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ABSTRACT

The cooling of a hot surface by fluid motion has many applications in engineering. For

these mixed convective problems, the forced component of fluid motion may be in the direction

of the buoyancy vector or it may oppose the buoyancy force. In the present study, the opposing

mode is used to study the interaction of inertia and buoyancy forces in a fluid. Both numerical

and experimental techniques are used to study :.'te flow in a re~gular cavity of aspect ratio 2.

The inlet Reynolds number is varied between 800 and 1300 and the Grasbof number

based on the height of the enclosure is varied between 0 and 2.4 X 1010• The cases considered

correspond to Archimedes numbers of approximately 0, I. 10 and 20.

The flow field is observed qualitatively using laser induced fluorescence and a detailed

flow field is generated using a laser doppler anemometer. Temperature profiles are fow:d using

fine wire thermocouple probes. These detailed measurements may provide a data base for the

verification ofcomputer Pl"'grams used to predict mixed convection as there are no such detailed

chita bases in the present literature.

Numerical modelling is based on the SIMPLER algorithm with QUICK differencing. The

observed flow field indicated that some regions in the cavity were turbulent while other regions

were laminar. This observation suggests the necessi:y of a low Reynolds number turbulence

model. In this study, two forms of the low Reynolds number k-c model are used. In addition.

the commercial computational fluid dynamics program, FLUENT, is used to predict the flow.

Comparison ofthe experimental and computational results suggest that for isothermal and

buoyancy dominated flow cases the computational modelling is adequate. Difficulties arise in the

iii

ACKNOWLEDGEMENTS

prediction of the intermediate Archimed:lS number cases as the predicted flow is dominated by

buoyancy while the experiments show more of a balance. Sources for this discrepancy are

discussed.
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1.2 Practictl Applications

CHAPTER 1 The study of :nixed convection in enclosures has many practical applications in

INTRODUCTION

1.1 Nature oC the Flows and Heat TransCer

The mechanism of convective heat transfer is referred to as heat transfer to a fluid in

motion. The two modes of convection are free and forced convection and the heat transfer rates

are usually estimated by considering one of these modes dominant.

As heat is transferred to or from a fluid, the temper-..rure gradients present give rise to

density gradients. In the presence of a body force, such as gravity, these density gradients bring

about fluid motion. This mode of heat transfer is called free or natural convection. Since the

velocity field is determined by the buoyancy effect of the fluid, the velocity and temperature

fields are strongly coupled. The heat transfer is usually dependent on fluid properties through

the Prandtl and Grashof numbers (see section 2.1 for a definition of these parameters).

In the case offorced convection, the fluid motion is due primarily to some external force.

niis external force may be the result of a fan. pump, the wind, etc. With this type of

convection, usually the velocity field is determined fllSt and the temperature field is determined

from it. The heat transfer rate is a function of the Reynolds and Prandtl numbers.

In many engineering applications the effect ofbuoyancy and forced convection are of the

same order. In this case. the heat transfer is referred to as mixed or combined convection. The

present study collSiders this type of convection in rectangular enclosures.

engineering. In many of these applications, the geometry is complex and the flow structures

typically exhibit turbulence and recirculation which are difficult to model. Although the present

work uses a simple rectangular geometry, it provides a fundamental understanding of the

buoyancyfmertial interaction of the flow that is necessary for the prediction of more complex

geometries.

Some direct applications include the heating, cooling and ventilation of rooms and

buildings, the cooling ofelectronic components, the study ofthermal pollution in water resources,

the study of fluid motion in storage tanks used in solar heating, the analysis ofheat exchangers,

and many applications in the nuclear industry.

1.3 Objectives oC the Present Work

The present work: is a combination of both an experimental and a numerical study of

mixed convection in enclosures. While each of these studies complement the other. each has its

o~objectives.

In the experimental study. the velocity. temperature. and turbulent fields are obtained in

the enclosure. In addition, overall heat transfer correlations are presented. The main motivation

for the experimental study is to provide experimental data which may be used to compare and

verify numerical simuiations. This is necessary as there are a limited number of experimental

studies.

