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ABSTRACT

Within the context of Eliashberg theory, we have studied the effects
of planar anisotropy on many superconducting properties. Planar anisotropy
is of interest for superconductors with layered crystal structure, such as the
metallic transition metal dichalcogenide and high-T. oxide superconductors.

To describe planar anisotropy we use a model dispersion relation
which gives free-particle-like electronic states in the direction parallel to the
layers and the tight-binding form in the direction perpendicular to the lay-
ers. Using this dispersion relation and the Fermi-Surface-Harmonic (FSH)
expansion technique, we specify the general anisotropic Eliashberg equations
for the problem of planar anisotropy.

We begin with the study of the effects of planar anisotropy on the su-
perconducting transition temperature, the thermodynamic critical magnetic
field, and the quasiparticle density of states in the superconducting state. For
all these properties, especially the quasiparticle density of states, the effects
of planar anisetropy are usually quite significant.

Next, we study some thermodynamic and transport properties, namely,
the specific heat, the thermal conductivity, and the ultrasound attenuation.
The effects of planar anisotropy on these properties are closely related to the
changes in the quasiparticle density of states due to anisotropy. The changes
in the quasiparticle lifetime due to the superconducting phase transition and
anisotropy are also important for the unusual behaviors of thermal conduc-
tivity at low temperature.

Several electromagnetic properties are also studied. The introduction

of anisotropy usually reduces the value of the London penetration depth
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Abstract
below its isotropic value. and strongly depresses the Hebel-Slichter peak in
the nuclear spin relaxation rate. The theoretical results for the nuclear spin
relaxation rate with strong coupling, anisotropy and Fermi liquid corrections
have been compared with the experimental data for the high-7,. oxides. The
major effect of planar anisotropy on the infrared conductivity is to reduce
the frequency at which the absorption starts.

Finally, we have examined the changes of the phonon scl-energy
when the superconducting phase transition occurs. It is found that there
is a qualitative difference between the results for isotropic superconductors
and for anisotropic ones. This may be displayed in experiment under certain
conditions. Anisotropy also complicates the analysis of the structures in the
phonon self-energy.

It is generally true, for all the properties which we have studied,
that the effects of anisotropy will be diminished if we increase the coupling
strengths, and/or introduce impurity scatterings.

Besides the problem of planar anisotropy, we briefly discuss the prob-
lem of an energy dependent electronic density of states (EDOS) for Eliash-
berg superconductors. This is of interest for a model of two-dimensional
tight-binding dispersion relation. For a Lorentzian form for EDOS around the
Fermi level, we have discussed the modifications of the Eliashberg equations
and, then, calculated the quasiparticle density of states in the superconduct-
ing state. The effects of an energy dependent electronic density of states on
the temperature evolution of the quasiparticle density of states below T, is

particularly interesting,.
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Chapter 1

Introduction

Superconductivity was first discovered by Kamerlingh Onnes in mer-
cury (Hg) with a superconducting transition temperature of 4K in 1911.
Since then superconductivity has been found in many other materials and
the transition temperature or T; for short, has been steadily increased [Hulm
and Matthias (1981)). However, until 1986 all superconductors discovered had
T, values well below liquid nitrogen temperature (~ 77K). The low transition
temperature makes the application of superconductivity very costly since liq-
uid helium has to be used as the cooling media. Begining with the discovery
by J.G. Bednorz and K.A. Miiller in early 1986 that Ba:Las_,CusOg;_,,
became superconducting at T ~ 30 K, a large class of Cu-based oxide super-
conductors with T. well above the liquid nitrogen temperature (~ 77K) has
soon been discovered [Wu et al. (1987); Maeda etal. (1988); Chu etal. (1988);
Sheng and Hermann (1988a,b)]. With this remarkable discovery, the applica-

tion of superconductivity on a large scale becomes possible and the existence
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of superconductivity at room temperature is closer to reality. These sur-
prising discoveries and the new chalienges they present have kept supercon-
ductivity one of the most fascinating fields for physicists both theoretically
and experimentally. Here, we will give a brief introduction to the theory of

superconductivity and to the problems which we are interested in this thesis.

1.1 THEORY OF SUPERCONDUCTIVITY

The first successful microscopic theory of superconductivity was pro-
posed by Bardeen, Cooper and Schrieffer in 1957, which is referred to as
BCS theory. In the framework of BCS theory, electrons attract with one
another through the exchange of virtual phonons. With this attractive inter-
action, which overcomes the repulsive interaction between electrons from the
Coulomb pseudopotential, the electrons in the system form so-called Cooper
pairs and condense into a new ground state, the superconducting state. A
single Cooper pair, as first discussed by Cooper in 1956, is referred to a bound
state in momentum space of two electrons of opposite momentum and op-
posite spin under an arbitrary weak attractive interaction in the presence of
a filled Fermi sea. In the superconducting state, however, Cooper pairs are
overlapping highly in the real space. The size of a Cooper pair can be as large
as the order of 10* Angstroms, for example in Al, compared with the typical
distance between electrons in a metal which is only a few Angstroms. In fact,
all electrons in the system are condensed, although only the electrons within
a rim of thickness ~ 2kwp centered at Fermi level are important, where wp
is a characteristic phonon frequency. It is this highly correlated ground state

that is responsible for superconductivity.
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Negiecting the effects due to the retarded nature of a phonon medi-
ated interaction and to the finite lifetimes of quasiparticles. BCS theory gives
many universal relationships among various superconducting properties, for

example

20, AC(T.)
=35 and —— =1.43,
kpT. 1T. 143

(1.1.1)

where A, is the minimum energy which is needed to break a Cooper pair from
the superconducting condensate at zero temperature and is often called the
energy gap, kp is the Boltzmann’s constant, AC(T) is the jump of the clec-
tronic specific heat (C,,) at T¢, and v is the Sommerfeld constant. All these
relationships have proved to be qualitatively correct, although not quantita-
tively, for many conventional superconductors by which we mean most of the
superconductors discovered prior to 1986 [Parks (1969); Carbotte (1987)].
To achieve a quantitative agreement with experiment, it is necessary
to extend the simple BCS theory to fully include the effects of a retarded
interaction and of the finite lifetime of quasiparticles. Such an extension was
formulated by Migdal (1958) for the normal state and by Eliashberg (1960)
for the superconducting state. It is conventional to call the extended BCS
theory, the strong coupling and/or Eliashberg theory of superconductivity.
Eliashberg theory is a very accurate and sophisticated theory for phonon
mediated superconductors [Carbotte (1990)]. The agreement between the
theory and experiment is remarkable. For many superconducting properties
it is within a few percent. With these extraordinary successes, the correctness

of BCS theory and Eliashberg theory has been firmly established .
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There are exceptions, however. For superconductivity in some heavy-
Fermion systems and organic materials, Eliashberg theory may not be ap-
plicable [Stewart (1984); Ishiguro and Yamaji (1990)]. For the high-T. oxide
superconductors, it is now generally believed that Eliashberg theory can not
be applied, at least directly, due to many novel normal and superconducting
state properties. The mechanism for the high-T. oxides has remained to be
a mystery. Many exotic theories have been proposed for the high-T, oxides,
for which we refer to the books edited by Halley (1988) and by Bedell etal.
(1990). These new theories are not our prime interests here, however. Instead
we would like to develop a better understanding of Eliashberg theory under
various extended conditions. The conditions which we are interested are pla~
nar anisotropy in the electron-phonon coupling and energy dependence in
the electronic density of states around Fermt level. These two extensions can
be applied to some conventional superconductors as well as the high-T. oxide
superconductors. In the next two sections we will have a little more dis-
cussion on these two aspects. It is worth noticing that, although Eliashberg
theory has been established for a phonon mediated interaction only, it may
be extended to any interaction that involves the exchange of virtual bosons,

at least to a first order approximation.

1.2 PLANAR ANISOTROPY

Planar anisotropy is of interest for superconductors with layered
structure. The high-T, oxide superconductors are well known to have a lay-
ered structure [Yvon and Francois (1989)]. The common building block, a
CuO; plane, is believed to be essential for superconductivity in all these ma-

terials. Despite the fact that we do not know the mechanism for the high-T,



1 Introduction

o
oxides yet. it is certainly true that any successful theory will need to incor-
porate the layered structure.

There is also a large class of conventional superconductors with lay-
ered structure. They are the metallic transition metal dichalcogenides, e.g.,
TaSs and NbSe;, and the transition metal dichalcogenides intercalated with
organic molecules. Extensive studies were carried out in 60s and 70s on these
systems {Wilson and Yoffe (1969); Mattheiss (1973a)]. Band structure calcu-
lations gave good agreement with experiment [Mattheiss (1973a,b); Kasowski
(1973)]. The study of superconducting prorerties was mostly concentrated
on the fluctuation behavior near critical points (T¢, H., etc.) which is only
manifest in low-dimensional systems [Thompson (1973); Craven, Thomas,
and Parks (1973); Monceau and Waysand (1974); Klemm (1974)]. Near crit-
ical points, the Ginzburg-Landau (GL} theory [Ginzburg and Landau (1950)]
with anisotropic mass and the Lawrence and Doniach (LD) theory [Lawrence
and Doniach (1972)] can be used. The LD equations are of the form of
the GL equations for a system of two-dimensional superconductors, cou-
pled by Josephson tunneling of electron pairs. Although both theories are
phenomenological, they are easy to work with and usually describe most
superconducting behaviors near the critical points very well.

Transition metal dichalcogenide superconductors are well within the
category of phonon-mediated superconductors. The study of planar sym-
metric anisotropy, based on Eliashberg theory, is more appropriate to this
system. However, such a study should also cast some light on the problems
of high-T. oxides because of the similar quasi-two-dimensional structure. In

our approach we will not take fluctuations into account since most of our
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studies are in the temperature range well below T, where fluctuation effects
are not important.

To describe planar anisotropy of a layered structure, we will use a
model dispersion relation. This dispersion relation gives a constant elec-
tronic density of states around Fermi level provided that Fermi energy is
high enough. Other dispersion relations could also be chosen and may result
in a situation where as a function of energy, the density of states around
the Fermi level is not constant. To study the problems of anisotropy, we use
the Fermi-Surface-Harmonic (FSH) expansion technique [Allen and Mitrovié
(1982)] as a general approach. Detailed discussion of the model dispersion

relation and of the FSH expansion will be given in the next chapter.

1.3 NON-CONSTANT ELECTRONIC DENSITY OF STATES

For most conventional superconductors, a constant electronic density
of states (EDOS) around Fermi level (~ fwp) has been assumed in simple
BCS and its extension, Eliashberg theory. This assumption can be well jus-
tified for a free fermion gas model and the model which we are going to use
for a layered structure. However, for some conventional A15 superconductors
and the high-T. axide superconductors, this assumption, a constant EDOS,
has been questioned.

Electronic band structure calculations for some A15 superconductors,
e.g., V3Si, V3Ga, Nb3Sn and Nb3Ge, have shown some sharp structures in the
EDOS, on the scale of the Debye energy (a few tens of meV), near Fermi level
[Klein, Papaconstantopoulos, and Boyer (1980); Pickett (1980)). These sharp
structures have been used to explain some unusual behaviors of the normal

and superconducting state properties in these materials, e.g., the temperature
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dependence of electronic specific heat coefficient v in the normal state and
the effects of irradiation damage on T. [Ghosh and Strongin (1980): Lie and
Carbotte (1980))].

For the high-T. oxide superconductors, a quasi-two-dimensional tight-
binding model has been used by many people [Emery and Reiter (1988);
Schneider, Raedt and Frick (1989); Zhou and Shuiz (1992)]. For this model
a van Hove singularity will be present in the electronic density of states. The
position of this van Hove singularity is related to the Fermi level and depends
on the chemical potential or the doping level. There are arguments that for a
stoichiometric high-T. oxide compound, the van Hove singularity should be
very close to the Fermi level, based on the isotope effect, the T. value and
the temperature dependence of the normal state resistivity, etc. [Tsuei etal.
(1990); Newns, Pattnaik, and Tsuei (1991)}. If this is the case, many physical
properties will be significantly different from the predictions of a constant
EDOS. One, then, should take the effects of an energy dependent electronic
density of state into consideration.

To study the effects of a non-constant electronic density of states
on various superconducting properties, we will use a Lorentzian distribu-
tion centered at the Fermi level as a model for the EDOS. The height and
width of Lorentzian distribution are adjusted to give different strengths of
the Lorentzian peak, from very flat to a é-function like. Both the imaginary
and real axis Eliashberg equations will be modified according to this model.
The Eliashberg equations on the imaginary axis has been used by Lie and
Carbotte (1980) and by Mitrovi¢ and Carbotte (1983a,b,c) in the study of
many thermodynamic properties. What we will study here are some trans-

port and electromagnetic properties. Using the Eliashberg equations on the
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real frequency axis, we study the effects of a non-constant EDOS on the
nuclear spin relaxation rate, the thermal conductivity, the infrared conduec-
tivity, the phonon self-energy, etc., in the superconducting state. Due to the
length of this thesis we will not report all the work here. We will show the
Eliashberg equations with a Lorentzian distribution for the electronic den-
sity of states on both the imaginary and real axis in Appendix B. We will
also discuss briefly the effects of a non-constant EDOS on the quasiparticle
density of states in the superconducting state. This is one of the most fun-
damental properties of superconductors. Many other properties are directly
related to the quasiparticle density of states as we will see through out the

discussions in this thesis.
1.4 SCOPE AND OUTLINE OF THESIS

Planar anisotropy and a non-constant EDOS are closely related in
some instances and, in principle, they can be treated together in the context
of Eliashberg theory. However, the combination of these two problems is,
in practice, too complicated to work with at present, by this we mean that
an unreasonable amount of computing time is required. In this thesis, we
will therefore treat them separately. Due to the length of this thesis we will
mainly concentrate on the problem of planar anisotropy. A few of our results
for the effects of a non-constant EDOS are included in an Appendix. The
outline of this thesis is the following.

In the next chapter, we will introduce a model dispersion relation to
describe the motion of electrons in a layered system. With this dispersion

relation we show that an approach involving a constant electronic density of
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states around Fermi level can still be used. The general anisotropic Eliashberg
equations will then be specified.

In chapter 3, we study the effects of planar anisotropy on the critical
temperature T;, the change of the free energy upon entering the supercon-
ducting state, the quasiparticle density of states in the superconducting state
and the phonon structure in the quasiparticle density of states. Using vari-
ous electron-phonon coupling strengths we show how the effects of anisotropy
are affected by strong coupling. The changes in the quasiparticle density of
states in the superconducting state due to anisotropy are particularly inter-
esting since this has a large impact on many of the other superconducting
properties which we will discuss in the following chapters.

In chapter 4, the effects of anisotropy on the electronic specific heat,
the ultrasound attenuation, and the thermal conductivity are discussed.
There are several quantities associated with the electronic specific heat that
are of interest. The ultrasound attenuation is studied for the directions of
the ultrasonic wave both parallel and perpendicular to the layers. As a result
of a selection rule [Clem (1966)] only a small portion of quasiparticles on the
Fermi surface are involved for a particular direction. In principle, we can map
out the quasiparticle excitation spectrum on the whole Fermi surface from ul-
trasound attenuation measurements. From the thermal conductivity results,
the changes in the quasiparticle excitation spectrum due to anisotropy and
the effects of quasiparticle lifetime are discussed.

Chapter 5 is devoted to the study of the London penetration depth,
the nuclear spin relaxation, and the infrared conductivity. The London pen-
etration depth has been measured in the high-T. oxide superconductors by

many groups [Harshman etal. (1987,1989); Fiory etal. (1988); Mitra etal.
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(1989)]. Most experimental results favored the prediction of the two fluid
model [Gorter and Casimir (1934a,b); Ginsburg and Landau (1950)]. With
this in mind, we study the effects of anisotropy for various coupling strengths
and for different directions (parallel or perpendicular to the planes). For
the nuclear spin relaxation, the effects of anisotropy on the coherence peak
just below the superconducting transition temperature T, (the Hebel-Slitcher
peak) are discussed with special emphasis since no such peak has been ob-
served in the high-T. axides. To compare with the experimental data, we
also study the Fermi liquid corrections of Monien and Pines (1990). The ab-
sorption edge in the infrared conductivity is studied for various anisotropic
parameters, coupling strengths, and non-magnetic impurity concentrations.
Adding impurities affects the effects of anisotropy strongly.

In chapter 6, the changes of the phonon self-energy due to the su-
perconducting phase transition have been investigated for various anisotropic
parameters, coupling strengths, and temperatures. Due to the interaction be-
tween electrons and phonons, we can get the information on the energy gap
and on the electron-phonon coupling strength from measuring the phonon
shifts and lifetimes. For an anisotropic superconductor complications will
arise in the analysis of the phonon self-energy.

A summary of the work on planar anisotropy is included in Chapter

In Appendix A we show how the effect of anisotropy on T: is dimin-
ished under the limit of a very large electron-phonon coupling, the asymptotic
limit. The problem‘ of a non-constant electronic density of states near the
Fermi level will be addressed in Appendix B. Where, we will show the mod-
ified Eliashberg equations for a Lorentzian distribution EDOS near Fermi
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level on both the imaginary and real axis. together with the results on the
quasiparticle density of states in the superconducting state which is one of

the most interesting properties for us.






Chapter 2

Formal Theory

All the work in this thesis has been done within the framework of
Eliaskberg theory [Eliashberg (1960); Schrieffer (1964); Scalapino (1969);
Allen and Mitrovi¢ (1982)]. As we discussed briefly in the opening chapter,
Eliashberg theory is an extension of BCS theory to fully include the effects of
a retarded interaction between quasiparticles (phonon mediated) giving them
a finite lifetime. For most conventional superconductors, Eliashberg theory
has been well established as a powerful and accurate theory for describ-
ing the superconducting state. Quantitative agreement with experiment for
many physical properties has be obtained using the Eliashberg equations.
Many excellent books and reviews exist on the theory and its application
[Schrieffer (1964); Parks (1969); Tinkham (1975); Allen and Mitravié (1982);
Carbotte (1990)]. For the purpose of this thesis, here we will only show the
anisotropic Eliashberg equations which we are going to use freruently in the

13



14 2 Formal Theory

next several chapters. References should be consulted for a detailed discus-
sion of Eliashberg theory and the derivation of Eliashberg equations.

In the first section, we will introduce a model dispersion relation for
quasiparticles in a system with a layered crystal structure. All our studies are
based on this model. The general form of the anisotropic Eliashberg equations
will be shown in section II. In section III, we will write down explicitly the
particular form of the equations, specific to the model in section I, which we
are going to use. Some notation and characteristic parameters used in our

study will also be discussed.

2.1 THE MODEL

For a layered structure, it is natural to use the following dispersion

relation for the quasiparticles of momentum ¥ in the system (% = 1),

-1
e(R) = 5= (k" + k) + (1 + cos(k:)),

(2.1.1)

where m® is the effective mass, u = t/m" with ¢ the transfer matrix from
one layer to another layer and ¢ is the lattice constant in the z-direction.
This dispersion relation describes the single particle electronic states to be
free-particle-like for motion parallel to the layers, and to be of the tight-
binding form for motion perpendicular to the layers. A similar dispersion
relation was used by Kats (1969, 1970) in the first attempt to describe lay-
ered superconductors and by some others [Pint, Langmann, and Schachinger
(1989)].
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Fig. 2.1.1) From the dispersion relation (2.1.1), a) the constant energy sur-

faces and b) the electronic density of states.
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Having the dispersion relation, we can work out the constant cnergy
surface in the momentum space and the electronic density of states. which
we show in Fig. 2.1.1 a) and b) respectively. In Fig. 2.1.1 a), we only showed
the projections of the constant energy surfaces on kok: plane. All the surfaces
have a rotation symmetry about the k. axis. It is worthwhile to note that
the constant enerpy surface will remain “open”, by which we mean that
VEz)2+ (ky)2 > 0 for any allowed value of k., until ¢ < 24. In evaluating

the energy density of states, we used the formula:

ds 1
Ne) = ./sm RV I
(2.1.2)

where the integration is over a constant energy surface. There are many
other methods to do it. The most important feature in Fig 2.1.1 b), for us,
is perhaps that N(e) = 3=, a constant, for ¢ > 2u. This corresponds to an
“open” constant energy surface shown in Fig. 2.1.1 a).

In all our studies, we assume that the Fermi energy of the system
€r > p, i.e., €r is of the order of 10u. Therefore, from the above discussion,
we will have N(e) to be a constant rigorously around the Fermi level within
a distance of fiwp, where wp is a characteristic frequency of the bosonic
excitation responsible for the superconductivity. For most cases which are
known, fwp is less than one tenth of ep. We will use this fact, that N(e)
is a constant, to determine the Fermi Surface Harmonic (FSH) expansions,
which is a general way to solve the problem of an anisotropic superconductor

in the framework of Eliashberg theory {Allen and Mitrovié¢ (1982)].
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2.2 THE GENERAL ANISOTROPIC ELIASHBERG EQUATIONS

The final form of Eliashberg theory is a set of coupled non-linear in-
tegral equations, the Eliashberg e-uations. The solution of Eliashberg equa-
tions yields two important quantities for a superconductor, the pairing po-
tential Az(w,T), which is non-zero only in the superconducting state, and the
renormalized frequency &z(w,T) = wZp(w,T), with Zz(w,T) a dimensionless
mass enhancement factor resulting from electron-boson interaction. Both of
them are in general complex functions of momentum 7, frequency w and
temperature T. It is interesting to notice that the corresponding quanti-
ties in simple BCS theory are real and not frequency dependent, as there
the interaction is instantaneous and the lifetime of quasiparticles is infinite.
Thus, things are much simpler in BCS formalism than in Eliashberg formal-
ism, although Eliashberg theory is more realistic. Knowing these quantities,
Ap{w,T) and @y(w,T), we can calculate all other physical properties, both in
the normal and superconducting states, as they are functions of Ag(w,T) and
wp(w, T).

Two forms of the Eliashberg equations are most frequently used,
one written on the imaginary axis and the other on the real axis. On the
imaginary axis, the Eliashberg equations are written in terms of Matsubara
frequencies iwy, = izT(2n — 1) with n =0,+1,£2,... and T the temperature. In

this Matsubara representation, the full anisotropic Eliashberg equations are

r T - . . - Age (fwm)
Az (iwg) =rT (Mgt (fwn — iwm) = p"0we— | wim 1)] ——i——;———)
7 m=E-oo g \/(:J%, (iwm) + &s, (iwm)
Y o G L. E—
52, (iwn) + A2, (iwn)
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(2.2.1)
and
o0 ] . N -(iwm) !
Oa(iwg) =wg + 7T Aggr (fwn — fwm) =2 = =
g (fwn) =wn + 7 ,,,=Z_go( a8 \/Qg,(iwm)‘f‘fﬁ%'(i“’“‘))
- war (iwn) '
+ w(tt + ) ———= = )
/52 (fwn) + A2, (iwn)
(2.2.2)
with
_ ) © 2w(a? F(w))ggrdw
Az (iwn — fwm) = fu w? 4 (wn —iﬁ:n)z'
(2.2.3)

In these equations, T is the temperature and {) denotes a Fermi sur-
face average, xg;/fs(cr) (—%f—)ym, with N(0) the electronic density of states
at the Fermi level. For an isotropic case, where all quantities are 7 indepen-
dent, Egs. (2.2.1)-(2.2.3) will be reduced to the usual isotropic Eliashberg
equations since the Fermi surface average by itself is equal to 1.

The kernel (a?F(w))za is a directional electron-phonon spectral den-
sity, which contains information about the electron-phonon interacticus for
superconductivity in the system and describes the scattering of an electron
from momentum state § to 5’ through exchange of a pl_mnon of energy w.
Typically, this spectrum is obtained from electron tu::]neling experiments
where current (I) and voltage (V) characteristics are measured through a
superconductor-insulator-normal metal (S-I-N) junction with the insulator

providing a potential barrier for the free electrons on either side [McMillan
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and Rowell {1969)]. A standard procedure, through ‘inversion” of the Lliash-
berg equations, is used for which (@ F(u))pp is varied to match the structures
in the J — V' characteristics (in the phonon energy range). Such inversious
have been done for many materials assuming isotropy [Carbotte (1990)]. A
first principle calculation of (a?F(w))z;: is possible but very difficult, as we
need to know not only the wave functions and energies of the conduction
electrons in the normal state but also the coupling between these electrons
and phonons [Carbotte (1990)].

The parameter u*, which comes with a cutoff at frequency w. and
is assumed to be isotropic, is a measure of the effective Coulomb repulsive
interaction reduced from the screened instantaneous repulsive interaction p
by the fact that Coulomb interaction is propagated much more rapidly than

electron-phonon interaction,

1 _ 1 €F
p(we) — pleF) l"(wc)'
(2.2.4)

The cutoff frequency w, is taken to be in the order of 10 of the characteristic
phonon frequency wp of the system, since the electron-phonon interaction will
be ineffective for w » wp. The u* is also called the Coulomb pseudopotential,
which, together with a?Fjg (w), serve as two input parameters to give the
experimentally observed T..

The t+ and ¢t~ in the Egs. (2.2.1)-(2.2.3) are the normal impurity
scattering rate and the paramagnetic impurity scattering rate respectively.
They are defined as t* = 1/(2x7y) for 7n the normal impurity scattering

time and t— = 1/(2xrp) for 7p the spin-flip lifetime, and are assumed to be §
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independent as well. The minus sign in front of the ¢t~ in Eq. (2.2.2) reflects
the pair-breaking effect from the spin-flip interactions.

The solution of Egs. (2.2.1)-(2.2.2) gives us the pairing potentials and
the renormalized frequencies on the imaginary axis, Ap(iw,) and &g (iwn),
with which we will be able to calculate the thermodynamic properties of
the system. For some transport properties, however, we need the solution
on the real frequency axis, Az (w) and @ (w). This can be obtained by either
using Padé approximates [Vidberg and Serene (1977); Mitrovi¢, Zarate, and
Carbotte (1981)] which is an approximation method of analytic continua-
tion of Ag(iwn) and &y (iwn) to real frequencies or solving Az (w) and @z (w)
directly on the reel axis. The Padé approximates method, however, usually
works fine only at low temperature, T ~ 0K, and for smooth functions,
although it is much easier to work with than the real axis formulation of
the Eliashberg equations. Some work have been done on improving their ef-
fectiveness at higher temperature [Blaschke and Blocksdarf (1982); Leavens
and Ritchie (1985)]. Nevertheless, the real axis formalism of the Eliashberg
equations should be used for temperature near the critical temperature T,
and for functions having fine structures. On the real axis, the full anisotropic
Eliashberg equations are

Ag(w+if)=—{ '[_ : dw' fo ” A (e?F(Q))ppI(w + i6,9,w")Re (——m) Y

\fﬁg, (w') - Ag. (wh)
— " (we){ .[o e dw'tanh (%’) Re (__&%‘ (i::)‘ (_“’23' (w_’)) ¥

517' (w) '
It ——)
J‘:’ﬂf (W) - A2f (QJ')

+in(tt =t~

(2.2.5)
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and

S (w + i6) =w - (/m du' fm A F())z 1 (w +i6,Q.u')Re( . ‘I’i"(“"}' ))'
—e0 () \/&5, (") - Al';, (w")
Fin(tt + ) A CVR— (w)_ '
K:J%, (w) — A%, (w)
(2.2.6)

with

_N@) +1-fw) | N+ fw)

- [
Hw+ib Q)= —— e o t o 0o

(2.2.7)

where N(w) and f(w) are the Boson and Fermi thermal factors, respectively.
All other quantities are the real frequency counterparts of the corresponding
ones in Egs. (2.2.1}-(2.2.3).

