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ABSTRACT

The mechanism by which subcellular organelles are assembled is one of the
fundamental problems of eukaryotic cell biology and biochemistry. Proteins synthesized
in the cytosol are targeted to the appropriate membrane by signals usually encrypted in
some primary sequence segment. Many peroxisomal proteins are tarneted by the C-
terminal tripeptides which are identical to or conserved variants of Ser-Lys-Leu.
Mammalian peroxisomal 3-ketoacyl-CoA thiolases are targeted by a cleavable N-terminal
presequence. In this thesis the targeting of Saccharomyces cerevisiae thiolase was
investigated. The N-terminai 16 amino acids of S. cerevisiae thiolase were shown to be
both necessary and sufficient for peroxisomal targeting in yeast. Unlike mammalian
thiolases, the native thiolase of S. cerevisiae is not detectably modified by cleavage of
the targeting sequence. Several amino acid residues within the targeting regi;m that are
conserved among all thiolases were altered by mutagenesis, and three critical residues
were identified— Arg4, Leu5, and Leul2. A novel approach was used to demonstrate that
prior to translocation into peroxisomes, thiolase can form dimers. A targeted subunit
could mediate the import of a cytosolic variant of thiolase by this means. The
implications of this observation with respect to the conformation of thiolase prior to and

during translocation are discussed.
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1. INTRODUCTION
1.1. OVERVIEW

Eukaryotic cells harbour a complex array of intracellular membranes which allow
certain metabolic reactions to be compartmentalized. Some protein components of
mitochondriz and chloroplasts are synthesized intracompartmentally, but the majority of
proteins which make up each subcellular compartment are synthesized in the cytosol and
imported across, or integrated into, the appropriate membrane(s). The specificity of this
process is assured by the interaction of targeting signals usually encrypted in the amino
acid sequence of the newly synthesized protein and components of the import machinery
required by each organelle. The targeting signals and many components of the
translocation machinery specific for mitochondria, endoplasmic reticulum, nucleus, and
chloroplasts have been identified, although details of the translocation process remain to
be elucidated in each case.

Comparatively little is known about the import of proteins into peroxisomes
perhaps because peroxisomes were only recently identified as important subcellular
compartments (de Duve and Baudhuin, 1966). The key discoveries that opened the
frontiers of research in peroxisome biogenesis are as follows.

1. The observation that peroxisome matrix enzymes and membrane proteins are
synthesized on free polysomes and imported into pre-existing peroxisomes weaned
investigators away from earlier notions that peroxisomes were formed by budding from

1



2
the endoplasmic reticulum (Goldman and Blobel., 1978; Roa and Blobel, 1983; Fujiki er

al., 1984, 1985; Rachubinski et of., 1984).
2. The discovery that human fibroblasts from patients with Zellweger syndrome
contained peroxisomal "ghosts™"— apparently normal membrane structures devoid of
matrix components— lent urgency to the elucidation of matrix enzyme import pathways
and the identification of genetic defects related to this and other disorders of peroxisomal
assembly (Santos er al., 1988).
3. The identification of the first peroxisomal targeting signal in firefly luciferase and
the subsequent findings that C-terminal tripeptide signals were essential for microbody
import in a broad range of eukaryotic organisms (Gould ez dl., 1987, 1988, 1989, 1990a,
1990b: Aitchison er al., 1991, 1992a) represented the discovery of a novel, surprisingly
compact targeting motif.
4. The identification of an N-terminal targeting motif in rat liver peroxisomal
thiolase (Swinkels er al., 1991) supported the idea that at least two distinct import
pathways mec}iated by C- and N-terminal signals are required for peroxisome assembly.
5. The development of peroxisome assembly mutants (pas) in S. cerevisiae (Erdmann
et al., 1989) promised rapid identification of genes encoding assembly factors and
stimulated a flurry of similar approaches to the identification of genes in other less
conventional yeasts.

Conspicuously absent from this list of achievements is the development of a robust

in vitro system for the reconstitution of peroxisomal import. Reports of such systems



3
have appeared sporadically in the literature (Gietl and Hock, 1984; Small and Lazarow,

1987 Smali e al., 1988; Imanaka et al., 1987; Fujiki er al., 1989; Sommer ez al., 1990;
Thieringer et al., 1991; Miura et al., 1992; Behari and Baker, 1993; Soto er al., 1993).
The extent of import, measured as resistance to externally applied protease, is always low
and none of these systems appears to have lead to a sustained line of investigation. The
biophysical characteristics of isolated peroxisomes do not reflect those of the in situ
organelle (see discussion of peroxisome membrane below). Therefore, a “positive”
indication of in vitro peroxisomal import may not signify the legitimate reconstitution of
the cellular pathway. Recently reported reconstimtion of peroxisomal import in
permeabilized mammalian cells (Rapp et al., 1993; Wendland and Subramani, 1993a,
1993b) offers similar analytical opportunities as in vitro import without subjecting the
organelles to the rigors of isolaticn procedures.

The period in which the research for this thesis has been conducted has been an
exciting time for peroxisome biogenesis. Genes essential for peroxisome biogenesis have
been isolated in both mammalian and yeast systems, and many more will be forthcoming
in the next year or two. Still, few details of the import pathways are available. This
thesis and the publications arising from it (Janiak ez al., 1994; Glover et al., 1994a,
1994b) are intended to make a contribution to this end. These experiments focus on the
identification and characterization of the N-terminal peroxisomal targeting signal of S.
cerevisiae 3-ketoacyl-CoA thiolase and the description of a novel import pathway for a

cytosolic version of this protein.



1.2. OCCURRENCE OF PEROXISOMES

Microbodies, a general term for peroxisomes and related organelles, are found
in nearly all species of eukaryotic organisms. Some primitive protists (for example
Trichomonas vaginalis) contain organelles known as hydrogenosomes which are no
longer considered to be part of the microbody family (Johnson et al., 1993). The term
peroxisome was coined by de Duve (de Duve and Baudhuin, 1966) to refiect the
metabolic specialization of the organelle in oxidative metabolism of a range of substrates
with the formation of hydrogen peroxide as a by-product. Glyoxysomes which harbour
the enzymes of the glyoxylate pathway in plants, and glycosomes which sequester
enzymes of the glycolytic pathway in the trypanosomatidae, complete the microbody
family of organelles. Beyond the structural similarities among microbodies with diverse
metabolic functions, evidence to suggest that all types of microbodies are elaborations
of a common ancestral organelle derives from the recent observation that at least one
peroxisomal targeting signal (SKL-COOH) is recognized by all three types of
microbodies (Gould er al., 1990b; Blattner et al., 1993).

In S. cerevisige, peroxisomes were first detected in glucose-grown cells and were
characterized by electron microscopy as small, non-mitochondrial bodies bounded by a
single membrane and containing particulate (organellar) catalase (Avers and Federman,
1968). Several other yeasts were, however, more amenable to the study of peroxisome
biology, because the organelles could be induced to proliferate strongly by growth on

specific carbon sources. Candida tropicalis grown on alkanes and Hansenula polymorpha
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grown on methanol are notable examples of non-conventional yeasts with strongly
inducible peroxisome proliferation. It was not untl 1987 that peroxisome proliferation
in S. cerevisiae was found to be responsive to growth on oleic acid (Veenhuis ez al.,
1987). The strong molecular genetic systems available in this yeast make ita prime target
for current research in the field of peroxisome biogenesis (for reviews see Kunau and

Hartig, 1992; Hohfeld ez al., 1992; Kunau ez dl., 1993).

1.3. GENERAL STRUCTURAL PROPERTIES OF PEROXISOMES

Peroxisomes viewed in thin sections usually appear to be roughly spherical
organelles bound by 2 single lipid bilayer membrane surrounding a relatively dense
matrix. In some cell types the peroxisome appears to be reticular in form as determined
by serial sectioning and 3-dimensional reconstruction (Yamamoto and Fahimi, 1987,
Gorgas, 1987). The morphology of peroxisomes may be constanty shifting and the
observation of reticular structures may represent intermediates captured in the process
of division and growth.

Unlike chloroplasts or mitochondria, peroxisomes contain no DNA (Kamiryo et
al., 1982). All protein components of the organeile must therefore be encoded by nuclear
genes, translated in the cytosol and imported iato the peroxisomal matrix or integrated
into the peroxisomal membrane.

Treamments designed to disrupt the peroxisomal membrane followed by

centrifugation indicate that some matrix proteins are preferentially retained in particulate
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form (Hayashi er al., 1981; Alexson et al., 1985; Poole and Crane, 1992). This may be

taken as evidence that the peroxisome matrix retains some level of intraorganellar protein
organization consisting of protein-protein interactions which are independent of the intact
membrane.

In S. cerevisige the peroxisomes Lave a density of about 1.23 g-cm™ (Lewin er
al., 1990) as judged by density gradient centrifugation, reflecting the high protein content
vs. other organelles such as the mitochondria (1.17 g-cm™ ; Nuttley et al. 1990).
Glucose-grown yeast have as few as a single small peroxisome (Avers and Federman,
1968; Thieringer et al., 1991) whereas following induction on oleic acid the peroxisomes
grow in size and proliferate and can account for 8 to 11% of the total cytoplasmic

volume (Hohfeld er al., 1992).

1.4. STRUCTURE AND FUNCTION OF PEROXISOME MEMBRANES

The peroxisomal membrane of S. cerevisige contains only three major
polypeptides of 32, 31, and 24 kDa as judged by staining of carbonate extracted
membranes in SDS-polyacrylamide gels (McCammon ez al., 1990; Goodman et al.,1992).
The PAS3 gene encodes a protein required for peroxisome assembly in §. cerevisiae,
which appears to be a 48 kDa integral peroxisomal membrane protein with a large
cytoplasmic C-terminal domain (Hohfeld ez al.,1991). The inability to detect this protein
in SDS-PAGE profiles of peroxisomal membranes may reflect the relatively low

abundance of assembly factors in general. The membranes of Candida boidinii
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peroxisomes contain a relatively abundant integral membrane protein of 47 kDa, as well
as integral proteins of 32 and 31 kDa and 2 peripheral membrane-associated protein of
20 kDa (Goodman et al., 1990; Goodman et al., 1992). The peroxisomal membranes of
C. tropicalis are more similar to those of S. cerevisiae with respect to protein profile
showing three major integral polypeptides of 34, 29, and 24 kDa (Nuttley ez al., 1990).

An ATPase with possible proton-translocating properties has been detected both
biochemically (Douma et al., 1987) and immunocytochemically (Douma et al., 1990c)
in peroxisomes of the yeast H. polymorpha. ATPase activity has also been associated
with the peroxisomes of rat liver (Wolvetang ez al., 1990). The role of this activity is not
known, although it may function in the acidification of the peroxisomal matrix as outlined
below.

Studies aimed at exploring the in vivo pH of the peroxisomal matrix by 3P NMR
(Nicolay et al.,1987) or by the accumulation of an immunocytochemically detectable
weak base (Waterham et al., 1990) agree that the peroxisomal membrane can support 2
pH gradient that is sensitive to treatment by proton ionophores. In vivo import and
assembly of C. boidinii alcohol oxidase is inhibited by the proton ionophore
carbonylcyanide m-chlorophenylhydrazone (CCCP; Bellion and Goodman, 1987)
suggesting that the proton gradient is essential for some aspect of protein translocation
as is the case for in vivo precursor import into yeast mitochondria (Reid and Schatz,
1982).

In contrast to these results, membranes of isolated peroxisomes appear to be quite
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permeable. Proteoliposomes incorporating peroxisome membrane fractions are permeable
to small molecules such as sucrose and cannot maintain the pH gradient observed irn vive
(Douma er al., 1990b). Furthermore, proteins -vhich can be shown to reside within the
peroxisomal matrix immunocytochemically can leak extensively during organelle isolation
procedures (McCammon ez dl., 1990; Thompson and Krisans, 1990). In spheroplasts that
are swollen osmotically, peroxisome proteins appear to remain confined to the
peroxisomal matrix until the plasma membrane is disrupted (Douma et al., 1990b).

Peroxisomes isolated from mammalian sources are freely permeable with respect
several small molecules and cofactors (Van Veldhoven er al., .983), and this
permeability appears to be associated with a 22 kDa peroxisomal membrane protein when
it is incorporated into proteoliposomes (Van Veldhoven et al., 1987). Another group has
also studied the pore-forming capabilities of the mammalian peroxisomal membrane and
also detected large cation selective pores (Labraca er al., 1986).

Taken together, the results described above suggest that in intact cells, the
peroxisomal membrane is an effective biological membrane that serves as a barrier to
small molecules, but that the membrane is extremely sensitive to isolation conditions.
The permeability characteristics of the isolated organelle do not reflect the in vivo
characteristics of peroxisomes. Furthermore, it is difficult to assess the relevance of the
pore-forming activity of some isolated proteins, when the in vivo functions of thesz
proteins are completely unknown. The inability to isolate peroxisomes displaying the

same permeability characteristics as the in sitz organelle has important implications for



9

the development of robust in vitro systems for the study of peroxisome biogenesis and

protein targeting.

1.5. METABOLIC FUNCTION OF PEROXISOMES

The function of peroxisomes can be stated most generally as the oxidative
metabolism of m'cost, if not all, types of nutrient substrates. The peroxisome appears to
be a remarkably flexible organelle in that, it least in some yeasts, the enzyme
complement of the matrix can be altered to enhance utilization of available substrates
(Goodman et al., 1990). In the interest of brevity this discussion will concentrate on
examining peroxiscme function in S. cerevisiae. The function of peroxisomes in humans
(Mannaerts and Van Veldhoven, 1989, 1993; Van den Bosch er al., 1992) and yeasts
(Veenhus and Harder, 1987), glyoxysomes in plants (Tolbert, 1981; Gietl, 1992; Kindi,
1993), and glycosomes in trypanosomatidae (Opperdoes, 1987) have been thoroughly
reviewed elsewhere.

The primary biochemical function of peroxisomes in S. cerevisiae is the oxidation
of fatty acids during growth on oleic acid. In mammalian cells peroxisomes are involved
in the metabolism of very long-chain fatty acids (VLCFA) while another parallel pathway
functions in mitochondria with specificity for shorter chain substrates. In yeasts however,
the peroxisome appears to be the sole organelle involved in the utilization of fatty acids
based on the detection of B-oxidation enzyme activities exclusively within these

organelles (Kawamoto ef al., 1978; Kunau er al., 1988).
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The major metabolic pathways of S. cerevisice peroxisomes are summarized in
Figure 1. In S. cerevisige fatty acyl-CoA oxidase is encoded by the POXI gene
{(Dmochowska er al., 1990). In the more familiar mitochondrial B-oxidation pathway the
flavin-adenine dinucleotide (FAD) cofactor of the fatty acyl-CoA dehydrogenase is
regenerated by contributing electrons via intermediate electron transfer proteins to the
mitochondrial electron transport chain, ultimately driving ATP formation (Stryer, 1988).
In contrast, the FAD cofactor of peroxisomal fatty acyl-CoA oxidase is regenerated by
reaction with molecular oxygen producing H,O,. H,O, produced as the byproduct of -
oxidation cannot be allowed to accumulate to intracellular levels at which oxidative
damage t0 DNA or other essential components occurs. There are two catalases ir S.
cerevisiae— a peroxisomal catalase encoded by CTAI (Cohen er al,. 1988) and a
cytosolic form encoded by CTTI (Hartig and Ruis, 1980). Deletion of both catalases
does not result in a growth defect in strains grown on oleic acid probably because there
is a marked increase in mitochondrial cytochrome ¢ peroxidase activity (van der Klei ez
al., 1990) and because growth of S. cerevisiae on oleic acid as the sole carbon source
is too slow for peroxide-induced cytotoxicity to become apparent. In catalase-deficient
strains growing on carbon sources in addition to fatty acids growth defects are more
obvious probably because rapidly dividing cells are more sensitive to damage (Zhang et
al., 1993).

As in other peroxisomal B-oxidation pathways, a multifunctional enzyme catalyzes

the next reactions. A significant difference between the S. cerevisige B-oxidation pathway
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and other yeast peroxisomal f3-oxidation schemes is the apparent absence of epim:rase

activity in the multfunctional protein encoded by FOX2 (Hiltunen er al., 1992). The
substrate of the dehydrogenase is the D- rather than the L-isomer of the enoyl-CoA
derivative (Hiltunen er al., 1992).

The final step in each turn of the B-oxidation spiral is catalyzed by 3-ketoacyl-
CoA thiolase encoded by the POT! gene in S. cerevisige (Igual et al., 1991). The
gene was independently cloned by another group which used the designation FOX3
(Einerhand er al., 1991).

In addition to the enzymes of fatty acid oxidation, several enzymes of the
glyoxylate pathway can be found associated with peroxisomes i S. cerevisice
(McCammon er al., 1990). These include malate synthase which was detected by
immunocytochemistry (McCammon et al., 1990) and an isozyme of which has been
recently cloned (MLS2; Fernandez ez al., 1993) and shown to be identical o DAL7, a
gene required for allantoin metabolism in S. cerevisiae (Yoo and Cooper, 1989). Other
glyoxylate pathway enzymes present in S. cerevisiae peroxisomes are a malate
dehydrogenase isozyme is encoded by MDH3 (Steffan and McAllister-Henn, 1992) and

citrate synthase isozyme encoded by CIT2 gene (Lewin et al., 1990).

1.6. PEROXISOMAL TARGETING SIGNALS

Two types of peroxisomal targeting signals have been identified to date, but many

peroxisomal matrix and membrane proteins whose sequences are known do not display
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either of these motifs (Subramani, 1992a,1992b; Aitchison er al., 1992b; Osumi and

Fujiki, 1990). The assembly of membrane proteins into peroxisomal ghosts in Zellweger
syndrome (Santos er al., 1988) suggests that matrix components and membrane
components are assembled by independent pathways. Recent analysis of peroxisomal
assembly mutants in S. cerevisiae suggests that matrix components are imported by at
least three pathways which are individually blocked by defects in different genes (Zhang
et al., 1994).

1.6.1. TYPE 1 PEROXISOMAL TARGETING SIGNAL (PTS1)

The first peroxisomal targeting signal was identified in the luciferase protein of
the American firefly, Photinus pyralis, in the laboratory of Dr. Suresh Subramani (Gould
et al., 1989). During an effort to characterize the expression of luciferase in mammalian
cells as a tool to study gene regulation, a punctate immunofluorescence staining pattern
was observed in cells expressing the protein (de Wet et al., 1987). The pattern of
luciferase immunofluorescence overlapped precisely with catalase immunofluorescence,
indicating a peroxisomal location (Keller ez al., 1987). It was subsequently shown that
the C-terminal 12 amino acids of luciferase were required for targeting (Gould ez dl.,
1987). Similar short C-terminal segments of four other peroxisome matrix proteins were
sufficient to direct a passenger protein into peroxisomes (Gould et al., 1988), suggesting
that the C-terminal location of targeting information might be a hallmark of peroxisomal

matrix proteins .
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Further analysis revealed that the C-terminal tripeptide Ser-Lys-Leu-COQOH (SKL

in single-letter code) was sufficient for peroxisomal targeting (Gould e al.,1989).
Exploration of the acceptable redundancy within this tripeptide motif indicated that Ala
and Cys could substitute for Ser, His and Arg for Lys, and that substitutions at, or
extensions beyond, the C-terminal Leu abolished targeting (Gould er al., 1989).
Nevertheless, a study of all the permutations of these substitutions indicated that CHL
was not a functional targeting signal (Swinkels er al., 1992).

An anti-peptide antiserum raised against the C-terminus of luciferase recognised
15 to 20 proteins in rat liver peroxisomes but very few proteins in other organelles
(Gould er al., 1990a). Using this serum,'conservation of SKL targeting across a wide
range of diverse species was demonstrated (Keller er al., 1991). Reaction of the
antiserum with peroxisomes of mammals and yeast, glyoxysomes of plants, and
glycosomes of trypanosomes is strong evidence for the homology of these organelles and
for placing the origin of microbodies early in the eukaryotic ancestrat line.

