a highly focused monochromatic beam of light. A laser is
an ideal light source as it satisfies three requirements

® it is monochromatic,

@) it is coherent, and

(i) it is collimated.

Two beams of equal intensity polarized laser light are focused at the measuring volume
0 be examined. The superposition principle of waves states that the net intensity of light is the
algebraic sum of the intensity of each light wave. Thus where the intensity of each beam is
maximum, the net intensity is maximum (a light band). Conversely, where the intensity of light
of each beam is minimum the net inteasity will be minimum (a dark band). This interference
may be thought to result in fringes which are stationary in space. The spacing of these fringes
is constant and is a function of the light wavelength and the focusing lens half angle. The fringe
spacing is calculated by
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cell is used to shift the frequency of one of the beams to allow direction discrimination. The last
component of the transmitting optics Is a focusing lens with 2 focal length of 80 mm. The entire
transmitting optics can be rotated to measure the desired component of velocity. The
measurement volume is located at the intersection of these beams. The receiving optics consist
of receiving lens of focal length 80 mm and 2 photomultiplier to convert the light signal to 2

voltage. This voltage is analyzed in a Dantec 55190 LDA Counter Processor.

3.43 Counter Processor

‘The counter processor determines the time in which a particle crosses a known number
of fringes. The time and distance give an instantaneous velocity of the particle.

The signal which arrives at the processor contains the Doppler burst, a low frequency
Doppler pedestal, and noise. Filters are used to remove the background noise (high and low
pass) and the Doppler pedestal (low pass).

Once the undesirable frequencies are removed from the signal, the signal is amplified and
triggers a Schmitt trigger. The output of the Schmitt trigger is fed to two counters, The first
timer determines the time required for a particle to pass through 5 fringes (low count) while the
other timer determines the time required for the particle to pass through 8 fringes (high count).
The results of the high count and low count are compared. If the results are within a specified
comparator accuracy they are considered valid and are stored. Otherwise the results are

considered invalid.
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probes enter the cavity horizontally at three locations in the vertical wall opposite the heated wall.
The fine wire thermocouples extend out of the end of the probes approximately 9 mm. The
probe can be moved horizontally and is located with a dial indicator. The vertical temperature
profiles are measured with an "L" shaped probe. The probe entzrs the cavity from the top and
can be moved in the vertical direction. This vertical leg of the probe is constructed from 0.125
stainless stesl tubing and the horizontal leg is constructed from 3.2 mm acrylic to reduce
conduction near the measurement location. Four thermocouples run down through the vertical
leg and adjacent to the horizontal leg. At four different distances from the heated wall a

thermocouple extends from the probe approximately 9 mm.
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3.4  Temperature Measurement

In the present work, three temperatures are measured as shown in Figure 3.3. These
include the inlet and outlet temperatures (T1 and T2 respectively) and the temperature distribution
in the cavity (T3).

The inlet and outlet temperatures are measured with a 3.2 mm thermocouple probe
assembly (Chromel/Alumel with stainless steel sheath). In the case of the inlet temperature, the
thermocouple is placed at the inlet of the flow development length as shown in Figure 3.3. For
the outlet, it is placed at the exit of the flow development length. These thermocouple signals
are monitored with a digital readout. The heat transfer to the fluid may be calculated using these
temperatures and the mass flowrate of the fluid. This may be compared to the energy input from

the heaters which will give an overall energy balance of the cavity.

As previ i the ples in the cavity must give good accuracy,
spatial resolution, and frequency response. In addition, the probe must distucb the flow as little
as possible and the thermocouple must have 2 reasonable life. In a recent study {41}, the
temperature field in a cavity heated by natural convection was obtained. In this study, 0.001 inch

and 0.003 inch copp and chromel/alumel th were idered. The

results of the tests concluded that there were no significant differences in the measured
temperatures using either size thermocouples. However, the copper/constantan thermocouples
deteriorated over time in a water environment. Thus 0.003 inch chromel/alume! thermocouples

are used for measuring the temperature field. The voltage to temperature conversions, the

of ing and the ing period are lished by way of Labtech Notebook
software.
Two types of probes have been used in the present work. The horizontal temperature

profile adjacent to the heated wall is measured using a 1.3 mm stainless steel probe. These

CHAPTER 4

EXPERIMENTAL PROCEDURE

4.1  Introduction
Approximately three to four hours is required for the system to reach steady state.

Velocity measurements required approximately two weeks of data collection for each case

considered. To obtain the sare flow and temperature fields, each day the velocity and

temperature boundary conditions had to be nearly identical. As a result, 2 set of general

operating procedures are required to be followed. A summary of these procedures is presented.

Refer to Figure 3.3 for a schematic of the flow loop.

()] Turn on the cold tap water to the heat exchanger. Allow the warm water in the ‘building
piping system to purge.

@ Turn on the pump and adjust the flow control valve to the required flowrate.

®) Turn on the wall heaters and coarsely adjust the electrical input. Allow the system to

' stabilize for approximately 10 minutes.

@)  Repeat step 3 until the wall temperatures are near the required temperatures.

®) Adjust the cold water flowrate into the heat exchanger to obtain the required inlet
temperature.

(6  Finely adjust the power to each of the heaters untl the required wall temperature is
achieved.

("  Finely adjust the flow control valve to the required flowrate.

® Go to step 5 until the required thermal and velocity boundary conditions are established.
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® Leave the system for approximately three hours to allow the system to attain steady state.

In the above adj the wall was il uniform when the difference
between the i and mini d temp: was less than 0.5°C.
A summary of the specific proced! for flow visualization, velocity and
is d in this chapter.

4.2  Flow Visualization

The results of the flow visualization studies were recorded on a Nikon FE2 35 mm
camera and a Sony V9 camcorder. An array of film types, shutter speeds, and fstop values were
tested to obtain optimal results. More specifically, Kodak Kodachrome 100, 200 and 400 ASA
and Ektachrome 1600 ASA film wete tested using an f-stop of 2.8 and 5.6 and shutter opening
of %, 1, 2 and 4 seconds. Preliminary tests suggested that Ektachrome 1600 ASA film with an

f-stop of 2.8 and a shutter openings of either 2 or 4 seconds yielded optimal results.

4.} Velocity Measurements

The test cavity was mounted on a Xyz traversing table. The x and z traverses are Daedal
traverses with a repeatability of 0.004 pm/mm. The y traverse (Thompson) is capable of
supporting a higher load but only has 2 repeatability of 16 um/mm. A MC5000 controller board
and PC21 controller code is used for control of the traversing table.

The diameter and length of the measurement volume are given by
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validated data, or validation rate, is the second important parameter. This parameter rarely fell
below 60% and was typically above 80%. Again the validation rate was low in the region of the
heated wall. Edwards [61] criteria suggests that this is an intermediate data density.

For each of the cases considered, two components of velocity (u and v) are measured in
various planes. All references to x, y and z are based on the coordinate system defined in Figure

3.1. The velocity u, vand w d the di x,yand z ivel,

P

A summary of the location of the velocity measurements is presented in Tables 4.2 to
4.6. The entire flow field was measured in the plane of symmetry (z = 0). The flow field in
this plane shows the overall “two-dimensional” results in the cavity. These velocities were
measured on a 19 by 29 rectangular grid. The specific x and y grid locations are summarized
in Table 4.2

Table 4.2: Velocity Measurement Locations in the Plane of Symmetry

Location x y Location x Y Location | y
(mm) | (mm) (mm) | (mm) (mm)
1 8 2 11 128 70 21 265
2 18 3 12 133 90 22 275
y 3 28 4 13 138 110 23 280
4 48 6 14 140 | 130 24 283
5 68 9 15 142 147 25 286
6 88 12 16 143 165 26 289
7 98 15 17 144 | 185 27 291
8 108 20 18 145 | 205 28 292
9 118 30 19 146 | 225 29 293
10 123 50 20 245
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where F, is the apparent focal length,

A is the laser light wavelength,

D,., is the diameter of the laser beam, and

© is the half angle of intersection
For the present setup, the diameter and length of the measurement probe are calculated to be
0.053 mm and 0.245 mm respectively. The fringe spacing is calculated to be 1.48 pm.

The counter processor settings are summarized in Table 4.1

Table 4.1: Counter Processor Settings

e | o
oo | 30

LowPess | 2mmz
HighPass | o5k

The quality of the velocity data can be estimated from indicators on the counter
processor. ‘The rate of validated data is reflected by the data rate. This parameter varied from
a low of .3 kHz 10 a high of 5 kHz. The region adjacent to the heated wall suffered from low
data rates as the changes in temperature in this region change the index of refraction of water.

The data rate for the majority of the work fell between 1 KHz and 3 kHz. The percentage of
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In addition to the entire flow field, areas of specific interest are studied in more detail.
These include the separation region adjacent to the heated wall and the exit flow. The exit region
gives an indication of the exit boundary conditions required for the numerical modelling. For
both the exit region and the separation region, measurements were obtained on a 7 by 7 grid.
The specific grid for the separation and exit regions are shown in Tables 4.3 and 4.4 respectively.

In Table 4.3, the coordinate, v, is the distance from the separation height and is defined as

T=Y " Vup “2)

Table 4.3: Velocity Measurement Locations in the Separation Region

Location | x(mm) | ~(mm)
1 133 -9
2 136 £
3 139 -3
4 142 0
S 144 3
6 145 6
7 147 9
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Table 4.4: Velocity Measurement Locations in the Exit Region

Location | x(mm) | y(mm)
1 8 2
2 11 5
3 14 8
4 17 11
5 20 14
6 23 17
7 26 20

‘The three-dimensionality of the flow is also studied by obtaining measurements in planes
perpendicular to the plane of symmetry. The inlet and outlet jets are studied by taking
measurements in the y = 293 mm and y = 4 mm planes respectively. The coordinates of these
velocity measurements are shown in Table 4.5. In addition, the two-dimensionality in the region
of the heated wall is studied by obtaining velocity measurements in a plane 4 mm from this
boundary. The locations of these velocity measurements are shown in Table 4.6.

Table 4.5: Velocity Measurement Locations in the Inlet and Outlet Planes

Location | x(mm) | z(mm)
1 18.5 -20
2 38.5 -13.3
3 58.5 | 6.67
4 78.5 0
5 98.5 | 6.67
6 118.5 | 133
7 138.5 20
61
pericd of 200 seconds is required to compute the average tempe: The q

is 10 Hz.
The vertical temperature profiles are measured at 2, 4, 10 and 75 mm from the heated

wall. The temp are d in 1.5 cm i from a height of 1.5 to 28.5 cm.

The same sampling frequency and data rate are used for the vertical profiles.

Table 4.7: Hori: T Locations
Location | 7(mm) Location | 7(mm)
1 0 13 4.5
2 0.1 14 5.1
3 0.2 15 6.4
4 0.3 16 7.6
S 0.6 17 10.2
6 0.9 18 12.7
7 13 19 17.8
8 1.7 20 25.4
9 2.0 21 38.1
' 10 25 2 508
11 3.2 23 63.5
12 3.8 24 76.2

Table 4.6: Velocity Measurement Locations Adjacent to the Heated Wall

Location | y(mm) | z(mm)
1 10 -20
2 30 -13.3
3 50 -6.67
4 70 0
5 90 6.67
6 110 13.3
7 130 20
8 148
9 167
10 187
11 207
12 227
13 247
14 267
15 287

4.4  Temperature Measurements

The horizontal temperature profiles were measured at 80, 140 and 200 mm heights. The
140 and 200 mm heights correspond to the separation height in two of the cases considered. The
location of the temperature measurements is given in Table 4.7. The variable, 7, is defined as
the distance from the heated wall. The zero location is defined as the point at which no
temperature increase is found by bringing the thermocouple closer to the wall. Labtech Notebook

software is used for data acquisition. Initial analysis of the flow field suggested that a sampling

CHAPTER 5
MATHEMATICAL FORMULATION

5.1 Introduction
The conservation equations that govern the velocity, temperature and turbulence fields
in the cavity are presented in section 5.2 while the boundary conditions are presented in section

5.3. The conservation equations are written in terms of primitive variables and diffusion terms

are in the fuliy ive form. The ing ions have been made

[0] the flow in the cavity is two-dimensional,

(i) the fluid is Newtonian,

(i) temperature change due to viscous dissipation is negligible, and

@) the density of the fiuid is considered constant except in the buoyancy force term. This

approximation is commonly referred to as the Boussinesq approximation [62] and the

validity of this assumption will be considered in Chapter 7.

52 Governing Equations

521 Di ional Governing i
The i form of the g ing jons are used to predict laminar flow in
the cavity. The continuil y and energy ons are
Continuity
du  av
Z+Z=0 5.1
= % (5.1
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X-Momentum
u  Qu  du _ 103 0 du 3 3u 5.2
at+u?x.+va_y ;Eh@ L *a_y vL_aj]+g,ﬁ(T-TR) 5.2
Y-Momentum
o 3v dv __1dp 3 av 3 3v - 5.3
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Energy
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For the i imation (used in (5.2) and (5.3)), the thermophysical
P ies are at the p given by
ENCL ALY e

The equations used to compute the thermophysical properties are cited by Giel [41] and are
presented in section 5.4 of the present work.

The governing equations for turbulent flow are based on the low Reynolds number, k-¢,
tu;:hulence model. The momentum equation is obtained by substituting equation (2.15) for the

ds stress into the ti

ged versions of equations (5.2) and (5.3) while the

energy equation is obtained by substituting equation (2.18) for the turbulent heat flux into the

time-averaged form of equation (5.4). The conservation equations for flow in cartesi:
coordinates are then:
Continuity
9 v 5,
= £ 0 5.6
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Rate of Dissipation of Kinetic Energy

e c _ 3 [ ¥r, ¢ 3 vT, 3¢
—_tU— +V_ = (”L'*—)—}‘—-[(“L*‘—)—]
at ax 3; ox o, ox 0; E
Y i Y e (5.13)
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where the generation of turbulence, G, is
_ au)? av)?, (au , ) (5.14)
G"”’[Z [ax] " [ﬂr] T a*] ]

The terms D and E, in equations 5.12 and 5.13 respectively, are used for low Reynolds number

modelling as discussed in section 2.4.2.