The real axis formulation of the Eliashberg equations (2.2.5)-(2.2.6)
involves two integrals, besides the Fermi surface average, and they involve
complex quantities. It is much more complicated than the imaginary axis
formulation as there we only have a sum over Matsubara frequencies, in ad-
dition to the Fermi surface average, and all quantities are real. Thus, it takes
much longer to numerically solve the Eliashberg equations on the real axis
than on the imaginary axis. In some instances, it takes too long to be prac-
tical, Fortunately, this problem is solved partially by Marsiglio, Schossmann
and Carbotte (1988). They derived a new set of equations by doing one of the
integrals in Eqs. (2.2.5)-(2.2.7) analytically using the residue theorem. The
resulting equations are, with the symmetry (a®F(Q))zzr = —(e?*F(-Q))z3",
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. = Agr tWm !
Ag(w) =inT Z (/\ggi (w had i.'..u‘m 2 ( )

) = )
m=—co \/(Dg" (iwm) + A’%' (fom)
' ” .fi :(w—Q)
ir A F())z 5 (N(Q Q-w z A2 w0
+inl [ A0 F@)p (V@) + £@ - ) o2 (o= 9) = B2, (- )
. > 'tan C e “_—M)_'_ |
— 1" (we)( A 't h(zT)R( Qg,(w')—é-\%-(w’)))
+in(t+—t—)(_ﬁL)
Dz, (w) - AZ, (w)
(2.2.8)
and
@, =wiTm Acw—-'wm——ﬁﬂﬁt‘)—.—'
3 (W) =w + in .FZ-«.( 57" (w — fwm) B3, (iom) + A, (i)
in( [ 4@y (V@) + F(2 o)) et =D
+ w(/_m (@*F( @) (V(Q) + f(Q -~ w)) &% (w— Q) - A%, (w - Q)
+in{tt 4+ t7)( —%‘)’
@2, (w) ~ A% (w)
(2.2.9)
with
[ (PF(Q))pdD
Aﬂﬂ'(w)“—_[w w=0+i0+
(2.2.10)

Comparing Egs. (2.2.5)-(2.2.6) with Eqs. (2.2.8)-(2.2.9), we see that
the essential difference between the two sets of equations is that the double

integral in the former set is replaced by a single integral plus a sum over the
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Matsubara frequencies, which are the poles of Fermi distribution function
f(w) in a complex plane. The new set of equations (2.2.5)-(2.2.6) contains
pairing potentials and renormalized frequencies both on the real axis and
the imaginary axis, and acts as an intermediate set between the imaginary
axis Eliashberg equations and the real axis Eliashberg equations. It is much
easier to work with and can be solved much faster on a computer (by a
factor of 10) than the full real axis equations (2.2.5)-(2.2.6). It is also more
reliable to work with at temperature near T than the analytic continuation
of the imaginary axis quantities using Padé approximants. In practice, we
first solve the Eliashberg equation in Matsubara representation, Eqs. (2.2.1)-
(2.2.2), then the imaginary axis pairing potentials A (iwn) and renormalized
frequencies @y (iw,) are used as input parameters for Egs. (2.2.8)-(2.2.9). The
solution of Eqgs. (2.2.8)-(2.2.9) gives us the real axis pairing potentials Az (w)
and renormalized frequencies iy (w). These two sets, Eqs. (2.2.1)-(2.2.2) and
Egs. (2.2.8)-(2.2.9) are the fundamental equations for our studies here.

2.3 THE ANISOTROPIC ELIASHBERG EQUATIONS FOR THE
MODEL

In this section, the general anisotropic Eliashberg equations in the
last section will be specialized to the model dispersion relation (1.1.1). A
proper way to deal with the anisotropic equations introduced in the last
section is using a Fermi Surface Harmonics (FSH) expansion technique [But-
ler and Allen (1976); Daams (1979, 1981); Allen and Mitrovi¢ (1982)], in
which all angular dependent quantities, & (iwn), @2 (w), Ag(iwn), Az(w), and
(a2F(w))z3+, are expanded by means of FSH’s Q;(p), which form a complete

set of orthonormal functions at the Fermi surface. According to the dispersion
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relation (1.1.1), we have a cylindrical symmetric Fermi surface. Therefore,
the FSH set, Q;(p), can be the trigonometric functions sin(jp:c) and cos(jp:c),
where ¢ is the lattice constant in the :=-direction of a crystal. It is easy to
show the completeness and the orthogonality since the Fermi surface average

is

ds

0) Ist (27)3] V‘- (P |
1 - -
=5 d9Qj(p)Qk(p)

-_

(RiP(P) = ———0Q;(P) Qx(P)

(2.3.1)

with § = p,c. From the symmetry consideration, however, we will drop
sin(jp.c) part from the whole series and keep only the cos(jp.c) part. By
doing this, we will have even symmetry, with regard to f, for the pairing po-
tential (A7 = A_j) and the renormalized frequency (@3 = @_z). The problem
of completeness is not essential as we will always truncate the expansion se-
ries in numerical calculations.

To write out FSH expansion of each quantity explicitly, we have

g (iwa) = Y Bj(n)eos(ipsc), @p(w) =) @j(w)cos(jpzc)

i=0 =0
(2.3.2)
Ag(iwn) =Y Aj(n)cos(ipsc), Ap(w) = Aj(w)cos(ipsc)
i=0 i=0
(2.3.3)

and
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oo 0

(@®F(u))gg = ZEQQF(M)gjkcos(jp::.')cos(kp' .¢)
J=0k=0

(2.3.4)

with o?F(w) = {{{(¢2F(w))zz+)) and &;, &, and g;x the expansion coeffi-
cients. FSH expansions for Agz (iwn — iwm) and Azg/(w) are similar to (2.3.4),

following the relations (2.2.3) and (2.2.10), they are

o o0
Apgr (iwn = iwm) = 3 _ ) _Aoo(n = m)gjcos(jp.c)cos(kp' c)

3=0k=0

(2.3.5)

and

o0 ©o
Mg (W) = DY Aoolw)gjkcos(jpzc)cos(kp' oc)
F=0k=0

(2.3.6)

with

© _welFlld /°° Q2 F(Q)d0
W 4 (wy — wm)?’ 00 = oo W = R+ 101

(2.3.7)

Substitution of these expansions, (2.3.2)-(2.3.6), into the coupled
non-linear Eliashberg equations, (2.2.1)-(2.2.2) and (2.2.8)-(2.2.9), leads to

two infinite sets of equations which need to be solved self-consistently:
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[

‘5.,3- (fwm )eos(kp.'c)

Ajliwn) =7TY_ 3 [oo(n — migjx ~ u"Blwe— | wm Mo,;80k){ JebGm) 7 520
k=0m=—oc Ugv(lwm)'*‘ fp(‘wm)

Ag(iwn) !
/@2 (iwwn) + AL (iwza)

+w(tt — ")

(2.3.8)

[

@gr(twem Yeos(kp,'c)

o) o
Wi(twn) =wnbjo + rrTz E Aoo{n — m)g;k( -2—-_"2_-_)
k=0m=—x Vi wgv(wm) + Ag-(‘“m)

e (i) !

Fr(E N @2 (iwn) + A2 (fwn)
5’ n 5‘ n

(2.3.9)

and

- e — i Ags (iwm)cos(kps'c) '
A; (w) =ixT A — )ik |
J( ) E()m:z—oo ol = fu qjk(\/“-’;(iwm)*'agr (i‘*’m))
xS [ daF@)euN@) + f(@ - _Lyrw - Mooslhps'e)
wind, [ d0a F@N@) + @ - ) Pl
- pu"(w - 'tan .‘fi. _—.._—A"" () '
ot [ asteann( ) e _@;,(wr)_ag.(uf)))
&gt(w) !

pin(et - ) )
V@3 (@) — A%, ()

!

(2.3.10)

!

@; (w) =w6,-.o+i1rTZ Z Aoo (w — iwm)gix { wg! (iwm)cos(kp;'c) )

k=0 m==00 \/G’gl (iwm) 4- A;l (iwm)
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- i”Z/ Qe F(Q)gie( V(D) + f(Q - ) —= - mco‘ft'kp, °)
R D3 (w = Q) - A2 (v - )

!

wyr (w)
()
VR ) - A%, ()

+im(tt +17)
(2.3.11)

Now equations (2.3.8)-(2.3.11) are ready to be solved on & computer,
provided that we know the electron-phonon spectral density o? F(w), the ex-
pansion coefficients g;i, the Coulomb pseudopotential u* and the impurity
scattering parameters, t+ and ¢~. Since our main interest here is the effect of
layered anisotropy on a superconductor, we will neglect the Coulomb pseu-
dopotential u* and impurity scatterings ¢* and ¢~ in our numerical work
hereafter, unless specified. It is worthwhile to notice that high-T, oxide su-
perconductors are generally believed to be in the clean limit, where im-
purity scattering is not important for superconducting properties. This is
deduced by considering the small superconducting coherent length in these
materials. We should also point out that impurity scattering will wash out
anisotropies. In the extreme dirty limit, corresponding to large impurity scat-
tering, anisotropies will not be effective.

For the expansion coefficients gjx, it is convenient to assume that
goo = 1 and g;x = gi;. The relation gjx = gi; means that the process of
an electron scattering from state j to state §' is equivalent to the process
of it scattering from state 7' to state 7. In our numerical calculations, the
parameters g;; will be varied through a certain range to study the effects
of anisotropy with different strengths. Consistent with the assumption in
Section 2.1 that p < er, however, we restrict the range to the region where

gik < goo = 1. We also truncate the expansion series in Eqs. (2.3.8)-(2.3.11)
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after the cos(p.c) or cos(2p.c) terms. We believe that this will be sufficient for
understanding qualitatively the underlying physics of the anisotropic model
we have used.

For the electron-phonon spectral density a?F(w), the kernel of the
Eliashberg equations (2.3.8)-(2.3.11), we will use a modified Pb spectral
density. We multiply the original Pb o®F(w), derived from tunneling mea-
surements, by a constant to get a desired T.. By doing this, we change the
electron-phonon coupling strength. The parameter whick we use to mea-
sure the electron-phonon coupling strength is the dimensionless ratio T¢c/wiqg,
where w;,, is a characteristic phonon energy, first introduced by Allen and

Dynes (1975), given by

Wieg = €Ip (% .[9 ” azi(w) ln(w)dw)

(2.3.12)

with A the electron-phonon mass renormalization parameter given by

00 2
A=f 2&‘“’)@
0 [

(2.3.13)

It is easy to see, from the definition above, that multiplying o?F(w)
by a constant will not affect this characteristic phonon energy wi,,, although
T, will be changed. Therefore we can change the ratio, T: /wi,,, by multiplying
the a?F(w) of Pb with a constant. Other materials’ spectral density could also
be used but the particular shape of an oF(w) is not of interest here. All we

are interested in here is the effects of planar symmetry on a strong coupling
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superconductor, by which we mean that Eliashberg theory should be used.
in general. The exact shape of a*F(w) only matters when some quantitative
details for a particular material are needed. Besides, it has been shown that,
to a first approximation, T;/wi.g is @ more important quantity than the exact
shape of the spectral density in determining most superconducting proper-
ties [Mitrovié, Zarate, and Carbotte (1984); Marsiglio and Carbotte (1986,
1990); Marsiglio, Carbotte and Blezius (1990)]. Thus, throughout this the-
sis, we will use this ratio T./wi,y &s the only parameter to classify different
strength of coupling. We would like to point out that, for most conventional
superconductors, T /wje, Tuns from almost zero (0.004 for Al) to around 0.3
(0.320 for PhgsBigs) [Marsiglio (1988)]. T./wio; — 0 represents the BCS limit,
which is equivelent to having the characteristic phonon energy at a very high
energy limit.

In the following chapters, we will study the effects of a layered struc-
ture on various superconducting properties with the model and the Eliash-
berg equations given here. Since all physical properties are functions of the
peiring potential As(w) and the renormalized frequency wy{w), the solutions
of the Eliashberg equations, (2.3.8)-(2.3.11), for As(w) and d(w) are neces-
sary for all that follows.






Chapter 3

Fundamental
Properties

In this chapter, we will use the anisotropic model introduced in the
last chapter to study the effect of a layered structure on some fundamental
physical quantities of a superconductor, namely the superconducting critical
temperature (7¢), the free energy difference between the normal and super-
conducting state (AF = F, — F,), and the electronic density of states of
charged quasiparticles (N(w)) in the superconducting state.

The superconducting state below a certain temperature, T, is a
highly correlated electronic state with lower energy than that of the nor-
mal free Fermi sea. The change in the free energy between the normal and
superconducting state (AF) results in changes of many thermodynamic prop-
erties. The electronic density of states in this highly correlated new ground
state is also qualitatively different from that in the normal state. The most

important new feature, perhaps, is the appearance of an energy “gap” in the
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energy spectrum in the superconducting state. The consequence of this en-
ergy “gap” will be seen in detail in the folowing chapters, when we discuss
various physical properties. For many conventional superconductors where
a phonon mechanism is responsible for the superconductivity, the electronic
density of states also carrys the information on the electron-phonon spec-
tral density a?F(w) through some fine structures, whick we call the phonon
structure [Carbotte (1990)]. In fact, the electron-phonon spectral density it-
self can be extracted by exploiting the structure in the electronic density of
states as we discussed in the previous chapter. The energy “gap” and the
phonon structure are very closely related, as usually the phonon structure
occurs at energies equal to the sum of the gap value plus the phonon energy
of interest, which could be known independently from neutron scattering, at
zero temperature.

In the following section, we will show the effect of the anisotropy
on the critical temperature T;, followed by a discussion on the free energy
difference between the normal and superconducting state AF in section 3.2.
Section 3.3 is devoted to the electronic density of states and energy gap in
the superconducting state. Phonon structure and its relation to the energy
gap will be discussed in section 3.4. A short conclusion is included as section
3.5.

3.1 THE CRITICAL TEMPERATURE

The superconducting critical temperature T, is the temperature at
which the superconducting phase transition happens. Ever since the discov-
ery of superconductivity, to increase this critical temperature has been the

number one challenge for people working in this field. Prior to 1986, the
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highest T. was found in the A15 compound Nb3Ge with 7. = 23.0K {Gavaler
(1973); Gavaler, Janocko. and Jones (1974)]. This record was broken in carly
1986 by Bednorz and Miiller after they discovered superconductivity in the
La-Ba-Cu-O system, the first copper oxide superconductor with a T, around
30K. This discovery was so important not only because it was the high-
est T. known at that time but also because it represented the discovery of
a new class of superconducting oxides. The study of other copper oxides,
initiated by this discovery, turned out to be very fruitful and many new su-
perconductors were discovered soon after. The highest Tc now is 120K in
the T1 - Ba — Ca — Cu — O compounds {Sheng and Hermann (1988a,b}}, well
above the liquid nitrogen temperature (77K). The significance of Bednorz
and Miiller’s discovery in 1986 was recognized by a Nobel Prize in physics in
1987.

Interestingly, the study of the dependence of critical temperature T;
on isotope mass (the isotope effect) also made, probably, the decisive contri-
bution to the discovery of the first correct microscopic theory of supercon-
ductivity, BCS theory. It was discovered in 1950 [Frohlich (1950); Maxwell
(1950); Reymolds etal. (1950)] that, with sufficient precision, the following
relationship holds for mercury (Hg)

T. M2 = const.,
(3.1.1)
where M is the isotope mass number. Since the isotope mass is a charac-

teristic of the crystal lattice and the frequency of lattice vibrations (f2) is

related to the ion mass with Q@ ~ M~!/2, superconductivity is, thus, related
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to the state of the crystal lattice. It follows that superconductivity is due
to the interaction between the charge carriers and the vibrations of the lat-
tice (phonons). Based on this picture, Bardeen, Cooper and Schrieffer (1957)
invented a microscopic theory of superconductivity which has proved to be
remarkably correct for most conventional superconductors.

The problem of anisotropy was addressed right after BCS theory.
In the 1950’s, experiments on edding normal impurities into several super-
coaductors showed that initially T, would decrease with increasing normal
impurity concentration and then saturate quickly. To explain this, Anderson
[Anderson (1959)] argued that normal impurities would not affect the super-
conducting properties of an isotropic superconductor, including T.. For a real
material in the clean limit, however, there are always some anisotropies in
the conduction bands due to the crystal structure, and usually the anisotropy
will favor a higher critical temperature T.. By adding normel impurities, we
wash out the anisotropy and reduce T to its isotropic value.

A quantitative expression for the effect of anisotropy on T, was
first given by Markowitz and Kadanoff within BCS theory [Markowitz and
Kadanoff (1963)]. They used a separable model where the effective phonon-
induced matrix element in BCS theory had the form:

Vag = (1+ap)V(1 +oyp)
(3.1.2)
with the conditions (o) = 0 and {e;®) = 0.02, where () is denotes a Fermi

surface average. The T, formula for a pure superconductor with anisotropy,

then, is
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1
kgT. = l.l4wpexp (h—(l+ PSRN N(ﬂ)l')

(3.1.3)

compared with the T, formula for an isotropic superconductor in BCS theory:

1
kBTc = 1.14&)D exp (“W).

(3.1.4)

It is easy to see that 7. increases as < a? > increases, although < o® >
is small in this model. The study of the separable model was extended to
Eliashberg theory by Leavens and Carbotte [Leavens and Carbotte (1972)].
With some simplifications, they derived the formula for T, from the Eliash-
berg equations for a weak coupling limit. The strong coupling case was stud-
ied by Daams and Carbotte [Daams and Carbotte (1981)].

Now we extend the study to the anisotropic model we have introduced
in the last chapter. As we are dealing with arbitrary coupling and anisotropy
strength, deriving analytic expression for T is not feasible. We have to do
things numerically. The Eliashberg equations which we solved for T, are the
linearized equations of (2.3.8) and (2.3.9) with pairing potential Ax(iw,) set

equal 0 in the denominators

!

_ N Ag(iwm)cos(kp,'c)
(iwg) = A _ . Jm )¢
Biiom) =77 3 donn =g S22

(3.1.5)
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Dj{iwn} = wabjo + ﬂTi i Moo(n — m)gja{ D (iwm)cos(kp:'c) sgn(wm))’
k=0m=—00

(3.1.6)
where we also set u°, t* and ¢t~ equal to 0 as we discussed in the last chapter.
We used a modified Ph electron-phonon spectral density with T;/w;,, being
adjusted to be 0.1 for an intermediate coupling and 0.25 for strong coupling.
The anisotropic parameter g;; is non-zero only for geo = 1, g10 = go1 and
g2e = goz- By changing gi9 and goo, we show the effect of the anisotropy on
T. over a wide range. The results are plotted in Fig. 3.1.1.

In Fig. 3.1.1, T is the value of T, for the isotropic system, i.e. the
value obtained when g1 = g20 = 0.0. What we have plotted is the ratio
T./T-0 as a function of gio for several values of gao namely 0.0 (solid curve),
0.2 (dotted curve), 0.4 (short dashed curve), 0.6 (long dashed curve), 0.8
(short dashed-dotted curve), and 1.0 (long dashed-dotted curve). In the top
frame, where T./wj,; = 0.1, we see that the value of 7. rises monotonically
with increasing g9 for any given value of gsg. Over 20% enhancement of T,
has been achieved over the isotropic value for g;9 = 1.0 and gy = 0.0, and
it is over 40% for g19 = 1.0 and g9 = 1.0. However, for a given value of g0,
adding gs9 anisotropy will not always help increasing .. When g is large,
small additional anisotropy from go leads to a decrease in T, although T¢
does increase monotonically when adding goo anisotropy for small value of
g10 anisotropy. It is clear that rather large values are needed in order to get
a enhancement of T, over 20% of its isotropic value for the cases we have
studied here. As we increase the coupling strength to T./wi,, = 0.25, the

strong coupling case in the bottom frame, the pattern of behavior obtained
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Fig. 3.1.1) The ratio of critical temperature (T.) with anisotropy to its value
without (Ti) as a function of anisotropy parameter gjo for various values of
g20, namely 0.0 (solid curve), 0.2 (dotted curve), 0.4 (short dashed curve), 0.6
(long dashed curve), 0.8 (short dashed-dotted curve), and 1.0 (long dashed-
dotted curve). The top frame is for an intermediate coupling case with strong
coupling index T./wie, = 0.1 while the bottom frame is for strong coupling
with T./wiop = 0.25.
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remains the same as in the top frame. The resulting enhancements of the T,
value, however, are much smaller than those in the top frame for the same
anisotropy parameters. Now the largest enhancement obtained is below 15%.
This is not very significant. We can expect that further increase in coupling
strength will make the enhancement effect from anisotropy even smaller.
Indeed, in the asymptotic limit where coupling strength goes infinity, the
effect of anisotropy will be totally washed out {see Appendix A).

Before leaving this section, we would like to point out that, within our
model, the anisotropy due to layered structures will not affect the behavior of
isotope effect directly since we have separated out the frequency dependent
part and angular dependent part. The angular dependent part in our model
does not change with frequency. There is a indirect effect on the isotope effect
from the anisotropy, however [Jiang and Carbotte (1992a)]. Nevertheless the
effect is very small and cannot account for the peculiar isotope effect found
in high-T. oxides [Crawford etal. (1990); Franck etal. (1990a,b)].

3.2 THE THERMODYNAMIC CRITICAL FIELD

Instead of looking at the free energy difference between the normal
and superconducting state AF(T) directly, we study a closely related quan-
tity, the thermodynamic critical field H,(T), which is defined as

H(T) = (8x | AF(T) |)*/2.

(3.2.1)

The formula for A F, generalized to include the anisotropy, is [Bardeen and
Stephen (1958)]:
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AF(T) < = I ( | wption) | ))
‘ =Ty ({y/ T3 (kn) + A2(dwn)— | Zaliwn) [)- {1 = =
N{O) Z B 8 \/J.";;(i;un) + ._\';-;Uw“)

(3.2.2)
where the superscript zero on wy°(iw,) indicates that this renormalized fre-
quency is to be taken in the normal state, which follows from equation (2.3.9)
with the Ag(iwm)’s set equal to zero on the right hand side of the equation.

The thermodynamic critical field measures the minimum value of the
applied magnetic field which destroys superconductivity. This comes from the
fact that if the applied magnetic field is sufficiently strong the encrgy cost
associated with the Meissner effect (perfect diamagnetism} will be more than
the effective energy savings due to the material being in the superconducting
state, thus it is energetically favorable for the material to be in the normal
state with the magnetic field freely permeating the sample rather than to be
in the superconducting state.

For a type I superconductor, it is indeed a fact that the Meissner
effect and superconductivity are totally destroyed at this point (H(T)) and
the applied magnetic flux will fully penetrate into the material. There is
another type of superconductor, type II, however, where a perfect diamag-
netism remains until the applied field reaches the lower critical field He (T).
Beyond this field H.(T), & mixed state occurs where the applied megnetic
field penetrates the superconductor partially in the form of vortex lines. For
each vortex, the flux is a quantum number (& = fic/2e). Thus the material
is in a state where superconducting regions and normal regions coexist. As
the field increases (H > Hy), the volume taken up by the normal regions

increases, the vortex lines get closer together. The superconductivity will be
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completely destroyed and there is full lux penetration when another critical
field (the upper critical field) H(T) is reached. The thermodynamic critical
field H.(T) is not directly related to H(T) and H(T) in type IT supercon-
ductors, although the concept of it is still helpful. Type II superconductors
are special in many ways. It is beyond the scope of this thesis to study any
special properties of a type II superconductor, e.g., upper critical field Heo(T).
Interested readers might refer to the literature [Abrikosov (1957); Goodman
(1966); Werthamer and McMillan (1967); Saint-James, Sarma, and Thomas
(1968); TFetter and Hohenberg (1969); Serin (1969); Carbotte (1990)].
In BCS theory, there is a universal relationship between H. and 7,

T2 /H2(0) = 0.168

(3.2.3)

where H,(0) is the zero temperature value of the thermodynamic critical field
and ~ is the normal state Sommerfeld constant defined by

'm=§7r2N(0)(1+,\)

(3.2.4)

with N(0) the electronic density of states at the Fermi level and A the mass
enhancement factor (see chapter 2). Like other universal relationships in
BCS theory, this one only holds for superconductors in the weak coupling
limit (e.g., Al and In). For strong coupling superconductors, e.g., Pb and Hg,
deviations occur due to strong coupling theory (Eliashberg theory).
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Fig. 3.2.1) The thermodynamic criticel magnetic field at zero temperature
H.(0) as a function of anisotropy parameter gio for various values of goo,
namely 0.0 (solid curve), 0.3 (dotted curve), 0.7 (short dashed curve). The
top frame applies to the intermediate coupling case (T./wio, = 0.1) while the

bottom frame is for the strong coupling case (T /wioy = 0.25).
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Fig. 3.2.2) The dimensionless ratio vT2./H2.(0) as a function of anisotropy
parameter gjo for various values of gog: 0.0 (solid curve), 0.3 (dotted curve),
0.7 (short dashed curve). The top frame applies to intermediate coupling with

Te/wiog = 0.1 while the bottom frame is for strong coupling with T} /w;o, = 0.25.
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Since all the quantities in the formula for AF, Eq. (3.2.2), depend on
the Matsubara frequencies only, we solve the anisotropic Eliashberg equa-
tions, (2.3.8) and (2.3.9), for different situations. The effect of the anisotropy
on the thermodynamic critical field are then studied through the formu-
las (3.2.1) and (3.2.2). In Fig. 3.2.1, we plot the zero temperature value
of H.(T) as a function of gjo for three values of gsg, namely, 0.0 (solid
curve), 0.3 (dotted curve), and 0.7 (short dashed curve). The top frame
applies to T./wiey = 0.1 intermediate coupling while the bottom frame is for
Te/wioy = 0.25 strong coupling,. What we see here is that the anisotropy al-
ways reduces the value of H.(0) below its value in the isotropic case. We
should note that H.(T) is proportional to the square root of the electronic
density of states at the Fermi energy N(0), so that the units for Hc(0) are,
in that sense, arbitrary. We have used N(0) = 1.0 x 10'%(cm® - meV’ - spin)™!
to be specific. A dimensionless way of plotting the same information is to
plot the ratio 7T2./H2(0), as shown in Fig. 3.2.2. In this case anisotropy
increases the ratio which is depressed from its BCS value by strong coupling
effects. Note, the differences between the curves are smaller in the bottom
frame where T /w,, = 0.25 (strong coupling) than they are in the top frame
where T./wj,, = 0.1 (intermediate coupling), also the solid and dotted curves
now cross each other in the region of parameter space considered.

