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Abstract

Physical mechanisms responsible for the above-threshold spectral output of

1.3 11m InGaAsP semiconductor diode lasers are presented and discussed. Measurements

of the facet emission of a large number of devices indicate modulations in the below

threshold RmGmproduct which can be used to predict and explain the shape of the above

threshold mode profile for output power levels ofless than approximately 5 mW. Above

threshold measurements using devices incorporated intc a shon-extemal-cavity

configuration show that a symmetric, nonlinear gain mechanism is required tc:explain the

spectral propenies for output power levels in a single mode which are greater that 5 mW.

Thus it is concluded that both the effects of scattering centres and nonlinear gain are

required to model accurately the spectral output of 1.3 11m InGaAsP semiconductor diode

lasers.
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Chapter 1. Introduction

An understanding of the physical mechanisms which affect the above-

threshold spectral output of 1.3 11m InGaAsP semiconductor diode lasers is important

since these devices are used in commercial applications, particularly in the areas of

telecommunications and near-infrared spectroscopy. An increased knowledge of these

physical mechanisms allows for accurate modelling of device behaviour and for the

possibility of providing manufacturers with a diagnostic tool for assessment of production

processes to increase device yield or for application-oriented device selection.

In optical-fibre based telecommunications systems the number and strength

of the longitudinal lasing modes affects many system operation parameters. Chromatic

dispersion in the optical fibre reduces the maximum transmission rate for systems using

multi-longitudinal mode sources as compared to systems using single mode lasers. In

addition, mode partition noise is a mechanism whereby the presence of multiple-

longitudinal modes in the source laser results in a decrease in the signal-to-noise ratio at

the optical receiver.[ I, p.883] In spectroscopic applications, the ability to alter the

wavelength of sellliconductor hisers by changing a combination of the injection current
~

and the active region temperature ha.~ been exploited to probe lIbsorption transitions in

diverse molecular systems.[2] It is clear that sources lasing in a single longitudinal mode

are preferred since the presence of other modes leads to difficulty in discriminating
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