As with other organellar targeting signals, an array of naturally-occurring
variations of the C-terminal tripeptide have been discovered. The C-terminal AKI of C.
tropicalis multifunctional enzyme hydratase-dehydrogenase-epimerase (HDE) was shown
10 be necessary for targeting to peroxisomes in both Candida albicans (Aitchison and
Rachubinski, 1990) and S. cerevisiae (Aitchison ez al., 1991). An antiserum generated
against the HDE C-terminus recognized several C. tropicalis peroxisomal proieins while

the anti-SKL serum detected few (Aitchison er al., 1992a). In §. cerevisiae the
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recognition pattern was reversed, with the anti-SKL serum detecting several peroxisomal
proteins (see Table 1 for a list of S. cerevisiae proteins ending in SKL-COOH). Thus,
even though the endogenous peroxisomal proteins of S. cerevisiae employ SKL-COOH
signal which is immunologically distinct from AKI-COOH, AKI-COOH is nonetheless
treated as an authentic targeting PTS1 and mediates import of the heterologously
expressed HDE.

Table 1. Peroxisomal proteins of S. cerevisige with SKL at C-terminus.

GENE M,(kDa) NAME/FUNCTION ANTI-SKL REACTIVITY® REFERENCE
FOX2 98.4 multifunctional protein yes {1
PAS6 68.2 peroxisome assembly factor no )
MLSZ/DAL7* 628 malate synthase isozyme yes (3.4)
CIm2 54.0 citrate synthase isozyme weak ()]
MDH3 3712 malate dehydrogenase isozyme ao 6)

References (1)= Hiltunen ez al., 1992; (2)= Hohfeld er al, 1992; (3)= Yoo and Cooper, 1989; (4)=
Fernandez ef al., 1993; (5)= Lewin er al., 1990; (6)= Steffan and McAllister-Henn, 1952. *Note that
MLS2 and DAL7 are identical genes. *Detection by anti-SKL antiserum according to Aitchison er al.,
1992,

Other examples of SKL variants suggest that species differences in targeting are
probably not unusual. The SKL variant SKI did not function as a peroxisomal targeting
signal in mammalian cells (Gould er al., 1989). Nonetheless, the C-terminal SKI of H.
polymorpha catalase was required for peroxisomal targeting (Didion and Roggenkamp,
1992). In rat liver, the SKI at the C-terminus of epoxide hydrolase is thought to act as
an impaired signal allowing the enzyme activity to be found both in the peroxisomal
matrix and in the cytosol (Arand et al., 1991). Import of phosphoglycerate kinase into

glycosomes of T. brucei is directed by 2 C-terminal SSL (Sommer et al., 1993), which
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is not functional in mammalian cells (Gould et al., 1989; Blattner ef al., 1992).

1.6.2. TYPE 2 PEROXISOMAL TARGETING SIGNAL (PTS2)

Studies of the biogenesis of peroxisomal enzymes suggest that the majority of
peroxisomal matrix proteins are synthesized at their mature size on free polysomes
(Goldman and Blobel, 1978; Roa and Blobel, 1983; Rachubinski er al., 1984). The
outstanding exception to this general rule is the peroxisomal 3-ketoacyl-CoA thiolase,
which is synthesized as 2 larger precursor (Miura et al., 1984; Fujiki et ., 1985). In
norma! human cells the peroxisomal thiolase is found only in the processed form.
However, cells of patients with Zellweger syndrome or rhizomelic chondrodysplasia
punctata (see section 1.7 for descriptions of these conditions) accumulate only the
precursor form of the protein (Balfe et al., 1990; Schram et al., 1986). The presence of
the full-length protein in particulate form (peroxisomal ghosts) in cells without normal
peroxisomes suggests that cleavage of the presequence is dependent on normal
peroxisome assembly but is not required for translocation of the protein into the
peroxisome matrix.

The presequences of many proteins destined to other organelles including the
endoplasmic reticulum, mitochondria, and chloroplasts contain targeting information. The
targeting activity of rat thiolase was examined in transfected mammalian cells using an
immunofluorescense microscopy assay (Swinkels et al., 1991). Mature thiolase remained

cytosolic, while a fusion between the presequence and Escherichia coli chloramphenicol
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acetyltransferase correctly redirected the cytosolic passenger protein 1o peroxisomes. The .
smallest segment of rat thiolase B (=thiolase 1) capable of peroxisomal targeting was the
N-terminal 9 amino acids. Similar results were obtained independently by another group
(Osumi et al., 1991).

One interesting feature of peroxisomal thiolase biogenesis in rat is that there are
two differentially regulated forms which are nearly identical over the length of the mature
protein (Bodnar and Rachubinski, 1990; Hijikata er al., 1987, 1990). Expression of the
tPT-B (THI1) gene is induced by treatment of animals with hypolipodemic drugs,
whereas the rPT-A (THI2) gene is constitutively expressed and unresponsive to drug. The
major structural difference between the two proteins is that thiolase A has an additional
10 amino acid extension at its N-terminus compared to thiolase. Since both proteins are
peroxisomal, the possibility exists that the N-terminal peroxisomal targeting signal need
not reside at the extreme N-terminus. In contrast, PTS1 motifs do not appear to function
at internal locations.

Table 2 shows a comparison of the N-terminal sequences of several peroxisomal
thiolases and one plant glyoxysomal malate dehydrogenase isoenzyme that shares some

features of the PTS2 of rat peroxisomal thiolase.
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TABLE 2. Comparison of N-terminal sequences of peroxisomal proteins with putative
PTS2 motif.

Species N-terminal sequence Ref
Rat A MSESVGRISAM-HERLQVVLG-ELAGRPESS SALQAAPCH 1
Rat B M-HRLOVVLG-HLAGRSESSSALQAAPCH 2
Human M-QRLQVVLG-ELRGPADSGWMPQAAPCH 3
S. cerevisiae MSQRLOSIKD-BLVLSAMGLGESKRKNSLLEK 4
€. tropicalis M=-DRLNQL.SG-QLKENAKQSILQKNPDDVVIV 5
Y. lipolytica M-DRLNNLAT-QLEQNPAKGLDAITSKNPDDV ]
cucumber MEKINR-QSILLHELRPSSSAYTNESSLSASVC 6
cvmdh MQPIPDVNQRIARISA-HLHPPKSQMEESALRRANCY 7

RLO-V---HL
consensus N L Q

I

The sequences are aligned to highlight residues which possibly cotrrespond to a proposed conseasus
sequence given at bottom of table (bold in each sequence). The underlined residues highlight a
conserved hydrophobic residue between the proposed consensus elements. Dashes are placed in
sequences to enhance alignment. The downward pointing arrows correspond to known cleavage sites.
The top 7 sequences are from peroxisomal 3-ketoacyl-CoA thiolases. The last sequence (cvmdb) is
from watermelon glyoxysomal malate dehydrogenase. 1 = Hijikata et al., 1987. 2 = Bodnar and
Rachubinski, 1990. 3 = Bout ez al., 1988. 4 = Igual er al, 1991. 5 = cited in d= Hoop and Ab,
1992. 6 = Preisig-Miller and Kindl, 1993. 7 = Gietl, 199C.

1.7. HUMAN GENETIC DISORDERS OF PEROXISOME BIOGENESIS
Several clinical conditions in humans appear to arise from defects in
peroxisome function and can be divided into 3 groups (Table 3).

Table 3. Classification of human peroxisomal disorders

Group 1: Group 2 : Group 3:
peroxisomes reduced peroxisomes normai; peroxisomes present but
or absent; multiple single enzyme defect structure abnormal; more
cnzyme defects than one enzyme defect
Zellweger syndrome X-linked adrenoleukodystrophy  Rhizomelic chondrodysplasia
Neonatal adrenoieukodystrophy  Acatalasemia punctata
Infantile Refsum disease Hyperoxaluria type I
Hyperpipecolic acidemia Thiolase deficiency

Acyl-CoA oxidase deficiency

Bifunctional enzyme deficiency

Adapted from Moser et al., 1991
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Group 1 disorders involve catastrophic defects in peroxisome assembly and are
typified by Zellweger syndrome (Santos et al., 1992; Schram et dl., 1986). The
physiological manifestations of defective peroxisomal assembly are numerous and vary
widely in severity (Mannaerts and Van Veldhoven, 1989; Moser et al., 1991).
However, the clinical hallmark of peroxisome assembly disorders is elevated serum
levels of very long-chain fatty acids (VLCFAs) which are normally metabolized by
mammalian peroxisomes. The manifestation at the subcellular level is the
mislocalization of peroxisomal proteins and/or enzyme activities to the cytosol (Tager
et al., 1985; van Roermund et al., 1991). Immunological reagents directed toward the
peroxisomal membrane components allow the detection in Zellweger patient
fibroblasts, of intact peroxisomal membranes which appear to lack the electron-dense
components of the peroxisomal matrix (Santos er al., 1988). This observation suggests
that the underlying defect(s) of this group of disorders impairs the import of
peroxisomal matrix proteins while assembly of membrane proteins is largely
unperturbed. Biochemical analysis of the subcellular distributions of matrix proteins
(Santos et al., 1992) and complementation stedies in which fibroblasts of patients are
fused and the heterokaryons analyzed by immunoftuorescence (Roscher et al., 1989;
Yajima ef al., 1992) have shown that severity and diagnosis of Zellweger syndrome
and other peroxisome assembly disorders is highly influenced by the genetic
background against which a given genetic defect is displayed.

A second group of disorders appears to arise from single enzyme deficiencies.
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An interesting example of this group of disorders is primary hyperoxaluria type 1
which results from point mutations which redirect alanine:glyoxylate aminotransferase
from peroxisomes to mitochondria (Danpure, 1993).

Group 3 disorders result from the mislocalization of a subset of peroxisomal
proteins. Rhizomelic chondrodysplasia punctata is characterized by the
mislocalization of peroxisomal 3-ketoacyl-CoA thiolase, acyl-CoA: dihydroxyacetone
phosphate acyl transferase, and alkyldihydroxyacetone phosphate synthase (Hoefler et
al., 1938; Balfe er al., 1990; Heikoop er al., 1990). VLCAF-CoA synthetase activity
is deficient in X-linked adrenoleukodystrophy, and it now appears that the enzyme
fails to assemble into peroxisomes in at least some patients with the disorder
(Aubourg et al., 1993). The mislocalization of one or perhaps a limited subset of
peroxisomal matrix components suggests that the import pathway specific to these
proteins can be blocked without affecting the localization of the majority of
peroxisomal proteins.

Cytosols of Zellweger fibroblasts from 6 complementation groups is capable of
supporting peroxisomal localization of SKL-COOH peptides conjugated to human
serum albumin (HSA) in a cytosol-dependent permeabilized cell system (Wendland
and Subramani, 1993b), while normal cytosol fails to support import into the
peroxisomal ghosts present in Zellweger fibroblasts. This result suggests that the
failure to import matrix proteins in Zellweger syndrome arises from defects associated

with the organellar membrane and that import factors that may be present in the
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cytosol are not impaired in this disorder.

1.8. PEROXISOME ASSEMBLY FACTORS IN MAMMALIAN CELLS

Three genes have been cloned which are implicated in peroxisome biogenesis
in humans. The first gene was originally found by complementation of Chinese
hamster ovary mutant cell line, Z65, with a cell line harbouring a peroxisome
assembly defect mimicking that of Zellweger syndrome cells (Tsukamoto ez a.,

1991). The rat PAF-1 gene encodes a 35 kDa integral membrane protein with two
predicted membrane-spanning domains. The protein is sensitive to external protease
added to intact peroxisomes, indicating that the bulk of the protein is exposed to the
cytosol. Intraspecies fusions between Z65 cells and cells from Zellweger patients were
used to identify a human cell line in the same complementation group from which the
human PAF-1 homologue was cloned and the genetic lesion determined at the level of
DNA sequence (Shimozawa et al., 1992).

The second mammalian peroxisome assembly gene was initially cloned from
rat and encodes a 70 kDa integral membrane protein that is a member of the ATP-
binding cassette (ABC) transporter family which includes P-glycoprotein associated
with multidrug resistance and the chloride pump associated with cystic fibrosis
(Kamijo et al., 1990). Mutations in the human gene for PMP 70 have been found ina
subset of Zellweger syndrome patients (Gartner et al., 1992).

X-linked adrenoleukodystrophy (ALD) is a disease characterized by
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progressive demylelination of the central nervous system caused by accumulation of
VLCFAs. VLCFA-CoA is metabolized normally in cells from patients with the
disorder, indicating that, with the exception of fatty acid activation, B-oxidation in
these patients is intact. A gene encoding a 35 kDa protein with significant similarity
o PMP 70 is partially deleted in some ALD patients. It has been proposed that this

protein is involved in the import or anchoring of VLCFA-CoA synthetase (Aubourg et

al., 1993).

1.9. PEROXISOME ASSEMBLY IN YEAST

The ability to generate mutant mammalian cell lines which mimic various
human genetic disorders is an important contribution to the understanding of
peroxisome biogenesis. However, the general pattern of organelle biogenesis may be
well conserved among most eukaryotes. The identification of genes involved in
peroxisome biogenesis in simpler unicellular eukaryotes such as yeast can provide
valuable insight into the homologous processes in higher organisms.

In yeasts, metabolic pathways requiring peroxisomes are inducible, and
negative screens (inability to grow on carbon sources requiring peroxisomes) capable
of detecting peroxisomal defects are easily established. This strategy has been applied
to several species of yeasts including S. cerevisiae (Erdmann et al., 1989), Pichia
pastoris (Gould et al., 1992; Liu ez al., 1992) H. polymorpha (Cregg et al., 1990;

Waterham et al., 1992; Titorenko et al., 1993) and Yarrowia lipolytica (Nuttley et
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al., 1993). Yeast strains derived from a mutagenized stock which are unable to grow
on a carbon source requiring peroxisomal metabolism can be further characterized by
one or more techniques, including cell fractionation and immunofluorescence
microscopy. In the former case, peroxisome assembly mutants are identified by the
cytosolic localization of enzymes normally associated with the organellar fraction. In
the latter case, diffuse rather than punctate staining in immunofluorescence
experiments using antibodies against peroxisomal proteins is indicative of impaired
import. The genetic defect is cured by transformation of the mutant strain with a
library of genomic DNA fragments from which the complementing gene can
eventually be identified.

In addition to the negative screen outlined above, positive selection procedures
have been used to find assembly mutants. One procedure exploited the sensitivity of
normal cells to H,O, generated by B-oxidation during growth on fatty acid when
catalase activity is inhibited by 3-aminotriazole (van der Leij ez al., 1992). Mutants in
which B-oxidation is impaired or absent are spared from peroxide-induced damage.
Another screen based on the same idea (H,O, toxicity), but using a catalase-deficient
parental strain was recently reported (Zhang ez al., 1993a). A second and quite
elegant positive screen used a luciferase-bleomycin resistance gene fusion that
conferred resistance more readily in mutants that fail to sequester the resistance factor
in the peroxisome matrix than in cells with normal peroxisomes (Elgersma et ol.,

1993). In all, 17 complementation groups have been isolated in S. cerevisiae,
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indicating that assembly of peroxisomes is a genetically complex event.

Peroxisome assembly (pas) mutants in S. cerevisiae (for reviews see Kunau et
al., 1993; Hohfeld er al., 1992; Kunau and Hartig, 1992) can be divided into three
classes. Type I pas mutants have no detectable peroxisome structures. Type II mutants
have a few small peroxisomes, reminiscent of uninduced yeast and likely represent
mutants in which factors required for induction of peroxisomes are impaired or
absent. Type III mutants fail to assemble certain components but contain peroxisomes
which appear to be otherwise normal. To date, the descriptions of five complementing
genes in S.cerevisige have been p “'ished in detail.

PASI encodes a 117 kDa protein with two conserved domains identifying it as
a member of a growing superfamily of ATP-binding proteins (Erdmann ez al., 1991).
Kunau ez al. (1993) have suggested that this family be named the AAA family of
proteins (ATPases associated with diverse cellular activities). Other members of this
family include Sec18p of yeast and mammalian NSF, which are invoived in
membrane fusion events of the secretory pathway. A recent addition to this family is
the MSPI gene of S. cerevisiae, whose product is located on the mitochondrial outer
membrane and whose overexpression affects intramitochondrial protein sorting (Nakai
et al.,1993). PASI homologues have been identified in Y. Lpolytica (PAY4; Nuttley
er al., 1993; Nuttley et al., 1994) and P. pastoris (PASS; Spong and Subramani,
1993).

The recently published sequence of the PAS8 gene of S. cerevisiae (not to be
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a member of the AAA family of ATPases with only one conserved nucleotide binding
motif (Voorn-Brouwer ef al., 1993). Interestingly, the assembly mutant that contains
the pas8 mutation was discovered in 2 collection of "wild type™ laboratory strains of
S. cerevisiae (van der Leij er al., 1952).

PAS3 encodes 2 48 kDa integral peroxisomal membrane protein with no
sequence similarity to other known proteins (Hohfeld er al., 1991). The bulk of the
protein is exposed to the cytosol as determined by protease digestion. Pas3p is not
related to the 47 kDa PMP of C. boidinii and is not observed in the protein profile of
purified peroxisome membranes of S. cerevisiae on stained gels (McCammon ez a.,
1989).

PAS2 encodes a protein of 21 kDa, the sequence of which places the protein in
the UBC (ubiquitin-conjugating) family of proteins (Wiebel and Kunau, 1992). A §-
galactosidase-pasZp fusion protein comigrated with intact peroxisomes (density=1.22
g-cm>) on sucrose density gradients and with Pas3p when expressed in an
uncomplemented Type I pes mutant strain (density= 1.14g-cm’®), suggesting that it is
associated with peroxisomal membranes even in strains which do not assemble matrix
components. A PAS2 gene altered by site-directed mutagenesis to alter a conserved
cysteine required for ubiquinating activity of other UBC proteins was unable to
complement the Type I pas2 phenotype suggesting that ubiquination provides some
type of signal required for assembly (Wiebel and Kunau, 1992).

As opposed to the general assembly defects described in the above mutants,
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the pas8 mutant of P. pastoris is capable of importing thiolase, whereas crher
enzymes of the peroxisomal matrix are cytosolic (McCollum et al., 1993) including
proteins which react with anti-SKL antiserum. The phenotype of pas8 suggests that
components of the import pathway mutually required by proteins with either PTS1 or
PTS2 targeting motifs remain intact (indicated by thiolase import) but that a
component required exclusively by PTS1-targeted proteins is defective. Consistent
with this view, PAS8 encodes a 65 kDa (possibly integral peroxisomal membrane)
protein which is capable of binding a synthetic PTS1 peptide ir vitro (McCollum et
al., 1993) and may be the putative PTS1 receptor molecule. The protein encoded by
PAS8 contains 7 imperfect repeats of a 34 amino acid sequence identifying itas a
member of the TPR (tetratricopeptide repeat) family of proteins. The pay32 mutant of
Y. lipolytica exhibits a phenotype identical to that of P. pastoris pas8. Sequencing
results indicate that the gene complementing pay32 also encodes TPR domain.s and
that it is likely a PAS8 homologue (Rachel K. Szilard, personal communication). In
S. cerevisiae the homologous defect is represented by the pas10 mutant, and the

PASIO gene is also a TPR protein (Van Der Leij er al., 1993).

1.10. FOCUS OF THIS THESIS
Analysis of the subcellular location of matrix proteins in both hur.an genetic
disorders and in yeast assembly mutants suggests that translocation of thiolase and the

majority of other matrix components are genetically distinguishable even though most
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assembly defects result in mislocalization of both. This suggests that translocation of
PTS1- and PTS2-targeted proteins is initated by separate events which probably
funne! into a common complex translocation machine which is composed of several
essential components.

The overall purpose of these experiments was to look at thiolase targeting in S.
cerevisiae. The first goal was to establish whether the yeast thiolase is targeted t0
peroxisomes by a PTS2 type signal. The second goal was to examine the strurtural
requirements of PTS2 in yeast. The third goal was to characterize what appears to be
a novel pathway for protein targeting and translocation involving the formation of

thiolase dimers in the cytosol prior to translocation of the oligomerized protein.