In Fig. 3.2.3, we show the effects of coupling strength and of the
anisotropy on the temperature variation of the critical field. What is plotted

is the deviation function denoted by D(t) and defined by

H(T)

PO =7m

-(1-)
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Fig. 3.2.3) The deviation function D(t) as a function of reduced temperature
T/T. for the various anisotropy parameters, namely g;p = 0.0 (solid curve)
isotropic case for comparison, gig = 0.4 (dotted curve), and gyo = 1.0 (short
dashed curve). g9 = 0.0 for all three cases. The top frame applies to inter-

mediate coupling with T;/w;,; = 0.1 and the bottom frame to strong coupling
with T./wy,, = 0.25.
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(3.2.5)

where the 1 — ¢2 law has been subtracted out so as to place emphasis on
the differences in temperature variation from the two fluid model [Gorter
and Casimir (1934a,b); Ginsburg and Landau (1850)]. The quantity t = T/T
is the reduced temperature. In the top frame, T./wi,, = 0.1 (intermediate
coupling), while T./wi,, = 0.25 (strong coupling) in the bottom frame. In
both cases the isotropic curve is everywhere positive (solid curves), and the
anisotropy reduces D(t). The dotted curve is for gip = 0.4 and the short
dashed curve is for gip = 1.0. In both cases gao = 0.0 which is sufficient for
illustrative purposes. We see that anisotropy can make D(t) negative definite
in the intermediate coupling case in contrast to strong coupling where the
curves remain positive definite for all reduced temperature vatues. In fact in

this case the g1 = 1.0 curve is not very different from the isotropic case.

3.3 ELECTRONIC DENSITY OF STATES AND ENERGY GAP

As important as the electronic band structure is to normal metals,
the distribution of electronic density of state in the superconducting states
is the key for us to understand many superconducting properties in the ther-
mal equilibrium state. Experimentally, the electronic density of states can be
measured through superconducting tunneling experiments, where the char-
acteristic current-voltage (I — V) curve is measured through a good tun-
nel junction with superconducting-insulator-metal configuration. For most
conventional isotropic superconductors, except for a supercurrent at zero-
voltage, there is no current (I) flow before the voltage (V) is equal to the

energy gap (Ao) and then a sharp onset is observed [McMillan and Rowell
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(1965, 1969})]. Phonon structure is also clearly shown and can be well matched
with the gap value in most cases. In the high T, oxides this is no longer the
case. Usually there is always a zero bias and the value of the energy gap
remains ambiguous and controversial {Lee, Kapitulnik, and Beasley (1989);
Kirtley (1990); Valles etal. (1991)]. Further, these systems are by their very
nature highly anisotropic because of their layered crystal structure. Here we
wish to examine the electronic density of states with strong anisotropy for
different coupling cases. We would like to understand better what informa-
tion about the gap value (if there is one) and its temperature dependence
can be obtained in principle from an examination of the electronic density of
states and of phonon structure. The very strong coupling case is particularly
interesting since, in that case, it is not at all clear that an energy gap will
exist at non zero temperature, particularly in an anisotropic superconductor
[Jiang and Carbotte (1992b)].

Using Green'’s function technique, the quasiparticle density of states
is defined as [Schrieffer (1964)]

N(w) = —%( jl : deN(e)Im (G(k, e)))

(3.3.1)

where {} denotes to a Fermi surface average as before, k = (w, k), N(¢) is
the electronic density of states in the normal state, G = G;; is the electron
Green's function with G the electron Green’s function in Nambu notation,
and I'm denotes the imaginary part. Also the Fermi level is set at ¢ = 0.
Thus, N(0) is the electronic density of states at the Fermi level. In Nambu

notation, the normal state electron Green’s function is
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Splw +18)10 + €T3

Gﬂ k- = - . bl
(k) Gi(w + 18) — €2
(3.3.2)
while in the superconducting state, it is
s
G2(w +i6) — e% - Af(w +i6)
(3.3.3)

with & the renormalized quasiparticle energy and A the pairing potential
function in the superconducting state. The energy ¢; is measured relative to

the chemical potential 4, and = is a Pauli matrix with

n=(3 1) n=(18) »=( 7) ~=(G 5):

(3.3.4)

Both of the functions, G, and G,, decrease rather quickly as ¢ in-
creases. We also assume that N(¢) is constant around Fermi level over a large
range, an assumption consistent with the discussion in section 1.1. Therefore,
we can take N(e) out off the integral and use its value at the Fermi level, N(0),
instead. All the results in the following will be presented in as normalized
ratio N{w)/N(0). This makes the formula much simpler. With the formulas
(3.3.1) and (3.3.2), it is easy to work out, by contour integral, that in the
normal state the ratio N(w)/N(0) = 1 as expected. In the superconducting

state, the ratio is
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(3.3.5)

To use the above formula for the ratio N{w)/N(0), it is necessary to
have solutions of the Eliashberg equations for the pairing potential Ag(w)
and renormalized energy wi(w) on the real frequency axis. The Eliashberg
equations which we used, therefore, are the equations (2.3.10) and (2.3.11).
Also, we use the Pb spectrum (a®F(w)), as determined through tunneling
spectroscopy, for numerical calculations. The height of it is adjusted to give
the desired coupling strepgth measured by the parameter T./wj,g. Cur pur-
pose here is to look at the effects of the anisotropy and strong coupling, the
exact form of the spectrum is not important.

In Fig. 3.3.1, we show, without emphasis of the phonon structure
region, the changes in the quasiparticle density of states at low tempera-
ture (T/T. = 0.1) when anisotropy is introduced using the simplest possible
model, i.e., it is assumed that only g1o is non-zero in the expansions (see the
last chapter). All curves are for intermediate coupling with the monitoring
parameter T¢/wiop = 0.1. The solid curve applies to the isotropic case and dis-
plays a sharp onset at the value w/T. = 2.05 with a BCS type inverse square
root singularity clearly evident at the onset. This value w 2 2.05T; is often
called the energy gap edge and written as Ag. It is close to the prediction
from BCS theory that the energy gap A at zero temperature equals 1.767..
The difference is the result of the stronger coupling here than in BCS theory.
It is clear from the figure that when anisotropy is introduced the peak in

N(w)/N(0) becomes considerably attenuated and shifts to higher energies.
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Fig. 3.3.1) The average quasiparticle density of states N{(w)/N(0) as a func-
tion of normalized frequency w/T. for low temperature T/T. = (.1 and an
intermediate coupling parameter T./wi,; = {.1. The solid curve is for g1o = 0.0
the isotropic case while other curves have the anisotropy with g1g = 0.2 (dot-
ted curve), 0.5 (short dashed curve), 0.8 (long deshed curve), and 1.0 (short
dashed-dotted curve).
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While a sharp onset at a minimum gap value is still clearly visible in this
instance, it is now only a finite step and is therefore less pronounced. Note
that, the peaks in each of these curves order monotonically in energy posi-
tion on the borizontal axis according to the value of the anisotropy index
g10 which ranges over values 0.0 (solid curve), 0.2 (dotted curve), 0.5 (short
dashed curve), 0.8 {long dashed curve), and 1.0 (short dashed-dotted curve),
so does the beight of the peaks.

QOur main interest here is in the temperature evolution of the curves
for N(w)/N(0) including shifts in position and shape of the peaks, and edges.
In Fig. 3.3.2, we consider the isotropic case for two different coupling strengths.
The top frame is for an intermediate coupling with T /w;, = 0.1, and the bot-
tom frame is for a very strong coupling with T, /w;,, = 0.3. At near zero tem-
perature (T/T. =0.1) (solid curve) the gap is easily identified as the position
of the sharp onset and peak position for both cases. When the temperature
T is increased towards T, however, things become quite different.

We first look at the intermediate coupling case, the top frame. It
is evident that, a small tail in N(w)/N(0) exists down to zero frequency in
the region below the main rise even for a reduced temperature of 0.7 (the
dotted curve). So, strictly speaking there is no gap in N(w)/N(0) although,
in practice, one could ignore the small leakage into the gap region and still
define a value for the rapid onset defining the main peak in N(w)/N(0). Note
however that, the onset of this peak is not itself completely sharp and so
some small ambiguity would arise in its identification. This ambiguity is not
there at zero temperature. Also the height of the peak is attenuated relative
to zero T and so everything is less well defined. As the temperature is further

raised the trend continues towards more attenuation of the peak and more
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Fig. 3.3.2) The quasiparticle density of states N(w)/N(0) as a function of

normalized frequency w/T. for an isotropic case at different temperatures.

The top frame is for intermediate coupling T:/w;,, = 0.1, while the bottom

frame is for very strong coupling T./wi,,; = 0.3. For both cases, the solid curve

is for T/T, = 0.1, the dotted curve for 0.7, the short dashed curve for 0.875,

the long dashed curve for 0.95, and the short dashed-dotted curve for 0.985.
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smearing of the gap region making the concept of a gap somewhat less valid.
The clearest unambiguous identificat: .a that can be made of an onset value
for N{w)/N(0) is the frequency defining the peak value. We will call this
frequency the gap or the peak position and use the symbol Ay(T), with the
subscript p denoting peak value.

When the coupling is increased, it becomes more and more difficult
to define & gap value at finite temperature. This is illustrated in the bottom
frame, a very strong coupling case with T, /uw;,, = 0.3. Now even at T/T. = 0.7
(dotted curve), the peak is much less well defined and the smearing into the
low w region is very significant. Certainly for T/T. = 0.875 (short dashed
curve), 0.950 (long dashed curve), and 0.985 (short dashed-dotted curve)
no identifiable peak remains and no remanent of a gap concept is evident.
Therefore, we can not even define a peak value A,(T') here, as we could for
the intermediate coupling case. We would like to mention that the similar
curves as those here were also shown in the work by Allen and Rainer (1991)
and by Karakozov etal. (1991).

In Fig. 3.3.3, we give details of the trend in the quasiparticle density
of states as temperature is increased in one anisotropic case namely g1 = 0.5
for the same two couplings using in the last figure, i.e., T:/wjoy = 0.1 in the
top frame and T /wi,y = 0.3 in the bottom frame. We see now that, in the tap
frame, the smearing below the lowest gap is more pronounced than in the
corresponding isotropic case (the top frame in Fig. 3.3.2) and that the first
rapid rise in N{w)/N(0) is even less well defined particularly at the higher
temperatures. No gap value can be unambiguously defined from this fea-
ture. However, the peak position remains a well defined quantity in all these
curves: T/T. = 0.1 (solid curve), 0.7 (dotted), 0.875 (short dashed), 0.95(long



N(w)/N(0)

3.3 Electronic Density of States and Energy Gap 53

3-0 _ 1§ 1 L I ] | 1 I ] 1 1 I 1 1 1 i
2.0 [ -
C 2 i
© A ]
A ]
1.0
-! //
1 ]
il :
0.0 et —+——+————+——————+
N (b) Te/tneg=0.3
Y =06 -
2.0 Qo 4
1.0 e
=
-
0.0 ===
0.0 2.0 4.0 8.0 8.0

Fig. 3.3.3) The average quasiparticle density of states N(w)/N(0) as a func-
tion of normalized frequency w/T: for the anisotropy model with gio = 0.5 at
various temperatures. The top frame is for intermediate coupling T /uwio = 0.1
and the bottom frame is for very strong coupling T'./wi,, = 0.3. For both cases,
the solid curve is for T/T. = 0.1, the dotted curve for 0.7, the short dashed

curve for 0.875, the long dashed curve for 0.95, and the short dashed-dotted
curve for 0.985.
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dashed), and 0.983 (short dashed-dotted). But, in the bottom frame, where
the coupling is strong, there is no well defined peak remaining, same as that
in the corresponding isotropic case (the bottom frame in Fig. 3.3.2), and the
smearing into the low frequency region is even more significant than that
in the bottom frame in Fig. 3.3.2. Thus, we conclude that, as T;/wy,, is in-
creased the concept of a gap existing in the quasiparticle density of states
rapidly loses its meaning with increasing temperature towards 7, and adding
anisotropy makes it even more so.
As we pointed out above for an intermediate coupling strength T /wy,, =

0.1, there is an identifiable peak in the quasiparticle density of states at all
the reduced temperatures we considered for either isotropic or anisotropic
case. If we plot the value of this peak position, which we defined as Ap(2),
as a function of temperature, we obtain for its variation with reduced tem-
perature ¢t = T/T. a very nearly BCS dependence as is shown in Fig. 3.3.4.
The upper open circles, which corresponds to the isotropic case, are seen
to fall slightly above the solid curve which is the BCS gap variation repro-
duced here for comparison. Thus, the peak value can certainly be used in
this case, to trace out a temperature dependence of the gap which is only
slightly different from BCS. The other data apply to the anisotropic cases
with gj0 = 0.2 (x), 0.5 (A), 0.8 (e), and 1.0 (O0). They also fall closely to the
BCS curve but a clear trend, towards a slightly more rapid drop to zero of
Ap(T)/Ap(0) as T, is approached, is clearly indicated whe}: g10 is increased.
While the peak position in N(w)/N(0) tracks closely the BCS temperature
dependence of the gap it needs to be emphasized that the position of that
peak, in an anisotropic superconductor, is neither at the minimum gap nor

at its average value as seen previously in Fig. 3.3.1. Again, as the smearing



Ap(T)/Ap(0)

3.3 Electronic Density of States and Energy Gap 55

1.2 L LI I LI l T 1 1 l LI I LI r LI

1.0

0.8

0.6

0.4

0.2

Fig. 3.3.4) The position of the peak in the quasiparticle density of states
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in the low frequency region increases when temperature approaches T, there
is no well defined gap edge, especially for an anisotropic superconductor, in

the quasiparticle density of states.

3.4 THE PHONON STRUCTURE

In the last section our discussion about the quasiparticle density
of states emphasized the frequency region where a gap edge exists for an
isotropic superconductor at low temperature. Here we would like to exam-
ine another structure in the quasiparticle density of states, which is at a
higher frequency, the phonon structure [Carbotte (1990); Jiang and Car-
botte (1992b)]. It is so named since, for most conventional superconductors
where a phonon mechanism has been well established, this structure carries
the information on the electron-phonon spectral density from which the su-
perconductivity arises. The electron-phonon spectral density can actually be
obtained from this structure by inverting through the Eliashberg equations,
as we discussed before [McMillan and Rowell (1964, 1969)]. Experimentally,
the phonon structure can be measured from tunneling spectroscopy, where
the derivative of the characteristic I(current)V(voltage) curve of the sys-
tem, dI/dV, which is proportional to the N(w)/N(0) at T — 0, is measured
through a tunneling junction. Because of this tunneling spectroscopy has
an important role in the study of superconductivity, although technically it
is difficult to make a good tunneling junctions, especially for high-T. oxide
superconductors.

What we would like to discuss here is the temperature dependence of
the phonon structure and its relationship to the temperature dependent peak

value Ay(T), which is shown in Fig 3.3.4, under the influences of anisotropy
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and strong coupling. The question we want to address is: can we use the shift
in phonon structure {or the peak structure) with increasing temperature to
determine a temperature dependent “gap”? If so, what does this mean when
there is large anisotropy? Do the structures fall at the lowest gap plus the
phonon energy or at some other value? To answer these questions, we begin
with the examination of an intermediate coupling case T, /wi,, = 0.1. In Fig.
3.4.1 we show N(w)/N(0) vs w in the phonon region for various tempera-
ture values: T/T: = 0.1 (solid curve}, 0.7 (dotted curve), 0.875 (short dashed
curve), 0.95 (long dashed curve), and 0.985 (short dashed-dotted curve). The
top frame applies to the isotropic case with g9 = 0.0. The middle frame is
for g = 0.5 while the bottom frame has g;9 = 1.0 which is a very anisotropic
case with g;0 now as large as goo. On careful comparison of the top and
middle frame we note that, in the region near w/T. = 6.0 where our curves
start, there is some change of the phonon structure introduced by increasing
anisotropy. This change continues in the bottom frame. In this frequency re-
gion, however, there is no sufficiently well defined structure to focus on and to
study its evolution with temperature. At higher frequencies near w/T. = 20 a
much more favorable opportunity is offered. We note first that, in this region,
anisotropy changes the shape and the amplitude of the structure only a little
between top and central frame. There is some measurable difference between
top and lower frame however. Still, a well defined minimum or dip remains
in &l cases. We have traced out the temperature dependence of the position
of this phonon structure for all cases in our Fig. 3.4.1, i.e., different values
of anisotropy g0 and have found that in all cases this structure, denoted by

Ap(t} where the subscript m now stands for minimum, is closely related to
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the peak position Ay(t) discussed previously, which we will show in the next
figure.

What we have plotted in Fig. 3.4.2 is the quantity A(#) — A(0.5) for
both peak structure (open circles) and phonon structure (stars). The top
frame is for an isotropic case, while the bottom is for the anisotropic model
g10 = 0.5. We see that, for both cases, the peak and phonon structure follow
the same temperature dependence. Two points of explanation are necessary.
First we subtracted off A(0.5) in our comparison, because it is difficult to
differentiate in our numerical data between A(0.5) and A{0.0). Secondly for
the position of the phonon structure we have found from an examination of
the data that it is necessary to multiply Am(t)—Am(0.5) by the factor (1+g10)
(910 = 0.0 and 0.5 in the top and bottom frame respectively) in order to get
it to fall on the curve for the peak position Ap(t) — Ap(0.5).

1t is clear from the above results that one can indeed use the shift in
position of phonon structure with temperature to trace out the temperature
dependence of the “gap” for an intermediate coupling superconductor. For an
isotropic superconductor the relation between the shift of the phonon struc-
ture and the change of the “gap” value is one by one. For an anisotropic case,
however, we must have a knowledge of the anisotropy parameter go before
we can tell the value of the “gap” from the phonon struccure. With an exami-
nation of the electron-phonon spectral density o?F(w) which we used, we also
found that the position of the phonon structure (~ 9.5meV’) is approximately
equal to the peak value in the quasiparticle density of states (~ 1.0meV at
zero temperature) plus the peak value in the o?F(w) (~ 8.5meV) for an

isotropic superconductor. This is not true for an anisotropic superconductor
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Fig. 3.4.2) The gap difference A(t) — A(0.5) as a function of reduced temper-
ature t = T/T. in the range ¢t > 0.4. The top frame is for an isotropic case
while the bottom frame is for the anisotropic model g9 = 0.5. In both frames
the open circles are the peak positions in N{w)/N(0) while the stars are the
phonon positions multiplied by an empirical factor of (1+g,0), and the strong
coupling parameter T:/wi = 0.1
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Fig. 3.4.3) The average quasiparticle density of states N(w)/N(0) as a func-
tion of normalized frequency w/T. in the phonon region. Both frames are for
temperatures T/T. = 0.1 (solid curve), 0.7 (dotted curve), 0.875 (short dashed
curve), 0.95 (long dashed curve), and 0.985 (short dashed-dotted curve). The
top frame is for gig = 0.0 while the bottom frame for 1o = 0.5. All curves are

for a strong coupling parameter T./wi,y = 0.3.
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as we can see that the position of the phonon structure does not change much
with the anisotropy but the peak value does.

All the above remarks apply only to the case T./uwi, = 0.1. As the
coupling is increased such analysis becomes less valid and has broken down
completely for Tc/wio, = 0.3 as is shown in Fig. 3.4.3. In this case only two
frames are shown and this is sufficient to make our main point. The top
frame is for isotropic case while the bottom applies for gjg = 0.5. In each
frame the temperatures considered are T/T, = 0.1 (solid curve), 0.7 (dotted
curve), 0.875 (short dashed curve), 0.95(long dashed curve), and 0.985 (short
dashed-dotted curve). First we note that anisotropy does have some effect
on phonon structure in the quasiparticle density of states but that the shift
and changes in amplitude are never very large for the case considered. On
examination of the curves in detail we note that there is now no well defined
feature whose temperature dependence can be unambiguously traced. This
is true even for the isotropic case. The prominent minimum in the solid curve
for T/T. = 0.1 for instance becomes completely blurred out as T is increased.
This is all consistent with our previous analysis of peak structure in the low
frequency region in Figs 3.3.2 and 3.3.3. In the very strong coupling region
the gap ceases to have a precise meaning at finite temperature. The phonon
structure seems to know this fact and so car not be used to trace out a

temperature dependent “gap” value.

3.5 CONCLUSIONS

Using the anisotropic Eliashberg equations of the last chapter, we
have investigated the effect of planar anisctropy on the critical temperature
T., the thermodynamic critical field H.(T) which equals \/8x | AF(T) | with
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AF(T) the free energy difference between the normal and superconducting
state, and the quasiparticle density of states. It is found that the effect is
generally quite large, especially when the electron-phonon coupling is not
very strong. The critical temperature can be enhanced by as much as 40% for
large but reasonable value of the anisotropy when T¢/wioy = 0.1. At the same
time, the thermodynamic critical field is always reduced as the anisotropy is
increased.

In the quasiparticle density of states, a well defined gap structure of
a modified BCS square root type singularity exists only at zero temperature
for an isotropic Eliashberg superconductor. For an anisotropic Eliashberg
superconductor, the Fermi surface average quasiparticle density of states
is changed radically but there does remain a sharp edge corresponding to
the value of the minimum gap with no attendant square root type singu-
lerity at zero temperature. When the temperature is increased towards T:
the singularity, in the isotropic case, and the step, in the anisotropic case,
get smeared and, in principle, there can be a leakage of density of states
into the low frequency region down to the zero. This makes it difficult to de-
fine an unambiguous finite temperature gap value. For intermediate coupling
T./wiog = 0.1, where the smearing is small, there is a well defined peak struc-
ture in N(w)/N(0) even with anisotropy. The position of the peak, which
we called the gap, follows a temperature dependence that is only slightly
modified from a BCS gap variation. As the coupling strength is increased to
T./wieg = 0.3, the smearing becomes so severe that no well defined peak can
be found even in the isotropic case.

The phonon structure in the quasiparticle density of states can be

used to track the underlying temperature dependence of the gap or the
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peak position even in the anisotropic case when the coupling is not strong
(T./wiog = 0.1), provided that we have a precise knowledge of the underlying
anisotropic model. For an isotropic superconductor, the attendant phonon
structure also appears at energies equal to the sum of the gap plus the peak
value in the o? F{w) used.

Finally we should point out that, despite the fact that the energy
gap in the quasiparticle density of states is not a well defined quantity in
some cases discussed above, the concept is very useful in the discussion of
many superconducting properties. In the following chapters we will use the
concept of & energy gap frequently in our discussions, however, it should be
understood as a finite pairing potential A. For an Eliashberg superconductor,
as long as A is not zere, we will have superconductivity and the quasipar-
ticle density of states will be changed (see formula (3.3.5)). A is the most
fundemental quantity for us.



Chapter 4

Thermodynamic and
Transport Properties

In the last chapter, we showed the effects of anisotropy and strong
coupling on the free energy difference between the normal and superconduct-
ing states and on the quasiparticle density of states in the superconduciing
state. As we know that many physical properties, especially thermodynamic
and transport properties, are directly related to the free energy and/or the
quasiparticle density of states, it is expected that anisotropy and strong cou-
pling will have large effects on them as well. Several such propertics are the
electronic specific heat A C(T), the thermal conductivity £(T), and the ultra-
sound attenuation o(T). These are three of the most interesting properties
both theoretically and experimentally for a superconductor and have been
extensively studied .

What we are going to do in this chapter is examine in detail the effects
of planar anisotropy and strong coupling on the three properties just men-

tioned, employing the formalism of chapter 2. We would like to show how the

65
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anisotropy manifests itself in experiments which measure these properties.
The major difference between the present study and previous studies [Schnei-
der (1988, 1989, 19902,b); Frick and Schneider {1990)] is that we incorporate
the anisotropy of a layered structure in the strong coupling Eliashberg the-
ory and in a consistent way. We will present first our results on AC(T)—the
specific heat difference. Then, in section 4.2, we will examine the thermal
conductivity X(T) , aud then in section 4.3, discuss the ultrasound attenua-
tion a(T). We will conclude this chapter with a short conrclusion in section

4.4,

4.1 THE ELECTRONIC SPECIFIC HEAT

The specific heat of a metal has two components, the electronic part
and the lattice part. It is well known from the theory of normal metals [Kittel
(1986); Ashcroft and Mermin (1976)] that at low temperature the specific

heat has the form

C(T) = 1T + AT°

(4.1.1)

with the term linear in T an electronic contribution and the term cubic in
T, the lattice contribution. The coefficient -~y is the Sommerfeld constant
defined by formula (3.2.4} and 3 is a material dependent parameter.

For conventional superconductors (where 7. is small), the supercon-
ducting phase transition has practically no effect on the lattice part. The
same temperature dependence remains, Cf,, ~ T%. In contrast, the elec-

tronic contribution changes drastically following the transition. There are
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two things happening here. First, as a gap opens in the quasiparticle ex-
citation spectrum, the electronic specific heat in the supercondncting state
C?, decays exponentially instead of linearly with temperature as long as the
gap is non-zero everywhere on the Fermi surface. Second, as the normal-
superconducting phase transition is a second-order phase trausition, it is
accompanied by a jump in the specific heat. Since the lattice specific heat
does not change during the traasition, the electronic specific heat must be

responsible for this jump. In BCS theory, this jump is given by

CalTe) —Ca(Te) _ ACTL) _ 4
Co(T:) 10T

(4.1.2)

Here, g is again the Sommerfeld constant given by formula (3.2.4) with A =0
corresponding to BCS theory. This is an universal relation. Like many other
universal relations in BCS theory, it is due to the weak electron-phonon cou-
pling appraximation. Whereas the specific heat jump is a universal property
of all superconductors, its magnitude varies. For most conventional supercon-
ductors, the material dependence of the jump height can be well accounted
for by Eliashberg theory, the strong coupling theory of superconductivity.
From standard thermodynamics, we know that the specificheat A C(T)

is related to the free energy difference between normal state and supercon-

ducting state, AF = F, — F,, by the formula:

LAF(T)

AC(T) =T—

(4.1.3)
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Fig. 4.1.1) The normalized specific heat jump at T, AC(T:)/70T, as a func-

tion of anisotropy parameter gjo for various values of gog, namely 0.0 (solid

curve), 0.3 (dotted curve), 0.7 (short-dashed curve). The top frame is for an

intermediate coupling case with strong coupling index T¢/wj,, = 0.1 while the

bottom frame is for a strong coupling case (Tt /uw,, = 0.25).
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Here A F is the Fermi surface average of the free energy difference A F given
by the formula (3.2.2) in the last chapter. Since the renormalized frequency &
and the pairing potential A in the formula (3.2.2) are functions of Matsubara
frequency, we need to solve the imaginary axis Eliashberg equations only, Eqgs.
(2.3.8) and (2.3.9). The specific heat is then ready to be calculated through
formula (4.1.3).