The numerical study will aid in the future development ofnumerical codes. Some of the

mathematical modelling and some aspects of numerical formuiatiollS are strongly problem

dependent. As there are no extensive numerical studies ofmixed convection in enclosures in the



current literature. the present numerical srudy will aid in the testing of the performance of some

of the models and formulations.
CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

Before a summary of previous literature is presented. a brief explanation of terminology

and parameters used in mixed convection problems is presented. In the present study, the

velocity, temperature, and turbulence fields will be obtained both experimentally and numerically

in a rectangular cavity. The specific cavity is shown schematically in Figure 2.1. The enclosure

shown is a rectangular cavity with a horizontal jet entering in the upper left comer. This inlet

jet bas specified velocity and temperature profiles (uJ and TJ respectively). The fluid discharges

by way ofa horizontal duet located in the lower left comer of the cavity. All solid boundaries

are insulated with the exception of the right wall, which is maintained isothermally at Tw.

This problem may be specified in terms ofdimensionless parameters. These are the fluid

Prandtl number, the cavity inlet ratio, the cavity aspect ratio, the inlet Reynolds number, and the

Gramof number. The Prandtl number, Pr, is a dimensionless paratneter defined as the ratio of

momentum to thermal diffusion and is expressed as

Prz ILLCp. ~
K aL

where ILL is the dynamic viscosity of the fluid,

<; is the specific heat at constant pressure,

K is the thermal conductivity of the fluid,

lit. is the kinematic viscosity, and

aL is the thermal diffusivity of the fluid.

(2.1)

-----I~~ UJ TJ

l Tw

H

The inlet ratio, a, is defined as the ratio of the inlet height to the cavity height and is expressed

as

(2.2)

It must be noted that, in the current study. the outlet height equals the inlet height. The cavity

aspect ratio, A, is the ratio of the height to width of the cavity

A = ~ (2.3)

The inlet Reynolds number, Re, is the ratio of inettial to viscous forces and is defined as

The system Grashof number, Gr, is the ratio of buoyant to viscous forces and is expressed as

(2.5)

.J-------w--------1

D

In this notation, the subscript i refers to the component of gravity and the subscript H refers to

the length scale. In the present work, the non-zero component ofgravity is 1;-. The length scale

is the height of the cavity as an important boundary layer forms on the heated wall. Another

cOnvenient paratneter that is often used with mixed convection is the Archimedes (Ar) or

Richardson (Ri) number. In general, this variable is,

(2.6)

Figure 2.1: Problem Specification

This paratneter is defined as the ratio of buoyant forces to inertial forces and is derived from the

buoyant term in the dimensionless momenrum equations. This term appears as a source term in

the dimensionless govemiDg equations. If the Grashof and Reynolds numbers do not have the

same length scale additional dimensionless parameters may be present in this term.



of the current literature follows.

The study ofmixed convection in internal vertical and horizontal flows has been studied

e'nensively in the past. Typically, the geometry used in most of the research includes flow

between parallel plates and flow in tubes and duets (both circular and non-circular). While the

re5'Jlts of this research is insightful, it is not presented in this literature survey for the sake of

brevity. However, Gebhart er al. [I) provides a complere literature survey on this topic and

others. The research of mixed convection in confined eotclosures is limited. A detailed survey

In Figure 2.1, the fluid inenia drives the fluid across the top boundary. As it meets the

solid right wall, the fluid turns d<.wn the right boundary, and as it meets the lower boundary, the

fluid turns horizontally toward the exit. As the fluid flows adjacent to the right boundary, heat

is transferred to or from the wall. If the boundary temperature is less than the fluid temperature,

the fluid traIISfers heat to the wall resulting in a downward buoyancy force. Since the buoyancy

force is acting in !!Ie same direction as !!Ie inenial force, the flow is said to be ·aiding flow'.