2. MATERIALS AND METHODS

2.1. CHEMICALS AND REAGENTS

agar

agarose

albumin (bovine serum)
ampicillin

antipain

8-mercaptoethanot

BioRad protein assay
cesium chloride
chymostatin

Coomassie Brilliant Blue (R-250)
cytochrome ¢ (horse heart)
dithiothreitol

EDTA

Ficoll’

GTG agarose

hydrogen peroxide (30%)
isopropyl B-D-thiogalactoside
leupeptin

L-leucine

L-methionine

L-histidine

L-lysine

MES

nitrocellulose (pore size-0.45um)
Nycodenz

oleic acid

ovalbumin

PANSORBIN

pepstatin A

peptone

salmon sperm DNA
Sephadex G-50 (medium)
sodium dithionite

titanium oxysulfate hydrate
Tris

Difco

BRL
Sigma
Sigma
Sigma
BDH
BioRad
BRL
Sigma
Gibco/BRL
Sigma
Sigma
Sigma
Sigma
FMC BioProducts
Sigma
Gibco/BRL
Sigma
Sigma
Sigma
Sigma
Sigma
Sigma
Schleicher and Schueli
Nycomed
Fisher Scientific
Miles
Calbiochem
Sigma
Difco
Sigma
Pharmacia
Sigma
Aldrich

BRL; Boehringer Mannheim

28
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Triton X-100 BioRad

Tween 20 Sigma

Tween 40 Sigma

X-gal GIBCO/BRL
X-ray film (X-AR) Eastman Kodak
yeast extract Difco

YNB (w/o amino acids) Difco

2.1.2. ENZYMES

Trypsin  Sigma

Thermolysin Sigma

Ribonulease A Pharmacia

Zymolyase 100T ICN

Zymolyase 20T ICN
3-hydroxyacyl-CoA dehydrogenase Boehringer Mannheim
lactate dehydrogenase Boehringer Mannheim

2.1.3. DNA MODIFYING ENZYMES

Calf intestinal phosphatase NEB

DNA ligase (T4) Gibco/BRL; NEB; Promega

Klenow fragment of DNA polymerase [  NEB; Pharmacia; Gibco/BRL
polynucleotide kinase (T4) Pharmacia

restriction endonucleases Gibco/BRL; NEB; Pharmacia; Boehringer

2.1.4. MULTI-COMPONENT SYSTEMS

ECL Amersham
rabbit reticulocyte lysate Promega
random primers labelling system Gibco/BRL
Sequenase DNA sequencing system USB

In vitro transcription kit Promega
Qaiex beads Qaiex

2.1.5. MOLECULAR WEIGHT STANDARDS

1 kbp DNA ladder Gibco/BRL
Prestained molecular Bio-Rad
weight markers -

1“C-Molecular weight standards Sigma

(14 o 70 kDa)
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2.1.6. IMMUNODETECTION REAGENTS

HRP-conjugated anti-rabbit IgG Amersham
AP-conjugated anti-mouse IgG Promega
AP-conjugated anti-rabbit IgG Promega

2.1.7. RAFIOCHEMICALS

]-protein A (>30 mCi/mg Amersham

total protein A, 0.1 Ci/pl)

[e-*P1-dATP (3,000 Ci/mmol, Amersham; ICN
10 pCi/ul)

L-[**S]-methionine (1151 Ci/mmol Dupont/ NEN
10 uCiful)

2.2. RECOMBINANT DNA TECHNIQUES
2.2.1. BACTERIAL STRAINS AND CULTURE CONDITIONS

All plasmids were amplified and maintained in E. coli strain DH5a (endA 1,
hsdR17(r¢my*), supE4d4, thi-1, recAl, gyrA, (Nal) reldl, A(lacZYA-argF)yien
(m80lacZ AM 15}; Hanahan, 1983). Competent cells were obtained from GIBCO/BRL and
transformed according to the suppliers instructions. The transformed cells were grown
in LB (1% tryptone, 0.5% yeast extract, 0.5% NaCl, and adjusted to pH 7.0 for addition

of agar for plates) supplemented with 75 to 150 ug-mL" ampicillin.

2.2.2. PREPARATION OF PLASMID DNA
Plasmid DNA from small amounts of cells (1.5 mL) was prepared by alkaline
lysis (Maniatus, 1982). Plasmids from 100 to 500 mL cultures were isolated by alkaline

lysis and purified on cesium chloride gradients (Maniatis, 1982) or on QTAEX™ columns
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according to the manufacturer’s protocol.

2.2.3. RESTRICTION ENDONUCLEASE DIGESTIONS

Restriction digests were performed according to the manufacturers' instructions
in supplied buffers or according to Hanish and McLelland (1988) in KGB buffer (5 X
KGB = 100 mM potassium glutamate, 25 mM Tris-actetate pH 7.6, 10 mM magnesium
acetate, 0.5 mM 6-mercaptoethanol, S0 ug-mL* BSA). Digestion products were analyzed
by electrophoresis in 1 to 4% agarose gels run in either TBE (89 mM Tris, 89 mM boric
acid, 2 mM EDTA) or TAE (40 mM Tris-acetate pH 8.0, 1 mM EDTA) containing 20

pg-mL? ethidium bromide.

2.2.4. PURIFICATION OF DNA FRAGMENTS

Fragments resulting from restriction endonuclease digestion were purified by
either of the following methods.
Electroelution

Restriction digestion products were separated on 1% Genetic Technology Grade™
agarose (FMC BioProducts) gels run in 1 x TBE. Bands for purification were excised
and placed in the well of an electroelution apparatus (IBI). The chambers were filled with
0.5 X TBE and the “elbows" were filled with 80 uL of 7.5 M ammonium acetate with
0.1 % bromopheno!l blue. After the DNA was completely eluted from the gel slice, 2 X

175 uL aliquots were recovered from the elbow and, precipitated with 1 mL absolute
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ethanol and 25 pg linear polyacrylamide as a carrier (Gaillard and Strauss, 1990).

QIAEX™ beads

Restriction digestion products were separated on 1% electrophoresis grade agarose
gels run in 1 x TAE. Gel slices were solubilized, and the DNA, bound to a solid support

material, was recovered exactly according to the manufacturer's instructions.

2.2.5. GENERATION OF BLUNT-ENDED DNA

As required, 5'-overhangs generated by restriction endonuclease digestion were
filled with the Klenow fragment of DNA polymerase in the presence of 100 uM dNTPs
at 37°C for 20 min (Ausubel er al., 1987). 3'-overhangs were polished by treatment with
T4 DNA polymerase I in the presence of 100 uM dNTPs at 11°C for 20 min (Ausubel

et al., 1987). Both enzymes were inactivated by heating at 75°C for 15 min.

2.2.6. LIGATION OF DNA FRAGMENTS

The concentrations of purified DNA fragments was estimated on ethidium
bromide stained agarose gels by visual comparison of band intensities with the intensity
of molecular size standards (1kbp ladder, BRL) of known concentration. Ligations of
fragments with distinct compatible ends were performed in 0.5 X KGB, 1 mM ATP, 1
U T4 DNA ligase with 10 to 50 ng of vector and 2 2- to 3-fold molar excess of insert
in 10 pL reaction at room temperature. When a restriction fragment with the same 3’

and 5' ends was to be inserted into 2 linearized vector, the vector was treated with calf
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intestinal phosphatase (CIP) to reduce unproductive reclosing of the vector upon itself.
For blunt-blunt ligations, vector fragments were treated with CIP and 100 to 200 ng of
vector was ligated together with a 5-fold molar excess of insert, 0.1 mM ATP and 5 U

of ligase at 16°C overnight.

2.2.7. SEQUENCING OF DNA

Sequencing reactions were performed on double stranded templates (Zhang ez al.,
1988) by the dideoxy chain termination method (Sanger et al., 1577) using the Sequenase
II™ system (United States Biochemicals) with [«-**P]-dATP 1o label. Reactions were run
on 5% Long Ranger™ gels (J.T. Baker). A single loading was satisfactory for reading
sequences required in these experiments. Gels were dried onto Whatman 3MM paper and

exposed to X-ray film overnight at room temperature.

2.2.7. LABELLING OF DNA PROBES

DNA fragments were radiolabelled with [a-*P}-dATP using a random primers
labelling kit (BRL) and the Klenow fragment of DNA polymerase I. Unincorporated
labelled nucleotide was removed by centrifugation over a column of Sephadex G-50 in
TE pH 8.0 with a bed volume of 1 mL (Maniatis ez al., 1982). Incorporation of label

was assessed by liquid scintillation counting.
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2.2.8. SOUTHERN BLOT ANALYSIS

Southern blot analysis (Southern, 1975) was used to detect diagnostic genomic
DNA fragments in yeast strains with disrupted thiolase genes. Yeast strains were grown
in YEPD (Table 3). Washed cells were converted to spheroplasts with zymolyase, and
briefly lysed with glass beads in a buffer consisting of 10 mM Tris-HCI pH 8.0, 10 mM
EDTA, 100 mM NaCl, 1% SDS and 2% Triton X-100. Cell debris was removed by
centrifugation, and the supernatant was extracted once with phenol/chloroform/isoamyl
alcoho! (50:49:1) and once with chloroform/isoamyl alcohol (24:1). Nucleic acids were
precipitated with 2.5 volumes of ethanol and 0.1 volume of 3 M sodium acetate pH 5.
The pellet was dried and dissolved in TE 8.0 with 20 pg-mL™* RNase A and incubated
for 3 h at 37°C. The DNA solution was re-extracted and precipitated. The final pellet
was redissolved in TE pH 8.0, and DNA content was determined by UV absorbance at
260 and 280 nm.

20 pg of yeast genomic DNA was subjected to restriction endonuclease digestion
under conditions that favoured complete digestion. 5 ug of digested DNA was subjected
to electrophoresis on 1% agarose. The gel was swined with ethidium bromide and
photographed. The gel was exposed for § min on 2 UV transilluminator to nick DNA
strands. The DNA was denatured by soaking the gel in 1.5 M NaCl, 0.5 M NaOH for
30 min followed by neutralization in a few changes of 1.5 M NaCl, 0.5 M Tris-HC] pH
7.5. The DNA was transferred onto nitrocellulose by capillary action in § X SSC (1 X

SSC = 15 mM trisodium acetate pH 7.0, 150 mM NaCl). DNA was fixed onto the
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nitrocellulose by UV cross-linking (0.12 J.cm®) using a Stratalinker™ (Stratagene). Blots

were probed as described in section 2.2.10.

2.2.9. COLONY HYBRIDIZATION

Occasionally, bacterial colonies were screened for the presence of recombinant
plasmids essentially as described by Hanahan and Meselson (1980). Bacterial colonies
were lifted onto nitrocellulose filters and placed, colony side up, on 1 mL puddles of 0.2
M NaOH (repeated once), 1 M Tris-HC! pH 7.5 (repeated once) and 1.5 M NaCl, 0.5
M Tris-HCl pH 7.5 (repeated once). The filters were briefly washed in 1 X SSC to
remove debris, and DNA was fixed to the nitrocellulose by UV crosslinking.

Hybridization is described in the following section.

2.2.10. HYBRIDIZATION OF LABELLED PROBES

The method described was used for either Southern blot analysis or colony
hybridization. Non-specific binding sites on nitrocellulose were blocked by incubation
with hybridization solution (1.25 X SSC, 0.16 X Denhardt’s solution [1 X Denhardt's
solution = 0.1% Ficoll, 0.1% polyvinylpyrolidone, 0.1% BSA], 0.001% SDS, 20 mM
sodium phosphate pH 7.0, 4 pg-mL"* denatured sheared salmon sperm DNA) in a sealed
bag for not less than 3 h at 65°C. Just prior to use, labelled probes were denamred by
boiling for 10 min followed by rapid cooling on ice. The denatured probe was diluted

to 1 x 10° dpm-mL™! in hybridization solution containing 30% (v/v) deionized formamide.
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Hybridization was carried out at 50°C for not less than 3 h. Blots were washed for 4 X
10 min in 1 X SSC at 50°C. Hybridization was detected by exposure of the blot to X-ray

film (Kodak) or to a phosphor storage screen (Molecular Dynamics).

2.3. PLASMIDS
2.3.1. pRS PLASMIDS

Low-copy number vectors (pRS313 and pRS315) include CENG6 and ARS4
sequences required for inheritance and replication in S. cerevisige and selectable markers
HIS3 and LEU2 respectively (Sikorski and Hieter, 1989). Specifically, ARSs
(autonomously replicating sequences) contain origins of replication which function in
yeast and allow the plasmid to be replicated during the S phase of mitosis. CEN
(centromeric) sequences appear to be involved in inheritance of newly replicated plasmids
during anaphase. High-copy number vectors (pRS423 and pRS425; Christianson er al.,
1992) contain sequences derived from the 2 pm circle. The 2 um circle element confers

a high-copy number phenotype with 20 or more copies of the plasmid per cell.

2.3.2. §S. CEREVISIAE ACYL-CoA OXIDASE PROMOTER

It was desirable that the genes used in these studies would be expressed in a
fashion is concomitant with the formation of the target organelle. All coding regions were
constructed downstream from a promoter encompassing nucleotides -2 to -454 of the

POX1 gene which encodes §. cerevisiae peroxisomal acyl-CoA oxidase (Dmochowska
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et al., 1990). This region includes two cis-acting elements which are required for full
regulation of transcription of downstream sequences in response o growth on various
carbon sources (Einerhand er al., 1991; Wang et al., 1992; Simon er al., 1992). The
distal element is a URS (upstream repressor sequence) at -423 to -430 with the sequence
5'.AGGGTAAT-3' and is primarily essential for repression of transcription during
growth on glucose. The proximal element is a UAS (upstream activating sequence) with
the sequence 5'-CGGCGATTA-3' corresponding to the consensus sequence 5'-
CGGNNNTNA-3", which is required for full induction of transcription during growth

on oleic acid.

2.3.3. pSG524 AND pSG522

These plasmids (Fig. 2) were a gift from Dr. Suresh Subramani and have not been
described in detail elsewhere. The thiolase gene was amplified by the polymerase chain
reaction (PCR) using the following synthetic oligonucleotides:
(A) 5'-GGGGATCCGCTAGCCATGTCTCAAAGACTACAAAGT-3’
(B) 5'-CCTCTAGACTCGAGAAATAATGAAAATGGAA-3'
The oligonucleotide A was designed to introduce BamHI and Nhel sites immediately
upstream of the initiation codon and to convert some of the wild type T at position +4
(underlined in nucleotide A) to G, creating a novel Ncol site at the initiation codon. The
oligonucleotide B was designed to introduce Xkol and Xbal sites at a location in the 3'

untranslated region of the thiolase gene 119 bp downstream of the terminatior codon.
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Figure 2. Structure of plasmids pSG524 and pSG522 and construction of pSCTAN. The
details of the coastruction of pSG522, pSG524, and pSCTAN are provided in the text.
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PCR products were subcloned as BamHI-Xbal fragments into a vector consisting
of 2 pRS31S backbone (AKS4, CENG6, LEU2) and the A OX promoter described above.
pSG524 contains the unmcdified thiolase coding region while pSG522 contains the
thiolase coding region with the novel Ncol site at the initiation codon and which converts
the second codon from one encoding Ser to one encoding Ala.

The structure of these two plasmids was well suited to the construction of
passenger proteins to be expressed either as an unfused control or as a fusion with the
N-terminal 16 amino acids of S. cerevisiae thiolase (SCT) containing the putative PTS2

targeting motif.

2.3.4. CONSTRUCTION OF pSCTAN

The plasmid pSG522 was digested with Ncol and recircularized by ligation. This
action creates a plasmid (Fig. 2) which encodes a thiolase which initiates translation at
Met16 and was designated as pSCTAN to signify that the thiolase encoded by this

plasmid is N-terminally truncated.

2.3.5. DIHYDROFOLATE REDUCTASE-SCT N-TERMINUS FUSION

Plasmid 35-2 is based on pSP73 and contains the coding region of a modified
mouse dihydrofolate reductase (DHFR) cDNA with a Hincll site permitting the formation
of a blunt-ended DNA fragment at nucleotide +6 (R.A. Rachubinski, personal

communication). Plasmid 35-2 was digested with Ncol, end-repaired with Klenow
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polymerase and religated to destroy this site in the 3'-untranslated region of the DHFR
cDNA. Synthetic DNA linkers (NEB) with the sequence 5'-CAGCCATGGCTG-3’
containing an Ncol site were ligated into the Hincll site creating the plasmid pDHFRN.
pSG524 and pSGS22 were digested with Hindlll and end-repaired with Klenow
polymerase, then digested to completion with Ncol and the vector backbones purified.
pDHFRN was digested with Ncol and Smal, and the purified DHFR coding region (187
amino acid residues) was ligated into the prepared vectors. The recombinant plasmid
derived from pSG524 was designated pPDHFRSCTN-AQX, and the plasmid derived from

pSG522 was designated pDHFRN-AOX (Fig. 3).

2.3.6. CHLORAMPHENICOL ACETYLTRANSFERASE-SCT N-TERMINUS FUSION

The plasmid YEpCAT-PGK is a YEpl3-based plasmid with the E. coli
chloramphenicol acetyltransferase (CAT) éene under the regulation of the S. cerevisiae
phosphoglycerate kinase promoter (J.D. Aitchison, personal communication). The CAT
gene was cloned into a Bg/Il site in the PGK promoter construct as a BanHI fragment
including 33 bp of 5'-untranslated and 86 bp of the 3'-untranslated region of CAT.
pSG524 and pSGS522 were digested to completion with Neol, end-repaired with Klenow
polymerase, further digested with Hindlll and the vector fragment purified.
YEpCAT-PGK was digested with Pvull and Hindlll, and the fragment containing the
coding sequence from the codon for Leu39 of CAT and including 450 bp of 3'-

untranslated region of the PGK gene was purified. This insert was ligated into pSG524
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Figure 3. Construction of plasmids for the expression of DHFR and DHFR fused to the
N-terminus of thiolase. Details of DNA manipulations are given in the text. The plasmid
resulting from the insertion of the DHFRN fragment into the pSG522-derived vector was
designated pDHFR.AOX and directs the oleic acid-inducible expression of the slightly
modified DHFR domain. The plasmid derived from pSG524 was designated
pDHFRSCTN.AOX and directs the expression of the DHFR domain fused to the N-
terminal 16 amino acids of S. cerevisiae thiolase.
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and was designated pCATSCTN-AOX. The construct fusing the truncated CAT gene to

the star: codon of SCT in pSG522 was designated pCATAN-AOX (Fig. 4).

2.3.7. CONSTRUCTION OF PTS1-PROTEIN A FUSIONS

Construction of the three plasmids described in this section was done in
collaboration with Dr. Fabiola Janiak working in the laboratory of Dr. David Andrews.
Synthetic oligonucleotides with GATC 5'- overhangs (see below) were dissolved in water
to a concentration of 0.25 mM. An aliquot of ecach oligonucleotide (250 nmol) was
phosphorylated with polynucleotide kinase and ATP. Equal amounts of complimentary
oligonucleotide pairs were heated to 75°C and slow cocled to room temperature to
promote annealing, The plasmid pSPUTKgGPrA (Janiak er al., 1994) was digested with
BamHI and dephosphorylated with calf intestinal phosphatase. Annealed duplexed
oligonucleotides were ligated into the prepared plasmid. Recombinant plasmids were
detected by restriction digest and then analyzed by dideoxy sequencing. The resulting
plasmids (Fig. 5) were designated pgGPrASTOP (generated with oligonucleotides 5'-
GATCTTATAGGCGGCGGCG-3' and 3-AATATCCGCCGCCGCCTAG-5'),
pgGPrASKL (generated with oligonucleotides 5'-GATCTTATCCAAATTATAG-3' and
3'-AATAGGTTTAATATCCTAG-5"), and pgGPrAAKI (generated with oligonucleotides
5'-CATCTTAGCAAAAATCTAG-3' and 3"-AATGCTTTTTAGATCCTAG-S").

In order to express these genes in yeast, the plasmid pSG522 was digested to

completion with Xbal and end-repaired with the Klenow fragment of DNA polymerase
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Figure 4. Construction of plasmids for the expression of CAT, truncated CAT, and CAT
fused to thiolase N-terminus. Details of DNA manipulations are given in text. The
plasmid pCATAN-AOX directs the oleic acid-inducible expression of a truncated CAT
with amino acids 1 to 38 deleted. The plasmid pCATSCTN-AOX directs the expression
of the same CAT domain fused with the 16 N-terminal amino acids of S. cerevisiae

thiolase.
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I. The entire coding region of S. cerevisiaé thiolase was eliminated by digestion with
Ncol, and the large vector fragment was gel purified. The three plasmids described above
were digested to completion with EcoRV and partially with Ncol and the fragments
corresponding to the larger of the two Ncol-Xbal coding regions generated by the partial
digest were purified and ligated to the prepared vector. Recombinants were checked for
insertion of the entire gGPrA coding region by restriction digests. These plasmids (Fig.
5) were designated pgGPrASTOP-AOX, pgGPrASKL-AOX, and pgGPrAAKI-AOX to
indicate that the fused and unfused passenger proteins would be expressed under the

regulation of the A OX promoter.