In Fig. 4.1.1, the specific heat jump at T, normalized by its normal
state value 7o 7% with 7o the normal state Sommerfeld constant, A C(T:)/ 70 Tc,
is plotted against the anisotropy parameter gig. The solid curve corresponds
to gso = 0.0, the dotted curve to gy = 0.3, and the short-dashed curve to
goo = 0.7. First for the solid curve in the top frame, we see that for no
anisotropy AC(T.)/7T: & 2.25 as compared with 1.43 in a BCS superconduc-
tor. This is expected since the strong coupling parameter T./wio, is interme-
diate, equal to 0.1 in this instance. An even larger value of the normalized
jump in the isotropic case, which equals approximate 2.95, applies when the
strong coupling index T¢/wi,, is increased to 0.25 as in the bottom frame of
Fig. 4.1.1. In real material, Pby.7Bio3, this value is as big as 3.01 [Masiglio
(1988)]. As the anisotropy is increased, the specific heat jump drops continu-
ously in both intermediate (T:/wioy = 0.1) and strong coupling (T./wioy = 0.25)
cases. However t..e magnitude of the drop is much larger for the intermediate
coupling than the strong coupling. For the most extreme values of anisotropy
parameters considered here, the drop is about 23% in the top frame compared
about 9% in the bottom frame. Also, adding gog anisotropy has bigger effects
on this drop for smell value of g1 anisotropy than for larger values. In any
cases, the value of AC(T.)/7oT: is still well above the isotropic BCS value.
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Fig. 4.1.3) The dimensionless ratio at T., ACY(T.)/AC(T.), as a function of
anisotropy parameter gip for various values of g, namely 0.0 (solid curve),
0.3 (dotted curve), 0.7 (short-dashed curve). The top frame is for an interme-
diate coupling case with strong coupling index T./w;o, = 0.1 while the bottom
frame is for a strong coupling case (T:/wioy = 0.25).
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In fig. 4.1.2, we have plotted the normalized slope of the specific heat
jump at T., A'C(T:)/7aTe, as a function of the anisotropy parameter g1 for
three different go values. The solid curve is for gzp = 0.0, the dotted curve for
g2 = 0.3, und short dashed curve for gog = 0.7. It is seen that this normalized
slope at T tracks closely the behavior of the normalized jump, shown in the
last figure, as anisotropy is switched on. The same remarks can be applied. If
we make the same plot except that the slope of the specific heat jump is now
normalized by the jump at T, A'C(T.)/AC(T}), instead of the normal state
specific heat v T;, a more complex behavior is observed as shown in Fig,.
4.1.3. While in all cases considered the curves initially drop with increasing
value of g;p they eventually show a minimum at some finite value of g;p and
then an increase as gyq is increased further. The initial isotropic value is never
reached again however in the phase space considered for the anisotropy pa-
rameters. Thus, anisotropy appears to always reduce this quantity below its
isotropic value. It is not true, however, that in a given anisotropic situation,
increasing the g;;’s will necessarily lead to a further reduction in the ratio
AC!(T:)/AC(T:). This feature is clearly reflected in the crossing of dotted and
short dashed curve seen in Fig. 4.1.3. We note once again, by comparing the
top and bottor frame, that anisotropy effects become relatively less effective
as the coupling strength T¢/w,, is increased and we mave away from the BCS
limit (Tc/wio; — 0). The ratio AC'(T.)/AC(T.) is a more adequate quantity
to study than the ratio A'C(T)/v T. in some circumstances, for example, in
high-T, oxides where 7q is difficult to measure directly.

In Fig. 4.1.4 we sbow the temperature variation of AC(T)/1oT:, the
normalized specific heat difference between superconducting and normal

state. The entire reduced temperature range is covered in the main frame
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Fig. 4.1.4) The normalized specific heat difference between superconducting
and normal state AC(T)/voT. as a function of reduced temperature T/T. for
the various anisotropy parameters, namely gjo = 0.0 and g = 0.0 (solid
curve, isotropic case for comparison), gio = 0.4 and g20 = 0.0 (dotted curve),
and gio = 1.0 and gop = 0.0 (short-dashed curve). In the insert we show
the low temperature behavior of Ce.(T)/70Tc. The top frame applies to an
intermediate coupling case with T./wj,; = 0.1 while the bottom frame is for

strong coupling Te/wioe = 0.25.
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while the insert emphasizes the low temperature region. All curves are for
g20 = 0.0 which should be sufficient to illustrate the kind of results one can
obtain. Near T, the anisotropy reduces the jump and initial slope compared
with the isotropic case (solid curve) as discussed above. The dotted curve
is for g19 = 0.4 and the short-dashed curve for g;p = 1.0. We note that as
T/T. is lowered the differences between all three curves shown are reduced
and they all cross at points slight less than T/T, = 0.6. At low temperature,
as is seen more clearly in the insert where C.,(T)/10T. is plotted instead of
the difference AC(T)/voT:, the electronic specific heat in the superconduct-
ing state C.,(T) is larger for stronger anisotropy. This reflects the fact that
a smaller minimum gap value for a larger anisotropy. A comparison of the
bottom frame with T¢/wi,, = 0.25 and the top frame with T¢/wi,g = 0.1 clearly
shows again that anisotropy affects the specific heat less significantly when
the coupling is increased.

To conclude this section, we would like to point out that measure-
ments on the specific heat of some high-T. oxides, by many groups [Fisher,
Gordon, and Phillips (1988); Junod (1988, 1990); Aleksashin etal (1988,
1989); Loram and Mizra (1988); Schill, Ott, and Hulliger (1989)}, indicate a
much larger slope of the jump at 7, than any conventional superconductors
we know and even possibly exceed the theoretical maximum value which
one can get from the isotropic Eliashberg equations [Akis and Carbotte
(1989a,b,c)]. Unfortunately, our study here can not be of help in this matter
as our anisotropic model always results in a reduction of this quantity. The
reason for the “anomalously” large slope of the jump in the oxides is not
yet clear, and its actual value is still controversial. Besides all possible ex-

otic mechanisms for these materials, the effect from fuctuations is certainly
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worth consideration in solving this problem {Salamon {(1989)]. Fluctuation
effects have been observed in superconducting dichalcogenides, which also
have layered structures, for conductivity, diamagnetism. etc. Also from the
Ginzberg criterion, which basically states that fluctuations are important
only for temperatures above the reduced temperature tg < €% with ¢ the
superconducting cohere 1ce length, we know that the effect of fuctuations
will be more pronounced in the oxides than in conventional superconduc-
tors since £ is more of the order of tens of angstroms in the former ones
rather than thousands of angstroms in the latter ones. Some work has been
done combining fluctuation effects with the Eliashberg theory [Bulaevskii
and Dolgov (1988a,b)].

4.2 THERMAIL CONDUCTIVITY

In the presence of a temperature gradient, dT'/dz, a metal is not in
a thermal equilibrium state and a heat flow will be present. The heat flux
of the flow Q is proportional to the temperature gradient, @ = —xdT/dz,
where x is the thermal conductivity. From kinetic theory, a familiar formula
for « is [Ashcroft and Mermin (1976)]

k= =lvc

W)=

(4.2.1)

where v is the velocity of the quasiparticles carrying the heat, I = v is the
mean free path (r is the relaxation time}, and c is the heat capacity. It is

obvious that x depends on the material and on temperature. The behaviors
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of x(T) has been well studied experimentally in the normal state as well as
in the superconducting state [Scalapino (1969)].

There are two contributions to the thermal conductivity of a metal,
namely the motion of electrons and that of the crystal lattice, phonons. We
can write it as a sum, & = Ky + &pi. From (4.2.1), we see that « is restricted
mainly by the relaxation time r. The thermal conductivity would be infinity
if 7 were infinity. This is analogous to the fact that the electric conductivity
would be infinite in the absence of any collisions. However, there is always
some scattering. In general, the total electronic thermal conductivity can be

calculated according to the rule

1 1 1 1
—_— +
Kel Kei-ph  Bel=imp  Bel—el

(4.2.2)

where the subscripts el — ph, el — imp, and el — el refer to electron-phonon,
electron-impurity, and electron-electron scattering. A similar rule holds for
the phonon thermal conductivity

1 1 1 1
—— 0 + + .
Kph Kph—el  Sph—imp  Kph—ph

(4.2.3)

Thus, there are six different relaxation mechanisms. Each one de-
pends on the temperature, impurity concentration, etc., in its own way. This
makes the problem of the thermal conductivity complicated. For most con-
ventional superconductors in the clean limit, however, the electrons are re-

sponsible for most of the heat transport in the normal state and near T..
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Also, the electron-electron scattering is usually not important compared with
electron-phonon scattering. Therefore, the problem can be reduced to calcu-
late xej-pn only for the temperature range near and above T.. We will study
the effect of the anisotropy on the ratio &} _,/~%_p5- The subscript el — ph
will be omitted then.

The thermal conductivity « is, in general, a three by three tensor in
general. For a isotropic superconductor, however, it is a scalar and has the

form, in the superconducting state, [Ambegaokar and Tewordt (1964))

o !w)—]A!wH
o= NO) e j af [1'*' lw’(w)—A’(w)l]
0

3T W Iim(j3(w) — A2w))')

(4.2.4)

For the anisotropic model we have, x%__, is given by [Jiang and Carbotte

(1992¢)}:

-3 ~ ]
2 [ . BBy
[1 + Jaar~Ba

. N(ﬂ)
Kk = ((vF) (vF)x / awdL aw T(53() - A2(w)]”2 >

(4.2.5)
with T the temperature, N(0) the electronic density of states at the Fermi
level, (vp); the Fermi velocity in the j-direction, and () the Fermi surface
average. If Aj(w) is set to zero in (4.2.5), we will get the normal state thermal
conductivity 7

From the dispersion relation (2.2.1), it is easy to work out that
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mf cos?(ip) ijycos(p)sin(r,c) — 22 cos(yp)sin(p:c)

H(p)i(p) = ;f:—;—cos((p)sin(p) ;‘L:ysing(cp) —EZ sin(yp)sin(p;c)
Bitcos(g)sin(pec)  —2vin(p)sin(pic)  wisind(pac)

(4.2.6)

where we have set i = 1, p. = p-cos(p), py = p-sin(p) with ¢ the spherical
coordinate angle in the zy plane. The Fermi surface average can also be

worked out as in the last chapter

f 2x
() = 1 ds fcdp, iz,z
N(O) psl ‘?F | ; 2% 4 27

(4.2.7)

Since Az(w) and &z(w) depend on p. only, (2.3.3), we can do the integral over
¢ and get finally

G2-lag(o)
2 B
[1 + Be-al (w)l]

K = N(U)/Cdpx ,)‘/ dw

me([u (@) - A%

(4.2.8)

All other terms x%; with j s k are zero. To be more specific, we have x;; = &,y

with

(00 = (02 = gy = SEf1 - 21+ cos(pyo))

(4.2.9)

and s, with
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(6:)? = i 3 sin®(p:).
(4.2.10)

The material dependent parameters N(0), €r, m", u, and ¢ in the above
equations are not important as we always normalize x}; by its normal state
value «7;, thus, the proportional constant factors will be cancelled out. The
only parameter which we need to specify is the ratio u/ep. This ratio should
be very small as we discussed in section 2.1 and we will take a value of 0.1.
A different value for it would not make any qualitative change to our results.

We note that, in formula (4.2.5), Ag(w) and &s(w) are functions of real
frequency w. Therefore, we should solve for them using the real axis Eliash-
berg equations, (2.3.10) and (2.3.11), directly. To get them from the solutions
of the Eliashberg equations on imaginary axis through Padé approximants
is not reliable for temperature near T..

In Fig 4.2.1, we show results for the normalized ratio in the zy plane,
(5*(2))zz /(K™ (1))zz, 88 & function of reduced temperature t = T/Tc. The top
frame is for intermediate coupling with T¢/wio, = 0.1. The bottom frame is for
strong coupling with T, /w,; = 0.25. For both cases, the solid line applies to
the isotropic situation. The others correspond to various values of g0, namely
the dotted curve for gig = 0.2, the short-dashed curve for g,g = 0.5, the long-
dashed curve for g9 = 0.55, and the short-dashed-dotted curve for gio = 0.6.
We see that, for both cases, the thermal conductivity ratio is everywhere
increased as the anisotropy (gio) is increased. The difference is bigger as
temperature is lowered, but the ratio finally goes to zero at T = 0K. For

large anisotropy, the ratio does not decrease monotonically with decreasing
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Fig. 4.2.1) The normalized ratio of thermal conductivity in the zy plane,

(5*(t))ex/ (K™ (1))sx, as & function of the reduced temperature for various values
of anisotropy parameter gjo, namely 0.0 (solid curve), 0.2 (dotted curve),
0.5 (short-dashed curve), 0.55 (long-dashed curve), and 0.6 (short-dashed-
dotted curve). The top frame is for an intermediate coupling case with strong
coupling index T./wi,y = 0.1 while the bottom frame is for strong coupling
with Te/wioy = 0.25.



4.2 Thermal Conductivity 81

temperature. as in the isotropic case. Instead, we see an increasing after
the initial decreasing for the largest anisotropy, gip = 0.6. in the figure. In
this case, the ratio actually goes beyond 1 at the temperature range around
t = 0.2 to t = 0.3 for both coupling strengths, although we did not plot this
region here.

The corresponding results for the normalized ratio in the z-direction,
(K*(£))z2/(K™(2))::, ave shown in Fig. 4.2.2. We see qualitatively similar behav-
iors to those in the Fig. 4.2.1. The ratio is larger when anisotropy is larger.
The magnitude of the difference, however, is smaller in the :-direction than
that in the zy plane, which we believe is due to the different weighting factors
from Fermi velocity as we average over the first Brillouin zone. The Fermi
velocity has a different angular dependence for the two directions. Also, the
Fermi velocity along the z-direction is proportional to u, the hopping proba-
bility. Therefore the thermal conductivity along the :-direction will be much
smaller than that in the zy plane and goes to zero as u goes zero, although
the normalized ratio would not show this.

The rather large increase of the normalized ratio for both directions
with increase anisotropy is mainly due to the increasing number of quasi-
particles from thermal excitations. As we know, the thermal conductivity is
proportional to the number of quasiparticles. The number of quasiparticles
will decrease exponentially with temperature if there is a gap in the energy
excitation spectrum, as there is in the superconducting state. Therefore the
thermal conductivity is smaller in the superconducting state than that in the
normal state for most cases, as we have seen. Adding anisotropy will make
the decrease in the quasiparticle number slower, compared with isotropic

case, since the effective gap will be smaller. As temperature is lowered, the
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(%*(2))s2/(x™(2))11, as & function of the reduced temperature for various values
of anisotropy parameter gig, namely 0.0 (solid curve), 0.2 (dotted curve),
0.5 (short-dashed curve), 0.55 (long-dashed curve), and 0.6 (short-dashed-
dotted curve). The top frame is for an intermediate coupling case with strong
coupling index T./wi,, = 0.1 while the bottom frame is for strong coupling
with Tt /wiep = 0.25.
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minimum gap will be more dominant. Thus, an increase in the ratio results.
To understand the larger magnitude thermal conductivity in the supercon-
ducting state compared with that in the normal state for large anisotropy,
as we showed above where (x*(t))zz/(s"(t))z- is bigger than 1 for gip = 0.6
in a certain temperature range, we need to consider another factor, namely
the quasiparticle lifetime, which is as important as the quasiparticle number
in determining the thermal conductivity. Detailed study has shown that at
small reduced temperature ¢t = T/T. the lifetime of quasiparticles is much
longer in the superconducting state than that in the normal state [Kaplan
etal. (1976)). This is due to the limitation of the number of final states into
which quasiparticles can decay in the superconducting state. In the super-
conducting state, a quasiparticle with energy w can not decay through the
process of emitting a phonor with energy within the range w to A(T) +w,
where A(T) is the energy gap. In the normal state, there is no such restriction.
The combination of a much longer lifetime and an effectively much smaller
energy gap due to the large anisotropy, at small reduced temperature, gives
us a larger thermal conductivity in the superconducting state than in the
normal state. However, as long as the effective energy gap is non-zero, the
number of quasiparticles will be zero at zero temperature. Thus, the thermal
conductivity will be strictly zero at T =0 as we pointed out above.

Our results here are for the contribution from electrons scattered by
phonons only. When compared with experiments, we may need to consider
other contributions as well, as we discussed at the beginning of this section.
In high-T. oxides, for example, the lattice contribution should be consid-
ered since the transition temperature 7. is high, especially near T.. [Cohn,

Peacor, and Uher (1988); Tewordt and Wélkhausen (1989, 1980); Peacor et al
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(1990)]. Even for the electronic part, other scattering mechanisms may be far
more important than the phonon scattering process considering the strongly

correlated nature of the system. We should always bear this in mind.

4.3 ULTRASOUND ATTENUATION

In metals, sound waves will decay primarily through their interac-
tion with electronic excitations. Electrons will be excited to higher energy
states by absorbing sound quanta. In the normal state, the electronic en-
ergy spectrum is continuous for most metals, where a free electron model is
applicable. Thus, a sound quantum with an arbitrary small energy can be
absorbed by the electronic system. The electronic energy spectrum becomes
qualitatively different from that in the normal state when a superconducting
transition happens. In the superconducting state, electrons are condensed
to a new ground state accompanied by an energy gap in the energy spec-
trum. A sound quantum with energy smaller than the gap value cannot
excite electrons from this condensate. The absorption of such sound quanta
in the superconducting state is due primarily to the “normal” electrons com-
ing from thermel excitations. At absolute zero temperature, since there are
no “normal” electrons at all, the absorption is zero. As the temperature in-
creases, the absorption increases, but it is always weaker than that in the
normal state because of the presence of the energy gap, all the way up to the
critical temperature T.. In BCS theory, this phenomenon is described by a
remarkably simple formula, which is valid for sound quanta with frequency
fiw < 2A only,
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Oy 2
an  eMTVkpT 41

(4.3.1)

Here a, and o, are the absorption coefficicnts in the superconducting and
normal states, respectively. Here, T is the temperature and A(T) is the BCS
gap function.

The formula (4.3.1) mainly reflects the rapid decrease in the number
of “normal” quasiparticles as the energy gap opens up below T.. The in-
teraction between electrons and acoustic phonons, induced by sound waves,
is assumed to be the same in the normal and superconducting states. This
assumption is proper only for purely longitudinal phonons, but not for trans-
verse phonons. A transverse phonon will set up electromagnetic fields. This
coupling will be greatly reduced in the superconducting state due to the
Meissner effect. Thus, an essentially discontinuous drop of the transverse
acoustic attenuation rate happens at T.. This is observed experimentally in
tin by Morse and Bohm (1957). To avoid the complications from the Meiss-
ner effect, however, we will focus on the problem of longitudinal phonons
here.

The absorption of high-frequency longitudinal sound waves, the ul-
trasound attenuation, was among the first phenomena to be studied exper-
imentally for superconductors. There are measurements performed on pure
element superconductors, e.g., on tin by Morse and Bohm (1957), on thal-
lium by Saunders and Lawscn (1964), on lead by Love and Shaw (1964}, and
on niobium by Dobbs and Perz (1964). All of these data show a sharp drop

in the absorption as the temperature is lowered below 7. and an exponential
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decay of it to zero as T approaches zero. More than that, the temperature
dependence of the gap function calculated from the measured ratio a,/an,
using formula (4.3.1), is indistinguishable from the theoretical curve A(T) for
some materials. The success of these confirms the validity of the principal
ideas of BCS theory.

Besides the temperature dependence of the energy gap, the ultra-
sound attenuation method has also been used to study the gap anisotropy.
From the consideration of energy conservation, it can be shown that the
only electrons able to participate in the attenuation are those which have
wavevectors p very nearly perpendicular to the incident sound wavevector
. Thus, for a certain direction of §, the ultrasound attenuation gives infor-
mation on the gap only on a certain part of the Fermi surface. By changing
the direction of §, we are able to measure the gap as a function of direction
on the Fermi surface. The work on a very pure tin single crystal by Morse,
Olsen and Gavenda (1959) showed clearly that there were different gap val-
ues for different crystallographic orientations. A more detailed discussion can
be found in the literature [Bardeen and Schrieffer (1961); Clem (1966); Hong
and Carbotte (1978)].

For most conventional superconductors, anisotropy is quite small. A
very pure sample is usually needed to show the effects of anisotropy, as we
kmow that impurities will wash out anisotropies quickly. For the high T; ox-
ides, however, we know that they are very likely in the clean limit due to their
small coherent length, also there is a large anisotropy in these compounds.
Therefore, big difference for the ultrasound attenunation for different crystal-

lographic orientations is expected. This is the main motivation for studying
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the effects of anisotropy on the ultrasound attenuation based on our planar
model.
We start with the general formula for the ratio a,/a, from Eliashberg

theory [Hong and Carbotte (1978)]:

calp) _ 140 fotep) Witz 99.7- 07~ DR3(n)
an(p) qu——-ofs(q.) Wc:jsgﬂl 9p.8-q I26(‘75 -§)

(4.3.2)

with

[ wffe= =i o _ﬁ(-)_aﬁ) e (_T(_ea(ing_))
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(4.3.3)
Here gz -7 is the electron-phonon matrix element, 35 = Ve(p), § is the in-
cident longitudinal sound wavevector, and f(w) is the Fermi thermal factor.
The renormalized frequency &z (w) and the gap function Ag(w) come from
the solutions of the Eliashberg equations on the real axis.

The &function in the formula (4.3.2) reduces the Fermi surface in-
tegral to a line integral on the Fermi surface. The plane circled by the
line should be perpendicular to §. This is the selection rule we mentioned
above. Here we will study the ultrasound attenuation numerically for two
special cases only, 7 || z and § L %, which should be enough to illustrate
the anisotropic effects of our model. The corresponding formula for the ratio

a,/ay for these two cases are worked out in the following,.

i}
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From the dispersion relation (2.1.1), we have

1 IRy = .
iy = ;:\/2”1'5,-,- — 2m*ucos(p:c)(sin{e)t + cos(w)j) — pesin(p:cik

(4.3.4)

with ¢ the spherical coordinate angle in the zy plane. For § || 2, the condition
73§ = 0 from the é-function requires that p, is either 0 or #/c. Therefore,
formula (4.3.2) becomes

oo(p) 1
anlp) = §[Rp.=0(ﬂ) + Rp,=x/e(B)]-
(4.3.5)
For § L 3, it is also easy to see that formula (4.3.2) becomes
() _ Jo" 125 95(@) I Ra(r)
ane) [V 8| 0p(@) I
(4.3.6)
In the limit § going to zero, we assume that
| 95(3) 1> = | 90 P(1 + arcos(psc ),
(4.3.7)

where a is a measure of the anisotropy of the electron-phonon matrix element.
It is reasonable for illustration, we believe, to set « equal g5 in the expansion

of (e®F(w))g,5 as we defined in the last chapter. From (4.3.4), we get



4.3 Ultrasound Attenuation 89

| vz |—- (."E_F)l,/')[ EFcos(p- c)+ &&;ﬂ,ln (ps L)] .

Substituting (4.3.7) and (4.3.8) into (4.3.6), we finally get for § 1L £,

adn) f;fcdszﬁ(P)(l + acoS(PzC))/ [1 — £-cos(p:c) + ;P;i.fisinz(pgc)]

O!n(ﬂ) -

foﬁc dp:(1+ aoos(p,c))/ [1 - Scos(pzc) + -&m—'.fisin%pzc)]
(4.3.9)

In our numerical calculation, we set ufep = 0.1, as we did in the last
section, and m"uc?/2 = 0.1 by considering that m* ~ 5.0 x 10°%V, pu ~ 1.0eV,
and ¢ ~ 10A4. We also calculate the ratio a,/a, in the limit u going to zero.

Therefore, R(u) becomes,

Rg{ﬂ) = .[du(__'gﬁfl_wl) [Re(‘/ ﬁ(ii;(w)A (w))z
- re( 2]

(4.3.10)
After solving the Eliashberg equations on the real axis (2.3.10}-
(2.3.11), we calculate the temperature dependence of the ratio a,/an with
formulas (4.3.5), (4.3.9) and (4.3.10). In Fig. 4.3.1, the ratio o,(t)/an(t) is
plotted for 7 || 2, with ¢ = T/T. the reduced temperature. The top frame
is for intermediate coupling with Ti/wi,; = 0.1. The bottom frame is for

strong coupling with T./wj,, = 0.25. For both cases, the solid line is for the
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Fig. 4.3.1) The normalized ratio of ultrasound attenuation for 7 || 2, (.(t)/an())j»

as a function of the reduced temperature for various values of anisotropic pa-

rameter gjp, namely namely 0.0 (solid curve), 0.2 (dotted curve), 0.5 (short

dashed curve), and 0.8 (long dashed curve), The top frame is for an interme-

diate coupling case with strong coupling index T /w;o, = 0.1 while the bottom

frame is for strong coupling with T /uy., = 0.25.
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isotropic situation. the dotted curve is for g0 = 0.2. the short-dashed curve
is for gio = 0.5, and the long-dashed curve is for gip = 0.8. For both cou-
pling strengths, the temperature dependence of the normalized ultrasound
attenuation with gjo anisotropy is quite different from that of the isotropic
situation. The difference is bigger for larger anisotropy, and increases as the
temperature is lowered. At T near T, the ulirasound attenuation is weaker for
the anisotropic case than the isotropic case. In contrast, it is much stronger
in the low temperature region.

The results for the ratio a,/an for § L : are shown in Fig. 4.3.2.
Again, the top frame is for intermediate coupling with T./wj,y = 0.1 and the
bottom frame is for strong coupling with T /wj,y = 0.25. The solid line applies
to the isotropic case, the dotted curve applies to gio = 0.2, the short-dashed
curve applies to gig = 0.5, and the long-dashed curve applies to g0 = 0.8.
Qualitatively, the changes in the attenuation resulted from the anisotropy
is the same as for the § || ¢ case. The attenuation decreases as anisotropy
increases at T near T., but it increases with increasing anisotropy at T' near
zero. The difference is bigger near T, than near zero, although it is relatively
small compared with § || Z case at low temperature region.

As we already know, the drop of ultrasound attenuation on entering
the superconducting state is due to & gap opening in the energy spectrum and
hence the “normal” quasiparticle number decreasing. The above results with
anisotropy show that the effect of the anisotropy is a larger effective gap at T
near T. and a smaller effective gap at T near zero. In our anisotropic model,
the gap depends on p. only. For the § ||  case, the attenuation is the average
of an even weighting of that at the maximum gap and at the minimum gap.

While for § L 3, the attenuation is averaged over the whole first Brillouin
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Fig. 4.3.2) The normalized ratio of ultrasound attenuation for § L z, (a,(t)/an(t)).,
as a function of the reduced temperature for various values of anisotropic pa-
rameter gio, namely namely 0.0 (solid curve), 0.2 (dotted curve), 0.5 (short
dashed curve), and 0.8 (long dashed curve). The top frame is for an interme-
diate coupling case with strong coupling index T./wi,y = 0.1 while the bottom
frame is for strong coupling with T¢/wio, = 0.25.
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zone with a weight factor which is the biggest for p. = 0 (maximum gap}
and smallest for p; = 7/c (minimum gap). At T close to T, the effect from
a bigger gap is important, while the effect from a smaller gap dominates at
lower temperature. The weighting facter for the direction § L 2 results in a
bigger change of the attenuation near T and a smaller change near zero.
We see once again that the planar anisotropy has quite large effects on
physically measurable quantities. It will be interesting to compare the results
here with experimental data on both polycrystal and single crystal of high-T
oxides. From such a comparison, we may be able to have an estimation about

the electronic coupling between Cu — O planes.

4.4 CONCLUSIONS

The effect of a planar anisotropy on the specific heat, the ultrasound
attenuation and the thermal conductivity has been found to be large for an
Eliashberg superconductor if the electron-phonon coupling is not too strong
(Te/wioy < 0.25). The effect is usually larger for weaker coupling supercon-
ductors. The specific heat jump and the slope of the specific heat jump at T:
are depressed below their isotropic value when anisotropy is introduced. The
drop in the specific heat jump at T, can be as big as 20% for an intermedi-
ate coupling superconductor (T¢/wio; = 0.1) in the anisotropic range we have
investigated. This is not what has been seen in high-T. oxide superconduc-
tors, although the situation is still controversial there. On the other hand,
at low temperature, the electronic specific heat is larger as the anisotropy is
increased. This reflects an effectively smaller gap for the larger anisotropy.
This effectively smaller gap at low temperature due to the anisotropy appears

also in the thermal conductivity and ultrasound attenuation.
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For the thermal conductivity, adding anisotropy makes it increase.
The difference between the anisotropic and isotropic cases is relatively bigger
as temperature is lowered. A similar situation exists for the ultrasound atten-
uation in the low temperature region. At temperatures near T,, however, the
ultrasound attenuation is weaker for stronger anisotropy. This occurs mainly
because of an effectively larj;er gap at T near T. for stronger anisotropy. The
difference between the temperature dependence of the thermal conductivity
and ultrasound attenuation, we believe, comes from the fact that quasipar-
ticle lifetime enters the formula of thermal conductivity but not the formula
for ultrasound attenuation. Ultrasound attenuation is mainly proportional
to the number of quasiparticles available while the thermal conductivity de-
pends on both the number of quasiparticles and the lifetime of the quasipar-
ticles. The phenomenon of thermal conductivity is more complicated since
the quasiparticle lifetime will also be affected by the superconducting phase
transition [Kaplan etal. (1976)].