Tf the temperature of the wall is greater than the fluid temperature, heat is traIISferred to the fluid

resulting in an upward buoyancy force. Since the buoyancy and inenial forces oppose each other,

the flow is said to be ·opposing flow·. The aiding or opposing nature of the flow may be

characterized in tenos of the Grashofnumber.

2.2

GrL > 0 for opposing flow

GrL R 0 for isothermal flow

GrL < 0 for aiding flow

Mixed Convection in Enclosures

(2.7)

2.2.1 Previous Numerical Rese:u-ch

Oberkampf and Crow [2) considered an open reservoir with a horizontal inler jer at the

surface on one end of the reservoir and a horizontal outler pon at various heights on the opposite

end. The study considered the effects of inflow and outflow, heat traIISfer and wind shear at the

surface. In a well mixed reservoir, the fluid circulates top to bottom by way of large vortices,

while in a stratifioo reservoir, the venical motion of the fluid is inhibited by buoyancy. Wmd

speed also had a significant effect on the temperature and flow field. An aiding wind increased

the speed of the flow while dissipating a considerable amount of heat (by convection and

evaporation). An opposing wind forced the heated jet below the surface and significantly reduced

the heat dissipation to the atmosphere. The researchers also reported a high amount ofcomputer

time necessary for :he simulations.

To study the flow inside solar energy storage tanks, Cabelli (3) used a stream function

vorticity approach to calculate a laminar flow field. The results indicate that for a Richardson

number greater than about unity, buoyant effects were dominant.

Hjenager and Magnussen [4,5) predicted three-dimensional turbulent flow in a room.

In, this work both the isothermal and buoyant flows were considered. Comparisons with

experiments, indicated that for isothermal flows the prediction is adequate. However, inadequate

results were obtained with buoyant flows. Reference (5) states that reliable measurements are

needed for the validation of the computer codes.

Shoukri and Ahluwalia (6) studied turbulent mixed convection in enclosures. 10 this

study, an explicit numerical scheme and a two equation, k-e, turbulence model were employed.

The boundary conditions consisted of a square enclosure with two inlets (one at each end) and

an outler port (m the centre) of the bottom wall. The fluid was heated volumetrically in a region

in the centre of the cavity. The study indicated that there are strong interactions between the

10

(2.8)

inenial forces and the buoyancy forces and that these interactions had a significant effect on the

temperature field. For the case considered, it was found that for an Archimedes number greater

than approximately 0.2, the flow was buoyancy dominated and for Archimedes numbers less than

this value, the flow was dominated by inenia. The results also indicated that turbulence

modelling was needed for such flow interactions. The k-c model appeared to give adequate

results.

Cha and laIuria [7,8) studied mixed convection flow for energy extraction. Hot fluid

was withdrawn from the top of the cavity and cold Water was placed in the caVity at the bottom

to preserve thermal stratification. The effect of buoyancy was found to be significant for

Richardson numbers greater thaI: 0.1 and was very strong for Ri greater than about 1. The

horizontal spread and the vertical mixing was found to be dependent on the inlet parameters.

Oosthuizen and Paul [9) modelled laminar mixed convection using a finite element

stream function-vorticity formulation. The problem specification is identical to that of Figure

2.1, with the exception of the left wall being maintained isothermally at the same temperature as

the jet temperature. This study found that the buoyancy forces increase the average heat traIISfer

fo,r aiding flow and decrease the heat transfer rate in the case of opposing flow. However, for

opposing flow, the heat transfer is enhanced by buoyancy if the Reynolds number is very smaIl.

The effect of buoyancy tnay be neglected if

NUJorad > 2.5
NUJ"~

For buoyancy dominated flow, the inertial force tends to make a more uniform heat transfer

distribution. For the opposing flow case, the local heat transfer rate is significantly inf1uetJCed

by the Reynolds number.

Kumar and Yuan nO) used a SIMPLE family algorithm to predict laminar mixed

convection. In this study, a venical isothennal jet entered the cavity in the upper left comer.