522  Dimensionless Variables

The governing equations may be cast in terms of the relevant dimensionless parameters

described in section 2.1. This may be by di ionalizing the variables as
follows
Dimensionless Coordinate
=X =3 5.1

X=% Y=g (5.15)
where H, is the height of the enclosure.
Dimensionless Velocity

vsX veX (5.16)

du au+vﬂ__l P, 0
ar ox 3y p x ax

3 3 a3
- = (”L”’ﬂ%]*a—y[("t.’”r) i

ay] 6D

3 d 3 3v 2 3k
* % [(’L +vp —‘.’—:'] * % [("L + v a] + 88T -Tp - 3 %

Y-Momentum
v v av_ 139 2 K4 KA [ oy
E+u§+va_y ;5’%[(”!'*,7)615 4-ay (vL+yT)ay
L 5.3)
3 3 3 v 2 3k
* = [(v,_«-y,-) _‘_’;] + % [(»qur) E_y] #gyB(T—TR)—.g_a;
where the turbulent dynamic viscosity, v, is
”
= GhE 69
Energy
aT aT 9T _ 3 aT a T
Fn + u5 + vw = [(uL + ap) E] + % [(aL + ap ) (5.10)
where the turbulent thermal diffusivity, ar, is
T
== 5.11
ar= o G.11)
Turbulent Kinetic Energy
ok ok 3k _ 9 [ ’1, 3k 3 v, 3k
U=tV = |t ) =]+ — [(y,_«-_ =
ar ax ax ax 3) 2
(2 [ ly r 0y 612
= ¥t oT vt 3T
G-¢- —_— - —=-b
* e or ax g’ﬂo'ray
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where uj, is the volumetric averaged inlet jet velocity.
Dimensionless Temperature
RN )
Tw =19
Dimensionless Pressure
= .19
ouy
Dimensionless Turbulent Kinetic Energy
=k 6.19)
uy
Di Dissip of Turbulens Kinetic Energy
e & (5.20)
“

523 D ionless Governing

The non-dimensional form of the governing equations used to predict laminar flow in

the cavity are

Dimensionless Continuity

ﬂ+a_‘/-0
aY oY

521
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Dimensionless X-Momentum
oU , ,eU__op, 8 |a ou|l, 8 |a au|, G
v v v =2 s 2| s 2| ) . 6 (522)
24 aYy X X lReL [24 Y [ReL oY Rei
Dimensionless Y-Momentum
v ,av__ . 3 | a avl ¢ | a av| Gna
U + Vo = - 2+ 2 | — 2 = =2 (5.23]
®' WX R ax] Ty [ReL | " R s 63
Dimensionless Energy
v . y® . 2| a | 3| a 529
39X~ 9Y OX |RegPr, 0X| oY |RegPr, oY
In these ions the di onl Pry, 3, Re; and Gr are defined by equations 2.1,

2.2, 2.4 and 2.5 respectively. The subscript, L, refers to the dimensionless parameter based on

the lamipar properties. The temp at which these prop are d are di
in section 5.4.
The i ional conservation ions for turbulent flow in cartesian coordinates
are then:
Dimensionless Continuity
U v _, .25

X
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Dimensionless Turbulent Kinetic Energy

1.8 (| e, _a |

X 3 | |Rey oRer| oY

- aB(ergT o _ @G e _ b (530
ok X gged OF

pdk Ly 2 |la &
X aYy X Rey g Rer

+G* -

Dimensionless Rate of Dissipation of Kinetic Energy

pd L,y 2 ||a, e | %), 0 ||a, a | &
ax Y X {|Re oRer| oX Y || Re oRer| oY
& e =’ e @ Grr a 531
vepfio-op i -op L @ 63D
k k k oRer
g EO

ey 3
k* oRe3 X

where the generation of turbulence, G, is
2 2 2
Gt =8 |2 () .o [)°. (23U, ¥ 6.32)
Rer (24 E)g ay ox

and the Grashof number based on turbulent viscosity is

D E
_& @, - ki 633
T

Grdr
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Dimensionless X-Momentum

au U P 3 a a | au 3 a a au
Uzt ﬁﬁ[[’kzm}ﬁ}ﬁ“'@x—er] ay]

(5.26)
2 .
volle.efaul o] e, aav) O, 20k
FX||Re, Rep| aX| 97 ||Re, Reg| K| “g2 3 X
Dimensionless Y-Momentum
v,y e 3 || ajovi 2 ])a  a]v
X 9Y 8¢ OX ||Re, Rer| 3X| OY ||Rep Rey| 3Y
627
vl e]aw], oo, o], 5f, 22
3| |Re, Rer| 9F| BY ||Rey Rer| ¥ R 3737
where the Reynolds number based on turbulent viscosity, Rey, is
Repe M2 . 8T 528
v [k
Dimensionless Energy
v,y 2 || _a , a | 3| a . a |32
53X 3%  OX ||Re Pr; Reyor| 9X| Y ||ReyPry Reror| oY
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53 Boundary Conditions
53.1 Laminar Flow

For the present laminar case studies, the program simulates a variety of velocity and
temperature boundary conditions. These include the following boundary conditions: no slip
walls, inflow, outflow, adiabatic and isothermal temperarure. As an example, for the lower

horizontal wall in a cavity these boundary conditions are formulated as follows:

No Slip Wall:
The no-slip boundary condition is set by prescribing both the U and V velocity to be

zero at the wall.
Ulyo = 0
e 534
Vi = 0
Adigbatic Wall:

The adiabatic boundary condition is set by specifying the temperature gradient such that

the heat flux is zero at the wall.

a6
®l .o (5.35)
7 |,m0

Isothermal Wall

The isoth 1 wall boundary ition is set by specifying the wall temp

Olyuo = fw (536
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Outflow Boundary

The outflow boundary condition is set by specifying the tangential velocity to zero and
the gradient of all remaining variables to be zero at the wall.

13 -
UTms],. o ad 0" 0 (5.37)
¥

Inflow Boundary

The inflow boundary condition is set by specifying the normal velocity to have 2
specified velocity, a parabolic profile or 2 one seventh power law profile. The tangential velocity

is set to zero while the scalar variables are set to a specified value.

532  Turbulent Flow
The boundary conditions for turbulent flow are imposed in the same manner as the

laminar flow case. In addition to this, the ions governing flow ions 5.26

to 5.33) must account for the viscous effects in the vicinity of the walls. As previously

d in the li review these ions are valid only for fully turbulent flow. Thus

th.e governing equations must either be modified or additional theory must be introduced. The
low Reynolds number methods employed in the present work are Giel’s [41] modification to the
Jones and Launder model [38] and Davidson’s [42] modification of the Lam and Bremhorst mode}

{39]. The boundary condition for the turbulent Kinetic energy next to 2 solid boundary is

k10 = 0 5.3

For an inflow boundary, the turbulent kinetic energy is computed from equation (2.46) and is
defined as

73
fsl (5.49)
where the turbulent Reynolds number, Re, is
Rep k=2
Re, = L (5.45)

e

ac

‘The extra term in the turbulent kinetic energy equation {equation 5.30) is given by

[ [akur.v]" [ak-m]' 5.46)

The advantage of using this extra term in the kinetic energy equation is that it allows the

dissipation to be set to zero at the boundaries.
20 =0 (5.47)

TJones and Launder [38] also included the extra term, E*, in the dissipation equation
(equation 5.31). Giel [41] cites Launder as noting that the physical justification of this term is
not settled. Several researchers [41,51,64] have dropped :his term. In the present work, this

term has been incorporated.

2 2 2 2
PRI | i’ IR K4 N i I 4 ©48)
Rey Rer || ax? ay? ax? av*

VP (5.39)

[STE)

§w

This inlet kinetic energy is based on the turbulent intensity, ¥ (taken to be 10%) and the mean

volumetric velocity of the inlet, '171 The inlet dissipation of kinetic energy is calculated from

. o i
o= C:“ u!l (5.40)

The length scale, / is equal to 0.007 times an equivalent radius based on the area of the inlet.
This method is based on turbulent flow in a pipe and has been used in a commercial

computational fluid dynamics program [63]. The solution was relatively insensitive to the inlet

turbulent kinetic energy and dissipation. This i itivity is i with other h
4,6,591.

The Jones and Launder low Reyaolds number model [38] has been modified as
described by Giel [41]. A summary of the dimensionless form follows. The modified Lam ar.nd
Bremhorst model (éee Table 2.2) may be nondimensionalized in 2 similar manner. The “f

functions or damping coefficients in equation (5.31) are shown in equations (5.41-5.44)

. 25 (5.41)
Ju = e [—1 " Re/SO]

fi=1 (5.42)

£ =L - 03 exp(-Re))] 6.43)

74

54 Calculation of Thermophysical Properties

The effect of

p on the ther ical properties of water has been

investigated. The properties of water are given by equations (5.49) to (5.53). When the constant

property model is used, the fluid ies are at the given by
equation (5.5). The Reynolds, Grashof, and Prandtl numbers used in the dimensionless
governing equations are computed based on these reference properties. For the variable property
model, the thermophysical properties and hence the above dimensionless parameters, are based
on the local time-averaged temperatuze.

Density (kg/m’) [65]

oo+ a7, + 0o
o= L

el

+ P
+ P
where pg = 999.8396 0y = 18.224944

op = <IIMIE-3  py = ~5.544846E-5 6.49)

pg = L49T562E=T ps = -3.932952E-10

g = 1.8159725E-2

ad T, =T(°Q

maximum deviation = 0.004% at 12°C, standard deviation = 0.002%

Dynamic Viscosity (kg/m s) [66]

" 1073
Wil + (@ + )"} - b3l
where po = 8435 g, = 0.021482 (.50
Ky = 8078.4 3 =12
T,=T(°0 -1

maximum deviation = -0.51% at 98°C, standard deviation = 0.37%
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Thermal Conductivity (Wim K) [41]

K=Ky+ KT+ KTe+« KT « K. T4
where K, = 5.8506541 K, = -20.397946 651
K, = 27.762115 K, = -16.023208
K, = 33692098 Ty = [T(°0O) + 273.15]/273.15
maximum deviation = 0.02% at 2°C, standard deviation = 0.009%

Specific Hear (J/kg K) [41]

2
G = Cu(Goy * T, * G Te)
where  Cp = 1.2753249 C,, = -1.7479235E-3
C,, = 27572590E-6  C, = 4186.8
T, = TCO) + 273115
maximum deviation = 0.33% at 2°C, standard deviation = 0.07%

(6.52)

The coefficient of thermal expansion is calculated by numerical differentiation of the density

equation with respect to temperature. By definition this variable is defined by

o 1] 5.53
B ol3T], (5.53)

5.5 Variation of Turbulent Prandtl Number

Kays and Crawford [67] state the variation of turbulent Prandtl number in the boundary
layer is difficult to measure accuraiely. However it is known that the turbulent Prandtl number
is large adjacent to the boundary and decreases asymptotically to a value of about unity in the law

of the wall region. This high value of turbulent Prandil number suggests that momentum

CHAPTER 6

NUMERICAL FORMULATION

6.1  Introduction

The solution technique is based on the Semi-Implicit Method for Pressure Linked
Equations Revised (SIMPLER) algorithm of Patankar [68,69]. A brief background of the
procedure as cited by Patankar [69] follows.

In 1972, Patankar and Spalding described a il dure for thre

ic flow. A three-di ional parabolic flow

contains within it 2 procedure for

two-dimensional elliptic flows. The resulting i ional dure has been

iployed in
many applications. The particular technique by which the pressure-velocity linkage is handled
in this procedure has been given the name Semi-Implicit Method for Pressure Linked Equations
(SIMPLE). Since the original development of the SIMPLE procedure, many changes in the

original procedure have been incorporated. A major change was the development of SIMPLER

(SMLE—“ ised). With this p: a -ged solution is obtained with fewer iterations.
A saving of computer time of 30-50% is commonly achieved with this procedure. Thus the
SIMPLER procedure has been adopted with the present work [69].

In addition to the SIMPLER scheme, many other procedures have been derived from the
SIMPLE algorithm. Some of the enhancements that have been incorporated in the present
computer code will be discussed later in the cha-pur. A description and a comparison of these
enhancements may - found in the papers of Van Doormal and Raithby (70], Latimer and Pollard
[71] and Jang et al. [72].
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diffusion is greater than heat diffusion adjacent to the wall. Kays and Crawford [67] compute
the turbulent Prandtl number based on the turbulent Peclet number, an experimental constant, ¢,

and the value of turbulent Prandtl number far from the wall, o7e,.

1

L, cpe,|-L - (cPeﬁz[l - up(- —1—)] 659
20, e cPepfor.

Or=

Pey = [%]Pr,_ N
(5.55)
oy, = 0.86

¢ =02

In the present work, the results from a constant turbulent Prandtl number model are compared

with the results from the model of Kays and Crawford and will be discussed in section 7.4.4.2
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All results obtained were computed on a SUN SPARC 1+ workstation, The code was
written in FORTRAN-77. A commercial graphics package (TECPLOT) has been used to display

the results.

62 The Control Volume Method

The conservation equations described in Chapter 5 are solved numericaily using the
control volume integral approach with the SIMPLER algorithm. With this approach the
calculation domain is divided into a two-cimensional array of control volume cells (see Figure
6.1) of variable dimensions Ax; and Ayz. A non-uniform grid is incorporated in the present
work to resolve the steep gradients of the dependent variables in the vicinity of the walls.

The staggered grid concept is used for locating flow variables. The velocities are located

at points on the faces of the scaler control volumes while the scalar variables (P, ©,
k* and £*) are located at control volume centres. If values are required at any other points in

the grid they are calculated using simple linear interpolation. An advantage of the staggered grid
technique is that the pressure difference between two cell centres becomes the driving force for
thie velocity component located between the cell centres. Another approach to describing the
staggered grid concept is to consider the computational domain divided into three overlapping
types of control volumes: the U velocity control volumes are staggered from the scalar volumes
in the X direction while the V velocity control volumes are staggered in the Y direction as shown
in Figure 6.1.

The solution technique used is Eulerian as the cells do not change in size or position and

the flow variables are calculated for each cell at any point in time.
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Scalar Control Voiume

U-Velocity Control Yolume

V=-Velocily Contro} Volume

Figure 6.1: Control Volume Orientation

Figure 6.2: Typical Control Volume
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63  Discretization Equation

For a two-dil ional, Cartesian inate system, a general conservation equation may

be written

38 , Aoup) , v @ (p 28], 8 [n 2], 6.1
= = 5 = [r [1‘ ay] N ©n

where ¢ is a general transport variable (U, V, P, ©, k" or ¢°),

p is the fluid density,

T is the diffusion coefficient and

S is the source term.
The first term on the left hand side of equation 6.1 is the temporal term and represents the rate
of change of ¢ per unit volume. The remaining terms on the left hand side account for the flux
of ¢ convected by the flowrate and are called the convection terms. The bracketed terms on the
right hand side are the diffusion terms modelled using 2 gradient mechanism. The last term in
the equation is the volumetric generation of ¢ and is referred to the source term.

A general finite difference equation may be derived for equation 6.1 as described by
Patankar [68]. As the formulation is Eulerian, the transport equation may be integrated over its

corresponding control volume. The flux across the face of the control volume is

= _r %
Ji=oup =T 2 ©2)

where i represents the north, south, east, and west faces as shown in Figure 6.2. Substitution

of equation 6.2 into 6.1 and subsequent integration over the control volume yields

M + I A, - T A, + J A - J A, +5AV =0 €3
where A; is the area of the north, south, east and west faces,

S is the averaged source term over the control volume,

AV is the volume of the control volume and

the superscript © refers to the previous time step.

From this flux equation, Patankar {68] has derived a discretization equation of the form

apdp = apdp + aydw + Ay + Osds + Gy 64

or
apbp = 3 Gubu + G ©5)

where the subscripts P, E, W, S, and nb refer to the point, east, west, north, south and

ing points respectively. The di coefficients, a, are
@p=ap+ay+ay+asg+ap-S, Axby ©.6)
ag = DA(|P.|) + MAX-F,, 0] ()]
ay = DyA(IP,|) + MAXIF,, 0] 68
ay = D,A(|P,|) + MAXI-F,, 0] ©9
ag = D,A(|P,]) + MAXIF,, 0} (6.10)
ap - L2y 611
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ay = Sc &x &y + 4% ©12

Here the source term, S, has been linearized in the form

Fe50+5 ©.13)

‘This linearization of the source term will be discussed in greater detail in section 6.6. The

conductances, D, are defined by

&, &,
D, =4, ['I‘—‘ * I‘_‘ 619
P E
the mass flow rates by
F = (ou), &y 615
and the Peclet numbers by
F,
P, = F‘ 6.16)

Similar equations may be written for the north, south, and west faces.

The function, A | P | ), accounts for the discretization of the convection terms in the

£ ing i ions for A( | P | ) are listed in Table 6.1 for various first order

schemes [68]. Patankar [69] suggests using the power law scheme.
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introduce false diffusion but are stable while higher order schemes such as QUICK reduce false
diffusion but lead to overshoots and undershoots and often have difficulty with numerical
stability.

In the present work, the QUICK scheme was implemented using the approach described
in Giel [41] and is considered as a correction to the hybrid scheme. The first order schemes use
a five poiot computational molecule (¢p, ¢, ¢s, P, a0d Py) while QUICK uses a nine point
molecule ($p, S Sy Bs» Pss» Og» Pers Sw» 20d dyy). The correction is in the form of an
additional source term in equation 6.4. This "QUICK" source term is

Shy= @2 - 2oy + @f - aos +

©.17)
@2 - aBoz + (@F - aipow + 5F8, + &

The superscript, H, refers to the hybrid scheme and the ients ar d from

6.66.12 and Table 6.1. The superscripts, Q, refer to the QUICK scheme and these coefficients

are calculated from
o2 = F.B,, 0.5 + S) + F.By, 05 - §) + F, B3, 05 - 5,) + D, 619
af =FpB_ 05+5)+FpB, (05-5)+FB, 05~5)+D, 619
afs FB, (0.5 +S) +FB, (0.5 -5) + FB, (0.5 - §) + D, (6.20)
af= FB, (05 +S) +Fp,, (05 -5) +FB, (0.5 -5) +D, 621

2 2

af =af +ad +af +al . 622
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Table 6.1 The Function A( | P | ) for Different Schemes
Scheme Formula for A(| P )
Central Difference 1-05 | P]
Upwind 1
Hybrid MAX[0,1-05 |P|}
Power Law MAX [0, (1-0.1 [P 9]
Exponential (exact) |P| Hexp (|P[)-1}
64  QUICK Differencing
For idis ional ion-diffusion for ions, false diffusion can be d

by the numerical scheme. False diffusion occurs when the flow is skewed to the computational
grid and is a result of assuming each control volume face is locally one-dimensional [68].
Techniques can be adopted to decrease the false diffusion to an insignificant amount in
comparison with the real diffusion. Two common techniques are the use of a finer grid and
orienting the grid in the direction of the flow [68]. Another technique that has been incorporated
into the preseat computer code is the use of 2 higher order differencing scheme.