2.3.8. PROTEIN A-SCT N-TERMINUS FUSION

A plasmid encoding gGPrA fused to the putative N-terminal PTS2 of SCT was
constructed essentially as described in the section describing the subcloning of other
gGPrA constructs into the yeast expression vector, except that the Ncol-EcoRV fragment
of pgGPrASTOP was inserted into a vector derived from the plasmid pSG524. The
resulting plasmid was designated pgGPrASCTN (Fig. 5).

Versions of the four plasmids encoding the gGPrA passenger protein domain but
lacking the DNA encoding the 27 amino acids of glycoglobin were constructed by
digesting each plasmid with Neol and recircularizing the plasmid by ligation. These were

designated as pPrASTOP-AOX, pPrASKL-AOX, and pPrAAKI-AOX.
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Figure 5. Construction of plasmids for the expression gGPrA. Details of DNA
manipulations are given in the text. The plasmid pgGPrA-AOX directs the oleic acid-
inducible expression of the glycoglobin/Protein A domain. Plasmids pgGPrASKL-AOX,
peGPrAAKI-AOX, and pgGPrASCTN-AOX are for the expression of the same domain
fused to the PTS1 motif of firefly luciferase, C. tropicalis multifunctional protein, and
the N-terminal 16 amino acids of S. cerevisiae thiolase respectively.
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2.3.9. CONSTRUCTION OF PTS2 MUTANTS

The following synthetic oligonucleotide was obtained from Dalton Chemicals:
5"-CTTGGATCCGCTAGCCATGTCTCAAagactacaaAGTATCAATcantgGTGGAGAGCGCCATGGCG-3'

The lower case letters represent positions where, in addition to the wild-type base
indicated, the synthesis reaction was "doped” with small amounts of each of the three
other nucleotides so that the predicted average composition at each position would be
90% wild-type base and 3.3% of each of the other three bases. The underlined letters
indicate a palindromic sequence of 10 nucleotides. The oligonucleotide was
phospnorylated with polynucleotide kinase and ATP, heated to 100°C, slow cooled to
room temperature and then further cooled to 4°C. The self-annealed oligonucleotide was
extended overnight at 16°C with 5 U of Klenow fragment in the presence of 2.5 mM
dNTPs and 10 uCi of [a-*2P]-dATP added as a tracer. Extension was continued for a
further 2 h at room room temperature with fresh dNTPs and fresh polymerase. The
reaction was extracted with phenol:chloroform:isoamyl alcohol and once with
chloroform:isoamyl alcohol and precipitated with ethanol in the presence of 300 mM
sodium acetate pH 5.0 and 10 pg linear polyacrylamide. The redissolved duplex was
digested with an excess of BanHI and applied to a 5% polyacrylamide slab gel. The gel
was stained with ethidium bromide, photographed, and then exposed to X-ray film. The
region around the 154 bp marker was excised and electroeluted. The resulting product
was digested with Ncol.

In order to obtain the lowest possible level of background religation of



47

incompletely digested vector, a 2 kbp BanHI-Ncol fragment of DNA was cloned into
pSCTAN between the BanHI and Ncol sites of that vector (pSCT2kbi). This plasmid was
digested with BanHI and Ncol and gel purified.

The plasmid was ligated together with the Ncol-BamHI digested oligonucleotide
duplex. This action replaces the normal coding sequence of thiolase with the sequence
~ generated by the synthetic oligonucleotide from immediately upstream of the initiation
codon to base pair +47 of the thiolase coding region. All plasmids recovered from this
ligation contained inserts derived from the synthetic oligonucleotides, and 192 clones
were sequenced by the dideoxy method using the primer $'-CAATAACTACATCTT-3'
(Central Facility of the Institute of Molecular Biology, McMaster University)

complementary to bases +100 to +115 of the thiolase coding region.

2.3.10. CONSTRUCTION OF EPITOPE-TAGGED SCT

A pair of complementary synthetic oligonucleotides (5°-
CATGTACCCATACGACGTCCCAGACTACGCTGC-3' and 3°'-
ATGGGTATGCTGCAGGGTCTGATGCGACGGTAC-5' generating 5'-overhangs with
the sequence CATG) were phosphorylated and annealed as described above and ligated
to pSCTAN that had been digested with Ncol and dephosphorylated using calf intestinal
phosphatase. Recombinant plasmids were detected by restriction digestion and further
characterized by dideoxy sequencing and the ability to program the expression in yeast

of an epitope-tagged protein of the appropriate molecular size as determined by
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immunoblotting of cell extracts.

2.4. YEAST METHODS
2.4.1. CULTURE CONDITIONS

| The compositions of media used to culture various yeast strains are given in Table
3. Yeast strains not containing plasmids were maintained on YEPD agar. Yeasts
transformed with plasmids were selected and maintained on YNBD agar appropriately
supplemented (Rose et al., 1988). YNO agar was used to assess growth on oleic acid as
a carbon source (Erdmann er al., 1989). YNO was also used as a liquid medium for cell-
labelling experiments. SCIM (Saccharomyces cerevisiae Induction Medium) was used in
experiments in which induction of peroxisomes and significant growth of the culture were

required (Lewin ez al., 1990).

2.4.2. CONSTRUCTION OF THIOLASE-DEFICIENT STUD STRAIN

In order to express SCT PTS2 mutants in a background deficient in cndogeﬁoﬁs
thiolase, a potl::URA3 construct was made (Fig. 6) and used to obtain the STUD
(Saccharomyces Thiolase URA3 Disruption) strain by homologous recombination. A
1040bp Hinf1 fragment of the URA3 geﬁe, including 154 bp of sequence upstream and
81 bp downstream of the open reading frame was excised from YCp50, made blunt with
Klenow fragment and subcloned into the Smal site of pPGEM7Zf(+). Plasmids containing

the URA3 gene in both orientations were recovered and were designated as
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Figure 6. Coustruction of plasmids used for the disruption of the thiolase gene, POTI,
by homologous recombination. Details of DNA manipulations are given in the text.
pSTUD3 and pSTUDS have the URA3 gene inserted into the same sites within the
thiolase coding region in opposite orientations.
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pGEMURA3-3 and pGEMURA3-5. In order to facilitate insertion of the URA3 gene into

the SCT coding region, a version of pGEM7Z{(+) with the Sphl site eliminated from the
.multiple cloning region was constructed by digestion with Sphl, blunting with Klenow
fragment, and religation. The resulting plasmid was designated pGEM7ASphl. The SCT
open reading frame was subcloned as a BamHI/Xbal fragment into pPGEM7ASphl. From
this plasmid a Sphl and Clal fragment was excised and replaced with Sphl/Clal fragments
from both pGEMURA3-3 and pGEMURAS3-5. The resulting plasmids, pSTUD3 and
pSTUDS, were digested with BamHI and Sspl and the resulting fragments were
electroporated into DL1.

Table 4. Yeast culture media.

Medium Composition Reference
YEPD* 2% bacto peptone Rose er al.. 1988
1% yeast extract
2% glucose
YNBD*? 0.67% YNB without amino acids Rose et al., 1988
2% glucose
YNO=® 0.67% YNB without amino acids Erdmann et al., 1989

0.05% yeast extract
0.5% (w/v) TWEEN 40
0.1% (wiv) oleic acid

sCcv® 0.67% YNB without amino acids Erdmann er al., 1989
0.5% yeast extract
0.5% peptone
0.1% glucose
0.5% (w/v) TWEEN 40
0.1% (w/v) oleic acid

2 Solid media made by adding agar to 1.5%. b Supplemented with 20 pg-mL™ histidine, 20 pg-mL™ vracil,
20 pg-mL lysine, 20 pg-mL* adenine, and/or 30 pg-mL” leucine as required.
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Uracil prototrophs selected from this transformation were streaked onto YNO
plates and incubated at 30°C for several days. Total DNA was prepared from yeasts that
failed to grow, digested with Sau3AI and subjected to Southern blot analysis. Strains with
appropriate patterns of bands on Southern blots were culured in SCIM and analyzed for
expression of thiolase by western blotting.

A similar strategy was used to obtain a thiolase knockout in the yeast strain
YPH102 which has a general defect for peroxisome assembly. YPHI102 was
electroporated with BamHI-Sspl fragments generated from pPGEMURA3-3, and colonies
capable of growth on minimal media without uracil were selected. Isolates were grown
in SCIM and glass bead lysates were assayed for the presence of thiolase by western
blotting. YPHSTUD-10, one of the thiolase-deficient isolates, was examined by Southern

blotting of total genomic DNA.

2.4.3. TRANSFORMATION OF YEASTS

Introduction of plasmid DNA was accomplished by one of two methods. Yeast
was electroporated essentially as described by Becker and Guarente (1991). Cells were
grown to mid-log phase in the appropriate medium and washed three times in distilled
water and once in 1 M sorbitol. Cells were resuspended in a minimal volume of 1 M
sorbitol, and 25 pL of this suspension was mixed with I pL of miniprep DNA. A 20 uL
aliquot of this mixture was subjected to a brief electrical pulse generating a field of about

7.5 kV-cm® in a microelectroporation chamber (BRL). Immediately following
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electroporation, the cells were diluted into 100 uL of ice-cold 1 M sorbitol and plated
onto selective YNBD agar plates.

Aliernatively, when the higher efficiency of electroporation was not required,
yeasts were transformed according to Elbe (1992). 1 to 2 pL of miniprep plasmid DNA
was mixed together with about 100 pg of sheared, denatured salmon sperm DNA in 250
pl. of PLATE (40% PEG 4000, 100 mM lithium acetate, 10 mM Tris-HCI pH 7.5, 1
mM EDTA). A scraping of cells from a streaked plate was transferred into this mixture,
vortexed and incubated overnight at room temperature. S0 puL, containing most of the

cells which settle overnight, was pipetted from the bottom of the tube and plated onto

selective YNBD agar plates.

2.4.4. PREPARATION OF TOTAL CELL LYSATES

Total cell lysates were prepared according to the method of Needleman and
Tzagoloff (1975). Cells were vortexed together with glass beads (400 mesh) in a buffer
consisting of 50 mM Tris-HCI pH 7.5, 50 mM NaCl, 0.1 mM EDTA, 0.1 mM ZnCl,.
1 mM phenylmethylsulfonyl fluoride was routinely added to the lysis buffer. However
some proteins of interest were apparently sensitive to proteolytic activity during lysis. In
these cases a cocktail of protease inhibitors including 0.5 U-mL" aprotinin, 2.5 pg-mL’
chymostatin, 2.5 |.1g-mL‘.l pepstatin, 2.5 pg-mL™* antipain, 2.5 pg-mL"? leupeptin, 4
pemL! TLCK, 2.5 mM NaF, and 1 mM PMSF was added to the buffer. When

required, protein concentration was assayed by the dye-binding method of Bradford
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(1976) using ovalbumin as a standard and a commercially available dye reagent (BioRad).

2.4.5. SUBCELLULAR FRACTIONATION OF YEAST

Peroxisomes were isolated from S. cerevisiae essentially as described in Lewin
et al. (1990). Unless otherwise indicated operations were carried out at 4°C. Cells
cultured in SCIM were collected and washed three times in distilled water at room
temperature. The washed cells were resuspended at a density of about 0.5 gmL™ in
zymolyase digestion buffer (0.5 M XCI, 5 mM MOPS pH 7.2, 10 mM Na,SO;, and
including protease inhibitors) containing either 0.25 mg-mL™ zymolyase 100T or 0.5
mg-mL™* zymolyase 20T and digested for 30 min to 1 h with gentle agitation at 30°C to
generate spheroplasts. Spheroplasts were collected by centrifugatior at 2,000 x g for 8
min and resuspended at 0.5 g-mL™ in disruption buffer (5 mM MES pH 6.0, 0.5 mM
EDTA, 0.6 M sorbitol, 0.1% (v/v) ethanol), usually with protease inhibitors present. The
cells were homogenized with 10 to 15 strokes of a Potter-Elvehjem homogenizer, and the
homogenate was cleared of cell debris and nuclei by centrifugation at 1,000 x g for 10
min. This postnuclear supernatant was centrifuged at 20,000 x g for 20 min to yield a
supernatant enriched for cytosolic proteins and a pellet enriched for organelies.

The pellet was drained and rinsed with disruption buffer and then resuspended in
a small volume of disruption buffer as gently as possible. The resuspended pellet was
layered onto a discontinuous density gradient consisting of steps of 0.5 mL 50%, 0.7 mL

35%, 2.5 mL 25% and 1.1 mL 17% Nycodenz™ in disruption buffer and centrifuged



54

in 2 Beckman VTi65 rotor at 135,000 x g for 60 min at 4°C. Gradients were fractionated
using a peristaltic pump. Fractions of about 250 to 500 uL were collected. The density
of fractions was determined by refractometry or calculated by measuring the mass and
volume of each fraction.

For rapid analysis of large numbers of strains which did not require further
fractionation of the organellar pellet, a reduced scale procedure was employed. 10 mL
cultures were harvested, washed and spheroplasted as above using proportionally smaller
volumes of buffers. The spheroplasts were usually resuspended in 0.5 mL of disruption
buffer and homogenized in a small tissue grinder (working capacity 2 mL). The
postnuclear supernatant was obtained following centrifugation at 1,600 x g for 10 min
in a 1.5 mL Eppendorf microfuge tube in a HB-4 swinging bucket rotor fitted with
adaptors. A 400 pL aliquot of the postnuciear supematant was layered onto a cushion
of 17% Nycodenz and centrifuged at 25,000 x g for 20 min in 2 TLA100.2 rotor. The
supernatant was carefully retrieved without disturbing the cushion which was then
decanted. The pellet was rinsed with disruption buffer and then resuspended in 400 pL

of disruption buffer.

2.4.6. ENZYME ASSAYS
Catalase
Catalase activity was measured essentially as described by Leighton er al. (1968).

Samples of up to 50 pL in volume were solubilized in 50 pL of 2% Triton X-100 and
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incubated on ice-water. 1 mL of substrate solution consisting of 20 mM imidazole buffer
pH 7.0, 1 mg:mL"* BSA, and 0.01% H,O, was added and incubated for 5 to 10 min on
ice-water. The reaction was terminated by the addition of TiOSO; in 2N H,SO, and the
yellow peroxy-titanium sulfate complex was quantitated by measuring the absorbance at
410 nm.

Cytochrome ¢ oxidase

Cytochrome ¢ oxidase, a marker enzyme for the mitochondrion, was measured
according to Cooperstein and Lazarow (1951). Triton X-100 (250 pL of 2 10% solution)
was added to 2.5 mL of substrate consisting of 0.38 mg-mL™* cytochrome ¢ in 0.3 M
ammonium acetate pH 7.4. A few crystals of sodium hydrosulfite (sodium dithionite)
were added to reduce the cytochrome c. The solution was vigorously aerated by shaking
until the cytochrome ¢ was oxidized slightly as signalled by a decrease in absorbance at
550 nm. Sample was then added, and the rate of cytochrome ¢ oxidation was measured
as a decrease in absorbance at 550 nm.

3-Ketoacyl-CoA Thiolase

Thiolase activity was measured essentially as described by Suebert ez al. (1968),
except that the assay was performed using 3-hydroxydecanoyl-CoA (a gift from W.-H.
Kunau, Bochum) so that enzymatic conversion of the enoyl-CoA derivative by enoyl-CoA
hydratase was circumvented. 3-hydroxydecanoyl-CoA was added to a final concentration
of 50 uM to a solution of 50 mM Tris-HCl pH 9.0, 50 mM KCl, 25 mM MgCl,, 50

pg-mL* BSA, 1 mM NAD, 1 mM sodium pyruvate, 25 mU pig heart 3-hydroxyacyl-



56

CoA dehydrogenase, 1.8 U rabbit muscle lactate dehydrogenase. The formation of 3-
ketodecanoyl-CoA was monitored spectrophotometrically as an increase in absorbance
at 303 nm, signalling the formation of a Mg** complex. Measurement of thiolytic activity
was initiated by the addition of sample previously solubilized on ice in 1% Triton X-100
and of CoASH to a final concentration of 150 uM. Activity was calculated using an

extinction coefficient of 13.9 cm*pmol* ( W.-H. Kunau, personal communication).

2.5. PROTEIN ANALYSIS
2.5.1. ELECTROPHORESIS

For routine analysis of proteins, a 10% discontinuous PAGE system was used
(Laemmli, 1970). When required, gels were stained with Coomassie blue and destained
to reduce background. For analysis of yeast strains expressing epitope-tagged thiolase
which is larger than wild-type thiolase by only 5 amino acid residues, a 7 to 15%

gradient resolving gel was employed.

2.5.2. ELECTROPHORETIC TRANSFER
For western blot analysis, gels were transferred to nitrocellulose as described in
Burnette (1981). After transfer nitroceliulose blots were blocked with TBST (20 mM

Tris-HCI pH 7.5, 150 mM NaCl, 0.05 % Tween 20) containing 1% powdered skim
milk.
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2.5.3. PRIMARY DETECTION REAGENTS

Rabbit polyclonal antiserum against S. cerevisiae thiolase was a gift from Dr. W.-
H. Kunau (Bochum, Germany) and was used at a 1:5000 dilution.

Rabbit polyclonal antiserum against mouse dihydrofolate reductase was from Dr.
Suresh Subramani (La Jolla, CA) and was used at a dilution of 1:1000.

Rabbit polyclonal antiserum against E. coli chloramphenicol acetyl transferase was
a gift from Dr. John P. Capone (Hamilton, ON) and additional sera were raised in this
laboratory against a maltose binding protein/chloramphenicol acetyl transferase fusion
protein. These sera were used at dilutions of 1:1000.

The 12CAS5 monoclonal antibody, which recognizes a 9 amino acid peptide
YPYDVPDYA from influenza hemagglutinin, was obtained as an ascites fluid from
Berkeley Antibody Company (Richmond, CA) and was used at a dilution of 1:15,000.

The original rabbit polyclonal antiserum (anti-SKL serum) against a synthetic
peptide corresponding to tae C-terminus of firefly luciferase chemically linked to keyhole
limpet hemocyanin (KLH) was a gift from Dr. S. Subramani (La Jolla, CA). An
additional serum was raised in this laboratory using an identical strategy as was employed
to make the original antiserum (Gould ez al., 19902). Anti-SKL serum has been shown
to detect several proteins known to terminate in SKL and several proteins of unknown
sequence which are also peroxisomal and probably end in SKL (Gould er al., 1990a;
Aitchison et al., 1992). Both sera were used at a dilution of 1:200.

After an incubation of not less than 1 h with primary antibody diluted in TBST,



58
the blots were subjected t0 3 X 10 min washes with TBST.

2.5.4. SECONDARY DETECTION REAGENTS AND DETECTION METHODS
Three methods were employed to visualize proteins detected by primary antibodies
used for Western blotting.

Enhanced Chemiluminescence (ECL)

Probed membranes were treated with either a horse radish peroxidase (HRP)-
conjugated donkey anti-rabbit IgG (Amersham) diluted 1:30,000 or HRP-conjugated
donkey anti-mouse IgG (Amersham) diluted 1:10,000. After washing, the nitrocellulose
was blotted on Whatman 3MM paper to remove excess buffer and treated with a
commercially available reagent (Enhanced Chemiluminescence or ECL™, Amersham).
Light given off by the reaction of H,0, and luminol catalyzed by HRP was detected by
exposing the blot to Kodak XOMAT-AR X-ray film for 1 sec to 60 min.