For an anisotropic superconductor, a larger or smaller effective gap
depends on temperature, the portion of the Fermi surface considered, and
the properties under study, etc. The contribution from the minimum gap and
the maximum gap will be different in general. We would like to emphasize
again that although we used the concept of a energy gap opening in the
superconducting state here to discuss the results, it does not necessary mean
a sharp cut off in the energy spectrum. We have seen in the last chapter
that a clear gap is hardly seen at finite temperature, especizally for a strong
coupling superconductor. The most essential quantity for us is the pairing
potential A. Aslong as A is finite, we will have a highly correlated new ground
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state, the superconducting state. The quantity A measures the correlation

of quasiparticles in the superconducting state.






Chapter 5

Electromagnetic
Properties

A superconductor in the superconducting state will have & qualita-
tively different response to an external electromagnetic field as compared
with the normal state. The different electromagnetic behavior between the
superconducting and normal state of the system results not only from the
qualitative changes in the electronic excitation spectrum but also from the
highly correlated nature of the superconducting state. In this chapter we
would like to discuss how planar anisotropy affects some electromagnetic
properties in the superconducting state. In the next section we will show the
results on the London penetration depth AZ(T), followed by a discussion of
the nuclear spin relaxation rate R(T) in section 5.2. Section 5.3 is devoted to
the infrared conductivity o(w) and a short conclusion is included in the last
section (5.4).

97
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5.1 THE LONDON PENETRATION DEPTH

A superconductor will expel magnetic field from its interior by build-
ing up shielding supercurrents in the surface layer whether the supercon-
ducting phase transition is taking place in the presence of the magnetic field
or not. This phenomenon, discovered by Meissner and Ochsenfeld in 1933,
is one of the most fundamental property of superconductivity and is named
after its discoverers, the Meissner effect. It is the Meissner effect that distin-
guishes a superconductor from a perfect conductor. A perfect conductor with
zero de resistance will resist any change in internal magnetic filux, but does
not demand the flux to be zero. The Meissner effect is intimately related to
the phenom- 10n of zero resistance. They both have the same origin, as has
been established by BCS theory [Schrieffer (1964)].

The Meissner effect is achieved through the fact that an external field
will decay exponentially from the surface of a superconductor. The surface
region where the magnetic field is not zero contains the persistent currents
which screen out the external field. The distance from the surface that the
external field decreases by a factor of e (nature logarithm) is called the pene-
tration depth, A, which is one of the main characteristics of a superconductor
and depends on temperature. For most conventional superconductors, the
penetration depth is a few thousand angstroms. For high-T. oxide supercon-
ductors, it is a few thousand angstroms (~ 20004) parallel to CuQO; planes
and several thousand angstroms (~ 70004) perpendicular to the planes, due
to the highly anisotropic layered structure [Harshman etal. (1989)]. Here we
would like to examine the penetration depth using the anisotropic model

and the strong coupling formalism developed in chapter 2. It is our intent to
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show the possible effects that can result from a layered structure with strong
coupling. For weak coupling, a similar effect has been looked at by Schneider
and coworkers (1989) using BCS theory.

From electrodynamics, the penetration depth is related to the surface

impedance Z(w) by

A= lim z(*')
w—0 1y

(5.1.1)

Here, ug is the permeability [Rickayzen (1965)]. The surface impedance can be
calculated from the electromagnetic response function X(§,w), which usually
is a three by three tensor for three space coordinates and defined by [Nam
(1967a,b)}

JJ(E!“J) == :'k(‘.i!w)Ak(E:u)
(5.1.2)
where J is the current density and A is the electromagnetic vector potential.
With the assumption that the reflection of electromagnetic waves at the

superconductor surface is mirrorlike (specular reflection), the penetration

depth is then given as:

A=2 ] v g
T Jo q2+ ﬁx(%n)
(5.1.3)

with
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:S%.( iwy)

Karlan) = BTN OV FRe( T

- IZFo(sn(q,ﬁ))))
n>0 [@%{iwn) + A2(iwn )]

(5.1.4)

where () again denotes a Fermi surface integral over j, T is temperature,
N(0) is the quasiparticle density of states at the Fermi level, e is the electron
charge and V; is the Fermi velocity in the j direction. Az(iwn) and @p(iwn)
are angular dependent pairing potential and rencrmalized frequency written
at the Matsubara frequencies respectively, and should be solved from Eqgs.
(2.3.8) and (2.3.9). The function Fy in formula (5.1.4) is given by

Fo(Sala ) = (L Sa@ Ptan""(Sn(g, 7)) = Sula,)

53(q,7)
(5.1.5)
with
Sn(‘f: ﬁ) = QVF(ﬁ) 172
2 [ag(iu..) + Ag(iw,,)]
(5.1.6)

In the limit ¢ — 0, the London limit, Fo(Sn(0,5)) = 2/3. Therefore,
from formulas (5.1.3) and (5.1.4),

A
Ka—0.0) = (SrN @ EVER( T o))
n>0 [ag.(iw,,) + Ag(iw,,)]
(5.1.7)
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and

Il

2 [ dq fo .. ]—i/'}!
\L T _/ ) - = [—'l\. 0.0
4 Jk( ) " 0 q"+4'ﬂ'“.’\»:k(n,0) 4?1_ Jk( )

1
| pe—

A2(iw, -2
(%n’TN (0)uoe”V;(P)Vi(P) Re (z i) 3/2))]
n>0 [&g(iw.,) + :S%(iw.,)]

(5.1.8)

where the superscript L stands for the London limit {Nam (1967a,b); Blezius
(1987)]. The London limit of penetration depth applies for a "strong” type I1
superconductor where A >> £ with ¢ the coherence length. This is certainly
the appropriate limit in the case of high-T. copper oxide superconductors for
which £ is very small and probably as well, much smaller than the electron
mean free path ! (the clean limit).

Using the dispersion relation (2.1.1), we can have a more explicit
form of AL. Through the same procedures as that used for formula (4.2.6)
to formula (4.2.10), the formula (5.1.8) can be reduced to

AL(T) = AL(T) =[§wTN(0)p.,eﬁEf -4

m

; cdp. > A%(l'wn) N -
X [l 27 nz=:1 [@3(iwn) + Al(iwn)3/2 (1 - E.F(l + cos(p,c)))]

(5.1.9)

and

AL(T) = (e TN O BB
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ZCdp: = Ag(iwﬂ) (..E.. . )2]—%
il Zliﬁ(fwﬂ>+i§(iwn)lﬂl2 E7mr)) |

(5.1.10)

All other terms are zero [Jiang and Carbotte (1992d}]. Now we are ready
to calculate the the penetration depth in the London limit for the geometry
parallel and perpendicular to the layers. In solving the Eliashberg equations
(2.3.8) and (2.3.9) for the pairing potential Az(iw,) and renormalized fre-
quency wy(iwn), we again used the Pb spectral density (o?F(w)) and scaled
its height to get & desired coupling strength. All the constants in formulas
(5.1.9)and (5.1.10) are unimportant as we always present the results in the
ratio AZ(0)/AL(T), except for #- which we set to be 0.1 as before.

It is customary to plot [AL(0)/AL(T)]? as a function of reduced tem-
perature t = T/T.. This quantity is one by arrangement at ¢t = 0 and goes to
zero at ¢ = 1 because in that limit the system is normal and the London pen-
etration depth is infinite. In all the plots to be presented here we will include
a solid curve which is the two fluid model [Gorter and Casimir (1934a,b);
Ginsburg and Landau (1950)] temperature variation, 1 — ¢4, and is there for
comparison. For high-T. oxide superconductors several experiments favored
this temperature variation over the BCS variation which falls considerably
below the two fluid model temperature dependence [Fiory et al. (1988); Mitra
etal. (1989); Cooke etal. (1988a,b); Harshman et al. (1989)].

In Fig. 5.1.1 we show the results for the London penetration depth
in the zy plane which we denote by (AL (0)/AL(T)]2. Only g0 anisotropy is

included here so that the calculations involve the solution of four coupled

Eliashberg equations for Ag(iws), A1(iws), @o(iws) and &y (iwy). The first two
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London penetration depth in the zy plane with ¢ = T/T. for intermediate

coupling T./wiop = 0.1 (top frame) and strong coupling T:/wioy = 0.3 (bottom

frame). The two fluid model is shown for comparison (solid curve). The

other curves are for various anisotropy models, namely g0 = 0.0 (dotted

curve) isotropic case, 0.2 (short-dashed curve), 0.5 (long-deshed curve), 0.8

(short-dash-dotted curve), and finally 1.0 (long-dash-dotted curve).
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equations are for the isotropic part of the paring energy (Ap(iws)) at each
Matsubara frequency iw, and the anisotropic part (A;(iw,)) which, in mo-
mentum space, is multiplied by the modulating factor cos(p.c) with c the
lattice parameter in the :z-direction perpendicular to the layers. The second
two equations are for the isotropic (@o(iw,)) and anisotropic part {@{iwn))
which is also proportional to cos(p.c) of the renormalized Matsubara frequen-
cies. This set of four equations are iterated self-consistently to convergence.
The top frame applies to a superconductor of moderate coupling strength
with T./uw,, = 0.1 while the bottom frame is for a strong coupling case with
Te/wiop = 0.3. The curves are for gio = 0.0 dotted curve, g9 = 0.2 short-dashed
curve, g1 = 0.5 long-dashed curve, gjo = 0.8 short-dash-dotted curve, and for
g10 = 1.0 long-dash-dotted curve. We see that in the top frame the isotropic
curve (dotted) falls considerably below the solid curve from two fluid model
although it is already substantially above the BCS results for the London
penetration depth in the clean limit. In fact it falls roughly in between the
two. As anisotropy is added the curves start falling even lower with respect
to the two fluid results as seen in the BCS work of Schneider etal. (1989).
The last two curves are below the isotropic BCS results. An important differ-
ence between our results for 7. /uw;,, = 0.1 and BCS results, which correspond
to the limit T./w,, — 0, is that the isotropic curve, which gives the start-
ing curve for the anisotropic sequence, starts closer to the two fluid model
than does the BCS curve. In the bottom frame where T, /w;,, = 0.3 for very
strong coupling the isotropic curve (dotted) is pushed towards the two fluid
model curve (solid). In fact, now the dotted curve is slightly above the solid
curve at the lower temperature and slightly below it at T near T;. The other

striking feature, on comparing the two sets of curves in two frames, is that
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the introduction of anisotropy is much less effective in pushing the curves
down awa; from the two fluid model for Te/wioy = 0.3 than for Te/wieg = 0.1.
Even for gio = 1.0 (long-dash-dotted curve) the curve remains well above the
curve for the BCS clean limit. In the strong coupling regime the introduction
of anisotropy makes much less difference than it does in the weak coupling
regime.

Similar results for the London penetration depth along the :-direction
perpendicular to the zy plane are shown in Fig. 5.1.2. The effect of anisotropy
on the temperature dependence of [AL(0)/AL;(2)]* are more pronounced than
for the zz direction just described as is seen on comparison of Fig. 5.1.2 with
Fig. 5.1.1. Particularly note worthy is the results for g1 = 1.0, the long-dash-
dotted curve, in which case the temperature dependence of [AL(0)/AL,(£)]2
does not in any way resemble the two fluid model prediction even for the
very strong coupling T./wie = 0.3. This is in striking disagreement with
experiment on the high-T. oxide superconductors which favors a variation
near the solid curve. Comparing the top frame with the bottom frame, we
see once again that anisotropy has relatively, a stronger effect for weak than
for strong coupling.

It is interesting to wonder if other models for the anisotropy includ-
ing higher Fermi surface harmonics in the expansions (2.3.2) to (2.3.7) for
the renormalized Matsubara frequency, pairing potential and the electron-
phonon kernel Az (iwn — iwn), could lead to results substantially different
from those of Fig. 5.1.1 to Fig. 5.1.2 and in particular give results near the
two fluid model even for cases with substantial anisetropy. In Fig. 5.1.3 we
show the results for the London penetration depth in the zy plane with both

g10 and ggo anisotropies. Again, the top frame is for intermediate coupling
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Fig. 5.1.2) The temperature dependence of the ratio [AL (0)/AL (t)]? of the

London penetration depth in the z direction with ¢ = T'/T, for intermediate

coupling 7. /wiop = 0.1 (top frame) and strong coupling T./wi,, = 0.3 (bottom

frame). The two fluid model is shown for comparison (solid curve). The

other curves are for various anisotropy models, namely g0 = 0.0 (dotted

curve) isotropic case, 0.2 (short-dashed curve), 0.5 (long-dashed curve), 0.8
(short-dash-dotted curve), and finally 1.0 (long-dash-dotted curve).
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London penetration depth in the zy plane with ¢ = T/T. for intermediate
coupling T;./w;oy = 0.1 (top frame) and strong coupling T /wiop = 0.3 (bottom
frame). The two fluid model is shown for comparison (solid curve). The
other curves are for various anisotropy models g1o = 0.0 and gz = 0.0 (dotted
curve) isotropic case, gio = 0.2 and gz = 0.5 (short-dashed curve), gio = 0.5
and gog = 0.5 (long-dashed curve), gjo = 0.8 and gz = 0.5 (short-dash-dotted
curve), and finally gi1p = 1.0 and gz = 0.5 (long-dash-dotted curve).
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T./wiog = 0.1 and the bottom frame is for strong coupling Te¢/wise = 0.3. It is
of some interest to compare in more detail Fig. 5.1.3 with Fig. 5.1.1, both are
for the penectration in the zy plane. The solid (two fluid model) and dotted
curves (isotropic case) are common to both plots. The short-dashed curve in
both top and bottom frame of Fig. 5.1.1 is for g10 = 0.2 with no ggo snisotropy
while in Fig. 5.1.3 it is for g19 = 0.2, again, and gzo = 0.5 so that additional
cos(2p;c) anisotropy has been included. This has depressed the curve away
further from the two fluid model. Adding extra anisotropy through a gop term,
for example, does not always act to reduce the curve for [AL(0)/AL(2)]2, how-
ever, as can be seen by comparing the short-dash-dotted curves of Fig. 5.1.1
and Fig. 5.1.3 as well as the long-dash-dotted curves. In Fig. 5.1.1 only g0
anisotropy is included with g9 = 0.8 and 1.0 for short- and long-dash-dotted
curves, respectively. In Fig. 5.1.3, gop anisotropy is additionally included with
g20 = 0.5. In both cases the addition of g0 anisotropy pushes the curves back
up towards the two fluid model. Thus, the addition of anisotropy can either
push the curves up or down although, here, all the curves with anisotropy are
still below the isotropic curve for both intermediate and strong couplings.
Similar but more striking behavior is seen on comparison of Fig.
5.1.4 with Fig. 5.1.2 which give the results for magnetic field penetration
along the :z axis perpendicular to the zy plane. Adding go9 anisotropy has
now pushed all curves back up no matter the strength of the coupling. The
effect is particularly dramatic for the gip = 1.0 (highly anisotropic) case. The
very strong deviation from two fluid behavior seen in Fig. 5.1.2 (long-dash-
dotted curve) when g19 = 1.0 with gog = 0.0 is now largely eliminated for
both coupling strengths by leaving gjo = 1.0 but taking a finite value for

¢o0, namely 0.5. Two other curves in the bottom frame of Fig. 5.1.4 where
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T./wiog = 0.3, namely g1o = 0.2 and g1¢ = 0.5 with gz fixed at 0.5, arc pushed
up even above the isotropic curve and the two fluid results {solid curve). This
does not happen in the top frame of Fig. 5.1.4 where T./w,, = 0.1. For an
anisotropic superconductor, the coupling strength also affects the behavior
of the London penetration depth.

To conclude, we have used the anisotropic Eliashberg equations writ-
ten on the imaginary (Matsubara) frequency axis, (2.3.8) and (2.3.9), to
calculate the London penetration depth for various values of the strong cou-
pling index T.fwi,; and models for the anisotropy appropriate to layered
structures. As is well known, in the clean limit, the temperature variation of
the London penetration depth in weak coupling regime, near BCS limit, falls
considerably below the two fluid model predictions for {A*(0)/AL(2)}? and so
deviates from many experimental results which faver a two fluid behavior for
high-T. oxide superconductors [Fiory etal. (1988); Mitra etal. (1989); Cooke
etal. (1988a,b); Harshman etal. (1989)]. Adding a simple anisotropy gio to
the theory to account for a layered crystal structure as did by Schneider
etal. (1989) leads to even greater deviation from the two fluid model results,
especially in the z direction. On the other hand it is known that increesing
coupling strength pushes the curve up towards the two fluid model [Gorter
and Casimir (1934a,b); Ginsburg and Landau (1950)]. Here we have found
that adding anisotropy modifies the temperature variation of the London
penetration depth both along and perpendicular to the c-axis much less when
the coupling is strong than when it is weak. The results remain very close
to a two fluid behavior for a strong coupling superconductor {T;/wisy = 0.3)
in both directions, parallel and perpendicular to the zy plane, even for what
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London pexnetration depth in the z direction with ¢t = T'/T; for intermediate

coupling T./w;.y = 0.1 (top frame) and strong coupling T¢/wio; = 0.3 (bottom

frame). The two fluid model is shown for comparison (solid curve). The

other curves are for various anisotropy models g1 = 0.0 and gop = 0.0 (dotted

curve) isotropic case, gip = 0.2 and g0 = 0.5 (short-dashed curve), gio = 0.5

and gop = 0.5 (long-dashed curve), g0 = 0.8 and g9 = 0.5 (short-dash-dotted

curve), and finally g1 = 1.0 and gog = 0.5 (long-dash-dotted curve).
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appears to us to be fairly extreme values of the anisotropy. Also. by experi-
menting with more complex models for the anisotropy, i.e.. including higher
order Fermi surface harmonics in our expansions, we have found that in
some cases introducing more anisotropy can make the curve go up or down
and even fall above the isotropic case (see the bottom frame in Fig. 5.1.4).
We have not made an exhaustive study of the available parameter space for
anisotropy, however, as this would have been too costly in computing time.
For example, we have six coupled Eliashberg equations to solve for Figs.
5.1.3 and 5.1.4 compared with four for Figs. 5.1.1 and 5.1.2. From the re-
sults obtained it is clear that more complicated models for the anisotropy
can indeed change the curves obtained quantitatively but not qualitatively.
No simple conclusions can be made about the effect of layered anisotropy on
the London penetration depth temperature dependence. It depends to same

extent on details.

5.2 NUCLEAR MAGNETIC RESONANCE

Generally, a nucleus has a magnetic moment Z and a angular mo-

mentum J. The two are closely related with

=i
|
|
-2
S

(5.2.1)

Here, + is the gyromagnetic ratio which depends on the state of the nucleus
[Slichter (1978)]. The magnetic moment of the nucleus will interact with an
applied magnetic field H, taking it to be Hy along the z-direction, with the

interaction energy
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E=-ji-H=—yHyl..

(5.2.2)
The eigenvalues of J, are Al h(I - 1),---,—hJ with I either integer or half-
integer. The energy between the adjacent energy levels is
AE = —yhHy.
(5.2.3)

To detect this, we can apply another alternating magnetic field g =
H.cos(wt)z, perpendiculer to the static field & = Hg:. An absorption peak

will appear at

hw = AE = —yhHp.

(5.2.4)

This is the so-called nuclear magnetic resonance (NMR).

In metals, the NMR will be strongly influenced by conduction elec-
trons through the interaction of their magnetic moments with those of the
nuclei [Abragam (1961); Slichter (1963); and Winter (1971)]. Two effects are
most important here. One is the so-called Knight shift, X, the shift in the
value of the applied field at which the NMR occurs in the metal, compared
to a salt, as conduction electrons alter the static magnetic field seen by the
nuclei from the value of the applied field. The Knight shift is proportional
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to the Pauli spin susceptibility of the electrons and provides a static mea-
surement. The other is the nuclear spin-lattice relaxation time, Tj, the char-
acteristic time for the nuclear spins to come into thermal equilibrium with
their surroundings through energy exchange with the conduction electrons
at the top of the Fermi distribution, which is usually the quickest means in
metals. The relaxation time depends not only on the states of electrons but
also on the strength of electron-nucleus coupling and provides a dynamic
measurement. Both the Knight shift K and the relaxation time T} will be
strongly affected by the superconducting phase transition. Historically, the
study of the NMR has played a big role in understanding superconductivity
[MacLaughlin (1974)].

From BCS theory, one can derive that the ratio of the Knight shift
in the superconducting state to that in the normal state K,/K, is propor-
tional to ezp(—Ap/ksT) at low temperature, here, A is the gap function at
zero temperature and kp is the Boltzman constant. The physics of this law
can be viewed in the following way. Superconducting electrons are in the
form of Cooper pair which have zero spin and hence make no contribution to
the Knight shift while the number of normal electrons with net spin, which
are thermally excited out of the superconducting condensate, is proportional
to ezp(—Ao/kpT) at temperatures close to zero. Experiment on many con-
ventional superconductors, e.g., Al by Fine, Lipsieas and Strongin (1969),
followed this relation convincingly. A full expression for the ratio K,/K, was
first derived by Yosida (1958) within BCS theory and called the Yosida func-
tion Y(T) thereafter. From Eliashberg theory, the Yosida function Y(T) is
given by
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Y(T) = 2{_“ - 2-[”,@( oftw)y ( Sg(w. )

\/wﬁw T) - Aw, T)))

(5.2.5)

Here, T is temperature, f is the Fermi distribution function and () again
denotes a Fermi surface average. &3(w,T) and Az(w,T) are the renormalized
frequency and pairing potential, respectively, and are the solutions of Egs.
(2.3.10) and (2.3.11).

For the ratio of the spin-lattice relaxation rate R,/R, with the relax-
ation rate R the inverse of the relaxation time R = 1/T) and the subscripts
s and n for the superconducting and normal states, respectively, the formula

derived from Eliashberg theory is

Re _y [ 000) g, T) :
—_— dw __._........_..—.——
Bn 210 ( )([( s, T)? - A3 (w, T)m
+l(Re(——22 T2},

Joa(w, T - A} (w,T)

(5.2.6)

Here, all the quantities in the integral are defined in the same way as in for-
mula (5.2.5). The most interesting result from this ratio, perhaps, is a large
enhancement of the relaxation rate just below 7. before the ratio falls off
to zero at low temperature. This is the so called Hebel-Slichter peak [Hebel
and Slichter (1957, 1959)] and comes from the coherent nature of the popula-
tion of Cooper pair states in the formation of the condensed superconducting
phase. A detailed discussion of the role of ‘coherent factor’ in scattering in su-

perconductivity was given by Schrieffer (1964). The observation of this peak
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in many conventional superconductors, e.g., Al [Hebel and Slichter (1957,
1959); Masuda and Redfield (1962)], is a crucial aspect in the establishment
of BCS theory.

The shape of Hebel-Slichter peak is material dependent. Unlike the
prediction from simple BCS theory, a logarithm singularity at 7., the peak
in fact is much wider and smaller in magnitude in real materials. It has
been shown that the Hebel-Slichter peak will be greatly depressed by in-
creasing coupling strength and/or introducing anisotropy [Statt (1990a,b);
Monien and Pines (1990); Akis, Jiang and Carbotte (1991); Jiang and Car-
botte (1992e)]. Another effect, Fermi liquid corrections, will also diminish the
peak. Fermi liquid corrections were introduced by Monien and Pines (1990)
recently to account for a nearly antiferromagnetic liquid bebavior in high
T. oxide superconductors where no Hebel-Slichter peak has been observed
in NMR experiment. The formula for the ratio of the spin-lattice relaxation
rate R,/R, including Fermi liquid corrections is given by [Monien and Pines

(1990)]

& — (&)ac [1 e A(TG)F
R, 'R, [1-MNT)Y(T)P

(5.2.7)

where M(T.) is a parameter that enters the enhanced spin susceptibility. It
starts at zero when there is no enhancement and increases as the antifer-
romagnetic trensition is approached. In (5.2.7) Y(T) is the Yosida function
given by (5.2.5) and (R,/Rn)* denotes strong coupling results without the

inclusion of Fermi liquid corrections (formula (5.2.6)).
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Fig. 5.2.1) The Yosida function Y(T) as a function of reduced tempera-
ture ¢t = T'/T. for intermediate coupling T¢/w;y = 0.1 and various values of
snisotropy. In the top frame, where g = 0.0, the solid curve is for isotropic
case with gyp = 0.0, the dotted curve for gig = 0.2, the short-dashed curve for
g1o0 = 0.5, and the long-dashed curve for g = 0.8. In the bottom frame the
solid curve is again for isotropic case with gig = go0 = 0.0, the dotted curve
for g10 = 0.2 and gog = 0.5, the short-dashed curve for gjo = 0.5 and gz = 0.5,
and the long-dashed curve for gjo = 0.8 and g = 0.5.
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Here, we would like to study the effect of planar anisotropy on both
the Yosida function and the ratio of the relaxation rate R,/R. using the for-
malism of Eliashberg theory. The difference between the work here and previ-
ous ones [Statt (1990a,b); Monien and Pines (1990); Akis, Jiang and Carbotte
(1991)] is that we include the effects of strong coupling and anisotropy in a
consistent way. We will also study the effect of Fermi liquid corrections when
we come to the experiment data of the NMR on high-T. oxide superconduc-
tors.

We begin with the Yosida function Y(T'). After solving for Ap(w,T)
and @y(w, T) from Egs. (2.3.10) and (2.3.11), we calculate the Yosida function
Y(T) from (5.2.5). In Fig. 5.2.1 we show results for the Yosida function ¥(T)
as a function of reduced temperature T/T. for the case T./w = 0.1 (intermedi-
ate coupling strength) for various values of g1g namely 0.0 (solid curve) which
corresponds to the isotropic case, 0.2 (dotted curve), 0.5 (short-dashed curve)
and 0.8 (long-dashed curve). In the top frame we have the second anisotropic
parameter gzo = 0.0 while in the bottom frame it equals 0.5 except for the
solid curve which is the isotropic case for comparison. In both cases we see
that near T. anisotropy has very little effect on Y(T) whereas at lower tem-
perature adding anisotropy leads to much larger Y(T). As we pointed out
above the Yosida function is proportional to the Pauli spin susceptibility of
quasiparticles, therefore, of the population of quasiparticles being thermal
excited out of superconducting condensation at a given temperature. From
the discussion of previous chapters we know that the superconducting gap
minimum decreases with increasing anisotropy and the effect from the gap

minimum will be more significant at lower temperature. Therefore at low
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temperature more quasiparticles will be thermal excited out of the conden-
sation, compared with an isotropic case, through the gap minimum and,
hence, a larger Y(T). A more complicated anisotropy, comparing the bottom
with top frames in Fig. (5.2.1), only makes quantitatively change of Y'(T) but
not qualitatively. We have generally found that such complication introduces
no new physics.