Leschziner [73] recently reviewed the performance of two higher order schemes and one

skew scheme. These include the second order upwind scheme (HOUS) [74], the quadratic

i interpolation scheme (QUICK) [75] and the skew upwind differencing scheme

(SUDS) [76]. From a review of modelling reci i lent flows, Leschziner found that

overall, QUICK provides the best performance. Patankar [77] suggests that lower order schemes

36
o@ = -FB;,, 05-5)  aBy= -FBs, 05 -5,
©6.23)
a2 = -FBy, 05-S) ol =-FBm (05 -5,
S8 = a8 ¢ * Qfvbuy * 02y + 0l 6.29)
Sf = -af +afy + 0+ a8 625

The variables S, S,, S,, and S,,, account for the sign of the velocity at the north, south, east and

west faces respectively and are defined as

S, = sign@5,F) S, = sign@.5, F)

(6.26)
S, = sign(0.5, F) S,, = sign(0.5, F,)
where the function, sign, is defined as
e - (35338 o

The "B" variables or grid coefficients in equations 6.18-6.23 are only dependent on the grid
spacing. These variables are implemented as described by Yap [43] and are derived in Appendix
A.

6.5  Boundary Conditions
All of the boundary conditions presented in section 5.3 may be categorized into two

categories: prescribed value or prescribed flux. The boundary conditions have been applied as



87

described by Raithby and Schneider [78]. Figure 6.3 shows a boundary cell with the follewing

general boundary condition imposed on it.

3 _
G+ =G

6.28)

A general discretized boundary condition equation for 2 node on the bottom boundary of the

computational domain is

ap@,1) ¢;; = ay@1) 10 + a, (1) 6.29)
as@,1) = agl,h) = ay@1) = 0 6.30)
The coefficients for the boundary node, ¢(i,1) are

' S

ap(i,]) = ¢ + ?'] ©31
. Q2

ay(i,1) = 7 6.32)
a,(,1) = ¢ c3 = 6203 633)
asi,1) = 0. a,,1) = 0. a,G1) = 0. 639

Raithby and Schneider [78) suggest the that the boundary condition equation be absorbed into the

adjacent interior equation. This is accomplished using

) a5(i.2) a,,1)
[apG2)" = [ap (2] - G 639
89
. ) as(i2) a,@1)
[, G2 = [, 2] iap(T 6.36)
[as@2]Y = 0 637

6.6  Linearization of Source Terms

The dimensionless governing equations (eqns. 5.25-5.31) may be written in terms of the
generalized conservation equation {eqn. 6.1) using the values in Table 6.2. The generalized
discretization equation (eqn. 6.4) is derived in terms of 2 linearized source term as shown in
equation 6.13. Patankar [68] states that, for a stable solution the source term must be linearized
with 2 negative slope. In other words the value of S, must be less than or equal to zero. The
source terms for each equation are linearized as follows.
Dimensionless X-Momentum

All of the source term components are placed in the constant portion of the source term

since none of these components are explicit functions of U.

s¢-08 ||e ., ajau alle  a| oV
€™ 3X ||Rey  Rey| | 37||Rep Rep| X
G d 2@ v (639
A > S
Rey,

U_ U .U v v
Sc = Svis *+ Szvor * Stur + Sou

b
% Ay -— ¢.‘2 °I:x.-
¢l~l..l

N
1 ba
//////\i/////

Boundary condition is described

s

Figure 6.3: Boundary Nodes with Typical Control Volume

Table 6.2: Summary of the Dimensionless Governing Equations
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™

5
v a.a) |2ffe.ayav],2[fa.a]ldv],
Re, Re X || Re, Rey| | ¥ [R_eL E,] By
C.a, 2o, g
Re? 3 X
v e ,a) |&f(e,a)aU),3[fa, a)dv],
Re, Rep 3X || Re, Rerj 3Y| oY [Re,' R_z,.]w
(Gr), a* 2 %&* , ov
§- 23
Re? a7 * S
s _a_ . a)|sk
Re,Pr,  Reg,|
k* a ,_a .oz @@r) 30 _ @G
R, k| | ¥ T o 7
3 Rer o.Re} ax d,.Re,’» ay
D + 85
z* a a T ae et
[RTL‘—U,&,] G %
> @G 3 R
CJ;F a'.,.Re: a_)(:+E * Saw
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Dimensionless Y-Momentum
Similarly, all of the source components of the Y-Momentum equation are placed in the

constant portion of the source term.

st-2 ||l 2|2, |
3% ||Re; Rey| oY| OY ||Rey Rer| 37
B 6.39)
LOd 2 @ +Shy 639
Re> 3 oy
L

v v v v v
Sc + Sys + Spuoy + Stwr * Sgu

Dimensionless Energy

Similarly the QUICK component is piaced in the constant part of the source term.

9
Se= S’Qu 6.40)
Dimensionless Turbulent Kinetic Energy
Neither the generation term,
Sén = G*, 6.41)

or the QUICK correction, Ss;,, are explicit functions of turbulent kinetic energy and are

therefore placed in the constant part of the source term.
The dissipation term is not explicitly a function of X*. Due to the strong coupling of K*

and €%, this term may cause stability problems. To add stability to the calculations, the

Dimensionless Dissipation of Turbulent Kinetic Energy

The source terms in the dissipation equation are linearized in a similar manner to that of
the turbulent kinetic energy equation . In each of the source terms (with the exception of the
QUICK and Yap corrections) the term, ET-.’ appears. This term is calculated from the definition
of the Reynolds number based on turbulent viscosity (eqn. 5.28).

[2] o Ju Ga Rerk” 648
k* a

The generation term is not explicitly a function of , and is added to the S portion

of the source term

7 o | £ G Rep k* 6.4
Seen = GfiG l:-———" “ar ] 647

The dissipation term is added to the variable part of the source term as it is always

negative.

. 5 f, C, Rep k™ (6.48)
Spis = Gy [—“—La——
As in the case of the turbulent kinetic energy, the buoyancy term may be either positive
or negative depending on the temperature gradient. For a positive buoyancy term, it is added to

the constant part of the source term.
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dissipation term is written in terms of the Reynolds number based on turbulent viscosity (eqn.

5.28) and is added to the variable part of the source term.

x* 1 £, C k™ Re.
Skg=——[-e*l=- " 77T (6.42)
DI = T3 [ 1 z
‘The buoyancy term,
oy - S 2 PO 6
el TR:’ X orRe: Y ’
T Ther
can be either positive or negative d ding on the temp i If this term is positive

it is added to the constant part of the source term. If it is negative, it is linearized using the

definition of turbulent Reynolds number (eqn. 5.28) and is added to S:.

- w
. | _az (6.4,
ke [f [% Re,:l €4

s

‘The extra term, -D* , is always negative for the Jenes-Launder low Reynolds number

approach as shown by
T3 2 T3 2 (6.45)
k° . a ak* k" 3
Sgr = D" =22 ||&E __ =z -
Rep [ 24 ] * [ Y ]

‘This term is also linearized and added to the variable source term.
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z &*(Gr)r | f, C, Rep k*
Sguay"c;fs—J e 1T %‘
arRer a
(6.49)
3 N
a’(Gry)r | f, C, Rer k
cn 20 [—“ e | 2
orRer
If the buoyancy term is negative, it is linearized using equation 6.50 and is added to Sp.
=2
T Su G k™7 Rep (6.50)

a
Since the QUICK correction is not explicitly 2 function of B , it is added to Se.

A summary of the linearization of the source terms s presented in Table 6.3.

Table 6.3: Summary of Source Term Linearization

@ s¢ st
U | S + Sfor + St + Sk *
V| St + Sthor *+ St + S0 *
6 St 0.
K| sk, + max@., Sk + S5 Sk, min©., Siie) + S&
3 ki
T | Sy + max(0., Sk + Sk + Sk 85, min@., She) + Sh
= T
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6.7  Variable Property Model
When the variable property option is selected, the local Reynolds, Prandd and Grashof
numbers are computed based on the local thermophysical properties. In addition the Boussinesq

approximation is by ing the term as, -pg. This correction

is in the form of an additional source term in equation 6.4. For the dimensionless y-momentum
equation, this "variable property” source term is

-g(p-Px

Spp=
124 Pz

B st ©.51)
L7

The effect of using a constant property model with the Boussinesq approximation or using a

variable property mode! with equation 6.51 will be discussed in section 7.4.4.

6.8 Pressure-Velocity Coupling
The main difficulty when solving the governing equations is that the velocities cannot be

directly

p from the quations (eqns. 5.22 & 5.23). These equations contain
the pressure gradient which is not expressible in terms of velocities. The continuity equation
(eqn. 5.21) indirectly determines the pressure field. The SIMPLER algorithm is used to couple
the pressure and velocity fields. This algorithm is described in this section as cited by Patankar
[68].

The discretized momentum equations may be written as

a u =Y Gty +b+A@p-pp ©6.52)

The coefficient expressions for 2, a, and b are given in equations (eqns. 6.6-6.12). As stated

above it is not possible to directly solve for the ities using the di
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(]
- pp) AX A N B - . 6.63
ab.“’;%f»{(au Yo = @u®) ] 8y + [0y, - v ) ax 63
where the pressure coefficient, d, is defined as
A _ Ay
4= by
6.69
A, 4
d, =2 d =2
an al‘
The velocities may then be corrected using
u = ul +d,pp - P 65
Vo = vy + d,Bp - PV 665
Once the ities are d, the temp may be calculated using Eq ©.5 -

6.12).

69  Summary of Steps in a Computational Cycle
The following are the steps in a cycle as cited by Patankar 68,691.

1. Start with a guessed velocity field.

2. Calculate the coefficients for the momentum equations and hence calculate 8, 9 from the
‘momentum equations such as equation (6.52) by substituting the values of the neighbour

velocities. Note that this is simply a itution; no si ions are

involved.
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equation as the pressure field is not known. It is however, possible 10 solve the momentum
equations for a given pressure field. Let u” denote the velocity field based on an estimated

pressure field p*. Thus

a u] =Y aguy+b+ A0 -pg) 6.53)

In general, this estimated pressure and velocity field will not satisfy the continuity

equation. Thus these values must be corrected using

p=p+p (6.54)
u=u"+u (6.55)
v=viey (6.56)

where the asterisk refers to the estimated component and the prime denotes the correction,

A discretized equation for the pressure correction may be derived and cast into the form

@pPp = GgPE * @wPw * ANPN * “sP.; * o 57
a, = p,d,By ©.58)
ay = by ©59
ay = p,d,Ax (6.60)
ag = p,d.Ax (6.61)
Gp = G + Qy + Gy + ag (6.62)
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3. Calculate the coefficients for the pressure equation (6.53), and solve it to obtain the

pressure field. The simultaneous equations are solved with the use of Gauss-Seidel.

4. Treating this pressure field as p*, solve the momentum equations to obtain u® and v*.
‘These velocities are calculated using a method described in section 6.8.

5. Calculate the mass source b from equation (6.63) and hence solve the p’ equation (6.56).
The simultaneous equations are solved with the use of Gauss-Seidel.

6. Solve the discretized equations for temperature, turbulent kinetic energy, and dissipation
of turbulent kinetic energy using Equation (6.4). These variables are also solved using
2 method described in section 6.10.

7. Return to step 2.

6.10  Solution of Algebraic Equations
The application of the finite difference method previously described leads to a system of
equations that must be solved. These equations, written in matrix form, are of the form
[A] {6} = {b} ©.67)

where the coefficient matrix, [A] is di 1, {¢} is the and {b} is a matrix of

constants. In the present work, the solution of this matrix equation has been implemented using
three procedures: the Alternating Direction Jmplicit (ADI) procedure of Peaceman and Rachford
[79), the Strongly Implicit Procedure (SIP) of Stone [80], and the Modified Strongly Implicit
Procedure (MSI) of Schneider and Zedan [81]. For a comparison of these solution methods,
several case studies were investigated. The results of these case studies indicated that each
method yielded identical results with a maximum difference of CPU time of 4.6%. While all of

the solution p are available in the code, the MSI procedure has been adopted

in most cases as this procedure was found to be most stable.
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6.11  Description of FLUENT Software

Two and three-dimensional solutions have been obtained with the commercial software
package, FLUENT [63]. These results were obtained on a Silicon Graphics workstation and were
displayed with the commercial graphics package, TECPLOT. FLUENT is a genesal purpose
software package capable of predicting many types of flow. The discretization is based on 2
finite control volume approach and the pressure-velocity coupling is 2 SIMPLE family algorithm.
The present solutions are obtained using a first order differencing scheme, a variable property
model and a standard k-¢ turbulence model with wall functions. Low Reynolds number

turbulence models are not available in FLUENT.
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completely dominated by inertia and case 4 is i The ining two cases
p i diate degrees of buoyancy and inertia. Although case 1 is isothermal, the right

vertical wall of the cavity is referred to as the "heated wall”. The fluid properties are computed

from equations 5.49 t0 5.53 and are

ata p ¢ given by equation 5.5.
The Richardson number is 2 dimensionless parameter and is defined as the ratio of the

buoyancy to inertial forces. It is derived from the dimensionless buoyancy term in the
momentum equation and is calculated from

Gr,

Ri=a®—2 &)

Rep
The scaling factor, @2, is present as the Grashof and Reynolds numbers are based on different
length scales.

The experimental results are shown in sections 7.2.1, 7.2.2 and 7.2.3. These include the

flow visualization, LDA and the results respectively. The ical
results are presented in sections 7.3 to 7.5. A comparison of the experimental and numerical

results is presented in section 7.6.

72  Experimental Results

Although the flow in the cavity is observed to oscillate, the experimental data can be
taken as reliable since high Rayleigh number convective flows are by nature unsteady. Le Quéré
[82] used direct numerical simulations of turbulent flows to investigate natural convection in
vertical rectangular enclosures. Le Quéré {82] observed that if the Rayleigh number exceed some
critical value, the flow was unsteady. For a water filled cavity with an aspect ratio of 10, the

critical Rayleigh number was found to be between 8 X 10° and 9 X 10°. Henkes and

CHAPTER 7

RESULTS AND DISCUSSION

7.1 Introduction

The interaction of buoyancy and inertia in the cavity described in Figure 3.1 has been
investigated in the present work. Four cases are considered and the specific parameters are
summarized in Table 7.1.

Table 7.1: Summary of Cases

Case 1 2 3 4
a 0.027 0.027 0.027 0.027

A 2 2 2 2
v, (mis) 123 124 .063 063
T, (0 20.0 2.5 63.0 80.6
T, (° C) 20.0 223 24.0 259
Pr 7.03 5.14 4.05 3.36
Rep 973. 1283. 808. 950.
Rey (10%) 3.61 4.76 3.00 3.53
Gryy(10%) 0 2.87 10.7 24.2
Ray (10'9) 0 1.48 4.33 8.13
[ mig 0 127 1.9 19.4

The first case is purely turbulent recirculating flow as this case is isothermal. The remaining
cases have increasing amounts of heat transfer. These cases are selected as they cover the eatire

range from intecia dominated flows to

flows. In other words, case 1 is
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Hoogendoorn [83] studied natural convection in water filled vertical square cavities and found
the critical Rayleigh number to be between 4 X 10° and 5 X 10%. Le Quéré [82] attributes this
instability to the interaction of travelling waves in the vertical boundary layers and thermal
instabilities along the horizontal walls. For case 2, 3 and 4 of the present work, the flow is
expected to be unsteady since the Rayleigh number for these cases exceeds the critical values
cited. It must be noted that the magnitude of the oscillations is small in comparison to the large
scale fluid motion. As an example, the separation location (defined in section 7.2.1) is observed
to oscillate within a 5 mm band. However, the size of the large scale flow cells are at least an
order of magnitude higher. Thus the time-averaged governing equations would apply to the flow
field.

An uncertainty analysis for the d data is p in dix B.