Alkaline Phosphatase

Nitrocellulose membranes that had been probed with primary antisera were
washed and probed with either alkaline phosphatase (AP)-conjugated-anti rabbit IgG(Fc)
(Promega) diluted 1:75,000 or AP-conjugated anti-mouse IgG(H+L) (Promega) diluted
1:10,000. The nitrocellulose was washed three times in TBST and once with AP buffer
(100 mM Tris-HCl pH 9.5, 100 mM NaCl, 5 mM MgCL). The blots were then
incubated in AP buffer with a 1:1 molar ratio of nitroblue tetrazolium (NBT) and

bromochloroindolyl phosphate (BCIP). When colour was deemed to have developed
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adequately the blots were transferred to TE pH 8.0 to stop the reaction.
13.Protein A

For quantitation by densitometry or by phosphor imager technology, blots were
probed with *I-Protein A (30 mCi-mg”; Amersham) at a concentration of 1 pCi-mL™*.
The blots were washed and exposed either to X-ray film (XOMAT-AR; Kodak) or to 2
phosphor storage screen (Molecular Dynamics).

Detection of yeast-expressed Protein A polypeptides on nitrocellulose blots

The detection of Protein A-based fusion proteins was a special case in that
primary antibody probes were not required because of the ability of Protein A on
nitrocellulose blots to bind IgG directly. Two reagents were used for this purpose. A
non-specific rabbit IgG fraction conjugated to AP (a gift from Dr. D.W. Andrews) was
used at a dilution of 1:200. Reactive bands were visualized as described above for other
AP-conjugated secondary antibodies. A second reagent was produced by radioiodination
of Protein A-purified rabbit IgG derived from preimmune rabbit serum. The final product
had a specific activity of 2.5 mCi-mg" and was used at a concentration of 5 pCi-mL.
Probed and washed blots were either exposed to X-ray film or to 2 phosphor storage

screen.

2.5.5. IN VITRO TRANSCRIPTION AND TRANSLATION
The BanHI/Xbal fragment containing the coding region of SCT was subcloned

between the BanHI and Xbdl sites in the plasmid pGEM7Zf(+) (Promega). Plasmid
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DNA was prepared by alkaline lysis followed by centrifugation through cesium chloride

(Maniatis er al., 1982) in order to avoid carrying over any RNase. RNA was transcribed
in the presence of cap analogue (NEB) using SP6 RNA polymerase and reagents supplied
in a kit (Promega) according to the manufacturer's recommendations. [ vitro transcribed
RNA was translated in nuclease-treated rabbit reticulocyte lysate (Promega) in the
presence of **S-methionine. Details of the method employed for simuitaneous detection

of **S-labelled and immunoreactive proteins is given in the legend of Fig. 17.

2.5.6. CELL LABELLING AND IMMUNOPRECIPITATION

Start-up cultures were grown in YNBD overnight. The cells were harvested by
centrifugation, wzshed with sterile water, transferred to YNO and induced for 6 h. About
3 to 5-10° cells were washed with water, transferred to 1 mL YNO with 100 uCi of ¥S-
methionine-10® cells and labelled for 15 min at 30°C. The labelled cells were washed
once with YNO containing 20 mM unlabelled methionine and incubated for a further 20
min at 30°C in this medium. The cells were processed as described previously (Section
2.4.5) for reduced-scale fractionation experiments with a cocktail of protease inhibitors
and 2 mM unlabelled methionine present in all buffers.

The 20,000 x g supernatant was brought to 10 mM Tris-HCI pH 8.5, 2.5 mM
EDTA 500 mM NaCl (solubilization buffer) and incubated for 30 min on ice. The
solubilized fractions were centrifuged at 100,000 X g for 20 min at 4°C. The

supernatants were split into equal aliquots, mixed with either 2.5 pl. of anti-thiolase
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serum or 10 pL of 12CAS ascites fluid and mixed gently for 1 h at room temperature.
The immune complexes were adsorbed with fixed Stgphylococcus aureus cells
(Pansorbin™; Calbiochem) with gentle agitation at room temperawre for 1 h. The .
complexes were pelleted by centrifugation and washed 4 times in solubilization buffer.
The final pellet was resuspended in 100 pL of SDS-PAGE sample buffer and boiled for
5 min. The immunoprecipitated proteins were run out on SDS-PAGE. The gels were

dried onto blotting paper and exposed to a phosphor storage screen.
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3. RESULTS AND DISCUSSION
3.1. THE N-TERMINAL 16 AMINO ACIDS OF S. CEREVISIAE ARE SUFFICIENT
TO DIRECT A CYTQSOLIC PASSENGER DOMAIN TO PEROXISOMES.
3.1.1. OVERVIEW

In thc absence of any specific targeting information that might direct 2 protein
to another location (compartment or membrane), a protein is retained in the cytosol
where it is synthesized. There are many examples in which the deletion or disruption
of the targeting information results in the modified protein remaining cytosolic while,
conversely, addition of a complete targeting signal to a cytosolic protein results in the
correct targeting of the "passenger” protein (Pugsley, 1990). This straightforward
concept leads directly to two related experimental endeavors with respect to thiolase
targeting. In order to demonstrate that the N-terminus of- thiolase is necessary for
peroxisomal targeting, a truncated version must be constructed and remain cytosolic
when expressed in yeast. To prove that the deleted region contains sufficient
information for targeting, it must be fused to a cytosolic passenger protein and be able
redirect that protein to peroxisomes. When applied to the N-terminus of S. cerevisiae
thiolase, neither experiment proved to be as straight forward as one might expect.

Initial results of the first of the two experiments seemed to indicate that deletion of the

64
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N-terminal 16 amino acids of thiolase only reduced the efficiency of targeting and did
not abolish it completely (see section 3.3). This observation was contrary to my
conviction that the region contained residues corresponding to the minimal PTS2 of rat
thiolase as determined by Swinkels et al. (1991). At an impass, I decided to address the
question of sufficiency of the thiolase N-terminus in the targeting of a passenger
protein. Two of three passenger domains that were fused to the N-terminus of thiolase

proved to be inherently uninformative while the third "worked" well.

3.1.2. DHFR PASSENGER DOMAIN

Mouse dihydrofolate reductase (DHFR) might be considered an ideal candidate
for serving as a passenger domain in that it has low molecular weight, is monomeric,
and has been well characterized in this capacity both in vivo and in vitro. The protein
has been fused to both endoplasmic reticulum and mitochondrial targeting signals and
has been shown to be targeted faithfully to these compartments. Particularly relevant
to this work the fact that DHFR had been successfully used as a passenger protein and
targeted to peroxisomes by the N-terminal PTS2 of rat liver peroxisomal thiolase in
transfected CHO cells (Osumi et al., 1991). DHFR is also ideal for the examination of
the role of protein structure in import. Binding of the folate analogue methotrexate
stabilizes the folded structure of DHFR and abolishes import (Eiders and Schatz, 1986;
Eiders ef al., 1988). These are among several key experiments that shape the widely

held notion that proteins must unfold for translocation across membranes.
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A drawback to the use of DHFR for fusion to a peroxisomal targeting signal is

the observation that DHFR with the SKL-COOH tripeptide fused to the C-terminus of
the protein was unable o be imported in vivo in yeast (Distel er al., 1992; Kragler et
al., 1993). The observation that fusions between DHFR and 6 or more amino acids of
the luciferase C-terminus could be imported into peroxisomes possibly indicates that the
tripeptide alone may be masked in the DHFR fusion protein and that a "spacer” of
additional amino acids sufficient to expose the targeting signal to the recognition and/or
translocation apparatus may be required.

The unfused DHFR passenger domain used in this experiment was modified by
the cloning strategy used so that the predicted N-terminal amino acid sequence was
Met-Ala-Gly-Pro... vs. Met-Val-Arg-Pro... found at the N-terminus of the protein
encoded by the unmodified cDNA. The DHFR-SCTN construct was made by fusion of
the codon for Metl7 of thiolase to the codon for the initiation codon of the modified
DHFR domain (see Fig. 3).

Subcellular fractionation indicated that both proteins were cytosolic (Fig. 7).
DHFR was not targeted by an N-terminal sequence containing the putative PTS2 motif

in in vivo experiments in yeast.
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DHFR DHFRSCTN

Figure 7. Western blot analysis of subcellular fractions of yeast strains expressing DHFR
constructs. 500 mL cultures of DL1[DHFR] and DL1[DHFRSCTN] were grown for 20
h in SCIM. The peroxisome fraction from the first Nycodenz™ gradient (PXM1) was
diluted in disruption buffer and re-isolated on a second gradient (PXM2). Samples of the
post-nuclear supernatant (PNS), 20,000 x g supernatart (SUP) and 20,000 x g pellet
(PEL) representing equivalent portions of each fraction as well as 10 pg of peroxisomal
protein, were resolved by SDS-PAGE cn a 10% gel. The proteins were transferred to
nitrocellulose and probed with anti-S. cerevisice thiolase and anti-mouse DHFR sera
followed by *I-Protein A. The blot was exposed to X-ray film at -70°C for 48 h with
an intensifying screen. Filled arrow = thiolase. Open arrow = DHFRSCTN. Grey arrow
= DHFR. A DHFR cross-reactive band is marked with an asterisk. M, of BioRad
prestained markers is given in kDa.
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3.1.3. CAT PASSENGER DOMAIN

E. coli chloramphenicol acetyl transferase (CAT) was considerzd to be a good
candidate for a passenger protein primarily because it has been used to demonstrate
peroxisomal targeting in mammalian cells fused to both a C-terminal SKL-COOH
(Gould er al., 1989) and the N-terminal PTS2 of rat thiolase (Swinkels ez al., 1991).

A drawback with respect to the utility of this protein was the observaton that
CAT fused to the C-terminal tripeptide of C. tropicalis trifunctional enzyme (HDE) was
not targeted to peroxisomes in S. cerevisiae even though this tripeptide was shown to
be necessary for targeting of HDE (Aitchison er al., 1991; Aitchison, 1992). The
oligomerization of CAT was thought to impede the import of CAT polypeptides into
yeast mitochondria in vivo (Nye and Scarpulla, 1990). A deletion in the CAT domain
required for tetramerization resulted in efficient import into mitochondria.

The strategy used to fuse the S. cerevisiae thiolase PTS2 to CAT resulted in the
deletion of a substantial portion of the N-terminus of CAT (see Fig. 4). A possible
benefit of this particular strategy is that it reduces the chance that the remaining portion
of CAT can fold into an oligomeric structure or into a structure which restricts the
interaction between the targeting signal and the import machinery. Analysis of the
expression of full-length CAT, CATSCTN, and CATAN indicated that the truncated
and fused proteins were synthesiz«d at their expected M, and at levels comparable to

that of the full-length protein (Fig. 8).
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Figure 8. Western blot analysis of expression of CAT constructs. 10 mL cultures of
DL1[CAT], DL1[CATAN], and DL1[CATSCTN] were grown in SCIM for 18 h. Equal
amounts of glass bead lysates were resolved by SDS-PAGE on a 10% gel. Proteins were
transferred to nitrocellulose which was probed with anti-CAT serum followed by HRP-
conjugated anti-rabbit IgG and detected by ECL™ with a 10 s exposure. Filled arrow =
full-length CAT. Open arrow = CATSCTN. Grey arrow = truncated CAT (CATAN).
M, of BioRad prestained markers is given in kDa.
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A detailed analysis of the subcellular localization of CAT polypetides in induced

cultures showed unexpectedly that the unfused truncated protein comigrated with the
peroxisomal fraction as did the CAT domain fused to the thiolase N-terminus (Fig. 9).
The nature of the apparent colocalization of CATAN and thiolase was not precisely
determined (imported vs. adherence to the peroxisomal membrane) although the two
proteins comigrated with peroxisomes on a second Nycodenz™ gradient and were
equally protected from protease digestion in the absence of detergents (not shown).
Inspection of the sequences "exposed” by the N-terminal truncation of CAT did not
reveal an obvious cryptic peroxisomal targeting signal. It may also be possible that the
expression of the truncated form of CAT resulted in the formation of protein aggregates
with a density similar to that of peroxisomes as was observed for various truncated
forms of catalase expressed at high levels from multi-copy vectors (Hartig et al., 1990).

In earlier work I had observed that full-length CAT was partially particulate
when expressed from a high-copy number plasmid vector. This sedimentable form of
CAT comigrated with mitochondria (Fig. 10, panel A). As indicated by immunoblotting
of Nycodenz™ density gradient fractions with antiserum specific for cytochrome ¢
oxidase subunit I1, the distribution of CAT with mitochondrial protein was precise (Fig.
10, panel B). When expressed on 2 low copy-number plasmid (YCp50) the level of
CAT protein was about 10-fold lower than when expressed from the high copy-numbes
vector YEp13 (Fig. 10, panel C) and was located entirely in the cytosolic fraction (Fig.
10, panel D).
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Figure 9. Western blot analysis of subcellular fractions of yeast strains expressing CAT
copstructs. 500 mL cultures of DL1{CATAN] and DL1[CATSCTN] were grown for 18
h in SCIM. Samples of the post-nuclear supernatant (PNS), 20,00 x g supernatant (SUP)
and 20,000 x g pellet (PEL), representing equivalent portions of each fraction, as well
as 10 pg of peroxisomal protein (PXM) and 10 pg of mitochondrial protein (MIT), were
resolved by SDS-PAGE on a 12.5% gel. Proteins were transferred to nitrocellulose
which was probed with anti-CAT and anti-S. cerevisiae thiolase sera followed by *I-
Protein A. The western blot was exposed to X-ray film at -70°C for 48 h with an
intensifying screen. Filled arrow = thiolase. Filled arrowhead = CATAN. Open
arrowhead = CATSCTN. M, of BioRad prestained markers is given in kDa.
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Figure 10. Western blot analysis of subcellular fractions of yeast strains overexpressing
full-length CAT. Panels A and B: A 500 mL culture of DL1{CAT]* was fractionated
into 20,000 x g supernatant and pellet. The pellet was further fractionated on a
discontinuous Nycodenz™ density gradient. Panel A. Equal portions of 20,000 x g
supernatant (SUP, lane 1) and 20,000 x g pellet (PEL, lane 2), as well as 10 pg of
peroxisomal (PXM, lane 3) and mitochodrial (MIT, lane 4) protein were resolved by
SDS-PAGE on a 10 % gel and proteins were transferred to nitrocellulose. Blots were
probed with anti-CAT serum followed by HRP-conjugated anti-rabbit IgG.
Immunoreactive bands were visualized by ECL™. Panel B: Equal portions of gradient
fractions were resolved by SDS-PAGE and the nitrocellulose blot was probed with anti-
CAT and anti-COXII sera. Panel C: Equal amounts of glass bead lysate prepared from
10 mL cultures of DL1[CAT]™ (H) and DLI[CAT] (L), and the level of expression of
CAT was assessed by western blotting as in panel A. Panel D: Equal amournts of 20,000
X g supernatant (S) and 20,000 x g pellet (P) were subjected to western blot analysis as
in panel A.
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The experiments with DHFR and CAT illustrate the perils of heterologous
protein expression in yeast and the unpredictability of each new experimental
endeavour.

3.1.4. GLYCOGLOBIN/PROTEIN A PASSENGER DOMAIN

A further opportunity to investigate peroxisomal targeting of passenger protein
domains in yeast arose as a result of a collaboration with Dr. F. Janiak and Dr. D.W.
Andrews from the Department of Biochemistry, McMaster University. These
investigators were primarily concerned with identifying 2 passenger domain which
would respond correctly to 2 variety of fused signals while remaining passive with
respect to the property being examined if used in the unfused form.

Protein A of S. aureus is an IgG-binding protein normally located anchored in
the outer membrane of the organism with the IgG-binding domain facing the
extracellular medium. An altered gene encoding a cytosolic version of Protein A lacking
the bacterial secretory signal and the membrane anchoring domain but retaining the
1gG-binding domains formed the bulk of the passenger protein. Unexpectedly, a fusion
between the signal sequence of preprolactin and the IgG-binding domain of Protein A
(PrA) was not translocated into the lumen of endoplasmic reticulum vesicles in in vitro
import experiments due to the absence of SRP-signal interaction (Janiak et al., 1994).
Because the sequence of amino acids located within a short distance from the cleavage
site hade been shown to influence co-transiational import in this type of assay (Andrews

et al., 1988) a spacer composed of the N-terminal 27 amino acids of a modified
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chimpanzee a-globin was inserted between the signal and the PrA domain. The
preprolactin signal fused to the modified passenger (gGPrA) was subsequently
recognized by SRP and the modified passenger domain was correctly translocated in to
the endoplasmic reticulum lumen (Janiak er al., 1994).

The goal of our collaboration was to explore the potential of gGPrA in in vivo
targeting experiments in yeast. Synthetic oligonucleotides were inserted downstream of
the Protein A IgG-binding domain coding region (see Fig. 5) resulting in recombinant
genes encoding at their C-termini the amino acid sequences ...Ile-Leu-COOH
(2GPrASTOP), ...Ile-Leu-Ala-Lys-Ile-COOH (gGPrAAXI), and ...Ile-Leu-Ser-Lys-Leu-
COOH (gGPrASKL).

Analysis of crude glass bead lysates of induced cultures revealed that proteins
of the expected M, were present (Fig. 11). However in a crude fractionation procedure
only the gGPrA proteins fused to PTS1 tripeptides were detected in the organellar pellet
and in the fractions enriched for peroxisomes (Fig. 12, panels B and C). The protein
expressed from the gGPrASTOP construct was difficult to detect or substantially
degraded unless a cocktail of protease inhibitors was included throughout the
fractionation procedure. When detected, it was found in the cytosolic fraction (Fig. 12,
panel A). A simple interpretation of this result is that endogenous proteases released
during the fractionation procedure have access to and can degrade the cytosolic form
of gGPrA in contrast to the PTS1-fused proteins which are protected from degradation

by the peroxisomal membrane. The cytosolic protein was detected in lysates because
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Figure 11. Western blot analysis of the expression of gGPrA. 10 mL cultures of DL1
(CON), DL1[gGPrASTOP], DL1[gGPrAAKI] and DL1{gGPrASKL] were grown in
SCIM for 18 h. Equal amounts of glass bead lysates were resolved by SDS-PAGE on a
12% gel. Proteins were transferred to nitrocellulose and the blot was probed with non-

specific AP-conjugated rabbit IgG and detected with NBT/BCIP. M, of BioRad prestained
molecular weight markers is given in kDa.
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Figure 12. Western blot analysis of subcellular fractions of yeast expressing gGPrA
constructs. 500 mL culmres of DLI1[gGPrASTOP], DLI1[gGPrAAKI], and
DL1{gGPrASKL] were grown for 20 h in SCIM. Equivalent proportions of the post
nuclear supernatant (PNS), 20,000 x g supernatant (SUP) and 20,000 x g pellet (PEL),
along with 5 pg each of peroxisomal (PXM) and mitochondrial (MIT) protein from
density gradient fractions, were resolved by SDS-PAGE on a 10% gel. The proteins were
transferred onto nitrocellulose. Panels A and B: Blots were probed with non-specifc AP-
conjugated rabbit IgG and developed with NBT/BCIP. Panel C: Blot was divided into
upper and lower segments. The upper segment was probed with anti-S. cerevisice
thiolase serum followed by I-Protein A. The lower segment was probed with non-
specific iodinated IgG purified from pre-immune rabbit serum. The blots were exposed
to X-ray film at -70°C with an intensifying screen.
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the procedure required to obtain lysates is very brief in comparison to that required to
homogenize and fractionate cells.

A more detailed examination of the subcellular location of gGPrASKL indicated
that it co-fractionates exactly with endogenous thiolasc on Nycodenz gradients (Fig.
13). This was equally true for gGPrAAKI (not shown) demonstrating for the first time
that these targeting signals are sufficient for peroxisomal targeting in S. cerevisiae.

The success of the experiments showing targeting of the gGPrA domain to
peroxisomes via the PTS1 pathway led directly to an experiment to determine if gGPrA
could also be routed to peroxisomes by the putative PTS2 in the S. cerevisiae thiolase
N-terminus. The codon encoding Metl7 of S. ¢ evisiae thiolase was fused to the codon
encoding the initiation Met of gGPrASTOP (see Fig. 5 for construction of
gGPrASCTN.AG:"). Expression in yeast resulted in the synthesis of a protein of the
expected M, which was colocalized with thiolase on fractionation (Fig. 14).