The outlet pon (venical as well) was ill the upper right comer. The entire cavity was maintained

at a constant temperature. This study concluded that buoyancy effects have been found to be

significant on the flow and temperature fields and on the friction factor and heat transfer rate.

Recently, papers have been written which deal with reviews of current numerical

analysis. These include:he papers ofPatankar (11) and Leschziner (12). While these papers are

DOt written specifically for modelling mixed convection, many of the principles presented tnay

be employed when modelling such flows.

2.2.2 Previous EKperimentni Rese:m:h

Neiswanger, Johnson and Carey [13] conducted flow visualization and measured local

heat transfer for cross flow mixed convection in a rectangular enclosure with restricted inlet and

outlets. Until the publication of this paper, the authors claimed that no detailed experimental

studies had been conducted on high Rayleigh number mixed convection near venical walls in

en,c1osures. For Reynolds numbers less than 2000, the flow was laminar. The flow structure

changed considerably at a Reynolds number of 5000. Neiswanger er aI. suggest that there is a

need for more experimental data for different geometries and Prandtl numbers.

JaIuria and Cooper (14) studied negatively buoyant wall flows. 10 this study, a detailed

investigation of penetration, entrainment, and heat transfer characteristics ofbuoyant wall jets is

presented.
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2.2.3 Natural Convection in Enclosures

A brief review of natural convection in enclosures is presented as this has been studied

extensively in lbe past. In addition, natural convection may be considered a limiting case of

mixed convection (completely buoyancy dominated). Thus some aspects of natural convection

may be applicable to mixed convection.

The present survey is limited to rectangular vertical cavities. In lbis configuration, lbe

two vertical walls are differentially heated and lbe horizontal walls are isothermal (see Figure

2.2). Natural convection probletns are usually specified in tertns of lbe fluid Prandll number.

lbe system Rayleigh number and lbe cavity aspect ratio. The Prandll number and aspect ratio

have been previously defined and the Rayleigh number is defined as the product of the Grashof

and Prandll numbers. The review papers of Catton [lS] and Osttach [16,17] present complete

literature reviews of rectangular vertical cavities as well as others of special interest. Osttach

[16] states that vertical cavities contain all of the essential physics relevant to all confined natural

convection probletns.

In 1978, the conference on Numerical Methods in Laminar and Turbulent Flow was held

at.university College, Swansea. During !his conference, a session concerning the comparison

of numerical techniques applied to standard probletns was held. This session concluded that

buoyancy driven flow in a cavity with differentially heated sides was an adequate problem for a

comparison. For this standard problem, the Rayleigh numbers based on the temperature

difference of the vertical walls were set at lQ3, 104, lOS and 1()6. The fluid in the cavity bad a

Prandll number of 0.71 which corresponds to air.

A year later, after a great deal ofdiscussion with various mathematicians and engineers,

it was decided that the twO-dimensional problem of Mallison and de Vabl Davis [18] was an

adequate test case. Following the discussions, Jones and de Vabl Davis invited coDttibutors to
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subtnit a solution for the flow and thermal fields. The contributors were requested to submit the

following information

(a) the average Nusselt number,
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Figure 2.2: Natural Convection in a Vertical Rectangular Cavity
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(see section 2.5). In this section, specific emphasis is placed on the effect of turbulence

modelling.

2.3(b)

(c)

(d)

(e)

the maximum and minimum local Nusselt numbers on the hot wall and their locations,

the maximum vertical velocity on the horizontal midplane and its location,

the maximum horizontal velocity on the vertical midplane and its location,

contour plots of the velocity components, and, if available, the stream function, the

Turbulence Modelling

Turbulent motion is described as being rotational, intertnittent, highly disordered, and

dissipative [23]. In principle, the instantaneous conservation equations apply equally to a

turbulent motion as to a laminar one. However, at present, this is not a practical route as the

pressure and the temperature.