72.1 Flow Visualization
Although two methods of flow visualization are presented in Chapters 3 and 4, only the

results of the laser induced ique is The quality of the results of the

particle streak ique are dard when reproduced from a slide. Neither technique coutd
be recorded on the camcorder due to insufficient light. In the plane of symmetry (x-y plane), the
results of the flow visualization suggest that, for the heated wall cases, two flow regimes are
possible. These two flow regimes are shown schematically in Figure 7.1. The shaded region
shows the region of illumination in the cavity. Unless otherwise specified, the coordinate system
used throughout this chapter is defined in Figure 3.1.

The first regime is refecred to as “separated flow" and is shown schematically in Figure

7.1 (3). The inlet jet enters the cavity and flows along the top boundary. When the heated wall
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Figure 7.1: Observed Flow Regimes
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() Wall Plane
Figure 7.2: Case 1-Flow Visualization

(a) Plane of Symmetry

is reached, the flow turns downward. However at some point, this inertia driven flow meets an
upward flow due to buoyancy or recirculation and the flow separates at the wall. This separation
height, Yyep, is shown in Figure 7.1(2) and is defined as the distance from the separation point

to the bottom of the cavity. The fluid then flows toward the exit of the cavity. This flow regime

is ch ized with three reci: ion regions. The first recicculation cell is a clockwise
rotating cell due to the inlet jet. The second is 2 counterclockwise cell located in the bottom
corner adjacent to the heated wall. The size of these two rotating cells is dependent on the
Richardson number. A small counterclockwise rotating cell is also observed in the top corner
adjacent to the heated wall.

The second regime is referred to as "buoyancy dominated flow" and is shown
schematically in Figure 7.1 (b). The inlet jet enters the cavity and begins to flow along the top
boundary. However the buoyancy cell dominates the flow and the inlet jet separates along the

top boundary. The distance from this separation point to the inlet is referred to as the

“penetration depth”, X;.c,. This regime has a large kwise cell due to . A
smali clockwise rotating cell may be observed below the inlet adjaceat to the adiabatic vertical
wall.

The separated flow regime is observed in the isothermal and low Richardson number
cases (Cases 1 to 3) as shown in Figures 7.2 (2) t0 7.4 (2). The penetration of fresh water into
the cavity is shown by green dye in these figures. As the relative magnitude of buoyancy is
increased (and hence the Richardson number), the clockwise inertially driven cell decreases in

size and the counterclockwise buoyancy driven cell enlarges. As a result of the changing of size

of cells, the on height i If the Richardson number is high enough, buoyancy will

dominate the flow and the separation location will move up the heated wall and across the top

(b) Wall Plane
Figure 7.3: Case 2-Flow Visualization

(a) Plane of Symmetry




(b) Wall Plane

Cnse 3-Flow Visualization

Figure 7.4

(a) Plane of Symmetry

of the cavity. This is observed in the highest Richardson number case (see Figure 7.5 (3)). Thus
the buoyancy dominated flow regime may be considered a special case of the separated regime.

Although the scope of the present work deals with the steady state solutions, the
separation location was observed to oscillate with an amplitude of about S mm. The frequency
of this oscillation will be discussed in section 7.2.3.

The two dimensionality of the flow is also studied with flow visualization. The flow field
in a plane 4 mm from the heated wall (hereafter referred t0 as the "wall plane”) is presented in
Figures 7.2 (b) to 7.4 (b). Although the dye is injected at the entrance of the developing length,
the dye is not visible at the inlet of the cavity as the laser light is blocked out by the entrance
channel (see Figure 7.1). The separation height may be quantified by measuring the height of
downward penetration of green dye adjacent to the heated wall in the plane of symmetry. In
addition, the separation height profile in the y-z plane is studied by observing the flow
visualization in the wall plane. In this plane the separation height is 2 maximum near the
symmetry plane and a minimum near the faces of the cavity. Although the flow visualization for
the plane of symmetry and the wall plane was performed at least a week apart, the separation
heights in the plane of symmetry appear to be consistent with the separation heights in the wall
plane. This suggests the work is repeatable. In Figure 7.5, the penetration depth cannot be
quantified as this point is not in the illuminated region of the cavity (see Figure 7.1 (). A

summary of the di i ion heights is p d in Table 7.2.
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(a) Plane of Symmetry
Figure 7.5: Case 4-Flow Visualization
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Table 7.2: Summary of Dimensionless Separation Heights from Flow Visualization

Yo

Case Ri Symmetry T Wall
Plane Plane

1 0 .37 34

2 1.27 54 53

3 11.9 73 .66

72.2 Velocity Measurements
The results of the laser Doppler are d in Figures 7.6

t0 7.9.). In each of these figures, the results are shown in the inlet plane (y = 293 mm), the
plane of symmetry (z =0), the wall plane (x = 144.5 mm) and the exit plane (y = 4 mm). Only
the u component of velocity is measured in the inlet and exit planes and only the v velocity
component is measered in the wall plane as these components of velocity are dominant and
because of difficulties in measuring velocities close to a wall. The time-averaged and fluctuating
components of velocity (u, v", v, and v*) are presented on a floppy disk in Appendix C.

‘The isothermal case is shown in Figure 7.6. The velocity measurements in the plane of

symmetry are consi with the flow visualization p in Figure 7.2. The flow in the bulk

of the cavity is inated by one large ise rotating cell. Small secondary counter
clockwise cells are located in each of the corners adjacent to the heated wall. The flow regime

is separated flow and the separation height is i 70 mm or 0.24 in dimensionless

units.
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The inlet plane shows the fluid enters the cavity with a flat velocity profile. As the jet
moves across the top of the cavity, the velocity profile is less uniform as the velocity is 2
maximum in the plane of symmetry and slowly curves to zero at the faces of the cavity. In the
vicinity of the heated wall, small regions of backflow are shown in the corners.

Above the separation height (approximately 70 mm or 0.24 dimensionless units), the
downward flow adjacent to the heated wall (the wall plane) has a nearly uniform velocity
distribution., The flow appears to lack two-dimensionality at the separation height and at the top
and bottom corners of the cavity.

The velocity has a uniform distribution in the exit piane and hence appears to be two-
dimensional in this region.

The measurements for case 2 are presented in Figure 7.7. In the plane of symmetry the
results are again consistent with the flow visualization observations. When compared with the
measurements for Case 1 (Figure 7.6(b)), the large inertially driven cell has decreased in size.
The counter clockwise rotating cells adjacent to the heated wall have increased in size due to
higher vertical momentum as heat is transferred from the wall to the fluid. The flow regime is
separated flow and the separation height is 120 mm or 0.4 dimensionless units.

At the entrance of the cavity, the flow has a reasonably flat profile as shown in the inlet
plane. However, the boundary layers adjacent to the two faces (z = & 24 mm) appear to be
thicker than in the preceding case. For x greater than 0.1 m, the flow is influenced by the
counterclockwise cell in the top corner adjacent to the heated wall and lacks two-dimensionality.

In the wall plane, the flow is two-dimensional everywhere except in the top corner. The
separation height in this plane is shown to be approximately 0.15 m or 0.5 dimeasionless units.

The velocity is also shown to be much higher above the separation point.
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The velocity vectors in the inlet plane suggest that the buoyant flow is two-dimensional
when it starts to flow along the top boundary. However as the flow approaches the incoming jet,
it lacks two-dimensionality. This plane shows the penetration depth to be approximately 25 mm
or 0.084 dimensionless units.

In the exit plane the flow lacks two-dimensionality everywhere except in the vicinity of
the cavity exit.

For each of the cases, detailed velocity measurements of the separation regions are shown
in Figure 7.10. The location of separation is summarized in Table 7.3 and is compared with the
‘measured separation locations from the previous figures. For each of the cases, the time required
to collect the velocity data for the plane of symmetry was of the order of a week. In each of the
figures presented thus far, comparison of the separation heights would suggest that the experiment
is fairly repeatable as the separation heights differ only slightly between figures.

The flow in the exit region is important to understand as the correct boundary conditions
are not known apriori when modelling the flow. It may be possible to assume the flow is a fully
developed outlet (3%/3X = 0) or the flow may not be fully developed and the outlet channel may
have to be modelled. For each case, the exit region is shown in Figure 7.11. The velocity
vectors in this figure suggest that in the exit region the flow is not fully developed for any case.
Thus an outlet channel must be modelled and the fully developed flow boundary condition can
be applied at the exit of this channel. In general the higher the Richardson number, the steeper
the slope of the velocity vectors at the exit. For the buoyancy dominated flow case, the vectors

are almost vertical.
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The velocity measurements for Case 3 are shown in Figure 7.8. In the plane of

symmetry the overall flow field and location of separation agree with the flow visualization

results of Figure 7.4. The clockwise rotating cell has in size to i y the
upper half of the cavity. Both of the counter clockwise rotating cells adjacent to the heated wall
have increased in size and strength. The separation on the heated wall occurs at approximately
190 mm or 0.64 dimensionless units.

In the inlet plane the flow is similar to the previous case. However the counter clockwise
cell in the upper corner is stronger and hence more backflow exists. In the region of backflow
the flow is not two-dimensional.

The velocity vectors in the wall plane suggest that the flow is nearly two-dimensional in
this plane with the exception of the region near separation. In this plane, the separation height
is 190 mm or 0.64 dimensionless units.

The velocity measurements for case 4 are presented in Figure 7.9. In the plane of
symmetry the flow in the bulk of the cavity is driven by buoyancy. The water adjacent to the
heated wall rises as the fluid is heated. When this upward motion meets the top boundary, the
fluid turns toward the entrance until it meets the incoming jet. At this location both the buoyancy
driven flow and the incoming flow turn towards the bottom of the cavity. As the fluid reaches
the bottom boundary, the fluid divides with some turning towards the heated wall and the
remainder leaving the cavity.

The velocity vectors in the wall plane show the fluid is nearly two-dimensional in this
plane. At the bottom of the cavity the velocity profile is flat but as the fluid moves up the wall,

the velocity vectors are slightly larger at the faces of the cavity.
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Figure 7.11: LDA Measurements in Exit Region

Table 7.3: Summary of Di ionless Experi Locations
Yoo Xoen |
Case 1 2 3 4
Ri 0 127 | 119 | 194
Plane Figures
Flow Visualizaticn
Symmetry Plane || 2@7S@ | 37 54 53 -
Flow Visualization
‘Wall Plane 7.2(2)-7.4(2) 34 53 66
LDA
Symmetry Plane 7.6(b)-7.9(b) 24 4 64 -
LDA 7.6()-7.8(0),
Wall/Inlet Plane 7.9) 24 5 64 083
LDA "
Separation Region Figure 7.10 24 46 65 083

72.3 Temperature Measurements

Typical thermocouple outputs are shown in Figure 7.12 for Case 2. For the temperature
measurements, the sampling period was 200 seconds and the sampling frequency was 10 Hz as
described in section 4.4. The measurements shown in Figure 7.12 are approximately 0.4 mm
from the heated wall at heights of 200, 140 and 80 mm. These heights correspond to typical data
above, at and below the separation location respectively.

Above the separation location, the tim ged di il is 0.27 and

the temperature fluctuates between 0.05 and 0.65. In this region the fluid has receatly entered
the cavity, yet, the temperature has already risen to 27% of the total temperature difference in

the cavity. The main modes of heat transfer to this water is due to two mechanisms. Firstly,

the warm water that is rising along the vertical boundary opposite the heated wall (see Figure 7.7)
mixes with the incoming jet. Secondly, at the top of the cavity, the rate of heat transfer is high
adjacent to the heated wall as the cold jet impinges directly on a hot surface.

At the

D height, the ti 1ged temp was found to be 0.55. At this
location the temperature fluctuates almost the entire temperature range in the cavity (between
dimensionless temperatures of 0.05 and 0.98). In dimensional terms, this corresponds to
temperature fluctuations between 23.3 and 42.1 °C. This large fluctuation is due to the

oscillations in the separation height as observed in the flow Vi ion. When the

location oscillates below the th the detects

ly cool water as

ibed in the precedi However, when the separation location moves above the
thermocouple, the thermocouple detects hot water as will be described in the next paragraph.

Below the

height, the tim: ged was 0.79 and the temperature

fluctuates between 0.55 and 1. The temperature of the water is high in this region as the fluid

is ing in a counter clockwise cell adjacent to the heated wall. Cooling of this cell is due

to the interaction of this cell with the downward flowing warm water after it separates from the
heated wall.

Fast fourier transforms of several typical thermocouple outputs were performed, The
results of the FFT analysis suggests that no specific frequencies were found to be dominant in
the temperature traces.

For each of the cases, the temperature profiles at three heights are shown in Figure 7.13.
For all cases the thermal boundary layer is approximately 3 mm thick. The temperature gradient
at the wall was highest for case 4. Outside of the boundary layer, case 2 shows 2 slight

temperature dependence on height. For this case the lower the measurement location, the higher
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the temperature. ‘This observation is consistent with the flow field as shown by comparison of
the 80 and 200 mm height profiles. At the 80 mm height, the profile height is below the
separation location and the liquid is warm because it is in the buoyancy dominated recirculation
region. In addition, the temperature gradient at the wall is lower at this height because the
difference between the isothermal wall temperature and the local bulk fluid temperature is small
resulting in a lower heat flux. The profile at the 200 mm height is above the separation location
and the fluid is colder adjacent to wall because the fluid motion is driven by the cold inlet jet.
Since the temperature difference between the wall and local bulk temperature is higher, the heat
flux in this location is higher resulting in a steeper temperature gradient at the wall.

In cases 3 and 4, the temperature outside of the boundary layer is independent of height

as all the profiles become ic to adi of 1 ly 0.15. The

at the three jons are similar because they are all in the buoyancy dominated
region.

The temperature profiles along the vertical centreline are shown in Figure 7.14. At
heights greater than 8 cm, case 2 and case 3 have almost identical profiles but differ below this
height. Comparison of Figures 7.7(b) and 7.8(b) shows a difference in the size and shape of the
counter clockwise cell in the bottom corner for these cases. In case 2 the cell is shorter but is
wider then the cell in case 3. The cell extends beyond the vertical centreline in case 2 but it

roughly ends at the vertical centreline in case 3. Since this cell is in contact with the heated wall,

the fluid in the cell would be at an elevated temp ‘Thus the profile below a
height of 8 cm should be higher for case 2. The temperature profile for case 4 has a similar
slope as the other cases but is offset by 0.1 dimensionless temperature units. This elevated

temperature is due to the fact that the buoyancy driven counter clockwise cell occupies the entire
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height of the cavity.

73  Verification of the Computer Code
Since there are no detailed studies of turbulent mixed convection in rectangular

enclosures, verification of the current program is pli by studying different

aspects of the program. Three case studies are modelled. These include laminar natural
convection, laminar mixed convection, and turbulent natural convection. These case studies are
described in detail in sections 7.3.1 to 7.3.3. For all of the numerical predictions presented in
this chapter, a solution is assumed to be converged if the sum of the temperature residuals is less

than 105 and the sum of the residuals for each of the other variables is less than 103,

73.1 Verification Study 1-Laminar Natural Convection

The first verification study is laminar natural convection in a right vertical square cavity.
This study is shown schematically in Figure 2.2 and has been discussed in section 2.2.3 of the
present work. This is a relevant study as natural convection may be considered 2 limiting case
of mixed convection and Ostrach [16] states that this type of cavity contains all of the physics
relevant to all confined natural convection problems. The specific problem described by de Vahi
Davis and Jones [19,20] was selected for a test case as accurate solutions are available in the
form of a bench mark solution. The motivation for providing the bench mark solution was to
have something to compare with for the validation of computer programs.

Although contributions for Rayleigh numbers of 10%, 10, 10%, and 10° were requested,
only two cases are shown in the present verification. The cases considered are Rayleigh numbers

of 10° and 105, These cases were selected as the mechanism for heat transfer is dominated by



conduction in the low Rayleigh number case (isotherms are nearly vertical) while the high
Rayleigh number case is dominated by convection. The cavity aspect ratio is 1 and the fluid
Prandtl number is 0.71 which corresponds to air.