To ascertain whether gGPrA fusions were localized inside peroxisomes as
opposed to forming inclusion bodies with similar sedimentation properties or inserted
into the peroxisomal membrane, peroxisomes purified on Nycodenz™ gradients from
DL1[gGPrASKL] and DL1{gGPrASCTN]. Treatment with Triton X-100 was expected
to solubilize the peroxisomal membrane and release soluble matrix elements whereas
inclusion bodies would remain in a sedimentable particulate fraction. Treatment with
SDS was expected to solubilize even inclusion bodies. Treatment with Tris-HCl pH 8.5

causes the peroxisomal membrane to be removed intact and any proteins associated with
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Figure 13. Westen blot analysis of organellar pellet from yeast expressing gGPrASKL
fractionated on Nycondenz™ density gradients. The organellar pellet prepared from a S00
mL culture of DL1[gGPrASKL] grown for 18 h in SCIM was resuspended and organelles
separated on a discontinuous Nycodenz™ density gradient. An equal portion of each
fraction was resolved by SDS-PAGE on a 10% gel. The proteins were transferred to
nitrocellulose and the blot was divided into upper and lower portions. The upper portion
was probed with anti-S. cerevisige thiolase serum followed by HRP-conjugated anti-rabbit
IgG and detected with ECL™ with a 10 s exposure. The lower panel was probed with
nonspecific AP-conjugated rabbit IgG and detected with NBT/BCIP. Filled arrow =
thiolase. Open arrow = gGPrASKL.
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Figure 14. Westem blot analysis of subcellular fractions of yeast strain expressing gGPrA
fused to the thiolase N-terminus. 500 mL cultures of DLI1[gGPrASTOP] and
DLI1[gGPrASCTN] were grown for 18 h in SCIM. Equivalent proportions of the
postnuclear supernatants (PNS), 20,000 x g supernatants (SUP) and 20,000 x g pellets
(PEL), as well as 5 pg of peroxisomal (PXM) and mitochondriai (MIT) protein from
density gradient fractionation of the pellet from DL1[gGPrASCTN] cells, were resolved
by SDS-PAGE on a 10% gel. The proteins were transferred to nitrocellulose and the blot
was divided into upper and lower segments. The upper segment was probed with anti-S.
cerevisiae thiolase serum followed by '*I-Protein A. The lower panel was probed with
pre-immune iodinated rabbit IgG. The blots were exposed to X-ray film at -70°C.
Downward pointing arrowheads = thiolase. Upward pointing arrowheads = gGPrA and
gGPrASCTN. M, of BioRad prestained molecuiar weight markers is given in kDa.
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it should sediment during centrifugation. Treatment with carbonate should perform a
similar action and solubilize proteins that are peripherally associated with the
peroxisomal membrane. The results of these reatments are shown in Fig. 15.

Triton X-100 treatment released little thiolase over and above that observed in
the untreated peroxisomes, possibly because a fraction of thiolase forms 2 tight
association with the peroxisome matrix which may contain a cohesive core of proteins
(Hayashi et al., 1981; Alexson et al., 1985; Poole and Crane, 1992). The amount of
gGPrA solubilized by Triton X-100 alone was the same as that solubilized by Triton X-
100/SDS suggesting that the majority of the passenger protein is soluble in the
peroxisorhe and does not form inclusion bodies. All other treatments solubilized thiolase
and the majority of the gGPrA fusions.

Western blot analysis of treated peroxisomes from DL1{gGPrASCTN] show
isoforms of the gGPrA-fusion with slightly different molecular weights (Fig. 15) which
show different solubilization properties, particularly when trested with high pH
(treatments D and E). The origin of these apparent isoforms of gGPrASCTN is
unknown and they were not observed in untreated peroxisomes. Trichloroacetic acid
precipitation of the fractions to remove detergents and buffer components from the
samples did not alter the migration of these polypeptides on SDS-PAGE (not shown).

"The conclusions that can be drawn from this experiment are that gGPrA fusions
probably do not form inclusion bodies and are not stuck in or on the peroxisomal

membrane, nor do they associate strongly with other peroxisomal matrix elements.
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One of the possible reasons proposed for the inability of the PrA domain alone
to be competent for translocation in several in vitro experiments was that the addition
of the 27-amino acid segment, gG, influenced the folding state of the PrA domain
(Janiak ef al., 1994). In order to test whether the gG segment influenced peroxisomal
targeting of PTS1 and PTS2 fusions, each of the plasmids used in the in vivo targeting
experiments described above were digested with Ncol and recircularized with ligase.
This action created the vectors pPrASTOP, pPrASKL, pPrAAKI, and pPrASCTN from
which the DNA encoding gG was deleted.

When analyzed by subcellular fractionation no difference was observed between
the results obtained for PrA and gGPrA (Fig. 16). Therefore, if the gG segment
influences the conformation of the PrA domain, the difference in conformation does not
appear to influence targeting to peroxisomes in yeast.

Experimentally it has been demonstrated that the information for correct routing
of S. cerevisiae thiolase to peroxisomes is contained within the N-terminal 16 amino
acids which includes residues that are highly conserved among rat thiolase and a
number of other peroxisomal proteins thought to have PTS2 motifs (see Table 2). In
addition, gGPrA was shown to be a passive passenger protein, superior to both CAT
and DHFR in functionally displaying both C- and N-terminal targeting signals and
following the indicated translocation pathway with fidelity. The inclusion of the 27-
amino acid gG segment required for translocation competence in other targeting assays

had no influence on the translocation on the PrA domain to peroxisomes.
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Figure 16. Western blot analysis of subcellular fractions of yeast strains expressing PrA
unfused, and fused to PTS1 and PTS2 signals. 500 mL cultures of DL1[PrASTOP],
DL1[PrASKL], DL1[PrAAKI], and DL1[PrASCTN] were grown for 18 h in SCIM.
Equivalent proportions of post nuclear supernatant (PNS), 20,000 x g supernatant (SUP),
and 20,000 x g pellet (PEL) were resolved by SDS-PAGE on a 10% gel. The proteins
were transferred onto nitrocellulose. The blots were probed with anti-S. cerevisice
thiolase serum followed by AP-conjugated anti-rabbit IgG. The blot was also probed with
non-specifc AP-conjugated rabbit IgG The immunoreactive bands were dctectcd with
NBT/BCIP. M, of standards is given in kDa.
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3.2. UNLIKE PEROXISOMAL THIOLASES IN OTHER SPECIES, THE SIGNAL

SEQUENCE OF S. CEREVISIAE THIOLASE IS NOT CLEAVED

One of the distinguishing characteristics of peroxisomal thiolase compared to the
majority of other peroxisomal matrix proteins is that the protein is cleaved upon import
(Fujiki et al., 1984; Preisig-Muiler and Kindl, 1993; Nuttey ez al.,1994) and that the
targeting information is contained on the cleaved N-terminal segment (Swinkels ez al.,
1991). Glyoxysomal malate dehydrogenase which has an N-terminus resembling that
of thiolase is one of the few microbody proteins other than thiolase which is also
cleaved on import (Yamaguchi er al., 1987).

The primary role of cleavable presequences is to mediate the engagement of the
targeted protein with components of the translocation machinery which initiate import.
For proteins co-translationally translocated to the endoplasmic reticulum this process
is initiated by the interaction of the ribonucleoprotein signal recognition particle (SRP)
with the signal sequence as the nascent polypeptide emerges from the ribosome. For
mitochondrial targeting signals the presequence may interact with cytolsolic factors such
as the presequence binding factor (PBF; Murakami et ol., 1988; Murakami and and
Mori, 1990).

An additional role for the cleavable presequence is that it may inhibit folding of
the preprotein prior to translocation. In vitro experiments in which the folding kinetics
of preproteins versus their mamre counterparts provide evidence, for example, that 8-

lactamase precursor folds 15 times more slowly than the mature protein (Laminet and
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Plickthorn, 1989). Similarly the presence of leader sequence slows the folding of

ribose- and maltose-binding proteins by a factor of 3 (Park er al., 1988). Interactions
between the leader sequence and the bulk of the protein that modulates folding can
favour the retention of an import-competent conformation of post translationally
translocated proteins until translocation has occurred. The cleavage of the translocated
protein then favours the folding of the mature protein into its final active conformation.

In order to determine if the peroxisomal thiolase of S. cerevisige was processed
during import to peroxisomes, the full-length coding region was transcribed and
translated in a cell-free rabbit reticulocyte lysate and the translation product compared
to authentic thiolase from purified peroxisomes (Fig. 17). No difference in the size of
the thiolases could be seen in this test although the cleavage of a small number of
amino acids would probably not be detected.

The possibility remained that the strain used in these stdies (DL1) was
defficient in the activity responsible for thiolase cleavage in other organisms. Therefore
the thiolase in a panel of S. cerevisiae strains with various genetic backgrounds was
analyzed by SDS-PAGE and western blotting. Again, with respect to molecular size,
thiolases from each strain were essentially identical to that of DL1 (Fig. 18).

An important observation in this experiment is that the thiolase of the yeast
strain YPH1 was found entirely in the cytosolic fraction. The same fractions probed
with anti-SKL antiserur: indicated that several proteins which react with this serum and

which are peroxisomal (Aitchison et al., 1992) were also mislocalized to the cytosolic
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Figure 17. SDS-PAGE analysis of ir vivo and in vitro synthesized thiolase. mRNA for
S. cerevisige thiolase was prepared by in vitro transcription with SP6 RNA polymerase
and translated in vitro in rabbit reticulocyte lysate in the presence of **S-methionine. 5
pg of purified peroxisomes from DL1 (PXM) and a 5 pL aliquot of the translation
reaction (IVT) were resolved by SDS-PAGE on a 10% gel. The proteins were transferred
onto Nytran™ and the blot was probed with anti-S. cerevisiae thiolase serum followed
by *[-Protein A. The blot was dried and soaked in 10% PPO dissolved in toluene,
dried, and exposed to X-ray film at -70°C. The M, of “C-molecular weight markers is
given in kDa.
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Figure 18. SDS-PAGE analysis of thiolase from diverse strains of laboratory yeasts. 10
mL cultures of the indicated strains were grown in SCIM. An equivalent portion of each
20,000 x g supernatant (S) and 20,000 x g pellet (P) was resolved by SDS-PAGE on a
10% gel. The proteins were transferred to nitrocellulose and the blots were probed with
anti-S. cerevisize thiolase serum followed by AP-conjugated anti-rabbit IgG.
Immunoreactive bands were detected with NBT/BCIP.
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fraction suggesting that this yeast has a global peroxisomal assembly defect (Fig. 19).
A previous observation of a peroxisome assembly defect in the laboratory strain
*YP102" has been reported (Van der Leij et al., 1992). Recently the sequence of the
PAS38 gene rasponsible for the peroxisome assembly defect in this yeast was published
(Voorn-Brouwer et al., 1993). The strain was reported to have the same genotype as
YPH102, a strain derived from YPHI by Sikorski and Hieter (1989) and was probably
consistently misnamed in these reports. It is likely that all the strains derived from
YPHI1 exhibit the pas8 phenotype.

The observation that thiolase in a peroxisome assembly mutant of S. cerevisiae
has the same subunit molecular size as in the strain with normal peroxisome assembly
characteristics stands in contrast to the Y. lipolytica pay4 strain in which the cytosolic
thiolase is clearly of a higher molecular weight than the peroxisomal thiolase in the wild
type strain (Nuttley et al., 1994). Two possibilities can account for this. Either S.
cerevisiae has lost the processing capability, or the sequence of S. cerevisige thiolase
corresponding to the cleavage site has diverged from its ancestral prototype such that
it is no longer recognized as a substrate for the cleavage event.

Nothing is currently known about the cleavage activity which processes
preproteins in the peroxisomal matrix. The glyoxysomal malate dehydrogenase (gMDH)
from watermelon is processed in plant glyoxysomes (Yamaguchi ez al., 1987; Gietl,
1990) and is similar to peroxisomal thiolases with respect to the PTS2 consensus

sequence (see Table 2). When expressed in H. polymorpha, gMDH is targeted to
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Figure 19. Western biot analysis of subcellular fractions from normal (DLI) and
peroxisome-deficient (YPHI) laboratory strains. 10 mL cultures of DL1 and YPH1 were
grown in SCIM for 20 h. Equal portions of the 20,000 x g supernatant (S) and 20,000
x g pellet (P) were resolved by SDS-PAGE on 10% gels and proteins transferred to
nitrocellulose. Blots were probed with either anti-S. cerevisiae thiolase or anti-SKL sera
followed by AP-conjugated anti-rabbit IgG. Immunoreactive bands were visualized with
NBT/BCIP. Major SKL-reactive bands (96 and 54 kDa) are indicated by open arrows.
M, of BioRad molecular weight standards is given in kDa.
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peroxisomes, is enzymatically active, but is not processed into its mature form {van
der Klei ez al., 1993).

To summarize, cleavage of thiolase was not detected in S. cerevisiae. The
absence of cleavage in S. cerevisige raises interesting questions as to the distribution

of this trait in other yeasts and other eukaryotic lineages.

3.3. THIOLASE-DEFICIENT STRAIN OF S. CEREVISIAE: STUD

In order to accurately ascertain the targeting function of thiolase with amino acid
substitutions within the PTS2, a thiolase deficient strain of S. cerevisiae was constructed
using homologous recombination. The benefit of using such 2 strain is two-fold. Fir#t,
The deletion of the chromosomal gene encoding S. cerevisiae thiolase would allow the
analysis of subcellular distribution of plasmid-encoded thiolases by western blot analysis
without interference from the chromosomally encoded polypeptide. Secondly, because
the B-oxidation of fatty acids in S. cerevisiae is restricted to the peroxisome (Kawamoto
et al., 1978; Kunau et al., 1988), deletion of the peroxisomal thiolase should result in
a recessive negative phenotype— the inability to grow on oleic acid as the sole carbon
source. Plasmid encoded thiolases that are correctly targeted to peroxisomes should
have 2 dominant effect and restore growth on oleic acid, whereas those which are
mistargeted should not. The two methods of analysis should yield complementacy
results.

Randomly selected uracil prototrophs were further tested for their ability to grow
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on oleic acid and to express chromosomally encoded thiolase (not shown). Two strains
STUD3.4 and STUDS.8 differing only in the orientation of the URA3 gene were
selected (STUD = Saccharomyces cerevisiae thiolase URA3 disruption).

Southern blot analysis of genomic DNA from strain STUD3.4 (this strain was
used in subsequent experiments and was designated STUD for simplicity) indicated the
presence of Sau3Al fragments which hybridize with both S. cerevisiae thiolase coding
region and URA3 probes corresponding to the 943 and 501 bp predicted for the URA3
gene inserted into the chromosomal POTI gene encoding thiolase (Fig. 20, lanes 4 of
both blots).

Strains STUD3-4 and STUDS-8 were transformed with pSG524, pSG522, and
pSCTAN and the expression of thiolase was analysed by western blot in total cell
lysates (Fig. 21). As expected thiolase was detected only in the parental strain DL1 and

in plasmid-containing transformants.
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Figure 20. Southern blot amalysis of genomic DNA isolated from parent strains and
thiolase knockout strains. Genomic DNA was prepared from 10 mL cultures of DL1
(lane 3), STUD (lane 4), YPH102 (lane 5), and YPHSTUD (lane 6) grown in YEPD.
The plasmids pSGS24 (lane 1) and pSTUD3.3 (lane 2), along with 20 ug of genomic
DNA were digested with Sau3AI and resolved by electrophoresis on 2 1% agarose gel
(ethidium bromide-stained gel shown). Blots were probed with labelled DNA specific for
thiolase (SCT) or the URA 3 sequence. Molecular sizes of 1 kb ladder markers are given
in bp. Arrows highlight diagnostic fragments which hybridize with both probes.
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Figure 21. Western blot analysis of thiolase expression in STUD. 10 mL cultures of
STUD, STUD[524], STUD{522], and STUD{AN] were grown for 18 h in SCIM. Glass
bead lysates were resolved by SDS-PAGE on a 10% gel. The proteins were transferred
onto nitrocellulose and the blots were probed with anti-S. cerevisige thiolase serum
followed by HRP-conjugated anti-rabbit IgG antibody. The immunoreactive bands were
visualized by ECL™ with a 10 s exposure on X-ray film. Filled arrow = full-length
thiolase. Open arrow = truncated thiolase. M, of standards is given in kDa.
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3.4. SUBSTITUTION OF CONSERVED RESIDUES WITHIN THE PTS2 OF

THIOLASE INFLUENCES THE EFFICIENCY OF IMPORT INTO PEROXISOMES.

A comparison of peroxisomal thiolases from several sources reveals a
conservation amongst all thiolases of certain amino acids found within the 11-amino
acid peroxisomal targeting signal of rat thiolase (see Table 2). In the S. cerevisiae PTS2
region, residues which are identical in mammalian and yeast peroxisomal thiolases are
Argd, LeuS, and Leul2. Hisll and GlIn6, which are identical among S. cerevisiae
thiolase and the mammalian thiolases and conservatively substituted in the thiolases
from other organisms, were also targeted for mutagenesis. The importance of these
amino acids in targeting S. cerevisiae thiolase to peroxisomes was determined by
saturation mutagenesis of the corresponding codons, followed by expression of the
mutant thiolase genes in vivo.

Subeellular localization of mutant thiolases was determined using two assays.
The first was a functional assay involving growth of S. cerevisige on oleic acid-
medium. The thiolase gene knockout strain STUD and the STUD strain carrying a
plasmid expressing the gene coding for Al-16 thiolase cannot grow on oleic acid-
medium, while the STUD strain carrying a plasmid expressing the wild->pe thiolase
gene can grow on this medium (Fig. 22). Therefore, growth on oleic acid-medium
necessitates correct targeting of thiolase to peroxisomes. The second assay is
biochemical, involving subcellular fractionation followed by immunodetection with anti-

thiolase antibodies (Fig. 23).



Figure 22. Growth of STUD complemented by wild-type thiolase and thiolases with
muttations in the PTS2 region. Cultures of the indicated strains were grown to saturation
in YNBD. Each culture was diluted 10-fold in sterile water, and a 2 pL aliquot was
applied to the surface of YNO plates. The plates were incubated at the indicated
temperatures for 10 days and photographed.
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Figure 23. Western blot analysis of subcellular fractions of STUD expressing wild-type
thiolase and thiolases with mutations in the PTS2 region. 10 mL cultures of the indicated
strains were grown at 30°C for 18 h in SCIM. An equal portion of each 20,000 x g
supernatant (S) and 20,000 x g pellet (P) was resolved by SDS-PAGE on 10% gels.
Proteins were transferred to nitrocellulose and the blots were probed with anti-S.
cerevisiae thiolase serum followed by **I-Protein A. The blot was exposed on a phospor
storage screen.
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A detailed listing of the sequences of mutants that were transformed into STUD

is given in Table 6.

Table 6. Sequences of PTS2 mutants of thiolase.

W TCT CAA AGA CTA CAA AGT ATC AAG GAT CAT TIG GTG GAG AGC GCC Wl
pSG522 G- === —a= aus mes sam maw mes sem eme soo won eoe s ome S2A
Clone 1 cme moe 2ol weT mas mme eme mme mee mma mes eee ems wes e R4S
Clone 10 coe moe memm ams afs mem mmm s mes een een eme mee eee eee Q6P
Clone 15 me WW WHE NEE HWR RIH Wee can moe (e ene mee ama mmn oa- 33-8L/H11G
Clone 37 mmm mmm mtm vl vrw wer wmn aam aa= H11Q
Cione 44 Ty P HIIL
Clone 54 T U L5R"
Clone 59 B LER
Clone 60 cee sae sms aae (es cas L12v
Clone 64 T I T C e L 6H
Clone 69 W wWE Wl nee eee A11-140
Clone 72 aC= === === mew vas L12S
Cione 84 B L12F
Clone 90 Ave =ce =es ame =me {124
Clone 102 sme mes mas een ee- G6R/H11Y
Clone 108 cet vmn mmn mme mas QSR/HIIN
Cione 116 cme mem aee e s

Clone 128 .- Q6R/M11T
Clone 135 - RAK
Clone 136 --- H11L
Clone 159 an- R4G
Clone 171 S Lo
Clone 172 e L12M
Clone 173 ama mem mme eo mme e R OWWE WER WRE WEL el mee mme mme mee 48-11N

Random clones were selected and sequenced. The wild type sequence of codons for
amino acids 2 to 15 is given in the top line. Dashes indicate unchanged nucleotides.
Asterisks indicate deleted nucleotides.