In 1983. de Vabl Davis and Jones published two papers on this subject [19,20]. The

first was a summary and assessment of37 solutions and the second was the description ofa bench

mark solution. The authors claim that the bench mark solution is accurate to within one percent.

The motivation for obtaining a highly accurate solution was to have something to compare with

for validating computer programs. In 1990, Hortmannn et aI.[21] used a finite volume multigrid

procedure to predict the bench mark solution. They predicted their solution to be accurate to

within 0.01%.

Hyun and Lee [22] predicted transient natural collvection in a square cavity. This study

concluded that if the Prandll number is greater than unity, oscillations in the solution were

important details of turbulence are small scale in character. For example, in gaseous flow, the

eddies responsible for the decay of turbulence are of lbe order of 0.1 mm [24]. In most

engineering applications, the flow domain is many orders of magnitude larger and hence direct

simulations require large computing times and computer memory.

A complete description ofdifferent turbulence models is beyond the scope of the present

project. Thus the objective of this chapter is to provide an understanding of the need of

turbulence models and to provide background information necessary for the discussion ofthe wall

bounded models presented in section 2.4. A comprehensive discussion of turbulence modelling

~y be found in references [23.24,25].

evident if 2.3.1 Time-Averaged Governing Equations

(2.9) Fortunately. in most applications, the engineer is only concerned with the time-averaged

The present literature survey for laminar natural convection is restricted to these cases

as the bench mark problem may be considered the definitive test case. Several researchers have

studied turbulent natural convection using both experimental and numerical techniques. A

detailed discussion of this literature is presented after turbulence modelling bas been introduced

effects of turbulence. Thus. the first step towards the modelling of turbulent flow is the

decomposition of the flow variables into a time-averaged and fluctuating component. Thus, a

given flow variable, ~. is decompnsed by

(2.10)



(2.14)
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The overbar denotes the time-averaged value while the prime denotes the random variation about

the mean. With the substitution of equation (2.10) into the governing equations, the time-

averaged governing equations may be derived. For nearly incompressible flow, the resulting two-

dimensional cartesian equations of motion written in tensor notation are:

Conrinuity

(2.11)

Momennun

(2.12)

Energy

Ei + oiijI = .i- [a jJ.. - "iE'T] (2.13)or OXj ib:j L OXj J

In this form, the buoyancy source term in the momentum equation has been modelled with the

Boussinesq approximation. This approximation states that the density of the fluid is considered

constant except in the buoyancy source term. This term is the last term in equation 2.12 and is

reSponsible for the motion of the fluid due to density gradients. Without this ap~roximaIion, the

buoyancy source term is modelled by + isg. The use of the Boussinesq equation is discussed in

Chapter 7. For simplicity, it is usual to drop the overbar in the governing equations on all the

terms except the Reynolds stress term, /iiUJand the turbulent heat flux term, iijT. This

notation has been adopted in the present work. These equations are not closed as there are more

unknowns than equations. The averaged equations of motion differ from their instantaneous

counterparts, as the former contains the Reynolds stress term and the turbulent heat flux term.

The obvious approach to close the set of equations is to derive exact equations for the Reynolds

17

right hand side of equation 2.15 accounts for the normal stresses due to turbulent motion just as

the static pressure, PIp. accounts for the normal stresses due to molecular motion. The variabie,

O;j' is the Kronecker delta and is defined as,
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stress and turbulent heat flux terms. This is a possible solution to the closure problem but the

resulting equations for these terms contain higher order terms [25]. For example, the partial

differential equation for the Reynolds stress term. /iiUJ, contains a third order term, namely,

Uj UJ Uk. Equations for the third order terms contain fourth order terms. In general, closure

schemes are usually stopped at second order terms and the third order terms are approximated

by known variables.

2.3.2 The Turbulent VIScosity Concept

Another approach to the closure of the equations is to use a simple turbulence transport

model. These models use an eddy or turbulent viscosity concept. Some examples of the models

include the zero, one and two equation models where the number of equations refers to the

number of partial differential equations in the model.