The contour plots of stream function, horizontal velocity, vertical velocity, and
temperature, for both the present work and the bench mark solution, are presented in Figures
7.15 t0 7.18. ‘The streamline plots are not labelled as the purpose of these plots is to show the
overall flow patterns in the cavity. The remaining contour plots are not labelled but the contour
values are equally spaced. As an example, the temperature contours in Figure 7.18 may be

written as

6 = 0(0.1)1 1.2)
This indicates that the minimum contour value (at the right wall) has a value of O and the
maximum contour value (at the left wall) has a value of 1. The remaining contours are presented
in increments of 0.1. Comparison of the contours suggest that, qualitatively, the present work
has excellent agreement with the bench mark solution. In addition, the temperature and velocity
fields appear to be consistent with each other. A complete discussion on this topic and on the
flow field may be found in reference [84].

A summary of the important flow variables is presented in Table 7.4. These flow
variables are the maximum horizontal velocity on the vertical midplane and its location, the
maximum vertical velocity on the horizontal midplane and its location, the average Nusselt
number on the heated wall and the maximum and minimum Nusselt numbers on the heated wall

and their locations. The varizbles are in dimensionless form as described by reference [19].
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732 Verification Case Study 2-Laminar Mixed Convection
The fluid motion in the preceding case study is due solely to buoyancy. However, in
mixed convection problems the fluid motion is due to a combination of inertia and buoyancy.

In addition, the inlet and outlet boundary conditions must also be tested. The second verification

problem is laminar mixed ion in a

The problem is shown schematically in Figure 7.19 and may be described as a vertical
rectangular cavity. The horizontal wells are adiabatic and the left and right walls are maintained
at T and Ty respectively. The fluid enters the cavity horizontally at the bottom left corner and
leaves the cavity horizontally at the upper left corner. Oosthuizen and Paul [9] modelled this
flow using a finite element stream function-vorticity formulation.

“Three cases are considered for comparison. These cases are summarized in Figure 7.19
and have an aspect ratio of 2 and Richardson rumbers of 0, 1 and 10 which are comparable to
cases 1, 2 and 3 of the present work.

Streamlines are shown in Figure 7.20. For each case, the streamline legend corresponds

10 both the prediction of Oosthuizen and Paul {9] and the present prediction. Overall, the preseat

solutions compare well with the previousty publi T The lines of the present
work are smoothec than the contours of Oosthuizen and Paul. This difference is likely attributed
1o the difference in mesh size. In the present work, the results of a 45 by 45 mesh are presented.
Solutions obtained with a 21 by 21 grid yielded almost ideatical solutions to the published
solutions. The preseat solution predicts a small clockwise rotating cell in the upper right hand
corner of the cavity which is not predicted by Oosthuizea and Paul [9]. This difference is also

attributed to the difference in mesh size as a coarse mesh is unable to resolve this cell.
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Table 7.4: Verification Study 1-Summary of Important Flow Variables

Ra 10° 10° 108 108

Bench Present Bench | Present
Mark Work Mark ‘Work

3.649 3.643 63.64 64.81
0.813 0.804 0.850 0.853

3.697 3.693 219.4 220.5
0.178 0.171 0.038 0.033

Nu 1.117 1.118 8.817 8.831

Nug,, 1.505 1.507 17.93 17.78
Y 0.092 0.083 0.039 0.033

Neg, | 0692 | 0691 | 0989 | 1.044
Y 1.000 | 1.000 | 1.000 | 1.000

><E< »<Ec

Small differences between the bench mark solution and the present work exist. Some
difference is attributed to the method in which the maxima were determined. In the present work
the maxima (and their position) are determined from the grid point values only while the bench
mark used interpolation to obtain the maxima. This table indicates that agreement between the
prsent work and the bench mark is good. However slight differences at 105 suggest that a finer
mesh may have to be used for better agreement at this Rayleigh number.

In both the table of important flow variables and the contour plots, the present predictions
are excellent when compared with the bench mark solution. This would suggest that the
computer code is capable of predicting laminar turbulent buoyant flow. In other words, the
horizontal velocity, vertical velocity, pressure and temperature are coupled correctly. In addition

the mathematical models for these variables and the ical ion are also adeq
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Figure 7.19: Verification Study 2-Laminar Mixed Convection
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In both ictions, the flow is

yancy i at a Grashof number of -10° (see
Figure 7.20 (¢)) which corresponds to a Richardson number of 10. This buoyancy domination
is not observed in the lower Richardson numbess cases.

The present code is d with a

ly i code
based on different mathematical variables (stream function-vorticity) and a different numerical
formulation (finite elements). The present predictions compare well with the predictions of
Qosthuizen and Paul [9]. The differences in the flow field have been discussed and are attributed
to differences in mesh size. This verification study suggests that the present code is capable of
predicting laminar flow with both interia and buoyant forces present. In addition, the inlet and

outlet boundary conditions appear to be modelled correctly.

733 Verification Case Study 3-Turbulent Natural Convection in an Enclosure

In the preceding two verification cases the flow was assumed to be laminar. In this case
a trbulent flow is modelled. The cavity is similar to the first verification case (see Figure 2.2).
However, for this case the aspect ratio is 5, the Rayleigh number is 4X10'° and the Prandtl
mimber corresponds to air. The case was studied experimentally by Cheesewright et. al. [S2)
and computationally by Davidson [42,53). In all of the figures of this section the data points
correspond to the experimental results of Cheesewright [52], the solid line corresponds to the
predictions of Davidson [42] and the dotted lines corresponds to the present predictions.

The vertical velocity profile along the horizontal centreline is presented in Figure 7.21.
The present solutions have good agreement with both the expecimental results and the predictions

of Davidson. The present solutions are symmetric while the experimental dat2 and the

of Davidson are ic. This difference is due to variation of the thermophysical
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properties as the present model does not have a variable property model for air. In the core of
the cavity, the experimental profile and the present profile are flat but the Davidson®s predictions
are sinusoidal. Davidson [42] attributes this to his overprediction of the strength of secondary
vortices in the cavity.

‘The dimensionless temperature profile along the vertical centreline is presented in Figure

7.22. The present predictions agree well with the predictions of Davidson but differ from the

l data. The ictions are symmetric as defined in equation 7.3

(1-9)|r=9|(1-r) a3
Davidson [42] attributes the asymmetry in the experimental data to heat iosses through the side
walls.

‘The heat flux profile along the vertical walls is shown in Figure 7.23. Both the present
predictions and the predictions of Davidson agree well with the experimental data. At the hot
wall, the experimental heat flux is slightly higher than the predicted heat fluxes. In contrast to
this, the experimental heat flux is lower than the predicted heat fluxes at the cold wall. Davidson
[42] attributes these differences to heat losses through the side walls of the experiment.

The profiles of turbulence parameters along the horizontal centreline is presented in

Figure 7.24. As expected the present ictions are ic. The 1 data is

skewed toward the heated wall and the predictions of Davidson are skewed toward the cold wall.

For x/W > 0.5, the present predictions are in excellent agreement with the experimental data.

In the core of the cavity, the present model prediction of the mini turbulent fl; if

is
comparable to the experimental data (/k = 0.006 m/s) while Davidson predicts higher

turbulence levels in this region. Adjacent to the vertical walls, the predicted peak values are
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slightly less than the experimental values. The profile of the damping function, f,, along the
horizontal midplane is shown in Figure 7.24 (b). For x/W < 0.4, the present predictions and
the Davidson predictions are in excellent agreement. In the core of the cavity, Davidson’s
predictions differ from the present predictions. Close to the cold wall (x/W > 0.9) the
predictions are also in excellent agreement. Tne differences are due to the variation of
thermophysical properties. For the present predictions, a constant thermophysical property model
is used and hence the solutions are symmetric. Davidson’s predictions are based on a model
which allows the fluid properties to vary with temperature and hence the profiles are asymmetric.

The profiles of turbulent viscosity at various cavity heights are shown in Figure 7.25.
At all cavity heights the present predictions agree well with the predictions of Davidson. In
general, the agreement is excellent close to the walls but the present model tends to predict a
higher value of turbulent viscosity in the core region. This observation is explained by Figure
7.24(b). Adjacent to the walls, the predictions of f‘l is comparable, but in the core of the cavity

the present prediction of f“ is typically lower than Davidson’s prediction. Comparison of Figures

7.25 (2) and 7.25 (d) show that the present solutions are again ic while the
of Davidson are asymmetric.
For the velocities, temp and il ities, the present predictions agree

well with both the experimental results of Cheesewright [52] and the predictions of Davidson
{42]. The differences between the present predictions and the predictions of Davidson are most
likely due to the variation of fluid properties. The experimental data differs from the predictions
because of heat losses in the experiment. The results of this study suggest that the turbulence is
modelled correctly and is coupled to the velocities, temperature and pressure fields properly. In

addition, a low Reynolds number k ~ & model is adequate for buoyancy dominated flows.
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145

convection in a rectangular square cavity, Henkes et al. [55] state that nonunique solutions can
be obtained in the Jaminar turbulent transitions. Although it is possible that nonunique solutions
exist for this case, it is more likely that the solution scheme is unstable for high under-relaxation
parameters. This conclusion is drawn from the fact that the predicted separation height (using
high under-relaxation) for case 2 is lower than the predicted separation height for the isothermal

case. Physically, this trend is not expected as discussed in sections 7.2.1 and 7.2.2. In addition,

the solution obtained with the low und ion factor is i correct as it is consistent

with the ictions for the other i iate case (to be di d in section 7.5.1).

7.42 Grid Independence Study

A grid i di test was on case 4 as this case has the steepest

temperature gradient at the heated wall as shown in Figure 7.13. In addition, it is well known
that the higher the Grashof number, a finer mesh is required to resolve the narrower boundary
layers adjacent to the walls. Solutions have been obtained on 51 by 51, 61 by 61 and 81 by 81
grids for this case. The number of grid points refers to the number of grids»wi:hin the cavity

itself and the grid points in the ping lengths are not d for in these numbers. The

grid spacing is nonuniform and uses a distribution of the form x°. The distribution is given by
Abrous [47] and is shown by equation 7.5.
n
X = (_lx)_ Jorx <05
2 (]
x= [- 2 -2x)" +2]Izﬁ7rx =05

7.4  Preliminary Testing of the Code for Mixed Convective Flows
7.4.1 Introduction
In applying the computer code to the present problem of turbulent mixed convection in

enclosures, diffecent aspects of modelling have been considered. These include the effect of

on i ies and the validity of the Boussinesq approximation,

QUICK differencing, the effect of different low Reynolds number k-¢ turbulence models, and the

inclusion of the Yap correction term. These aspects have been considered in sections 7.4.3 and
74.4.

The solution procedure described in Chapter 6 is iterative in nature and under-relaxation

is implemented to minimize the chance of divergence [69]. The under-relaxation was

implemented using the approach described by Patankar [69]. The discretization equation is

written as
. b, + b .
bp= 0 + ak[.z_":"“__ -¢P:| .4
P

where oy is the under-relaxation factor (2 number between 0 and 1) and

¢"p is the value of ¢p from the previous iteration.

p of initial itions and the under- ion factor used in the
jterative scheme have been obtained for all cases with the exception of case 2. In this case, two
solutions were possible depending on the under-relaxation factor used for the velocities. If the
velocity under-relaxatior factors are greater than or equal to approximately 0.25, one solution

‘was obtained with the predicted ion below the experi 1 ion location. For a

velocity under-relaxation factor less than this value a second solution was obtained. This solution

icted the ion above the experi observed value. For two-dimensional natural
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where x is the grid location based on a uniform grid,

1 is the grid exponent and

X is the grid location based on a non uniform grid.

If the exponent, n, is equal to unity 2 uniform grid is generated. As the value of n is increased,
the number of nodes in the vicinity of the wall is increased and the number of nodes in the core
of the cavity is decreased. Additional grid points are also inserted adjacent to the heated wall to
rtesolve the steep temperature gradient in this vicinity.

For all of the grids, the vertical velocity and temperature profiles along the horizontat
midplane are presented in Figures 7.26 and 7.27 respectively. In the velocity boundary layers,
the width and peak velocities for the 51X51 grid differ considerably from the 61X61 and 81X81
grids. In the core of the cavity, all of the computational meshes predict the flow to be nearly
stagnant. The core temperature for the 51X51 grid differs from the other grids.

The horizontal component of velocity and temperature profiles along the vertical
centreline is presented in Figures 7.28 and 7.29 respectively. These figures also show the 61X61
and 81X81 grids to give almost identical predictions while the 51X51 grid gives significantly
different predictions.

The profiles shown in Figures 7.26 to 7.29 suggest that nearly grid independent solutions
are obtained for the 61X61 grid. The velocity and temperature gradients at the heated wall are
important as this is the only boundary at which heat is transferred to the fluid. In order to model
the flow adequately, it is important that there are enough computational nodes in this region. For
the 61X61 grid used in Figures 7.26 and 7.27, there are approximately 13 computational nodes
between the heated wall and the peak velocity of the boundary layer. For the temperature profile,

there are approximately 10 computational nodes in the nearly vertical portion of thermal boundary
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1ayer adjacent to the heated wall. With this number of nodes, the steep gradients in this region
should be adequately resolved.

The identical grid was used to obtain a solution for the third verification study. This
study had a Grashof number based on the height of the enclosure of approximately 6X1010 which
is larger than the Grashof number for any of the cases in the present work. Since the flow field
in the verification study has similar relevant physics and the solutions obtzined are in excellent

with i results and i d dicti

it would suggest that the grid

is adequate for predicting the present cases.

7.4.3 Turbulence Model Study

For cases 1, 2 and 3 results have been obtained using 2 laminar flow model, a modified
form of the Jones and Launder model {41] and a modified form of the Lam and Bremhorst model
[42]. In addition, the commercial computational package FLUENT has been used to predict the
results with a standard k-¢ model with wall functions. Refer to section 7.5.2 for 2 complete
discussion of the predictions of FLUENT.

For case 2, the vertical velocity component along the horizontal midplane is presented
in Figure 7.30. Adjacent to the heated wall, the laminar flow model predicts the peak velocity

well but the boundary layer is too thick resulting in the peak velocity being too far from the wall.

As expected the boundary layers p by both 1 models are than the
laminar prediction. These models also predict the peak velocity to be much higher than the
experimental results. In the core region of the cavity, both the modified forms of the Jones and
Launder model [41] and the Lam and Bremhorst model [42] predict the flow close to the

experimental data while the laminar model predicts the velocity too low. Adjaceat to the

insulated vertical wall, all three models slightly overpredict the peak velocity. However, the
width and shape of the predictions at this boundary are reasonably close to the measured
boundary layer.

The horizontal component of velocity along the vertical midplane is shown in Figure
7.31. In this plane, the laminar model predicts the peak velocity of the inlet jet well but the
boundary layer is wider than the measurement. Both of the turbulence models overpredict the
‘maximum jet velocity and underpredict the boundary layer thickness. In the core region of the
cavity, the turbulence models have good agreement with the experimental data. The laminar
model has poor prediction in this region as the shape of the profile is considerably different from
the experimental points. At the bottom of the cavity both the turbulence models overpredict the
fluid velocity but are similar in shape to the measurements. In this region the laminar flow model
has poor agreement with the experiment 2s this model predicts positive values of velocity at the
bottom of the cavity while the measuremeats show the velocities to be negative. In other words
the laminar model is predicting the counter clockwise rotating cell at the bottom of the cavity to
be too wide.

The laminar model adequately predicts the peak velocity in the boundary layers along the
heated wall and at the top of the cavity. However, it predicts these boundary layers to be too

wide and has poor agreement in the core of the cavity and at the bottom of the cavity.

Qualitatively, the per of both models were However the
modified Lam and Bremhorst model [42] gave slightly better predictions in the boundary layers
forming on the left, right and bottom walls. For cases 1 and 3, the modified form of the Lam
and Bremhorst model [42] also gave slightly better predictions than the modified form of the

Jones and Launder model [41]. This study suggests that the laminar model is inadequate and the
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modified Lam and Bremhorst low Reynolds number modet has slightly better agreement than the
modified Jones and Launder model when applied to mixed convective flows. The modified Lam

and Bremhorst model has been used for all ining low 1ds number model

simulations.

7.4.4 Secondary Model Study

The selection and use of secondary models for the prediction of fluid flow and heat
transfer is problem dependent. The use of these models may enhance the predictions and thus
it is important to study whick models have an effect on the predictions for this particular class
of flow problems. In the present work, the effects of a variable property model for the fluid
propexties, a variable o model, the use of QUICK differencing and the use of the Yap correction
have been studied to determine the effect of these models on this class of flow.

The effect of the ther ical fes of water has been investigated.