Each of 15 nucleotide positions in 5 codons had a 0.1 probability of incorporating
an altered nucleotide. Ideally the majority of mutations resulting from this method would
contain single nucleotide substitutions along with some double substitutions. In practice,
the overall results of the mutagenesis strategy were as follows: wild type including silent
mutations, 13%; mutations in single codons resulting in amino acid substitutions, 19%;
mutations in two codons resulting in substitutions, 9%; mutations resulting in premature

stops, 5%; miscellaneous defects including no initiation codon, deletion of one or more
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bases, and one or more base changes in codons not targeted for mutagenesis, 54%. The
high percentage of miscellaneous defects may be attributable to difficulties in purifying
the synthetic oligonucleotide reported by the manufacturer due to its length and
heterogeneity of sequence.

Three clones (15, 69, and 173), all containing deletions within the PTS2 domain,
were examined in preliminary screens and found to be mislocalized to the cytosolic
fraction and were not examined further (not shown).

The inability of the STUD strain expressing certain mutant thiolase genes to grow
on oleic acid-medium was not due to the synthesis of enzymatically inactive thiolase in
these transformants. All mutant thiolases were enzymatically active (Table 7) and at
levels comparable to that of wild-type thiolase. The specific activities of mutant thiolases
varied between 2.8 and 11.0 nmol-min™-mg protein™. The specific activity of wild-type
thiolase was 6.6 nmol-min*-mg protein™. No thiolase activity was detected either
immunologically or enzymatically in the STUD strain transformed with the parental
vector pRS315 (designated "NULL"™ ).

One mutant, L5R*, did not grow on oleic acid-medium and showed almost no
thiolase activity (0.14 nmol-min*-mg protein™); however, this low activity was due not
to the production of normal levels of a poorly active thiolase but to the low levels of
thiolase synthesized (Fig. 23). Re-examination of the sequence of this clone disclosed an
unexpected deletion of two Cs at positions -2 and -1 in the 5' untranslated region (where

the A of the ATG initiation codon is designated +1). The occurrence of specific



Table 7. Wild-type and mutant thislase strains: subcellular fractionstion, thislase activity,

and growth on oleic acid-medium
STRAIN 20kgS 20kgP GROWTH ACTIVITY
(% of wal) @23°C @30C (amol-mg*-min™)
NULL n.d. - - nd.
WT 15 8S + o+ 6.6
Al-16 97 3 - - 4.7
S2A 14 86 + + 49
R4S S0 10 + + 6.5
R4K & 35 + o+ 103
R4G 9% 5 + - 8.0
R4ALI2M 14 86 + + 7.3
L5Q S 10 + o+ 10.9
LSR® 88 12 - - 0.14
LSV/Q6P 92 8 - - 10.7
QerP 0 30 + o+ 8.2
QsH 24 76 + + i1.0
HIIL a7 B + + 4.7
H11Q 49 sl +  + 5.6
QSR/H1IN 27T T3 + o+ 5.6
Q6R/HLIT M 8 + o+ 6.3
Q6R/HLLY &6 4 + - 55
L12F 28 72 + 4 8.1
LI2S 91 9 + - 28
L12v 12 88 + o+ 6.9
Li2w - 55. 45 + + 6.1
LI2M 1 8 + + 8.8
LSR 91 9 - - 6.3
£ pellct) and 20 kg3 (20,000 X &

The perceat diswibunion Of thiolase 1 the 20 KgP (20,

supernatant) was determined by western blot analysis with *21-protein A, followed by quantitation
on a phosphorimager. Growth oz YNO agar was assessed after incubation at the indicated
temperature for 10 d, Enzyme activity was determined as described in Materials and Methods
{cultured at 30°C}. n.d. = not detected
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nucleotides in the region immediately adjacent to an initiation codon can influence the
expression of the encoded protein (Cigan and Donahue, 1987). It is therefore most likely
that the small deletion reduces translation initiation in LSR*. A second mutant, L5R, still
could not grow on oleic acid-medium (Fig. 22), even though it made increased amounts
of thiolase (Fig. 23) with normal enzymatic activity (6.3 nmol-min™-mg protein™).

Only the mutant LSR and the double mutant L5V/Q6P resulted in the inability to
grow on oleic acid-medium at either 23°C or 30°C (Fig. 22) and in the almost total
mislocalization of thiolase to the cytosol (Fig. 23). Q6P alone results in a moderate
reduction in targeting efficiency, and the Leu to Val substitution at position 5 is
conservative and might therefore be expected to resuit in little or no further diminution
of targeting over that observed in Q6P. Howe\;er. it appears that these side-by-side
substitutions act synergistically to abolish targeting and import of thiolase into
peroxisomes.

The small amounts of thiolase found in the organellar pellets of nongrowing yeast
may be attributed to cytosolic thiolase that is trapped nonspecifically in the organellar
pellet during subcellular fractionation. The organellar fractions of four mutants (R4S,
R4G, LSQ, L12S) have thiolase in amounts similar to those of mutants that do not
support growth. Therefore, it is probable that only a small amount of thiolase needs to
be correctly targeted to peroxisomes to support growth on oleic acid medium.

Two mutants (R4G and L12S) targeted thiolase poorly. These mutants were

unable to grow at 30°C but were able to grow at 23°C on oleic acid-medium. This
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temperature sensitivity may result from thermal destabilization within the thiolase
peroxisomal targeting signal, resulting in reduced interaction between it and factor(s)
involved in the recognition of the signal.

Three single (S2A, L12V, L12M) and one double (R4A/L.12M) mutation had
negligible effects on targeting and did not detectably effect growth on oleic acid medium.
The conversion of Ser 2 to Ala (S2A), through the introduction of an Ncol site at the
initiation codon of the thiolase gene in pSG522, was not expected to affect the targeting
of thiolase, as this amino acid is not conserved in the different thiolases. The mutations
L12V and L12M were tolerated, most likely because the substituted amino acids occupy
the same approximate volume as Leu and because they maintain hydrophobicity at this
position. In contrast, mutants with bulky aromatic side chains at L12 (L12F and L12W)
were less efficiently targeted and grew more poorly on oleic acid medium than either
L12V and L12M. The larger aromatic side chains may cause steric interference between
the thiolase targeting signal and the presumed PTS2 import receptor.

The double-mutant R4A/L12M was efficiently targeted and supported strong
growth on oleic acid medium. This result is difficult to explain given that the more
conservative substitution R4K was less efficiently targeted and had decreased growth on
oleic acid-medium. An Arg to Lys substitution in the PTS2 of rat thiolase had a similar
effect on peroxisomal targeting in mammalian cells (Tsukamoto er al., 1994). If the
reduced volume of the Ala side chain compensated for the loss of the positively charged

Arg side chain, then the mutant R4S should be expected to be accommodated as well as
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R4A. However, this is not the case as the mutant R4S was poorly targeted. The
possibility remains that the second amino acid mutation (L12M) in the double-mutant
compensates in an unknown way for the loss of Arg at position 4.

All known thiolases have a conserved Gln or Asn corresponding to position 6 in
S. cerevisiae peroxisomal thiolase. Mutation of Gln at this position to Pro (Q6P) resulted
in reduced targeting of the mutated thiolase vis-d-vis wild-type thiolase. This reduced
targeting might be the result of the loss of hydrogen bonding-capacity at this position in
the mutant. The mutant Q6H retains hydrogen bonding-capacity and was more efficiently
targeted than Q6P but still less well than wild-type thiolase. In contrast, thiolase in which
the conserved His at position 11 is replaced by Gln (H11Q) was divided almost evenly
between the cytosolic and organellar fractions. The mutant H1]1L was targeted more
efficiently than H11Q.

Of the three double-mutants encompassing Q6 and H11 (Q6R/H11N, Q6R/HI1IT,
and Q6R/H11Y), Q6R/H11Y is most interesting in that while approximately 40% of
thiolase was localized to the organellar fraction in yeast grown at 30°C, this mutant was
incapable of growth on oleic acid-medium at 30°C. These crude fractionation results do
not distinguish between the peroxisomal thiolase and thiolase which may be mislocalized
to one or more compartments which cofractionate with peroxisomes in the organellar
pellet. Strong immunofluorescence of cytosolic thiolase does not permit identification of
particular pattern of localization of the Q6R/HL1Y mutant. Density gradient

centrifugation indicates a substantial association between peak cytochrome ¢ oxidase
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activity (a mitochondrial marker enzyme) and Q6R/H11Y thiolase detected by western
blotting greater than the level of contamination of the mitochondria normally observed
in the fractionation of yeast expressing WT thiolase (Fig. 24). It lis possible that
mutations in Hisl1 of S. cerevisice thiolase can have similar effects as mutation of His-
17 of rat peroxisomal thiolase B to Arg, Lys, Leu, or Val, which result in dual
localization of DHFR-PTS fusion to both mitochondria and cytosol in CHO cells (Osuii
et al., 1992; Tsukamoto et al., 1994).

In order to establish whether certain mutant PTS2s could act as mitochondrial
targeting signals, the yeast strain YPH102 (Sikorski and Hieter, 1989) a strain derived
from YPH1 which has a peroxisomal assembly defect (see above), was transformed with
fragments of pGSTUD?3 as described above. Eighteen uracil prototrophs were analyzed
for expression of thiolase by western blotting of total cell lysates (Fig. 25). Four of the
transformants expressed no thiolase and one, YPHSTUD-10 was used for Southern blot
analysis to confirm the insertion of the URA3 gene into the POTI locus (see Fig. 20,
janes 6 on both blots). YPHSTUD-10 was used for further experiments and is referred
to as YPHSTUD.

YPHSTUD was transformed with all the plasmids carrying mutations at His11 and
cytosolic and organellar fractions were analysed by western blotting to determine the
subcellular distribution of thiolase polypeptides (Fig. 26). In all cases except one
(Q6R/H11Y), most of the thiolase detected in the pellet in ST UD was cytosolic in

YPHSTUD, suggesting that these proteins were targeted exclusively, but inefficiently,
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Figure 24. Density gradient fractionation of the organellar fractions of STUD expressing
either wild type thiolase or targeting mutant Q6R/EHI11Y. 500 mL cultures of STUD[524]
and STUD[Q6R/H11Y] were grown for 20 h in SCIM. The 20,000 x g pellet was further
fractionated on a discontinuous Nycodenz™ gradient. Catalase and cytochrome ¢ oxidase -
activities were measured enzymatically. Thiolase was measured by western blot analysis.

The histograms represent the portion in each fraction of the total activity recovered from
the gradient.
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Figure 25. Western blot analysis of uracil prototrophs derived from YPH102 after
transformation with thiolase knockout fragments. 10 mL cultures of YPH102 (lane 1) and
18 randomly selected uracil prototrophs were grown for 20 h in SCIM. Glass bead
lysates were resolved by SDS-PAGE on a 10% gel and the proteins were transferred to
nitrocellulose. The blot was probed with anti-S. cerevisiae thiolase serum followed by
AP-conjugated anti-rabbit IgG. The immunoreactive bands were visualized with
NBT/BCIP. Upward pointing arrows highlight strains which are thiolase deficient.
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Figure 26. Western blot analysis of subcellular fractions of wild type thiolase and PTS2
mutants expressed in STUD and the thiolase-deficient peroxisome assembly mutant strain,
YPHSTUD. Wild type and indicated PTS2 mutants were expressed in both STUD (+
peroxisomes) and YPHSTUD (- peroxlsomes) 10 mL cultures were grown for 18 h in
SCIM at 30°C. Equivalent proportions of 20,000 x g supernatant (S) and 20,000 x g
pellet (P) were resolved by SDS-PAGE on 10% gels. Proteins were transferred to
nitrocellulose and the blots were probed with anti-S. cerevisige thiolase serum followed
by **I-Protein A. The immunoreactive bands were visualized by exposure of the blot to
a phosphor storage screen. The experiment was repeated for the strains expressing
Q6R/H11Y with the result shown in the bottom panel.
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to peroxisomes. The mutant Q6R/H11Y was equally pelletable in YPHSTUD, indicating

that the targeting of this protein to a component of the organellar fraction is not
dependent on the assembly of normal peroxisomes and strengthens the evidence that it
is misdirected inefficiently to mitochondria.

Mutations of amino acids within the minimal targeting sequence defined for rat
peroxisomal thiolase have a variety of effects on the localization and import of yeast
thiolase as indicated by subcellular fractionation and the ability to restore growth on oleic
acid medium in a thiolase-deficient strain. The yield of informative mutants using this
particular mutagenesis scheme was less than ideal, and a comprehensive set of mutations
in each residue targeted for mutagenesis was not obtained. However, a few important
conclusions can be drawn. Substitution of Leu5 by Arg completely abolishes import. A
PTS2 mutant with Gln at the same position is severely mislocalized to the cytosol but
imported in sufficient quantity to support growth on oleic acid medium. Leul2 is
replaced by hydrophobic residues with similar volumes (Met and Val) without significant
effect on targeting whereas larger hydrophobic residues (Phe and Trp) reduce targeting
efficiency. A polar residue at this location (Ser) ‘abolishes targeting at 30°C. When the
N-terminal amino acid sequence of S. cerevisiae thiolase is represented on a helical wheel
diagram (Fig. 27), Leu 5 and Leu 12, are aligned and may form part of 2 hydrophobic
surface required for interaction of the targeting signal with its receptor. Although our
results suggest that hydrophobicity is required at both of these residues, we cannot

assume that the targeting sequence forms a helical structure.
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Lys 9 Hi=z 11
Helical wheel.
Sequence SCINTERH.
From position 1 to 18.
Ser 2 Gly 18
Val 13 Ser ¢

1? | Gin 3
fet fisp 18

Average hydrophobicity Is : .82

Incremental angle is 188° Hydrophobic moment <pi> iz: .19

Figure 27. Helical wheel representation of the N-terminus of S. cerevisiae thiolase. The -
N-terminal 18 amino acid residues are schematically presented as an a-helix viewed
down the central axis of the helix. Critical residues are boxed.
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The severe targeting defect conferred by substitution of Argd with either Ser or
Gly identifies another critical element of the thiolase PTS2. A conservative substitution
(Lys) at this position results in significant mislocalization suggesting that the precise
positioning of positively charged residue within the overall structure of the signal is an
absolute requirement for maximum function of the targeting signal. Another group
working on the PTS2 of rat peroxisomal thiolase has also discovered that substitution of
the corresponding Arg residue with Lys reduced import (Tsukamoto ef al., 1994).

Analysis of localization of His 11 mutants expressed in YPHSTUD indicates that
at least one substitution (H11Y) resuits in conversion of the PTS2 into an inefficient
mitochondrial targeting signal. Although this substitution occurred in a double mutant
(Q6R/H11Y), two other Hisll mutants with the identical substitution at Gin6 were not
targeted to mitochondria (QSR/H11N and Q6R/H11T). The relatively minor alterations
to PTS2 which converts it into a mitochondrial targeting signal observed in this work and
by others (Osumi et al., 1992; Tsukamoto er al., 1954) may be entirely fortitous rather
than representing a significant structural similarity between the two types of signal.
Mitochondrial signals are diverse and their structural requirements are only broadly
defined as rich in basic or hydroxylated residues without long hydrophobic stretches and
exhibiting some degree of amphipathicity if arranged as an a-helix or f-sheet (Verner
and Schatz, 1988). This description may be applied fairly well to the PTS2 of §.
cerevisige thiolase, yet the wild type signal does not confer any substantial degree of

mistargeting to mitochondria even in the absence of peroxisome structures (see Fig. 26;
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WT).
Restoration of growth on oleic acid medium of a thiolase-deficient strain of yeast
by several PTS2 mutants with targeting defects which may be classified as severe, is 2
sensitive indication that a small fraction of thiolase is imported. This indicates that as
long as the majority of the targeting information is present, interaction with the PTS2

receptor is still possible and import can proceed.

3.5. DIMERIZATION PERMITS THE IMPORT OF CYTOSOLIC VARIANTS OF
THIOLASE INTO PEROXISOMES.

Early in the effort to characterize the import signal requirements of S. cerevisiae
thiolase, the plasmid pSCTAN was constructed and transformed into DL1 with an intact
endogenous POTI gene encoding full-length thiolase. This strain, DL1[SCTAN] was
therefore programmed to express the full-length S. cerevisiae thiolase (M, calculated:
44764 Da) and the truncated SCTAN (M, calculated: 42940). My expectation was that
the truncated protein would remain cytosolic and that the full-length protein would be
correctly targeted to peroxisomes.

Contrary to this expectation, about 50% of the truncated protein colocalized with
the full-length thiolase in the organellar fraction (Fig. 28, panel A). When the organellar
fraction was subfractionated on Nycodenz™ gradients, the full-length and truncated
thiolases co-migrated precisely (Fig. 28, panel B). Furthermore, protease-protection

experiments indicated that both proteins were probably protected inside a structure and
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were rendered sensitive 1o added protease by detergent treatment (Fig. 29).

Following construction of the thiolase-deficient STUD strain, it was observed that
the truncated thiolase expressed in the absence of the full-length thiolase was essentially
cytosolic (See Fig. 30, STUD{AN]). This suggestzd that at least at the genetic level the
full-length thiolase interacted with the truncated thiolase to confer partial import. The
native peroxisomal 3-ketoacyl thiolases from a number of sources, including S§.
cerevisiae, occur as dimers composed of identical subunits (Frevert and Kindl, 1980;
Miyazawa et al., 1981; Zeelan er al., 1990) Therefore, the most likely model to explain
the partial restoration of import o;t' the truncated thiolase in the presence of the fuli-length
thiolase is that the truncated subunits can dimerize randomly with either other truncated
subunits or with full-length subunits after synthesis in the cytosol but only dimers with
at least 2 single PTS are competent for import. The random formation of dimers between
full-length and truncated subunits expressed at roughly equal levels should result in the
formation of heterodimers in 50% of the dimerizations and the import of 50% of the
truncated protein with the other 50% forming homodimers of truncated protein that are
trapped in the cytosol. Taking into account some leakage during the homogenization
process, this model accurately predicts the observed distribution of truncated thiolase.

To approach this question using the in vivo system it was necessary to
demonstrate a physical interaction between subunits of dimers, some of which would be
incompetent for import and others that would be competent. To this end a gene encoding

epitope-tagged thiolase was constructed. The addition of the HA epitope tag makes an
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Figure 28. SDS-PAGE and western blot analysis of tnumcated thiolase co-expressed with
the full-length protein in subcellular fractions. A 500 mL culture of DL1{SCTAN] was
grown for 18 h in SCIM. The postnuclear supernatant (Panel A, lane 1) was divided into
a 20,000 x g supernatant (Panel A, lane 2) and 20,000 x g pellet (Panel A, lane 3). The
pellet was further fractionated on a discontinuous Nycodenz™ gradient (Panel B). Equal
portions of each fraction were resolved by SDS-PAGE on a 10% gel. Gels were stained
with Coomassie blue. Western blots were probed with anti-S. cerevisiae thiolase serum
followed by *>1-Protein A. Open arrow = full-length thiolase. Filled arrow = truncated
thiolase. M, of standards are given in kDa. PXM = fractions enriched for peroxisomes.
MIT = fractions enriched for mitochondria.
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Figure 29. Western blot analysis of protease semsitivity of full-length and trunacted
thiolase in the orgamellar pellet. 500 ug of protein from the 20,000 x g pellet of
DL1[AN] was treated with 2, 10, or 50 pg of either trypsin or thermolysin (PRT) in the
absence or presence of 1% Triton X-100 and 1% deoxycholate (DET) for 15 min on ice.
10% of each reaction was resolved by SDS-PAGE on a 10% gel. The proteins were
transferred to nitrocellulose and the blots were probed with anti-S. cerevisiae thiolase
serum followed by I-Protein A. The immunoreactive bands were visualized by
exposure to X-ray film at -70°C with an intensifying screen for 72 h.
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Figure 30. Western blot analysis of subcellular fractions of truncated and HA epitope-
tagged thiolase expressed in the presence and absence of the full-length protein. 10 mL
cultures of STUD[AN], DL1{AN], STUD[HA], and DLI[HA] were grown for 18 h.
Equivalent proportions of 20,000 x g supernatant (SUP) and 20,000 x g pellet (PEL)
were resolved by SDS-PAGE on duplicate 10% gels. Proteins were transferred onto
nitrocellulose. One blot was probed with anti-S. cerevisiae thiolase serum followed by
AP-conjugated anti-rabbit IgG. The duplicate blot was probed with 12CASmADb followed
by AP-conjugated anti-mouse IgG. Immunoreactive bands were visualized with
NBT/BCIP.
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immunologically distinct thiolase that can be specifically identified on western blots and
immunoprecipitated with the 12CASmAb (Kolodziej and Young, 1991).