Boussinesq introduced the first concept of a turbulence model [24]. Analogous to

Newton's law of viscosity,

[
OUj OUj)

TL =JLL - +-
OXj OXj

Boussinesqsuggested using a turbulent shear stress, TT, equal to the product ofthe mean velocity

gradient and a turbulent viscosity. Thus

TT • - p u/ u! • JLT [~ + 5] -~3 pajJk (2.15)
J ib:j ib:j

The turbulent viscosity, Jkr, is not a property of the fluid but is dependent on the local turbulence.

Its value may vary from flow to flow and even point to point within a given flow. The first term

on the right hand side of equation 2.15 accounts for the shear stress due to turbulent motion just

as equation 2.14 accounts for the shear stress due to molecular motion. The second term on the
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history of turbulence. As a result, the model incorrectiy predicts the turbulent viscosity to be

zero whenever the velocity gradient is zero [25].

In 1930, von Karman proposed that the mixing length may be modelled using

(2.20)

additional modelling must be used in conjunction with the turbulent viscosity concept.

where CSor is turbulent Prandtl number [26].

The concept of turbulent viscosity provides a basis for turbulence modelling but it itself

cannot be considered a model since it can't be determined from calculable quantities. Thus

Oij = 1 if i=j

= 0 if i¢j

The symbol, k, denotes the turbulent kinetic energy and is defined as

In a similar manner the turbulent heat flux can be expressed as,

(2.16)

(2.17)

(2.18)

t m • I: I oU/oxj, I
a'lu/oxj

where I: is von Karman's constant (I: = 0.42). Von Karman's proposal is limited at inflection

points of the velocity profile (i.e. a'lu/ib:J = 0). At this location the mixing length is infinite

and cannot be used to compute the fmite shear stress.

It must be noted that equation (2.19) and equation (2.20) are based on erroneous

physical arguments but can be regarded as definitions for the quantities "T and t", which in

simple flows are easier to determine than /iiUJitseif [27]. In many problems it is difficult to

specify the mixing length and in flow situations more complex than shear layers it may be

impossible.

Launder and Spalding [24] presented a review of other zero equation models.

2.3.3 Zero Equation Models

The fU'St proposed zero equation model for the turbulent viscosity, Jkr ' is the mixing

length hypothesis [24). Prandtl suggested that the turbulent viscosity be described as,

JLT • pt~I~I (2.19)

where the mixing length, tm' must be prescribed algebraically. The mixing length hypothesis

has been tested extensively in the past and has many limitations. This model is based on the

assumption that the turbulence is in local equilibrium. Thus, the turbulence is dissipated and

produced at the same rate. This hypothesis does not account for the convection, diffusion or

2.3.4 One Equation Models

In an attempt to overcome limitations of the zero equation models, turbulence models

have been developed to account for the transport and history of turbulence. This is accomplished

with the use of a transport equation for an acceptable velocity scale of turbulence. Several

models use the square root of the turbulent kinetic energy, ,fk , for the dependent variable in

the differential transport equation. An exact equation may be derived from the Navier-stokes

equation. The following equation for the turbulent kinetic energy is exact with the exception of

lhe first term on the right hand side. This term, called the diffusion term, assumes that lhe



(2.21)
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diffusion is proportional to the gradient of Ie. The constant, ak' is :ul empirical diffusion number

commonly referred to as the turbulent Schmidt number.

ak ak a [ VT ] ak ~ au,
- + Ui - • - 'VL + - - - Ui Uj - - cat ax, ax, ak ax, axj

The second term on the right hand side accounts for the production of to.lfbulence. The

dissipation term, e, is modelled on the assumption that in an equilibrium flow, the rate of energy

dissipated by the smallest eddies is equal to the rate of energy fed down the chain of eddies from

the largest to the smallest (23). The dissipation is determined from

(2.22)

where CD is an empirical constant and L is a length scale. For the case of buoyant flow, as is

the case ofmixed convection, an additional term is included in the differential equation to account

for the production of turbulent kinetic energy due to buoyancy. This production term is added

to the right side of equation (2.21) and is (28)
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simple shear flows or boundary layers where it is easy to specify l1'1e length scale, L. However

in complex flows it is no easier to prescribe than tm was in the mixing length hypothesis [25].