The properties of water are given by equations 5.49 to 5.53. For the constant property model,

the fluid ies are atadi of 0.5 and 2 solution

is obtained using these properties throughout the cavity. However, some of these properties are

strongly dependent on temperature. The variation of these thermophysical properties with

is shown i in Figure 7.32. The vertical axis on this figure is the

percentage change from the reference property and is caiculated from

% Change from Reference= Lh%h_y .6
[]
where ¢|, is a fluid property evaluated at a di i 8, and
¢ |pep is the same fluid property at the p quation 5.5)
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The fluid density is almost a constant and the thermal diffusivity is only a weak function of
temperature. The kinematic viscosity and Prandt! number are strongly dependent on temperature
as these properties differ from the reference value by up to 75% and 80% respectively.

The dimensionless buoyancy source term (in the V momentum equation) is also presented

as a function of temperature in Figure 7.33. The narrow solid line refers to the Boussinesq

app This approximation assumes the buoyancy term in the momentum equation to
vary linearly with temperature as shown by a straight line in this figure. In all of the cases, the
variation is not linear as shown by the nonlinear curves. At both low and high temperatures, the
buoyancy term in the momentum equations is higher than predicted by the Boussinesq

imation. Ata di i 0f 0.5, the source term is zero for the

The i app has

i imation and for the nonli
the best agreement for this source term for case 2 and the worst agreement for case 4. As
expected, the higher the difference between the wall and jet temperatures, the worse the
estimation when using the Boussinesq approximation.

These figures suggest the use of a varizble fluid property model may be required to model
the flow. The use of this model and the models d in the i v h of this

section have been investigated in the present work. A brief summary of the other models tested
is presented.

As discussed in section 5.5, Kays and Crawford [67] state the turbulent Prandt] number,
o, is large adjacent to a boundary and decreases asymptotically to a value of about unity in the
Iaw of the wall region. This suggests the momentum diffusion is greater than the heat diffusion
npear the wall. Thus the rate of heat transfer may be slightly inhibited in this region using this

model.
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As shown in Figures 7.2 to 7.6, the flow field is skewed to the computational grid in
many areas in the flow domain. With this skewed flow, numerical diffusion may be introduced
into the calculations. In an effort to reduce this numerical diffusion, QUICK differencing (75]

is incorporated in the present computer code as described in section 6.4. This differencing

has been i d in the and eaergy ions and d in the

turbulent kinetic energy and dissipation of kinetic energy ions as this dif

scheme often leads to overshoots in pezk values [77). Solutions have been obtained using either

the hybrid scheme or QUICK diffe ing for the and energy

Ince and Launder [44] suggest the addition of the "Yap" source term to the conservation
of dissipation of turbulent kinetic energy equation. For separating and reattaching flows the
predicted Leat transfer rates in this vicinity have been found to be inconsistent with experimental
results when using a low Reynolds number turbulence model. Yap suggests, the addition of
equation 2.54 to the dissipation of turbulent kinetic energy equation brings the heat transfer
coefficient comparable to experimental results. The use of this term is also studied in the present
work.

In the computer code, each of these secondary models can be turned off or on. A
detailed study has been completed to determine which models have an effect on the flow. For
case 3, a solution has been obtained with all of these secondary models turned off. Using this
solution for initial conditions, a solution was then obtained with the variable fiuid property model
switched on and the remaining models turned off. This procedure was repeated for each of the
secondary models. A final solution was obtained with all of the models switched on. None of

the models significantly affected the overall flow field or the location of flow separation on the
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Figure 7.34: Secondary Model Study-Vertical Velocity along Horizontal Centreline

heated wall. The effect of each of the models is discussed with respect to velocity profiles along
the centrelines of the cavity.
The vertical component of velocity along the horizontal centreline is shown in Figure

7.34. The legend for the figures in this section is shown in Table 7.5.

Table 7.5: Summary of Secondary Models

Legend Variable Variable QUICK Yap Symbol
Number | Property | op Model | Differencing | Correction or
Model Line

1 Off Off Off Off

2 On Off Off Off a

3 On On Off Off o

4 Off Off On Off v

5 Off Off Off On o

6 On On On On —_——

Although it is 2 standard convention to use symbols for experimental data and lines for
computational or theoretical results, symbols .have been used for some of the predictions for
clarity as some of the profiles coincide. Thus hollow symbols have been used for some of the
predictions.

In this figure, the solid line corresponds to prediction of the basic model with 2il of the
secondary models switched off. The profile is significantly affected by the variable property
model as shown by the triangles. Adjacent to the vertical walls, the magnitude of the peak
velocity is lower with inclusion of this model. The diamonds correspond to a model that

incorporates both the variable property and variable turbulent Prandtl number secondary models.
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Since the triangles and the diamends almost exactly coincide, this model offers no significant
improvement over the variable property model. This suggests that the variable oy model has little
effect on the predicted flow field. The inverted triangles correspond to 2 model that incorporates
only the QUICK differencing secondary model. As expected, this model overemphasizes the
peak velocities in the boundary layers adjacent to the vertical walls. A mode! that includes only
the Yap correction is shown by circles on this figure. This profile differs from the basic model
slightly but not to the same extent as the variable property model. This model accentuates
buoyancy as the peak velocity adjacent to the heated boundary is larger than the other models.
The dashed line corresponds to a model that includes all of the secondary models. Since this line
appears to almost exactly coincide with the triangles, it suggests that the varizble property model
has the largest effect on the predicted flow field.

The horizontal component of velocity along the vertical centreline is shown in Figure
7.35. All of the models slightly change the predicted profile of horizontal velocity. A discussion
similar to that for the vertical velocity could be formulated from this figure but is neglected for

the sake of brevity.

As previously mentioned, none of the models had a sij effect on the p

of the overall flow field or the location of separation. The variable property model altered the
flow the most. While none of the models adequately predicted the flow, the intent of this section
was to determine which secondary models has the greatest influence on the predictions. Reasons
for the discrepancy between the predicted and the measured profiles will be discussed in section

7.6.
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Figure 7.35: Secondary Model Study-Horizontal Velocity along Vertical Centreline
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7.5  Numerical Predictions of Turbulent Mixed Convection Cavity Flows

7.5.1 Low Reynolds Number Th Model Predicti:

For all of the predictions presented in this section, all of the secondary models discussed
in the previous section were included in the calculations. The velocity vector prediction for case
1 is presented in Figure 7.36. The predicted flow regime is separated flow (see Figure 7.1) as
the bulk of the flow is in a large clockwise rotating cell. Two small counterclockwise cells are
observed in the corners adjacent to the heated wall. The predicted separation height is 0.31
dimensionless units.

The prediction for case 2 is shown in Figure 7.37. The flow regime is also separated
flow but the buoyancy in the cavity is increased compared to case 1 as shown by the large
counterclockwise rotating cell in the bottom half of the cavity. The clockwise rotating cell is

reduced in size to approximately the upper half of the cavity. The changing sizes of these cells

moves the i i i i

height to 0.76 dimensionless units up the heated
wall.

‘The predicted velocity vectors for case 3 are shown in Figure 7.38. This flow regime
is referred to as buoyancy dominated flow as the flow in the cavity is dominated by a large

kwise cell. As

in section 7.2.1, the change to this flow regime is due to
the growth of the buoyancy driven cell in the bottor. of the cavity. This cell grows large enough
to encompass nearly the entire cavity. The inertially driven clockwise rotating cell is reduced in
size and is observed just below the entrance of the cavity. The predicted penetration depth of
0.025 dimensionless units.

The velocity vector prediction for case 4 is shown in Figure 7.39. The flow regime is

also buoyancy i flow and the

driven cell is stronger than in the preceding
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Figure 7.37: Case2- Low Reynolds Number Turbulence Model Predictions
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Figure 7,38: Case 3 - Low Reynolds Number Turbulence Model Predictions
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case. The velocity in the boundary layer adjacent 10 the adiabatic vertical wall is much higher
and the boundary layer is thinner in this case. The ‘maximum penetration of the inlet jet into the
cavity is approximately 0.08 units for this case and 0.15 units for case 3. It must be noted that
the fluid separates on the top wall at X = 0.025 for both cases.

A summary of tke dimensionless separation locations for the present predictions is

presented in Table 7.6.

Table 7.6: Summary of Dimensionless Separation Locations
for the Low Reynolds Number Turbulence Model

Case Yoo Xpen
1 031 -
2 0.76 -
3 - 0.25
4 - 0.025

752 FLUENT Predictions
For all cases considered, solutions are obtained with the commercial computational fluid

dynamics package, FLUENT [63]. This analysis allows the two-dimensionality of the flow to

be studied as both imensional and three-dimensional ons can be obtained with this
package. In addition, the effect of turbulence modelling can be investigated as a standard k-¢
turbulence model with wall functions is used in the FLUENT software.

For the two-di ional cases, the domain and grid are nearly identical

to the predictions of section 7.5.1. Since the FLUENT package uses wall functions, the grid
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points adjacent to the solid boundaries were placed in the logarithmic region. For the three-
dimensional case, 2 solution is obtained for one half of the cavity, more specifically from the
centreline of the cavity (Z = 0) to one of the faces. Along the centreline of the cavity, a plane
of symmetry is specified as a boundary condition. In this plane the component of velocity in the
Z direction is set to zero and the gradient of all the other variables is set to zero, Along the face
of the cavity a no slip boundary is prescribed for the velocities and turbulence variables and an
isothermal boundary condition is prescribed for the energy equation.

The two-dimensional solution for case 1 is presented in Figure 7.40. The flow field is
similar to the predicted flow field in section 7.5.1 and the experiment as the flow is dominated
by one large clockwise rotating cell due to inertia. The small counter clockwise rotating cells

are also predicted in the corners adjacent to the heated boundary. For this case the predicted

height is approxi 0.3 di i units.

The i i FLUENT ictions for case 2 are shown in Figure 7.41. The

overall flow field is similar to the previous case except the counterclockwise rotating cells have

increased in size and the ion height is 0.5 di i units.

Figure 7.42 shows the two-dimensional predictions for case 3. For this case, the flow

is d to be i by as the bulk of the flow is rotating counterclockwise.

A small clockwise rotating cell is predicted below the entrance. The penetration depth is

predicted to be 0.035 dimensionless units into the cavity.

The imensional FLUENT predictions for case 4 is shown in Figure 7.43. FLUENT
predicts the flow to be nearly identical to the previous case. The main difference is the size of
the inertially driven cell below the entrance. This cell is slightly smaller in the present case. The

dimensionless penetration depth is 0.025 for this case.
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Three-di ional FLUENT ictions are p. for each of the cases in Figures
7.44 10 7.47. The velocity vectors are presented in a similar format as the experimental results.
More specifically, velocity vectors are shown in the inlet plane, the plane of symmetry, the wall
plane and the exit plane. The definition of these planes has been presented in the introductory
paragraph of section 7.2.2. One difference between these figures and the figures showing the
experimental results is that in the former, two components of velocity are plotted in all of the
planes while in the latter only the dominant component of velocity is plotted in the inlet, wail and
exit planes (W component of velocity is set to zero for the experimental vector plots). In general,

the th i ional ictions are q

y similar to the two-dimensional predictions in

the plane of symmetry. Thus the di ion for the th results will be limited to

the inlet, wall and exit planes. However, if there is a significant difference between the two and

th i ional results, the di will include the plane of symmetry.

‘The predictions for case 1 are presented in Figure 7.44. For the FLUENT predictions,
the horizontal component of velocity at the entrance of the inlet developing length is prescribed
to have a uniform distribution (in the Z direction). The velocity vectors in the inlet developing
length show the boundary layer to be fully developed by the third or fourth computational grid
into the channel (X = - 0.6). In the fully developed region of the inlet channel (X 2 -0.6), the
velocity profile is uniform for Z less than approximately 0.07. The inlet plane also shows a
region of backflow adjacent to the heated wall. As the inlet jet approaches the heated wall, the
faster moving fluid at the plane of symmetry turns both downward and toward the face of the
cavity. Thus, the region of backflow is smaller at the plane of symmetry (Z = 0} and is larger

as the face of the cavity is approached.
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Figure 7.45: Case 2 - FLUENT Three Dimenstonal Prediction
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Figure 7.44: Case 1 - FLUENT Three Dimensional Prediction
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Figure 7.46: Case 3 - FLUENT Three Dimensional Prediction
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Figure 7.47; Case 4 - FLUENT Three Dimensional Predictions
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In the wall plane the flow appears to be nearly two-dimensional everywhere except at the
wp of the cavity. As the fluid approaches the top of the cavity, it turns toward the plane of

symmetry. As in the previous cases, the flow in the wall plane is nearly two-dimensional.

The flow in the plane of symmetry differs signi from the i
predictions (see Figure 7.42). Both solutions predict the flow to be buoyancy dominated, but the

three-dimensional results predict the inlet jet to penetrate farther into the cavity. Thus, the

jally driven cell approxil two thirds of the cavity for the three-dimensional
model while the two-dimensional model predicts this cell to be very small. From the inlet plane,
it appears that the flow separates from the top wall at X = 0.3. However this plane is 4 mm
from the top of the cavity. Enlargement of this region in the plane of symmetry shows the flow
actually separates from the top boundary at an X coordinate of 0.23 dimensionless units.

The thy i i FLUENT predictions for case 4 are p in Figure 7.47.

Qualitatively the observations for this case are similar as for the previous case in terms of two-

, variation of ion location and maxil inlet jet p

‘The dimensi ioniocation for both the two-dimensional and three-dimensional

FLUENT predictions are presented in Table 7.7.
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A region of backflow is also observed at the top of the wall plane. In this plane, the
region of backflow is also smaller at the plane of symmetry and larger at the face of the cavity.
Once the boundary layer develops, the flow has a nearly uniform distribution above the separation
region. At the face of the cavity the separation height is approximately 0.45 while at the plane

of symmetry the ion height is 0.30 di i units. At the face of the cavity, the

downward moving fluid would kave less inertia due to shear from the cavity face. Below the
separation region, the flow has 2 uniform velocity distribution.

In the exit plane, the flow appears to be nearly two-dimensional as the vectors are similar
in length across the cavity. The profile in the exit developing length is slightly flatter than the
profile in the inlet developing length.

The th i ional FLUENT prediction for case 2 is p: d in Figure 7.45. The

flow in the inlet plane is almost identical to the previous case in terms of developing length,

boundary layer thi and region of backflow and will fore not be di for brevity.

The flow in the wall plane is also similar to the preceding case but the separation location
varies from 0.5 at the plane of symmetry to 0.63 at the cavity face. This variation in separation
location is, again, due to shear at the cavity face. The buoyancy source term would almost be
a constant across the cavity as the temperature distribution is nearly uniform. In the exit plane,
the flow is also nearly identical to the flow in the exit plane of case 1.

The predictions for case 3 are presented in Figure 7.46. In the inlet developing length,
the predicted flow field is similar to the preceding two cases. However, in the cavity, the flow
lacks two-dimensionality in the region of separation. The velocity vectors in this plane suggests

the penetration depth is approximately 0.10 at the cavity face and 0.2 at the plane of symmetry.

Table 7.7: Summary of Dimensionless Separation
Locations for FLUENT Predictions

FLUENT 2D FLUENT 3D°
Case Y., Xoem Y, X
1 0.3 - 0.27 -
2 0.58 - 0.53 -
3 - 0.035 - 0.23
4 - 0.025 - 0.08
In the Plane of Symmetry
76 C ison of i 1 and D ical Results

Thus far, all of the predictions have been presented in terms of velocity vector plots with

10 detailed comparison with the i  results. C ison of each type of prediction and
the experiment results give insight into the physical nature of the flow and the numerical models
needed to successfully predict the flow. The main difference between the predictions of section

7.5.1 and the i ional FLUENT ictions is the turbul model as the predictions

of section 7.5.1 uses 2 low Reynolds number k-¢ model and FLUENT is based on a high
Reynolds number k-¢ model with wall functions. Comparison between the two-dimensionat and
three-dimensional predictions of FLUENT allows the two-dimensionality of the flow to be
studied. The velocity and turbulence fields are studied in section 7.6.1 and the temperature and

heat transfer profiles are studied in section 7.6.2.
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7.6.1 Flow Field and Separation Height Comparison

For a quantitative comparison between each of the predictions and the experiment results,
contour plots are used for the dimensionless stream function, turbulent kinetic energy and
turbulent viscosity.