We would like to point out that the results here are similar to those
presented in Akis etal. (1991) for the same T /wi,, velue but using an ansatz

for the anisotropy which is

Ag(w) = Ai(w)(1 + acos(pzc))

(5.2.8)

where « is an anisotropy parameter and A%(w) is the solution of the isotropic
Eliashberg equations. By comparing the top frame in Fig. 5.2.1 and Fig.
9 in Akis etal. (1991), we have found that the curves for Y(T) are very
nearly the same if we identify the value of gjo with the value of a for small
values. For larger values of the anisotropic parameters gjg and «, however,
the correspondence between the ansatz (5.2.8) and the full solutions of the
snisotropic Eliashberg equations, Eqs. (2.3.10) and (2.3.11), starts to fail
more importantly.

We turn now to our results for the nuclear spin-lattice relaxation rate
R./R. given by equation (5.2.6). In the top frame of Fig. 5.2.2 we show the
temperature dependence of R,/R. for the case T./wi,, = 0.1 (intermediate
coupling) and various values of anisotropy gio = 0.0 (solid curve) isotropic

case, g1o = (.2 (dotted curve), 0.5 {short-dashed curve) and 0.8 (long-dashed
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Fig. 5.2.2) The nuclear spin lattice relaxation rate ratio R,/R. as a func-
tion of temperature T/T: for intermediate coupling T./w;o; = 0.1 and various
anisotropy parameters. In the top frame, where gy = 0.0, the solid curve s for
isotropic case with gig = 0.0, the dotted curve for g1 = 0.2, the short-dashed
curve for gip = 0.5, and the long-dashed curve for g;p = 0.8. In the bottom
frame the solid curve is again for isotropic case with gio = g0 = 0.0, the
dotted curve for gjo = 0.2 and gz = 0.5, the short-dashed curve for g1 = 0.5

and gsg = 0.5, and the long-dashed curve for gio = 0.8 and gg9 = 0.5.
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curve). We see that increasing anisotropy, i.e., g1o value, can greatly suppress
the Hebel-Slichter peak in R,/R, even where damping effects are not so
significant (see the large peak in the solid curve for the isotropic case). As
for the Yosida function Y(T) the results obtained here compare well with
those of Akis etal. (1991) based on the simple ansatz (5.2.8) provided the
anisotropy is small. At larger anisotropy quantitative changes are observed
to occur but no qualitative differences are found. Additional anisotropy can
further reduce the peak height. This is illustrated in the bottom frame of Fig.
5.2.2 where we plot the temperature dependence of R,/R, for cases similar
to those in the top frame except we now add some gz anisotropy. The solid
curve still represents the isotropic results gio = g20 = 0.0 for comparison,
while the dotted curve is for gjp = 0.2 and gy = 0.5, the short-dashed curve
is for g0 = 0.5 and g9p = 0.5, and the long-dashed curve is for g1p = 0.8 and
g20 = 0.5. A more complicated anisotropy does not always mean a reduction
in the Hebel-Slichter peak. In fact the peak is higher for g;9 = 0.2 and gog = 0.5
than for gio = 0.5 along with gs9 = 0.0, although it is lower than for gjo = 0.2
and gg9 = 0.0. Complicated assumptions for the details of the anisotropy
can lead to significant quantitative differences in R,/R. which can not be
captured by any simple semi-phenomenological model such as (5.2.8) but no
qualitative changes result.

Finally, we would like to show the kind of fit which can be obtained
through formula (5.2.7) with experiment data on high-T, axides. In Fig. 5.2.3
the solid dots and the open circles are the data of Imai et al. (1988) for coppers
in CuQ chains Cul and in CuQO; planes Cu2 of Y BasCug(7_, with T, = 92K.
All theoretical curves correspond to T./wi,, = 0.05 and g1 = 1.0 with all other

g;x left out. The solid curve is for an antiferromagnetic spin susceptibility
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enhancement factor A(T.) of 0.2 and fits reasonably well the solid points.
Better fits could be obtained by introducing different anisotropy parameters
but this is not the point of our study here. The dotted curve is for \(T) = 0.7,
the short dashed curve for 0.8 and the long dashed curve for 0.85. None of
these curves fit perfectly the Cu2 data {open circle) which however falls
within the range delineated by this set of curves. The much larger value of
AT.) needed to fit the Cu2 data than the Cul data is in agreement with the
picture of strong antiferromagnetic correlations in the CuQ, planes of these
compounds which means that the Cu2 site is much more influenced than Cul
site by these correlations.

In summary, we have studied the effect of planar anisotropy on the
Yosida function Y(T') which gives the magnetic susceptibility and on the nu-
clear spin-lattice relaxation rate R,/Rn using the formalism of Eliashberg
theory in & consistent way. We found a larger value of Y(T) at low temper-
ature and a strong depression of the Hebel-Slichter peak in the ratio R,/R,
due to the introduction of anisotropy. These largely agree with previous re-
sults by Akis etal. (1991) (especially for small values of anisotropy) which
were obtained using a semi-phenomenological ansatz for the anisotropy, for-
mula. (5.2.8), and strictly isotropic solutions for the Eliashberg equations.
More complicated model anisotropy was also explored here but this resulted
only in quantitative but not qualitative changes. Good agreement with ex-
periment on high-T;, oxides has been found after taking account of the Fermi
liquid corrections of Monien and Pines (1990), although we did not search
for the set of parameters that would produced the best fit to data, as this

was not the aim of our study here.
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Fig. 5.2.3) The log of the spin lattice relaxation rate ratio R,/R, as a function

of the log of the reduced temperature for a model with T /u;,, = 0.05 and g9 =
1.0 for various values of the spin susceptibility enhancement parameter A7)
of Monien and Pines, namely 0.2 (solid curve), 0.7 (dotted curve), 0.8 (short-
dashed curve) and 0.85 (long-dashed curve). Also shown for comparison are

the experimental data of Imai etal. (1988) for the Cul site (solid dot) and
the Cu?2 site (open circle).
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5.3 INFRARED CONDUCTIVITY

The infrared conductivity, measured by infrared spectroscopy, has
been an important physical quantity in the study of superconductivity [Timusk
and Tanner (1989)]. As a probe of the particle-hole excitation spectrum of
superconductors, the infrared conductivity contains the information about
the energy gap as well as the coupling of electrons to low lying excitations,
such as phonons in conventional superconductors. Here we would like to dis-
cuss how the conductivity is affected by planar anisotropy with or without
normal impurity scatterings (¢*).

A formula for the infrared conductivity within BCS theory was first
derived by Mattis and Bardeen (1957). The expression for the real part of the
conductivity (which is our only interest in this thesis) in the superconducting

state os5; normalized by its value in the normal state on; is

(=)t n( ) * (=)

(5.3.1)
Here, f is the usuel Fermi function and A is the energy gap. The characteristic
feature of this ratio as;/on is that besides a delta function at the origin it is
zero until w = 2A and approaches 1 at high frequencies. This is understood
as due to the fact that an incident photon with energy smaller than 2A
can not break a Cooper pair to create particle-hole excitations. Thus, there
is no absorption until the photon energy is greater than 2A. For photons

with energy much greater than 24, the energy gap A will have little effect,
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therefore, the absorption in the superconducting state will be equal to that
in the normal state. A delta function at origin is present due to the perfect
dec conductance in the superconducting state. The amplitude of this delta

function is determined by the sum rule [Ashcroft and Mermin (1976)]

] 2
f dwoy (w) = %
0

(5.3.2)

where w, is the plasma frequency. This sum rule should always be satisfied.

We should point out that formula (5.3.1) applies only for the dirty
limit by which we mean the mean free path ! is much smalier than the super-
conducting coherent length £. In the clean limit there would be no absorption
even above 2A due to the momentum conservation law. The momentum of a
photon is generally quite small compared with that of the excited particle-
hole pair for which energy has been conserved. Therefore additional elastic
scattering events are required for the momentum to be conserved. In BCS
theory such scattering events are from impurities since the interaction be-
tween electrons and other excitations, such as phonons, is not taken into
account. As we discussed before, however, in the dirty limit anisotropy will
be totally washed out through very strong scattering. To study the effect
of anisotropy on the infrared conductivity we should go to the strong cou-
pling Eliashberg theory. In the strong coupling theory where boson-mediated
interaction between quasiparticles has been fully considered, there will be ab-
sorplion in the clean limit since phonons, for example, can carry the extra

momentum for the momentum conservation through Umklapp processes. At
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T = 0K the absorption in Eliashberg theory will begin at 2. plus the min-
imum energy of phonons available provided there exists no other scattering
mechanism. Another characteristic feature of strong coupling effects in the
infrared conductivity is the Holstein processes, i.e., the processes with ab-
sorption through the combined excitation of a particle-hole pair and a phonon
mode or other low lying modes. The Holstein processes contain the informa-
tion about the coupling between electrons and other low lying excitations
and appear in the conductivity as fine structures which are absent in the
results of BCS theory.

Based on Eliashberg theory, two formulas for the infrared conductiv-
ity with arbitrary impurity concentration have been derived. One starts on
the imaginary axis [Bickers, et al. (1990)] and then analytically continues to
the real frequency axis, and the other starts directly on the real frequency
axis [Nam (1967a,b); Lee, Rainer and Zimmermann (1989)]. Here we will
write down both formulas modified to including anisotropy only. References
[Bickers, et al. (1990); Nam (19672,b); Lee, Rainer and Zimmermann (1989))
should be consulted for details of the derivation of these formulas for an
isotropic case.

Following Bickers et al. (1990), the infrared conductivity is related to
the real frequency axis analytic continuation of the current-current correla-

tion function YI(iv,), in general a three by three tensor, as

i . .
Oik(w) = = sk(ivn — w+ 10’*‘).

(5.3.3)

The function IT;(ivs) is given in terms of Green’s functions as
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Mx{ive) = V ZTr{ev PIG(p. ivn + iwm )G(P, iwm e (P)}

(5.3.4)

where Tr is the trace, e is the electron charge, v; is the Fermi velocity in the j-
direction of the momentum space and T is temperature. The vertex correction
is taken to the lowest order. Since the Green’s function of quasiparticles in
the superconducting state G(p, iwy) is given by [Schrieffer (1964)] (here 7; is
the Pauli matrix given by formula (3.3.4))

G(iwm )Ty + €373 + Agliwm )y
i) — €& — Al{iom)

G,(p,iwm) =

(5.3.5)

one can work out, after some algebra, II;x(ivs) in terms of the pairing poten-

tial Aj(iws) and renormalized frequency @a(iwn),

I; k(iva) = (262N (0)v;(B)or(B)7T ) Sp(m,n))

(5.3.6)

with () the Fermi surface average (see (4.2.7)), N(0) the quasiparticle density

of states at Fermi level, and

Sy{min) = Dgliwm ) (@a(iwm) + Faliwmtn)) + Ag{iwm ) (Ag(ivm) = Ag(iwmen))
m Rg(m) By(rm,m)

Wﬂ(‘wm+n)(wi(‘wm+n) + g(iwm)) + Aﬂ(‘wm+n)(A§('wm+N) - Ai(“‘-’m))
Rg{m + m)Py(m, )

for (n #0,-2n-1),
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= Aﬁ(ium)E/Rﬁ(m)s. for (n =0},
= 1/Rz(m). for (m=-2n-1).

(5.3.7)

Here, Rz(m) = \/ag(iwm)+ig(iwm) and Pj(m.n) = 33(iwm) — P3(iwmen) +
Z\%(iwm) - ﬁg(iumﬂ). The effect of impurities on IT;(ivw) comes from y(iwm)
and Az(iwm) which are calculated from the Eliashberg equations given in
Eqgs. (2.3.8)-(2.3.9).

Formula (5.3.7) can be further deduced for the Fermi surface average
as we did in section 4.2 ({4.2.7)-(4.2.10)). The off-diagonal term with j # k

vanishes and the diagonal term is

. ¢ cdp
Ny = 2¢2 —= 32
I0; j(ive) = 2¢°N(0)aT -/;% o Y Sp(m,n)
(5.3.6a)

with

€F H .
2= vg = ;_—[1 - ;(1 + cos(p;c))] and v = p? & sin?(p,).

: =

(5.3.8)

A formula for the conductivity written directly on the real frequency
axis has been derived in a similar way [Lee, Rainer and Zimmermann (1989)].
It starts with the real frequency formalism of the current-current correlation

function IX(w + i6) which is given in terms of Green’s function:
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1 k(w + 16) =<2e21\f(0)u,-(ﬁ)vk(;’5)'1"r{/dejde(Q)?ImG,(p,Q+ i8)x
[G.(p,Q 4w +16) + Gy(p, 2 —w — i&)] }>
(5.3.9)

with f the usual Fermi function and the Green’s function (see formula (3.3.3))

J:-p-(u + i) + €33 + Ai,'(w +1i6)7

G.,(p, 15} = -
(P +18) 2w +i6) — & — A3(w + i8)

(5.3.10)

All other quantities in formula (5.3.9) are defined the same as in formula

(5.3.4). The final form of the conductivity can be written as

05i(u) = STLj5(0 +i6) =
e2N(0 v§ i

( (©)] {/ danh(~L )E(Q)+E(Q+ )[ N@QN(Q +w) P(Q)P(Q-{-w)]

f dﬂtanh(n+“

+ [) daQ [tunh(

+/ dﬂtanh(n+w
-

)T ||~ VN @ +a) - PP +a)

i
=) - “'“"(21")] E@+w) - BT(Q)
)(m(n)wt(m - V@@ ) - PP tm*“’)]
(5.3.11)

with

E(w) = /oHw) - A2(w), N(w)= d’:;(w)~ , and P{w) A,;(w) ——
d 7 wi(w) - Aﬁ(w \ /wi,.(w) A%(w

(5.3.12)

14+ NHQIN(Q +w) + PHQ)P(Q + w)]
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Here, ws(w) and Aglw) are the solutions of Eliashberg equations on the real
frequency axis, Eqs. (2.3.10)-(2.3.11). The term oi(w) with j # k is zero and
v; is given in (5.3.8). The symbol { in formula (5.3.11) represents the complex
conjugate of that quantity. A very useful relation is E(—w) = ~Et(w).

It is worth noting that formula (5.3.11) can be reduced to formula
(5.3.1) under the BCS and dirty limit. In BCS theory the frequency renor-
malization is neglected (& = w). While in the dirty limit there will be no
anisotropy as we discussed before (see section 2.2) and E(w) ~ if2r with

7 — 0. The last equality comes from the relation in an isotropic case:

Bw) = \/5}(w) - A3(w) = /5(w) - B3(w) + ;7

(5.3.13)

where subscripts d and ¢ stand for with and without impurities, respectively.
One can also get the well known Drude conductivity for electrons in the
normal state from formula (5.3.11) by setting the pairing potential A = 0
and the renormalized frequency & = w which is

2
Y T
olw) = 4r 1 — fwr’

(5.3.14)

Here, we have used the relation (5.1.13) and the plasma frequency wj, has
been defined as w?/4r = ne?/m = 22 N(0)¢?.

The imaginary axis formulation of the conductivity, Egs. (5.3.5)-
(5.3.8), is numerically much faster to evaluate on a computer than the real
axis formulation, Egs. (5.3.11)-(5.3.12), although the Padé approximates is
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@ / ZAQ
Fig. 5.3.1) The normalized ratio Re(o3,(w,0))/Re(o](w,0)) as a function of
normalized frequency w/2Aq at zero temperature for the clean limit and
intermediate coupling (T./wi,; = 0.128). The anisotropic parameter gio equals
0.5 and Ay is the energy gap at 0K for the isotropic case with same coupling
strength. The solid curve was obtained using the imaginary frequency axis
formulation, Egs. (5.3.5)-(5.3.8), with analytic continuation. The sclid dots
shown for comparison are the results of the real frequency axis formulation,

Eqgs. (5.3.11)-(5.3.12).
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Fig. 5.3.2) The normalized ratio Re(a3, (w,0))/Re(o](w,0)) at T = 0K in the
clean limit as a function of normalized frequency w/2Aq with A the isotropic
energy gap value for various anisotropy values, namely, gip = 0.0 (solid curve)
isotropic case, 0.2 (dotted curve), 0.5 (short-dashed curve), and finally 0.8
(long-dashed curve). The top frame is for intermediate coupling (Tc/wio; =

0.1), compared with strong coupling in the bottom frame (T:/wiog = 0.25).
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not reliable at high temperature T ~ T, (see the discussion in section 2.2).
At low temperature T ~ 0K, however, the imaginary axis formulation and
the real frequency axis formulation will yield almost identical results. In
Fig. 5.3.1 we plot the normalized ratio of the real part of the conductivity
Re(o?_(w,0))/Re(cX,(w,0)) at T = 0K as a function of normalized frequency
w/2A¢ with Ag the corresponding energy gap in the isotropic case. Here, we
used T./wie, = 0.128 (intermediate coupling), g0 = 0.5 and g9 = 0.0 (moder-
ate anisotropy), u#/EF = 0.1 for v, (same as before), and r — oo (the clean
limit). The solid curve is the results from formula (5.1.5) and the solid dots
are the results from formula (5.3.11). Two sets of data are identical except
for some small deviations around w/2Aq = 4.0. As to the effect of anisotropy
on the infrared conductivity, it will be sufficient to show the results at zero
temperature only. At high temperature T ~ T, the thermal excitations will
reduce the effectiveness of anisotropy. From the discussion above (Fig. 5.3.1)
we will use the imaginary axis formulation of the conductivity for our studies
hereafter.

In Fig 5.3.2 the normelized ratio Re(o3, (w, 0))/Re(o. (w,0)) at T = 0K
in the clean limit is plotted as a function of normalized frequency w/2Aq
with Ag the energy gap in the isotropic case for various anisotropies, namely
910 = 0.0 (solid curve) isotropic case for comparison, gjo = 0.2 (dotted curve),
g10 = 0.5 (short-dashed curve), g1 = 0.8 (long-dashed curve). The top frame is
for intermediate coupling (T /wio, = 0.1}, which is to be compared with strong
coupling in the bottom frame (T:/wis; = 0.25). We see that the conductivity
curves in both frames shift towards lower frequency as the anisotropy is
increased. This is expected since the gap minimum is decreasing when the

anisotropic parameter gy is increased (see Fig. 3.3.2 where the quasiparticle
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density of states is plotted). The effect of the anisotropy even for a quite large
anisotropic value (g0 = 0.8) is, however, not very significant at least for the
cases we showed here. If one looks at the BCS formula for the conductivity
(5.3.1) and distegards the dirty limit restriction [Clem (1966})], which will
be in contrast to any anisotropy (see section 2.2), one would expect the
absorption to begin right at the minimum gap. This is hardly seen in Fig.
5.3.2. The main reason for this, we believe, is that we are in the clean limit. As
we pointed out above, in the clean limit, the infrared absorption depends not
only on the quasiparticle density of states but also the low energy excitations
available because of the momentum conservation. For the a?F(w) of Pb which
we used the number of phonons with energy close to zero is very small. This
makes the absorption increase very slowly at beginning in Fig. 5.3.2 compared
with a sharp increase which the BCS dirty limit formula (5.3.1) would predict.
The absorption in Fig. 5.3.2 is too small to see an onset precision. To avoid
this difficulty and retain the anisotropic effect we introduce a small amount
of normal impurities (¢* = 0.1meV') into the system. We would like to see a
relatively sharp onset of the absorption with sufficient anisotropy. The results
are shown in Fig. 5.3.3 where the curves have a one to one correspondence
to the curves in Fig. 5.3.2 except now t+ = 0.1meV is used here instead of
++ = 0.0meV. Now we see a relatively sharp onset of absorption which starts at
a lower energy with increasing anisotropy. This is just what we expect since
now the extra momentum from particle-hole excitations will be balanced
through elastic scattering with normal impurities instead of phonons in the
clean limit.
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Fig. 5.3.3) The normalized ratio Re(c3,(w,0))/Re(o.(w,0)) at T =0K es a
function of normalized frequency w/2A¢ with Ay the isotropic energy gap
value for various anisotropy values, namely, g10 = 0.0 (solid curve) isotropic
case, 0.2 (dotted curve), 0.5 (short-dashed curve), and finally 0.8 (long-
dashed curve). The normal impurity concentration t+ = 0.lmeV The top
frame is for intermediate coupling (T./wi,, = 0.1), compared with strong cou-

pling in the bottom frame (T./wioy = 0.25).
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Last, we would like to show how the anisotropy effect decreases with
increasing normal impurity concentration. In Fig. 5.3.4 we plot the normal-
ized ratio Re(o5.(w,0))/Re(ol,(w.0)) as a function of normalized frequency
w/2A for various normal impurity concentrations with T,/wj,, = 0.1 (inter-
mediate coupling) and gip = 0.5 (substantial anisotropy). The solid curve is
for the clean limit (t* = 0.0meV’), the dotted curve is for t+ = 0.1meV, the
short-dashed is for ¢+ = 0.5meV and the long-dashed curve is for t* = 1.0meV.
It is evident that the effect of anisotropy on the infrared conductivity is di-
minished as the normal impurity concentration t* increases. It is totally
washed out when the normal impurity concentration is t+ = 1.0meV. The
onset of absorption in the long-dashed curve, corresponding to t* = 1.0meV,
starts right at 24 twice the value of the energy gap for the isotropic case.
We should point out that the amount of normal impurity required to wash
out completely the effect of anisotropy depends on the coupling strength.
Higher impurity concentration are needed for stronger coupling. In the dirty
limit (¢+ — oc), however, no anisotropy effect will be left.

It is clear from the results shown in Figs. (5.3.2)-(5.3.4) that the ab-
sorption edge in the infrared conductivity will move towards lower energy
with introducing anisotropy, as the gap minimum is lowered. It is hardly
visible, however, in the clean limit and becomes more evident with the addi-
tional of a small amount of normal impurities. On the other hand, anisotropy
effects will be washed out quickly as the normal impurity concentration is
increased. All the results showed here are for the zz cemponent of the in-
frared conductivity. The effect of planar anisotropy on the zz component of
the conductivity are quite similar in our model which implies coherent mo-

tion of the quasiparticles in the z-direction. We should point out that for
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Fig. 5.3.4) The normalized ratio Re(o2_ (w,0))/Re(cN.(w,0)} at T =0K as a
function of normalized frequency w/2A for different values of normal impu-
rity concentration, namely t+ = 0.0 (solid curve) the clean limit, t+ = 0.1meV
(dotted curve), t* = 0.5meV (short-dashed curve) and t* = 1.0meV (long-
dashed curve). The coupling index T /wj,, = 0.1, the anisotropy index g1 =

0.5 and Ay is the energy gap for the isotropic case with same coupling index.
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the high-T. oxide superconductors the conductivity along the z-direction is
semiconductor-like and is believed to be incoherent. Also, the Holstein struc-
ture appearing in all the above figures has not been observed in the high-T.
oxide superconductors. The Holstein structure and some other features of the
infrared conductivity, e.g., the temperature dependence in the normal state,
depends strongly on the electron-boson spectrum density o* F(w) used. In the
case of high-T. oxide superconductors the Pb spectrum density a®F(w) which
we used is very unlikely to be appropriate. Phenomenological spectrum densi-
ties based on some electronic mechanisms has been proposed [Varma (1989);
Varma etal. (1990)) to describe the unusual normal state conductivity (lin-
ear dependence on temperature ¢ ~ T') as well as the absence of the Holstein
structure of the high-7. oxide superconductors. It is beyond the scope of this

thesis to discuss these problems in details.

5.4 CONCLUSIONS

Using the anisotropic Eliashberg equations we have studied the effect
of planar anisotropy on several electromagnetic properties in a self-consistent
way. For London penetration depth [A%(0)/ AL(t)]? introducing anisotropy
usually lowers the results below its isotropic curve. The effect is stronger
for a weaker coupling and in the z-direction perpendicular to the planes. For
intermediate coupling (T:./wis, = 0.1) the results we obtained are well below
the results from two fluid model [Gorter and Casimir (1934a,b); Ginsburg and
Landau (1950)]. In order to get resuits close to the two fluid model, which.is
favored in high-T, axide superconductors, a large coupling strength is needed
Te/wiog = 0.3. For a such strong coupling anisotropy is not very effective in

both directions (parallel and perpendicular to the planes) at least within the
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range of anisotropic parameters we have explored. More complicated models
for the anisotropy may change quantitatively the results obtained but not
qualitatively.

The effect of planar anisotropy on the Yosida function Y'(T) and
the nuclear spin-lattice relaxation rate is quite significant too. Compared
with an isotropic superconductor with the same coupling index, the layered
anisotropy induces a larger Y (T) at lower temperature and a strong depres-
sion of the Hebel-Slichter peak in the normalized ratio of nuclear spin-lattice
relaxation rate R,/R,. Some effort was made to compare our theoretical re-
sults with experimental data in the high-T, oxide superconductors by taking
Fermi liquid corrections [Monien and Pines (1990)] into account. Good agree-
ments were achieved for reasonable values of coupling, anisotropic and Fermi
liquid correction parameters. It is found that a much larger value of the Fermi
liquid correction parameter, which corresponds to a stronger antiferromag-
netic instability, is needed for coppers in the planes than for those in the
chains in Y BasCu3z0Q7_c. This is in agreement with the picture of strong anti-
ferromagnetic spin fluctuation in the planes for these compounds {Walstedt
(1990); Pines (1990); Monien and Pines (1990)).

The layered anisotropy will also move the absorption edge in the
infrared conductivity towards lower energy since the minimum energy gap in
the electronic excitation spectrum is lowered as anisotropy is increased. For
the spectrum density o?F{w) of Pb which we used it is necessary, however,
to add a small amount of normal impurities (¥ = 0.1meV) to make this
effect evident. In the clean limit (¢* = 0.0meV’) the absorption increases too
smoothly to see clearly where it starts, but the effect of anisotropy will be

washed out entirely if the normal impurity concentration is too high.



Chapter 6

The Phonon
Self-Energy

Since the discovery of high-T. oxide superconductors, the mechanism
of superconductivity in these materials has remained an open question. Al-
though it is generally acknowledged that the conventional phonon mediated
pairing mechanism cannot be, at least alone, responsible for the superconduc-
tivity in these materials due to the very high transition temperature and the
novel normel state properties, there is growing interest in knowing what part
the phonons contribute to superconductivity in these materials. The changes
of the phonon self-energy upon entering the superconducting state in the
high-T,. oxide superconductors has been measured by many groups [Macfar-
lane, Rosen and Seki (1987); Cooper et al. {(1988); Thomsen et al. (1988, 1990,
1991); Genzel etal. (1990); Friedl, Thomsen and Cardona (1990); Altendor,
Chrzanowski and Irwin (1991); McCarty etal. (1991)]. For several phonon
modes quite large shifts in the frequency and changes in the width have been

observed. Using the strong coupling theory of the phonon self-energy for an
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isotropic superconductor [Zeyher and Zwicknagl (1988, 1990)], people have
attempted to estimate the coupling strength between phonons and charge
carriers and to extract an energy gap from the experimental data. In this
chapter we will extend the theory by Zeyher and Zwicknagi (1988, 1990)
to anisotropic superconductors. We would like to study the effects of strong
coupling as well as planar anisotropy on the phonon self-energy. Our interest
here is to see the changes that anisotropy may bring into the interpreta-
tion of the experimental data. The questiors we would like to answer are:
is it possible to tell the symmetry of the superconducting pairing from the
pbonon self-energy measurement? and how is the energy gap to be identi-
fied, if there is one, when anisotropy is present? In the next section we will
discuss some background material associated with the phonon self-energy. A
strong coupling formulation for the phonon self-energy with anisotropy will
be given of section 6.2. In section 6.3 we will present the numerical results
cbtained using the formulas in section 6.2 and discuss the effects of strong
coupling, anisotropy, etc. A qualitative comparison with some experimental
data will also be made. We will conclude this chapter with a short conclusion

in section 6.4.