A synthetic oligonucleotide duplex was inserted into the Ncol site of the plasmid
encoding the truncated form of thiolase (see Fig. 2, pSCTAN). The oligonucleotides were
designed such that insertion of one or more oligonucleotide duplex could result in an
epitope-tagged thiolase subunit with one or more copies of the tag located at the N-
terminus of the protein. One of the clones recovered from the ligation experiment
encoded two copies of the tag. The protein expressed from this gene was designated
SCT(HA)2. Preliminary experiments indicated that SCT(HA)2 exhibited exactly the same
subcellular distribution as the truncated thiolase when expressed in the presence or
absence of the full-length protein (Fig. 30). In a protease protection experiment in which
the organellar pellet of strain DL1[HA] was digested with trypsin in the absence and
presence of 1% Triton X-100 only limited proteolysis was observed (Fig. 31). The
tryptic digestion products of both thiolase molecules migrated as a single band with a
subunit mass close in size to the truncated form of thiolase (SCTAN). Western blot
analysis of the same fractions with 122CASmADb indicated that the lower molecular weight
form had no HA epitope tag which constitutes the N-terminus of the tagged monomer.
The most likely trypsin sensitive site common to both the full-length and epitope-tagged
proteins is the Lys-Arg-Lys cluster at amino acid positions 23 to 25 in the wild type
protein. Although a more detailed analysis is required, it seems likely that the bulk of

thiolase forms a tightly folded protease-resistant structure in the native enzyme. In
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Figure 31. Limited proteolysis of thiolase. A 20,000 ~ g pellet was prepared from a 10
mL culture of DL1[HA]. Aliquots containing 60 pg of protein from this pellet were
incubated on ice for 15 min with (+) or without (-} 1% Triton X-100 (DET) and then
digested for 20 min with 2, 10 or 50 ug of trypsin (PRT). Digestion was terminated with
the addition of hot SDS-PAGE buffer. Proteins were resolved by SDS-PAGE ona 7 to
15% gradient gel. The proteins were transferred to nitrocellulose and the blot was probed
with anti-thiolase serum followed by HRP-conjugated anti-rabbit IgG. Immunoreactive
bands were detacted by ECL™. Selected digests were analyzed by western blotting with
12CASmAb followed by AP-conjugated anti-mouse IgG. Immunoreactive bands were
visualized with NBT/BCIP.
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contrast, the N-terminus, either epitope-tagged or with the PTS2 of the full-length

protein, is exposed in a protease-sensitive manner. Such a conformation would suggest
that the targeting signal of thiolase is exposed, even though the protein is fully folded and
dimerized in the cytosol, thus permitting the folded protein to be engaged by the putative
PTS2 receptor.

The simultaneous expression of truncated and epitope-tagged thiolase with the full-
length thiolase can be used to distingnish between two possible modes of translocation.
One model is that both dimer subunits are engaged simultaneously at the cytosolic surface
of the peroxisome but are translocated independently. Although there is randomized
mixture of dimers created in the cytosol, only a select, non-random population of dimers
interact with peroxisomes (le. only heterodimers containing at least one targeting signal).
Independently translocated subunits released into the lumen of the peroxisome would be
free to dimerize with any other available monomer leading to the re-establishment of a
randomly mixed population, including some heterodimers composed of subunits lacking
the targeting signal. On the other hand, if dimer subunits remain associated throughout
the translocation, only heterodimers with at least one targeting signal will be found in the
imported fraction.

As a prelude to this analysis, the characteristics of strains expressing all three
thiolases were examined in greater detail. In Fig. 32 analysis of the subcellular
distribution of thiolases is analyzed in a strain expressing moderate (DL1[AN+HA]) and

5- to 7-fold higher (DL1JAN+HAJH®) levels of the untargeted subunits along with the full
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length protein. In (DL1[AN+HAJ®) untargeted subunits are expressed at such high
levels relative to the full-length protein (HIGH, lane 1) that virwally all fuli-length
subunits may be expected t;a form heterodimers with one or another of the cytosolic
variants. Thus the total amount of epitope-tagged and truncated subunits translocated into
the peliet was equal to the amount of full-length thiolase in the peliet (HIGH, lane 3).
First, this observation indicates that the translocation of cytosolic subunits is efficient.
If untargeted subunits were less efficiently translocated than the full-length thiolase, the
combined tota! of the untargeted subunits would be discernably less than that of the full-
length protein. Secondly, the ratio of translocated epitope-tagged to truncated thiolase is
consistent with the availability of these subunits in the cytosol during dimer formation
(HIGH, lane 1 shows that the epitope-tagged form of thiolase is somewhat more abundant
than the truncated subunit in the total and is therefore also more abundant in the
translocated fraction lane 3). A preference for heterodimerization between the full-length
thiolase and one of the variant forms would skew the distribution of subunits in the
translocated fraction in favour of the preferred subunit.

In a previous section the disassembly of peroxisomes was examined (see Fig. 15),
and full-length thiolase was found to be only partially solubilized by mild treatment with
detergent. Treatment of the organellar fraction from DL1[AN+HA]and DL1[AN +HAJ¥
with 1% Triton X-100 results in solubilization only a portion of the thiolases (Fig. 32,
lanes 4 and 5, 12 and 13) in 2 manner consistent with that observed for wild type thiolase

alone. The anti-SKL reactive proteins of 92 kDa (multifunctional protein) and 54 kDa
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FIG. 32. Westem blot analysis of trumcated and HA epitope tagged thiolase expressed
simultaneously with the full length protein from low or high copy mmnber vectors. 10 mL
cultures of DL1[AN+HA] (LOW) and DL1[AN+HA]* (HIGH) were grown for 18 h in
SCIM. The post nuclear supernatants (lane 1) were divided into 20,000 X g supernatant
(iane 2) and pellet (lane 3). Samples of the pellet were treated with 1% TX-100 on ice
for 30 min and centrifuged at 20,000 X g for 20 min to generate a soluble (lane 4) and
particulate fraction (lane 5). Another sample of pellet was treated with 10 mM Tris-Hel
pH 8.5, 500 mM NaCl, and 2.5 mM EDTA for 30 min on ice and centrifuged for 30
min at 100,000 X g to generate a soluble (lane 6) and particulate (lane 7) fraction.
Proteins were resolved by SDS-PAGE on duplicate 7 to 15% gels and transferred to NC.
One blot was probed with anti-SCT antiserum diluted 1:5000. The duplicate blot was
probed with anti-SKL antiserum diluted 1:200. The immunoreactive bands were detected
with *I-Protein A and exposure on a phosphor storage screen.
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(peroxisomal citrate synthase isoenzyme) are not solubilized at all by detergent, which
may indicate that they associate more strongly with a detergent resistant protein "core”
structure similar to that seen in rat and mouse peroxisomes (Poole and Crane, 1992;
Hayashi et al., 1981; Thompson and Krisans, 1990; Alexson ez al., 1985). Both
thiolases, and anti-SKL-reactive proteins are released by treatment with 10 mM Tris-HCl
pH 8.5, 2.5 mM EDTA, 0.5 M NaCl (Fig. 32, lanes 6 and 7, 14 and 15) which disrupts
the peroxisomal membrane and probably interactions among elements of the peroxisomal
matrix. The significance of this observation is that heterodimers of the full-length and
truncated or epitope-tagged thiolase subunits appear to assemble into peroxisomes in the
same way as homodimers of the full-length protein and are equallz;r susceptible to the
partial or complete disassembly of the organelle. In addition the import of cytosolic
subunits does not interfere with the import of at least two other matrix proteins.

To directly demonstrate dimer interactions, cells of strain DLI[AN+HA] were
labelled with **S-methionine for 15 min, chased for 20 min, spheroplasted, homogenized
and divided into cytosolic (SUP) and organeilar (PEL) fractions. These fractions were
solubilized with 50 mM Tris-HCI pH 8.5, 2.5 mM EDTA, 500 mM NaCl for 30 min.
This treatment is better than detergent for complete solubiiization of peroxisome matrix
elements (see Fig. 32). The solubilized thiolase dimers were then immunoprecipitated
with anti-S. cerevisiae thiolase serum and 12CASmAb (Fig. 33). Immunoprecipitates
obtained with anti-S. cerevisiae thiolase serum represent the total labelled *hiolase profile

in each fraction. The immunoprecipitates obtained with 12CASmADb should contain the
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epitope-tagged protein and presumably any subunits with which it is dimerized.

The results indicate that epitope-tagged/truncated thiolase dimers are found
exclusively in the cytosolic fraction while epitope-tagged/fuli-length dimers are present
in the organellar fraction (Fig. 33, lanes 3 and 4). A large amount of epitope-tagged
protein was immunoprecipitated from the cytosol because in addition to heterodimers
with the truncated protein, import incompetent homodimers of epitope-tagged protein and
heterodimers of epitope-tagged/full length protein that leak during homogenization or
have not yet been imported are also present in the cytosolic fraction.

A generally accepted model of protein translocation envisions a the translocating
peptide within the hydrophillic pore created by components of the translocon as having
some secondary structure but no tertiary or quaternary interactions (except transiently
with surfaces within the pore). A model of thiolase translocation in which dimers are
simultanecusly committed to translocation but are actually threaded through the
translocon consecutively and independently would be consistent with the accepted model.
Monomers would then be released from the translocon into the lumen of the peroxisome
for refolding and oligomerization. However, no dimers between the epitope-tagged and
truncated thiolase that are predicted by this model were detectable in immunoprecipitates
from the organellar fraction.

An alternative relatively complex model that can explain these results is one in
which subunits of heterodimers are translocated independently with the leading subunit

remaining in contact with the lumenal surface of the translocon until the trailing subunit
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Figure 33. Immimoprecipitation of thiolase from subcellular fractions of **S-labelled yeast
expressing truncated, HA-epitope-tagged and full-length thiolase, 5-10° cells of YNBD-
grown DL1[HA+AN] were transferred into YNO and grown for an additional 6 h for
the induction of peroxisomes. The cells were concentrated by centrifugation and 1abelled
for 15 min at 30°C with 500 uCi of **S-methionine in 1 mL YNO. The cells were
concentrated and resuspended in 10 mL YNO with 20 mM unlabelled methionine. The
labelled cells were fractionated into 20,000 x g supernatant (SUP) and 20,000 x g pellet
(PEL) fractions. The fractions were adjusted to SOmM Tris-HC1 pH 8.5, 2.5mM EDTA,
500 mM NaCl and incubated on ice for 30 min. The solubilized fractions were
centrifuged at 100,000 x g for 20 min and the supernatants were split. Thiolases were
immunoprecipitated with either 2.5 pL anti-S. cerevisige thiolase serum or 10 pL of
12CAS ascites fluid at room temperature for 1 h. Immune complexes were adsorbed to
Pansorbin™ for 1 h at room temperawre. The pelleted cells were washed 4 times with
Tris-HCI pH 8.5, 2.5 mM EDTA, 500 mM NaCl. The final pellet was suspended in
SDS-PAGE sample buffer, boiled and centrifuged. 33 % of each supernatant was
resolved by SDS-PAGE on a 7 to 15% gradient gel. The gel was dried and exposed on
a phosphor storage screen. Open arrow=full-length thiolase. Filled arrow = truncated
thiolase. Grey arrow = HA epitope-tagged thiolase.



123

is translocated. The dimers released into the peroxisomal matrix would have the same
subunit composition as those arriving at the cytosolic surface of the translocon.

The simpler explanation for the observed results is that dimers are translocated
simultaneously and remain in contact during the import process. Since nothing is
currently known about the structural requirements for dimerization of thiolase monomers
it is possible to speculate that the bulk of the protein may be unfolded without disrupting
the interface between monomers. Nonetheless, in order for monomers to remain
associated throughout the translocation event, at least some portion of both monomers
containing the dimer interface must occupy the channel of the translocon simultaneously.
Oligomerization of glyoxysomal malate synthase octamers (Kruse and Kindl, 1983) and
C. boidinii alcohol oxidase octamers (Goodman et al., 1984) ap[.Jears to occur only after
the monomeric subunits have been synthesized in the cytosol and translocated into the
organelle. When complementary Zellweger fibroblasts are fused, 3-aminotriazole which
covalently modifies catalase and stabilizes its folded structure, inhibits the redistribution
of cytosolic catalase to peroxisomes relative to untreated heterokaryons (Middlekoop ez
al.,1991). These examples support the idea that peroxisomes do not routinely import
folded, oligomerized proteins.

In contrast, purified octameric alcohol oxidase of Pichia pastoris appeared to be
quickly incorporated in to punctate structures after microinjection into intact mammalian
cells some, but not all of which, co-stained with anti catalase antibodies (Walton ez al.,

19922). Likewise, fusion of certain complementary Zellweger fibroblasts results in the
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very rapid assembly of pre-existing, active catalase (ie. heme-containing tetramers) into
peroxisomes (Brul ef al., 1988). Although there is no direct evidence that the rapid
import of these complexes does not involve, at some point, the disassembly and unfolding
of subunits which are then targeted independently, the possibility of the co-translocation
of preassembled subunits cannot be ruled out either.

Interestingly, the translocation of human serum albumin decorated with several
covalently attached peptides of 12 amino acid residues ending in SKL-COOH, has been
observed in microinjected (Walton er al., 1992b) and streptolysin O-permeabilized
(Wendland and Subramani, 1993a) mammalian cells. The aspect of this observation
which is pertinent to modelling thiolase translocation is that at least two polypeptide
segments are obliged to occupy the channel simultaneously during the translocation of
these "branched” molecules.

Several lines of evidence make it clear that the post-translational translocation of
proteins is sensitive to the conformation of the translocating species. The first is that fully
folded precursors are poorly imported in vive without prior treatment with chaotropic
reagents such as urea (Eilers er al., 1988). If the unfolded polypeptide is rapidly diluted
into the import mixture, translocation can be observed. Mitochondrial precursor and
mature proteins undergo a partial unfolding when bound to the surface of isolated
mitochondria (Eilers er al., 1983; Endo er al., 1989; Hartmann er al., 1993). Mutations
which inhibit oligomerization can also apparently improve the efficiency of import (Nye

and Scarpulla, 1990; Chen and Douglas, 1988). The introduction of point mutations
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which destabilize the folded structure of a passenger protein domain enhances its post-
translational import (Vestweber and Schatz, 1988a).

Likewisc, treatments which constrain the conformation of the protein are
inhibitory to import. The binding of the folate analogue methotrexate to DHFR fused to
a presequence inhibits post-translational import of the fusion protein into mitochondria
(Eilers and Schatz, 1986). In vivo import of a metal-chelating protein (copper
metallothionein), targeted via a presequence to yeast mitochondria was inhibited in media
containing copper (Ches and Douglas, 1987; Nye and Scarpulla, 1990) presumably
because muitiple amino acid side chains co-ordinating metal ions stabilize the metal-
bound conformation of the protein. A protein domain whose structure is stabilized by
internal disulfide honds becomes imbedded in mitochondrial import sites but is not
translocated (Vestweber and Schatz, 1988b).

Finally, molecular chaperonins can function in the import pathway at several
points (Rothman, 1989; Hendrick and Hartl, 1993; Craig er al., 1990). Chaperones can
apparently interact directly with proteins destined for translocation and maintain them in
an import competent conformation. Members of the 70 kDa heat shock protein family
have been implicated in translocation into endoplasmic reticulum (Deschaies ez al., 1988;
Zimmerman et al., 1988), mitochondria (Murakami ez al., 1988,1990; Sheffield ef al.,
1990), chloroplasts (Waegmann er al., 1990), and nuclei (Shi and Thomas, 1992).
Cuezva et al. (1993) have suggested that chaperones may also participate in the import

of peroxisomal proteins. In mammalian cells, peroxisomal import is diminished in cells
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which have been depleted of a 73 kDa hsp by pre-treatment with anti-hsp73 antibodies
(Paul Walton, personal communication).

Compared to the other intracellular compartments, the study of peroxisomal
translocation is at a formative stage. A possibility exists that the translocation of cytosolic
variants of thiolase via dimerization represents a distinctive mode of translocation that
is unique to peroxisomes. In order to determine if another, well characterized
translocation apparatus could accommodate the translocation of thiolase dimers, I
investigated the distribution of cytosolic thiolase in the peroxisome-deficient, thiolase-
deficient strain YPHSTUD expressing the PTS2 mutant Q6R/H11Y, which is apparently
targeted to mitochondria. This experiment indicated that a substantial amount of epitope-
tagged thiolase co-migrates with Q6R/H11Y into the organellar fraction of this strain
(Fig. 34, lane 8). Like peroxisomes, mitochondria can also accommodate the import of
branched-chain molecules (Vestweber and Schatz, 1988c). It therefore seems unnecessary
to ascribe unusual properties to the peroxisomal translocation machinery, and it is more
likely that translocating thiolase dimers assume a conformation that can be accommodated
by a "generic” translocon.

At the very least, the final set of experiments have disclosed a novel import
pathway for a cytosolic version of thiolase via dimerization with a targeted monomer.
The preliminary results indicating that dimerization with Q6R/H11Y can also confer
im.port into mitochondria in the peroxisome-deficient strain YPHSTUD suggests that this

property resides with thiolase and is not due to some distinctive feature of the import
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Figure 34. Western blot analysis of subcellular fractions of HA epitope-tagged thiolase
coexpressed with a full-length thiolase redirected to mitochondria. 10 mL cultures of
YPH102, YPHSTUD, YPHSTUD[H11Y], and YPHSTUD[H11Y+HA] were grown for
20 h in SCIM. Equivalent proportions of the 20,000 x g supernatant (S) and 20,000 x
g pellet (P) were resolved by SDS-PAGE on a 7 to 15% gradient gel. The proteins were
transferred to nitrocellulose and the blot was probed with anti-S. cerevisige thiolase
serum followed by HRP-conjugated anti-rabbit IgG. Immunoreactive bands were
visualized with ECL™ with a 1 h exposure on X-ray film. Filled arrow = HA-tagged
thiolase. Open arrow = Q6R/H11Y thiolase. Grey arrow = wild type thiolase.
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apparatus of peroxisomes. More work will be required to determine the structure of the

thiolase translocation intermediate and the nature of the translocon itself.

3.6. FUTURE DIRECTIONS

An important feature of peroxisomal protein targeting is the existence of at least
two distinct classes of targeting signals with divergent translocation initiation events. The
analysis of genes involved in various peroxisome assembly defects in yeast will likely
identify many components which are required for peroxisomal protein import. The
temperature-sensitive targeting mutants of thiolase identified in this work (L12S, for
example) can be used to identify components of the import pathway specific to PTS2
pathway. When overexpressed from a library constructed in high copy-number plasmids,
components involved in thiolase import may suppress the growth defect at 30°C by
permitting the import of a minimal amount of mutant thiolase required to restore oleic
acid metabolism.

With respect to dimer translocation, it would be of considerable interest to
determine if this translocation mode exists for other proteins which exist as dimers in the
native state. In S. cerevisiae the multifunctional enzyme, peroxisomal citrate synthase,
and peroxisomal malate dehydrogenase are all dimers which are targeted by PTS1 motifs.

Several methods may be used to determine possible translocation-competent
conformations of the yeast thiolase. For example, molecular sizing techniques such as

native polyacrylamide gel electrophoresis or gel filtration could be used to simultaneously
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measure changes in hydrodynamic radius of the molecule as dimers are unfolded and
dissociated in the presence of different concentrations of chaotropic reagents such as urea
or guanidine hydrochloride. A finding that the globular domain of the protein unfolds
prior to the breakdown of the dimer interface would suggest that an intact dimer could
traverse the membrane in a nearly completely unfolded state. Dr. David W. Andrews
(Dep..rtment of Biochemistry, McMaster University) has observed that many proteins in
current data bases which feature significant hydrophobic stretches located at the C-
terminus are dimers. Thiolase is one of these. If the dimerization interface of thiolase
were restricted to this region and could function more or less independently of the
structure of the bulk of the protein then the translocating dimer could assume a tail-to-tail
configuration without requiring significant higher order structure except in a limited

portion where the two subunits interact.
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