The dimensionless stream function, ¥, is computed from the dimensionless velocity

fields using the definition
= - an
U=gy = V=3¢
For case 1, contours of stream function are for the experil data, the low
number 1 model icti di ional FLUENT predictions and three-

dimensional FLUENT predictions in Figure 7.48. For the three-dimensional FLUENT
predictions, the stream function is computed in the plane of symmetry using the horizontzl and
vertical velocity fields (U and V components of velocity). The single legend on this figure

applies to the experimental and all the predicti Contour number 5 corresponds

to a stream function value of zero and thus shows the division of the clockwise and
counterclockwise rotating cells. For clockwise rotating fluid, the value of stream function is less
than zero and for counterclockwise rotating fluid, the stream function value is greater than zero.

The small cell at the iop of the cavity adjacent to the heated wall appears to be approximately the

same size for the il and all of the icti However, in the bottom corner adjacent

to the heated wall, the ise cell is predicted in all of the ictions to be larger than

the experimental results. The strength of the inertially driven cell is predicted well as contour

numbers 1 and 2 are approximately the same size and shape for all simulations.
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The stream function contours for case 2 are shown in Figure 7.49. The strength of the
inertially driven cell is about the same for the experiment and predictions as contour number 1

is about the same size in each of the plots. The strength of the buoyancy driven cell in the

bottom corner adjacent to the heated wall is overpredicted for the i fonal si
as the size of contour number 6 is much larger for these predictions and contour number 7 does
ot exist in the experimental plot. In fact, the strength of this cell in the low Reynolds Number

model predictions is so powerful, it causes the separation location to be predicted high up the wall

as to the i results. The thi i i solution has the best agreement

with the experimental data as the separation location is predicted in the proper location and the

strength of the buoyancy cell is only slightly ov i Since the th i ional
FLUENT streamline plot is in better than the i i FLUENT plot, it
suggests that th h ional effects are imp in the prediction of the flow field.

for case 3 are p d in Figure 7.50. The experimental data shows the

inlet jet to flow across the top of the cavity, turn downward along the heated wall and separate
at approximately two thirds the height of the cavity. All of the simulations predict the jet to
separate from the top boundary after it enters the cavity. Contour number 5 has a stream
function value of zero and thus shows the division between the cold inlet flow and the heated
buoyancy induced flow. Figure 7.50 (b) show the maximum penetration of the cold jet to be X
= 0.15 just after the jet enters the cavity. This jet flows down the vertical wall in the region of

X < 0.07. The two-di jonal FLUENT predictions show inlet jet to always be in the region

X < 0.1. The three-dimensional predictions show the inlet flow to penetrate up to X = 0.35.
For this prediction, the resulting buoyant flow is restricted to a tall and narrow cell adjacent to

the heated wall. All of the numerical models tested can neither quantitatively or qualitatively
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predict the flow field adequately for case 3. The strength of the buoyancy force is overpredicted

since none of the simulations are even capable of predicting the correct flow regime. The three-

dimensional prediction has the best as this si predicts the buoyancy cell to be
the smallest (and jet penetration to be the greatest). The low Reynolds number model predictions

are marginally better than the two-di ‘onal FLUENT si as the region of inestially

driven flow is slightly larger for the former prediciicns.

The experimental streamlines for case 4 are shown in Figure 7.51 (2). The circular
streamlines in the core of the cavity are not convection rolls as seen in Bernard convection, but
are due to experimental errors. In the core of the cavity the flow is nearly stagnant so the
measured velocities will be small positive or negative values. When these velocities are
integrated to obtain the stream function, the errors are combined. Thus, small errors in the
velocities combine to create larger ecrors in the calculation of stream function. It should also be

noted that all of the cells have positive values of stream function which suggests the fluid in all

of the cells is rotating This is not physically realistic when considering the
fluid between two cells. The motion from the lower cell would promote fluid motion in the
negative X direction while the upper cell would promote fluid motion in the positive X direction.
This would create a great deal of shear in the flow and is therefore unlikely to occur. Although
all of the simulations overpredict the strength of the buoyancy cell, the overall flow field, being

yancy s

ly by all of the models. Once again, the three-

dimensional results have the best agreement as contour number 2 extends farther into the cavity

for this prediction.
The separation location for the experk low number p i two-
di jonal FLUENT si i and the th i FLUENT predictions are
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summarized in Table 7.8. The separation locations quoted for the experimental data are the

arithmetic mean of the values presented in Table 7.3 and the values from the three-dimensional

FLUENT predictions are in the plane of symmetry.

Table 7.8: ion Location C

Experimental Low Re Model
Data” icti

FLUENT 2D FLUENT 3D

0.29 - 0.31 - 0.30 - 0.27 -
0.49 - 0.76 - 0.58 - 0.53 -
0.62 - - 025 - .035 - 0.23

- 083 - 025 - 025 - 0.08
Average of Values in Table 7.

Cose | Yoy | Koo | Yip | Koo | Yim | Koo | Vi | %o
1
2
3
4

The predicted separation heights for case 1 are in excellent agreement with the
experimental data. All of the models are capable of predicting the separation location within
experimental error. For case 2, the low Reynolds number model predicts the separation location
to be approximately S0% higher than the experimeatal results. Both of the FLUENT predictions
of the separation height are in good agreement with the experiment for case 2. All of the models
have difficulty predicting the separation location for case 3 as the simulations predict the
separation to occur on the top boundary of the cavity while the experiment shows the separation
occurs on the heated wall. For buoyancy dominated flow (case 4), the two-dimensional models
underpredict the location of separation on the top boundary of the cavity while the three-

l results. It must

i ional FLUENT jons have good with the et
be noted that both of the two-dimensional simulations predict very little difference in the
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separation location between cases 3 and 4. However, the Archimedes number for case 4 is

approximately twice that of the Archimedes number for case 3. Thus, the prediction of

in the two-di i 1 ions are i eto h number for buoyancy

d flow. The th i ional lations are sensitive as the separation location for
case 3 and 4 are 0.23 and 0.08 respectively.

The results in Table 7.8 and Figures 7.48 to 7.51 suggest that all of the models
adequately predict the flow field for case 1. The solution of isothermal recirculating turbulent
flow in cavities can be successfully modelled as shown by the present work and the work of
Johnson [59]. However, differences between the predictions and the experimental results are

observed in the cases with heat transfer. The addition of buoyancy in the cavity increases the

complexity of the problem as this body force i i pi into the cavity.
Davidson [53], Hanjali¢ and Vasi¢ [85] and Hanjali¢ [86] studied non-isotropic effects due to
buoyancy when applied to natural convection in a cavity. Davidson [53] states the k-¢ model is
deficient in buoyant flows as all of the normal Reynolds stresses are assumed to be equal but in
actual fact, the vertical fluctuating component of velocity is damped and the horizontal component
is amplified. This inadequacy in the turbulence modelling may lead to unrealistic predictions of
the Reynolds stress and the turbulent heat flux. The k-z model is used extensively by engineers

asitis

pensive, gives results for many problems and it usually
converges easily. Turbulence models that do account for non-isotrcpy such as the Reynolds stress
model and the algebraic stress model are significantly more expensive to implement in terms of
CPU time and may be unstable. The low Reynolds number k-¢ model was selected for the
turbulence model in the present work as the literature review showed that it was the simplest

model that may be able to yield reasonable results (see sections 2.4 and 2.5). In addition, the
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k-¢ model may be considered the industrial standard for turbulence modelling and it would be
insightful to study the performance of this model when applied to mixed convective problems.

The i of this section di the predictions of the ities for the cases

with heat transfer.

The dimensionless turbulent kinetic energy and the dimensionless turbulent viscosity for
cases 2 to 4 are presented in Figures 7.52 to 7.57. The dimensionless turbulent kinetic energy,
K*, is defined by equation 5.19 and the dimensionless turbulent viscosity, »", is defined as the

viscosity ratio and is computed from
a2 .8

The contour plots for case 3 are discussed in detail and the plots for the remaining cases are not
discussed as a similar conclusion can be drawn from those cases. However, the plot for cases
2 and 4 are included in the present work for completeness. In Figure 7.54, contour plots of
dimensionless rrbulent kinetic energy are plotted for the low Reynolds number predictions and
the FLUENT predictions. Experimental values of turbuleat kinetic energy could not be computed

as the fluctuating component of velocity in the Z direction was not measured. In general, the

turbulent kinetic energy for the i ional FLUENT predictions is higher than the other
predictions. Figure 7.54 (b) shows the turbulent kinetic energy is greater than 0.005 (contour
number 2) in the majority of the cavity. In addition, the fluid flowing down the adiabatic vertical

wall has a dimensionless turbulent kinetic energy greater than 0.03 (contour number 4). Both

the three-di ional FLUENT predictions and the low Reynolds number model calculations
predict regions in the cavity where the turbuleat kinetic energy is less than contour number 2.

The low Reynolds number model only predicts a small region in the cavity where the kinetic
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energy exceeds contour number 4 (Gust below the and the three~di it FLUENT
model predicts a slightly larger region. In summary, the two-dimensional FLUENT model
predicts significantly higher levels of turbulent kinetic energy and the three-dimensional model
predicts slightly higher levels than the low Reynolds number model.

Turbulent viscosity ratio contour plots are presented for case 3 in Figure 7.55. The two-
dimensional calculations predict a high level of turbulent viscosity in the inertially driven cell just
below the entrance. In this region, the low Reynolds number model predicts the turbulent
viscosity to be 60 times the laminar viscosity while the two-dimensional FLUENT code predicts
this to be just over 40 times. In the remainder of the cavity, the two-dimensional high Reynolds
number model typically predicts the turbulent viscosity ratio to be higher than the predictions of
the low Reynolds number model. The shape of contour numbers 3 and 4 also differ as the low
Reynolds number model predicts these contours to be tall and narrow adjacent to the heated wall
while the high Reynolds number version predicts them to encompass the entire width of the
cavity.

The turbulent viscosity contour plot of the three-dimensional high Reynolds number
model is similar to the two-dimensional low Reynolds number model. The size and shape of
contour number 2 is approximately the same for both models. These models also predict contour
levels 3 and 4 to enclose a tall and narrow region adjacent to the heated wall. The contour plots
differ slightly as the low Reynolds number calculations predict a high levels of turbuleat viscosity

just below the entrance and the compression of contour levels 3 and 4 against the heated

boundary is more d in the three-di i dicti These differences are
attributed to differences in the predicted velocity fields. Comparison of the flow fields in Figures
7.38 and 7.46 show the prediction of a small inertially driven cell just below the entrance in the
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Iow Reynolds number predictions. This cell is not observed in the three-dimensional predictions.
Thus, in this region, high levels of turbulent viscosity are predicted for the low Reynolds number

case but not for the three-dimensional calculations. Figures 7.38 and 7.46 also show the

buoyancy induced cell predicted by the th i i case to be narrower than the cell
predicted by the low Reynolds number model. Thus, the region of high turbulent viscosity is

narrower in the three-dimensional simulation.

For all cases, the two-di ional FLUENT ions predict the turbulent viscosity

higher than the other computations while the peak values for the low Reynolds number mode! and

the three-dimensional high Reynolds number model are The i
field for each model differs as the predicted velocity and temperature fields for each model also

diffeced.

7.62 Temperature Field and Heat Transfer Comparison

The i i 1 profiles at heights 0f 200, 140 and 80 mm (0.67,

units respectively) are p d in Figure 7.13. These profiles are

0.47 and 0.27 dis
compared with the predicted profiles of the low Reynolds number model and the two-dimensional
and three-dimensional FLUENT models in Figures 7.58 to 7.60.

The temperature profiles adjacent to the heated wall for case 2 is presented in Figure
7.58. At the 200 mm height, both of the FLUENT models predict a similar profile. These
models slightly overpredict the temperature gradient at the boundary and the width of the

boundary layer and they underpredict the temperature outside the boundary layer. The low

number mode! is distinctively different from the experimental data and the

other predictions as the temperature gradient is significantly underpredicted and the core
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of a model to predict the flow field. Both the experi: obtained profiles and

the predictions from the low Reynolds number model are in good agreement. Yet, the velocity
profiles differ significantly as Figure 7.8 shows the flow separates on the heated wall and the
model predicts the flow to separate on the top boundary (see Figure 7.38).

The temperature profiles for case 4 are presented in Figure 7.60. For this case the results
are consistent for all three heights. At the wall, all three of the models predict the temperature
gradient well. Both of the FLUENT models predict the thermal boundary layer to be thicker than
the experimental data while the low Reynolds number model successfully predicts the width,
Outside of the bourdary layer, the two-dimensional FLUENT model consistently overpredicts the

temperature while the other models predict the

The comparison of heat transfer is presented in terms of Nusselt number profiles along

the heated wall. The Nusselt number is defined as

RH _ _H 3T _ 26
D s A @9

Nuy =

where h is the local heat transfer coefficient.
For cases 2, 3, and 4, the variation of Nusselt number on the heated wall is presented
in Figures 7.61 to 7.63 respectively. The predicted Nusselt numbers are computed from the
dimensionless temperature gradient at the heated wall and the experimental Nusselt number is

calculated from the electrical power input to the heaters.

Figure 7.61 shows the Nusselt number profiles along the heated wall for case 2.

Qualitatively, the experi and the ictions show the Nusselt number is highest at the top
of the cavity, reduces to 2 local minimum at the separation location and increases slightly towards

the bottom of the cavity. At the top of the cavity, the fluid motion is driven by the cold fluid

Dimensionless Coordinate, Y
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is over i This is with the flow field as the low Reynolds number

model predicted the separation height to be 0.76 di i units. The dis i height

corresponding to this 200 mm high profile is 0.67. Thus, for the low Reynolds number model,
this temperature profile is in the warmer buoyancy driven cell (i.e. below the predicted separation
location). Since the fluid is warm, the temperature difference between the wall and the fluid is
low. This results in a reduced heat transfer rate and hence a lower temperature gradient at the

wall. For the FLUENT icti the profiles to a location above the

predicted and measured separation location. For these models, the fluid in this region is in the
colder inertially driven cell. Since the temperature difference between the wall and the local fluid
temperature is greater, the heat transfer rate is also greater (and hence the temperature gradient

at the wall). At the 140 mm height, the FLUENT models 1y predict the

gradient at the wall wkile the low Reynolds nurober model underpredicts the gradient. All of the
models underpredict the core temperature at this height. At the 80 mm height, 2l of the models
overpredict the temperature gradient at the wall, adequately predict the boundary layer width and

ict the core

The horizontal temperature profiles for case 3 are presented in Figure 7.59. For the 140

and 200 mm heights, all of the models ly predict the gradient at the wall.

At the 80 mm height the i ional models predict the wall gradient the three-
dimensional model predicts it reasonably well. In general the low Reynolds number model
correctly predicts the width of the boundary layer while the FLUENT models overpredict the
boundsry layer width. Outside the boundary layer, the FLUENT models overpredict the
temperature while the low Reynolds number model slightly underpredicts the temperature. This

figure suggests that the analysis of the temperature profiles is not a good measure of the ability
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entering the cavity. The temperature difference between the wall and the fluid in this region is
large resulting in increased heat transfer rates. This is especially true for the low Reynolds
number predictions as shown by a large spike in the Nusselt number profile. For this model the
predicted inertially driven cell is smaller and hence mixes with the higher temperature buoyancy
driven cell less than the other models. Thus the fluid temperature in the inertially driven cell is

lower than for the other models and a large spike is shown in the Nusselt number profile. The

Nusselt number profiles decrease in itude to i the height (see Table
7.8). Below the separation height, the fluid is rising adjacent to the heated wall. As the fluid
rises, the local temperature of the fluid also rises as heat is transferred from the boundary to the
fluid. Since the wall temperature is constant, the temperature difference between the wall and
the fluid decreases as this fluid flows up the wall. Thus, the resulting Nusselt number profile in

this region, asthe Y dil isi

d. The Nusselt number profiles predicted
by the FLUENT models are similar in size and have the same shape as the experimental profile.

As already di the low 1ds number model

predicts the heat transfer at the top
of the cavity. All of the calculations predict a local minima in the region Y < 0.1 dimensionless
units. This minima is attributed to the low velocity of the fluid in the corner of the cavity. This
low fluid velocity results in a low convective heat transfer coefficient which in turn creates the
observed minima.