6.1 INTRODUCTION

As we discussed at the beginning of this thesis (chapter 1 and 2), for
most conventicual superconductors, the phonon mediated attractive interac-
tion between charge carries is the key to superconductivity [Carbotte (1990)].
Theoretically, stronger coupling between phonons and charge carriers is re-
lated to higher superconducting transition temperature 7, and larger energy

gap A [Allen and Dynes (1975)]. On the other hand, the coupling between
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phonons and charge carriers will affect the phonon spectrum as well. The
shift in phonon frequencies and the change in phonon widths are expected
to result upon entering the superconducting state since the charge carniers
are condensed into a new ground state, the Cooper pair state.

The phonon spectrum can be measured experimentally by inelastic
neutron scattering, Raman scattering, etc. The general principles underlying
these measurements are much the same. One measures the energy lost (or
gain) end/or the change in angles of the incident particles (either neutrons
or photons) while interacting witk a crystal and view that as being due
to the emission (or absorption) of phonons. The information one extracts
from these measurements, however, is different. The difference is primarily
a result of the very different energy-momentum relations of neutrons and

photons [Ashcroft and Mermin (1976)}:

E, = p2

2M,
M, = 1838.65m, = 1.67 x 10~ %4gm,

Neutrons :

(6.1.1)

Photons: E, = pc
¢ = 2.99792 x 10'%m/sec.
(6.1.2)
With inelastic neutron scattering one can measure the phonon spectrum

over the whole Brillouin zone while Raman scattering gives information only

about optical phonons in the immediate neighborhood of the origin of the
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zone {k = 0). For the investigation of low-frequency phonons, however, Ra-
man scattering is more powerful since it has much higher resolution than
inelastic neutron scattering [Thomsen and Cardona (1989})]. Low-frequency
phonons are extremely important for most conventional superconductors.
In conventional superconductors the actual changes in the frequency
and width of phonons due to superconductivity are usually very small. This
is due to the fact that the phonon spectrum is determined by virtual electron-
hole excitations over an energy range of many eV’s whereas BCS theory tells
us that superconductivity only affects electronic states in a region (~ %wp)
around the Fermi level with #iwp of the order of meV's. Thus, the changes
of the phonon spectrum due to superconductivity for conventional supercon-
ductors will be only a few percent or less. Despite this, the changes of the
phonon spectrum upon entering the superconducting state have been suc-
cessfully measured in several conventicnal materials. Using inelastic neutron
scattering Axe and Shirane (1973a,b) studied transverse-acoustic-phonon fre-
quencies and linewidths in Nbh3Sn (T; = 18.3K). They found a sharp decrease
in linewidths for several phonon modes with frequencies less than 2A, where
A is the energy gap, upon entering the superconducting state. For phonons
with frequencies larger than 2A the linewidths increased as zero tempera-
ture was approached. These behaviors come from the fact that phonons with
energy less than 2A are energetically incapable of decaying by excitation
of electron-hole pairs whereas phonons with energy larger than 2A will de-
cay more rapidly through breaking electron-hole pairs. Thus, the changes in
phonon linewidths can be used to determine the energy gap. From the mea-

surements by Axe and Shirane (1973a,b) the energy gap in NbsSn at zero
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temperature was estimated at 2A(0) = (4.4 + 0.6)kgT.. This is fairly consis-
tent with the values of the gap obtained from other means [Shen (1972);
Bosomworth and Cullen (1967)]. Similar measurements were done on Nb
(T. = 9.2K) by Shirane etal. (1973) and Shapiro etal. (1975). The energy gap
at zero temperature was estimated at 2A = 3.9+0.1kpT; which is also consis-
tent with the measurements of the gap from other methods. We should point
out that inelastic neutron scattering measurements are done along certain
crystal directions. It will give different gap values for different directions if
there is anisotropy. Measurements from other methods sometimes give only
the averaged gap values. The observed changes in phonon linewidths for both
NbySa and Nb were of the order of 10 percent. As for the shifts of phonon
frequencies, a lowering of frequency (softening) for several phonons was de-
tected. The softening was typically of the order of 1 percent. Interestingly,
the softenings were observed for phonons with energies both above and below
2A.

The situation is quite different in the case of high-T; oxide supercon-
ductors. Due to the low concentration of charge carriers and high transition
temperature (T:) quite large shifts in phonon frequencies and changes in
phonon linewidths have been observed through Raman scattering measure-
ments [Thomsen and Cardona (1989)]. The Raman active phonon modes
~ 340 and 440cm™! in Y BasCu307—., for example, shift ~ —8.0 £ 0.5em™!
(softening) and ~ 4.0 +0.5em™! (hardening) from 90K to 10K, respectively
[Thomsen etal. (1990)]. The linewidths of the two phonon modes also in-
creases by ~ 3.7 and 2.7cm™! (broadening), respectively, at the same time
[Friedl, Thomsen and Cardona (1990)]. As was the case for conventional su-

perconductors Nb3Sn and Nb, these experimental results have been used to
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try to determine a value for the energy gap A as well as the electron-phonon
coupling strength in Y BasCu3(;_.. The strong coupling theory of the phonon
self-energy by Zeyher and Zwicknagl (1988, 1990) has been mostly used to
fit the data. The resulting energy gap is quite large as the twice of the gap
2A ~ 5kgT. or even bigger, where T, ~ 90K. We should point out, however,
that the problem of an energy gap in high-T. oxide superconductors is still
controversial, and even more so the size of the electron-phonon coupling.

In the next section, we will show the strong coupling formalism of
the phonon seif-energy on the imaginary axis first, following Zeyher and
Zwicknag! (1988,1990). Then we will extend it to the real frequency axis.
The real axis formalism is necessary for finite temperature calculations. BCS
formulas for the phonon self-energy at zero temperature will also be given for
instructiveness. All formulas include planar anisotropy. To study the effects

of planar anisotropy on the phonon self-energy is the main purpose here.

6.2 FORMALISM

Following Zeyher and Zwicknagl (1988,1990) the phonon self-energy
in Matsubara representation {(imaginary axis}, assuming a polarization bub-

ble diagram with no vertex corrections, is given by

- . T - o - .
(G ive) = N ZE | (B, B+ ) |2 Tr{nG(p + §, i{wm + )G (P, iwm)}
g m
(6.2.1)
where 73 is & Pauli matrix (see formula (3.3.4)), G(p, iwm) is the fully inter-

acting Green’s function, wm (v,) is the fermion (boson) Matsubara frequency

and gz(P,p + ¢) is the electron-phonon matrix element for scattering of an
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electron from momentum § to 5+ § with absorbing or emitting a phonon of
momentum § and branch index . In Eliashberg theory the superconducting

Green’s function in Nambu formalism is given by [Schrieffer (1964))

Ggliwm)To + €373 + Ag(iwm)rl
@it ) — €5 = Ad(iwm)

G,(p,iwm) =
(6.2.2)
with 7; the Pauli matrix (see 3.3.4). Quantities Aj(:wm) and @p(iwm) are cal-

culated from the Eliashberg equations, Eqgs. (2.3.8) and (2.3.9). Substitution
of Eq. (6.2.2) into Eq. (6.2.1) and taking the limit § — 0 gives

X

2

s (s [}:,zkg,-kcos(jp,c)ws(kp,c)]
£ (ivy) = 20T N(0) | s S S S
(a) = 2m » m /@3 (iwm) + A(iwm) + \/D3(iwmen) + Ad(iwm+n)
fi- i) + tin)Sivmsn) 1

\ /a;(.'w,,.) + Ad(iwm )y /ag(iu,,,+,,) + A(iwmin)

(6.2.3)

Here we have converted the sum over § into an integral over energy and a

Fermi surface average () as we did before:

2 /deN(e)() —[d N(e )fcd"'

(6.2.4)

The integral over energy ¢ has been carried out as usuel. In Eq. (6.2.3) the

angular dependent electron-phonon matrix g)(7,5") has been expanded as
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aAlB.5") = a2 D D gircos(jp:c)cos(kp: 'c),
i kK

(6.2.5)

the same as we did for the spectral density (e®F(w))sa:. In the numerical
calculations we will truncate the expansion series in (6.2.5) as we did in
solving the Eliashberg equations for Az and &y (see section 2.3).

The phonon self-energy in the normal state Z¥(iv,) can be obtained
by setting the pairing potential Ay = 0 in Eq. (6.2.3). It is conventional to
present the normalized phonon self-energy between the supercenduciing and

normal state

All(ive) _ AE)ivn) _ Ef(ive) — ¥ (ivn)
NO) e PNOQ) a2 N(@O)

(6.2.6)

Here, g the averaged electron-phonon matrix element {{gA(pp"))}’, N(0) is
the electronic density of states at Fermi level and I(iv,) = Bj(iva)/|oa |2 is
called the polarization. The quantity ATI(iv,)/N(0) has very little dependence
on the actual shape of the spectral density o?F(w) [Akis (1991)], although
the phonon self-energy strongly depends on the electron-phonon coupling of
particular materials through the matrix element g). For 2 general discus-
sion it is convenient to calculate All(iv,)/N(0) without having any particular
material dependent parameters involved.

The imaginary axis quantity All{(iv,)/N(0) needs to be analytically
continued to the real frequency axis (iv, — v +i§ with § a positive infinitesi-
mal). The real part of AIl(v +i6)/N(0) is proportional to the shift in phonon
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frequencies and the imaginary part is proportional to the change in phonon
widths due to the superconducting phase transition. The analytically con-
tinuation method (Padé approximates) is again only reliable at very low
temperature (T ~ 0K). To calculate the phonon self-energy at finite temper-
ature it is desirable to have a formula written directly on the real frequency
axis with no Padé approximates involved. The way to achieve this is to use

the spectral representation of the Green’s function

L. _ % dw Im{G(p,w +if)}
G(p,xwm)—[_m T Wy — (w+i6)

(6.2.7)

The superconducting Green's function on the real frequency axis G,(p,w+i6)

is given by

L @p(w + i8R + g3+ Ag(w + i8)my
G.(fw+id) = = :
(P +9) @3(w +i6) — €& — AYw + i6)

(6.2.8)

Substitution of Eq. (6.2.7), instead of Eq. {(6.2.2), into Eq. (6.2.1) and taking
the limit § — 0 yields [Akis (1991); Marsiglio, Akis and Carbotte {1992)]

A 10GA R [ ds@T{n[6upo+v+i6)+Guw-v-id)
mi & o

X T3 [G.(ﬁ,w +i6) — G,(p,w — i&)] }

(6.2.9)
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Here, we have done the sum over m and set iv — v + i, f(w) is the usual
Fermi function.

Eq. (6.2.9) can be further deduced by substituting Eqgs. (6.2.5) and
(6.2.8) into it and replacing the sum over 5 with an energy integral and a
Fermi surface average as we did above (see Eq. (6.2.4)}, and then carrying
out the integral over energy. The final form of the phonon self-energy on the

real frequency axis can be written as

3 +i6) =| ga |2 TI(v + i6)

2
= g 7 N(n)< [Eggjkmup,c)m(kp,c)]
i k

* w i
b {./0 dwtnnh(ﬁ)E(w) TEwty) [l - N{w)N(w +v) + P(w)P(w + v)]

1

o W+ v
+j0 dwianh( 5T )E'T(w) TE ) [1 - NY(w)NYw +v) + Pi{w)PHw + u)]

o wtv w i
+ ‘/(; dw [tanh(—W) - tanh(-ﬁ;)] Ewt0) - E'@) 1+ NH(w)N(w + v) - PHw)Pw + u)]

wtr

2T )(ET(w)-{-ET(w-{-v)

BT y)‘ —F0) [1 + N (w)N(w +v) - PHw)Pw + u)] ) })
(6.2.10)

+ ’ dwtanh( {1 - NY(w)N(w +») + PH{w) Pl (w + u)]

with

E(w) = \Jo}(w) - Aj(w),
N(w) = ——22)

VB3(w) - A3w)
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and

Aglw)

Plw) = = = .
Vo3w) - A%w)

(6.2.11)

Here, quantities @3(w) and Ag(w) are the solutions of the real axis Eliashberg
equations, Egs. (2.3.10)-(2.3.11). The symbel t in formula (6.2.10) represents

the complex conjugate. Some symmetric relations should also be mentioned:

O(=z) = -a(z), (=) =a(z")
A(-z)=A(z), A=) =A4AiE");

and

E(-w) = —E'(w).

(6.2.12)

Setting the pairing potential Ag(w) = 0 in Eq. (6.2.10) we will have
the normal state phonon self-energy on the real frequency axis TV (v + if).
Once again only the normalized difference between the superconducting and

normal state

All(v +i6) _ AZy(v + i6)
N@O) g2 N(0)

(6.2.13)

will be of interest. The shift in phonon frequencies Av and the change in
phonon widths Ay due to the superconducting phase transition are related

to the polarization I(v + i§) as
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ASN(v + i6) = Av — iAy =] ga(v) |2 All(v + i6).

(6.2.14)

The electron-phonon matrix element gy(v) is generally frequency dependent.

Both the imaginary and real axis formalism of the phonon self-energy,
Eqs. (6.2.3) and (6.2.10), are quite complicated and need to be evaluated
numerically. To have a look at some qualitative features, it will be interesting
to take the BCS limit. In the BCS limit we neglect the frequency dependence
of the energy gap As(w) = Az and the renormalization of frequencies @g(w) =
w. At T = 0K Eq. (6.2.11) can be reduced to a rsuch simpler form:

2 -1 b o o .

All(v + i6) _ <-mm (T_%J)v lfb'ﬁ(l,
N(O - _ — ) . .
© < :7(531-1)9; {ln(m"g -1+ \/ Vg(vg - 1)) - zrr}). ifpg>1;

(6.2.15)

where 53 = v/2Az and () is the Fermi surface average. From Eq. (6.2.15) we
can see a few things immediately. 1) For frequencies smaller than twice of
the energy gap (v < 2A;) phonons will become soften (Av < 0) and there
will be no changes in phonon widths (the imaginary part is zero). 2) For
frequencies greater than twice of the energy gap (v > 2Az) phonons will
become harden (Av > 0} and phonon widths will also become broaden (A o
—Im(AII/N(0)) > 0). Introducing strong coupling and finite temperature will
bring in some smearing effects, but most of changes will be quantitative
rather than gualitative. We will discuss these in some details in the next

section. We would like to point cut again that formulas (6.2.3), (6.2.10) and
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(6.2.15) are derived in the limit § — 0. Things will be different for tinite §'s
[Marsiglio (1992)]. It is beyoud the scope of this thesis to discuss any hinite

7 effects.

6.3 NUMERICAL RESULTS AND DISCUSSIONS

In this section, we will use the formulas given in the previous sec-
tion for the limit § — 0 to study the effects of strong coupling and planar
anisotropy on the changes of phonon self-energy due to the superconducting
phase transition. We would like to see the features that anisotropy could
introduce that might be identified in experiment. All the results will be
presented as the difference of the polarization function IT(w) between the su-
perconducting and normal states All(w)/N(0). As we pointed out above (see
6.2.14) the shift in phonon frequenciesis proportional to Re(All(w)/N(0)) (the
real part) while the change in phonon widths is proportional to Im(AIl(w)/N(D}))
(the imaginary part).

We begin with the zerc temperature results for isotropic supercon-
ductors with different coupling strengths. Similar results have been obtained
by Zeyher and Zwicknagl (1990) using the imaginary axis formulation and
by Akis (1991) and Marsiglio, Akis and Carbotte (1992) using the real axis
formulation. Here, we show these results for comparison with both sets of
previous results [Zeyher and Zwicknagl (1990); Akis (1991); Marsiglio, Akis
and Carbotte (1992)] and with the results for anisotropic superconductors
which we are going to show later. In Fig. 6.3.1 the quantity AIl(w)/N(0) is
plotted as a function of normalized frequency w/2A for three coupling cases,
namely the weak coupling BCS limit (solid curve), intermediate coupling

with Te/wioy = 0.1 (dotted curve) and strong coupling with T./wiy = 0.25
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Fig. 6.3.1) The frequency dependence of All{w)/N(0) at zero temperature for
isotropic superconductors with different coupling strengths: the weak cou-
pling BCS limit (salid curve), intermediate coupling T,/wjo, = 0.1 (dotted
curve), and strong coupling T./wi,, = 0.25 (short-dashed curve). The top
frame is the real part while the bottom is the imaginary part. Negative
(positive) values correspond to softening (herdening) in the top frame and

broadening (sharpening) in the bottom frame.
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Fig. 6.3.2) The frequency dependence of All{w)/N(0) at zero temperature in

the BCS limit for various anisotropic values, namely o = 0.0 (solid curve)
isotzopic case for comparison, a = 0.2 (dotted curve), « = 0.5 (short-dashed
curve), and a = 0.8 (long-dashed curve). The anisotropy is introduced through
an ansatz Az = A(1+acos(p.c)), where A is the isotropic BCS energy gap, ais
the anisotropic parameter and c is the lattice constant along the z-direction.

The top frame is the real part and the bottom is the imaginary part.
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(short-dashed curve}. The top frame is the real part and the bottom frame
is the imaginary part. First, we see that the BCS results (solid curve) has
a singularity at «/2A = 1.0 for both the real and imaginary part. This sin-
gularity is closely related to the singularity in the quasiparticle density of
states under the same conditions (the BCS limit and T = 0K'). Introducing
strong coupling washes out the singularity in the phonon self-energy as well
as in the quasiparticle density of states as we knew (see section 3.3). At
low temperature (T ~ 0K), however, the smearing from strong coupling is
not very significant as we see in the dotted curve for intermediate coupling
(T./wiog = 0.1) and short-dashed curve for strong coupling (T./wie, = 0.25).
The characteristic features for three coupling cases are essentially the same.
For w/2A < 1.0 we have softening, i.e., phonons shift to lower frequencies
(Av o« Re{AII/N(0)} < 0), and the same width (Ay & ~Im{AIl/N(0)} = 0).
For w/2A > 1.0 we have hardening, i.e., phonons shift to higher frequencies
since Av > 0, and broadening since Ay > 0. The effect from strong coupling
is to depress the sharp structures in the vicinity of » = 2A. These results
agree well with the results obtained by other people [Zeyher and Zwicknagl
(1990); Akis (1991); Marsiglio, Akis and Carbotte (1992)}.

Introducing anisotropy we will suppress the sharp peak (a singularity
in the BCS limit) in the quasiparticle density of states as we have shown in
section 3.3. Similar effects are seen in the phonon self-energy. In Fig 6.3.2
we plot the zero temperature results in the BCS limit for several anisotropic
values. The anisotropy is introduced through the ansatz Az = A(1+-acos(k; <))
with A the isotropic BCS energy gap, o the anisotropic parameter and c the
lattice constant in the :-direction. The solid curve here is for « = 0.0 the

isotropic case and is for comparison, the dotted curve is for a = 0.2, the
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Fig. 6.3.3) The frequency dependence of ATI(w)/N(0) at low temperature (¢ =

T/T. = 0.2) for intermediate coupling (T./wioy = 0.1) and various anisotropic
values, namely gi1g = 0.0 (solid curve) isotropic case for comparison, g10 = 0.2
(dotted curve), g1 = 0.5 (short-dashed curve), and gip = 0.8 (long-dashed
curve). The anisotropic Eliashberg equations, Eqs. (2.3.10) and (2.3.11), have

been solved for Az(w) and @y(w). The top frame is the real part and the
bottom is the imaginary part.
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short-dashed curve is for @ = 0.5, and the long-dashed curve is for a = 0.8.
We see clearly, especially for the real part in the top frame, that the singu-
larity in the isotropic case has been greatly depressed with the introduction
of anisotropy. For the imaginary part (the bottom frame) we also see this
depression although it is not as strong as for the real part. The most inter-
esting feature here, perhaps, is the coexistence of the softening (top frame)
and broadening (bottom frame) of phonon lines. What we see in Fig. 6.3.2 is
tkat the real part becomes positive only after w > 2A(1 + «) and the imagi-
nary part becomes negative for w > 2A(1 - &). For frequencies from 2A(1 - «)
to 2A(1 + a) we have softening as well as broadening. This is qualitatively
different from the results of an isotropic superconductor in Fig. 6.3.1 where
broadening is accompanied by hardening only.

The results for strong coupling superconductors with anisotropy are
shown in Fig. 6.3.3 (T./wiey = 0.1) and 6.3.4 (T /wi,e = 0.25). All the results
are calculated using the real axis formula, Eq. (6.2.10), after solving the
anisotropic Eliashberg equations (2.3.10) and (2.3.11) for Az(w) and @3(w) at
the reduced temperature T'/T. = 0.2, which we believe is low enough to simu-
late zero temperature. For both figures the solid curve is for the anisotropic
parameter gio = (.0 (isotropic case for comparison), the dotted curve is for
gio = 0.2, the short-dashed curve is'for gjp = 0.5 and the long-dashed curve
is for g9 = 0.8. The quantity A should be understood as the energy gap
in the isotropic case with the same coupling index T/wo,. For cases with
anisotropy the value of ¥/2A = 1 does not simply correspond to the twice
of the energy gap (see section 3.3). It is obvious that the results here, Fig.
6.3.3 and 6.3.4, have the same qualitative features as those in Fig. 6.3.2. For

stronger anisotropy we have smaller changes in the magnitude of both the
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Fig. 6.3.4) The frequency dependence of All(w)/N(0) at low temperature

(t = T/T. = 0.2) for strong coupling (7¢/wi,, = 0.25) and various anisotropic
values, namely g1 = 0.0 (solid curve) isotropic case for comparison, g9 = 1.2
(dotted curve), gio = 0.5 (short-dashed curve), and gy = 0.8 (long-dashed
curve). The anisotropic Eliashberg equations, Egs. (2.3.10) and (2.3.11), have
been solved for Az(w) and @p(w). The top frame is the real part and the

bottom is the imaginary part.
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real and imaginary part of the polarization II(w) and larger coexistent range
of softening (top frame) and broadening (bottom frame). As to the effects
of strong coupling the magnitude of changes is smaller for stronger coupling,
the same as for the peak in the quasiparticle density of states (see section
3.3). The coexistent range of softening and broadening is also smaller for
stronger coupling. This is consistent with the fact that strong coupling will
reduce the effectiveness of anisotropy which we knew from our studies in the
previous chapters.

It is also interesting to examine the temperature dependence of the
phonon self-energy for an anisotrapic superconductor. In Fig. 6.3.5 we show
the results for intermediate coupling (7. /wi,e = 0.1) with anisotropic param-
eter gi9 = 0.2 for several reduced temperature t = T/T,, namely ¢t = 0.2 (solid
curve), t = (.5 (dotted curve), t = 0.75 (short-dashed curve), t = 0.9 (long-
dashed curve) and ¢ = 0.95 (short-dash-dotted curve). The long-dash-dotted
curve in the figure is for the corresponding isotropic case (T:/wioy = 0.1 and
gio = 0.0) at ¢ = 0.95 as a comparison. The quantity A on the z axis is
again the energy gap of an isotropic superconductor with the same T;/wi,
at T/T. = 0.2. We see that the structures in both the real (top frame) and
imaginary (bottom framc) part of All{w)/N(0) move towards lower frequen-
cies as temperature is increased. This is due to the decrease of the energy
gap, or more precisely, the position of the peak in the quasiparticle density
of states (see section 3.3). The magnitude of the structures also gets smaller
as we approach T. because of the thermal smearing. The thermal smearing
has a large influence as well on the effects of anisotropy. At ¢ = 0.95 the
thermal smearing is so large that the effects of anisotropy is almost invis-
ible, compared the short-dash-dotted curve with long-dash-dotted curve in
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both the top and bottom frame. The temperature dependence of the phonon
self-energy for other coupling strengths (the BCS limit and strong coupling
T./wiog = 0.25) and other anisotropic parameters (gio = 0.5 and g1p = 0.8) has
also been studied but nothing qualitatively new has been found. The results
for different coupling strengths follow the same trends as those compared in
Figs. (6.3.2)-(6.3.4).

In the last figure, Fig. 6.3.6, we plot our theoretical results for dif-
ferent anisotropic models together with the experimental data presented by
Thomsen et al. (1990) for the phonon shifts (top frame) and by Friedl, Thom-
sen and Cardona (1990) for the phonon widths (bottom frame). The theoret-
ical results are calculated for strong coupling Te./wisg = 0.25 at T/T, = 0.2. The
solid curve is for the isotropic case, the dotted curve is for the anisotropic
parameter gig = 0.2, and the short-dashed curve is for g1g = 0.5. The experi-
mental data has been plotted as solid dots assuming 2A = 380cm™!. We can
see that none of three curves can fit the experimental data very well. At this
point, no firm conclusions can be made with regard to the symmetry of the
energy gap. We have not tried to find a set of parameters which would best
fit the data. Nevertheless, we can conclude that the effects of anisotropy is
important in the analyses of the experimental data. If there is anisotropy the
value » = 2A does not correspond to the twice of the energy gap. Instead
it corresponds to the average of the minimum and maximum gaps in the
anisotropic models we have studied. Anisotropy will also have effects on the
determination of the electron-phonon coupling parameter | gA(7, 7') 1.

We should point out that all the results above are for the clean
limit (v — oc) only. Impurity scattering could be introduced through the
anisotropic Eliashberg equations, Eqs. (2.3.10) and (2.3.11) but that is not
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Fig. 6.3.5) The frequency dependence of AIl(w)/N(0) &t finite temperature
for intermediate coupling (T /w;o, = 0.1) and anisotropic parameter gy == 0.2.
Curves are drawn for T/T, = 0.2 (solid), 0.5 (dotted), 0.75 (short-dashed)
0.9 (long-dashed curve), and 0.95 (short-dash-dotted). The long-dash-dotted
curve here is for the corresponding isotropic case at T/T. = 0.95 as a compar-
ison, The anisotropic Eliashberg equations, Eqgs. (2.3.10) and (2.3.11), have
been solved for Ay(w) and &s(w). The top frame is the real part and the
bottom is the imaginary part.
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our interest here. For an isotropic superconductor, the impurity effects have
been studied by Zeyher and Zwicknagl (1990), by Akis (1991), and by Mar-
siglio, Akis and Carbotte (1992). The major cffect coming from impurity
scattering is to suppress and smear the structures in the phonon self-energy.
It is the results with a large amount of normal impurities (r~! = 24) for
a strong coupling isotropic superconductor by Zeyher and Zwicknagl (1990)
(the imaginary axis formulation) that are being used by Thomsen et al. (1990)
and Friedl, Thomsen and Cardona (1990) to fit their experimental data. Com-
pared with the real frequency axis formulation the imaginary axis formulation
loses the sharp structures in the range around v = 2A [Akis (1991})]. For a

detailed discussion of the problem of impurity scattering the above literature

should be consulted.