Therefore the trend has been to use two equation models where the length scale is also

detern:ined from a differential equation.

2.3.5 Two :F.quation Models

For any improvement over the transport models presented thus far, an additional

transport equation for the length scale must be used. This allows the length scale to be influenced

by transport and history processes in a similar manner to the turbulent kinetic energy [25].

Several models have been adopted such as the k-w, k-e, and the k-kL models where w represents

the square of the vorticity and e the rate of dissipation. These models have achieved moderate

success. The kat model will be discussed in detail as it has been used to predict recirculating

flow succes..'"fully (23).

(2.23)

The equation for the dissipation of turbulent kinetic energy may be derived from the

Navier-Stokes equations. However many modelling assumptions must be made and the result is

'Il!is term is naturally obtained as a result of time-averaging the momentum equation when the

buoyancy term is included. The turbulent Reynolds stresses are related to the turbulent kinetic

energy through the Prandtl-Kolmogorov relationship,

(2.24)

where C
Il

is an empirical constant and L is a length scale which must be prescribed from simple

empirical functions similar to those used with the mixing length (23). Although the equation for

the turbulent kinetic energy accounts for the transport and history of kinetic energy, its range of

ve:Y empirical [25]. The usua1 equation for the rate of dissipation of turbulent energy, using the

assumption of infinite Reynolds number, is

~ +u, ~ • .!.. [[VL +~] ~] +C1 ~ vT [~ +5] ~ -Cz ~ (2.25)at ax, axi a~ ax, k iJxj aXi iJxj k

where a~ is an empirical diffusion constant commonly referred to as the Prandtl-Schmidt number

for the dissipation rate. Just as a buoyancy term appears in the turbulent kinetic energy equation,

some authors use such a term in the rate of dissipation equation. This source term is

applications is limited by the prescription of the length scale. L. This model works well in
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Other authors argue that there is no physical reasoning for including such a term and neglect it

in the conservation equation [28,29). Some work has indicated that the inclusion of this term is

completely insignificant [29,30).

The normally used constants in the k·t equation are presented in Table 2.1 [26,31).

2.4

[ [
au):! [avl:! (au av]:!]G E vT 2 - +2 - +l- +-ax aYJ ayax

Wall Bounded Tu:-bulent Flows

(2.26)
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(2.30)

Table 2.1: Consl:lnls used in the k-e Model

Cl' C1 Cz C3 a~ ak '7

0.09 1.44 1.92 0.7 1.3 1.00 0.9

The complete k-e model with the inclusion of buoyancy terms in tw<Hlimensional flow

is,

As the wall is approach::d in a turbulent flow field, a further computational difficulty

arises. Within a very thin region near the boundary, the effective.transport coefficients change

by more than an order of magnitude as viscous effects dominate the turbulence effects (30). In

this situation the models presented in section 2.3 are not capable of predicting the flow in their

present form as they are based on the assumption of infinitely high Reynolds number. As

discussed in the previous section, the zero and one equation models are inadequate to model the

complex flow in a cavity. Therefore this section deals solely with wall bounded models used in

(2.27)

(2.28)

(2.29)

conjunction with a two equation model of turbulence.

In the wall bounded region, the models must be modified or additional modelling must

be incorporated into the fully turbulent models to account for the effect of viscosity near the

walls. In an attempt to model this transitional layer, several methods have bee.1 adopted. These

include wall functions, low Reynolds number modelling, parabolic sublayer, and two layer

approaches.

In each subsection ofthis chapter an overview ofthese wall bounded models is presented

subjectively. At the end of each subsection a discussion of the merits and limitations of each

method is presented.

where the mechanical production of turbulence, G, is












































































