The Nusselt number profiles for case 3 are presented in Figure 7.62. The experimental
profile is qualitatively similar to the previous case. Experimentally, the flow regime for both of
these cases is separated flow. Therefore, the discussion for the previous case 2lso applies tc the

experimental curve. However,

putationally, all of the sil jons predict the flow to be

buoyancy dominated. For this flow regime, the Nusselt number is largest at the bottom of the

Dimenslonless Coordinate, Y
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cavity and is smallest at the top of the cavity. As the fluid flows up the heated wall, heat is

transferred to the fluid causing the local temperature of the fluid to increase. As the local

1p i the temp di between the wall and the fluid decreases
resulting in lower heat transfer rates (and hence lower Nusselt numbers). The two-dimensional

simulations predict a local minima in the Nusselt number profile as in the previous case.
‘The Nusselt number distribution on the heated wall for case 4 is presented in Figure 7.63.

In this figure, both the experimental and the predicted flow fields predict the flow to be buoyancy

‘The di ioa for the p of the previous case applies to all of the profiles
on this figure.
A summary of the average Nusselt number on the heated wall is present ed in Table 7.9.

Table 7.9: Average Nusselt Number Comparison

Average Nusselt Number
Case Experimental | Low Reysolds | FLUENT2D | FLUENT 3D
2 455. 449, 542. 509.
3 385. 319. 432. 217.
4 2. 432 460. 42
Tomputed Trom Electric Power Supplied to Heaters

The low Reynolds number model has excellent agreement for cases 2 and 4 and underpredicts
the heat transfer in case 3. The two-dimensional FLUENT si i 1 dicted

Y

the Nusselt number for all cases. The three-dimensional FLUENT model slightly overpredicted
the Nusselt number for case 2, significantly underpredicted the average Nusselt number for case
3 and has excellent agreement for case 4.
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The average Nusselt number cannot be used for a meaningful comparison between the
experimental results and the predictions of the models as this variable is an integrated quantity
and is a measure of the overall performance of the cavity although it is encouraging that
reasonably accurate predictions can be made.

‘The temperature and heat transfer results are consistent with results of the velocity fields.

Differences between the i 3t and th i it ictions of FLUENT suggest

that three-dimensional effects are important for the successful simulation of the flow. The

differences between the predictions of the di ional models suggest the selection of an
adequate turbulence model plays an important role in the prediction of the flow. As previously

D ‘The non-isotropy may

the buoyancy in th

lead to isti ictions of the Reynolds stress and the turbulent heat flux.
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modelling [53]. Thus, it is insightful to study the performance of this model when applied to this

class of flows. In addition to the turbulence modelling, the performance of various mathematical

models and numerical jons have been i i The various numerical models and

fc ions include the h ionality of the flow, the effect of temperature on
the fluid properties, the variation of the turbulent Pranddl number, the inclusion of the Yap

correction, the order of the advective differencing, and the selectior. of algebraic solvers.

82  Condlusions

Comparison of the velocity plots in the plane of symmetry, inlet plane, exit plane, wall
plane, exit region and the separation region show consistency between the plots. Since the data
for these plots was collected days or even weeks apart, it suggests that the work is repeatable.
The experimental velocity vector plots in the inlet, exit and wall planes show the flow has three-
dimensional effects in the region of separation and in the corners adjacent to the heated wall.

A detailed study was carried out to investigate the performance of the low Reynolds
mumber turbulence models. The results of this study indicated that, the laminar flow model gave
inadequate predictions and the modified form of the Lam and Bremhorst model yielded slightly
better predictions than the modified form of Jones and Launder.

A study was then conducted to examine the effects of the various secondary models. The
results of this study show the variation of thermophysical properties significantly affected the
predictions. The remaining modifications had little effect on the predicted flow field.

The predictions for the isothermal case (case 1) have excellent agreement with the
experimental velocity field. Both, the high and low Reynolds number forms of the k-2 model,

predicted this case well and no significant improvement was observed with the three-dimensional

CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1  Contributions
The previously published literature addresses the problem of the lack of detailed
experimental data for turbulent mixed convective flows [S]. The data presented in this thesis

would aid the scienti ity in the ding of the relevant physics behind this class

of flows. In addition, it would provide a data base for the verification of computer programs.
In the past, computer codes for the prediction of internal buoyant flows were verified with the

natural ion in a vertical cavity problem (as shown in Figure 2.2). Over ten

years ago, a bench mark solution [20] was published for laminar flow in this configuration. This
solution provided a reliable data base for the validation of laminar computer codes. In recent
years, researchers have also obtained reasonable results for the turbulent case as shown in

references [41,42,49,50,53,84]. As are

ped with larger ies and higher

ability, itis ing feasible to use more complex turbulence models such as the
algebraic stress model or the Reynolds stress model. These turbulence models have the ability

to predict more complex flow The i data d here, provides a data

base with an additional level of complexity as the flow may separate on a boundary in which heat
is being transferred to the fluid.

The numerical work presented in this thesis, has applied both the low and high Reynolds
number form of the k-¢ turbulence mode! to mixed convective flows in enclosures. This model

is used extensively in industry and may be i the I ial standard for
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model. Thus, a two-dimensional form of the k-¢ model can Ity predict

isothermal turbulent recirculating flow. This conclusion is consistent with the results of Johnson
591

The simulations for the buoyancy dominated case (case 4) have good agreement with the
measurements. The velocity field is adequately predicted for both the high and low Reynolds
number forms of the k-¢ model and the three-dimensional solution had slightly better agreement.
For this case, the flow field is similar to the flow field for natural convection in a right vertical
cavity. In these cavity flows, a primary vortex forms encompassing almost the entire cavity.
The fluid in this primary vortex flows up the heated boundary, across the top, down the opposite
vertical boundary, and back across the bottom (see verification smdy 3). In the natural
convection case, the vortex is cooled by a cold vertical wall and in the mixed convection case,
the vortex is cooled by a cold liquid jet flowing in the downward direction adjacent to the vortex.

The results suggest that sati: -y predictions for buoyancy i flows can be made with

the k-¢ turbulence model. This result is i with the predictions of natural on in
a right vertical cavity [41,42,49,50].
The calculations for the intermediate Richardson number cases (case 2 and 3) have also

been Qualitatively, the predictions for small amounts of heating (Ri < 1) are in

agreement with the experiment. For higher amounts of heating (Ri =~ 10) the predictions are

poor. Three-dis ional effects are i astheth i ional FLUENT ictions are
in better agreement with the experimental results than the two-dimensional predictions. Neither
form of the k-¢ turbulence model adequately predicts the flow for intermediate Richardson

numbess. In general, the

yancy is overp



83  Recommendations

More experimental studies are needed to increase the size of the data base for mixed
convective flows. More specifically, data is needed for aiding flow and for higher Reynolds
number flows. With an increased data base, overall heat transfer correlations could be developed
and a range of Richardson numbers could be quantified in which the k-¢ mode! yields satisfactory

results. Detailed measurements of Reynolds stresses and turbulent heat fluxes would aid in the

lection and of ) models for this class of problems.

For mixed convection cavity flow, the iction of the k-¢ turbul model

appears to be limited to inertially domi or buoy inated flows. For intermediate
values of Ri numbers, the ling of the Rey stress and the turbulent heat flux
need to be i LA 1SOtropi model such as the algebraic stress

model or the Reynolds stress model may improve the predictions [48,53,85,86]. In this range

of Richardson numbers the three<dimensional effects must also be accounted for.

‘The predictions using a tv

I k-¢ turbulence model converged very slowly.

The addition of a third di ion to this code and the inclusion of a higher order

turbulence model would require an excessive amount of computer time for a solution of the
preseat form of the code. The governing equations would have to be solved more efficiently to
obtain reasonable computing times. Thus, an acceleration technique, such as the multilevel-
multigrid approach would have to be incorporated into the present computer code.

For a complete undecstanding of turbulent mixed convective flows in cavities, there is

a need for a great deal of experimental work to be in conjunction with i

studies. The work presented in this thesis, provides one such investigation into this class of

flows.
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APPENDIX A
Derivation of QUICK Grid Coefficients for a

Non-Uniformly Spaced Grid

The QUICK coefficients are derived using the geometry of Figure A.1 [33]. The value
of a variable at the west face, ¢,,, is calculated using a standard parabolic fit. This value of ¢,,

is used in the flux equation (eqn. 6.2).

¢=ax+bx+c [GRY]

The points that the parabola is fit through depends on the sign of the normal velocity at the west
face. If the velocity is positive, the parabola fits through ¢y, ¢w, and ¢p 2s shown in Figure
A.1 (2. For 2 negative velocity the parabola fits through ¢y, $p, and ¢g (see Figure A.1 ().
The derivation for the QUICK grid coefficients is described in {33]. In general, a parabola must

fit through the points

(-0xp, 6y (x,0p)  (6x3,¢3) 42
The values 8x;, &, ¢y, and ¢p are calculated as shown in Figure A.1 (¢). The other values
depend on the sign of the velocity at the west face, u,, and are calculated as follows.

Kfu, >0, then dx3 = -8x - Ax;, and ¢3 = $yy

A3
Ifu, <0, then dx; =bx, + Ax) and ¢3 = ¢¢
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Substituting equation (A.2) into equation (A.1) yields
6p = abx + blxy + ¢
bw = nﬁxf + béx, + ¢ A4
¢,=a6x§‘+b8x3+c
‘The solution of equation (A.4) yields
By B, By
dw=¢ =B—:¢w - B—:¢p + B—:¢3 A5)
where
By, = dxy8%3 (%, - &%)
B,,, = &%, 8x3(8x; + 8x;) (A.6)
w = S 8@ + &)
and

B, = By, - By, + By, %))

Other equations may be derived for the vatue of ¢ at the north, south and east faces.
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(a) Case l: Uw > 0.

\ | _/
¢w @ ¢p ¢:

(b) Cqse I: U <O0.

AXi, AX;., AXir
& 6x2
- P

™ P,

(c) Location of Grid Variables

Figure A.1: QUICK Description

APPENDIX B

UNCERTAINTY ANALYSIS

B.1  Introduction

The reliability of the experimental results was estimated through examining the

d with the lated In general, if ore parameter is a function

of several variables which is given as follows:

@ = f(é1, 42 ®.1)

Then, its uncertainty can be expressed by

2% Ml aé Mz .| 2% 49 ®.2)
kN <1> T Te, R

The inties in the basic are estimated in Table B.1. The uncertainties
in the tank dimensions are estimated from the accuracy of modern machine tools and the operator

skill. The fluid temperature uncertainty is based on typical accuracy of thermocouples and the

data acquisition system. The wall temp has these inties as well as an additional

since the ples in the wall can differ by up to 0.5 °C. The flowmeter
reading could easily be kept within a 5 mm band. The uncertainties in the heater voltage and
resistance are estimated to be +5% and +10% respectively. The value for the resistance was

provided by the manufacturer. The ratio of time on to time off was monitored by an

oscilloscope. This ratio could be and was i over time.
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Table B.1: Uncertainties in the Basic Measurements

Tank Dimensions +02
L H W,D oemm
T o
Fluid Temperature t1°c
Tw o
‘Wall Temperature E14°C
Flowmeter Reading £2.5mm
v
Voltage of Power Supply £5%
R
of Heaters +10%
-
Heater Time Ratio 5%

B2  Thermophysical Properties

‘The thermophysical properties of water are functions of temperature. Since there are

in the temp the uncertainties are carried through to the
calculation of the thermophysical properties. In addition, errors are introduced by the use of

equations 5.49 to 5.53. For a representative test case (Case 3), the calculated uncertainties for

the ical p ies at the p are d in Table B.2. The error

due to the inty in is from equation B.2. A maximum and standard

deviation are 2lso cited in Equations 5.49 t0 5.52. These deviations are cited fror~ Giel [41] and
are determined from the difference between the computed value and the value quoted in standard

water tables [87]. The uncertainties quoted in Table B.2 have included both the uncertainty in

the ion of and the inty in the use of equations 5.49 o 5.53.
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Table B.3: Uncertainties in the Dimensionless Parameters

1 Veloty s55%

Inle:;aﬂo +2.5%

Aspec? Ratio +0.15%
Pmnddylflumber +2%
Reynollg:?‘lumher +63%
Grashg'(lgumber +63%

B.4  Measured Quantities

In a recent study, Johnson [59] performed an error analysis on the laser doppler
anemometer (LDA) technique. He found, that for a conventional LDA, the error in velocity
measurement was typically to within 2%. In 2 study of natural convection in enclosures, Giel
[41) performed an erzor analysis on the location of the LDA probe based on changing index of
refraction considerations. Giel [41] found the probe location to be within 0.1 mm in the majority
of the cavity. In regions where there are large temperature fluctuations and hence large changes
in index of refraction this error was larger but could not be quantified. In addition, the laser
beams were observed to bend considecably in these regions in the present work bringing the
probe volume temporarily out of focus. This phenomena was observed near the separation region
adjacent to the heated wall as shown by a low data rate. Typically, the error associated with

thermocouples is taken to be about + 1 °C. The data acquisition system has a very small error
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Table B.2: Uncertainty in the Thermophysical Properties

Refef;CREFT(e;?eramre + 0.9
pn(g;;;) +0.04%
Dynla‘n;'kf /\Kr‘:ssc)osir; +1.99%
Therr:al(wc{an;ul:)czivky +0.196%
S(;gc(ilf?:i!lgt + 0.07%
E"Pansgn(llcngﬁiciem + 1.6%

B3  Dimensionless Paramelers ~

The inties in the di i used to define the cases are due to
in tank di i p inlet velocity and thermophysical properties. For
Case 3, the inties in the dil i and the inlet velocity are calculated

from equation B.2 and summarized in Table B.3. The largest uncertainty is in the calculation
of Reynolds and Grashof numbers. A sensitivity study was performed using the low Reynolds
number models. In this study, the dimensionless parameters were changed by the values listed

in Table B.3. No significant changes in the predicted flow fields were observed in this study.
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so the uncertainty in the temperature measurements are tzken to be the error in the theninocouple
measurement. A test dial indicator with an accuracy of 0.001 inches (0.0254 mm) was used to
locate the thermocouple. In reality, the thermocouple wires extending from the probe couid move
slightly due to fluid motion. This movement should be small in the vicinity of the heated wall

d with the ther )

since the fluid velocity is low in that region. The

location is estimated to be approximately 0.05 mm. The uncertainty in the Nusselt number is
computed from equation B.2 and is based on uncertainties in the geometry, the voltage supply,

the heater resistance and the heater time ratio. The inties in the d ities are

summarized in Table B.4

Table B.4: Uncertainties in the Measured Quantities

Velocity Measurement + 2% [59]
Location of
Velocity Probe + 0.1 mm [41]
Te +1°C
Location of
‘Temperature Probe + 0.05 mm
Nusselt Number + 15%




APPENDIX C

EXPERIMENTAL DATA

The experimental velocity data presented in Figures 7.6 to 7.11 and the experimental
temperature data presented in Figures 7.13 and 7.14 are stored on the floppy disk on the
following page. The data for each case is stored in a separate ASCII file. The format for each
file is similar. For a given case, n, the file is named CASEN.DAT and consists of eight tables.
The tables for case # would be
Table C.n.1 - Velocity Data in the Inlet Plane for Case n in Figure 7.n+5 (3)

Table C.n.2 - Velocity Data in the Plane of Symmetry for Case » in Figure 7.1+5 (b}

Table C.n.3 - Velocity Data in the Wall Plane for Case # in Figure 7.n+5 (c)

Table C.n.4 - Velocity Data in the Exit Plane for Case n in Figure 7.n+5 (d)

Table C.n.5 - Velocity Data in the Separation Region for Case n in Figure 7.10

Table C.n.6 - Velocity Data in the Exit Region for Case # in Figure 7.11

Table C.n.7 - Horizontal Temperature Profiles for Case # in Figure 7.13

Table C.n.8 - Vertical Temperature Profile for Case n in Figure 7.i4

The isothermal case (Case 1) consists of only the first six tables. In all of the tables except Table
C.n.7, the coordinate system for Figure 3.1 applies and the dimensions of the coordinates are
mm. Table C.n.7 uses a coordinate that is defined as the distance from the heated wall in

dimensions of mm. All ti ed and i ities have the units of mmJ/s and the

p are made with equation (5.17).
Additional copies of this data may be obtained from the author, Dr. M. Shoukri or Dr.

P. Wood at

D of Mechanical Engis
McMaster University
Hamilton, Ontario

Canada

L8S 4L7
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