6.4 CONCLUSIONS

In this chapter, we have studied phonon self-energy effects that arise
upon entering the superconducting state for different coupling strengths and
anisotropic models in the limit § — 0 and 7 — co. Both the BCS formulation
(the weak coupling limit) at 7" = 0K and the real frequency axis formulation
for strong coupling with anisotropy at finite temperature have been used. The
following conclusions can be reached after a close study of the results: 1) Most
qualitative features of the phonon self-energy at low temperature (T ~ 0K)
can be well described by the simple BCS formule (6.2.15). 2) The most
important feature due to anisotropy is the coexistence of the softening and
broadening. This can be used as one of the signatures by which anisotropy
may be detected in experiment provided that temperature is low (T ~ 0K)

and the coupling is not very strong. 3) Increasing coupling strength will
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Fig. 6.3.6) A comparison between the date of Thomsen etal. (1990) (real

part) and Friedl etal. (1990) (imaginary part) and the theoretical results

for different anisotropic models. The experimental data has been plotted as

solid dots by assuming 2A = 380cm~!. The solid curve is for the isotropic

case, the dotted curve is for the model with anisotropic parameter g1o = 0.2,

and the short-dashed curve is for the model with g;¢ = 0.5. All three curves

are calculated for strong coupling T¢/wi,y = 0.25 at T'/T;. = 0.2. Agein, the top

frame is the real part and the bottom is the imaginary part.
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round off some sharp structures and reduce the effectiveness of anisotropy.
Increasing temperature will have similar effects on these sturctures and push
them towards lower frequencies because of a smaller energy gap. 4) For the
cases with anisotropy we cannot determine the energy gap value directly
from the structures in the phonon self-energy. The value v = 2A usually
corresponds to the average of the minimum and maximum gaps in these cases.
Finally, the effects of anisotropy on the phonon self-energy are significant only
for weak coupling, low temperature, and the clean limit. This is also the case

for many other properties studied in the previous chapters.






Chapter 7

Summary

In this thesis, we have investigated the effects of planar anisotropy
on many superconducting properties within the context of strong coupling
Eliashberg theory. Planar anisotropy is of interest for superconductorshaving
layered crystal structure, such as the metallic transition metal dichalcogenide
superconductors and, especially, the high-T. oxide superconductors. To de-
scribe planar anisotropy, we used a model dispersion relation in which the
single particle electronic states are free-particle-like for motion parallel to the
layers and of the tight-binding form for motion perpendicular to the layers.
One important consequence of this dispersion relation is that the quasipar-
ticle density of states is constant around Fermi level (~ Mwp) provided that
Fermi energy is high enough. We, then, modified the general anisotropic
Eliashberg equations for the model. After solving the modified anisotropic

165
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Eliashberg equations for the pairing potential Aj(w) and renormalized fre-
quency az{w), we studied various superconducting properties. Here, we give
a summary of the work and results which have been reported.

We began with the study of the critical temperature 7, the ther-
modynamic critical field H.{T) which is closely related to the free energy
difference between the normal and superconducting state, and the quasipar-
ticle density of states for different coupling strengths and anisotropic pa-
rameters {Chapter 3). Within the parameter space that we have explored,
T. can be enhanced by as much as 40%. The thermodynamic critical field,
however, always decreases with the introduction of anisotropy. The change
of the quasiparticle density of states due to anisotropy is the most interest-
ing. Instead of a square root type singularity at the energy gap, which we
would normally see in an isotropic superconductor at zero temperature, a
sharp edge at the minimum energy gap with no attendant square root type
singularity has been observed for an anisotropic superconductor. The sharp
edge will get smeared and, in principle, the density of states is finite all the
way down to zero frequency at finite temperature. This makes it difficult to
define an unambiguous finite temperature gap value. If the coupling is not
strong, however, the smearing will not be severe and we often can find a
well defined peak structure in the density of states. The position of the peak
follows a temperature dependence that is only slightly modified from the
temperature variation of & BCS energy gap. Another interesting structure in
the density of states is the so-called phonon structure. For an isotropic su-
perconductor, the attendant phonon structure usually appears at an energy
equal to the sum of the energy gap plus the peak value in the o F(w) used. If

the coupling is not strong the phonon structure iz the quasiparticle density
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of states for an anisotropic superconductor can also be used to track the un-
derlying temperature dependence of the gap or the peak position provided
that we know the anisotropy. For strong coupling there are no well defined
structures in the density of states at finite temperature at all, even for an
isotropic superconductor. In such cases where a clear cut structure does not
exist in the density of states, we may view the concept of an energy gap as
a measure of the degree of the redistribution of the density of states due to
the superconducting phase transition.

Next, in chapter 4, the effects of planar anisotropy on the specific
heat, the ultrasound attenuation and the thermal conductivity were studied
for different anisotropic models and coupling strengths. We saw that the spe-
cific heat jump and the slope of the specific heat jump at T. were depressed
below their isotropic value when anisotropy was introduced. On the other
hand, the introduction of anisotropy increases the electronic specific heat
at low temperature. This increese reflects an effectively smeller gap for a
larger anisotropy. The effectively smaller gap at low temperature due to the
anisotropy also affects the ultrasound attenuation and thermal conductivity.
Both the ultrasound attenuation and thermal conductivity increase at low
temperature with added anisotropy. For temperatures near T¢, however, the
ultrasound attenuation is weaker for stronger anisotropy. This indicates an
effectively larger gap at T near 7, for stronger anisotropy. For the thermal
conductivity, adding anisotropy always makes it increase although the differ-
ence between the anisotropic and isotropic cases is relatively bigger at lower
temperature. Whether the effective gep of an anisotropic superconductor is

larger or smaller depends on temperature, the portion of the Fermi surface
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considered, and the properties under study, etc. The contribution from the
minimum and maximum gaps is usually different,

The studies in chapter 5 were devoted to some electromagnetic prop-
erties. For the London penetration depth, the introduction of anisotropy usu-
ally lowers the results below its isotropic values. The effect is stronger in the
:-direction perpendicular to the planes. Only in very strong coupling cases
are the results close to the two fluid model, which is favored for the high-T,
oxide superconductors. In such strong coupling cases anisotropy is not very
effective in both directions (parallel and perpendicular to the planes), at
least within the range of anisotropic parameters we have explored. For the
Yosida function Y{(T) and the nuclear spin-lattice relaxation rate, the layered
anisotropy induces a larger Y(T') at lower temperature and a strong depres-
sion of the Hebel-Slichter peak, compared with the isotropic case with the
same coupling index. Compared with experimental data in the high-T. oxide
superconductors, fair agreements could be achieved for reasonable values of
coupling, anisotropic and Fermi liquid correction parameters. It was found
that a much larger velue of the Fermi liquid correction parameter, which
corresponds to a stronger antiferromagnetic instability, is needed for coppers
in the planes than for those in the chains in Y BaaCu3Q7_.. For the infrared
conductivity, the absorption edge moves towards lower energy as anisotropy
is increased. To see this clearly a small amount of normal impurity should
be added. The effect is hardly visible in the clean limit with the spectrum
density o?F(w) we used. However, if the normal impurity concentration is
too high the effect of anisotropy will be washed out.

Finally, in chapter 6, we studied the phonon self-energy of supercon-

ductors with various coupling strengths and anisotropic parameters. In the
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limit § — 0 and r — oo, the changes of the phonon self-energy upon entering
the superconducting state for different coupling strengths and anisotropic
models have been calculated. The most important effect due to anisotropy
is the existence of a frequency range where phonon lines soften and broaden.
This is contrary to the phenomenon which we see in an isotropic supercon-
ductor where softening is accompanied by narrowing only at least at low
temperature. This feature, softening and broadening, might be used as one
of the signatures of the role anisotropy may display in experiment. Increasing
coupling strength will round off some sharp structures and reduce the effec-
tiveness of anisotropy. Increasing temperature has similar effects and pushs
the structures towards lower frequencies because of a smaller cnergy gap.
Anisotropy also affects the determination of an energy gap value from the
structures in the phonon self-energy.

For all the properties which we have studied, it is generally true
that the effects of anisotropy are significant only for weak coupling, low

temperature, and the clean limit.






Appendix A

Asymptotic Limit for T of
An Anisotropic Superconductor

In chapter 3 we claimed that the effects of anisotropy would be
washed out if the coupling between electrons and phonons went to infin-
ity (the asymptotic limit). In this appendix we will show this to be so for
the superconducting transition temperature T, within a simple model. This
is sufficient, we believe, to give us a general idea of the effects of anisotropy
in the asymptotic limit for other superconducting properties.

We start with the general anisotropic Eliashberg equations for T;

!

] oo Ap(ivm

(A1)

and
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n !

Gliwn) = wa + 7T (Pgp(0) +2D_ Aza(D)])
=1
(4.2)

with

b 2w(o:2F(w)),-,-,-_,-odw
w? + (wn - Wm)2 )

oz (n = m) = [
(A.3)

These equations are deduced from Egs. (2.2.1)-(2.2.3) by simply setting the
pairing potential Aj(iw,) equal to zero in the denominators. We have also
ignored the Coulomb pseudopotential u* and impurity scatterings ¢+ and ¢t~
bere for simplicity.

Now we assume that the directionel electron-phonon spectral density

(e F(w))zg+ can be written as

(@2 F(w))g30 = &®F(0)f(F5") = o> F(w)g(F)g(F")

(A.4)

with the Fermi surface average of the function g() to be (g(F)) = 1 and

{1/49(P)) = B > 1. By this, we separated the frequency dependent part from

the angular dependent part for (a®F(w))za and used a separable model for

the angular dependent part. The conditions for the Fermi surfece average of

function g(p) are similar to what we did in the text (see Chapter 2).
Substitution of Eqgs. (A.2)-{A.4) into Eq. (A.1) yields
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- - i { p! .S ’ .w'm '
Agliwn) = 7Tg(F) Y [Mn = m) + An +m — 1)]< — ﬁq-’(g’,)’[’\(g; '3)2?1. ol > .

(A.5)

m=0

Here, we have used the condition {g(5)) = 1. It is obvious now, from Eq.
(A.5), that the pairing potential Aj(iws) should have the form of Agliun) =

A(iwn)g(P), i.e., the angular dependent part of it is the function g(7). From
this relation, Eq. (A.5) becomes

& _ _ 9P A(iwm) '
Aliwg) = NT“‘Z;O[A(R m)+ AMn+m 1)]( wm + TTg(A MO + 231, AN > )

(4.6)

To solve for T. from Eq. (A.6) we use a single Matsubara gap ap-
proximation or the one-gep model, A(iwn) = Agfo,n [Allen and Dynes (1975);
Carbotte (1990)]. With this model the algebra for solving for T. is greatly
simplified and the results are sufficient to make our points clear. It is easy
to see that, under the one-gap model, Eq. (A.6) reduces to

Ag = 7T{M0) + A(1)|Ag( w0+ ,f;ﬁ; NA(0) )"

(A7)

According to the definition of the Matsubara frequency w, = 7T(2n +1) and
of the function A(n — m) (see Eq. (A.3)), we have

wy= =T,
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AD) = 2/:c= dw o’ Flw)fw = A,

A1) =2 fom dw wa Flw)[[w® + (27T)%].

(A.8)

The quantity ) in the second equality here is a measure of the coupling
strength between electrons and phonons and often called the mass enhance-
ment factor. If temperature T is large we can approximately write the third

equality in Eq. (A.8) as

_z\<w2>

M) ="

with <w?>= 2 f ” i wa?Flw)
Ao
(A.9)
provided 27T >> (w?)1/2 [Allen and Dynes (1975)].

Substituting Eqs. (A.8) and (A.9) into Eq. (A.7), we solve for T.. The
result is

(A.10)

Under the asymptotic limit, A >> 1, Ag(p) >> 1 provided that g(p) is finite
for any p value as we had in the text. We, then, have the expansion

1 1

R
L+ = we t e

Ag(p)

(A.11)
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and Eq. (A.10) becomes

T2_,\<u2> A

¢ 47!'22 /{(9(5)[1 - 1/('\9(115)) + /(AN '\}'
=2 i:; >/{1 - 1/1\)\-1-13/}\2 B A}

(4.12)

Here, we used the conditions {g(5)) = 1 and (1/g(f)) = 8 2> 1 (a finite
number). After some algebra we have the final form of T, for an anisotropic

superconductor which is

g2 o A<’ >/{1_ (6—1),\+;3}
¢ 4 A-x+8 [

(A.13)

Now we see that, at T = T,, the large T requirement in Eq.(A.9) is satisfied
in the asymptotic limit (A — co} since T is proportional to VA
Following the above procedures we can easily work out the T; formula

for an isotropic superconductor under the same conditions, which is

A<w?>
472

T2 =

(A14)

Compared Eq. {(A.13) with Eq. (A.14) we see that adding anisotropy increases
T, since 1 — [(8 - 1)A+ 8]/(3% — A+ 8) < 1. This is consistent with the results
in chapter 3. In the asymptotic imit A — 00, 1= [(3—1)A+8]/(A2 - A+8) — 1
and Eq. (A.13) will be identical to Eq. (A.14). This s just what we expected.

In the asymptotic limit the effect of anisotropy on T. will be washed out.
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Although the asymptotic limit is an idealized model, it is very useful
in getting some simply analytical formulas of superconducting properties.
These simple analytical formulas are instructive for problems with large but
finite electron-phonon coupling strengths. Many superconducting properties
of an isotropic superconductor have been studied under the asymptotic limit

[Carbotte (1990)).



Appendix B

Effects of Non-Constant Density of
States for Eliashberg Superconductors

In this appendix we will describe the Eliashberg equations with an
energy dependent electronic density of states, N{¢), on both the imaginary
and real axes. We will also discuss the effects of a Lorentzian form for N(e)
on the quasiparticle density of states in the superconducting state, From the
discussions in the text we have seen that the redistribution of the quasi-
particle density of states due to the superconducting phase transition is an

essential property to understand many other superconducting properties.

B.1 THE ELIASHBERG EQUATIONS WITH N(¢)

To derive the Eliashberg equations with an energy dependent elec-
tronic density of states N(e), we follow the standard procedures described in
many books and review articles [Schrieffer (1964); Scalapino (1969); Allen
and Mitrovié (1982)]. Using the Nambu formalism for the electron self-energy

of an electron-phonon interaction system, we have the Eliashberg equations
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with N(€) on the imaginary axis for an isotropic superconductor as [Horsch
and Rietschel (1977}; Nettle and Thomas (1977); Lie and Carbotte (1978);
Mitrovié and Carbotte (1983b,c)]

N(e) &{iwm)
D(iwy) =wn + =T z Aliwn — “"m)[ N(n)( deté-l(e,iwm))]

m==0oQ

_ N(G) w(lwn)
+a(t +17) [?r' ./_m N () (~derG1 (e, iwn))]’

(B.1.1)

o > i — oy g NE) e+ x(iwm)
x(iwn) == 7T Y Miwn m)[ ,/deN(U) (_deté"l(fai“’"‘))]

m==—00

o s N&) et x(iwa)
(T +t7 )[ / N(0) (~detG~1(e, iwn)) ]’

(B.1.2)

and

M==—00

NGB o0 N(E) &(iwn)
+ (et -t )[; /; - d‘N(o) (—detG-1(e, iwn))]'

(B.1.3)

Here, the determinant of the inverse of the superconducting Green’s function

in the Nambu foermalism is given as

det G~ (e, iwg) = —[0%(iwn) + (€ + x{iwn))? + A2(iwn)],

(B.1.4)
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and the kernel is given as

© u(a?F(w))dw
w? 4 {wn — wm)

I

Miwy = lwy) = /0

(B.1.5)

Other quantities in Eqgs. (B.1.1)-(B.1.3) are the temperature T, the clectronic
density of states at the Fermi level N(0), the electron-phonon spectral density
«?F(w), the Coulomb pseudopotential 4", and the nonmagnetic (magnetic)
impurity scattering rate t+ (¢t~).

Compared with the Eliashberg equations with constant density of
states [Scalapino (1969)], we have an extra equation, Eq. (B.1.2) for the
function x(iws), here. For superconductors with constant density of states,
this function x(iws) is neglected because of the particle-hole symmetry. How-
ever, if N{e) is not symmetric around the Fermi level, the function x(iw,) may
not be negligible [Mitrovi¢ and Carbotte (1983b,c)]. In Egs. (B.1.1)-(B.1.3),
the integral over ¢ is yet to be done since the form of N(e) has not yet been
specified.

The Eliashberg equations on the real frequency axis can be derived
in a similar way [Mitrovi¢ and Carbotte (1983b,c)]. The corresponding equa-
tions to Eqs. (B.1.1)-(B.1.5) on the real frequency axis are given as

_ = w1 [ gelVE) i)
@(w) =w + 7T m;_w Aw = iwm) [; /_w de N(0) (=detG-1(e, iwm))]

+7 jow onFF(Q){[n(Q) +f(@-w)] [% f_ : de gg)) (_det‘:(.’;(_”l(: “3_ w))]

1 [® . N(¢) &+ w)
+{n(Q) + f(@ +w)] [; f_m N (-deté-lfe,ﬂw))]}
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C 71 N sw) }
+(th + ¢ )[;; /_m N et (e

(B.1.6)

oo ' 1 [ . N e+ x(iwnm)
x(w)=—-r=T —Z_: Mw — twny) [; /_m dEN(O) (—detf;'l(fa iwm))]

- 1 [ N e+ x(Q—-w)

—r / dna"'F(ﬂ){[n(Q) +f(Q@-w) [? /_m N (0) (~detG-1(,2 — w))]
‘ 1 [ N  e+x(@+w) ]}

+[n() + f(Q +w)] [; /_m d‘N(o) (—detG-1(e, Q + w))

f1 [, Nl e+ x(w)
—a(tt +¢ )[; j;m dEN(()) (_detc";—l(e,u))]’

(B.1.7)

00 ‘ 1 =, N(e) B(iwm)
A(w) =xT E .\(w - lwm) [; [w dGN(O) (_detf;"l(f: iwm))]

iy 1 {* . N(e Al -w)
+ 1:'/0 dﬂazF(Q){[n(Q) + f(Q - w)] [-7; j_m deN(ﬂ) CaC1e0—a))
1 [, Ne) Al +w)
i)+ vz [~ o a5}

We Q 1 0 N(E) A(w)
- P'(Wc)_/o dQ tanh(2—T-) [;Im '/;m de-N—(b—)- (—det@“l(e,w))]

_J1 f= N (c) A("““’)
+ n(tt — ¢ )[;; j_ - ‘kKr(Tﬁ (_deté‘l(e’w))],

(B.1.8)

det G~V (e,w) = 5 (w) — (e + x(w))* ~ Al(w),

(B.L.9)
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© 2a”F(Q))dQ

Mw = fwg) = = —.
(W = itom) 0 90— (w—iwm)"

(B.1.10)

In Egs. (B.1.6)-(B.1.8), one of the integrals in the original Eliashberg equa-
tions on the real frequency axis has been carried out analytically, the same
as what we did in chapter 2 (from Egs. (2.2.5)-(2.2.6) to Egs. (2.2.8)-(2.2.9))
[Marsiglio, Schossmann and Carbotte (1988)]. At finite temperature, Eqs.
(B.1.6)-(B.1.10) are the most fundamental equations for the study of various
superconducting properties.

Egs. (B.1.1)-(B.1.10) can be used for any form of the clectronic den-
sity of states N(e). Here, we will use a Lorentzian form for N(e) which is

given as

1 a
N(G) = Nb(l + B;W).

(B.1.11)

Here, N; is the background, a is the width, b is the position of the Lorentzian
peak related to the origin (¢ = 0), and s is the strength of the area under the
Lorentzian peak (above the background). If we set the Fermi level at e = 0
we can move the peak in N(e) relative to the Fermi level by changing the
value of h. We can also change the shape of N(¢) by changing the width a for
a fixed strength s.

Knowing N(e), Eq. (B.1.11), we can carry out the integral over e
in Egs. (B.1.1)-(B.1.3) and Egs. (B.1.6)-(B.1.8) analytically. The resulting

equations are, on the imaginary axis
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o0 -
Sliwg ) =w =T Altw u —-L\° o
(iwn) =wn + 7 m:z_m (in = b)Y (fem)

+ 4 4= wm Vi
+a(tT +t )[G:?,+.':\%]1/2N(I n)s

(B.1.12)
Ny 3 x{iwm) = b
y(iwg) = — xT Z Aliwn - ) —— ==
e NO = (g 4\ fa( mm) + A2(iwm))? + (x(iwm) = b)?
Ny s x(iwn) =
- -;r(t'l" + ¢t ) - ——=———.:.__—_- ’
NOVT (44 o2 (i) + A2iwn) )2 + (x(iim) - B)?
(B.1.13)
Anm
Aliwn) =T "2;00 [A(iwn — iwm) = p*0lwe— | wWm I)]'[*—QWN (iwm)
+n(tt - WN( wn),
(B.1.14)
with
N Ny a+ /&%) + A2iwm)
(l&h\) - N(n) { \/T__2_—- o 2}
T (8 + \/@{iwm) + A%(iwm))? + (x(iwn) — )

(B.1.15)

and on the real frequency axis
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Z(iwm) L
... Lu' =+ ,,.T 4\ !'-*-'m = ;\'(l..u'm)
I mg—:oo \/-'E(iha'm) + Al(“"m)
ofw - M)

= F()¢ [n() + - w)
+iw j dﬂa {[ﬂ ] ﬁ(u B Q) _ i‘-’(u _ Q)

Jw + Q) -
Q Q4+ w) “ = N(uJ+Q)
i@+ A w]\/u':'-'(w+9)—zl2(w+9) }

N(w - )

(et +t‘)——&(“i)—_——5f(w),
F2(w) - A%(w)
(B.1.16)

(iwm) —~ b
g Mw — iwm s
x(w) = N(O) {FT m;m oo )(a+ 02(iwm) + A%{iwm))? + (x(iwm) - b)?

- xw- b
(a — iyfa?(w — ) — 3w = W)+ (x(w ~ ) - B2
X +9) -

b
Q+w 2
+[n(@) + f(@ + )1(0_,- 22w + Q) - A2(u+9))2+(x(w+9)‘h)2)

x(w)—b

T +
e )a—:\/wz(w) A(w))? + (x(w) - b)z}

o jo 1002 F(Q) ([n(n) +1(2—w)]

(B.1.17)

N{iwm)

- = . A(ium)
Aw) =irT _Z_: Mw = i) &2 (iwm) + A2(iwm)

Alw ~ Q)

e [ ancro o+ -y =D
Aw+9) N(u+9)}

n Q —_—
+In(@)+ f(@+ ) P2(w+ Q) - A2w +Q)

-y (we) / damnh(—)m(—;(;iﬁ)&—z(; (w))
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+i7r(t+ - t_) xir(l.u’)-
S2(w) — A%w)
(B.1.18)
with
M) = {1+ 2—— 5Hw) - A%w) }
NOYU 7 (g = iy f?(w) - B2w))? + (x(w) - b)?
(B.1.19)

Next we will study the effects of N{e) on the quasiparticle density of

states in the superconducting state.

B.2 THE QUASIPARTICLE DENSITY OF STATES WITH N(e)

In terms of Green’s functions, the quasiparticle density of states is

given as (see chapter 3)

N(w)=—— '[_ : deN(€)Im (G(e,w))
(B.2.1)

Here, the electron Green’s function G(e,w) in the superconducting state is

given as

{w + i6) + € + x(w + i6)

Gul&) = T 18) — (e + x(w + 16))F — A%w+i6)

(B.2.2)

For N(e) with a Lorentzian form, Eq. (B.1.11), we can work out the

integral over ¢ in Eq. (B.2.1) and get
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T (@ = iy/@2(w) — AXw))? + (x(w) = b)'*'}

(B.2.3)

After solving for the pairing potential A(w), the renormalized frequency &(w)
and the function x(w) from Egs. (B.1.15)-(B.1.17), we can use this formula,
(B.2.3), to calculate the quasiparticle density of states in the superconducting
state as a function of temperature for var‘ous values of parameters (s, a, b,
Te/wiog, €tC.)-

Now we show some numerical results of the cffects of N(e) with a
Lorentzian form on the quasiparticle density of states in the superconducting
state N(w). The parameters we used for N(e) are s = 10meV a fixed strength
of the Lorentzian peak, and b= 0 a symmetric form of N(e) about the Fermi
level and, therefore, the function x(w) = 0 for simplicity. The width a is
adjusted for the fixed strength s to give various shapes of the Lorentzian
peak. The background N, does not need to be specified since we always
present the results for a normalized ratio N{w)/Ns. In solving the Eliashberg
equations, Eqgs. (B.1.15)-(B.1.17), for &(w) and A(w), we use the spectral
density o?F(w) of Pb. The height of this function is adjusted for various
shapes of N{(c) to give a fixed ratio 0.1 of T./wie, a3 we did before.

In Fig. B.2.1, we plot N(w)/N; esa function of the reduced frequency
w/T. for several temperatures. The solid curve is for ¢t = T/T. = 0.1, the
dotted curve is for t = 0.6, the short-dashed curve is for t = 0.8, the long-

dashed curve is for ¢ = 0.95, and the short-dash-dotted curve is for t = 0.985.
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Fig. B.2.1) The quasiparticle density of states N(w)/Ny as a function of the
reduced frequency w/T. for various temperatures, namely, ¢t = T/T. = 0.1
the solid curve, ¢ = 0.6 the dotted curve, ¢ = 0.8 the short-dashed curve,
¢ = 0.95 the long-dashed curve, and t = 0.985 the short-dash-dotted curve.
The Lorentzian form for N(e) is centered at the Fermi level with a strength
s = 10meV. The top frame is for the width a = 1meV’ and the bottom frame
is for a = 100meV. The ratio Tc/wiqg 18 fixed at 0.1.
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In the top frame we have the width a = ImeV’ which corresponds to a fairly
strong peak in N(¢) at the Fermi level, while in the bottom frame we have
the width a = 100meV” which gives a very flat distribution of N(¢) around the
Fermi level (very close to a constant electronic density of states situation).
Comparing the top frame with the bottom frame we see that at ¢t = 0.1
(solid curve) the peak position in the quasiparticle density of states NV(w)
is lower in frequency in the top frame than in the bottom frame. This is
because that the strong peak in N(e) at the Fermi level (top frame) reduces
the electron-phonon coupling needed for & given T compared with the case
where the strength of N{e) is the same but the peak at the Fermi level is
very small (bottom frame). From Fig. B.2.1, we also see that in the top
frame the peak in N(w)/N; moves first towards higher frequencies before it
goes to zero as temperature is increased from zero to Ti, although there
are some thermal smearings of N(w) into the low frequency region at finite
temperature. This is very interesting since it is qualitatively different from
the results for superconductors with constant electronic density of states.
A constant electronic density of states is similar to the situation shown in
the bottom frame where the peak in N(w)/N decreases monotonically as T is
increased. To see this effect more clearly we plot the temperature dependence
of the pesk in N(w) in Fig. B.2.2. The top and bottom frames in Fig. B.2.2
correspond to the top and bottom frames in Fig. B.2.1, respectively. It is clear
from Fig. B.2.2 that a strong peak in N () at the Fermi level will change the
temperature dependence of the peak in the quasiparticle density of states

N(w) in the superconducting state qualitatively. This change also shows up
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in the temperature dependence of many other superconducting properties
[Jiang and Carbotte (1992f})].

We have also studied various transport superconducting properties,
e.g., the thermal conductivity, the infrared conductivity, and the nuclear spin
relaxation rate, with a Lorentzian form for N(e). Due to the length of this

thesis, we will not discuss these results in detail here.
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Fig. B.2.2) The temperature dependence of the peak in the quasiparticle
density of states normalized by its zero temperature value N?(T)/N?(0) for
N(e) with a Lorentzian form. The Lorentzian peak is centered at the Fermi
level with a strength s = 10meV’. The top frame is for the width a = 1lmeV

and the bottom frame is for a = 100meV. The ratio Tc/uwios is fixed at 0.1.
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